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ABSTRACT 

The main purpose of this work is the validation of the model of the Ceira Viaduct with the calculation 
of the modal parameters and, in particular, with the comparison between numerical and experimental 
results. 

To do this, the most important aspects of modal are initially presented. The contents are presented 
providing, at first, a theoretical background of the topic. The theoretical aspects  are addressed using 
the classical approach commonly used for dynamic structural analysis, by posing particular attention 
on the aspects then considered in some applications. 

The examples presented are implemented by the software MATLAB and Autodesk Robot Structural 
Analysis. In some cases the results obtained can be compared to some analytical results, this allows 
the validation of the implement routines. 

Additionally, some aspects of the ambient vibration tests are shown in order to understand the 
processes to obtain the experimental modal parameters. Some practical procedures are applied, at first, 
to a simple frame and then to the bridge.   

In the end, the application of the theoretical concepts in the structure of the bridge is presented. The 
modelling of the structure is described in several steps and the calculation of the modal parameters is 
done by using this model. 

The comparison between experimental and numerical parameters represents the point of arrival of the 
work, making possible the validation of the numerical model. In this way, it is possible to understand 
the importance of the presence of the experimental data when finite elements models are used to get 
the results. 

 

KEYWORDS: Structural Dynamics, Modal Analysis, Dynamic Testing, Bridge Modelling, Model 
Updating.  
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1 
INTRODUCTION 

 

 

1.1. MOTIVATION AND PURPOSES 

The dynamic behaviour of structures can be today considered one of the most important topics of 
structural civil engineering; in this field takes particular importance the knowledge of the modal 
parameters. 

The knowledge of the structural behaviour of structures is usually characterized by using two main 
approaches: the analytical approach and the experimental approach.  

When an analytical approach is used, the knowledge of the structural characteristics as mass, stiffness 
and damping matrices represents the starting point of this kind of methods. These parameters are then 
used to solve the eigenvalues problem which allows to obtain the natural frequencies and the mode 
shapes of the structure. 

The experimental approach consists on the measurement of the structural response. This procedure 
allows to get the experimental data from which the modal parameters can be obtained. 

The main reason of interest of modal analysis in structural field is due to the fact that the dynamic 
behaviour of a structure is an intrinsic characteristic of the structure because it depends only on the 
properties of the structure (mass, stiffness, damping and constraint conditions) and not on the loads 
directly applied. It involves that, if the build is not modified during time, the structural behaviour 
remains unchanged. In fact the dynamic behaviour can change because of important structural 
damages or artificial alterations of the building. 

Furthermore, the modal identification process is a non destructive testing applicable both to new and 
old structures. In the first case it is about commissioning tests, while in the second one may be about 
historical structures on which a modal analysis may be useful in case of monitoring processes. 

In this thesis both the identification methods will be presented by posing particular attention to the 
experimental ones which are then applied to a real structure. 

The theory of the experimental modal analysis follows these hypotheses: 

 Linearity: 

The dynamic behaviour of the structure is linear, namely the response under a combination of inputs 
on the system is equal to the same combination of the respective responses, it implies that the 
superposition of effect principle can be applied.  

 Stationary: 
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The dynamic characteristics of the structure do not change over time; therefore the coefficients of the 
differential equations of the problem are constant over time. 

 Possibility of observation: 

The necessary data to determine the dynamic characteristics of interest must be measured, the 
instrumented points must be carefully chosen. 

During the development of the topics we will observe how the experimental analysis becomes 
important for dynamic scope. Even though the advent of modern software allows to create very 
advanced Finite Elements Models (FEM), the results derived from experimental analysis represent 
often a method for the validation of the models. The finite elements methods have an intrinsic limit 
which is the discretization procedure of the system, because of the approximation of the structure 
compared to the real one. There are definitely always some differences between the structure and the 
model. 

The experimental analysis becomes fundamental in order to improve the models until the results 
become similar to the experimental ones. In this context the experimental analysis represents a filter to 
the structural modelling for dynamic scopes. 

The modelling procedures to analyze the dynamic behaviour of linear systems by using experimental 
tests are called Experimental Modal Analysis (EMA): these procedures allow to identify the dynamic 
properties of the structure in terms of natural frequencies, mode shapes and damping ratios. The 
parameters determined in this way can be used to make a mathematical model of the dynamic 
behaviour of the structure. 

The experimental analysis procedures consider, in general, known inputs, the structures can be 
stressed by artificial excitation source. The structural response is then measured in several points of 
the structure identifying the response functions under the applied signals. 

Modal analysis may be also done in case of ambient excitations, in this case the structure is excited by 
natural actions and, in most of the cases, the input is not known. We can talk about Operating Modal 
Analysis (OMA), it is usually applied in case of large structures, for instance bridges. For this kind of 
structures the facilities to generate the forced excitation to apply an EMA procedure may be expensive 
and bulky, making more suitable the application of an OMA procedure.  

Only these second procedures will be described in this work, they present the following advantages. 
At first the tests are fast and cheap, and they do not need particular facilities. The tests are usually 
done in operative conditions of the structures and the modal parameters are representative of the real 
behaviour of the structure in serviceability situations. The tests do not interfere with the structure 
operating conditions (the closing of the traffic is not necessary). 

Performing a modal analysis process needs several previous operations: the first one is a careful 
planning of the tests. It is often bound to the available resources in terms of number of sensors, by 
considering that a minimum number of sensors is needed to get a correct behaviour of the structure. 
Furthermore, the data must be correctly elaborated to obtain the modal parameters. In the end, the 
model validation processes can be created. 

The results coming from a modal analysis can be used for several purposes: structural monitoring, 
identification of damages and their development. 
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1.2. ORGANIZATION OF THE THESIS 

Disregarding the introduction, the work is developed in three chapters: the second chapter presents the 
theoretical background of the main basic topics about modal analysis of structures. The concepts are 
shown in a simple and linear way considering only the most relevant aspects commonly used in the 
modal analysis theory. 

The third chapter shows the principal concepts of the ambient vibration tests. The development of this 
topic has been necessary to present the experimental procedures to get the modal parameters. 

The fourth chapter contains an application of the theoretical concepts when real bridge is considered. 
The procedure of modal analysis will be applied considering the Ceira Bridge. Starting from 
experimental data, the modal parameters will be obtained and then they will compare with results 
coming from a FEM. 

The development of this chapter will also show the procedures applied making the structural model 
and the way how it should be improved in order to get proper results. The model will be improved in 
different steps in order to get results as close as possible to the experimental ones. 

In the last chapter some conclusions are presented with possible future developments of the methods 
shown in the previous chapters. 
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2  
CHAPTER 2 - BASIC CONCEPTS OF 

STRUCTURAL MODAL ANALYSIS 
 

 

2.1. MODAL ANALYSIS OF DISCRETE MULTI DEGREE OF FREEDOM SYSTEMS 

The modal analysis for discrete multi degree of freedom systems will be presented in the form 
currently used in the field of dynamic analysis. The theoretical aspects put forward are then applied in 
a three degrees of freedom system in order to have a comparison between the analytical results and the 
results calculated by the software MATLAB. 

At first, a short theory background is presented to introduce the topic of modal analysis. The purpose 
is to show the most used procedure to obtain natural frequencies and mode shapes for a generic multi 
degree of freedom system. 

For generic MDOF systems the motion equation can be written as follows: 

 

  𝑚 ∙  𝑢  𝑡  +  𝑐 ∙  𝑢  𝑡  +  𝑘 ∙  𝑢 𝑡  = 𝐹 𝑡  (2.1) 

 

If the eigenvalues problem depends on the stiffness and mass matrices, the system that solves the 
problem is: 

 

  𝑚 ∙  𝑢  𝑡  +  𝑘 ∙  𝑢 𝑡  =  0  (2.2) 

 

The second order equation system can be solved using an exponential solution that provides the 
displacements. 

 

 
 

𝑢1

𝑢2

⋮
𝑢𝑛

 =  

𝜙1

𝜙2

⋮
𝜙𝑛

 ∙ 𝑒𝑖𝜔𝑘𝑡  (2.3) 

 

In this equation “n” is the number of the degrees of freedom and 𝜙𝑖  are the constants of the problem. 
Deriving twice and substituting in the equation 2.2 we obtain:  
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−𝜔𝑘

2 ∙  

𝜙1

𝜙2

⋮
𝜙𝑛

 ∙  𝑚 ∙ 𝑒𝑖𝜔𝑘𝑡 +  

𝜙1

𝜙2

⋮
𝜙𝑛

 ∙  𝑘 ∙ 𝑒𝑖𝜔𝑘𝑡 =  

0
0
⋮
0

  (2.4) 

 

Or in a compact form: 

 

   𝑘 − 𝜔𝑘
2 ∙  𝑚  ∙  𝜙 =  0  (2.5) 

 

In order to have non null solutions for this system the following must hold: 

 

 𝑑𝑒𝑡  𝑘 − 𝜔𝑘
2 ∙  𝑚  = 0 (2.6) 

 

The last equation provides the eigenvalues (𝜔𝑘
2) of the problem. Each of them can be used to 

calculate “n” eigenvectors  𝜙   (mode shapes). In terms of matrices we have: 

 

 
 𝜔2 =

 
 
 
 
𝜔1

2 0 0 0

0 𝜔2
2 0 0

0 0 ⋱ 0
0 0 0 𝜔𝑛

2 
 
 
 
           𝜙 =   

𝜙11

𝜙21

⋮
𝜙𝑛1

  

𝜙12

𝜙22

⋮
𝜙𝑛2

  ⋯ 

𝜙1𝑛

𝜙2𝑛

⋮
𝜙𝑛𝑛

   (2.7) 

 

For each value of 𝜔𝑘  the value of frequency and period can be calculated as: 

 

 
𝑓𝑘 =

𝜔𝑘

2𝜋
          𝑇𝑘 =

1

𝑓𝑘
 (2.8) 

 

If free vibration is initiated, for example by imposed displacements, corresponding to the eigenmode 
“k”, the vibration of each mass will be harmonic with a frequency 𝑓𝑘  and the structure will vibrate 
with a constant deflected shape corresponding to the eigenmode “k”. In a general case, the total 
vibration will result from the superposition of the vibration associated to each mode. 

The problem of modal analysis needs some previous considerations. At first the mode superposition 
approach is used in order to calculate the response of a linear MDOF system under an applied load 
vector. Otherwise, the mode shapes vector, satisfying the symmetric eigenvalue problem, possesses 
the important property of the orthogonality. Considering two particular modes “r” and “s”, we can 
write: 

 

   𝑘 − 𝜔𝑟
2 ∙  𝑚  ∙  𝜙 𝑟 =  0  (2.9) 
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   𝑘 − 𝜔𝑠
2 ∙  𝑚  ∙  𝜙 𝑠 =  0  (2.10) 

 

Pre-multiplying the first equation by  𝜙 𝑠
𝑇, transposing and post-multiplying the second one by  𝜙 𝑟 , 

applying the Betti’s theorem to the second one, the two equations become: 

 

  𝜙 𝑠
𝑇 ∙   𝑘 − 𝜔𝑟

2 ∙  𝑚  ∙  𝜙 𝑟 =  0  (2.11) 

 

  𝜙 𝑠
𝑇 ∙   𝑘 − 𝜔𝑠

2 ∙  𝑚  ∙  𝜙 𝑟 =  0  (2.12) 

 

Using one of these equations, by posing r = s, we obtain: 

 

  𝜙 𝑟
𝑇 ∙  𝑘 ∙  𝜙 𝑟 = 𝜔𝑟

2 ∙  𝜙 𝑟
𝑇 ∙  𝑚 ∙  𝜙 𝑟  (2.13) 

 

Thus: 

 
𝜔𝑟

2 =
 𝜙 𝑟

𝑇 ∙  𝑘 ∙  𝜙 𝑟
 𝜙 𝑟

𝑇 ∙  𝑚 ∙  𝜙 𝑟
=
𝑘𝑟
𝑚𝑟

 (2.14) 

 

Where 𝑘𝑟  and 𝑚𝑟  are the generalized stiffness and mass of mode “r”. Considering all the possible 

combinations of “r” and “s” and introducing the matrix  𝜙 , we may state the modal model 
orthogonality as follow: 

 

  𝜙 𝑇 𝑚  𝜙 =  𝑚∗  (2.15) 

 

  𝜙 𝑇 𝑘  𝜙 =  𝑘∗  (2.16) 

 

This new couple of matrices is diagonal and allows to re-write the motion equation as: 

 

  𝑚∗ ∙  𝑦  𝑡  +  𝜙 𝑇 𝑐  𝜙 ∙  𝑦  𝑡  +  𝑘∗ ∙  𝑦 𝑡  =  𝜙 𝑇 ∙ 𝐹 𝑡  (2.17) 

 

Where: 

 

  𝑢 𝑡  =  𝜙 ∙  𝑦 𝑡   (2.18) 

 

The equation 2.17 is obtained by substituting eq. 2.18 in eq. 2.1 and pre-multiplying 2.1 by  Ф 𝑇. The 
operations shown above allow to solve a problem with diagonal matrices. 
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Considering systems on which damping is present the matrix obtained from the operation  Ф 𝑇 𝑐  Ф  
is usually diagonal in case of classical damped systems. In cases on which the matrix is not diagonal, 
the solution usually adopted is to neglect the terms out of the diagonal, obtaining a damping matrix 
here defined: 

 

 

 
 2𝜁𝜔𝑚 =  

2𝜁1𝜔1𝑚1 0 0 0
0 2𝜁2𝜔2𝑚2 0 0
0 0 ⋱ 0
0 0 0 2𝜁𝑛𝜔𝑛𝑚𝑛

  (2.19) 

 

Sometimes another operation is done before solving the modal analysis, this operation consists on the 
normalization of the modal matrix with respect to the masses, as follows: 

 

 
 

𝑄1𝑖

𝑄2𝑖

⋮
𝑄𝑛𝑖

 =
1

  𝜙 𝑇 ∙ [𝑚] ∙  𝜙 
∙  

𝜙1𝑖

𝜙2𝑖

⋮
𝜙𝑛𝑖

  (2.20) 

 

Obtaining the Q matrix as follows: 

 

 
 𝑄 =   

𝑄11

𝑄21

⋮
𝑄𝑛1

  

𝑄21

𝑄22

⋮
𝑄𝑛2

  ⋯   

𝑄𝑛1

𝑄𝑛2

⋮
𝑄𝑛𝑛

   (2.21) 

 

Thanks to this operation the procedure of modal decoupling can be introduced, this operation allows to 
solve a second order equation separately for each mode. The introduction of the modal displacements 
“p” can be written as: 

 

  𝑢 𝑡  =  𝑄 ∙  𝑝 𝑡   (2.22) 

 

Substituting 2.22 in 2.1 and pre-multiplying the equation 2.1 by the matrix [Q]T, we obtain the 
equation in terms of modal displacements: 

 

  𝐼 ∙  𝑝  +  2𝜁𝜔 ∙  𝑝  +  𝜔2 ∙  𝑝 =  𝑄 𝑇𝐹 𝑡  (2.23) 

 

The identity matrix and the squared omega matrix are: 

 

  𝑄 𝑇 𝑚  𝑄 =  𝐼  (2.24) 
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  𝑄 𝑇 𝑘  𝑄 =  𝜔2  (2.25) 

 

Also in this case the matrix obtained from the operation  𝑈 𝑇 𝑐  𝑈  is not diagonal, so the same 
operation already done allows to obtain a diagonal matrix as: 

 

 
 2𝜁𝜔 =  

2𝜁1𝜔1 0 0 0
0 2𝜁2𝜔2 0 0
0 0 ⋱ 0
0 0 0 2𝜁𝑛𝜔𝑛

  (2.26) 

 

In this diagonal damping matrix each term out of the diagonal is neglected. The eq. 2.23 can be 
written, for each k-th mode, as: 

 

 𝑝 𝑘 𝑡 + 2𝜁𝑘𝜔𝑘 ∙ 𝑝 𝑘 𝑡 + 𝜔𝑘
2 ∙ 𝑝𝑘 𝑡 =  𝑄𝑖𝑘 ∙

𝑖
𝐹𝑖 𝑡  (2.27) 

 

Each uncoupled equation formally represents a SDOF system, it can be solved separately to get the 
modal displacements. Furthermore, each equation can be analytically solved using the Duhamel 
integral which is a convolution integral here defined: 

 

 𝑝𝑘 𝑡 = 𝑘 𝑡 ∗ 𝐹𝑖 𝑡  (2.28) 

 

Where the terms 𝑘 𝑡  represents the IRF (Impulse Response Function) and it is: 

 

 
𝑘 𝑡 =

1

𝜔𝑑 ,𝑘

∙ 𝑒−𝜁𝑘𝜔𝑘𝑡 ∙ 𝑠𝑖𝑛 𝜔𝑑 ,𝑘 𝑡  (2.29) 

 

Where 𝜔𝑑 ,𝑘  is the damped angular frequency and it depends on the relative damping 𝜁𝑘 , in fact: 

 

 
𝜔𝑑 ,𝑘 = 𝜔𝑘 ∙  1 − 𝜁𝑘

2 (2.30) 

 

For small values of the relative damping, the damped angular frequency is almost equal to the natural 
one. 

Finally the geometrical displacements can be calculated using the equation 2.22 and they result as a 
combination of the modal displacements, these can be also expressed as: 
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  𝑢 𝑡  =  𝑄1  𝑝1 𝑡  +  𝑄2  𝑝2 𝑡  + ⋯+  𝑄𝑛   𝑝𝑛  𝑡   (2.31) 

 

Finding in this way the deformation of the system in the dynamic field. The vector  𝑢 𝑡   has a 
dimension equal to the number of the degrees of freedom, each of its components represents the time 
history of a single degree of freedom. 

If a multi degree of freedom system is excited by a harmonic force with a frequency which is one of 
the natural frequencies, after a certain time (when permanent state is reached) the system will vibrate 
with the same frequency of the imposed force and the deformed shape will be the one associated to the 
mode having that frequency (resonance). 

 

Example 

A first application of modal analysis is presented in order to show some results. The model taken in 
consideration is a shear-type frame simulating a simple three degrees of freedom system. The frame 
consists of three storeys supported by four columns. 

At first, the natural frequencies and the mode are identified by the eigenvalues problem and, in the 
end, the displacements of the frame are calculated considering a harmonic force applied at the second 
storey. 

The example here shown is considering a really simple model, it means that the results of the modal 
analysis are easily understandable and they do not present computational errors when calculated using 
a software. The modal analysis will be done using the software MATLAB. 

 

 
Figure 2.1 - Discrete three degrees of freedom system 

 

Some properties of the frame are shown in order to have an idea of the type of model is being 
analyzed. The storeys masses are 2 kg each one and the “L” dimension is 200 mm. The columns have 
rectangular section (b = 10 mm and h = 1 mm). The elastic modulus is considered of 200 GPa. 

At first the inertia of the columns can be calculated, it allows to find the stiffness “k”, we have: 

 

 
𝐼 =

𝑏 ∙ ℎ
3

12
          𝑘 = 4 ∙

12 ∙ 𝐸 ∙ 𝐼

𝐿3
 (2.32) 
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The value of the stiffness considers the four columns, for this reason the overall stiffness is the value 
of the stiffness of  a single column multiplied by four. The final inputs of the problem are the ones 
shown in the table below. 

 
Table 2.1 - Input data for the modal analysis of the discrete MDOF system 

m L b h E I k 
[kg] [mm] [mm] [mm] [GPa] [mm4] [N/m] 
2 200 10 1 200 0.833 1000 

 

Using these data, mass matrix and stiffness matrix can be defined. 

 

 
 𝑚 =  

𝑚 0 0
0 𝑚 0
0 0 𝑚

 =  
2 0 0
0 2 0
0 0 2

      [𝑘𝑔]  

 

 
 𝑘 =  

2𝑘 −𝑘 0
−𝑘 2𝑘 −𝑘
0 −𝑘 𝑘

 =  
2000 −1000 0
−1000 2000 −1000

0 −1000 1000
       

𝑁

𝑚
   

 

The mass matrix is symmetric only in case of lumped masses. The stiffness matrix is symmetric 
because of the Betti’s theorem and, in general, it can be calculated in the classical way, which is to get 
the forces that must be applied to the masses to keep the system in equilibrium when a displacement is 
equal to a unit value in a certain position. 

The eigevalues problem can be solved by the equation: 

 

 𝑑𝑒𝑡  𝑘 − 𝜔𝑘
2 ∙  𝑚  = 0   𝑓𝑜𝑟   𝑘 = 1,2,3 (2.33) 

 

This equation represents three different equations which give rise the three values of the angular 
frequencies. The calculation of this relation has been done using the software MATLAB thanks to the 
command “eig()” that gives as output two matrices containing the squared values of the angular 
frequencies (eigenvalues) and the eigenvectors. For discrete systems the matrix of the angular 
frequencies is diagonal and, in this case, it results:  

 

 
 𝜔2 =  

𝜔1
2 0 0

0 𝜔2
2 0

0 0 𝜔3
2

 =  
99.03 0 0

0 777.48 0
0 0 1623.50

       
𝑟𝑎𝑑2

𝑠2
   

 

 
 𝑓 =  

𝑓1 0 0
0 𝑓2 0
0 0 𝑓3

 =  
1.58 0 0

0 4.44 0
0 0 6.41

       𝐻𝑧   
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Appling the equations 2.8 the calculation of the frequencies and the periods becomes possible, the 
values are shown in the table below. 

 
Table 2.2 - Results of MDOF system 

Angular frequency Frequency Period 
[rad/s] [Hz] [s] 
9.95 1.58 0.63 
27.88 4.44 0.23 
40.29 6.41 0.16 

 

The eigenvectors are here presented in a normalized form in order to have the top displacement equal 
to 1. This operation can be realized dividing each value 𝜙𝑖𝑗  by the value 𝜙3𝑗  which represents the 
modal displacement of the third mass. 

 

 
 𝜙 =   

𝜙11

𝜙21

𝜙31

  
𝜙12

𝜙22

𝜙32

  
𝜙13

𝜙23

𝜙33

  =   
0.445
0.802
1.000

  
−1.247
−0.555
1.000

  
1.802
−2.247
1.000

    

 

According to this kind of normalization the modal deformation of the structure can be represented as 
shown in figure 2.2. 

 

 
Figure 2.2 - Modal deformation of the frame 

 

The results obtained using MATLAB are the expected ones, exactly the same shown in figure 2.2. 
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Figure 2.3 - Modal deformation by MATLAB 

 

The modal analysis for this system follows the procedures presented in the section 2.1. A harmonic 
force  𝐹0  is applied at the second storey. 

 

 
 𝐹0 ∙ 𝑠𝑖𝑛 2𝜋𝑡 =  

0
1
0
 ∙ 𝑠𝑖𝑛 2𝜋𝑡  (2.34) 

 

 
Figure 2.4 - Applied force in the MDOF system 

 

In figure 2.5 only the second component on the force will be plotted because the other two 
components are equal to zero. 
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Figure 2.5 - Time history of the force 

 

In order to be coherent with the theoretical approach, the normalization of the eigenvectors has been 
done with respect to the mass, obtaining the matrix  𝑄 . 

 

 
 𝑄 =   

𝑄11

𝑄21

𝑄31

  
𝑄12

𝑄22

𝑄32

  
𝑄13

𝑄23

𝑄33

  =   
0.232
0.418
0.521

  
−0.521
−0.232
0.418

  
0.418
−0.521
0.232

    

 

The motion equation is: 

 

  𝑚 ∙  𝑢  𝑡  +  𝑘 ∙  𝑢 𝑡  =  𝐹0 ∙ 𝑠𝑖𝑛 2𝜋𝑡  (2.35) 

 

Considering eq. 2.22 and pre-multiplying by  𝑄 𝑇 it may be rewritten in the form: 

 

  𝐼 ∙  𝑝  𝑡  +  𝜔2 ∙  𝑝 𝑡  =  𝑄 𝑇 𝐹0 ∙ 𝑠𝑖𝑛 2𝜋𝑡  (2.36) 

 

For each mode the corresponding uncoupled equation is: 

 

 𝑝 𝑘 𝑡 + 𝜔𝑘
2 ∙ 𝑝𝑘 𝑡 =  𝑄𝑖𝑘 ∙

𝑖
𝐹0,𝑖 ∙ 𝑠𝑖𝑛 2𝜋𝑡  (2.37) 

 

This differential equation is analytically solvable and gives rise the modal displacements “p”. 

 

 
𝑝𝑘 𝑡 =

  𝑄𝑖𝑘 ∙𝑖 𝐹0,𝑖 /𝜔𝑘
2

1 −  
2𝜋

𝜔𝑘
 

2 ∙ 𝑠𝑖𝑛 2𝜋𝑡  (2.38) 
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Appling the equation 2.22, the geometrical displacements can be calculated and they result: 

 

 
 

𝑢1 𝑡 

𝑢2 𝑡 

𝑢3 𝑡 
 =  𝑄 ∙  

𝑝1 𝑡 

𝑝2 𝑡 

𝑝3 𝑡 
  (2.39) 

 

 
 

𝑢1 𝑡 

𝑢2 𝑡 

𝑢3 𝑡 
 =  

1.7
3.2
3.4

 ∙ 10−3 ∙ 𝑠𝑖𝑛 2𝜋𝑡   

 

Where each 𝑢𝑖 𝑡  represents the displacement on the time domain of the i-th storey. 

In the results obtained applying eq. 2.39, each SDOF system is solved by only considering the steady 
state response. 

The same results can be obtained using the matrix  𝜙  instead of the matrix  𝑄 , solving the problem 
in this form: 

 

  𝑚∗ ∙  𝑦 (𝑡) +  𝑘∗ ∙  𝑦(𝑡) =  𝜙 𝑇 𝐹0 ∙ 𝑠𝑖𝑛 2𝜋𝑡  (2.40) 

 

Where  𝑚∗  and  𝑘∗  are the normalized matrices with respect to the matrix  𝜙  as shown by the 
equations 2.15 and 2.16. By using this procedure the geometrical displacements must be calculated 
with eq. 2.18. 

The problem has been implemented in MATLAB following the procedure shown in the theoretical 
section where the equations 2.29 and 2.28 give the modal displacements and the equation 2.22 allows 
to calculate the geometrical displacements. 

The steady state response can be plotted defining a generic time vector, as shown in figure 2.6. 

 

 
Figure 2.6 - Steady state response of the MDOF system without damping 
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Having null damping these deformations have the same amplitude over time. In particular, each 
amplitude represents the three values of the vector that pre-multiply the sinusoidal function.  

If damping is introduced the analytical solution becomes more complicated but, using the software, the 
introduction of damping is an easy operation that consists of putting a non null value of damping in the 
equation 2.29. Doing that, the displacements will be damped over time until values close to zero. 

In this application, a 5% of damping is applied and considered constant for each mode, thus the 
damping matrix results a diagonal 3 by 3 matrix as: 

 

 
 2𝜁𝜔 =  

2𝜁𝜔1 0 0
0 2𝜁𝜔2 0
0 0 2𝜁𝜔3

 =  
0.994 0 0

0 2.785 0
0 0 4.024

   

 

 
Figure 2.7 - Geometrical displacements of the MDOF system with damping 

 

The figure shows only the free decay component of the displacements starting from the moment on 
which the force is not applied anymore, in this case after 100 seconds.  

 

2.2. MODAL ANALYSIS OF CONTINUOUS SYSTEMS 

In this second section continuous systems are considered. Also in this case the theoretical part allows 
to obtain analytical results for a simply supported beam system. They can be then compared to the 
results calculated using the software Autodesk Robot Structural Analysis. 

For this kind of systems the solutions in terms of lowest natural frequencies and vibration shapes can 
be calculated approximately using two different procedures: the Rayleigh method and the elastic 
procedure. 

 

Rayleigh’s method 

This method considers an energetic procedure that consists on three different steps:  

 Estimating the vibrating shapes (eigenmodes). 
 Calculate the strain energy and the kinetic energy. 
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 Using the principle of energy conservation to get the natural frequencies. 

The following structure has been considered. 

 
Figure 2.8 - Simply supported beam 

 

The figure shows the properties of the system: Young modulus (E), inertia (I), length of the span (L) 
and mass (M), while “u” represents the vertical displacements depending on abscissa “x” and on time 

“t”. The solution of this problem can be found writing the vertical displacements as follows: 

 

 𝑢 𝑥, 𝑡 = 𝐷 ∙ 𝑠𝑖𝑛  
𝜋𝑥

𝐿
 ∙ 𝑠𝑖𝑛 𝜔𝑡  (2.41) 

 

Where “D” is integration constant. Deriving 2.41 twice with respect to the abscissa, we have: 

 

 
𝑢′′  𝑥, 𝑡 =

𝜕2𝑢 𝑥, 𝑡 

𝜕𝑥2
= −

𝜋2

𝐿2
∙ 𝐷 ∙ 𝑠𝑖𝑛  

𝜋𝑥

𝐿
 ∙ 𝑠𝑖𝑛 𝜔𝑡  (2.42) 

 

The strain energy results: 

 

 
𝐸𝑠 =  

1

2
∙  𝑢′′  𝑥, 𝑡  2𝑑𝑥 =

1

2
∙ 𝐸𝐼𝐷2 ∙

𝜋4

𝐿4
∙ 𝑠𝑖𝑛2 𝜔𝑡 ∙  𝑠𝑖𝑛2  

𝜋𝑥

𝐿
 

𝐿

0

𝑑𝑥
𝐿

0

 (2.43) 

 

Remembering that: 

 

 
 𝑠𝑖𝑛2  

𝜋𝑥

𝐿
 

𝐿

0

𝑑𝑥 =
1

2
∙  1 − 𝑐𝑜𝑠  

2𝜋𝑥

𝐿
  𝑑𝑥 =

𝐿

2
 (2.44) 

 

We obtain the strain energy as: 

 

 
𝐸𝑠 =

𝐸𝐼𝐷2 ∙ 𝜋4

4 ∙ 𝐿3
∙ 𝑠𝑖𝑛2 𝜔𝑡  (2.45) 

 

The maximum value of this function is the amplitude of the sinusoidal function, in fact: 
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𝐸𝑠,𝑚𝑎𝑥 =

𝐸𝐼𝐷2 ∙ 𝜋4

4 ∙ 𝐿3
 (2.46) 

 

The kinetic energy is obtained deriving displacements with respect to the time. 

 

 
𝑢  𝑥, 𝑡 =

𝜕𝑢 𝑥, 𝑡 

𝜕𝑡
=  𝐷 ∙ 𝜔 ∙ 𝑠𝑖𝑛  

𝜋𝑥

𝐿
 ∙ 𝑐𝑜𝑠 𝜔𝑡  (2.47) 

 

Considering the mass “M” and the beam, the kinetic energies are: 

 

 
𝐸𝑘 ,𝑀 =

1

2
∙ 𝑀 ∙  𝑢  𝐿 2 , 𝑡  2 =

1

2
∙ 𝑀 ∙ 𝐷2 ∙ 𝜔2 ∙ 𝑐𝑜𝑠2 𝜔𝑡  (2.48) 

 

 
𝐸𝑘 ,𝑏𝑒𝑎𝑚 =  

1

2
∙ 𝑚 ∙  𝑢  𝑥, 𝑡  2𝑑𝑥

𝐿

0

=
1

2
∙ 𝑚 ∙ 𝐷2 ∙ 𝜔2 ∙ 𝑐𝑜𝑠2 𝜔𝑡 ∙  𝑠𝑖𝑛2  

𝜋𝑥

𝐿
 𝑑𝑥

𝐿

0

 (2.49) 

 

The total kinetic energy results: 

 

 𝐸𝑘 = 𝐸𝑘 ,𝑀 + 𝐸𝑘 ,𝑏𝑒𝑎𝑚  (2.50) 

 

 Substituting the equations 2.48 and 2.49 in eq. 2.50, considering eq. 2.44 we obtain: 

 

 
𝐸𝑘 =

1

2
∙ 𝐷2 ∙ 𝜔2 ∙  𝑀 +

𝑚𝐿

2
 ∙ 𝑐𝑜𝑠2 𝜔𝑡  (2.51) 

 

And the maximum is: 

 

 
𝐸𝑘 ,𝑚𝑎𝑥 =

1

2
∙ 𝐷2 ∙ 𝜔2 ∙  𝑀 +

𝑚𝐿

2
  (2.52) 

 

The principle of the energy conservation can be applied: 

 

 𝐸𝑘 ,𝑚𝑎𝑥 = 𝐸𝑠,𝑚𝑎𝑥  (2.53) 

 

 𝐸𝐼𝑌2 ∙ 𝜋4

4 ∙ 𝐿3
=

1

2
∙ 𝐷2 ∙ 𝜔2 ∙  𝑀 +

𝑚𝐿

2
  (2.54) 



Numerical Modelling and Model Updating Based on Experimental Modal Parameters of Ceira Viaduct 
 

19 
 

 

 
𝜔2 =

𝜋4 ∙ 𝐸𝐼

𝐿3 ∙  2𝑀 + 𝑚𝐿 
 (2.55) 

 

The particular case analyzed in the following section is not considering the presence of the mass “M”. 

In that case the solution can be found setting M = 0. 

 

 
𝜔2 =

𝜋4 ∙ 𝐸𝐼

𝑚 ∙ 𝐿4
 (2.56) 

 

Considering the equation 2.8, the natural frequencies result: 

 

 
𝑓 =

𝜋

2
∙  

𝐸𝐼

𝑚 ∙ 𝐿4
 (2.57) 

 

Where “k” indicates the generic mode. In conclusion some considerations must be done. The 
Rayleigh’s method allows to calculate an estimated value of the natural frequencies, the accuracy of 
the result depends entirely on the shape function which is assumed to represent the eigenmodes and 
the values of the natural frequencies calculated by this method are always greater than the real ones. 
Otherwise the shape functions must be cinematically admissible and must satisfy the displacements 
boundary conditions at the supports. 

The main interest of the Rayleigh’s method lies in its capacity to provide useful estimation of the 

natural frequencies for any reasonable assumption of the eigenmodes. 

 

Elastic procedure 

The second procedure considers an elastic approach that allows to obtain the same results as the 
previous procedure and getting the mode shapes analytically. We are now considering the same beam 
without the concentrated mass. 

 

 
Figure 2.9 - Simply supported beam 

 

The solution in terms of displacement is a product of a time dependent function and a space dependent 
function. 



Numerical Modelling and Model Updating Based on Experimental Modal Parameters of Ceira Viaduct 
 

20 
 

 

 𝑢 𝑥, 𝑡 = 𝜑 𝑥 ∙ 𝑓 𝑡  (2.58) 

 

The internal moment can be expressed as: 

 

 
𝑀 = 𝐸𝐼 ∙

𝜕2𝑢

𝜕𝑥2
= 𝐸𝐼 ∙ 𝜑′′  𝑥 ∙ 𝑓 𝑡  (2.59) 

 

The boundary conditions for the simply supported beam are: 

 

 
 

𝑢 𝑥 = 0 = 0
𝑢 𝑥 = 𝐿 = 0
𝑀 𝑥 = 0 = 0
𝑀 𝑥 = 𝐿 = 0

         →          

 
 

 
𝜑 0 = 0

𝜑 𝐿 = 0

𝜑′′ 0 = 0

𝜑′′ 𝐿 = 0

  (2.60) 

 

A solution with respect to the abscissa “x” can be found as follows: 

 

 𝜑 𝑥 = 𝐴 𝑠𝑖𝑛 𝑎𝑥 + 𝐵 𝑐𝑜𝑠 𝑎𝑥 + 𝐶 𝑠𝑖𝑛ℎ 𝑎𝑥 + 𝐷 𝑐𝑜𝑠ℎ 𝑎𝑥  (2.61) 

 

And deriving twice we have: 

 

 𝜑′′ 𝑥 = 𝑎2 −𝐴𝑠𝑖𝑛 𝑎𝑥 − 𝐵 𝑐𝑜𝑠 𝑎𝑥 + 𝐶 𝑠𝑖𝑛ℎ 𝑎𝑥 + 𝐷 𝑐𝑜𝑠ℎ 𝑎𝑥   (2.62) 

 

Applying the boundary conditions, a four equations system provides the constant A,B,C and D. The 
calculation gives: 

 

 𝐵 = 𝐶 = 𝐷 = 0 (2.63) 

 

 𝐴 𝑠𝑖𝑛 𝑎𝐿 = 0  →  𝑎𝐿 = 𝑛𝜋 →   𝑎 =
𝑛𝜋

𝐿
 (2.64) 

 

To find the time dependent solution in a free vibration field we can consider the motion equation: 

 

 
𝐸𝐼 ∙

𝜕4𝑢

𝜕𝑥4
+ 𝑚 ∙

𝜕2𝑢

𝜕𝑡2
= 0 (2.65) 

 

Considering eq. 2.59 we obtain: 
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 𝐸𝐼 ∙ 𝜑𝐼𝑉 𝑥 ∙ 𝑓 𝑡 + 𝑚 ∙ 𝜑 𝑥 ∙ 𝑓  𝑡 = 0 (2.66) 

 

The constant “a” can be defined dividing by 𝐸𝐼 ∙ 𝜑(𝑥) ∙ 𝑓 𝑡 . 

 

 𝜑𝐼𝑉 𝑥 

𝜑 𝑥 
= −

𝑚 ∙ 𝑓  𝑡 

𝐸𝐼 ∙ 𝑓 𝑡 
= 𝑎4 (2.67) 

 

The final equations are: 

 

 𝜑𝐼𝑉 𝑥 − 𝑎4 ∙ 𝜑 𝑥 = 0 (2.68) 

 

 𝑓  𝑡 + 𝜔2 ∙ 𝑓 𝑡 = 0 (2.69) 

 

Dividing eq. 2.66 by 𝑓 𝑡  and considering eq. 2.67 and 2.69 we obtain the value of the angular 
frequency: 

 

 
𝜔2 =

𝐸𝐼 ∙ 𝑎4

𝑚
 (2.70) 

 

Substituting 2.64 in 2.70 the final solution results: 

 

 
𝜔𝑘 = 𝑘2𝜋2 ∙  

𝐸𝐼

𝑚 ∙ 𝐿4
 (2.71) 

 

 
𝑓𝑘 =

𝑘2𝜋

2
∙  

𝐸𝐼

𝑚 ∙ 𝐿4
 (2.72) 

 

 
𝑇𝑘 =

1

𝑓𝑘
 (2.73) 

 

And considering eq. 2.61, the generic eigenmode is: 

 

 
𝜑𝑘 𝑥 = 𝐴 𝑠𝑖𝑛  

𝑘𝜋

𝐿
∙ 𝑥  (2.74) 
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For several values of the natural number “k” the different modes can be analyzed considering a 
generic value of the constant “A”. 

Considering continuous systems an infinite number of natural frequencies and mode shapes can be 
found while the number of frequencies and mode shapes for discrete systems is always equal to the 
number of the degrees of freedom of the system. 

As we will see in the example, this method gives the exact values of the natural frequencies and mode 
shapes in case of simple systems. When a more complicated structure is considered, the two methods  
may provide only approximated results. 

 

Example 

An example will be shown for continuous systems and some comparison between analytical results 
and results calculated by the software will be analyzed. 

The system taken in consideration is a simply supported beam, unloaded and with the following 
characteristics: 

 

 Length of the span........................... 50 m 

 Rectangular cross section.............. (0.8 x 1.0 m2) 

 Materials........................................... Reinforced concrete (C40/50) 

 

 
Figure 2.10 - Simply supported beam 

 

Table 2.3 shows the assumption about the properties of the element.  

 
Table 2.3 - Element properties 

E I A m L 
[MPa] [mm4] [m2] [kg/m] [m] 

35547.1 6.67E+10 0.8 2039 50 
 

These characteristics have been chosen in order to have the correct input to solve the equations shown 
in the theoretical part for the calculation of the natural frequencies. This example shows how the 
modal parameters depend only on the intrinsic properties of the system (mass, stiffness and 
geometrical properties). 

In this first step the calculation of the modal parameters using the theoretical results will be shown.   

The values of the frequencies and the periods are given by the equations 2.71, 2.72 and 2.73, these 
results are shown in table 2.4. For this example five modes have been considered. 
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Table 2.4 - Analytical results of the modal analysis 

Mode Angular frequency Frequency Period 

 [rad/s] [Hz] [s] 
1 4.26 0.68 1.48 
2 17.03 2.71 0.37 
3 38.31 6.10 0.16 
4 68.10 10.84 0.09 
5 106.41 16.94 0.06 

 

According to the eq. 2.74 the mode shapes may be analytically calculated setting A = 1 and by varying 
the abscissa “x” from 0 to 50. The results are shown in the set of figures below. 

 

 
Figure 2.11 - Analytical mode shape: Mode 1 

 

 
Figure 2.12 - Analytical mode shape: Mode 2 

 

 
Figure 2.13 - Analytical mode shape: Mode 3 
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Figure 2.14 - Analytical mode shape: Mode 4 

 

 
Figure 2.15 - Analytical mode shape: Mode 5 

 

In a second step, natural frequencies, periods and mode shapes have been calculated using the 
software Autodesk Robot Structural Analysis defining the materials and the characteristics shown in 
table 2.3. Table 2.5 contains the values of the frequencies and the periods for each mode. 

 
Table 2.5 - Results of the modal analysis from the software 

Mode Frequency Period 

 [Hz] [s] 
1 0.68 1.47 
2 2.72 0.37 
3 6.15 0.16 
4 11.08 0.09 
5 18.75 0.05 

 

The values obtained by the software are very similar to the analytical ones and so the same approach 
will be used to analyze other kind of structures. Finally the mode shapes got by the software are shown 
in the figures below. 

 

 
Figure 2.16 - Mode shape from the software: Mode 1 

 

0 5 10 15 20 25 30 35 40 45 50

x [m]

0 5 10 15 20 25 30 35 40 45 50

x [m]



Numerical Modelling and Model Updating Based on Experimental Modal Parameters of Ceira Viaduct 
 

25 
 

 
Figure 2.17 - Mode shape from the software: Mode 2 

 

 
Figure 2.18 - Mode shape from the software: Mode 3 

 

 
Figure 2.19 - Mode shape from the software: Mode 4 

 

 
Figure 2.20 - Mode shape from the software: Mode 5 

 

2.3. MODAL ANALYSIS IN A STRUCTURAL ANALYSIS SOFTWARE  

More advanced numerical model will be presented to become familiar with the use of the software that 
will be adopted to model the full scale bridge presented in chapter 4.  

This second case of study is a structure simulating a four spans straight bridge. The purpose of this 
example is to create a model representing a system quite similar to a real structure. This allowed to 
have a first approach with the modelling of a structure in the software and to understand how a FEM 
works in terms of calculation of natural frequencies and representation of mode shapes. The software 
which has been utilized is the same already used for the previous example. 

Some conditions are introduced in the model: the sections of the piers and the deck are constant along 
the structure, an internal hinge is placed in correspondence of the pier 7, the piers are considered fixed 
on the ground and the deck is continuous over piers 8 and 9.  

The static scheme of the structure is presented in figure 2.21. 
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Figure 2.21 - Structure static scheme 

 

Length of the elements: 

 Element 1........................... 30 m 

 Element 2........................... 60 m 

 Element 3........................... 90 m 

 Element 4........................... 60 m 

 Element 7........................... 50 m 

 Element 8........................... 70 m 

 Element 9........................... 70 m 

 

 
Figure 2.22 - 3D view of the structure 

 

In terms of material properties we have: 

 

 Material.......................... Reinforced concrete (C40/50). 
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For each section the main geometrical properties are plotted with respect to a referring system 
positioned on the centre of gravity “C” of the section. The dimensions in the figures are reported in 
meters. 

 

 
Figure 2.23 - Dimensions of the deck 

 
Table 2.6 - Geometrical properties of the deck 

A Iy Iz It 

[m2] [m4] [m4] [mm4] 

7.94 75.05 5.67 12.25 

 

 
Figure 2.24 - Dimensions of the piers 

 
Table 2.7 - Geometrical properties of the piers 

A Iy Iz It 

[m2] [mm4] [mm4] [mm4] 

23.04 121.83 66.18 141.09 

 

In table 2.8 the results obtained by the software have been reported. 
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Table 2.8 - Results of the modal analysis 

Mode Frequency Period 

 [Hz] [s] 
1 2.39 0.42 
2 2.75 0.36 
3 2.97 0.34 
4 3.88 0.26 
5 4.43 0.23 

 

In this case the modal parameters cannot be easily calculated with an analytical procedure, in fact, in 
chapter 4, we will see how, for a real structure, the validation of the numerical model is done using 
different procedures. Also for this structure the mode shapes are represented. 

 

 
Figure 2.25 - Structure mode shape: Mode 1 

 

 
Figure 2.26 - Structure mode shape: Mode 2 
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Figure 2.27 - Structure mode shape: Mode 3 

 
Figure 2.28 - Structure mode shape: Mode 4 

 

 
Figure 2.29 - Structure mode shape: Mode 5 

 

Looking at the mode shapes it can be seen that the deformed shapes in correspondence to the nodes 
between piers and deck show how the internal connections of the structure affects the mode shapes. In 
correspondence of the element 7 the behaviour is completely different respect to elements 8 and 9. It 
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means that the restraints represent one of the intrinsic characteristics that have an important role in the 
modal analysis. 

In the end of this chapter we could say that the problem of the modal analysis may be easily solved by 
using appropriate software.  

Once the model is done the calculation is an automatic process. As we will see in the next chapters the 
models always have some approximations that will make the results different to the real ones. It means 
that other ways to get the modal parameters must be used and they will be the topics of the following 
sections. 
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3  
CHAPTER 3 - AMBIENT VIBRATION 

TESTING METHODS 
 

 

3.1. GENERAL DESCRIPTION 

In this chapter the process of the identification of the modal parameters for a structure is analyzed. 
This process is considered starting from the measurements done during an AVT (Ambient Vibration 
Test). In this kind of tests the response of the structure is recorded usually in terms of accelerations 
coming from ambient actions like wind or traffic.  

The frame already considered in the previous chapter is used again to demonstrate the theoretical 
concepts and validate the routines developed in MATLAB. The frame was modelled in MATLAB 
and, being just a theoretical model, the excitations are generated by the software. 

Vibration testing methods are usually divided into two different main categories: forced vibration tests 
and ambient vibration tests. When an ambient vibration test is done, the structure is considered excited 
by wind, micro tremors and traffic. It means that the control of the force applied to vibrate the 
structure is not permitted. This represents the main difference between this kind of tests and the forced 
vibration ones. 

  

Forced Vibration Tests 

In forced vibration tests controlled forces are applied to a structure introducing some vibrations. By 
measuring the structure response under these known forces, it is possible to determine the structure 
dynamic properties. The controlled excitation force can be applied in several ways, the three most 
used ones are: shaker, impact and pullback tests. These methods are briefly described in order to have 
a comparison with the ambient vibration tests. 

Shaker tests are used to apply forces to structures in a controlled manner to excite them dynamically, 
the shaker must produce sufficiently large forces to excite a bridge in the frequency range of interest. 
If the frequencies of interest are low (less than 1 Hz) the shaker cannot provide very large forces. 

In an impact testing method the test object is instrumented with accelerometers and is struck with a 
hammer containing a force transducer. The impact force and acceleration response time histories are 
then used to compute Frequency Response Functions (FRFs). Natural frequencies, mode shapes and 
damping ratios are calculated from the FRFs. 

The pullback testing method generally involves displacing a structure and quickly releasing it, causing 
the structure to vibrate freely. This static displacement can be applied thanks to hydraulic rams, cables, 
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bulldozers, tug boats or chain blocks. When the load is released the free vibrations of the structure are 
recorded as the structure returns to its position of static equilibrium. The results from these tests allow 
to determine natural frequencies, mode shapes and damping ratios only for the structure principal 
modes.  

 

Ambient Vibration Tests 

In an ambient vibration test the modal parameters are obtained by measuring the vibrations 
simultaneously at several positions of the structure. Reliable estimates of natural frequencies and mode 
shapes can be obtained if the following conditions are met:  

 Linearity: 

The structure behaves as a linear system, it means that a linear combination of individual force inputs 
will result in the same linear combination of the corresponding individual response. 

 Excitation: 

It is assumed that the most relevant modes are excited. 

 Modes well separated and lightly damped: 

It is assumed that the modes of interest are well separated and with a damping lower than the 5 % of 
the critical damping 

 Classical damping: 

The structure must be classical damped. 

More recent processing techniques may still provide good results if some of the previous conditions 
are not fully fulfilled. 

 

3.2. THEORETICAL BACKGROUND 

Before starting to describe the procedures for the application of an ambient vibration test some 
theoretical aspects must be analyzed. In the application of AVT the analysis are often done in the 
frequency domain, for this reason a short a theoretical introduction for the signal processing in the 
frequency domain, by using the Fourier operator, is presented. 

Subsequently, the frame will be introduced to show how to get the natural frequencies starting from 
the frequency response functions or from acceleration signals. The results will be compared to the 
ones already obtained in chapter 2 by the eigenvalues problem.  

In section 3.2.1 the response of the structure will be calculated using the FRFs and these are calculated 
knowing the natural frequencies (eq. 3.13). This first approach is thus completely theoretical. 

In section 3.3 the problem will be present in a more practical way because of the generation of a 
random excitation and so it will reflect a more real situation. 
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3.2.1. FOURIER TRANSFORM OPERATOR 

The frequency domain is often used in dynamic analysis, it means that signals must be transformed 
from the time domain to the frequency domain. In this section it is possible to see how, for this 
purpose, the Fourier transformation must be applied.  

Fourier transform extends Fourier analysis of signals defined in  –𝑇/2, +𝑇/2  to signals defined in 
 −∞, +∞ . When a complex signal is given and it is decomposable in a Fourier series, it results: 

 

 
𝑠 𝑡 =  𝜇𝑛 ∙ 𝑒

𝑖𝑛
2𝜋

𝑇
𝑡

+∞

−∞
            𝑡 ∈  −

𝑇

2
, +

𝑇

2
  (3.1) 

 

The exponential functions represent a complete basis for all finite energy signals. The term 𝜇𝑛  may be 
expressed as: 

 

 
𝜇𝑛 =

1

𝑇
∙  𝑠 𝑡 

𝑇/2

−𝑇/2

∙ 𝑒−𝑖𝑛
2𝜋

𝑇
𝑡𝑑𝑡 (3.2) 

 

Considering the discrete field the frequency is: 

 

 𝑓𝑛 =
𝑛

𝑇
 (3.3) 

 

 
∆𝑓 = 𝑓𝑛 − 𝑓𝑛−1 = 𝑓0 =

1

𝑇
 (3.4) 

 

Where 𝑓0 represents the frequency resolution and indicates the spacing on the frequency axis between 
two consecutive samples.  

Substituting 𝜇𝑛  in the eq. 3.1 and considering eq. 3.3, the signal assumes this form: 

 

 
𝑠 𝑡 =    𝑠 𝜏 

𝑇/2

−𝑇/2

∙ 𝑒−𝑖𝑛 ∙2𝜋𝑓𝑛 𝜏𝑑𝜏 ∙ 𝑒𝑖𝑛 ∙2𝜋𝑓𝑛 𝑡
+∞

−∞
∙ ∆𝑓 (3.5) 

 

In order to pass from discrete to continuous we have: 𝑇 → ∞     𝑎𝑛𝑑     ∆𝑓 → 𝑑𝑓. Thus the discrete 
variable 𝑓𝑛  becomes a continuous variable 𝑓. The signal is: 

 

 
𝑠 𝑡 =    𝑠 𝜏 

+∞

−∞

∙ 𝑒−𝑖𝑛∙2𝜋𝑓𝜏𝑑𝜏 ∙ 𝑒𝑖𝑛 ∙2𝜋𝑓𝑡
+∞

−∞

𝑑𝑓     𝑡 ∈  −∞, +∞  (3.6) 

 

Hence: 
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𝑠 𝑡 =  𝑋 𝑓 ∙ 𝑒𝑖𝑛 ∙2𝜋𝑓𝑡

+∞

−∞

𝑑𝑓 (3.7) 

 

Having defined: 

 

 
𝑋 𝑓 =  𝑠 𝑡 

+∞

−∞

∙ 𝑒−𝑖𝑛 ∙2𝜋𝑓𝑡𝑑𝑡 (3.8) 

 

It represents the Fourier transform of the signal 𝑠 𝑡 . In a compact form the Fourier transform operator 
is indicated as: 

 

 𝑋 𝑓 = ℑ 𝑠 𝑡   (3.9) 

 

The inverse operation allows defining the anti-transform operator as: 

 

 
s 𝑡 = ℑ−1 𝑋 𝑓  =  𝑋 𝑓 

+∞

−∞

∙ 𝑒𝑖𝑛 ∙2𝜋𝑓𝑡𝑑𝑓 (3.10) 

 

The Fourier transform can be applied to signals like time dependent load or acceleration signals. This 
operation allows to calculate the response of a system under a generic excitation in the frequency 
domain using the following expression: 

 

 𝑌 𝑓 = 𝐻 𝑓 ∙ 𝐹 𝑓  (3.11) 

 

Where 𝐻 𝑓  is the FRF (Frequency Response Function) and, according to eq. 3.9, 𝐹 𝑓  is the Fourier 
transform of the load signal in the frequency domain, it can be written as: 

 

 𝐹 𝑓 = ℑ 𝐹 𝑡   (3.12) 

 

In most of literature references this equation is presented using the angular frequency as variable, this 
is the reason why the following expressions are functions of 𝜔 instead of 𝑓. In general the variable can 
be chosen according to the expressions form. 

Two procedures are usually applied for the calculation of the FRF: the first one is an analytical 
procedure, for each mode the frequency response function results: 
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𝐻𝑘 𝜔 =

1

𝜔𝑘
2 − 𝜔2 + 2 ∙ 𝑖 ∙ 𝜁𝑘 ∙ 𝜔 ∙ 𝜔𝑘

 (3.13) 

 

Applying this operation for each mode the FRF matrix can be defined and it is a diagonal matrix on 
which each 𝐻𝑘  𝜔  is situated in the principal diagonal. 

The second procedure considers the calculation of the FRF numerically, sometimes this operation is 
done using software like MATLAB and consists on the inversion of the IRF using the Fourier 
transform operator. 

 

 𝐻𝑘 𝜔 = ℑ 𝑘 𝑡   (3.14) 

 

In MATLAB the “fft” function allows the application of the Fourier transform. 

 

3.2.2. MODAL IDENTIFICATION 

In this section the problem of the identification of the modal parameters of a structure is presented. In 
a first part the general problem is shown and an example shows how it is possible to get the natural 
frequencies of a structure under a specific applied force.  

In a second part the problem is developed considering stochastic excitations applied to the structure. In 
this context the estimates of the spectra are use to obtain the modal parameters.  

Using an ambient vibration test, for each instrumented degree of freedom of the structure, it is possible 
to evaluate displacements, velocities or accelerations. As shown in eq. 2.18, the displacements for a 
multi degree of freedom system (with “n” degrees of freedom) can be expressed as a combination of 

the mode shapes as follows: 

 

  𝑢 𝑡  =  𝜙1 ∙  𝑦1 𝑡  +  𝜙2 ∙  𝑦2 𝑡  + ⋯+  𝜙𝑛  ∙  𝑦𝑛 𝑡   (3.15) 

 

Appling the Fourier transform to both terms, the solution in the frequency domain can be obtained. 

 

  𝑈 𝜔  =  𝜙1 ∙  𝑌1 𝜔  +  𝜙2 ∙  𝑌2 𝜔  + ⋯+  𝜙𝑛  ∙  𝑌𝑛  𝜔   (3.16) 

 

Considering eq. 3.16 and the relation between displacements and accelerations: 

 

 𝑈  𝜔 = 𝜔2 ∙ 𝑈 𝜔  (3.17) 

 

The acceleration of the structure in the frequency domain can be expressed as: 

 

 𝑈  𝜔 = 𝜔2 ∙   𝜙1 ∙ 𝐻1 𝜔 ∙ 𝑌1 𝜔 +  𝜙2 ∙ 𝐻2 𝜔 ∙ 𝑌2 𝜔 + ⋯+  𝜙𝑛  ∙ 𝐻𝑛 𝜔 ∙ 𝑌𝑛  𝜔   (3.18) 
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Defining the term: 

 

 𝐷𝑗𝑖 = 𝜙𝑗𝑖 ∙ 𝑌𝑗  𝜔  (3.19) 

 

An individual complex valued acceleration response can be expressed as: 

 

 𝑈  𝑓 = 𝜔2 ∙  𝐷1𝑖 ∙ 𝐻1 𝜔 + 𝐷2𝑖 ∙ 𝐻2 𝜔 + ⋯+ 𝐷𝑛𝑖 ∙ 𝐻𝑛 𝜔   (3.20) 

 

And imposing 𝐷𝑗𝑖 = 1, for each mode it is possible to obtain the value of 𝑈  𝜔 .  

Plotting the acceleration 𝜔2 𝐻𝑗  𝜔   and the combination  𝑈  𝜔   some peaks give rise in 
correspondence of the damped frequencies. In case of small damping, these values are similar to the 
natural frequencies. It means that the natural frequencies of a structure can be estimated using the 
Fourier transform of an ambient vibration acceleration record. 

 

Example 

The same frame already considered in chapter 2 can be taken in consideration to show some results in 
terms of application of the Fourier transform and the identification of natural frequencies using the 
FRFs and acceleration plots.  

For this application the structure is considered with a damping of 5 % for each mode. 

In this example the structure in consideration is loaded with a harmonic force and not subjected to 
ambient vibrations, only FRFs and acceleration in the frequency domain are analyzed. In the end, it 
does not reflect a real case but it allows to understand how natural frequencies can be found using a 
FRF diagram. 

 

 
Figure 3.1 - Discrete three degrees of freedom system 

 

Table 3.1 shows the natural and damped frequencies for the frame obtained by the eigenvalues 
problem. In chapter 2 the damped frequencies were not reported, the table shows how these are close 
to the natural ones: 
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Table 3.1 - Natural and damped frequencies of the frame 

Natural Frequency Damped frequency 
[Hz] [Hz] 
1.58 1.58 
4.44 4.43 
6.41 6.40 

 

Remembering that in this example the displacements have been calculated using the normalized mode 
shape vectors  𝑄 , the transformation in the frequency domain results: 

 

  𝑈 𝜔  =  𝑄1 ∙  𝑃1 𝜔  +  𝑄2 ∙  𝑃2 𝜔  +  𝑄3 ∙  𝑃3 𝜔   (3.21) 

 

Where the normalize coordinates 𝑃𝑘 𝜔  are calculated as: 

 

 𝑃𝑘 𝜔 = 𝐻𝑘 𝜔 ∙ 𝐹𝑘 𝜔  (3.22) 

 

The term 𝐹𝑘 ω  results from the vector  𝐹 𝜔   that can be calculated using the Fourier transformation 
of the load signal, according to the normalization used for the application, it results: 

 

  𝐹 𝜔  = ℑ  𝑈 𝑇 𝐹 𝑡    (3.23) 

 

In this application each FRF has been calculated with both methods shown above. At first, they have 
been calculated applying the Fourier transformation to the IRFs and then using the analytical 
procedure. The results must be the same and they are plotted below. 

 

 
Figure 3.2 - Amplitude of the Frequency Response Functions 
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About the calculation of the acceleration in the frequency domain is sufficient to apply eq. 3.17 that, in 
this case, can be written as: 

 

 𝑈 (𝜔) = 𝜔2 ∙  𝐻1 𝜔 + 𝐻2 𝜔 + 𝐻3 𝜔   (3.24) 

 

At first, the three acceleration responses 𝐴𝑗  𝜔 = 𝜔2 𝐻𝑗  𝜔   and then the combination 𝑈  𝜔  have 
been plotted. 

 

 
Figure 3.3 - Accelerations amplitude in frequency domain 

 

 
Figure 3.4 - Combination of the accelerations amplitude in the frequency domain 
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We can see that the results are the expected ones, the peaks are in correspondence with the damped 
frequencies and, approximately, with the natural frequencies.  

In the end the normalized coordinates for each mode can be calculated using eq. 3.21 and they are 
shown in figure 3.5, while in figure 3.6 we can find the combination of the modes plotted for each 
degree of freedom of the frame, that means, in this example, the response of each storey. 

 
Figure 3.5 - Responses amplitude of the normalized coordinates 

 

 
Figure 3.6 - Combination of the responses amplitude of the three storeys in the frequency domain 

 

As can be seen in both figures there is a first peak in correspondence with the value 1, this peak comes 
from the applied force on the frame that can be written as: 

 

 𝑓0 = 𝑠𝑖𝑛 2𝜋𝑡 = 𝑠𝑖𝑛 𝜔𝑡      →      2𝜋 = 𝜔 (3.25) 

 

Considering the relation between frequency and angular frequency we obtain: 



Numerical Modelling and Model Updating Based on Experimental Modal Parameters of Ceira Viaduct 
 

40 
 

 

 
𝑓 =

𝜔

2𝜋
=

2𝜋

2𝜋
= 1 (3.26) 

 

The other peaks are in correspondence with the natural frequencies. 

 

3.3. STOCHASTIC MODAL IDENTIFICATION METHODS 

In the previous section the procedure to obtain the natural frequencies of a structure under a harmonic 
excitation by using the frequency response functions has been analyzed. In this section the main goal 
will be the modal identification for a system subjected to a generic excitation simulating ambient 
vibrations.  

In this context the structure can be considered under wind or traffic actions, thus under any kind of 
action referable to a random signal identified as a stochastic excitation. This is the reason why we can 
talk about stochastic modal identification methods. 

Considering an ambient vibration test, the modal identification starts from the signals recorded in 
several points of the structure. As will be seen in the next chapter, in a real application, several sensors 
are positioned on the structure and these allow the recording of the acceleration time series caused by 
ambient excitations. These records are then used to get the response of the structure. 

A good estimate of the responses can be obtained if many points in the structure are instrumented, but 
most of the time the number of available sensors is less than the number of the points that must be 
instrumented. For this reason some sensors are moved during the test in several positions. 

The stochastic modal identification methods are divided into two main categories: identification 
methods in time domain and identification methods in the frequency domain. 

In this thesis only the second category will be analyzed, in particular one method will be described. 
The method is called Peak Picking method (PP) and it allows to identify the natural frequencies and 
the mode shapes of the structure. 

Before the description of this method the response identification procedures and the power spectra 
calculation will be presented. They represent the starting point for the application of the method. 

From a theoretical point of view, as eq. 3.27 will show, the application of the next procedures (in 
particular the calculation of the power spectra) needs the responses in the frequency domain. This can 
be done applying the Discrete Fourier Transform (DFT), calculated by the Fast Fourier Transform 
operator (FFT).   

All the procedures of the modal identification are illustrated using the three degrees of freedom frame 
already considered in the previous chapters. 

 

3.3.1. RESPONSE OF A STRUCTURE UNDER A STOCHASTIC EXCITATION 

The first part of the modal identification process consists on the measurement of the response of the 
structure. As already referred, in a real application it would come from an ambient vibration test by 
using the sensors positioned in several points of the structure. From a theoretical point of view each 
instrumented point represents a degree of freedom from which the response is obtained and that, in 
general, is an acceleration record. 
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In some cases, the response of the structure is generated through an algorithm called state space model 
or state space formulation. This model, not theoretically elaborated in this work, is used because it 
allows the modelling of a white noise always present in experimental tests. This model consists on the 
calculation of the state matrices, which are then used to generate the output in terms of response of the 
structure when a stochastic excitation is given as input. 

 

Example 

The three degrees of freedom frame is considered. The state space model has been implemented in 
MATLAB through a specific function. The function receives as input the frame characteristics (mass, 
stiffness and damping matrices) and the applied excitation and then, by the calculation of the state 
matrices, gives as output the structure responses. 

The excitation (input) looks like white noise and it has been created by the random function (randn) of 
the software. The input has duration of 20 minutes considering a delta of 0.02 seconds. 

The excitation is plotted in the following figure.  

 

 
Figure 3.7 - Time series of the input  

 

The structure responses (output) y1, y2, y3, are presented below. 

 

 
Figure 3.8 - Responses of the frame in the time domain (output) 
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3.3.2. CALCULATION OF THE POWER SPECTRA 

The calculation of the power spectra PSD (Power Spectral Density) represents the starting point of the 
modal identification method that will be presented. In the context of ambient vibration tests the 
response is calculated doing measurements of the responses in several points of the structure. Each 
response is used to calculate the spectra as shown in eq. 3.27. 

In general we can talk about auto-spectra if the response is measured for a single degree of freedom 
“i” while in the cross-spectra the response is calculated relating the measurement in the degree of 
freedom “i” with the degree of freedom “j”. In this way the spectra can be presented in a matrix on 
which in the principal diagonal we can find the auto-spectra and out of it there are the cross-spectra. 

If the measurements in the structure are done simultaneously, the spectra matrix will result a square 
matrix with a dimension equal to the instrumented points. In most of the applications the number of 
the degrees of freedom that should be instrumented to find a good behaviour of the structure will be 
too high, for this reason, in practice, a sequence of measurements is done by using different 
positioning of the sensors. Each arrangement is usually called “setup”. To grant the relationship 

between the measures, some degrees of freedom must be measured in every setup. These will 
represent the reference degrees of freedom. 

As it will be presented in the next chapter, there are usually some sensors remaining fixed in every 
setup, these are the reference degrees of freedom. 

Proceeding in this way, in practical applications, it is not possible to get square spectra matrices but 
only rectangular ones with “l” by “r” dimensions. In these matrices “l” represents the number of the 

points on which the response is measured and “r” is the number of the reference degrees of freedom. 

The calculation of the spectra has been implemented in MATLAB and it is based on a procedure 
called Welch procedure (Welch 1967). 

From a theoretical point of view, the calculation of the power spectra, considering a generic structure, 
is given by: 

 

 
 𝑆 𝑦

𝑟𝑒𝑓
 𝜔  =

𝑌 𝜔 ∗ ∙ 𝑌𝑟𝑒𝑓  𝜔 𝑇

𝑁 ∙ ∆𝑡
 (3.27) 

 

Where 𝑌 𝜔 ∗ represents a column vector containing the FFTs of the response vectors with a number 
of lines equal to the instrumented degrees of freedom. 𝑌𝑟𝑒𝑓  𝜔  is a column vector with an “r” 

dimension containing the FFTs of the responses of the degrees of freedom instrumented in every setup 
(reference degrees of freedom). 𝑁 is the number of acquired points and ∆𝑡 the discrete time interval.  

 

Example 

In case of the discrete degree of freedom system already analyzed, the spectra matrix is a 3 by 3 matrix 
because the vectors in eq. 3.27 have dimension equal to the number of the degrees of freedom. The 
multiplication between a line vector by a column one with the same dimension gives rise to a square 
matrix (3 by 3). 

The spectra matrix will be symmetric, the terms out of the principal diagonal result 𝑆𝑦(𝜔)𝑗 ,𝑖 =

𝑆𝑦(𝜔)𝑖 ,𝑗 .  
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Applying the Welch procedure, it is possible to calculate the nine components of the spectra matrix (3 
auto-spectra and 6 cross-spectra). The software MATAB allows to do this with two different 
commands: “pwelch” gives rise to the auto-spectra while “cpsd” provides the cross-spectra. Both of 
them need as input the response “y” of the frame, in particular the command “cpsd” needs two 
different inputs according to the position of the cross-spectra in the matrix. 

The spectra are plotted below with amplitude and phase, the auto-spectra have null phases. 

 

 
Figure 3.9 - Elements of the spectra matrix 
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In the first column of the figure the auto-spectra are plotted, while in the column on the right there are 
the cross-spectra with amplitude and phase. The subscripts indicate the positions in the spectra matrix. 

 

3.3.1. PEAK PICKING METHOD 

This identification method is a frequency domain method and it is today acknowledged as the first 
applied method in the dynamic identification field for structures under ambience vibrations. In this 
work the theoretical background of this method is omitted, the main theoretical fundamentals of the 
actual format of the method have been developed by Bendat and Piersol (Bendat and Piersol 1980). 

This method consists on the frequency and mode shapes identification of a structure starting from the 
spectra definition. It allows to identify the modal parameters considering the structure excited by a 
generic signal. 

In this section the application of this method will be shown using the same frame already considered. 

 

Frequencies identification 

In this first part the identification of the natural frequencies of the structure is analyzed. When a 
structure is subjected to a white noise, the spectra matrix can be derived from the FRF matrix through 
the following relation: 

 

  𝑆𝑦 𝜔  =  𝐻 𝜔  ∙  𝑅𝑢 ∙  𝐻
𝐻 𝜔   (3.28) 

 
Where  𝐻𝐻 𝜔   is the transpose of the  𝐻 𝜔   and contains the conjugated complex values of the 
same matrix. 

Considering white noise, the matrix  𝑅𝑢   is a constant matrix, it means that, as the FRFs,  also the 
spectra in the matrix  𝑆𝑦 𝜔   will have the peaks in correspondence with the damped frequencies and 
thus very close to the natural ones. 

In this way the identification of the natural frequencies becomes possible starting from the matrix of 
the power spectral density. In a real structure, on which the analyzed degrees of freedom are many, the 
analysis of only one power auto-spectrum (one in the principal diagonal of the matrix) may not be 
enough to identify the natural frequencies with a good approximation, for this reason sometimes a 
procedure of normalization and averaging of the auto-spectra is applied. This operation provides the 
ANPSD (Average Normalized Power Spectral Density), obtained by the average of the auto-spectra 
normalized by their N own ordinates (Felber 1993). 

 

Example 

Looking at the spectra got in the previous section the consideration about the presence of the peaks is 
immediately evident. 

In order to get better approximation of the natural frequencies the average spectrum has been 
calculated and plotted. Moreover a table shows the differences between the theoretical values and the 
ones got with the average spectrum.   
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Figure 3.10 - Average auto-spectrum 

 
Table 3.2 - Comparison of the frequencies values 

Analytical natural Frequency Natural frequency by spectra Percentage gap 
[Hz] [Hz] [%] 
1.58 1.59 0.20 
4.44 4.37 1.53 
6.41 6.47 0.89 

 

The errors by using this model are very low, in real cases the errors will depend on the complexity of 
the structure and the quality of the measurements. 

 

Mode shapes identification 

The method currently used in this context to get mode shapes consists on the calculation of the ratios 
between the cross-spectra of a reference degree of freedom and the correspondent auto-spectrum. It is 
possible to demonstrate how, in this way, for each frequency value associated to an instrumented 
degree of freedom “k”, the ratio between the cross-spectrum of a reference degree of freedom and the 
correspondent auto-spectrum is equal to the modal ratio for that specific k-th frequency. 

 

 𝑆𝑦(𝜔𝑘)𝑟𝑒𝑓 ,𝑗

𝑆𝑦(𝜔𝑘)𝑟𝑒𝑓 ,𝑟𝑒𝑓
=

 𝜙𝑗 𝑘
 𝜙𝑟𝑒𝑓  𝑘

 (3.29) 

 

The mode shapes will result normalized according to the chosen reference degree of freedom. The 
procedure usually used is to calculate the ratios for each value of the frequency. Defining the transfer 
function, it will result: 
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𝑇𝑟𝑒𝑓 ,𝑗 =

𝑆𝑦(𝜔)𝑟𝑒𝑓 ,𝑗

𝑆𝑦(𝜔)𝑟𝑒𝑓 ,𝑟𝑒𝑓

 (3.30) 

 

Identifying the ordinate values in correspondence with a specific value of a natural frequency it is 
possible to get the modal ratios between a generic degree of freedom and the reference one, with the 
ratios in several points the mode shapes can be plotted. Proceeding in this way only one reference 
degree of freedom is needed to get all the modes, it means that only one column of the PSD matrix is 
sufficient to obtain all the mode shapes.  

 

Example 

The implementation of the procedure to get the mode shapes has been done by MATLAB and 
considering as reference the degree of freedom of the third storey of the frame, it means that the 
elements in the third columns on the PSD matrix are considered. 

 

 
Figure 3.11 - Transfer functions 
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In this case the eq. 3.30 can be written as: 

 

 
𝑇3,𝑗 =

𝑆𝑦(𝜔)3,𝑗

𝑆𝑦(𝜔)3,3

           𝑓𝑜𝑟 𝑗 = 1,2,3 (3.31) 

 

The transfer functions are plotted in terms of amplitude and phase. The phases must be equal to the 
cross-spectra ones because the auto-spectra have null phases. The symmetry of the matrix makes that 
the same functions are got by considering 𝑆𝑦(𝜔)𝑗 ,3  or  𝑆𝑦(𝜔)3,𝑗 . 

Considering the transference function 𝑇3,3  we can observe that its phase is null and its amplitude equal 
to one for each value of frequency. The reason is that it is obtained dividing an auto-spectrum by itself. 
Furthermore the values of the mode shapes in correspondence with the third storey are equal to one for 
each mode because they refer to the function 𝑇3,3. 

As written in the theoretical part the mode shapes can be plotted starting from the transfer functions. 

 

 
Figure 3.12 - Representation of the mode shapes 

 

The first representation (on the left) of the mode shapes is not properly the correct one, it is due to the 
fact that it is not taking into account the value of the phases of the cross-spectra. When in 
correspondence to a natural frequency the phases between the two auto-spectra are out of phase the 
sign of the transference function in that point must be changed and so the sign of the mode shape too. 
In this way the correct mode shapes can be found (on the right). The values of the phases are plotted in 
figure 3.13. 
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Figure 3.13 - Representation of the phases 

 

In figure 3.14 a comparison between the mode shapes is shown. The green mode shapes are obtained 
with the modal analysis while the blue ones are obtained using the theory of the PP method. As 
expected the mode shapes present a very good correspondence. 

 

 
Figure 3.14 - Comparison of the mode shapes 
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4  
CHAPTER 4 - CASE OF STUDY: THE 

CEIRA BRIDGE 
 

 

4.1. INTRODUCTION 

In this chapter an application of the concepts previously addressed is presented. The main purpose is 
to make a modal analysis of a real structure in order to get the natural frequencies and the mode shapes 
by modelling the bridge. In several steps a model of the structure will be created and it will be 
improved step by step getting results as close as possible to the experimental ones. 

The structure analyzed is a large bridge situated in Portugal, its main characteristics will be provided 
in the next sections. 

As it will be seen afterwards, the bridge is connected with an access viaduct which will be analyzed at 
a later stage. 

At first, the model of the main bridge was created. With this model, the first results of the modal 
analysis have been obtained. The creation of the model has firstly done using AutoCAD, where deck 
and piers cross sections have been modelled. They were then uploaded in another Autodesk software 
(Autodesk Robot Structural Analysis) used to get the modal parameters trough the modal analysis. 

The same procedure will be used for the viaduct. Its modelling is necessary to get better results 
because of the connection that it provides on the main bridge.   

The general procedure followed for the dynamic analysis of the structure was about the increasing of 
the level of accuracy of the model in several steps. It allowed getting results closer to the real ones. 

The goodness of the results has been observed thanks to the experimental data collected during an 
ambient vibration test. These data, initially given as final results, have been obtained by MATLAB 
starting from the acceleration records.  

The accuracy of the model is, in this context, an important reference point to obtain results similar to 
the experimental ones, the choice of the properties of the structure as masses, stiffness and supports 
will be a key step in the creation of the structural model to make it as close as possible to the real 
structure.   

  

4.2. GENERAL DESCRIPTION OF THE STRUCTURE 

The Ceira Bridge is a bridge crossing the Ceira river, it is located in Coimbra (Portugal) and it marks 
the northern terminus of the A13 motorway, at the southern entrance to the city of Coimbra, which is 
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now connected to Tomar to the south. With its 250 meters span and 140 meters high is the longest 
span high level beam bridge ever built in Portugal. The total length of the bridge can be considered of 
582 meters if the access viaduct is not taking into account while, considering the viaduct, the length 
reaches 930 meters. 

 

 
Figure 4.1 - Location of the Ceira Bridge 

 

 
Figure 4.2 - View of the Ceira Bridge 

 

The whole structure includes the main bridge and the viaduct. In the first part the main bridge is 
described while the viaduct is taken in consideration in a second step.  

The structure of the bridge is a continuous beam of different long spans made in reinforced pre-
stressed concrete. The creation has made using the balanced cantilever segmental construction. The 
spans from the embankment E1 and the pier P4 are the following ones: 

65 – 140 – 250 – 127 m 
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The cross sections of the deck are box shaped sections on which the variation of the height follows a 
parabolic curvature starting from 14.50 meters of the section 0 until the minimum height of 5.50 
meters in section 26. The top slab is 26.40 meters wide with a constant depth while the bottom slab 
depth is decreasing from 1.80 meters in section 0 to 0.25 meters in section 26.  

The webs of the section have a constant inclination, starting from the vertical axle of the pier P2 and 
P3, the webs are 0.95 meters deep for 44 meters, then they vary linearly until 0.80 meter in a length of 
5 meters, after 39.50 meters there is a new linear variation from 0.80 to 0.50 and finally they remain 
constant for 32.50 meters, reaching a length of 125 meters (an half of the longest span between P2 and 
P3).  

The cross sections of the deck have a transverse inclination of 7 % from E1 to P3 and variable 
inclination from P3 and P4, there the variation of the slope is from 7 % to 2.4 %. 

The piers sections of the bridge are box sections on which the external perimeter is a rectangle with re-
entrance in the shorter side. The dimensions of the external perimeter are variable for each pier but 
constant along a single pier. 

Piers P1 and P2 are constituted of two columns coupled in longitudinal direction with different height, 
in these piers the dimensions of the hole in the box are variable along the height because of the 
increase of the web size. The first variation of the webs is at one third of the height starting from the 
base, where the thickness increases from 0.5 meters to 0.75 meters. A second linear variation is under 
the connection with the deck where the thickness of the web increases significantly. 

In piers P1 and P4 the webs are 0.35 meters thick along all the height. Also P4 is made of two columns 
but in this pier the columns are coupled in the transverse direction. 

 

 
Figure 4.3 - Front view of the bridge 

 
Figure 4.4 - Top view of the bridge 
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To complete the description of the bridge the materials are shown below. 

 

 Foundations.................................... C 30/37 

 Embankment E1............................. C 30/37 

 Piers P1 and P4.................................. C 45/55 

 Piers P2 and P3............................... C 50/60 

 Ordinary reinforcement.................. A 500 NR SD 

 Pre-stressing reinforcement............. Y 1670/1860 

 

In correspondence of pier P4, the viaduct starts and it consists of a continuous beam supported by 
eight piers (P5…P12) thanks to some bearings placed on the top of each pier.  

This viaduct is 345.50 meters long with the following spans length: 

35.5 – 7 x 40.0 – 30.0 m 

The cross section of the deck is constant and the piers cross sections are box shaped sections with 
constant dimensions along a pier and also for each pier. 

The cross sections of the deck are inclined because of the curved shape of the viaduct; the inclination 
starts from 1.4 % in pier P5 and becomes 7 % in pier P8, then the inclination remains constant until the 
embankment E2. 

 

 
Figure 4.5 - Front view of the viaduct 

 

 
Figure 4.6 - Top view of the viaduct 
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Also for the viaduct the materials are presented. 

 

 Foundations................................... C 30/37 

 Embankment E2............................ C 30/37 

 Piers from P5 to P12......................... C 30/37 

 Piers top......................................... C 40/50 

 Ordinary reinforcement.................. A 500 NR SD 

 Pre-stressing reinforcement............. Y 1670/1860 

 

 

4.3. DEFINITION OF THE STRUCTURAL MODEL 

The definition of the viaduct and bridge geometry has been achieved using the drawings of the original 
design, from which the main dimensions needed for the model have been obtained. 

The elements like deck and piers have been divided into several segments, the cross sections of each 
element have been drawn in AutoCAD and then uploaded to Autodesk Robot Structural Analysis on 
which the model has been achieved. 

The support conditions to simulate the connections between deck and piers and piers and foundations 
are modelled as later mentioned and then modified to make the model more representative to the 
reality. 

The model will simulate the presence of the permanent loads applying additional distributed loads 
smeared in the total length of the deck.  

In a first step, only the main bridge (from E1 to P4) has been modelled in order to have the first results 
of the modal analysis.  

The deck has been divided into several segments defining 27 different cross sections, the dimensions 
of each section are variable according to the curvature of the deck, the variation of the depth of the 
bottom deck and the variation of the thickness of the webs. For each section the position of the centre 
of gravity can be determined in a local referring system xy on which the origin is in on the bottom 
deck in correspondence of the vertical axis of the sections (fig. 4.7).  Table 4.1 allows to get the non 
constant dimensions of each section and the positions of the centres of gravity.  

 

 
Figure 4.7 - Cross-sections of the bridge deck 
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Table 4.1 - Dimensions of deck sections 

Section H L B W yc 

 
[m] [m] [m] [m] [m] 

B0 14.51 10.00 1.80 0.95 7.02 

B1 14.26 10.08 1.76 0.95 6.92 

B2 13.72 10.28 1.66 0.95 6.70 

B3 13.19 10.47 1.57 0.95 6.49 

B4 12.67 10.65 1.48 0.95 6.29 

B5 12.18 10.82 1.40 0.95 6.10 

B6 11.64 11.02 1.30 0.95 5.89 

B7 11.12 11.20 1.21 0.95 5.69 

B8 10.62 11.38 1.13 0.95 5.50 

B9 10.15 11.55 1.05 0.95 5.33 

B10 9.65 11.72 0.96 0.82 5.15 

B11 9.17 11.89 0.88 0.80 4.98 

B12 8.68 12.07 0.79 0.80 4.80 

B13 8.22 12.23 0.71 0.80 4.64 

B14 7.80 12.38 0.64 0.80 4.47 

B15 7.41 12.52 0.58 0.80 4.30 

B16 7.06 12.64 0.52 0.80 4.15 

B17 6.75 12.75 0.46 0.80 4.02 

B18 6.47 12.85 0.42 0.80 3.90 

B19 6.22 12.94 0.37 0.50 3.87 

B20 6.02 13.01 0.34 0.50 3.78 

B21 5.84 13.07 0.31 0.50 3.70 

B22 5.71 13.12 0.29 0.50 3.64 

B23 5.60 13.16 0.27 0.50 3.59 

B24 5.54 13.18 0.26 0.50 3.56 

B25 5.51 13.19 0.25 0.50 3.54 

B26 5.50 13.20 0.25 0.50 3.54 

B27 5.50 13.20 0.70 0.80 3.11 

 

In the following part, the sections of the piers are considered. The dimensions of each section are 
described in table 4.2 according to figure 4.8. In the figure a full section is shown in order to have a 
very stiff section to model the last part of the piers and the rigid connections between the piers and the 
deck. For different piers the only variable value is “H”. 
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Figure 4.8 - Cross-sections of the bridge piers 

 
Table 4.2 - Dimensions of the box shaped piers sections 

Section H B1 B2 T1 T2 T3 

 
[m] [m] [m] [m] [m] [m] 

P29 15.00 12.30 4.30 0.35 0.35 0.35 

P31 13.00 8.96 2.98 1.01 0.77 1.27 

P32 13.00 10.00 4.00 0.50 0.50 0.50 

P33 13.00 9.50 3.50 0.75 0.75 0.75 

P35 5.00 4.300 2.800 0.35 0.35 0.35 

 
Table 4.3 - Dimensions of the full piers sections 

Section H 

 
[m] 

P28 15.00 

P30 13.00 

P34 5.00 

 

The section P33 is taken in the middle of the zone where the web thickness is variable in order to 
model that segment.  

Having the position of the centres of gravity of the deck and the piers sections, it is possible to create a 
3D model placing all the points in a global referring system X,Y,Z. The curved shape of the bridge 
makes that a definition of two longitudinal abscissas is needed, the values of the abscissa “s” represent 

the positions of the points in the curved axis of the bridge while the “x” coordinates represent the 

position in a straight axis.  
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The procedure adopted to make the model was the creation of a drawing in AutoCAD on which all the 
points have been positioned in the global referring system and then their coordinates have been 
measured creating a table with the correct positions of the points.  

The coordinates of the points have been uploaded to the software Autodesk Robot Structural Analysis 
creating the model of the bridge. Every point has been connected to another one with segments.  For 
each segment between two points a section must be assigned, all the sections shown in figures 4.7 and 
4.8 are used to create the model. 

With regards to the deck, it is modelled with bigger sections in correspondence of the piers and 
smaller sections in the middle of the spans. For instance, the section B0 is located in correspondence 
of the piers and the other ones are ever more distant from the piers until section B26 placed in the mid 
spans. The section B27 has been assigned in few segments close to the pier P1. 

The cross-section of the piers is the box shaped one along almost all the pier and the full section is on 
the top, close to the deck.   

To simulate the internal and external connections as well as possible, the following supports have been 
considered: a pinned support under E1, an internal hinge connecting P1 and P4 to the deck and the 
deck is considered continuous under P2 and P3. Fixed supports are used for the piers foundations. 

Additional points and segments will be defined during the updating process in order to model some 
transversal bars along the deck, the material of these ones is a very low density and high stiffness 
material. They allow seeing the torsion deformations without sensitive changes in the overall mass and 
the global behaviour of the structure. 

To complete the structural model of the bridge a distributed load must be added, it takes into account 
all the remaining permanent loads present on the bridge, that are: 

 

 Guard rail....................................... 1.00 kN/m 

 Parapet........................................... 1.00 kN/m 

 Sidewalk......................................... 6.12 kN/m 

 Edge beams.................................... 8.00 kN/m 

 Curb............................................... 6.50 kN/m 

 Asphalt........................................... 66.24 kN/m 

 New – Jersey.................................. 8.00 kN/m 

 

These ones give rise to a total load of 97.00 kN/m. In the model, this load is considered distributed on 
the deck. 

In a second step also the viaduct has been modelled in order to obtain better results as explained in the 
section of the modal analysis. 

The deck is modelled using a constant section shown in figure 4.9.  



Numerical Modelling and Model Updating Based on Experimental Modal Parameters of Ceira Viaduct 
 

57 
 

 
Figure 4.9 - Cross-section of the viaduct deck 

 

In reality, the cross-section of the viaduct deck is not constant but the variations are very small and 
they were neglected during the creation of the model.   

This deck was uploaded on the model using the same procedure of the bridge. For this kind of deck it 
is better to consider a grillage and to model it like that. Despite this, for the final goal of this thesis, a 
simple model has been created using some bars in the centre of gravity of the section.  

The modelling of the viaduct is used to create a better connection between the bridge and the viaduct 
in order to improve the results of the modal analysis of the bridge, so the deck of the viaduct is not 
modelled using a grillage.  

The piers of the viaduct have the same dimensions for each pier. Also in this case a box section is used 
for the piers but a full section must be used for the last part of the piers, near the top. It is also used to 
model the rigid link from the points at the end of the piers and the centres of gravity of the deck. 

 

 
Figure 4.10 - Cross-sections of the viaduct piers 

 

The foundations are modelled like fixed supports while the connections between piers and deck are 
internal hinges in order to simulate the presence of the bearings. The support in the embankment E4 is 
at first considered as a pinned support. 

Also in the viaduct distributed loads have been added to consider the remaining permanent loads. 
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 Guard rail....................................... 1.00 kN/m 

 Parapet........................................... 1.00 kN/m 

 Sidewalk......................................... 6.12 kN/m 

 Edge beams.................................... 8.00 kN/m 

 Curb............................................... 6.50 kN/m 

 Asphalt........................................... From 66.24 to 83.52 kN/m 

 New – Jersey.................................. 8.00 kN/m 

 

A distributed load variable from 97.0 to 114.10 kN/m is obtained adding up all these terms. This 
variation is because of the variable width of the asphalt layer along the viaduct. 

The final model created by Autodesk Robot Structural Analysis is the one shown in the figure below. 

 

 
Figure 4.11 - 3D model of Ceira Bridge 

 

4.4. RESULTS FROM AN AMBIENT VIBRATION TEST 

The experimental results got for this bridge derive from the development of an ambient vibration test. 
In particular, acceleration records have been collected in the vertical and transversal directions. As it is 
possible to see in the next sections this records were obtained placing some seismographs in several 
points of the bridge. 

The vibration test was performed by the “Laboratório de Vibrações e Monitorização de Estruturas” 

(ViBest) of the Engineering Faculty of the University of Porto (FEUP) and made available in order to 
have some information about the procedures of measurement and real results of the tests. 

In a first approach, the data of the acceleration records have been processed by MATLAB in order to 
obtain the modal parameters. To do this the same procedures presented in chapter 3 have been used 
showing how the Pick Peaking procedure can be applied in real structures. In this way, the values of 
the natural frequencies and the mode shapes are obtained.  
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Other more accurate procedures should be applied to get better results respect to the ones shown in 
this first section. Furthermore, the amount of work to obtain the mode shape is quite high, so it will be 
done for some of the mode shapes. These are the reasons why the comparison of the results between 
experimental results and numerical results will be done using more accurate data. 

In a second step, in fact, the final results of the modal analysis have been made available in order to 
have a better comparison. These results have been obtained from the document “Ensaio de vibração 
ambiental da ponte sobre o rio Ceira” (ambient vibration tests on the Ceira Bridge), an official report 
made by the ViBest in the University of Porto. Some parts of this document are presented in the 
following sections.  

 

4.4.1. METHOD AND INSTRUMENTS 

The experimental identification of the most representative modal parameters of the dynamic behaviour 
of the bridge was the main goal of the vibration test. The modal parameters have been identified 
according to the dynamic response to the structure under the environmental actions such as wind or 
vehicular traffic. 

The measurements were performed with seismographs containing a tri-axial “force balance” 

accelerometer and a 24 bits analogy-digital converter. The synchronization of the measuring 
instruments has been provided thanks to GPS sensors placed on each instrument.  

 

 
Figure 4.12 - Seismograph used for measurements 

 

The acquisition has been done using a sampling frequency of 100 Hz during a period of 16 minutes. 

During the measurements, time series of vertical, horizontal and longitudinal accelerations have been 
collected positioning the instruments in 22 sections of the deck (not in correspondence with the 
sections in the model). Six seismographs have been used.  Two of them had a fixed position while the 
other four were moved step by step along the top of the bridge realizing several setups. All of them 
have been placed on the curbs on the each side of the carriageway.  

The figure below shows the position of the sensors on the bridge. Each of the three colours has a 
different meaning: the blue points are the ones on which the sensors were moved for each setup, the 
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green ones are the point on which the instrument remains fixed for each setup and the red ones identify 
the positions on which some problems did not allow to use the records in the analysis. 

 

 
Figure 4.13 - Positions of the seismographs along the bridge 

 

Each point is numbered making possible the knowledge of the positions of the six seismographs in 
each setup according to the table 4.4. 

 
Table 4.4 - Positions of the seismographs of each setup 

 Setup 

 1 2 3 4 5 6 7 8 9 10 11 
Seismograph 1 31 33 35 37 39 41 43 45 47 49 51 
Seismograph 2 32 34 36 38 40 42 44 46 48 50 52 
Seismograph 3 1 3 5 7 9 - 13 15 17 19 21 
Seismograph 4 2 4 6 8 10 - 14 16 18 20 22 
Seismograph 5 11 11 11 11 11 11 11 11 11 11 11 
Seismograph 6 12 12 12 12 12 12 12 12 12 12 12 
  

Comparing figure 4.13 and table 4.4 it is possible to see how the fourth seismograph had some 
problems during the records in most of the sections where it was placed.  It means that these records 
will not be used in the procedure of the identification of the modal parameters. 

As it can be seen in table 4.4, the fixed instruments are the fifth and the sixth, they were always placed 
in sections 11 and 12 and they represent the reference degrees of freedom. 

Thanks to these 11 setups, all the 22 positions could be instrumented by using only six instruments, 
this operation provided the acceleration records for all of those points. 

 

4.4.2. IDENTIFICATION OF THE MODAL PARAMETERS 

The procedure of the identification of the modal parameters starts from the implementation of the 
acceleration records getting at first the natural frequencies and then the mode shapes.  
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In the first part, the results obtained following the procedure analyzed in chapter 3 will be shown, 
while, at a later stage, the experimental results taken from the relation of the ViBest are considered in 
order to have the overall view of the modal analysis results. 

The identification of the natural frequencies requires the definition of the average auto-spectrum. It 
has been calculated averaging the auto-spectra of each instrumented point in the structure.  

This procedure was possible  thanks to the command “pwelch” of MATLAB which needs as input the 
acceleration records collected during the tests and which gives as output the amplitude and the phase 
of the auto-spectra. Considering the auto-spectra, the phase is equal to zero. 

Two different auto-spectra give rise using vertical and horizontal acceleration records as shown in 
figures 4.14 and 4.15. 

 

 
Figure 4.14 - Average auto-spectrum of vertical accelerations 

 

 
Figure 4.15 - Average auto-spectrum of transverse accelerations 
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The green dots indicate the peaks on which the natural frequencies are individuated, they are also 
reported in table 4.5. 

 
Table 4.5 - Natural frequencies from the auto-spectra 

Frequency [Hz] 
Vertical  Transverse 
0.855  0.440 
1.563  0.562 
1.807  0.732 
2.148  0.855 
2.295  0.928 
2.734  1.172 
3.174  1.367 
3.418  1.563 
3.442  1.733 
4.028  1.807 

  2.148 

  2.734 

  3.174 

  3.540 

  3.857 

  4.028 
 

The definition of the mode shapes is based on the calculation of the transfer functions. To do this, a 
reference point is needed in order to calculate the auto-spectrum of that degree of freedom and the 
related cross-spectra. 

As it is possible to see in figure 4.13 there are two reference points in the bridge. The presence of two 
reference degrees of freedom is due to the fact that in a comprehensive analysis the reference points 
must be chosen according to the mode taken in consideration. It allows avoiding the presence of null 
values of the auto-spectra. In this first procedure the reference point is the number 5 for each mode 
represented. In the real procedure both points were considered. 

Each transfer function is calculated by the ratio between the cross-spectra and the auto-spectrum 
related to the point 5 for each instrumented point. The cross-spectra can be obtained using the “cpsd” 

command of MATLAB. 

In each function a single value is individuated in correspondence of a natural frequency. Each value of 
these ratios represents the percentage of the ordinates of the mode shape respect to the unit value of 
the point 5 (in point 5 the transfer function is equal to one because is obtained dividing two equal 
spectra). 

As figure 4.13 shows, there are points on which it was not possible to calculate the value of the 
transfer functions (the red points). For this reason the mode shapes of that side of the bridge present 
some gaps. The mode shapes are calculated considering the two first frequencies for horizontal and for 
vertical modes. 
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Figure 4.16 - Vertical modes 

 

 

 
Figure 4.17 - Transverse modes 

 

The  measurement in both sides of the bridge allows checking the presence of torsion movements. The 
superposition of the dots of the two sides may indicate that the torsion movements are not relevant. 
The modes shown in figures 4.16 and 4.17 do not present relevant torsion movements while in the full 
results it will be seen how there are some modes on which important torsion component exists.  

The following section shows the experimental results obtained using the MATLAB procedure 
developed in the ViBest laboratory, also this procedure considers the Peak Picking method. The 
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analysis considers separately vertical and lateral directions even if the deck curvature involves the 
interaction by vertical and lateral modes. 

In figure 4.18 an average normalized spectrum is shown. It includes all the vertical accelerations 
measured during the test. The most relevant peaks (highlighted in the graph) give a good 
approximation of the natural frequencies of the bridge. 

 

 
Figure 4.18 - Average normalized spectrum of vertical accelerations 

 

 
Figure 4.19 - Modal configuration of the most relevant vertical modes  

 

In figure 4.19 there are the modal configuration associated to the values of the frequencies shown in 
figure 4.18.  Blue dots refers to the deformation of downstream side while orange ones refers to the 
upstream side, the superposition of the dots may indicate the perfect bending without torsion 
movements.  
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The same procedure has been applied for horizontal acceleration records. 

 

 
Figure 4.20 - Average normalized spectrum of transverse accelerations 

 

 
Figure 4.21 - Modal configuration of the most relevant lateral modes  



Numerical Modelling and Model Updating Based on Experimental Modal Parameters of Ceira Viaduct 
 

66 
 

4.5. MODEL UPDATING  

The modal analysis of the bridge has been done using the software Autodesk Robot Structural 
Analysis. The results have been calculated in different steps modifying the modelled structure step by 
step in order to have a model as similar as possible to the real structure. For each analysis the results 
can be compared to the measured ones presented in the previous sections. 

The process of model updating is the one commonly done when a finite elements model is created. In 
this way the results coming from the model can be filtered with the experimental ones. 

 

4.5.1. FIRST ANALYSIS 

The first analyzed model considers only the main bridge from E1 to P4 disregarding the viaduct from 
P4 to E2. 

 

 
Figure 4.22 - 3D model of the bridge 

 

The material assigned  to the structure are exactly those presented in section 4.2, in particular the 
elastic modulus of the concrete are reported to have a comparison to the different values used in the 
second model. 

 
Table 4.6 - Elastic modulus of the first model 

Concrete Elastic modulus 

 [MPa] 
C 30/37 33000 
C 40/50 35000 
C 45/55 36000 
C 50/60 37000 

 



Numerical Modelling and Model Updating Based on Experimental Modal Parameters of Ceira Viaduct 
 

67 
 

The modal analysis results in terms of natural frequencies of the first 20 modes are reported in table 
4.7 and some mode shape can be found from fig. 4.23 to fig. 4.35. 

 

Table 4.7 - Results of modal analysis 

Mode Frequency Period 

 [Hz] [s] 
1 0.33 3.07 
2 0.42 2.39 
3 0.73 1.38 
4 0.78 1.28 
5 1.20 0.83 
6 1.34 0.75 
7 1.45 0.69 
8 1.67 0.60 
9 2.03 0.49 
10 2.18 0.46 
11 2.66 0.38 
12 2.86 0.35 
13 2.94 0.34 
14 3.15 0.32 
15 3.30 0.30 
16 3.44 0.29 
17 3.60 0.28 
18 3.69 0.27 
19 3.97 0.25 
20 4.37 0.23 

 

The software enables to select separately each mode visualizing the mode shapes. Considering these 
20 modes, it is possible to identify the ones that are predominantly associated with vertical, transversal 
and torsion movements. Some figures reported below show the most relevant vertical modes. 

 

 
Figure 4.23 - Mode 4, frequency: 0.78 Hz 
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Figure 4.24 - Mode 7, frequency: 1.45 Hz 

 

 
Figure 4.25 - Mode 8, frequency: 1.67 Hz 

 

 
Figure 4.26 - Mode 9, frequency: 2.03 Hz 
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Figure 4.27 - Mode 16, Frequency: 3.44 Hz 

 

Table 4.8 compares the experimental values of the natural frequencies with the numerical ones. The 
percentage differences are referred to the experimental data and they allow, step by step, to compare 
the accuracy of the results.   

 
Table 4.8 - Comparison of numerical and experimental results for vertical modes 

Mode Frequency by model Experimental frequency Percentage gap 

 [Hz] [Hz] [%] 
4 0.78 0.85 8.24 
7 1.45 1.56 7.05 
8 1.67 1.81 7.73 
9 2.03 2.30 11.74 
16 3.44 3.44 0.00 

 

A second set of figures shows the most relevant transversal modes. 

 

 
Figure 4.28 - Mode 1, frequency: 0.33 Hz 
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Figure 4.29 - Mode 2, frequency: 0.42 Hz 

 

 
Figure 4.30 - Mode 3, frequency: 0.73 Hz 

 

 
Figure 4.31 - Mode 4, frequency: 0.78 Hz 

 

 
Figure 4.32 - Mode 5, frequency: 1.20 Hz 
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Figure 4.33 - Mode 6, frequency: 1.34 Hz 

 

 
Figure 4.34 - Mode 10, frequency: 2.18 Hz 

 

 
Figure 4.35 - Mode 13, frequency: 2.94 Hz 

 

Table 4.9 - Comparison of numerical and experimental results for transverse modes 

Mode Frequency by model Experimental frequency Percentage gap 

 [Hz] [Hz] [%] 
1 0.33 0.44 25.00 
2 0.42 0.66 36.36 
3 0.73 0.73 0.00 
4 0.78 0.85 8.24 
5 1.2 0.93 29.03 
6 1.34 1.17 14.53 
10 2.18 2.15 1.40 
13 2.94 2.73 7.69 
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Also in this case, table 4.9, presents the comparison between experimental and numerical results. 

In general not every mode can be compared using this model. At first, a correspondence in terms of 
mode shapes can be found while the values of the frequencies are not immediately comparable as it is 
possible to see in the tables.  

Nevertheless the differences between the obtained values and the experimental ones are more or less 
constant at least for the first modes. It probably means that a single assumption done for the model 
should be corrected to reduce this gap. This assumption has been done considering the global stiffness 
of the structure as explained in the next section. 

 

4.5.2. SECOND MODEL: VARIATION OF THE STIFFNESS 

According to the consideration done in the previous section, in this model the materials have been 
changed using different stiffness. The reason of this choice derives from the consideration that the 
materials uploaded in the first model have an elastic modulus that follows the Model-Code theory here 
mentioned: 

“Where only an elastic analysis of a concrete structure is carried out, a reduced modulus of elasticity 

Ec should be used in order to account for the initial plastic strain.” 

 

 𝐸𝑐 = 0.85 ∙ 𝐸𝑐𝑖  (4.1) 

 

It means that an approximation of the real elastic modulus can be found considering the tangential 
modulus Eci , therefore the elastic modulus defined in the software have been modified dividing by 
0.85 in order to assign the tangential values adequate for modal deformation.  

The assigned Young modulus (E) are shown in table 4.10 for each material used in the model. 
 

Table 4.10 - Elastic modulus of the second model 

Concrete Elastic modulus 

 [MPa] 
C30/37 38800 
C 40/50 41200 
C45/55 42400 
C50/60 43500 

 

Table 4.11 shows the modal analysis results. 
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Table 4.11 - Results of modal analysis 

Mode Frequency Period 

 [Hz] [s] 
1 0.35 2.83 
2 0.45 2.20 
3 0.79 1.27 
4 0.85 1.18 
5 1.30 0.77 
6 1.45 0.69 
7 1.57 0.64 
8 1.82 0.55 
9 2.20 0.46 
10 2.36 0.42 
11 2.89 0.35 
12 3.10 0.32 
13 3.18 0.31 
14 3.41 0.29 
15 3.57 0.28 
16 3.73 0.27 
17 3.90 0.26 
18 4.00 0.25 
19 4.30 0.23 
20 4.74 0.21 

 

In order to observe the torsion movement of the bridge some transverse bars have been added in this 
model. The material assigned is a very rigid and low density material to avoid variations in terms of 
global mass. Nevertheless, this model is not so close to reality to identify torsion movement because of 
the absence of the viaduct that would increase the degree of restrain in correspondence of P4. 

Also in this case the mode shapes are presented. 

 

 
Figure 4.36 - Mode 4, frequency: 0.85 Hz 
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Figure 4.37 - Mode 7, frequency: 1.56 Hz 

 
Figure 4.38 - Mode 8, frequency: 1.82 Hz 

 

 
Figure 4.39 - Mode 9, frequency: 2.20 Hz 

 

 
Figure 4.40 - Mode 16, frequency 3.73 Hz 
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Table 4.12 - Comparison of numerical and experimental results for vertical modes 

Mode Frequency by model Experimental frequency Percentage gap 

 [Hz] [Hz] [%] 
4 0.85 0.85 0.00 
7 1.57 1.56 0.64 
8 1.82 1.81 0.55 
9 2.20 2.15 2.33 
16 3.73 3.44 8.43 

 

Some other considerations will be done after showing the transverse deformations. 

 

 
Figure 4.41 - Mode 1, frequency: 0.35 Hz 

 
Figure 4.42 - Mode 2, frequency: 0.45 Hz 

 
Figure 4.43 - Mode 3: frequency: 0.79 Hz 
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Figure 4.44 - Mode 4, frequency: 0.85 Hz 

 

 
Figure 4.45 - Mode 5, frequency: 1.30 Hz 

 

 
Figure 4.46 - Mode 6, frequency: 1.45 Hz 

 

 
Figure 4.47 - Mode 9, frequency: 2.20 Hz 
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Figure 4.48 - Mode 13, frequency: 3.18 Hz 

 
Table 4.13 - Comparison of numerical and experimental results for transverse modes 

Mode Frequency by model Experimental frequency Percentage gap 

 [Hz] [Hz] [%] 
1 0.35 0.44 20.45 
2 0.45 0.64 31.82 
3 0.79 0.73 8.22 
4 0.85 0.85 0.00 
5 1.30 0.93 39.78 
6 1.45 1.17 23.93 
9 2.20 2.15 2.33 
13 3.18 2.73 16.48 

 

The comparison has been done for the modes directly comparable with the experimental results 
observing a correspondence in the mode shapes. Good results in terms of frequencies have been 
obtained only for the firsts vertical modes.  

In the next section a model with the viaduct is presented on order to try to improve the correspondence 
in the results. 

 

4.5.3. THIRD MODEL: INTRODUCTION OF THE VIADUCT 

As mentioned in the previous section the introduction of the viaduct is necessary to have behaviour of 
the model as similar as possible to the real structure.  

Modelling only the main bridge, the pier P4 does not present connections with other structures while 
in the real structure, the viaduct provides an important external connection. Because of the viaduct the 
boundary conditions of the main bridge change significantly.  

As already mentioned, the boundary conditions represent one of the characteristic of the structures that 
influence the dynamic behaviour and, furthermore, the modal parameters. 

It is important to emphasize how the presence of the viaduct serves only to have a better model in 
order to find results closer to the experimental values. It means that the model of the viaduct is a very 
simplified model. 
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Figure 4.49 - 3D model of the bridge and the viaduct 

 
Table 4.14 - Results of modal analysis 

Mode Frequency Period 

 [Hz] [s] 
1 0.36 2.81 
2 0.52 1.91 
3 0.75 1.33 
4 0.83 1.20 
5 0.85 1.17 
6 1.29 0.77 
7 1.36 0.73 
8 1.52 0.66 
9 1.57 0.64 
10 1.68 0.60 
11 1.82 0.55 
12 2.20 0.46 
13 2.31 0.43 
14 2.51 0.40 
15 2.82 0.35 
16 2.89 0.35 
17 3.10 0.32 
18 3.10 0.32 
19 3.19 0.31 
20 3.32 0.30 
21 3.41 0.29 
22 3.57 0.28 
23 3.64 0.27 
24 3.73 0.27 
25 3.89 0.26 
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The materials assigned to this model are mentioned in section 4.5.2 and the distributed load on the 
access viaduct is considered 114.0 kN/m.  

In this model a higher number of modes have been calculated to try to find more correspondences.  

At first vertical modes are shown. 

 

 
Figure 4.50 - Mode 5, frequency: 0.85 Hz 

 

 
Figure 4.51 - Mode 9, frequency: 1.57 Hz 

 

 
Figure 4.52 - Mode 11, frequency: 1.82 Hz 

 

 
Figure 4.53 - Mode 12, frequency: 2.20 Hz 



Numerical Modelling and Model Updating Based on Experimental Modal Parameters of Ceira Viaduct 
 

80 
 

 

 
Figure 4.54 - Mode 21, frequency: 3.41 Hz 

 

Table 4.15 - Comparison of numerical and experimental results for vertical modes 

Mode Frequency by model Experimental frequency Percentage gap 

 [Hz] [Hz] [%] 
4 0.83 0.85 2.35 
9 1.57 1.56 0.64 
11 1.82 1.81 0.55 
12 2.20 2.15 2.33 
21 3.41 3.44 0.87 

 

Horizontal modes are shown in the figures below. 

 

 
Figure 4.55 - Mode 1, frequency: 0.36 Hz 

 

 
Figure 4.56 - Mode 2, frequency: 0.52 Hz 
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Figure 4.57 - Mode 3, frequency: 0.75 Hz 

 

 
Figure 4.58 - Mode 4, frequency: 0.83 Hz 

 

 
Figure 4.59 - Mode 5, frequency: 0.85 Hz 

 

 
Figure 4.60 - Mode 6, frequency: 1.29 Hz 
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Figure 4.61 - Mode 7, frequency: 1.36 Hz 

 
Figure 4.62 - Mode 10, frequency: 1.68 Hz 

 

 
Figure 4.63 - Mode 12, frequency: 2.20 Hz 

 

 
Figure 4.64 - Mode 15, frequency: 2.82 Hz 
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Table 4.16 - Comparison of numerical and experimental results for transverse modes 

Mode Frequency by model Experimental frequency Percentage gap 

 [Hz] [Hz] [%] 
1 0.36 0.44 18.18 
2 0.52 0.64 18.75 
3 0.75 0.73 2.74 
4 0.83 0.85 2.35 
5 0.85 0.93 8.60 
6 1.29 1.17 10.26 
7 1.36 1.37 0.73 
10 1.68 1.73 2.89 
12 2.20 2.15 2.33 
15 2.82 2.73 3.30 

 

In general, the variation of the model does not make a very large variation of the modal results but an 
observation can be done for a single transverse mode. Observing the second mode in table 4.13 and 
the same value in table 4.16 it is possible to see an improvement of the results (the percentage gap 
decreases from 31.82 % to 18.75 %). 

Actually the mode shapes are in general showing a good approximation of the real ones, but the values 
of the natural frequencies are, in some case, not so close to the experimental ones. Better results will 
be obtained in the final model. 

 

4.6. FINAL MODEL 

Starting from the previous model some other modifications have been done in order to improve the 
results until the achieving of satisfactory results. 

A first trial consisted on modifying the distributed load using the minimum value f 97.0 kN/m above 
all the length of the deck. 

 

Table 4.17 - Comparison of numerical and experimental results for vertical modes 

Mode Frequency by model Experimental frequency Percentage gap 

 [Hz] [Hz] [%] 
4 0.86 0.85 1.18 
8 1.57 1.56 0.64 
10 1.83 1.81 1.10 
11 2.20 2.15 2.33 
21 3.45 3.44 0.29 
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Table 4.18 - Comparison between model and experimental results for transverse modes 

Mode Frequency by model Experimental frequency Percentage gap 

 [Hz] [Hz] [%] 
1 0.48 0.44 9.09 
2 0.54 0.64 15.63 
3 0.77 0.73 5.48 
4 0.86 0.85 1.18 
5 0.93 0.93 0.00 
6 1.32 1.37 3.65 
9 1.69 1.73 2.31 
12 2.30 2.15 6.98 
15 2.90 2.73 6.23 

 

This first modification give rise better results, probably the load considered at first was too high 
compared to the real one. In fact in the design the loads are in general overestimated to be in safety 
conditions. So the minimum value is probably more representative of the real conditions. 

Another modification of the model concerns the real behaviour of the supports under the embankment 
E1 and E2.  

As already mentioned they may be considered as fixed supports because they actually do not allow 
movements as sliding or pinned supports considered in the model should do. For this reason the model 
has been changed placing fixed support under E1 and E2.   

 
Table 4.19 - Comparison of numerical and experimental results for vertical modes 

Mode Frequency by model Experimental frequency Percentage gap 

 [Hz] [Hz] [%] 
4 0.86 0.85 1.18 
8 1.61 1.56 3.21 
10 1.89 1.81 4.42 
11 2.22 2.30 3.48 
21 3.49 3.44 1.45 

 

The value of the vertical modes are not changing a lot but the following table will show how the 
values for horizontal movement are changing more obtaining better results. 

Probably the real behaviour of the supports is between fixed and pinned supports.  
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Table 4.20 - Comparison of numerical and experimental results for transverse modes 

Mode Frequency by model Experimental frequency Percentage gap 

 [Hz] [Hz] [%] 
1 0.49 0.44 11.36 
2 0.54 0.64 15.63 
3 0.77 0.73 5.48 
4 0.86 0.85 1.18 
5 0.93 0.93 0.00 
6 1.35 1.37 1.46 
8 1.61 1.56 3.21 
9 1.69 1.73 2.31 
10 1.89 1.81 4.42 
12 2.33 2.15 8.37 
15 2.92 2.73 6.96 

 

In this case it has been possible to find a correspondence in terms of torsion in the mode 15, looking at 
the experimental data in the horizontal the first mode which gives important torsion movement is the 
one with a frequency of 2.73 Hz. The shape is horizontally comparable with mode 15 of the model and 
the torsion movements are also comparable.  

 

 
Figure 4.65 - Mode 15, frequency 2.92 Hz, torsion movements 

 

Also in this last model some gaps are present in the results. 

As already mentioned, the model does not reflect the reality because of several approximation: the 
structure is divided into segments and each segment has its characteristics while the real structure is a 
continuous system; the properties of the materials are assigned according to the design but they may 
be a bit different respect to the ones in the real structure; the model cannot represent the serviceability 
conditions of the structure while the ambient vibration tests are commonly done under operating 
conditions; the connection between the structure and the environment on which is placed (foundation 
and restraint conditions) are modelled using supports or links that do not represent the real behaviour 
of these elements.  

In short, the model will always have some intrinsic defects that make that the results are different to 
the experimental ones.  



Numerical Modelling and Model Updating Based on Experimental Modal Parameters of Ceira Viaduct 
 

86 
 

In the end other modifications of the model have been done trying to get even better results. In a first 
trial some rotational springs have been placed in correspondence of the central piers trying to recreate 
better the behaviour of the foundations. In a second moment a better connection between the viaduct 
and the bridge has been realized.  

In all these cases some improvements gave rise for some frequencies or mode shapes but, at the same 
time, they generated worst results in some other modes. It means that the model presented in this 
section is considered, for this work, the most accurate.   

In conclusion we could say that with the last model the results are sufficiently satisfactory. In general 
the mode shapes can be related to the real ones even if the frequencies still are quite different to the 
ones obtained during the ambient vibration test. 

This confirms the fact that the results coming from a finite element model are in general not sufficient 
to do a proper and complete modal analysis. Even if the model is really close to the reality, it still does 
not ensure the accuracy of the results, making necessary the presence of experimental tests.  
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5  
CHAPTER 5 - CONCLUSIONS AND 

FUTURE DEVELOPMENTS 
 

 

5.1. CONCLUSIONS 

The main purpose of this work was to show how the modal analysis can represent an important means 
for the validation of the FEM and, in particular, how the use of the numerical models requires the 
presence of the experimental data in the field of modal analysis. 

It was possible to observe how the structural modelling presents some limits that generate inaccuracies 
on the results.  

In this context the modelling of a structure needs a special attention in order to create a model as close 
as possible to the real structure. As mentioned in the fourth chapter, this process required some 
arrangements in the model. For instance, it was important an appropriate choice of: the geometric 
characteristics of the structure, the materials properties and the internal and external connections. 

In this way was possible to reach, step by step, a good approximation of the model to the real 
structure. 

The approach followed for the calculation of the modal parameters was to present initially the 
theoretical aspects concerning the modal analysis in order to get some analytical results through the 
analysis of simple systems.  

This allowed to do some validation processes of the model created by the software of the same 
systems. 

The modelling of the Ceira Bridge required the prior creation of simple model in order to become 
familiar with the modelling software and with the modal analysis results obtained for this system.  

On the other hand, experimental results from an ambient vibration test have been analyzed obtaining 
the modal parameters starting from the acceleration records. The procedures for obtaining these results 
allowed to process some data and to understand the way to get the final experimental results. These 
ones were used for the comparison with the numerical results. 

Even though there are several procedure to realize a test to obtain the modal parameters, in this work 
only the ones where the structure is excited by ambient vibrations were presented in detail. This choice 
was also because the experimental data of the Ceira Bridge comes from an AVT done some years ago 
by the ViBest in the University of Porto. 

The final results highlighted the difficulties of the creation of a FEM model but, at the same time, 
allowed to observe as a good approximation of the modal parameters can be obtained from the model. 
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Otherwise, the final results confirm the importance of the presence of the experimental parameters in 
modal analysis procedures.  

  

5.2. FUTURE DEVELOPMENTS 

The experimental modal analysis is today an important tool for the implementation of a structural 
analysis and for the assessment of the behaviour of a structure in operative conditions. 

The knowledge of the modal characteristics becomes important in terms of the performance evaluation 
in case of extreme environmental situation. 

In addition to the traditional techniques, based on a known input, in the last years, the methods of the 
modal identification in the presence of the ambient vibration, became more and more common. These 
methods provide the dynamic characteristics of the structure in the effective serviceability conditions. 

Today the methods considering a unknown input are more commonly used than the ones considering a 
known input because the tests can be done with lower cost and without interfering with the normal use 
of the structure. 

Because the measurements are done during the operative conditions, the modal parameters are 
representative of the dynamic behaviour in serviceability conditions.  

The modal parameters obtained with these methods can be used for the validation or the improvement 
of the numerical results: the validation of the finite element models allows their use, for instance, in 
the evaluation of the seismic risk. 

In this context the increasing software performances can provide the creation of more accurate FEM 
that can be used in dynamic field for structure monitoring, starting from the calculation of the modal 
parameters. 
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