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Abstract

This thesis is about the design of a virtual sensor-based predictor for an offshore, single body, floating
sea wave energy converter called ISWEC (Inertial Sea Wave Energy Converter). The pitch rotation
of the floater, due to the incoming waves, is combined to the flywheel spinning velocity generating
an inertial gyroscopic torque. The Inertial Sea Wave Energy Converter exploits the gyroscopic effect
to generate energy. In order to maximize the generated energy, a model predictive control algorithm
based on the prediction of future values of the pitch component of the incident wave force, has to be
exploited. However, since no sensor is available on the ISWEC for measuring the pitch force, prediction
of future values of such quantity is a challenging problem. In this work an original two-stages approach
is proposed for the design of the wave force prediction. In the first stage a virtual sensor able to provide
real-time estimation of the wave force is designed by applying the set-membership estimation theory.
In the second stage, an autoregressive linear filter able to predict future values of the wave force based
on the current and past values of the same quantity estimated by the virtual sensor is obtained by
means of standard least squares. The designed prediction algorithm has been successfully tested on
different data sets obtained from an accurate simulator of the ISWEC prototype.
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Chapter 1

Introduction

Nowadays one of the threats that most impacts on worldwide choices is global warming. Solar ra-
diations arrive on Earth in form of light waves, some of them come back into space and others are
trapped by the atmosphere, making the Earth temperature remain constant.

Starting from the industrial revolution, in factories, large quantities of coal were started burning,
producing the so-called greenhouse gases. Numerous scientific studies have shown that climate change
is linked to the use of fossil energy sources, in fact greenhouse gases reaching the atmosphere, make
it thicker so that many more rays are retained and this causes an excessive heating of the planet, as
a consequence there are numerous environmental effects:

• glaciers melting

• increase in precipitation

• drying up of whole regions resulting in drought

• oceans warming resulting in powerful hurricanes

To prevent global warming from having catastrophic effects on the environment, renewable energy
sources are becoming increasingly common. Renewable energy sources are those whose use does
not affect future availability; Hydropower, wind turbines and solar Photo Voltaic panels are the most
diffused but other sources are represented by bio-power, geothermal power, concentrating solar thermal
power, wind power and ocean power. In 2016, in UE, among the renewable sources the main ones were
wood and other solid biofuels, hydropower provided the second largest contributor to the renewable
energy followed by wind energy. Very low quantities of tidal, oceanic and wave energy have been
produced; these technologies are used mainly in France and United Kingdom. [1] Among the sources,
the oceanic one contains large amounts of both mechanical and thermic energy and at least five types
of energy can be converted:

• Tidal Energy

• Marine Current Power

• Osmotic Power

• Ocean Thermal Energy

• Wave Energy

From now on, the focus of this thesis will be on wave energy.

6



CHAPTER 1. INTRODUCTION 7

1.1 Wave Energy

Waves are generated by the force of wind blowing on the surface of the sea and by exploiting the
kinetic energy contained in the wave motion it is possible to produce electricity. The kinetic energy
of a wave depends on speed and duration of the wind, on the depth of the water, on the conditions of
the backdrop and on the interaction with the other waves. The study of wave motion is more complex
than that of other renewable energy sources and for this reason the attempt to produce electrical
energy from waves is quite recent. The device that allows to convert the kinetic energy of the waves
into electric energy, is called Wave Energy Converter. Relatively to [2], WECs can be easily classified
according to their working principle and location. Talking about the primary conversion working
principle, the classification is:

• Oscillating Water Columns (OWC) made of a semi-submerged chamber opened at the
bottom. The superior chamber is linked to the external environment through a duct in which
flows the air pressurized in the chamber by the water vertical motion due to waves’ action.

• Wave Activated Bodies (WAB) made of a single or multiple body. The mechanical energy
of the buoy comes from the pressure and kinetic energy of the waves.

• Overtopping devices made of a storage basin, inside which the water level is higher than the
sea level. The water inside the basin is returned to the sea by an hydraulic turbine.

According to its location, the device can be classified as:

• Onshore the device is located at the shore, this leads to low installation and maintenance costs
but on the other hand it is subjected to the high power of wave during storms and generally,
waves contain less energy.

• Nearshore the device is located in moderate water depths (from 10m to 25m).

• Offshore the device is located in waters of more than 40m of depth. Installation and mainte-
nance costs are expensive but waves contain an higher energy.

This thesis is about the ISWEC, an offshore, single body, floating wave energy converter. All the
following informations are derived from [2].

1.2 ISWEC

The Inertial Sea Wave Energy Converter exploit the gyroscopic effect to generate energy. It consists of
a monolithic hull, two gyroscopic units, an electric PTO, a power conditioning system and an electric
cable. The two gyroscopes, the PTO and the power conditioning system are located in the inner space
that is completely sealed with respect to the external environment, only the electric cable crosses the
hull from the inner to the outer side and thanks to the sealing, corrosion and maintenance expenses are
significantly reduced. The floater mooring systems involves a slack mooring configuration composed of
a single line, a jumper and a clump weight, thanks to this configuration the hull is able to align itself
to the wavefront direction. The pitch rotation of the floater around the δ axis, due to the incoming
waves, is combined to the flywheel spinning velocity ψ̇, generating an inertial gyroscopic torque that
makes the gyroscopic structure rotate around the precession axis ε. Electricity is produced braking
the motion of the electric motor mounted on the same shaft of the gyroscopic structure. In figure, is
shown the prototype and its sea installation.
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Figure 1.1: ISWEC prototype and installation [2]
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1.2.1 Project

The Inertial Sea Wave Energy Converter (ISWEC) is a device designed by the Mechanical and
Aerospace Engineering department of Politecnico di Torino (Italy), the first idea is dated to 2005
and was about a 2 degrees of freedom gyroscope system. In 2007, to test the possibility of converting
waves’ energy to electricity through the combination of the motion of a hull and a flywheel spinning
speed, a 1 degree of freedom system was tested. The PTO has been installed on the same shaft of
the gyroscope frame. A first ISWEC prototype was developed in 2009 to be installed in Alghero site
(Sardinia, Italy), a 1:45 scaled device was used to validate the mathematical and numerical models
but friction, aerodynamic losses and electric efficiency cannot be scaled so they could not be studied.

Figure 1.2: 2 Degrees of Freedom (DOF) gyroscope system [2]

Figure 1.3: ISWEC 1:45 scaled prototype [2]

To face this problem a 1:8 scaled prototype was built and from January 2010 to December 2011, a
series of waves and current measurements took place in Pantelleria site (Sicily, Italy), near the port,
in the installation point of the device. Thanks to these measurements was possible to characterize the
waves states in that point and more reliable simulations could be run. In 2012 the 1:8 prototype was
realized and tested at INSEAN wave tank in Rome and it was installed in Pantelleria in August 2015.
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1.2.2 Implementation of the ISWEC model

According to [3] the ISWEC model is implemented with the Harmonic Balance approach. The two
equations describing the system are:(

(Ieq + µ∞)δ̈ + swδ +
R t

0 h(t− τ)δ̇(τ)dτ + β|δ̇|δ̇ − Jgϕ̇ε̇cos(ε) − Tw = 0

Ig ε̈+ cPTOε̇+ kPTOε+ Jgϕ̇δ̇cos(ε) = 0
(1.1)

where:

• Tw torque induced on the floater by the waves

• Ieq momentum of inertia of the device for pitch

• µ∞ infinite added mass

•
R t

0 h(t− τ)δ̇(τ)dτ convolution integral of radiation forces

• β quadratic viscous damping coefficient

• sw linear hydrostatic stiffness

• Ig overall gyroscope momentum of inertia around the precession axis

• Jg flywheel momentum of inertia about its rotating axis

• cPTO PTO damping coefficient

• kPTO PTO stiffness coefficient

The first equation is related to the hull motion, the second one to the gyroscopic system. It is important
to notice that the system is non-linear, due to the Jϕ̇ term.
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1.2.3 ISWEC problem formulation

Thanks to the mooring system the ISWEC works aligned to the wavefront direction and it is subject
to a pitch motion, around the side-to-side axis, caused by the waves. In order to maximize the energy
produced by the floater it is needed to control the PTO applying a predictive control algorithm based
on the prediction of future values of the pitch force. To predict it, is required the knowledge of its
value time by time but since the ISWEC has no sensor intended for measuring the pitch force applied
by the waves, it can be estimated given the time measurements of the other quantities, coming from
the on board sensors.
As explained above, the system is nonlinear, a possible solution is proposed in [5] and is briefly
discussed in the last chapter of this thesis. The goal of this thesis is to find a simpler solution and for
sake of simplicity the system from now on is considered as Linear and Time Invariant.

A standard formulation for the prediction problem is the following:

by(t+ ∆|t) = f(y(t), ..., y(t− k), u(t+ ∆), ..., u(t− h))) (1.2)

Considering the ISWEC:

• ∆ is the prediction horizon

• by(t+ ∆|t) is the predicted Pitch Force (FP ) at time t+∆

• y(t) is the Pitch Force (FP ) at time t

• u(t+∆) is the future input at time t+∆

In this specific case y(t) is unknown since it cannot be measured by any sensor on the floater while
u(t) is measured but is not possible to know its future values. To deal with this two critical issues
a possible solution is the two-stages approach, consisting in a first identification stage and then in a
prediction stage.

Figure 1.4: Two-stage prediction Model

1. Virtual Sensor
The first stage consists of a Virtual Sensor that, given the input u(t) measured on the ISWEC,
allows to estimate the Pitch Force (ys(t)) in real time. The Virtual Sensor is designed applying
the Set Membership estimation theory as discussed in the following chapter.

2. AR Predictor
The second stage is an autoregressive predictor based on the following assumptions:

• Over the prediction horizon ∆ the sea state is constant;

• At a given time the value of the Pitch Force is related to its recent past values.

The Pitch Force can be predicted as a linear function of its past values by means of standard
least squares: by(t+ ∆|t) = α1ys(t) + αiys(t− 1) + ...+ αnys(t− n) (1.3)

In the following chapters is discussed the result obtained applying the two-stages approach.



Chapter 2

Set-Membership Identification

2.1 System Identification

Identify a system means establish the mapping between its input and output given a set of a priori
informations on the model structure. Two cases may occur:

• Grey Box: significant structural informations are available, based on some physical insight. It
is not possible to have the exact structure of the system equation.

• Black Box: only bland assumptions are made on the system class.

Since in practice the problem is related to a sequence of numbers (data), even if the physical system
is a continuous time system, the best thing to do is look for a discrete-time model. Consider the case
of a black box, since it is the most general model.

Figure 2.1: Black Box model

The purpose is that of derive a discrete-time model in the General Regression Form based on a
set of input(u(t))/output(w(t)) discrete-time data, where t is the discrete time variable. It is assumed
that in general the system is a dynamic system:

w(t) = f(w(t− 1), w(t− 2), ..., w(t− n), u(t), u(t− 1), u(t− 2), ..., u(t−m))

If the system is linear w(t) will be a linear combination of the state variables:

w(t) = α1w1(t− 1) + α2w2(t− 2) + ...+ αnw(t− n) + β0u(t) + β1u(t− 1) + ...+ βmu(t−m)

But if the system is nonlinear there are different mathematical models and a priori assumptions are
needed: f∈F where F is the class of a function (trigonometric, polynomial, continuous, differentiable
etc.). A model can be classified as:

• Parametric if F can be described by means of a finite number of parameters

• Non parametric if F cannot be described by means of a finite number of parameters

All the following considerations are based on Parametric models.

12
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2.1.1 Noise in collected data

Input and output data are corrupted by noise, a priori informations on the noise are needed. First of
all, it is possible to classify the noise structure:

1. Equation Error (EE)

Figure 2.2: Equation Error Structure

D(q−1)y(t) = N(q−1)u(t) + e

2. Output Error (OE)

Figure 2.3: Output Error Structure

y(t) − η(t) =
N(q−1)

D(q−1)
u(t)

w(t) = y(t) − η(t)

3. Error In Variable (EIV)

Figure 2.4: Error In Variable Structure

y(t) − η(t) =
N(q−1)

D(q−1)
(u(t) − ε(t))

w(t) = y(t) − η(t)

u(t) = u(t) − ε(t)
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Regarding η(t) and ε(t) there are two possibilities:

• they are assumed to be random variables statistically distributed according to a probability
density function which is partially known.

• they are bounded and known to belong to a given bounded set

|η(t)| ≤ ∆η, ∀t ∆η ∈ <
|ε(t)| ≤ ∆ε, ∀t ∆ε ∈ <

The following formulation is based on |η(t)| and |ε(t)| bounded.

2.2 Set Membership approach for system identification

Assuming a priori informations on the plant and on the noise it is possible to define the Feasible
Parameter Set. Knowing that:

f∈F,
(ε(t),η(t))∈ S = {ε(t), η(t) : |η(t)| ≤ ∆η, |ε(t)| ≤ ∆ε, t = 1, ..., N}

the Feasible Parameter Set is defined as the set of all values θ which are consistent with the a-priori
informations on the plant and on the noise, for all the collected data:

Dθ = {θ = [α1, ..., αn, β0, ..., βn] ∈ <2n+1 : w(t) = −α1w(t−1)−...−αnw(t−n)+β0u(t)+...+βnu(t−n),
y(t) = w(t) + η(t), |η(t)| ≤ ∆η, ∀t = 1, ..., N,
u(t) = u(t) + ε(t), |ε(t)| ≤ ∆ε, ∀t = 1, ..., N}

Since the FPS depends on the unknown samples of the noise sequences, it is needed to define the
Extended Feasible Parameter Set (EFPS):

Dθ,η,ε = {θ = [α1, ..., αn, β0, ..., βn] ∈ <2n+1, η = [η(1), ..., η(N)] ∈ <N , ε = [ε(1), ..., ε(N)] ∈ <N :
(y(t) − η(t)) = −α1(y(t− 1) − η(t− 1)) − ...− αn(y(t− n) − η(t− n)) + β0(u(t) − ε(t))) + ...+

βn(u(t− n) − ε(t− n)), ∀t = n+ 1, ..., N
|η(t)| ≤ ∆η, ∀t = 1, ..., N,
|ε(t)| ≤ ∆ε, ∀t = 1, ..., N}

The FPS has a generic non-convex shape and the Parameter Uncertainty Intervals (PUI) are
defined as follow:

PUI = [θi, θi]

θi = min
θ∈Dθ

θi θi = max
θ∈Dθ

θi

where

θi = min
s.t.

y(t)=η(t)−α1(y(t−1)−η(t−1))−...−αn(y(t−n)−η(t−n))+β0(u(t)−ε(t)))+...+βn(u(t−n)−ε(t−n)), ∀t=n+1,...,N
η(t)≤∆η
η(t)≥−∆η
ε(t)≤∆ε

ε(t)≥−∆ε, ∀t=1,...,N

θi

and

θi = max
s.t.

y(t)=η(t)−α1(y(t−1)−η(t−1))−...−αn(y(t−n)−η(t−n))+β0(u(t)−ε(t)))+...+βn(u(t−n)−ε(t−n)), ∀t=n+1,...,N
η(t)≤∆η
η(t)≥−∆η
ε(t)≤∆ε

ε(t)≥−∆ε, ∀t=1,...,N

θi
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This is a nonconvex polynomial optimization problem and its global optimal solution can be
computed by means of convex relaxation approaches. The idea is to replace the nonconvex set with a
convex approximation (some uncertainty is introduced) such that:

lim
δ→∞

PUIδ = PUI

When the relaxation order δ tends to ∞, the optimal solution of the convex relaxation converges
to the global optimum of the original Polynomial Optimization Problem (POP).

2.3 Identification of MIMO systems

Consider a system defined as follow:

• Linear Time Invariant

• Discrete Time

• Affected by bounded Error In Variable noise

• Multi Input Multi Output

Figure 2.5: MIMO system with p inputs and q outputs

G is the matrix of transfer functions such that:

wi(t) = Gi1(q−1)u1 +Gi2(q−1)u2 + ...+Gip(q
−1)up

The identification of a MIMO system is equivalent to the identification of a MISO (Multi Input
Single Output) system, so the following formulation is based on a generic MISO system.

2.3.1 Slack Variables Approach

The goal is to identify the parameters of G1, G2,...,Gp

w(t) = G1(q−1)u1 +G2(q−1)u2 + ...+Gp(q
−1)up

Considering the partial outputs:

w(t) = z1(t) + z2(t) + ...+ zp(t)

where
z1(t) = G1(q−1)u1(t)

z2(t) = G2(q−1)u2(t)

zp(t) = Gp(q
−1)up(t)

The a-priori informations on the plant and on the noise are:
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• F : w(t) = z1(t) + z2(t) + ...+ zp(t), zi(t) = Gi(q
−1)ui(t)

• noise structure: Error In Variables

The Feasible Parameter Set is defined as:

Dθ = {θ ∈ <
Pp
i=1 nimi : w(t) = z1(t) + z2(t) + ...+ zp(t),

zi(t) =
βi0 + βi1q

−1 + ...+ βimiq
−mi

1 + αi1q
−1 + ...+ αiniq

−ni ui(t),∀i = 1, ..., p

w(t) = y(t) − η(t), |η(t)| ≤ ∆η,
ui(t) = ui(t) − εi(t), |ε(t)| ≤ ∆ε,∀t = k, ..., N}

where k is the largest order of the different transfer functions plus 1. The Extended Feasible
Parameter Set is:

Dθ,ηi,εi,zi = {θ ∈ <
Pp
i=1 nimi , ηi ∈ <N , εi ∈ <N , zi ∈ <N :

y(t) − η(t) = z1(t) + z2(t) + ...+ zp(t),
zi(t) = −αi1zi(t− 1) − ...−−αinizi(t− ni) + βi0(ui(t) − εi(t)) + ...+ βimi(ui(t−mi) − εi(t−mi)),

ηi(t) ≤ ∆η,
ηi(t) ≥ −∆η,
εi(t) ≤ ∆ε,
εi(t) ≥ −∆ε,

∀i = 1, ..., p, ∀t = k, ..., N}

And the Parameter Uncertainty Intervals are:

PUI = [θi, θi]

θi = min
θ,ηi,εi,zi∈Dθ,ηi,εi,zi

θi

θi = max
θ,ηi,εi,zi∈Dθ,ηi,εi,zi

θi

where

θi = min
s.t.

y(t)−η(t)=z1(t)+z2(t)+...+zp(t)

zi(t)=−αi1zi(t−1)−...−−αinizi(t−ni)+βi0(ui(t)−εi(t))+...+βimi(ui(t−mi)−εi(t−mi))
η(t)≤∆η
η(t)≥−∆η
ε(t)≤∆ε

ε(t)≥−∆ε, ∀i=1,...,p, ∀t=k,...N

θi

and

θi = max
s.t.

y(t)−η(t)=z1(t)+z2(t)+...+zp(t)

zi(t)=−αi1zi(t−1)−...−−αinizi(t−ni)+βi0(ui(t)−εi(t))+...+βimi(ui(t−mi)−εi(t−mi))
η(t)≤∆η
η(t)≥−∆η
ε(t)≤∆ε

ε(t)≥−∆ε, ∀i=1,...,p, ∀t=k,...N

θi



Chapter 3

Virtual Sensor

3.1 ISWEC model and problem formulation

Since on the ISWEC prototype none sensor is available to measure the Pitch Force, it is possible to
collect these data by means of a first-principles based simulator [4].
The simulated system is MISO(Multi Input Single Output)and its output is the Pitch Force while the
five inputs, coming from the on board sensors, are:

• xP Pitch Position [m]

• vP Pitch Velocity [m/s]

• aS Surge Acceleration [m/s2]

• aH Heave Acceleration [m/s2]

• FR Gyroscope Reaction Force [N]

Figure 3.1: 5 inputs, 1 output system

The goal of this chapter is identifying the five transfer functions describing the dynamics between
the five inputs and the Pitch Force, through the Set Membership approach.

17
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After an initial attempt with the Least Square method, it is possible to assert that a plausible structure
for the five transfer functions is the following:

Gi =
βi1q
−1 + βi2q

−2 + βi3q
−3 + βi4q

−4 + βi5q
−5

1 + αi1q
−1 + αi2q

−2 + αi3q
−3 + αi4q

−4 + αi5q
−5

(3.1)

The ISWEC identification problem is an OE (output error) problem, since input data coming from
the on board sensors are accurate while the output data are generated by a simulator and consequently
they are affected by simulation error.
Being a MISO system, the problem could be solved by the Slack Variables Approach.

3.1.1 Slack Variables Approach for ISWEC

The a priori informations on the plant are:

• Linear Time Invariant

• Discrete Time

• Fifth order

F : w(t) = G1(q−1)u1(t) +G2(q−1)u2(t) +G3(q−1)u3(t) +G4(q−1)u4(t) +G5(q−1)u5(t) (3.2)

Considering the partial outputs

w(t) = z1(t) + z2(t) + z3(t) + z4(t) + z5(t) (3.3)

and the a priori informations on noise are:

• Output Error structure

• Unknown but bounded

The goal is to identify the parameters αi and βi of G1, G2, G3, G4 and G5. The set of all the feasible
solution is given by the Feasible Parameter Set:

Dθ = {θ ∈ <50 : w(t) = z1(t) + z2(t) + z3(t) + z4(t) + z5(t),

z1(t) =
β1

1q
−1 + β1

2q
−2 + β1

3q
−3 + β1

4q
−4 + β1

5q
−5

1 + α1
1q
−1 + α1

2q
−2 + α1

3q
−3 + α1

4q
−4 + α1

5q
−5
u1(t),

z2(t) =
β2

1q
−1 + β2

2q
−2 + β2

3q
−3 + β2

4q
−4 + β2

5q
−5

1 + α2
1q
−1 + α2

2q
−2 + α2

3q
−3 + α2

4q
−4 + α2

5q
−5
u2(t),

z3(t) =
β3

1q
−1 + β3

2q
−2 + β3

3q
−3 + β3

4q
−4 + β3

5q
−5

1 + α3
1q
−1 + α3

2q
−2 + α3

3q
−3 + α3

4q
−4 + α3

5q
−5
u3(t),

z4(t) =
β4

1q
−1 + β4

2q
−2 + β4

3q
−3 + β4

4q
−4 + β4

5q
−5

1 + α4
1q
−1 + α4

2q
−2 + α4

3q
−3 + α4

4q
−4 + α4

5q
−5
u4(t),

z5(t) =
β5

1q
−1 + β5

2q
−2 + β5

3q
−3 + β5

4q
−4 + β5

5q
−5

1 + α5
1q
−1 + α5

2q
−2 + α5

3q
−3 + α5

4q
−4 + α5

5q
−5
u5(t),

w(t) = y(t) − η(t), |η(t)| ≤ ∆η, ∀t = 6, ..., N}
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The Extended Feasible Parameter Set is:

Dθ,η,zi = {θ ∈ <50, η ∈ <N , z1 ∈ <N , z2 ∈ <N , z3 ∈ <N , z4 ∈ <N , z5 ∈ <N :

y(t) − η(t) = z1(t) + z2(t) + z3(t) + z4(t) + z5(t),

z1(t) = −α1
1z1(t− 1) − α1

2z1(t− 2) − α1
3z1(t− 3) − α1

4z1(t− 4) − α1
5z1(t− 5)+

+ β1
1u1(t− 1) + β1

2u1(t− 2) + β1
3u1(t− 3) + β1

4u1(t− 4) + β1
5u1(t− 5),

z2(t) = −α2
1z2(t− 1) − α2

2z2(t− 2) − α2
3z2(t− 3) − α2

4z2(t− 4) − α2
5z2(t− 5)+

+ β2
1u2(t− 1) + β2

2u2(t− 2) + β2
3u2(t− 3) + β2

4u2(t− 4) + β2
5u2(t− 5),

z3(t) = −α3
1z3(t− 1) − α3

2z3(t− 2) − α3
3z3(t− 3) − α3

4z3(t− 4) − α3
5z3(t− 5)+

+ β3
1u3(t− 1) + β3

2u3(t− 2) + β3
3u3(t− 3) + β3

4u3(t− 4) + β3
5u3(t− 5),

z4(t) = −α4
1z4(t− 1) − α4

2z4(t− 2) − α4
3z4(t− 3) − α4

4z4(t− 4) − α4
5z43(t− 5)+

+ β4
1u4(t− 1) + β4

2u4(t− 2) + β4
3u4(t− 3) + β4

4u4(t− 4) + β4
5u4(t− 5),

z5(t) = −α5
1z5(t− 1) − α5

2z5(t− 2) − α5
3z5(t− 3) − α5

4z5(t− 4) − α5
5z5(t− 5)+

+ β5
1u5(t− 1) + β5

2u5(t− 2) + β5
3u5(t− 3) + β5

4u5(t− 4) + β5
5u5(t− 5),

|η(t)| ≤ ∆η, ∀t = 6, ..., N}

And the Parameter Uncertainty Intervals are:

PUI = [θi, θi]

θi = min
θ,ηi,zi∈Dθ,ηi,zi

θi

θi = max
θ,ηi,zi∈Dθ,ηi,zi

θi

where

θi = min
s.t.

y(t)−η(t)=z1(t)+z2(t)+z3(t)+z4(t)+z5(t)
zi(t)=−αi1zi(t−1)−αi2zi(t−2)−αi3zi(t−3)−αi4zi(t−4)−α5

i zi(t−5)+

+βi1ui(t−1)+βi2ui(t−2)+βi3ui(t−3)+βi4ui(t−4)+βi5ui(t−5)
η(t)≤∆η
η(t)≥−∆η

∀i=1,...,5, ∀t=6,...N

θi

and

θi = max
s.t.

y(t)−η(t)=z1(t)+z2(t)+z3(t)+z4(t)+z5(t)
zi(t)=−αi1zi(t−1)−αi2zi(t−2)−αi3zi(t−3)−αi4zi(t−4)−α5

i zi(t−5)+

+βi1ui(t−1)+βi2ui(t−2)+βi3ui(t−3)+βi4ui(t−4)+βi5ui(t−5)
η(t)≤∆η
η(t)≥−∆η

∀i=1,...,5, ∀t=6,...N

θi

The identification was performed considering:
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• ∆η infinite

• different values of N (number of samples), N=300,100,70,20

• relaxation order 1 and 2

The obtained results were not able to describe the dynamics of the system, since the problem,
formulated as above, is too computationally expensive. An alternative solution is proposed below.

3.2 Incremental Approach

The Incremental Approach consists in identifying five SISO systems (G1,G2,G3,G4,G5) such that for
each system the input comes from the on board sensors while, only for the first system, the output is
the simulated Pitch Force. Identifying the second system, the output is the residual between the Pitch
Force and the output generated by G1, the third output is the residual between the first residual and
the output generated by G2 etc.
The identification is built on 5 steps:

1. G1 identification: input u1 and output FP

2. G2 identification: input u2 and output FP − u1G1

3. G3 identification: input u3 and output FP − u1G1 − u2G2

4. G4 identification: input u4 and output FP − u1G1 − u2G2 − u3G3

5. G5 identification: input u5 and output FP − u1G1 − u2G2 − u3G3 − u4G4

and the total output is given by the sum of the five simulated output:

yt = z1 + z2 + z3 + z4 + z5

Some initial informations are needed:

• Gi structure

• bound on the error

3.2.1 Gi structure

The idea is to find the simplest possible model in order to reduce the complexity of the total system.
Starting from the Least Square Method it is possible to have an idea of the best structure, evaluating
the results coming from different order systems and varying the number of inputs. In the following
table are reported the values of the Goodness of Fit index linked to sundry models, identified by means
of LS method considering the first 3000 samples of Data Set 84.

GoF = 1 −

sPN
i=1(FP (t) − FPe(t))

2PN
i=1(FP (t))2

(3.5)

As shown in 3.1 the best solution is given by the fifth order, five inputs model but looking for a
simpler one, a good alternative is a two inputs model. In order to understand which could be a better
order for the system, it is necessary to evaluate the results, in terms of accuracy, coming from the
validation of the 2-input (u1 and u3) model on the other data sets.
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Table 3.1: GoF index for LS identification
Order

Input 1 2 3 4 5

u1,u2,u3,u4,u5 54% 91% 30% - 98%

u1,u2,u3,u4 82% 88% 92% 95% 30%

u1,u2,u3 81% 92% 91% 94% 6%

u1,u2 52% 73% 60% 6% 61%

u1,u3 83% 91% 93% 94% 96%

Table 3.2: GoF index in validation
Order

Data Set 1 2 3 4 5

86 88% 89% 91% 88% 95%

125 89% 88% 90% 80% 94%

48 86% 88% 92% 90% 95%

46 86% 91% 94% 94% 97%

44 27% 64% 71% 67% 79%

08 70% 82% 91% 90% 96%

06 63% 82% 90% 89% 94%

Looking at 3.1 and 3.3 it is evident that the best models are:

1. 2-inputs (u1 and u3), third order

2. 2-inputs (u1 and u3), fifth order

but a simpler solution could be represented by the 2-inputs, second order model. This represents the
least complex model possible with a good accuracy.

3.2.2 Bound on the error

In this case η is not the simulation error but it is the error that is made in trying to explain the output
in function of a single input, in place of all five. η is defined as

y − w = η, |η| ≤ ∆η

where

• y is the Pitch Force for the first step and the residual for the others

• w is the output generated by the identified system given a single input

∆η is estimated solving the following minimization problem.

∆η = min
s.t.

y(t)−η(t)=−αi1(y(t−1)−η(t−1))−...−αin(y(t−n)−η(t−n))+

+βi1ui(t−1)+...+βinui(t−n)
η(t)≤t
−η(t)≤−t

∀i=1,...,k, ∀t=n+1,...N

t

• N is the number of samples

• n is the order of Gi

• k is the number of inputs
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3.3 2-Inputs, Second Order Model

The goal is to identify the 8 parameters of the 2-input Model through the Incremental Approach, the
problem is solved by splitting the SISO identification in 2 further steps:

1. Error Minimization

2. Parameters Identification

Figure 3.2: 2-Input Model

3.3.1 Error Minimization

The Error Minimization Problem is solved as explained in 3.2.2 and ∆η is estimated solving the
following minimization problem.

∆η = min
s.t.

y(t)−η(t)=−αi1(y(t−1)−η(t−1))+

−αin(y(t−2)−η(t−2))+βi1ui(t−1)+βinui(t−2)
η(t)≤t
−η(t)≤−t

∀i=1,2, ∀t=3,...N

θi

Knowing ∆η is possible to proceed with the System Identification.

3.3.2 Parameters Identification

At this point it is possible to identify the parameters αi and βi of G1 and G2. The set of all the
feasible solution is given by the Feasible Parameter Set:

Dθ = {θ ∈ <4 : wi(t) =
βi1q
−1 + βi2q

−2

1 + αi1q
−1 + αi2q

−2
ui(t), ∀i = 1, 2

w(t) = y(t) − η(t),

|η(t)| ≤ ∆η, ∀t = 3, ..., N}

The Extended Feasible Parameter Set is:

Dθ,η = {θ ∈ <4, η ∈ <N : w(t) − η(t) = −αi1(y(t− 1) − η(t− 1))+

− αin(y(t− 2) − η(t− 2)) + βi1ui(t− 1) + βinui(t− 2)), ∀i = 1, 2

|η(t)| ≤ ∆η, ∀t = 3, ..., N}

And the Parameter Uncertainty Intervals are:
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PUI = [θi, θi]

θi = min
θ,ηi∈Dθ,ηi

θi

θi = max
θ,ηi∈Dθ,ηi

θi

where

θi = min
s.t.

w(t)−η(t)=−αi1(y(t−1)−η(t−1))+

−αin(y(t−2)−η(t−2))+βi1ui(t−1)+βinui(t−2)), ∀i=1,2
|η(t)|≤∆η, ∀t=3,...,N

θi

and

θi = max
s.t.

w(t)−η(t)=−αi1(y(t−1)−η(t−1))+

−αin(y(t−2)−η(t−2))+βi1ui(t−1)+βinui(t−2)), ∀i=1,2
|η(t)|≤∆η, ∀t=3,...,N

θi

So that the Incremental Approach works, it is important to identify as first system the one corre-
sponding to the input which has the greatest impact on the overall output.
Considering the model identified with the Least Square and simulating each system with the corre-
sponding input it is possible to compare the output with the Pitch Force.

From 3.3 and it is evident that the Surge Acceleration has a greater impact on the Pitch Force, it
leads to a GoF of 60.7% while the Pitch Position to -19%. According to these considerations

• u1 = Surge Acceleration

• u2 = Pitch Position

From the computational point of view, the identification of αi and βi is not expensive since it deals
with a SISO second order system and moreover the problem can be reasonably simplified to an Error
Minimization Problem.
This last statement is justified by the fact that in this specific case the error η is not the simulation error
but the error that is made in trying to explain the output in function of a single input, consequently
there is no need to calculate the PUIs since the optimal solution is represented by those parameters
that minimize the error η. This means that the identification of the 2-inputs, second order system can
be performed by solving the problem formulated in 3.3.1.
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Figure 3.3: a) Comparison between the Pitch Force and the output corresponding to the Pitch Position

Figure 3.4: b) Comparison between the Pitch Force and the output corresponding to the Surge
Acceleration

3.4 Results and Considerations

Assured that the identification problem can be solved by simply minimizing the error, the whole
problem is reduced from 4 to just 2 steps:

1. Minimization of the Error for the first system

2. Minimization of the Error for the second system

3.4.1 First Error Minimization

The error minimization problem for the system with input u1 = SurgeAcceleration has been solved
on 121 samples of Data Set 84 and validated on the entire data set and on the others.
The identification leads to a GoF of 91.8% that becomes 82.64% in validation on the entire data set,
as shown in 3.5 and 3.6.
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Figure 3.5: Comparison between the Pitch Force and the generated output on the identification data
set

Figure 3.6: Comparison between the Pitch Force and the generated output on the validation data set

The values of the Goodness of Fit index for the validation on the other data set are reported in
the following table:

Table 3.3: GoF values in validation
Data Set GoF

06 68.9%

08 75%

44 39.6%

46 86.3%

48 83.8%

86 86%

125 86.9%

Looking at 3.3 and the following figures it is clear that for Data Set 06,08 and 44 the identified
model is not able to represent accurately the real system while for the other Data Sets the behaviour
is quiet good.



CHAPTER 3. VIRTUAL SENSOR 26

Figure 3.7: Validation on Data Set 06

Figure 3.8: Validation on Data Set 08
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Figure 3.9: Validation on Data Set 44

Figure 3.10: Validation on Data Set 46
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Figure 3.11: Validation on Data Set 48

Figure 3.12: Validation on Data Set 86
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Figure 3.13: Validation on Data Set 125

3.4.2 Second Error Minimization

While for the first step the output is represented by the Pitch Force, in this case the output is the
residual FP − u1G1, where:

• FP is the Pitch Force

• u1 is the Surge Acceleration

• G1 is the first identified system

• u1G1 is the first simulated output

Since the residual is closed to zero, solving this minimization problem leads to an identified system
which input is the Pitch Position but its output does not track the residual, as shown in 3.14.
The second identified system has no effect on the overall system output, in fact adding together the

outputs of the two identified systems the value of the GoF index does not vary, it is still 82.64% and
the behaviour of the simulated output (3.15) is the same as the case with just the first input (3.6).

In conclusion, a further simplification can be introduced:
The Surge Acceleration is sufficient to describe the behavior of the system. Thanks to the
Incremental Approach it was possible to prove that the 5 inputs system can be satisfactorily described
by a SISO model which input is the Surge Acceleration. This result must be verified during the pre-
diction phase.

It is worth quickly demonstrating that the other inputs do not allow to obtain better results.
Solving the Minimization Error problem varying the input, the obtained results in terms of GoF are
reported in Table 3.4. It is evident that the best fitting is given by the identified system from the Surge
Acceleration input. Furthermore, it may be useful to note that the Reaction Force has a negligible
effect on the overall system.
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Figure 3.14: Comparison between the Residual Output and the Simulated Output

Figure 3.15: Comparison between the Pitch Force and the simulated total output

Table 3.4: FIT values First Step
Input GoF

Surge Acceleration 82.64%

Heave Acceleration 53.65%

Pitch Velocity 50.67%

Pitch Position 62.22%

Reaction Force -30.89%



Chapter 4

Predictor

As explained above, the goal of this thesis is to predict the Pitch Force in view of a Predictive Control
to optimize the ISWEC performance. After the identification phase, it is possible to predict the Pitch
Force using an Auto Regressive (AR) Model

by(t+ ∆|t) = α1ys(t) + αiys(t− 1) + ...+ αnys(t− n) (4.1)

according to the standard Least Square approach,minimizing the L2−norm of the error:

α = argmin
α

kek2 = argmin
α

kFP (t) − αT


FP (t− 1)

.

.

.
FP (t− n)

 k2 (4.2)

where

α =



α0

α1

.

.

.
αn


n = order of the AR model

4.1 Results

The values of FP (t− 1), ..., FP (t− n) come from the Virtual Sensor and they are used to identify an
Auto Regressive Predictor with different order n and a prediction horizon of 10s. In this section are
shown the results coming from the prediction algorithm for n = 200 and n = 10. The algorithm has
been tested on different data sets, data are sampled with a sampling time of 0.1s.

4.1.1 Order n=200

The results obtained for a Predictor of order 200 are reported below, it has been identified using data
set 84 and validated on the other data sets.

31
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Figure 4.1: Prediction on Data Set 84

In figure 4.1 it is shown the comparison between the Pitch Force simulated by the first-principles
based simulator, which inputs belong to Data Set 84, the estimated Pitch Force by the Virtual Sensor
and the forecasted Pitch Force. Along the prediction horizon the value of the GoF index between the
forcasted output and the estimated one is 66.98%, while between the forecasted and the simulated is
57.56%. The prediction is quiet good for the first 6s with a fitting of 82.9% with the estimated Pitch
Force and 78.8% with the simulated.

Figure 4.2: Prediction on Data Set 125

In figure 4.2 it is shown the behaviour of the predicted Pitch Force when the data generated by
the virtual sensor belong to Data Set 125. Along the prediction horizon the value of the GoF index
between the forcasted output and the estimated one is 74.2%, while between the forecasted and the
simulated is 61.9%. The prediction is quiet good for the first 4s with a fitting of 93% with the estimated
Pitch Force and 78.5% with the simulated while along 6s the fitting is 90.6% with the estimated Pitch
Force and 78.8% with the simulated.
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Figure 4.3: Prediction on Data Set 86

In figure 4.3 it is shown the behaviour of the predicted Pitch Force when the data generated by the
virtual sensor belong to Data Set 86. Along the prediction horizon the value of the GoF index between
the forcasted output and the estimated one is 51.3%, while between the forecasted and the simulated
is 62.3%. The prediction is quiet good for the first 4s with a fitting of 93% with the estimated Pitch
Force and 78.5% with the simulated while along 4s the fitting is 83.7% with the estimated Pitch Force
and 84.3% with the simulated and along 3s the fitting is respectively 93.9% and 80.9%.

Figure 4.4: Prediction on Data Set 46

In figure 4.4 it is shown the behaviour of the predicted Pitch Force when the data generated by the
virtual sensor belong to Data Set 46. Along the prediction horizon the value of the GoF index between
the forcasted output and the estimated one is 16.23%, while between the forecasted and the simulated
is 16.26%. The prediction is better for the first 1.5s with a fitting of 85.8% with the estimated Pitch
Force and 87.9% with the simulated while along 2s the fitting is 75.6% with the estimated Pitch Force
and 75.98% with the simulated.
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Figure 4.5: Prediction on Data Set 48

In figure 4.5 it is shown the behaviour of the predicted Pitch Force when the data generated by
the virtual sensor belong to Data Set 48. Along the prediction horizon the value of the GoF index
between the forcasted output and the estimated one is -67.5%, while between the forecasted and the
simulated is -65.5%. The prediction is quiet good only for the first 0.5s, with a fitting of 84% with
the estimated Pitch Force and 72.5% with the simulated.

Figure 4.6: Prediction on Data Set 44

In figure 4.6 it is shown the behaviour of the predicted Pitch Force when the data generated by
the virtual sensor belong to Data Set 44. Along the prediction horizon the value of the GoF index
between the forcasted output and the estimated one is -67.5%, while between the forecasted and the
simulated is -65.5%. In this case the predictor is not able to provide a good estimate of the Pitch
Force future value, neither for a horizon of few milliseconds.
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Figure 4.7: Prediction on Data Set 06

In figure 4.7 it is shown the behaviour of the predicted Pitch Force when the data generated by the
virtual sensor belong to Data Set 06. Along the prediction horizon the value of the GoF index between
the forcasted output and the estimated one is 15.9%, while between the forecasted and the simulated
is -11.6%. The prediction improves for the first 2s, with a fitting of 82.97% with the estimated Pitch
Force and 76.3% with the simulated.

Figure 4.8: Prediction on Data Set 08

In figure 4.8 it is shown the behaviour of the predicted Pitch Force when the data generated by the
virtual sensor belong to Data Set 08. Along the prediction horizon the value of the GoF index between
the forcasted output and the estimated one is 38.99%, while between the forecasted and the simulated
is 37.34%. The prediction improves for the first 2s, with a fitting of 80.9% with the estimated Pitch
Force and 79.7% with the simulated.
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4.1.2 Order n=10

Let’s now consider a predictor of order 10, it has been identified using data set 84 and validated on
the other data set.

Figure 4.9: Prediction on Data Set 84

In figure 4.9 it is shown the comparison between the Pitch Force simulated by the first-principles
based simulator, which inputs belong to Data Set 84, the estimated Pitch Force by the Virtual Sensor
and the forecasted Pitch Force. Along the prediction horizon the value of the GoF index between the
forcasted output and the estimated one is 60.77%, while between the forecasted and the simulated is
54.4%. The prediction improves in the first 3s with a fitting of 89% with the estimated Pitch Force
and 77.7% with the simulated.

Figure 4.10: Prediction on Data Set 06

In figure 4.10 it is shown the comparison between the Pitch Force simulated by the first-principles
based simulator, which inputs belong to Data Set 06, the estimated Pitch Force by the Virtual Sensor
and the forecasted Pitch Force. Along the prediction horizon the value of the GoF index between the
forcasted output and the estimated one is 22.9%, while between the forecasted and the simulated is
-8.99%. The prediction improves in the first 2s with a fitting of 94% with the estimated Pitch Force
and 84.6% with the simulated.



CHAPTER 4. PREDICTOR 37

Figure 4.11: Prediction on Data Set 08

In figure 4.11 it is shown the comparison between the Pitch Force simulated by the first-principles
based simulator, which inputs belong to Data Set 08, the estimated Pitch Force by the Virtual Sensor
and the forecasted Pitch Force. Along the prediction horizon the value of the GoF index between the
forcasted output and the estimated one is 52.52%, while between the forecasted and the simulated is
46.85%. The prediction improves in the first 2s with a fitting of 77% with the estimated Pitch Force
and 75.5% with the simulated.

Figure 4.12: Prediction on Data Set 44

In figure 4.12 it is shown the comparison between the Pitch Force simulated by the first-principles
based simulator, which inputs belong to Data Set 44, the estimated Pitch Force by the Virtual Sensor
and the forecasted Pitch Force. Along the prediction horizon the value of the GoF index between
the forcasted output and the estimated one is 27%, while between the forecasted and the simulated
is 53.5%.In this case it is particular that the prediction has a good behaviour after 4s up to 7s, the
fitting is 63% with the estimated Pitch Force and 90% with the simulated.
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Figure 4.13: Prediction on Data Set 46

In figure 4.13 it is shown the comparison between the Pitch Force simulated by the first-principles
based simulator, which inputs belong to Data Set 46, the estimated Pitch Force by the Virtual Sensor
and the forecasted Pitch Force. Along the prediction horizon the value of the GoF index between the
forcasted output and the estimated one is 42.56%, while between the forecasted and the simulated is
40.54%.The prediction improves in the first 2s with a fitting of 93.7% with the estimated Pitch Force
and 90% with the simulated.

Figure 4.14: Prediction on Data Set 48

In figure 4.14 it is shown the comparison between the Pitch Force simulated by the first-principles
based simulator, which inputs belong to Data Set 48, the estimated Pitch Force by the Virtual Sensor
and the forecasted Pitch Force. Along the prediction horizon the value of the GoF index between the
forcasted output and the estimated one is 32.85%, while between the forecasted and the simulated is
32%.The prediction improves in the first 3s with a fitting of 95.5% with the estimated Pitch Force and
91.3% with the simulated.
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Figure 4.15: Prediction on Data Set 86

In figure 4.15 it is shown the comparison between the Pitch Force simulated by the first-principles
based simulator, which inputs belong to Data Set 86, the estimated Pitch Force by the Virtual Sensor
and the forecasted Pitch Force. Along the prediction horizon the value of the GoF index between the
forcasted output and the estimated one is 9.33%, while between the forecasted and the simulated is
0.01%.The prediction improves in the first 2s with a fitting of 92% with the estimated Pitch Force and
56.9% with the simulated.

Figure 4.16: Prediction on Data Set 125

In figure 4.16 it is shown the comparison between the Pitch Force simulated by the first-principles
based simulator, which inputs belong to Data Set 125, the estimated Pitch Force by the Virtual Sensor
and the forecasted Pitch Force. Along the prediction horizon the value of the GoF index between the
forcasted output and the estimated one is -4.24%, while between the forecasted and the simulated is
-16.6%.The prediction improves in the first 1.5s with a fitting of 89.8% with the estimated Pitch Force
and 88% with the simulated.
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4.1.3 Comparison Between The Two Predictors

The results previously obtained are summarized in the following tables:

Order 200

Data Set Time(s) GoFe GoFs
84 6 82.9% 78.8%

06 2 82.97% 76.3%

08 2 80.9% 79.7%

44

46 1.5 85.8% 87.9%

48 0.5 84% 72.5%

86 3 93.9% 80.9%

125 4 93% 78.5%

Order 10

Data Set Time(s) GoFe GoFs
84 3 89% 77.7%

06 2 94% 84.6%

08 2 77% 75.5%

44 4 − 7 63% 90%

46 2 93.7% 90%

48 3 95.5% 91.3%

86 2 92% 56.9%

125 1.5 89.8% 88%

GoFe is the Goodness of Fit index between the forcasted output and the estimated one, GoFs is
the Goodness of Fit index between the forcasted and the simulated. Looking at the table above, it is
possible to notice that:

• Data Set 44 is the one which generates worse results, both in Identification and Prediction. With
a predictor of order 200 it is not possible to predict the Pitch Force on this Data Set while with
the predictor of order 10 the behaviour is particular: the prediction is accurate but only in the
interval between 4s and 7s.

• The prediction horizon with the predictor of order 200 is longer, 6s (on Data Set 84) and 4s (on
Data Set 125) against the 3s (on Data Set 84 and 48) with the 10th order predictor.

• The 10th order predictor is not able to provide a good prediction on Data Set 86, while the 200th

predictor does not provide a good prediction on Data Set 48 (prediction horizon of 0.5s).

• The fitting is higher for the 10th order predictor, in this case GoFs,max = 91.3% while for the
200th order system GoFs,max = 87.9%.
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Conclusion

As explained above, this thesis has been conceived with the aim of simplifying the previous study
about the prediction algorithm for the ISWEC system, which is composed of a virtual sensor and an
autoregressive predictor but in this case the virtual sensor is designed by means of a neural network.
This approach has been developed in [5] and it is briefly summarized and discussed in this chapter.

5.1 Neural Network Approach

The informations here contained are derived from [5].
The advantage of a feedforward neural network is that varying the parameters and the order of the
neural network it is possible to approximate whichever function. Considering that the relationship
between the measurements provided by the on board sensors and the pitch force is nonlinear, the
Virtual Sensor can be designed through a single layer feedforward network formed by three layers:

• Input layer

• Hidden layer

• Output layer

they are respectively used for data acquisition, data processing and computation of the network’s
output.

Figure 5.1: Feedforward Neural Network Layers

Training the network consists in optimizing its parameters (weights and biases) given a set of input
and output data and an algorithm which works according to the performance goal that in this case is
minimize the Mean Squared Error:

MSE =
1

N

NX
j=1

(FP (i) − F̃P (i))2 (5.1)

where N is the number of samples in the data set.
Seven data sets, generated by the simulator and describing seven admissible sea wave conditions, have
been used to design the virtual sensor. Only a portion of each data set has been used for the design,

41
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the remaining has been used for validating the designed virtual sensor.
Knowing the measurements coming from the virtual sensor, it is now possible to design an autoregres-
sive predictor of order n which is chosen as the trade off between model’s complexity and accuracy.
The accuracy is defined by the Goodness-of-Fit criteria:

GoF = 1 −

vuutPN
i=1( bFP (t+ i) − bFP∗(t))2PN

i=1( bF (t+ i))2
(5.2)

where bF (t) =

npX
j=1

aj bF (t− j) (5.3)

where aj are the parameters of the AR predictor. Regarding the predictor’s order the best trade off
between complexity and accuracy is np = 20.

5.1.1 Results and considerations

In the following table is shown the performance of the Virtual Sensor in terms of Goodness-of-Fit
index for seven validation data sets.

Data Set GoF

01 98%

02 97.68%

03 98.35%

04 98.17%

05 97.96%

06 98.5%

07 98.73%

Table 5.1: Virtual Sensor Performance

For each data set exists a neural network able to accurately estimate in real time the Pitch Force,
with a GoF index grater than 97%. Regarding the Autoregressive Predictor, the GoF index is grater
than 90% and the prediction is accurate over an horizon of 10s [5].

The drawback of this approach is its complexity since for the virtual sensor a different neural
network is needed for each data set. This is the starting point of this thesis, looking for an algorithm
more robust. The Set Membership approach leads to a worse accuracy and prediction capability, as
shown in chapters 3 and 4, but from the implementation point of view the solution shown in this
document is simpler and more robust with respect to the different experimental conditions.
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