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Abstract 

 

 

 

 

The use of geostructures with both structural and storage functions for the extraction and storage of 

heat represents an effective means of satisfying the needs of human activities since ancient times. 

This master degree thesis focuses on the thermo-mechanical behavior and performance of these 

innovative and multi-functional technologies that combine the roles for structural support and energy 

supply of any type of built environment, in particular geothermal piles (or more commonly called 

"Energy piles"). The multifunctional role of geothermal poles means that both mechanical and 

thermal loads are applied to these geostructures. This situation represented an unprecedented 

challenge for engineers because the variations in temperature, stress, deformation and displacement 

in the subsoil and within the structures themselves, due to the action of thermal loads, must be 

considered during the analysis , design and verifications. Prior this work, a considerable amount of 

design procedures had been made available to be able to quantify the mechanical performance of 

isolated or group energy piles. However, the foundations composed by energy piles are subjected to 

thermal loads that have led to the birth of new fields of stress and displacement in the structures. In 

this context (i) limited applications, if available, have been developed to be able to quantify the 

thermo-mechanical behavior and the performance of the single energy pole subjected to thermal and 

mechanical loads; (ii) no simplified procedure was available to perform the design of groups of energy 

piles against the action of such loads; (iii) absence of a complete framework for the reliability of 

analytical models for general situations (e.g., layered soil); (iv) no simplified procedure that takes 

into account the long-term action for several years of thermal load. 

To address these challenges, this master thesis was carried out to (i) provide a complete and simplified 

procedure for designing the group of energy piles in accordance with Eurocodes at SLU (e.g., 

Geotechnical and Structural) and SLE; (ii) provide an important guideline on the reliability of 

analytical models in a real design situation; (iii) provide clarity on the effects of long-term effects 

(e.g., stress and displacement fields) during design situations. 

The results presented in this thesis suggest the conclusion that (a) the action of thermal load changes 

considerably the tension and displacement fields within the pile; (b) on average the best analytical 

model to take into account the piles group effect is the Layer model and (c) the long-term actions 

have an important role during the stress and displacement checks. 



 

Sommario 
 

 

 

L'impiego delle geostrutture con funzione sia strutturale che come serbatoi per l'estrazione e 

l'immagazzinamento del calore rappresenta un mezzo efficace per soddisfare i bisogni delle attività 

umane fin dai tempi più antichi. Questa tesi di laurea si concentra sul comportamento termo-

meccanico e sulle prestazioni di queste tecnologie innovative e multifunzionali che accoppiano i ruoli 

per il supporto strutturale e l'approvvigionamento energetico di qualsiasi tipo di ambiente costruito, 

in particolare dei pali geotermici (o più comunemente chiamati “energy piles”). Il ruolo 

multifunzionale dei pali geotermici comporta che sia carichi meccanici e che termici siano applicati 

a tali geostrutture. Questa situazione ha rappresentato una sfida senza precedenti per gli ingegneri 

perché le variazioni della temperatura, dello stress, della deformazione e dello spostamento nel 

sottosuolo e all’interno delle strutture stesse, dovuti all'azione dei carichi termici, devono essere 

considerati durante l'analisi, la progettazione e le verifiche. Prima di questo lavoro, era stata messa a 

disposizione una notevole quantità di procedure progettuali per poter quantificare le prestazioni 

meccaniche dei pali energetici isolati o in gruppo. Tuttavia, le fondazioni costituite da pali energetici 

sono sottoposte a carichi termici che hanno portato alla nascita di nuovi campi di sollecitazione e 

spostamento nelle strutture. In questo contesto (i) limitate applicazioni, se disponibili, sono state 

sviluppate per poter quantificare il comportamento termo-meccanico e le prestazioni del singolo palo 

energetico sottoposto a carichi termici e meccanici; (ii) nessuna procedura semplificata era accessibile 

per eseguire la progettazione di gruppi di pali energetici contro l'azione di tali carichi; (iii) assenza di 

un quadro completo per l'affidabilità dei modelli analitici per situazioni generali (ad esempio terreno 

stratificato); (iv) nessuna procedura semplificata che tenga conto dell'azione a lungo termine per 

diversi anni di carico termico. 
Per affrontare tali sfide, questa tesi è stata eseguita per (i) fornire una procedura completa e 

semplificata per eseguire la progettazione del gruppo di pile energetici in accordo con gli Eurocodici 

allo SLU (ad es., Geotecnico e strutturale) e SLE; (ii) fornire un'importante linea guida sull'affidabilità 

dei modelli analitici in una reale situazione progettuale; (iii) fornire chiarezza sugli effetti degli effetti 

a lungo termine (ad esempio campi di stress e di spostamento) durante le situazioni di progettazione. 

I risultati presentati in questa tesi suggeriscono la conclusione che (a) l’azione dei carichi termici 

cambia notevolmente i campi di tensione e spostamento all'interno del palo; (b) in media il miglior 

modello analitico per tener conto dell’effetto di gruppo dei pali è il Layer model e (c) le azioni a lungo 

termine hanno un ruolo importante durante le verifiche delle tensioni e spostamenti. 
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Introduction 

Scope and challenges 
This master thesis focuses on the thermo-mechanical performance of an innovative, multifunctional 

technology that can be used for energy transfer applications as well as for providing structural support 

to any type of structure, i.e., energy piles. Energy piles couple the structural support role of 

conventional pile foundation to the role of conventional geothermal heat exchangers in an 

unprecedented technology. The operation of energy piles can provide reinforcement to soils for 

supporting any type of superstructure and at the same time can supply energy for (i) heating and 

cooling purposes to reach comfort levels in the built environment, (ii) the production of hot water for 

anthropogenic uses, and (iii) prevention of the icing of pavements and decks of infrastructures. 

These kind of technology, that harvest renewable geothermal energy, represent one of the most useful 

and successful solutions to reduce the amount of carbon emission into the atmosphere in order to 

build a “sustainable environment”. Despite this potential, relatively limited applications of energy 

piles are currently observed because of several undiscovered features. 

The twofold role of energy piles as structural supports and geothermal heat exchangers involves 

different types of loads, i.e., mechanical loads and thermal loads, applied to such geostructures. These 

loads pose unprecedented challenges to engineers because they include variations in the temperature, 

stress, deformation and displacement fields and consequently a change of strengths. These variations 

govern the thermal and mechanical behaviour and performance of the energy piles, with a strong 

impact on the energy, geotechnical and structural response of such foundations. This master thesis 

addresses the first two aspects of the aforementioned problem, taking into account the change of 

displacement and stress fields during the design verifications. 

In this master project, three main challenges have been addressed in the scope of energy piles: 

i. Prior this work, if available, there was a shortage of application of Eurocodes standards, during 

serviceability condition verifications, which taking into account the thermo-mechanical behavior of 

the single isolated pile. The first step has been quantified the effects (e.g. stress and displacement 

fields) related to thermal load for single isolated pile. 

ii. Energy pile foundations do not consist of single isolated pile but of a group of energy piles that 

function as a structural support and geothermal heat exchangers. There is a  large availability of 

research which shows for conventional piles subjected to only mechanical loads has proven that when
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the piles are located sufficiently close to each other, different mechanical behavior of the piles may 

be expected compared to when the piles are located sufficiently far from each other. The reason for 

this phenomenon is that group effects and interactions among the piles occur because of the presence 

and loading (e.g. mechanical) of the neighboring piles. This effect has also been quantified for energy 

pile groups subjected to thermal load as well as on the potential presence of group effects caused by 

the coupled loads (thermo-mechanical) applied on the energy piles (Rotta Loria et al. 2017). Prior 

this work, there was limited knowledge about a real design situation which taking into account the 

aforementioned effect (pile group effect due to thermal load). 

iii. All of the available analysis and design tools have addressed the behavior of single energy piles 

but not the behavior of energy pile groups, except for the finite element method in some applications. 

However, although the latter method provides the most rigorous solutions, the computing time and 

expertise required to run finite element analyses are often considerable and daunting, especially for 

engineering purposes. The aim of this master thesis is provide an entire simplified design procedure 

of energy piles group, in according with Eurocodes, in order to avoid problems related to 

computational time and sophistication of the modelling. 

Solution approach 

The findings presented in this master thesis are derived from multidimensional numerical analyses 

coupled with analytical models being careful to Eurocodes standards during Ultimate Limit State and 

Serviceability Limit State (cf., Figure I). 

 

Figure Ⅰ: Solution approach employed to address challenge of this master thesis 
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Chapter 1 

Energy pile: State of art 
 

 

 

 

1.1   Energy Geostructures 
1.1.1 Description of the technology  

Energy geostructures, more properly defined in a theoretical sense as thermo-active geostructures and 

represent an innovative technology that couples the structural support role of conventional structures 

to the heat exchanger role of shallow geothermal systems. This technology includes all ground-

embedded structures that can be used as structural supports while exchanging heat with the ground. 

Similar to other shallow geothermal systems, energy geostructures work with low enthalpy and 

exploit the relatively constant temperature field in the superficial subsoil throughout the year for their 

role as heat exchanger. During the last decades several type of energy geostructures have been 

developed, in fact in this context deep foundations (e.g., piles, piers), earth retaining structures (e.g., 

diaphragm walls and sheet pile walls), shallow foundations (e.g., footings, base slabs), tunnel linings 

and anchors as well as pavements are involved. The resulting geostructures, or the conjunction of 

support and heat exchanger roles, are so-called energy piles, energy walls, energy slabs, energy 

tunnels, etc. (Figure 1.1). 
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Figure 1.1: Examples of energy piles (Rotta Loria, 2018) 

Through these structure several aims can be reached: 

 heating and cooling superstructures to reach comfort levels in the built environment; 

 contributing to the production of hot water for anthropogenic, agricultural or tank-farming 

uses; 

 providing heat to prevent the icing of pavements and decks of infrastructures such as roads, 

bridges, station platforms and airport runways. 

The employing of energy geostructures for heating and cooling superstructures to reach comfort 

levels in the built environment can be achieved with a wide number of typologies of energy 

geostructures, such as energy piles, energy walls, energy slabs and energy tunnels. The use of energy 

geostructures to provide hot water for anthropogenic purposes can nowadays be achieved based on 

the lower temperature levels needed for this aim (e.g., 45-55 °C) compared to those needed in 

constructions built since the 20th century to few decades ago (e.g., 75-85 °C). The most used energy 

geostructures typologies that can be employed for this purpose, as well as for contributing to the 

production of hot water for agricultural or tank-farming purposes are energy piles and energy walls. 

The use of energy tunnels in the vicinity of locations where agricultural or tankfarming activities may 

be developed is also particularly favorable. The reason for this is that significant amounts of heat, 

which may be wasted otherwise, can be exchanged with the tunnel environment and the surrounding 

ground. This heat exchange can be particularly favorable especially when tunnels are characterized 
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by a significant length or high traffic, and when they are constructed at significant depths or in 

mountains where noteworthy geothermal gradients are present. 

 

1.1.2 Advantages and possible uses  

Similar to other technologies harvesting renewable energy, such as conventional geothermal systems, 

energy geostructures are an environmentally friendly technology that reduces the need of fossil 

energy sources and hence the greenhouse gas emissions. For this reason, the use of energy 

geostructures promotes and respects national and international initiatives, policies, regulations and 

agreements in order to create multiple beneficial effects. 

First of all, an important advantage of energy geostructures must be highlighted: unlike traditional 

systems of geothermal exchange, energy geostructures also play a role of structural support. This fact 

entails savings linked to the construction process that could be realized with the separate construction 

of geostructures and geothermal heat exchangers and coupled thereafter. 

Another key difference between energy geostructures and other conventional geothermal systems 

regard the materials with cui energy geostructures are built: energy geostructures are realized with 

concrete that has more favorable thermal properties than the filling materials (e.g., bentonite) that 

constitute conventional geothermal technologies. This peculiarity makes the heat exchange more 

favorable in the former case compared to the latter. The final difference is that usually the bending 

radius of the pipes in energy geostructures is greater compared to that characterizing the pipes in 

conventional geothermal heat exchangers. This features involves a lower flow resistance of the fluid 

circulating in the pipes, which results in a lower pumping power and, thus, in a lower operation cost. 

referring to the purposes of the heat exchange that can be established with energy geostructures 

various are the advantages included with energy geostructures compared to other technological 

systems. The employing of energy geostructures for heating and cooling superstructures to reach 

comfort levels in the built environment reduces the environmental impact of any construction and can 

be exploited to get incentives for the design project and construction of the superstructure. Always 

referring to the reduction of the environmental impact, the use of energy geostructures for the 

production of hot water for anthropogenic purposes reduces the costs compared to systems entirely 

resorting to more conventional technologies. When energy geostructures are employed for 

contributing to the production of hot water for agricultural or tank-farming uses, cost savings can be 

achieved via lower operational costs and environmental impacts. The use of energy geostructures for 

providing heat to prevent the icing of pavements and decks of infrastructures such as roads, bridges, 

station platforms and airport runways involves reducing the environmental impacts of these 
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applications because the use of salts or grits in not necessary and numerous disruptions due to this 

phenomenon. 

1.2   The role of thermal load in the energy piles performance 
1.2.1 Effect of thermal loads on the mechanical behavior of energy piles 

The response of the energy piles subjected upon thermal loads differs from that characterizes 

conventional piles subjected only to mechanical loads. This response can be idealized within a one-

dimensional scheme (Figure 1.2), in which an energy pile of length L and linear thermal expansion 

coefficient 𝛼𝐸𝑃 is subjected to a uniform temperature variation ∆𝑇. If an energy piles is free to move 

both at both at the head and at the base, it is characterized by a thermally induced strain: 

𝜀𝑓
𝑡ℎ =  −𝛼𝐸𝑃∆𝑇                                                                                                                                               (1.1) 

This thermally induced strain produce a variation in terms of pile length: 

∆𝐿 = 𝐿′ − 𝐿 =  −𝐿𝜀𝑓
𝑡ℎ = 𝐿𝛼𝐸𝑃∆𝑇                                                                                                              (1.2) 

where L’ is the pile length after the application of the thermal load, (Figure 1.2 (a) and (b)). 

 
Figure 1.2: Thermally induced strain in the case of thermal action of an energy piles free to deform. Figure 1.2 (a) 

induced strain due to heating; Figure 1.2 (b) induced strain due to cooling (Rotta Loria, 2018). 

Obviously the sign of the length variation is in function of the nature of thermal variation, in fact in 

the first case (heating) the ∆𝐿 > 0, while in the second (cooling) ∆𝐿 < 0. 

When the thermally induced strain is completely blocked (stuck at the base and at the head) or in 

other words the pile is not free to deform: 
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𝜀𝑏
𝑡ℎ =  𝜀𝑓

𝑡ℎ =  𝛼𝐸𝑃∆𝑇                                                                                                                                      (1.3) 

and the observed strain is equal to zero: 

𝜀𝑜
𝑡ℎ = 0                                                                                                                                                              (1.4) 

Using the elastic linear relation, there is a thermally induced stress (Figure 1.3 (a) and (b)): 

𝜎𝑏
𝑡ℎ =  𝐸𝐸𝑃𝜀𝑏

𝑡ℎ = 𝐸𝐸𝑃𝛼𝐸𝑃∆𝑇                                                                                                                        (1.5) 

 
Figure 1.3: Thermally induced stress in the case of thermal action of an energy piles stuck both at the base and at the 

head. Figure 1.3 (a) induced stress due to heating; Figure 1.3 (b) induced stress due to cooling (Rotta Loria, 2018). 

 

In reality, energy piles are not free to deform because of the presence of surrounding soil and 

superstructure or of the pier cap (or commonly called slab), hence, the observed strain: 

𝜀𝑜
𝑡ℎ  ≤  𝜀𝑓

𝑡ℎ                                                                                                                                                         (1.6) 

and this implies that only a part of the strain is blocked. 

𝜀𝑏
𝑡ℎ = 𝜀𝑜

𝑡ℎ − 𝜀𝑓
𝑡ℎ                                                                                                                                               (1.7) 

In the other words, the response of energy piles is governed by a certain degree of freedom, defined  

as (Rotta Loria, 2018): 

𝐷𝑂𝐹 =  
𝜀𝑜

𝑡ℎ

𝜀𝑓
𝑡ℎ        with    0 ≤ 𝐷𝑂𝐹 ≤ 1                                                                                                       (1.8)                                                                                             

Using the previous equation (1.8), the thermally induced stress can be calculated as: 
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𝜎𝑜
𝑡ℎ =  𝐸𝐸𝑃𝜀𝑏

𝑡ℎ = 𝐸𝐸𝑃(𝜀𝑜
𝑡ℎ − 𝜀𝑓

𝑡ℎ) = 𝐸𝐸𝑃(𝜀𝑜
𝑡ℎ + 𝛼𝐸𝑃∆𝑇) =  𝐸𝐸𝑃𝛼𝐸𝑃∆𝑇(1 − 𝐷𝑂𝐹)                       (1.9) 

The schemes proposed above refers implicitly to energy piles embedded in typical soil deposits for 

which the soil-pile thermal expansion coefficient ratio is more than one: 

𝑋 =  𝛼𝑠𝑜𝑖𝑙 𝛼𝐸𝑃⁄ ≤ 1                                                                                                                                       (2.0) 

where 𝛼𝑠𝑜𝑖𝑙 is the linear thermal expansion coefficient of the soil.  In rare cases where 

 𝑋 =  𝛼𝑠𝑜𝑖𝑙 𝛼𝐸𝑃⁄ > 1                                                                                                                                      (2.1)                                                                                                                        

and typically at successive stages of geothermal operations, the temperature variation applied to an 

energy pile and its thermal expansion coefficient do not satisfy the equation (1.6) and consequently: 

𝜀𝑜
𝑡ℎ >  𝜀𝑓

𝑡ℎ                                                                                                                                                          (2.2) 

The previous condition occurs because when the linear thermal expansion coefficient of the soil is 

greater than that of the energy pile, the thermally induced deformation of energy piles is governed by 

that of the soil rather than by the deformation of the piles. As the temperature changes in the soil 

regions, this phenomenon becomes more pronounced (Rotta Loria, 2018). 

 

1.2.2 Generalized mathematical formulation of vertical energy pile equilibrium 

The general equilibrium equation that govern the vertical equilibrium of energy piles is: 

𝑃 +
𝜋𝐷2

4
𝐾ℎ𝑤(𝑧 = 0) + 𝑊 + 𝑄𝑠,𝑚𝑜𝑏 + 𝑄𝑏,𝑚𝑜𝑏 = 0                                                                              (2.3) 

where 𝑃 is the applied mechanical load, 𝐾ℎ is the head stiffness of the superstructure or pier cap, 

𝑤 (𝑧 = 0) is the pile vertical head displacement (with 𝑧 being the vertical coordinate), 𝑊 is the pile 

weight, 𝑄𝑠,𝑚𝑜𝑏 is the mobilized shaft capacity and 𝑄𝑏,𝑚𝑜𝑏  is the mobilized base capacity. For a benefit 

of safety, the pile weight is often neglected in practical analyses and designs. 

In case of energy piles mechanical and thermal loads are applied in conjunction, both 𝑄𝑠,𝑚𝑜𝑏 and 

𝑄𝑏,𝑚𝑜𝑏 can be written in terms of mechanical and thermal contributes: 

𝑄𝑠,𝑚𝑜𝑏 =  𝑄𝑠,𝑚𝑜𝑏
𝑚 + 𝑄𝑠,𝑚𝑜𝑏

𝑡ℎ                                                                                                                            (2.4)                                                                                                      

𝑄𝑏,𝑚𝑜𝑏 =  𝑄𝑏,𝑚𝑜𝑏
𝑚 + 𝑄𝑏,𝑚𝑜𝑏

𝑡ℎ                                                                                                                           (2.5)                                                                                                     
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Energy piles subjected upon thermal load are generally characterized by two portions that displace 

in opposite directions from the so-called null point of the vertical displacement (located at a depth, 

𝑍𝑁𝑃,𝑤). Consequently, to ensure equilibrium with the surrounding soil from the so-called null point 

of the shear stress (generally located at a different depth,  𝑍𝑁𝑃,𝜏, of that of the vertical displacement), 

the 𝜏 are mobilized in opposite directions at the pile shaft (Rotta Loria, 2018).  Referring to what has 

just been explained the part of the shaft capacity mobilized by the thermal load, 𝑄𝑠,𝑚𝑜𝑏
𝑡ℎ =

 𝑄𝑠,𝑚𝑜𝑏,𝑢𝑝 +  𝑄𝑠,𝑚𝑜𝑏,𝑑𝑜𝑤𝑛, can also be written in terms of two contributions: 

 

𝑄𝑠,𝑚𝑜𝑏,𝑢𝑝 = 𝜋𝐷 ∫ 𝜏
𝑧𝑁𝑃,𝜏

0

𝑑𝑧                                                                                                                           (2.6) 

             

𝑄𝑠,𝑚𝑜𝑏,𝑑𝑜𝑤𝑛 = 𝜋𝐷 ∫ 𝜏
𝐿

𝑧𝑁𝑃,𝜏

𝑑𝑧                                                                                                                        (2.7) 

 

1.2.3 Thermo-mechanical schemes for energy piles with no base and head restraints  
The response of an energy pile free to move in both direction (without both base and head restraints) 

subjected to an axial mechanical load, a heating or cooling thermal load, is pictured in the Figures 1.4 

and Figure 1.5. In the Figure 1.6 the total response of an energy pile subjected to an axial mechanical 

load in conjunction with both heating thermal and cooling thermal load has been represented. To have 

a generic idea of the problem, these schemes are referred to an energy piles free at their head and 

embedded in soft  soil that provides negligible end-bearing capacity. 

 
Figure 1.4: Scheme for energy piles free to move both at the head and at the base subjected to mechanical load (Rotta 

Loria, 2018). 
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Figure 1.5: Schemes for energy piles free to move both at the head and at the base subjected to thermal load (Rotta 

Loria, 2018). 

 
Figure 1.6: Schemes for energy piles free to move both at the head and at the base subjected to mechanical load coupled 

with heating thermal load (Rotta Loria, 2018). 

In the Figure 1.4 are represented the schemes related to normal and tangential stress and vertical 

displacement for energy piles subjected only to mechanical load. In this case the equation (2.3) can 

be written as: 

𝑃 + 𝑄𝑏,𝑚𝑜𝑏
𝑚 = 0                                                                                                                                               (2.8) 

The application of an axial mechanical load to the pile head causes a roughly linearly decreasing 

distribution of compressive vertical stress 𝜎𝑧 within the pile and uniform and roughly constant 

distributions of positive shear stress τ at the pile-soil interface and downward pile displacement 

𝑤 with depth. As the value of the stiffness of the pile becomes increasingly higher, the distribution of 

the 𝜎𝑧 becomes more and more uniform and linear; while the distribution of τ and displacements (𝑤) 

becomes more and more constant and uniform. In the Figure 1.5 are shown the schemes related to 

normal and tangential stress and vertical displacement for energy piles subjected only to thermal load 

and in this case the equation (2.3) ca be written as (Rotta Loria, 2018) 

𝑄𝑠,𝑚𝑜𝑏
𝑡ℎ = 𝑄𝑠,𝑚𝑜𝑏,𝑢𝑝 + 𝑄𝑠,𝑚𝑜𝑏,𝑑𝑜𝑤𝑛                                                                                                                   (2.9) 
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In the previous equation the terms related to mechanical response are neglected because are nil. The 

application of a heating or cooling thermal load to the pile causes a non-linear distribution of 𝜎𝑧 along 

the pile length and symmetrical for heating and cooling, which is characterized by a maximum that 

coincides with the mid-length of the energy pile, where the null points of the vertical displacement 

and shear stress are also located. The application of a heating thermal load produce negative shear 

stress and causes an upward shift for the energy pile portion above the null points, while it produces 

positive shear stress and causes downward shift for the pile portion below the null points. The shear 

stress and vertical displacement caused by a heating thermal load develop in the opposite direction 

compared to those caused by a mechanical load above the null points, whereas these develop in the 

same direction below the null points. The opposite situation occurs in the case of application of 

cooling thermal load. Shear stress and vertical displacement evolve approximately linearly the pile 

length. Resuming the aforementioned relation between the pile stiffness and 𝜎𝑧 , τ and 𝑤: as the value 

of the stiffness of the pile becomes increasingly higher, the distribution of 𝜎𝑧  with the depth becomes 

more uniform with a lower variation for the same applied thermal load. At the same time, as the value 

of the stiffness of the pile becomes increasingly higher, the trends of  τ and 𝑤  becomes more uniform, 

but with the higher variation. Stronger thermal loads cause linearly greater stress and displacement 

variations. 

In the Figure 1.6 are pictured the schemes related to normal and tangential stress and vertical 

displacement for energy piles subjected to an axial mechanical load in conjunction with thermal load. 

In this case the equation (2.3) can be written as: 

𝑃 + 𝑄𝑠,𝑚𝑜𝑏 = 𝑃 + 𝑄𝑠,𝑚𝑜𝑏
𝑚 + 𝑄𝑠,𝑚𝑜𝑏

𝑡ℎ = 0                                                                                                   (3.0) 

The distributions of vertical stress and shear stress with depth as well as of vertical displacement can 

be obtained via superposition of the previous ones. The nature of the total stress along the pile length  

can be traction when a low mechanical loads and significant cooling thermal load are applied. 

 

1.2.4 Thermo-mechanical schemes for energy piles with base or head restraints 

The response of an energy pile with base or head restraints subjected to an axial mechanical load, a 

heating thermal load have been pictured in the Figures 1.7 and 1.8. In the Figure 1.9 the response of 

an energy piles with base or head restraints to an axial mechanical load coupled with heating thermal 

load, obtained from the application of the principle of superposition effects. The base restraint 

condition may be assumed to characterize energy piles free at their head and bearing on very stiff soil 

that provides notable end-bearing capacity, not valuable with the conventional formulations. Base 
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restraint condition may be assumed to characterize energy piles, with a slab at their head, embedded 

in a soft soil that provides negligible end-bearing capacity (floating piles). 

 

 

 

 

 

Figure 1.7: Schemes for energy piles with a base or head restraint subjected to mechanical load (Rotta Loria, 2018). 

 
Figure 1.8: Schemes for energy piles with a base or head restraint subjected to thermal load (Rotta Loria, 2018). 

 
Figure 1.9: Schemes for energy piles with a base or head restraint subjected to mechanical load coupled with heating 

thermal load (Rotta Loria, 2018). 

In the Figure 1.7 are shown the schemes related to normal and tangential stress and vertical 

displacement for energy piles subjected only to mechanical load. In this case the equation (2.3) ca be 

written as: 

𝑃 + 𝑄𝑠,𝑚𝑜𝑏
𝑚 + 𝑄𝑠,𝑚𝑜𝑏

𝑡ℎ = 0                                                                                                                             (3.1) 
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where only the base restraint is present, whereas 

𝑃 + 𝜋
𝐷2

4
𝐾ℎ𝑤𝑚(𝑧 = 0) + 𝑄𝑠,𝑚𝑜𝑏

𝑚 = 0                                                                                                      (3.2) 

where only the head restraint is present. 

When a base restraint is present, as the average vertical stress 𝜎𝑧  increases (with a value 

corresponding to 𝑃 at the pile head) and the values of shear stress τ and vertical displacement 𝑤 

become lower along the pile length compared to the case of no base and head restraints. This 

phenomenon arises because of the contribution provided by the base capacity to the vertical pile 

equilibrium. In these schemes, the base capacity mobilizes at the same time as the shaft capacity for 

any magnitude of applied load, even though this is not necessarily the case in reality. 

When a head restraint is present, the values of the average vertical stress 𝜎𝑧 , the shear stress and 

vertical displacement variations develop along the pile are smaller compared to the case of no base 

and head restraints. This phenomenon arises because the head restraint reduces the effect of the 

downward mechanical load. This effect becomes equal to zero when the interplay between the 

mechanical load and the head restraint is not considered because the latter term is neglected. The 

consequence of such an approach is a pile response to mechanical loading equal to that of the case of 

no base and head restraints (equations (2.3) and (3.2) coincides). 

The Figure 1.8 represents the schemes related to normal and tangential stress and vertical 

displacement for energy piles subjected only to thermal load. In this case the equation (2.3) ca be 

written as: 

𝑄𝑠,𝑚𝑜𝑏
𝑡ℎ + 𝑄𝑏,𝑚𝑜𝑏

𝑡ℎ = 0                                                                                                                                     (3.3) 

where only the base restraint is present, whereas 

𝜋
𝐷2

4
𝐾ℎ𝑤𝑡ℎ(𝑧 = 0) + 𝑄𝑠,𝑚𝑜𝑏

𝑡ℎ = 0                                                                                                             (3.4) 

where only the head restraint is present. 

Differently from the situation described in the previous chapter (in the case energy piles without 

restraints both at the head and at the base), when either a base or head restraint is present, vertical 

stress 𝜎𝑧  is generated at the restrained pile end by the applied thermal load. The vertical stress 

distribution is greater than that in the case without both base and head restraints, according to the 

discussed effect of the higher restraint of the system. The null points of the vertical displacement and 
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shear stress do not coincide but are shifted towards the region of the system characterized by the 

higher restraint. The vertical displacement developed towards the region of the pile characterized by 

higher restraint is lower,  while an higher displacement is developed towards the region characterized 

by lower restraint compared to the case where the null points are located at the mid-length of the pile. 

A cooling thermal load yields a symmetrical response of the energy pile. In reality, the reduction of 

the compressive stress experienced at the pile toe for the case where a base restraint can reach at most 

the sum of any vertical mechanical load applied to the pile and its weight. This phenomenon occurs 

because soils generally cannot withstand tensile stress. 

The Figure 1.9 shows the schemes related to normal and tangential stress and vertical displacement 

for energy piles subjected to an axial mechanical load in conjunction with thermal load. In this case 

the equation (2.3) can be written as: 

𝑃 + 𝑄𝑠,𝑚𝑜𝑏
𝑚 + 𝑄𝑠,𝑚𝑜𝑏

𝑡ℎ = 0                                                                                                                             (3.5) 

where only the base restraint is present, whereas 

𝑃 + 𝜋
𝐷2

4
𝐾ℎ𝑤(𝑧 = 0) + 𝑄𝑠,𝑚𝑜𝑏 = 0                                                                                                         (3.6) 

where only the head restraint is present. 

The total response (Figure 1.9) of energy piles can be obtained by the application of the principle of 

superposition effects. 

1.2.5 Thermo-mechanical schemes for energy piles with base and head restraints 

The response of an energy pile with both base and head restraints subjected to an axial mechanical 

load, a heating thermal load is depicted in the Figures 1.10 and 1.11. 

 
Figure 1.10: Schemes for energy piles with a base and head restraint subjected to mechanical load (Rotta Loria, 2018). 
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Figure 1.11: Schemes for energy piles with a base and head restraint subjected to thermal load (Rotta Loria, 2018). 

In the Figure 1.12 the response of an energy pile with both head and base restraint subjected to 

mechanical load in conjunction with heating thermal load has been reported. 

 
Figure 1.12: Schemes for energy piles with a base and head restraint subjected to mechanical load coupled with heating 

thermal load (Rotta Loria, 2018). 

The previous situation may be assumed to characterize energy piles, with a slab at their head, bearing 

on stiff soil that provides great end-bearing capacity. Two different cases involving a base restraint 

equal to the head restraint and a base restraint equal to one-half of the head restraint are considered. 

In the case of energy pile subjected only to mechanical load (Figure 1.10), the equation (2.3) can be 

written as 

𝑃 + 𝜋
𝐷2

4
𝐾ℎ𝑤𝑚(𝑧 = 0) + 𝑄𝑠,𝑚𝑜𝑏

𝑚 + 𝑄𝑏,𝑚𝑜𝑏
𝑚 = 0                                                                                   (3.7) 

In the proposed schemes, the effect of the presence of the slab on the influence of the mechanical 

load on the pile response is considered. Hence, lower developments of vertical stress and shear stress 

as well as of vertical displacement are observed for a higher head restraint, compared to the case of a 

base restraint only. This behavior may be expected in reality. However, many analyses and designs 
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usually do not account for the interplay between the action of the mechanical load and the head 

restraint, neglecting the latter term. 

For the case of thermal loading only (Figure 1.11) equation (2.3) can be written as 

𝜋
𝐷2

4
𝐾ℎ𝑤𝑡ℎ(𝑧 = 0) + 𝑄𝑠,𝑚𝑜𝑏

𝑡ℎ + 𝑄𝑏,𝑚𝑜𝑏
𝑡ℎ = 0                                                                                           (3.8) 

The distribution of vertical stress 𝜎𝑧  caused by the thermal load is symmetrical along the pile length 

when the base and head restraints are of the same entity, whereas this distribution is asymmetrical 

when different magnitudes characterize the end restraints. Higher stress develops towards the region 

of the system characterized by higher restraint. The higher the restraint provided by the end 

conditions, the higher the vertical stress and the lower the mobilized shear stress and vertical 

displacement. The total response (Figure 1.12) of energy piles can be obtained by the application of 

the principle of superposition effects. 

Concluding, this aim of this introductory chapter is that to provide a simplified reference models to 

explain what happens in the various situations that will then be used in the following chapters. 
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Chapter 2 

Case study 
 

 

 

2.1 Site description 

The Energy Piles Group Experiment under the Swiss Tech Convention Center of EPFL is full-scale 

experiment dedicated to the study of group effects within a group of heat exchanger piles. This site 

was used by Rotta Loria for the in situ experiments collected in his doctoral thesis. The pile foundation 

that was considered for the entire master thesis is located under the recently built Swiss Tech 

Convention Centre, Lausanne, Switzerland (cf., Figure 2.1).  

 

 
Figure 2.1: Plan view of the EPFL Swiss Tech Convention Center (Rotta Loria, 2018). 
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The foundation supports a 9𝑥25 𝑚2 water retention tank and comprises a group of four 

predominantly end-bearing energy piles (uncalled EP1, EP2, EP3 and EP4 in Figure 2.2) and sixteen 

predominantly floating conventional piles (uncalled P1-16 in Figure 2.1) below a heavily reinforced 

0.9 m-thick slab. 

 
Figure 2.2: Top view of experimental site (Rotta Loria, 2018). 

In plan view, the energy piles form a triangle within a 4.21 m square in which the central pile, EP1, 

is located 3 m from the others, EP2, 3 and 4 (Figure 2.4). The energy piles are 28 m long and 0.9 m 

in diameter, and the conventional piles are 16 m long and 0.6 m in diameter. All of the piles were 

bored, cast onsite and are made of reinforced concrete. Vertical loads of 0, 800, 2200 and 2100 kN 

are applied to energy piles EP1, 2, 3 and 4, respectively. Vertical loads of 300 kN are applied to each 

of the conventional piles. The values of vertical loads are characteristic values that were calculated 

by the company involved in the geotechnical and structural designs of the foundation. Throughout 

the design process, these loads were considered as imposed on the uppermost surface of the slab in 

correspondence with the area delimited by the cross-sectional surface of the underlying piles. This 

loading situation is considered in this work (as in that presented by Rotta Loria, 2018).  

The energy piles were equipped with four 24-m-long high-density polyethylene U-loops that are 

connected in series. The inlets and outlets of the absorber pipes were thermally insulated to a depth 

of 4 m below the pile heads to limit the influence of the climatic conditions on the heat exchange 

process (Figure 2.3). 

The soil stratigraphy of the site (Figure 2.4) was extrapolated based on information that was obtained 

during the construction of the foundation and data from Rotta Loria (Rotta Loria, 2018) for 

experimental tests in situ presented in his doctoral thesis (Rotta Loria, 2018). The presented site is 

located 200 m away, at the Swiss Federal Institute of Technology in Lausanne (EPFL). During the 

construction of the piles, the groundwater table was located at the top of the deposit, which is 

estimated to be in an overconsolidated condition. Layers of alluvial soil and sandygravelly moraine 

were encountered at shallow depths. The upper soil profile of the alluvial soil was inferred to reach a 
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depth from the uppermost surface of the successively built slab of z = 8.6 m. The lower sandy-gravelly 

moraine layer was located between depths of z = 8.6 and 16.6 m (Rotta Loria, 2018). A thin layer of 

bottom moraine was present below the sandy-gravelly moraine layer between depths of z = 16.6 and 

20.1 m and laid on a molasse layer. The energy piles were socketed 8.8 m into this bottom molasse 

layer from a depth of z = 20.1 m to a depth of z = 28.9 m. 

 
Figure 2.3: Schematic view of the heat exchanger test piles, service room (https://lms.epfl.ch) 

 
Figure 2.4: Schematic view of the local stratigraphy. 

 

 

2.2 Materials and properties 

Following tables (from Table 2.1 to Table 2.7) summaries all the property of the aforementioned 

elements of case study (e.g. piles, slab and stratigraphy): 
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ρ [𝒌𝒈 𝒎𝟑]⁄  E [MPa] ν [-] k  [𝑾 (𝒎𝑲)⁄ ] Cp [𝑱 (𝒌𝒈 ∗ 𝑲)⁄ ] α [𝟏 𝑲⁄ ] L [m] D [m] 

2722 36000 0.20 1.628 837 1 ∙ 10−5 28 0.9 

Table 2.1: Energy Piles properties (Rotta Loria, 2018) 

ρ [𝒌𝒈 𝒎𝟑]⁄  E [MPa] ν [-] k  [𝑾 (𝒎𝑲)⁄ ] Cp [𝑱 (𝒌𝒈 ∗ 𝑲)⁄ ] α [𝟏 𝑲⁄ ] L [m] D [m] 

2722 31500 0.20 1.628 837 1 ∙ 10−5 16 0.6 

Table 2.2: Conventional Piles properties (Rotta Loria, 2018) 

ρ [𝒌𝒈 𝒎𝟑]⁄  E [MPa] ν [-] k  [𝑾 (𝒎𝑲)⁄ ] Cp [𝑱 (𝒌𝒈 ∗ 𝑲)⁄ ] α [𝟏 𝑲⁄ ] L [m] B [m] 

2722 31500 0.20 1.628 837 1 ∙ 10−5 26 10 

Table 2.3: Slab properties (Rotta Loria, 2018) 

 

ρ [𝒌𝒈 𝒎𝟑]⁄  E [MPa] ν [-] k  [𝑾 (𝒎𝑲)⁄ ] Cp [𝑱 (𝒌𝒈 ∗ 𝑲)⁄ ] α [𝟏 𝑲⁄ ] z [m] 

2769 190 0.22 1.49 880 3.3 ∙ 10−6 8.6 

Table 2.4: Layer A properties (Rotta Loria, 2018) 

ρ [𝒌𝒈 𝒎𝟑]⁄  E [MPa] ν [-] k  [𝑾 (𝒎𝑲)⁄ ] Cp [𝑱 (𝒌𝒈 ∗ 𝑲)⁄ ] α [𝟏 𝑲⁄ ] L [m] 

2735 84 0.4 3.68 890 3.3 ∙ 10−6 8 

Table 2.5: Layer B properties (Rotta Loria, 2018) 

ρ [𝒌𝒈 𝒎𝟑]⁄  E [MPa] ν [-] k  [𝑾 (𝒎𝑲)⁄ ] Cp [𝑱 (𝒌𝒈 ∗ 𝑲)⁄ ] α [𝟏 𝑲⁄ ] L [m] 

2740 90 0.4 3.46 890 3.3 ∙ 10−6 3.5 

Table 2.6: Layer C properties (Rotta Loria, 2018) 

ρ [𝒌𝒈 𝒎𝟑]⁄  E [MPa] ν [-] k  [𝑾 (𝒎𝑲)⁄ ] Cp [𝑱 (𝒌𝒈 ∗ 𝑲)⁄ ] α [𝟏 𝑲⁄ ] L [m] 

2167 3000 0.3 3.82 923 0.23 ∙ 10−4 8.8 

Table 2.7: Layer D properties (Rotta Loria, 2018) 
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Chapter 3 

Ultimate Limit State (USL) 

 

The action of thermal loads, in conjunction with that of mechanical loads, due to their geothermal 

and structural support operations, represents a significant challenge. To provide a complete and clear 

design framework at Ultimate Limit State (ULS), we must clarify that in both Geotechnical and 

Structural Ultimate Limit State the effects of thermal loads at ULS can be neglected and can be 

considered relevant only at serviceability limit states (Rotta Loria, 2018). 

After a brief description of the main aspects of energy piles in the Chapter 1, in according with 

Eurocodes 7 that provide all standards both from geotechnical and structural perspective, in this 

chapter the fundamental aspects that regard the energy piles design at Ultimate Limit State (ULS) 

have been taken into account.  

 

3.1 Semi-probabilistic method 

3.1.1 Introduction 

The semi-probabilistic method at Limit States already long proposed and widely used for design 

situations and structural verifications represent, nowadays, the best tool to use during design case. In 

according with semi-probabilistic method at ULS, the verification in safety of a structural element is 

satisfied when, section by section, occurs: 

𝐸𝑑  ≤  𝑅𝑑                                                                                                                                                          (3.9) 

where  
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 𝐸𝑑 represent the design loading given by the acting forces 𝐹𝑑𝑗 on the structure, evaluated in 

function of their own characteristic values and increased by combination factors: 

              𝐹𝑑𝑗 =  𝐹𝑘𝑗 ∙ 𝛾𝐹𝑗                                                                                                                                  (4.1)                                                                                                                    

 𝑅𝑑 represent the calculation value of resisting force developed by the materials constituting 

the section obtained by the application of combination factors that reduce the values in order 

to ensure the prefixed safety grade: 

       𝑅𝑑 =  
𝑅𝑘𝑖

𝛾𝑀𝑖
                                                                                                                                           (4.2) 

This expression applies to the following ultimate limit states: 

 GEO: ‘Failure or excessive deformation of the ground, in which the strength of soil or rock is 

significant in providing resistance’ 

 STR: ‘Internal failure or excessive deformation of the structure or structural elements … in 

which the strength of structural materials is significant in providing resistance” 

 

3.1.2 Actions and design situation 

In according with Eurocode 7 and EN 1990 there are three types of action summaries in the following 

Table 3.1: 

Action Duration Examples 

Permanent (G) Likely to act throughout  
reference period 

Self-weight of structures 

Variable (Q)  Imposed loads on building floors, 
beams and roofs; wind*; snow* 

Accidental (A) Usually short Explosions, vehicle impact*, 
seismic* (AE, due to earthquake 
ground motions) 

*may be variable or accidental depending on statistical distribution 

Table 3.1: Classification of actions (EN 1990). 

 

3.1.3 Design Approaches for deep foundation 

According Eurocode 7, Ultimate Limit State (ULS) verifications are carried out with the three 

possible Design Approaches: 

 DA1 – Combination 1: A1 + M1 + R1 

 DA1 – Combination 2: A2 + “M1 or M2” + R4  (*) 

 DA2: – Combination 1 A1 + M1 + R2 
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 DA3: – Combination 1 A1 or A2 + M2 + R3    (**) 

(*) M1 is used for structural actions, instead M2 for that of geotechnical; 

(**) A1 is used for structural actions, instead A2 for that of geotechnical; 

 

Where in the latter Design Approach A1 is used for structural actions and A2 is used for those of 

geotechnical. The factors aforementioned are referred to: 

 A1 and A2 are used to symbolize the partial factors on actions; 

 R1, R2, R3 and R4 are used to symbolize the partial resistance factors; 

 M1 and M2 are used for symbolize the partial factors for soil parameters. 

In the following tables (from Table 3.2 to Table 3.5) are summarized the aforementioned factors: 

 

Action                                                      Symbol          A1            A2 

Permanent Unfavourable 

Favourable 

𝛾𝐺 1.35 

1.0 

1.0 

1.0 

Variable Unfavourable 

Favourable 

𝛾𝑄 1.5 

0 

1.3 

0 

Table 3.2: Partial factors on the actions (Eurocode 7). 

 

Resistance Symbol R1 R2 R3 R4 

Base 𝛾𝑏 1.00 1.10 1.00 1.30 

Shaft (Compression) 𝛾𝑠 1.00 1.10 1.00 1.30 

Total combined (Compression) 𝛾𝑡 1.00 1.10 1.00 1.30 

Shaft (Tension) 𝛾𝑠,𝑡 1.25 1.15 1.10 1.60 

Table 3.3: Partial factors for resistance for driven piles (Eurocode 7). 
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Resistance Symbol R1 R2 R3 R4 

Base 𝛾𝑏 1.10 1.10 1.00 1.45 

Shaft (Compression) 𝛾𝑠 1.00 1.10 1.00 1.30 

Total combined (Compression) 𝛾𝑡 1.10 1.10 1.00 1.40 

Shaft (Tension) 𝛾𝑠,𝑡 1.25 1.15 1.10 1.60 

Table 3.4: Partial factors for resistance for Continuous flight auger (CFA) piles (Eurocode 7). 

 

Resistance Symbol R1 R2 R3 R4 

Base 𝛾𝑏 1.25 1.10 1.00 1.60 

Shaft (Compression) 𝛾𝑠 1.00 1.10 1.00 1.30 

Total combined (Compression) 𝛾𝑡 1.15 1.10 1.00 1.50 

Shaft (Tension) 𝛾𝑠,𝑡 1.25 1.15 1.00 1.60 

Table 3.4: Partial factors for resistance for bored piles (Eurocode 7). 
 

Soil Parameter Symbol M1 M2 

Weight density 𝛾𝛾 1.00 1.00 

Effective Cohesion 𝛾𝑐 1.00 1.25 

Tangent of shear resistance 𝛾𝜑 1.00 1.10 

Undrained shear strength 𝛾𝑐𝑢 1.00 1.4 

UCS 𝛾𝑞𝑢 1.00 1.4 

Table 3.5: Partial factors for soil parameters (Eurocode 7). 
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3.2 Geotechnical Ultimate Limit State 

3.2.1 Generalized axial capacity formulation 

To estimate the response of single energy piles subjected to the mechanical load and perform the 

verification we need to clarify some aspects related with the base and shaft capacity of the piles. From 

general perspective the load capacity of the pile is equal to: 

𝑄𝑢 =  𝑄𝑏 +  𝑄𝑠 −  𝑊                                                                                                                                     (4.3) 

In the latter equation (4.3) the shaft and base capacity contributions are calculated independently from 

each other, thus neglecting the different displacement values for which they may be effectively 

mobilized in practice. While this assumption simplifies the analysis, it is worth noting that the shaft 

capacity of piles is mobilized for much smaller pile displacements than the base capacity (Laloui L. 

and Rotta Loria, 2019). In practice, it is considered that the axial capacity of the piles is reached for 

the load for which a further increase in settlement does not induce an increase in the load or for the 

load that causes a settlement of 10% of the diameter of the pile base. Two failure criteria may be 

associated with the previous conditions: a strength failure criterion, considering the available strength 

at the pile-soil interface, and a displacement failure criterion, considering the allowable settlement of 

the pile.  

Following the approach proposed by Poulos and Davis (1980), which is based on a strength failure 

criterion, the shaft capacity can be estimated by integrating the pile-soil interface shear strength along 

the external surface of the pile shaft and the base capacity can be evaluated from bearing capacity 

theory. This approach yields to the generalized expression for the pile capacity, which can be written 

as: 

𝑄𝑢 =  𝑞𝑠𝐴𝑠 +  𝑞𝑏𝐴𝑏 − 𝑊 =  

                   =  (𝑐�̅� +   𝜎′𝑣
̅̅ ̅̅  �̅� tan 𝛿 ′)𝐴𝑠 +  (𝑐𝑁𝐶𝑠𝑐𝑑𝑐 +  𝜎′𝑣𝑏𝑁𝑞𝑠𝑞𝑑𝑞 + 

1

2
 𝛾𝐷𝑁𝛾𝑠𝛾𝑑𝛾) 𝐴𝑏 − 𝑊   (4.4)      

where: 

 𝑞𝑠 is the average shear strength down the pile shaft; 

 𝐴𝑠 is the external surface of the pile shaft; 

 𝑞𝑏 is the base resistance; 

 𝐴𝑏 is the cross-sectional area of the pile base; 

 𝑐�̅� is the average pile-soil interface; 
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 𝜎𝑣̅̅ ̅ is some average vertical stress; 

 �̅� is some average coefficient of lateral pressure; 

 𝛿 is angle of pile-soil interface shear strength; 

 𝑐 is the soil cohesion; 

 𝜎𝑣𝑏 is the vertical stress at level of the pile base; 

 𝛾 is the unit weight of the soil; 

 𝐷 is the pile diameter; 

 𝑁𝐶 , 𝑁𝑞 and 𝑁𝛾  are bearing capacity factors; 

 𝑠𝑐, 𝑠𝑞 and 𝑠𝛾 are shape factors; 

 𝑑𝑐, 𝑑𝑞 and 𝑑𝛾 are depth factors. 

The bearing capacity, shape and depth factors are summarized in the following tables (from Table 3.6 

to Table 3.8). 

 

Term 𝑵𝑪𝒔𝒄𝒅𝒄 

Author Cohesion, 

𝒄 [Pa] 

Bearing 

capacity factor, 

𝑵𝑪 [-] 

Shape factor, 𝒔𝒄 [-] Depth factor, 𝒅𝒄 [-] 

Terzaghi 

(1943) 

Actual  

value 
 (𝑁𝑞 − 1) cot 𝜑 1.3 - 

Meyerhof 

(1963) 

Actual  

value 

Terzaghi (1943) 1 + 0.2𝐾𝑝 

𝐾𝑝 = 𝑡𝑎𝑛2 (45 +
𝜑

2
)  

1 + 0.2√𝐾𝑝 (
𝐿

𝐷
) 

Hansen 

(1970) 

Actual  

value 

Terzaghi (1943) Drained conditions:  

1 +  
𝑁𝑞

𝑁𝑐
 

Undrained conditions: 

(𝜑 = 0): 0.2 

Drained conditions:  

1 + 0.4𝑘𝐻 

Undrained conditions 

(φ = 0): 

0.4𝑘𝐻 

𝑘𝐻 =  𝑡𝑎𝑛−1 (
𝐿

𝐷
)  

Vesic 

(1977); 

Actual  

value 

Terzaghi (1943) 
1 +  

𝑁𝑞

𝑁𝑐
 

 

Hensen (1970) 

Table 3.6: Values of expressions of the term Term 𝑁𝐶𝑠𝑐𝑑𝑐 (Laloui L. and Rotta Loria, 2019) 
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Term 𝑵𝒒𝒔𝒒𝒅𝒒 

Author Vertical 

stress, 𝝈𝒗𝒃 

[Pa] 

Bearing capacity factor, 

𝑵𝑪 [-] 

Shape factor, 𝒔𝒄 [-] Depth factor, 𝒅𝒄 [-] 

Terzaghi 

(1943) 

Actual  

value 
 𝑁𝑞 =

𝛼𝑇
2

𝛼𝑇𝑐𝑜𝑠2(45+
𝜑

2
)
 - - 

Meyerhof 

(1963) 

Actual  

value 

𝐾𝑝𝑒2𝜋𝑡𝑎𝑛𝜑 Drained conditions: 

1 + 0.1𝐾𝑝 

Undrained conditions: 

(𝜑 = 0): 1 

 

Drained conditions: 

0.1√𝐾𝑝 (
𝐿

𝐷
) 

Undrained conditions: 

(𝜑 = 0): 1 

Hansen 

(1970) 

Actual  

value 

Meyerof (1963) 1 + 𝑠𝑖𝑛𝜑 1

+ 2𝑡𝑎𝑛𝜑 (1

− 𝑠𝑖𝑛𝜑)2𝑘𝐻 

Vesic 

(1977); 

Actual  

value 

Meyerof (1963) Hensen (1970) 

 

Hensen (1970) 

Table 3.7: Values of expressions of the term Term 𝑁𝑞𝑠𝑞𝑑𝑞  (Laloui L. and Rotta Loria, 2019). 

Term 𝑵𝜸𝒔𝜸𝒅𝜸 

Author Unit 

weight,  

γ [𝑵 𝒎𝟑⁄ ] 

Bearing capacity 

factor, 𝑵𝑪 [-] 

Shape factor, 𝒔𝒄 [-] Depth factor, 𝒅𝒄 [-] 

Terzaghi 

(1943) 

Actual  

value 

𝑡𝑎𝑛𝜑

2
(

𝐾𝑝𝛾

𝑐𝑜𝑠2𝜑
− 1) 0.6 - 

Meyerhof 

(1963) 

Actual  

value 
(𝑁𝑞 − 1) tan(1.4𝜑) Drained conditions: 

1 + 0.1𝐾𝑝 

Undrained conditions: 

(𝜑 = 0): 1 

 

Drained conditions: 

0.1√𝐾𝑝 (
𝐿

𝐷
) 

Undrained conditions: 

(𝜑 = 0): 1 

Hansen 

(1970) 

Actual  

value 
1.5(𝑁𝑞 − 1) tan 𝜑 0.6 1 

Vesic 

(1977); 

Actual  

value 
2(𝑁𝑞 + 1) tan 𝜑 Hensen (1970) 

 

Hensen (1970) 

Table 3.8: Values of expressions of the term Term 𝑁𝑞𝑠𝑞𝑑𝑞  (Laloui L. and Rotta Loria, 2019). 
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3.2.2 Capacity in coarse-grained soil 

For piles embedded in coarse-grained soil, drained conditions may be assumed upon loading so that 

an effective stress analysis can be considered. Resuming the equation (4.4) in this case some 

simplifications have been done: 

 cohesive components, 𝑐, equal to zero; 

 neglecting the term 1

2
 𝛾𝐷𝑁𝛾𝑠𝛾𝑑𝛾 because small in relation to the term involving 𝑁𝑞; 

 𝑠𝑞 and 𝑑𝑞 equal to 1 (conservative approach). 

and the generalized equation becomes: 

𝑄𝑢 =  𝑞𝑠𝐴𝑠 + 𝑞𝑏𝐴𝑏 − 𝑊 =  𝜎′
𝑣

̅̅ ̅̅  �̅� tan 𝛿′ 𝐴𝑠 +   𝜎′
𝑣𝑏𝑁𝑞𝐴𝑏 − 𝑊                                                       (4.5) 

For displacement piles the shaft resistance can be expressed as: 

𝑞𝑠 =  𝜎′𝑣
̅̅ ̅̅  �̅� tan 𝛿′ =  𝜎′𝑣

̅̅ ̅̅  𝛽𝑓                                                                                                                        (4.6) 

This approach is termed “Beta Method”. The coefficient  �̅� relates the normal stress acting on the 

pile-soil interface after pile installation, 𝜎′𝑛
̅̅ ̅̅ , to the in situ vertical effective stress, 𝜎′𝑣

̅̅ ̅̅ , and is the most 

important factor, because govern the shaft resistance of displacement piles in coarse-grained soils. In 

function of pile installation method, �̅� depends on the in situ coefficient of earth pressure at rest,𝐾0, 

and the stress change produced by the installation related to the initial soil density (Laloui L. and 

Rotta Loria, 2019). The values of �̅� can vary from values equal to the coefficient of passive earth 

pressure, 𝐾𝑝, near the ground surface to values equal to the coefficient of the earth pressure at rest, 

𝐾0, near the pile toe. 

Typical values of �̅�  

 for driven cast in situ piles are of 1 if wet concrete is placed; 

 up to 1.2 if dry concrete is rammed into the pile shaft. 

Alternative approaches to quantify �̅� have been proposed in a wide number of works over the years. 

Considering 𝐾 ̅̅̅= 𝐾0 may be typically appropriate (Laloui L. and Rotta Loria, 2019). 

The pile-soil interface angle of shear strength, 𝛿′, is usually assumed to be equal to the angle of shear 

strength under constant volume conditions of the soil, 𝜑′𝑐𝑣, in the absence of interface shear tests 

results, although the former is generally found to be a little lower than the latter. The approach of 

considering 𝛿′=  𝝋′𝒄𝒗 may be justified on the basis that no dilation is to be expected between the soil 

and the pile shaft at failure (Laloui L. and Rotta Loria, 2019). 
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When the dilatancy angle of the soil 𝜓 is available, the stress-dilatancy relationship 

𝜑′ =  𝜑′
𝑐𝑣

+ 0.8 𝜓                                                                                                                                        (4.7) 

may also be employed to estimate the soil angle of shear strength under constant volume conditions, 

𝜑′
𝑐𝑣

. 

For non-displacement piles the shaft resistance is generally lower compared to that of displacement 

piles because during the building process (exactly during excavation) lateral stresses in the ground 

are reduced and the initial in situ conditions are are only partially restored on concrete. Based on 

investigations (reported in Laloui L. and Rotta Loria, (2019)) an empirical formula for 𝛽𝑓 has been 

proposed (with the limiting value of 𝜎′𝑣
̅̅ ̅̅  𝛽𝑓 ≤ 200 𝑘𝑃𝑎). A suitable approach to estimate the shaft 

resistance of non-displacement piles is to consider the typical values of �̅� 

 for conventional bored piles of 0.7; 

 for continuous-flight auger piles of 0.9 in sands and gravels; 

 for continuous-flight auger piles from 0.5 to 0.6 in silts and silty sands. 

These values are in accordance with the recommendation (Laloui L. and Rotta Loria, 2019) 

𝐾 ̅̅̅= 0.7 𝐾0. The arguments summarized above for displacement piles about the choice of the pile-soil 

interface angle of shear strength are also valid for non-displacement piles. To account for potential 

loosening of the soil during the installation process, values of 𝛿′ between 𝜑′ and 𝜑′𝑐𝑣 may be 

considered. 

 

3.2.3 Capacity in fine-grained soil 

For piles in fine-grained soil, undrained conditions may be assumed upon loading so that a total stress 

analysis has been historically considered. Resuming the equation (4.4) in this case some 

simplifications have been done: 

 equal to zero the pile-soil interface angle of shear strength 𝛿 and 𝑁𝛾 (considering the 

undrained angle of shear strength of the soil to be zero); 

  and equal to one the shape factors 𝑠𝑐, 𝑑𝑐, 𝑠𝑞and 𝑑𝑞by means of a conservative (when these 

terms appear in the employed base capacity formulation) as well as the factor 𝑁𝑞, the 

generalized pile capacity formulation becomes: 

𝑄𝑢 =  𝑞𝑠𝐴𝑠 +  𝑞𝑏𝐴𝑏 − 𝑊  =  𝑐�̅�𝐴𝑠 +  (𝑐𝑢𝑁𝐶 + 𝜎′
𝑣𝑏)𝐴𝑏 − 𝑊                                            (4.8)                                                        

where  
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 𝑁𝐶 is the bearing capacity proposed by Skempton (1951) for a circular area, which may be 

taken equal to 9 for depths relevant for piles according to Lancellotta (Lancellotta, 1995) 

(Laloui L. and Rotta Loria, 2019). Interpolation may be considered from values of 6 to 9 with 

the increasing penetration depth of the pile up to values of three pile diameters according to 

Fleming (Laloui L. and Rotta Loria, 2019). 

 𝑐�̅� is the pile-soil adhesion varies considerably with many factors including pile type, soil type 

and method of installation. Many attempts have been made to correlate this parameter with 

the undrained soil cohesion in the form 

𝑐�̅� =  𝛼𝑓𝑐𝑢                                                                                                                                          (4.9) 

with 

𝛼𝑓 =  
0.5

(
𝑐𝑢

𝜎′𝑣
)

0.5                 for 𝑐𝑢 𝜎′𝑣⁄ ≤ 1                                                                                        (5.1)                                                                                

𝛼𝑓 =  
0.5

(
𝑐𝑢

𝜎′𝑣
)

0.25                for 𝑐𝑢 𝜎′𝑣⁄ > 1                                                                                        (5.2)                                                                                 

For displacement piles to estimate 𝐾 ̅̅̅are available some formulations for every different situation: 

 For piles in soft normally consolidated or slightly overconsolidated clay, the values 𝐾 ̅̅̅of may 

range between the lower bound 𝐾0 = 1 − 𝑠𝑖𝑛𝜑′ (5.3) and the value 𝐾0 = (1 − 𝑠𝑖𝑛2𝜑)/(1 +

𝑠𝑖𝑛2𝜑) (5.4); 

 For piles in overconsolidated clay, the value of 𝐾 ̅̅̅ may be considered as 𝐾0 =

(1 − 𝑠𝑖𝑛𝜑′)√𝑂𝐶𝑅 (5.5); 

In all of the above relationships, the soil angle of shear strength under constant volume conditions 

𝝋′𝒄𝒗 may be considered for the terms including both 𝜑′ and 𝛿′ (especially for piles longer than 30-40 

m (Lancellotta, 1995)). If the soil angle of shear strength 𝜑′ would be available but not that under 

constant volume conditions 𝜑′𝑐𝑣  it may be considered: 

𝜑′𝑐𝑣 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑠𝑖𝑛𝜑′𝑐𝑜𝑠𝜑′

1 − 𝑠𝑖𝑛2𝜑′
)                                                                                                                    (5.6) 

The estimation of the shaft capacity of non-displacement piles in fine-grained soil through the 

effective stress approach is generally more straightforward than that for displacement piles. The shaft 

resistance of non-displacement piles in fine-grained soils may be accurately estimated assuming 𝐾 ̅̅̅ =
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𝐾0 because little changes of the soil stress state around the pile occur due to pile construction if 

concrete is promptly poured. 

The soil angle of shear strength under constant volume conditions 𝜑′𝑐𝑣 may be considered for the 

terms including both 𝜑′ and 𝛿′ according to Burland and Twine (1988) for piles in overconsolidated 

clay (Laloui L. and Rotta Loria, 2019). 

 

3.2.4 Verification for energy piles group  

As represented in the Figure 2.6 in the Chapter 2, the case study is built in a layered soil made up by 

four layers whose properties are summarized in the Tables 2.4-2.7. During the geotechnical ultimate 

limit state design, the most burdensome situation is that of the EP4 (energy piles) which is loaded 

with 2200 KN as pictured in the following figure (Figure 3.1): 

 
Figure 3.1: Applied mechanical loads to energy piles. 

Prior to show all the calculation carried out in order to obtain the design load, this is an important 

aspect to clarify. In the stratigraphy shows in the Figure 2.6, in this design case, the last soil layer 

(layer D) is made by molasse, which is classified as a very strong rock. Consequently, the 

aforementioned formulations to evaluate the shaft and the base capacity are not valid because they 

may be used only for soils and not rocks. Piles constructed in rock are generally characterised by a 

capacity contribution provided by the base that is significantly higher than the contribution provided 

by the shaft. In general, both the shaft and base capacity piles in rock are customarily considered 

proportional to the unconfined compressive strength of the rock, 𝑈CS (Horvath et al., 1980; Williams 

and Pells, 1981; Rowe and Armitage, 1987; Zhang and Einstein, 1998). 
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Most approaches indicate that the shaft resistance is proportional to the square root of the rock 

unconfined compressive strength (Laloui L. and Rotta Loria, 2019).  At the same time, a remarkable 

discontinuity in the transition zone between hard soils and soft rocks is highlighted by Fleming et al. 

(2008), providing the following expressions: 

𝑞𝑠 =  𝑝𝑎Ψ (
𝑐𝑢

𝑝𝑎
)

0.5

                      for hard soils                                                                                  (5.7) 

𝑞𝑠 =  𝑝𝑎Ψ (
𝑈𝐶𝑆

𝑝𝑎
)

0.5

                    for rocks                                                                                          (5.8) 

where 𝑝𝑎is the atmospheric pressure, 𝜓=0.5 for the fine-grained soil data and 𝜓=2 for the main soft 

rock data. According to Zhang and Einstein (1998), the base resistance of piles resting on rock (e.g., 

associated with a normalized displacement of 10% of the pile diameter) is proportional to the square 

root of the rock unconfined compressive strength as: 

𝑞𝑏 =  15 (
𝑈𝐶𝑆

𝑝𝑎
)

0.5

                                                                                                                                         (5.9) 

For the combinations for the calculation of the design load, the following loads have been supposed: 

 𝐺𝑘 = 0.7 𝑁𝑘; 

 𝑄𝑘 = 0.3 𝑁𝑘; 

Resuming the design approaches summarized in the Chapter 3.1.3 the design loads have been 

calculated as 

𝑁𝑑 =  𝐺𝑘𝛾𝐺 +  𝑄𝑘𝛾𝑄 = 0.7 𝑁𝑘𝛾𝐺 + 0.3 𝑁𝑘𝛾𝑄                                                                                         (6.1) 

and presented in the following table (Table 3.9): 

 

 

 

 

 

 

 

Table 3.9: Design loads for each design approach for energy piles. 

Design approaches Design load [KN] 

DA1 – Combination 1: A1 + M1 + R1 
3069 

DA1 – Combination 2: A2 + M1 + R4 
2398 

DA2: – Combination 1 A1 + M1 + R2 
3069 

DA3: – Combination 1 A1 + M2 + R3 
3069 
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For layer A, B and C the shaft resistance is evaluated following the equation (4.6) where the single 

contribute are: 

 𝐾 ̅̅̅ = 0.7 𝐾0 = 0.7(1 − 𝑠𝑖𝑛 𝜑′𝑑,𝑐𝑣); 

 Resuming equation (4.7)  𝜑′𝑘,𝑐𝑣 has been calculated; 

 𝜎′𝑣𝑏 is the average stress between two following layers; 

For layer D the contribute of shaft capacity should be calculated assuming the equation (5.7), but this 

equation can be used when the soil layer is in drained condition and in this case the layer D is in 

undrained condition. In this way, to avoid mistakes related to the use of the formulations, the 

contribute of Layer D in the context of the shaft capacity is neglected. 

The results for each design approach are shows in the Table 3.10: 

Layer DA1 – c1: A1 + M1 + R1 

Shaft capacity, 𝑸𝒔  

[KN] 

DA1 – c2: A2 + M1 + R4 

Shaft capacity, 𝑸𝒔   

[KN] 

DA2: A1 + M1 + R2 

Shaft capacity, 𝑸𝒔 

[KN] 

DA3: A1 + M2 + R3 

Shaft capacity, 𝑸𝒔 

[KN] 

A 196.48 196.48 196.48 173.3 

B 532.03 532.03 532.03 458.58 

C 349.50 349.5 349.5 307.84 

D - - - - 

Table 3.10: Values of shaft capacity in KN for each layer. 

The total shaft capacity will be given by the following equation: 

𝑄𝑠,𝑡𝑜𝑡 =  
𝑄𝑠,𝐴 + 𝑄𝑠,𝐵+𝑄𝑠,𝐶

𝛾𝑅𝜉1
                                                                                                                           (6.2) 

where 𝜉1 is the recommended correlation factor to determine characteristic pile resistance from pile 

load test results, related to number of piles tested. Their values are summarized in the following table: 

n 1 2 3 4 ≥ 5 

𝝃𝟏 1.4 1.3 1.2 1.1 1.0 

Table 3.11: Correlation factor values (Eurocode 7). 

The total values of shaft capacity are shown in the table 3.12: 
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DA1 – c1: A1 + M1 + R1 

Shaft capacity,  

𝑸𝒔,𝒕𝒐𝒕 [KN] 

DA1 – c2: A2 + M1 + R4 

Shaft capacity,  

𝑸𝒔,𝒕𝒐𝒕 [KN] 

DA2: A1 + M1 + R2 

Shaft capacity,  

𝑸𝒔,𝒕𝒐𝒕 [KN] 

DA3: A1 + M2 + R3 

Shaft capacity, 

𝑸𝒔,𝒕𝒐𝒕 [KN] 

770.01 592.32 700.01 610.21 

Table 3.12: Values of the total shaft capacity for each design approach. 

The total values of base capacity is calculated assuming the following equation: 

𝑄𝑏,𝑡𝑜𝑡 =  
𝑄𝑏

𝛾𝑅𝜉1
                                                                                                                                                 (6.3) 

where 𝑄𝑏 is calculated with equation (5.9).  The total values of base capacity are shown in the table 

3.13: 

DA1 – c1: A1 + M1 + R1 

Base capacity, 𝑸𝒃  

[KN] 

DA1 – c2: A2 + M1 + R4 

Base capacity, 𝑸𝒃  

[KN] 

DA2: A1 + M1 + R2 

Base capacity, 𝑸𝒃  

[KN] 

DA3: A1 + M2 + R3 

Base capacity, 𝑸𝒃 

[KN] 

 

5756.82 

 

4497.52 

 

6541.84 

 

6081.75 

Table 3.13: Values of base capacity for each design approach. 

According to Eurocode 7, the Geotechnical ultimate limit state verification is satisfied when: 

𝑄𝑢 =  𝑄𝑏,𝑡𝑜𝑡 +  𝑄𝑠,𝑡𝑜𝑡  ≥  𝑁𝐸𝑑                                                                                                                      (6.4) 

The verification is satisfied for all design approaches. 

3.2.5 Design proposed for energy piles group  

Even tough during the geotechnical verifications for energy pile with length equal to 28 m we have 

neglected the shaft capacity of layer D, the checks for all design approach are satisfied. This means 

that even having designed a pile with a length of 19.2 m would have satisfied the checks, not 

penetrating the layer D by 8.8 m, but resting only the base on it, in order to guarantee a much larger 

base capacity.  

A less length of 19.2 m (15.7m) would not have ensured that the verification was satisfied, since the 

base of the pile would not have rested on layer D, but on layer C. This means that the equation (5.9) 

is no longer valid and to calculate the base capacity we should use the Hansen’s equation: 

𝑄𝑏,𝑡𝑜𝑡 =  
𝑞𝑏𝐴𝑏

𝛾𝑅𝜉1
=  

( 𝜎′𝑣𝑏𝑁𝑞𝑑𝑞 )𝐴𝑏

𝛾𝑅𝜉1
                                                                                                            (6.5) 
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where the term  𝜎′𝑣𝑏 has been calculated until the layer B (because the pile rest on layer C). In the 

following table are shown the results: 

DA1 – c1: A1 + M1 + R1 

Base capacity, 𝑸𝒃  

[KN] 

DA1 – c2: A2 + M1 + R4 

Base capacity, 𝑸𝒃  

[KN] 

DA2: A1 + M1 + R2 

Base capacity, 𝑸𝒃  

[KN] 

DA3: A1 + M2 + R3 

Base capacity, 𝑸𝒃 

[KN] 

 
793.25 

 
619.75 

 
901.45 

 
667.26 

Table 3.14: Values of base capacity for each design approach. 

The verification is not satisfied for all design approaches. In the following figures is summarized the 

situation: 

 
Figure 3.2: Schematization of real case. 

 
Figure 3.3: Schematization of the following design. 
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3.2.6 Verification for conventional piles group  

Following the aforementioned combinations and verifications and noting that each conventional pile 

is loaded with 300 KN: 

 

 

 

 

 

 

 

 

 

 

 

Table 3.15: Design loads for each design approach for conventional piles. 

The results for each design approach are shows in the Table 3.16: 

Layer DA1 – c1: A1 + M1 + R1 

Shaft capacity, 𝑸𝒔  

[KN] 

DA1 – c2: A2 + M1 + R4 

Shaft capacity, 𝑸𝒔   

[KN] 

DA2: A1 + M1 + R2 

Shaft capacity, 𝑸𝒔 

[KN] 

DA3: A1 + M2 + R3 

Shaft capacity, 𝑸𝒔 

[KN] 

A 130.99 130.99 130.99 115.54 

B 354.69 354.69 354.69 305.71 

C 18.31 18.31 18.31 16.13 

Table 3.16: Values of shaft capacity in KN for each layer. 

The total shaft capacity will be given by the equation (6.2). The total values of shaft capacity are 

shown in the table 3.17: 

DA1 – c1: A1 + M1 + R1 

Shaft capacity,  

𝑸𝒔,𝒕𝒐𝒕 [KN] 

DA1 – c2: A2 + M1 + R4 

Shaft capacity,  

𝑸𝒔,𝒕𝒐𝒕 [KN] 

DA2: A1 + M1 + R2 

Shaft capacity,  

𝑸𝒔,𝒕𝒐𝒕 [KN] 

DA3: A1 + M2 + R3 

Shaft capacity, 

𝑸𝒔,𝒕𝒐𝒕 [KN] 

359.99 281.26 327.26 285.26 

Table 3.17: Values of the total shaft capacity for each design approach. 

The total values of base capacity is calculated assuming the equation (6.5) 

The total values of base capacity are shown in the table 3.18: 

Design approaches Design load 

[KN] 

DA1 – Combination 1: A1 + M1 + R1 
418.5 

DA1 – Combination 2: A2 + M1 + R4 
327 

DA2: – Combination 1 A1 + M1 + R2 
418.5 

DA3: – Combination 1 A1 + M2 + R3 
418.5 
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DA1 – c1: A1 + M1 + R1 

Base capacity, 𝑸𝒃  

[KN] 

DA1 – c2: A2 + M1 + R4 

Base capacity, 𝑸𝒃  

[KN] 

DA2: A1 + M1 + R2 

Base capacity, 𝑸𝒃  

[KN] 

DA3: A1 + M2 + R3 

Base capacity, 𝑸𝒃 

[KN] 

 

360.13 

 

281.36 

 

409.25 

 

302.93 

Table 3.18: Values of base capacity for each design approach. 

The Geotechnical ultimate limit state verification is satisfied when the equation (6.4) is satisfied. 

The verification is satisfied for all design approaches. 

3.2.7 Design proposed for conventional piles group  

The previous verifications have been carried out taking into account the conventional pile length 

equal to 16 m.  

In this proposed design for the conventional piles group has noted that the verifications are satisfied 

even when the pile length is equal to 15 m. The results are summarized in the following tables: 

Layer DA1 – c1: A1 + M1 + R1 

Shaft capacity, 𝑸𝒔  

[KN] 

DA1 – c2: A2 + M1 + R4 

Shaft capacity, 𝑸𝒔   

[KN] 

DA2: A1 + M1 + R2 

Shaft capacity, 𝑸𝒔 

[KN] 

DA3: A1 + M2 + R3 

Shaft capacity, 𝑸𝒔 

[KN] 

A 130.99 130.99 130.99 115.54 

B 316.04 316.04 316.04 272.40 

Tabel 3.19: Values of Shaft capacity in KN for each layer 

The total shaft capacity will be given by the equation (6.2) 

The total values of shaft capacity are shown in the table 3.20: 

DA1 – c1: A1 + M1 + R1 

Shaft capacity,  

𝑸𝒔,𝒕𝒐𝒕 [KN] 

DA1 – c2: A2 + M1 + R4 

Shaft capacity,  

𝑸𝒔,𝒕𝒐𝒕 [KN] 

DA2: A1 + M1 + R2 

Shaft capacity,  

𝑸𝒔,𝒕𝒐𝒕 [KN] 

DA3: A1 + M2 + R3 

Shaft capacity, 

𝑸𝒔,𝒕𝒐𝒕 [KN] 

319.30 249.47 362.85 253.02 

Table 3.20: Values of Shaft capacity for each design approach 

The total values of base capacity is calculated assuming the equation (6.5) neglecting the following 

contributes: 

(i) 𝑠𝑐, 𝑑𝑐 and 𝑠𝑞 are equal to one; 
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(ii) the cohesion is nil; 

(iii) the term 1
2

 𝛾𝐷𝑁𝛾𝑠𝛾𝑑𝛾 (in the equation 4.4) is neglected because is small. 

The total values of base capacity are shown in the table 3.21: 

DA1 – c1: A1 + M1 + R1 

Base capacity, 𝑸𝒃  

[KN] 

DA1 – c2: A2 + M1 + R4 

Base capacity, 𝑸𝒃  

[KN] 

DA2: A1 + M1 + R2 

Base capacity, 𝑸𝒃  

[KN] 

DA3: A1 + M2 + R3 

Base capacity, 𝑸𝒃 

[KN] 

 

227.70 

 

177.90 

 

258.76 

 

191.54 

Table 3.21: Values of Base capacity for each design approach. 

The verification, following the equation (6.4), is satisfied for all design approaches. 

 

3.3 Structural Ultimate Limit State 

3.3.1 Generalized approach for Structural Ultimate State 

The ultimate limit state is the design for the safety of a structure and its users by limiting the stress 

that materials experience. In order to comply with engineering demands for strength and stability 

under design loads, ULS must be fulfilled as an established condition. The ULS are associated with 

the extreme value of bearing capacity or other forms of structural failure that may endanger people's 

safety. Some examples of the causes that can lead to the ULS are:  

 loss of stability of part or of the whole structure;  

 breaking of critical sections of the structure;  

 transformation of the structure into a mechanism;  

 instability due to excessive deformation;  

 deterioration following fatigue;  

 deformations or cracks, which produce a change in geometry that requires the replacement of 

the structure.  

The overcoming of a last limit state is irreversible and is defined as collapse. 

Resuming the equation (3.9) to satisfy the ULS verification the acting force must be less or equal than 

the resisting one as: 

𝑁𝐸𝑑 ≤  𝑁𝑅𝑑                                                                                                                                               (6.6 (𝑎)) 
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𝑀𝐸𝑑 ≤  𝑀𝑅𝑑                                                                                                                                              (6.6 (𝑏))                                                                                                                                 

where 𝑁𝑅𝑑 and  𝑀𝑅𝑑 are the resisting forces respectively for axial force and bending moment. In the 

general framework the verification is satisfied when the point with coordinates (𝑁𝐸𝑑;  𝑀𝐸𝑑) is inside 

the interaction domain (Figure 3.4). In general piles foundation are subjected to axial force and 

bending moment and the conjunction of these two forces is the reason for which it needs to verify 

both the actions.  

 
Figure 3.4: General example of the satisfied verification. 

The boundary curve of the limit domain is the set of M-N couples that they correspond to diagrams 

of limit deformations (from field I to field V as pictured in the aforementioned figure).  

In other words diagrams of ε that they reach the maximum deformation of the material at a point and 

do not exceed this value at no other point. For the concrete it is usually adopted in the calculation a 

constitutive bond represented by a parabolic tract and a constant tract (Figure 3.5 (a)); for partialized 

section the deformation limit is given by the 𝜀𝑐𝑢 value, equal to 3.5 ⋅ 10−3. In the case of a fully 

compressed section the limit is instead constituted by the achievement of the deformation 𝜀𝑐1 (equal 

to 2 ⋅ 10−3) at a point located at 3/7 of the height, measured from the most compressed edge. For the 

steel the bond constitutive has a linear stroke and a constant stretch (Figure 3.5(b)) 

 
Figure 3.5: (a) Concrete constitutive bond; (b) Steel constitutive bond (Eurocode 2). 
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Furthermore the following hypotheses have been formulated: 

 preservation of the flat sections, in fact considering the beam no deformable to shear stresses, 

it is possible at analytical level to have sections orthogonal to the axis line of the beam and to 

obtain calculation models for linear deformations. 

 Perfect adherence between steel and concrete, even if it is not locally satisfied, it appears to 

be global. 

By using the constitutive bonds of the materials, the values of the deformation can be pictured in 

univocal way to the values of the stresses in concrete and steel, 𝜎𝑐and 𝜎𝑠; Note the stresses you can 

derive the values of N and M from their definition itself: 

𝑁 =  ∫ 𝜎𝑐 𝑑𝐴𝑐 +  ∫ 𝜎𝑠 𝑑𝐴𝑠 =  𝑁𝑐 +  𝑁𝑠                                                                                                   (6.7) 

𝑀 =  ∫ 𝜎𝑐𝑦 𝑑𝐴𝑐 +  ∫ 𝜎𝑠 𝑦𝑑𝐴𝑠 =  𝑀𝑐 +  𝑀𝑠                                                                                            (6.8) 

Note that, despite the non-linearity of the constitutive bonds, the contribution of the reinforcement 

varies with linear law with 𝐴𝑠  if all the reinforcement is proportionally increased. The construction 

of the domain takes place by sweeping all the breaking fields of the section, where each of them 

describes the internal stress-deformation state based on the position of the neutral axis. By evaluating 

the stress state, the tensions acting on the sections can be defined and therefore the forces obtained 

by integration into the area. As displayed in the previous figure (Figure 3.4) there six breaking fields: 

- FIELD I 

The field I is between the two deformed planes which pass through the final deformation of the steel: 

the first plane corresponds to having all the fibers of the section that work on the last deformation of 

the steel and the second plane at the lower reinforcement level works at last deformation and the 

upper concrete that works at 0. Any deformed configuration passes for the last deformation point 

between the two planes is a field configuration I. Therefore a configuration belong to field I when the 

steel works at last deformation, while the less stretched fiber works with a deformation that lies 

between 0 and the last deformation. These sections will be subject to tensile stresses with small 

eccentricities and maximum exploitation of the lower steel is achieved, which also reaches the ULS 

(Figure 3.6): 
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Figure 3.6: Breaking field I scheme (Giordano L., 2016). 

- FIELD II 

Varying the deformation of the concrete between zero and the maximum deformation and the field 

configurations II always start from the maximum steel deformation which will then be responsible 

for the last limit state configuration. The neutral axis is internal and divides the partially compressed 

and stretched section. The field configurations 2 will be subject to normal stresses with large 

eccentricities and simple bending with small armatures placed in the stretched area (Figure 3.7): 

 
Figure 3.7: Breaking field II scheme (Giordano L., 2016). 

- FIELD III 

In field III the concrete deformation is maximum, while that of the steel varies between the maximum 

and the 𝜀𝑦𝑑. The neutral axis is always internal and the ultimate limit state is reached by the concrete 

and the maximum exploitation of both steel and concrete has been reached (Figure 3.8): 

 
Figure 3.8: Breaking field II scheme (Giordano L., 2016). 
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- FIELD IV 

The deformation of the concrete is always maximum, while that of the steel varies between 0 and 𝜀𝑦𝑑. 

Neutral axis still internal and the configurations are subject to normal stresses with large eccentricities 

and simple bending with large quantities of reinforcement (Figure 3.9): 

 

Figure 3.9: Breaking field IV scheme (Giordano L., 2016). 

- FIELD IVa 

In field IVa the deformation of the steel becomes negative and therefore of compression and ends  

when the section is compressed. The same considerations of field IV apply (Figure 3.10) 

 
Figure 3.10: Breaking field IVa scheme (Giordano L., 2016). 

- FIELD V 

The pole in field V changes again and the becomes that in correspondence of the section that has at 

the beginning of field 5 the fiber which has the deformation  𝜀𝑐2, and at the height of this fiber we 

will have the depth of the neutral axis (3/7 of the height if the maximum concrete deformation is 

0.35% and  is  𝜀𝑐2 = 0.2%). In field V there is a decrease in the compressed upper fiber, while the 

lower fiber varies from 0 to 𝜀𝑐2. The section is subject only to compression efforts (Figure 3.11): 
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Figure 3.11: Breaking field V scheme (Giordano L., 2016). 

 

3.3.2 Interaction Domain calculation for circular area 

To calculate the interaction domain for the circular area (because the piles foundation area is circular) 

is different from the calculation done for the interaction domain for square or rectangular area. An 

iterative procedure has been implemented for the solution of the equilibrium equation: 

𝐹(𝑦𝑐) =  𝑁𝑐(𝑦𝑐) + 𝑁𝑠(𝑦𝑐) − 𝑁𝐸𝑑 = 0                                                                                                       (6.9) 

where 

𝑁𝑠(𝑦𝑐) =  ∑ 𝐴𝑠,𝑖 ∙ 𝜎𝑠,𝑖(𝑦𝑐)

𝑛𝑠

𝑖=1

                                                                                                                         (7.1) 

The iterative procedure will be conducted with the aid of the Tangent Method which, starting from 

two values of 𝑦𝑐 in which 𝐹(𝑦𝑐) assumes a different sign, proceeds in con successive linear 

approximations to narrow the interval between these 𝑦𝑐  values. For this reason it is first necessary to 

find an initial range of values of 𝑦𝑐  in which the function 𝐹(𝑦𝑐) increasing with 𝑦𝑐, assumes different 

sign values.  

With the possible value of neutral axis, the contribute of Resisting axial force of the concrete has been 

calculated as: 

𝑁𝑐(𝑦𝑐) = 2 ∙ (
𝐷

2
)

2

∙ [𝜃(𝑦𝑐) − 𝑠𝑖𝑛𝜃(𝑦𝑐) ∙ 𝑐𝑜𝑠𝜃(𝑦𝑐)] ∙ 𝑓𝑐𝑑                                                                       (7.2) 

where 

𝜃(𝑦𝑐) = 𝑎𝑟𝑐𝑐𝑜𝑠
𝐷/2 − 0.8 ∙ 𝑦𝑐

𝐷/2
                                                                                                                  (7.3) 

To evaluate 𝑁𝑠(𝑦𝑐) the elastic relations have been used: firstly the deformations 𝜀𝑠,𝑖 have been 

calculated through the proportion (in function of the breaking field) and then: 
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if        𝜀𝑠,𝑖  ≥  𝜀𝑦,𝑑                  then                     𝜎𝑠,𝑖 =  𝜀𝑦,𝑑 ⋅ 𝐸𝑠 

if        𝜀𝑠,𝑖 <  𝜀𝑦,𝑑                   then                     𝜎𝑠,𝑖 =  𝜀𝑠,𝑖 ⋅ 𝐸𝑠 

There is only one value of 𝑦𝑐 which satisfy the equation (6.9). Then the calculation of the resisting 

moment (both for concrete and steel side) have been evaluated with the obtained value of 𝑦𝑐: 

𝑀𝑅,𝑑 =  𝑁𝑐(𝑦𝑐) ∙ 𝑦𝑐,𝐺                                                                                                                                     (7.4) 

where 𝑦𝑐,𝐺 is the distance between the center of gravity of the compressive zone and the center of the 

section, given by the following equation: 

𝑦𝑐,𝐺 =
2

3
∙

𝑠𝑖𝑛3𝜃(𝑦𝑐 )

𝜃(𝑦𝑐 ) − 𝑠𝑖𝑛𝜃(𝑦𝑐 ) ∙ 𝑐𝑜𝑠𝜃(𝑦𝑐 )
∙ 𝑅                                                                                           (7.5) 

The resisting contribute of the reinforcement is given by: 

𝑀𝑠,𝑅𝑑 =  ∑ 𝐴𝑠,𝑖 ∙ 𝜎𝑠,𝑖(𝑦𝑐)

𝑛𝑠

𝑖=1

∙ (
𝐷

2
− 𝑦𝑠,𝑖)                                                                                                     (7.6) 

where 𝑦𝑠,𝑖 is the perpendicular distance between the edge of the section and the center of gravity if 

each reinforcement bar. This procedure must be repeated for each breaking field in order to be able 

to draw the complete interaction domain. 

3.3.3 Design for energy piles 

Resuming that explained in the chapters 3.3.1 and 3.3.2 the interaction domain for the real case 

situation has been drawn and in this case the values of the acting forces is summarized in the following 

table: 

Acting Force Value 

𝑵𝑬𝒅 3069 [KN] 

𝑽𝑬𝒅 0 [KN] 

𝑴𝑬𝒅 0 [KN] 

Table 3.22: Values of acting forces for energy piles. 

As summarized in the previous table, the design case is that of concentrated force applied in the center 

of gravity; these values has been given by the construction company that have realized the whole 

structure. The concrete used by the construction company is C45/50 and a class of steel B500B. In 

according with Eurocode 2 (EN 1992, 2004) the minimum reinforcement required is in function of 

pile area as summarized in the following table (Table 3.23): 



  
45 

Nominal pile cross section: 𝑨𝒄 Area of longitudinal reinforcement: 𝑨𝒔,𝒃𝒑𝒎𝒊𝒏 
𝑨𝒄 ≤ 0.5 m2 𝐴𝑠 ≥ 0.5 % Ac 

0.5 m2 < 𝑨𝒄 ≤ 1 m2 𝐴𝑠 ≥ 0.0025 m2 
𝑨𝒄 >0.5 m2 𝐴𝑠 ≥ 0.25 % Ac 

Table 3.23: Recommended minimum reinforcement area in non-displacement piles (EN 1992, 2004) 

and in this case: 

0,5 𝑚2 ≤ 𝐴𝑐  ≤ 1 𝑚2             𝐴𝑠,𝑚𝑖𝑛 = 0,0025 𝑚2     and  𝐴𝑠,𝑚𝑖𝑛 = 2544 𝑚𝑚2 = 10Ф18; 

The result is pictured in the following Figure: 

 

 

 

 

 

 

 

 

 

Figure 3.12: Interaction domain in the real design situation for energy piles. 

The verification at ULS is widely satisfied. 

3.3.4 Design proposed for energy piles to ensure ductility 

The following procedure has been applied on the design proposed case, when the pile length is equal 

to 19.2 m. According with standards (UNI 11104, 2016) the concrete class has been chosen in 

function of exposure class: in this case (Switzerland) the exposure class is XC2 and the concrete class 

is C25/30. In this case of proposed design the concrete cover has also been evaluated following the 

recommendations given by the aforementioned standard. From general point of view, during the 

design of foundations, the concrete cover can varies between 40 mm and 70 mm. In the case of piles 

foundations the concrete cover must also respect the tie spacing (spacing between the bars) in order 

to facilitate construction operations (e.g., the vibration of concrete). 

To ensure adequate ductility capacity of reinforced concrete members, some points must be respected: 
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 the resisting axial force of the reinforced concrete cross-sections needs to be greater than or 

equal to the axial force needed to crack them in view of potential strain localization effects,  

 the reinforcement has to be characterized by a large deformation capacity and  

 the ratio 𝑓𝑡 𝑓𝑦𝑑  ⁄ has to respect a lower bound (where 𝑓𝑦𝑑  is the tensile strength of the 

reinforcement steel). 

In general, the first condition implies that: 

𝑁𝑅 ≥ 𝑁𝑐𝑟                                                                                                                                                          (7.7) 

Equivalently, 

𝑓𝑦𝜌𝑟𝐴𝐸𝑃 ≥ 𝑓𝑐𝑡𝐴𝐸𝑃[1 + 𝜌𝑟(𝑛𝑟 − 1)] ≈ 𝑓𝑐𝑡𝐴𝐸𝑃                                                                                         (7.8) 

Simplifying the previous equation, the minimum reinforcement ratio can be expressed as (Rotta Loria, 

2018) 

𝜌𝑟,𝑚𝑖𝑛 =  
𝑓𝑐𝑡𝑚

𝑓𝑦𝑑
                                                                                                                                                (7.9) 

where: 

𝑓𝑐𝑡𝑚 = 0.3 ∙ 𝑓𝑐𝑘
2 3⁄

                                                                                                                                             (8.1) 

𝑓𝑦𝑑 =
𝑓𝑦𝑘

𝛾𝑠
                       𝑤ℎ𝑒𝑟𝑒              𝛾𝑠 = 1.15                                                                                     (8.2) 

And obtaining: 

𝐴𝑠,𝑚𝑖𝑛 = 4561,59 𝑚𝑚2 = 12Ф22                                                                                                                       

The aforementioned equations (7.9) and (8.1) have been reported following the recommendations 

given by Eurocode 2. 

The first verification necessary is: 

𝜌𝑟,𝑚𝑖𝑛  ≤  𝜌𝑟,𝑒𝑓𝑓                                                                                                                                              (8.3) 

With the amount of reinforcement obtained from the previous calculation the new interaction domain 

has been calculated, noting that the shape is different from that calculated with the old standards. 

The result is pictured in the following Figure: 
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Figure 3.13: Interaction domain in the proposed design situation for energy piles. 

Even in this case the verification is widely satisfied. In the proposed design has been also 

verificated the tie spacing, in the other words, the space between the bars. According with 

Eurocodes: 

𝑇𝑖𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 =  𝜃(𝑦𝑐) (
𝐷 − 2𝑑′

2
) = 188 𝑚𝑚 < 200 𝑚𝑚                                                                                  (8.4) 

3.3.5 Design for conventional piles 

For the conventional piles group, made by 16 piles identical (in diameter and length) and loaded 

equally (300 KN), the procedure applied is the same summarized in the chapter 3.3.3. In this case the 

acting force are: 

Acting Force Value 

𝑵𝑬𝒅 418.5 [KN] 

𝑽𝑬𝒅 0 [KN] 

𝑴𝑬𝒅 0 [KN] 

Table 3.24: Values of acting forces for conventional piles. 

Resuming the Table 3.23, in this case the diameter of each conventional pile is 0.6 m and consequently 

the following reinforcement has been calculated, by reference of the old standards: 

0 𝑚2 ≤ 𝐴𝑐 ≤ 0.5 𝑚2       𝐴𝑠,𝑚𝑖𝑛 = 0.005 ∙ 𝐴𝑐 = 1413.72  𝑚𝑚2    

and   

𝐴𝑠,𝑚𝑖𝑛 = 1608.5 𝑚𝑚2 = 8Ф16; 
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Drawing in the same way shown previously the interaction diagram, the verification is widely 

satisfied: 

 
Figure 3.14: Interaction domain in the real design situation for conventional piles. 

3.3.6 Design proposed for conventional piles to ensure ductility 

Resuming the procedure shown in the chapter 3.3.4 and adapting it for the proposed design for 

conventional piles (with 𝐿𝐸𝑃 = 15 𝑚), the verification is widely satisfied (Figure 3.15) with the 

minimum reinforcement equal to: 

𝐴𝑠,𝑚𝑖𝑛 = 2035.75 𝑚𝑚2 = 8Ф18                                                                                                                       

that respect the equation (8.3). 

 

Figure 3.15: Interaction domain in the proposed design situation for conventional piles. 
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In this calculation the same concrete and steel class used for the proposed design for energy piles has 

been utilized (C25/30 and steel B500B). Also in this case the tie spacing has been verified: 

𝑇𝑖𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 =  𝜃(𝑦𝑐) (
𝐷 − 2𝑑′

2
) = 188 𝑚𝑚 < 200 𝑚𝑚                                                                                   

 

3.4 Concluding remarks 
To provide a basis for a novel performance-based design framework of energy piles subjected to 

mechanical and thermal loads, e.g., in the context of the ultimate limit state according with Eurocodes, 

the main conclusions have been pointed out: 

 Thermal loads involve effects that can be neglected in the performance-based design of energy 

piles at ultimate limit states, both from a geotechnical and a structural perspective, and that 

can only be considered relevant at serviceability limit states (Rotta Loria, 2018); 

 Geotechnical ultimate state verification is satisfied for the proposed case design despite the 

pile length has been decreased and not penetrating the molasse for 8.8 m but only resting the 

pile base on it to ensuring a great base capacity. This could be advantageous for economic 

perspective and a shorter length could avoid some problems related with serviceability 

conditions; 

 Structural ultimate limit state verification is also satisfied for both design case (real case 

design and the proposed one) but in the latter case the safer method has been used, to ensure 

ductility. Moreover the first conclusion holds when a minimum longitudinal reinforcement 

for the pile concrete cross-sectional area that can ensure sufficient ductility capacity is 

employed. 
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Chapter 4 

Serviceability Limit State (SLS) 
 

 

4.1 Design and verifications in the framework of Eurocodes 
Serviceability Limit State (SLS) is defined as any condition that results in the loss of functionality or 

the rapid deterioration of the structural system. One reached a limit state during the life of the 

structure, the structural system no longer possesses the requirements for its correct use, also in terms 

of durability and aesthetics. In the general framework, the exceeding of this limit during the life of 

the structure can produce: 

 Local damage that can reduce the durability of the structure, its efficiency or its appearance; 

 Movements and deformations that may limit the use of the construction, its efficiency and its 

appearance; 

 Displacements and deformations that may compromise the efficiency or appearance of non-

structural elements, plants and machinery; 

 Vibrations that may compromise the use of the construction; 

 Fatigue damage which may compromise the durability of the structure; 

 Corrosion and / or excessive degradation of the materials in use of the exposure environment. 

For reinforced concrete structures the most important SLS are: 
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- Tension limit state: high compressive stresses in concrete can cause longitudinal cracks with 

consequent problems of durability or excessive viscous deformations; High tensions in stretched steel 

can induce too much injury wide and permanently open with possible durability problems; 

- Cracking limit state: great crack appearing that compromise the correct use of the structure; 

- Deformation limit state: deformations and excessive displacements can induce damage excessive in 

non-structural elements such as partitions and finishes. 

To guarantee the satisfaction of the SLS verifications the following checks must be carried out: 

 Tension check (both for compressive and tensile stresses); 

 Cracking check; 

 Deformability verification. 

4.2 Single pile 
In this chapter the SLS checks have been carried out to avoid the aforementioned problems during 

the life of the structure. In this particular case, for energy piles foundation the main problems can be: 

 Exceeding of the maximum differential and average settlement allowed, according with 

Eurocodes (Eurocode 2); 

 Exceeding of the maximum compressive stress (Eurocode 2); 

 Exceeding of the maximum tensile stress, because during the life of energy piles they are also 

subjected to a negative thermal variation that produce a tensile stress within the pile. That 

could be the most burdensome situation for concrete, knowing that the concrete tensile 

strength is much lower than the compressive one (Eurocode 2); 

 Exceeding of the maximum crack opening, according with Eurocodes (Eurocode 2). 

In order to perform these checks and to verify the most burdensome situation, a stationary analysis 

on a single pile has been performed. In this case the single pile could be for benefit of safety because 

the tension are higher than when a complete and rigorous analysis has been carried out, because the 

displacement increase and the tension decrease in the latter case. Another important advantage for 

these checks is the saving of the computational time, because for single pile is not required a high 

computational time.  

4.2.1 Modelling choices 

A 2-D axisymmetric finite element model of the site was developed using the software COMSOL 

Multiphysics (COMSOL, 2014) (Figure 4.1). The model reproduces the single pile as if it were 

isolated and it does not accounts for the presence of the pipes in the energy piles in which a heat 

carrier fluid is assumed to flow. 
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Figure 4.1: 2-D Axisymmetric model performed. 

The parameters of the layers are summarized in the chapter 2. In this simulation is important to say 

that the linear thermal expansion coefficients of the layers (𝛼𝑠𝑜𝑖𝑙) are equal to zero and the thermal 

variation has been applied on the whole pile because the pipes have not been modelled in this analysis. 

The numerical analysis of the response of the reinforced concrete foundation in the soil under 

mechanical and thermal loads is based on the following assumptions:  

 the displacements and deformations of all of the materials can be representatively described 

through a linear kinematic approach under quasi-static conditions (i.e., negligible inertial 

effects); 

 the materials that constitute the pile foundation are considered to be isotropic with pores that 

are fully filled by air and are assumed to be purely conductive domains with equivalent 

thermo-physical properties that are given by the fluid and the solid phases; 

 the materials that make up the soil layers are assumed to be isotropic; 

 the loads that are associated with this problem have a negligible impact on the variation of the 

hydraulic field in the soil;  

 all the materials are considered to be representatively described by linear thermo-elastic 

behaviors. 

Restrictions are applied to both the vertical and horizontal displacements on the base of the model 

(i.e., pinned boundary) and to the horizontal displacements on the sides (i.e., roller boundaries). 
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4.2.2 Combinations 
As mentioned in the previous chapter, the checks for SLS have been carried out considering a design 

load given by three different combinations: characteristic, quasi-permanent and frequent. In this case 

the classic combination formula (equation (8.6)) needs to be employed while considering the 

following (Eurocode (EN 1990, 2002)): 

𝐸𝑑 =  ∑ 𝛾𝐺,𝑗𝐺𝑘,𝑗 + 𝛾𝑄,1𝑄𝑘,1 + ∑ 𝛾𝑄,𝑖𝛹0,𝑖𝑄𝑘,𝑗

𝑖≥1
𝑗≥1

                                                                                               (8.6) 

(i) For heating thermal loads, it is not known a priori whether the involved effects make them the 

dominant load. Thus, different design combinations must be considered. One combination assumes 

that the effects of the thermal loads make them the dominant load (∆𝑇𝑘 = 𝑄𝑘,1), (Rotta Loria, 2018): 

𝐸𝑑 =  ∑ 𝛾𝐺,𝑗𝐺𝑘,𝑗 + 𝛾𝑄,1∆𝑇𝑘 + 𝛾𝑄,2𝛹0,2𝑄𝑘,2 + ⋯ + 𝛾𝑄,𝑖𝛹0,𝑖𝑄𝑘,𝑖                                                                  (8.7)
𝑗≥1

 

The other combinations assume that the effects of the thermal loads do not make them the dominant 

load, (Rotta Loria, 2018): 

𝐸𝑑 =  ∑ 𝛾𝐺,𝑗𝐺𝑘,𝑗 + 𝛾𝑄,1𝑄𝑘,1 + 𝛾𝑄,2𝛹0,2∆𝑇𝑘 + ⋯ + 𝛾𝑄,𝑖𝛹0,𝑖𝑄𝑘,𝑖                                                                  (8.8)
𝑗≥1

 

(ii) For cooling thermal loads, a unique design combination must be considered, where, (∆𝑇𝑘 = 𝑄𝑘,1), 

(Rotta Loria, 2018): 

 𝐸𝑑 = ∑ 𝐺𝑘,𝑗 + 𝛾𝑄,1∆𝑇𝑘                                                                                                                                            (8.9)𝑗≥1   

The reason for the above is that the coefficients 𝛹0,𝑖 and 𝛾𝐺,𝑗 are equal to zero and one, respectively, 

for loads the effects of which are favourable for the performance verification, such as (variable and 

permanent) compressive loads with respect to cooling thermal loads (which cause a decrease in 

energy pile compression). In the context of this study, the considered approach results in one load 

combination. 

In the context of the partial factor 𝜓𝑖 , since  the considered building represent a congregation area, 

the partial factors 𝜓𝑖 for mechanical loads are chosen with reference to the values predicted by the 

Eurocode (EN 1990, 2002) for “Category B”. Accordingly: 

 𝜓0 = 0.7 

 𝜓1 = 0.7 

 𝜓2 = 0.6 

According to Rotta Loria (2018) the partial factors 𝜓𝑖 for thermal loads: 
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 𝜓0 = 0.6 

 𝜓1 = 0.5 

 𝜓2 = 0.5 

In the case study the piles are not equally loaded and when the calculation of the combinations have 

been carried out, the maximum load (2200 KN) has been used. The results of the combinations are 

summarized in the following tables (Table 4.1-Table 4.8): 

Characteristic combination  
Heating Thermal Loads - Dominant Mechanical 𝑬𝒅 

𝜸𝑮 𝐺𝑘 𝛾𝑄 𝑄𝑘 ∆𝑇 𝛹0 [KN] [⁰C] 
1 1540 1 660 15 0.6 2200 9 

Table 4.1: Characteristic combination, mechanical load dominant. 

Characteristic combination  
Heating Thermal Loads - Dominant Thermal 𝑬𝒅 

𝜸𝑮 𝐺𝑘 𝛾𝑄 𝑄𝑘 ∆𝑇 𝛹0 [KN] [⁰C] 
1 1540 0.7 660 15 1 2002 15 

Table 4.2: Characteristic combination, heating thermal load dominant. 

Characteristic combination  
Cooling Thermal Loads - Dominant Thermal 𝑬𝒅 
𝜸𝑮 𝐺𝑘 ∆𝑇 𝛾𝑄 𝑄𝑘 [KN] [ ⁰C ] 
1 1540 -10 0.7 660 2002 -10 

Table 4.3: Characteristic combination, cooling thermal load dominant. 

 

 

Frequent combination  
Heating Thermal Loads - Dominant Mechanical 𝑬𝒅  

𝜸𝑮 𝐺𝑘 𝛹1 𝑄𝑘 ∆𝑇 𝛹2 [KN] [ ⁰C ] 
1 1540 0.7 660 15 0.5 2002 7.5 

Table 4.4: Frequent combination, mechanical thermal load dominant. 

Frequent combination  
Heating Thermal Loads - Dominant Thermal 𝑬𝒅  

𝜸𝑮 𝐺𝑘 𝛹1 𝑄𝑘 ∆𝑇 𝛹2 [KN] [ ⁰C ] 
1 1540 0.7 660 15 0.6 1936 10.5 

Table 4.5: Frequent combination, heating thermal load dominant. 
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Frequent combination  
Cooling Thermal Loads - Dominant Thermal 𝑬𝒅  

𝜸𝑮 𝐺𝑘 𝛹1 𝑄𝑘 ∆𝑇 𝛹2 [KN] [ ⁰C ] 
1 1540 0.5 660 -10 0.6 1931 -6 

Table 4.6: Frequent combination, cooling thermal load dominant. 

 

Quasi-Permanent combination  
Heating Thermal Loads - Mechanical Loads  𝑬𝒅   

𝜸𝑮 𝐺𝑘 𝛹1 𝑄𝑘 ∆𝑇 𝛹2 [KN] [ ⁰C ] 
1 1540 0.6 660 15 0.5 1936 7.5 

Table 4.7: Quasi-permanent combination, mechanical load dominant. 

Quasi-Permanent combination  
Cooling Thermal Loads - Dominant Thermal 𝑬𝒅   

𝜸𝑮 𝐺𝑘 𝛹1 𝑄𝑘 ∆𝑇 𝛹2 [KN] [ ⁰C ] 
1 1540 0.5 660 -10 0.6 1936 -5 

Table 4.8: Quasi-permanent combination, cooling thermal load dominant. 

The most burdensome combination is the characteristic combination. 

4.2.3 Influence of the slab 

The stiffness characterizing the pile-structure interaction can finally be determined with reference to 

a rigid rectangular plate resting vertically loaded on a semi-infinite isotropic elastic half-space as 

(Gorbunov-Posadov and Serebrjanyi, 1961) (Laloui L. and Rotta Loria, 2019): 

𝐾ℎ =
𝐸𝑠𝑜𝑖𝑙√𝐵𝑠𝑙𝑎𝑏𝐿𝑠𝑙𝑎𝑏

(1 − 𝑣𝑠𝑜𝑖𝑙
2)𝜌0

                                                                                                                                 (9.1) 

where 𝐵𝑠𝑙𝑎𝑏 and 𝐿𝑠𝑙𝑎𝑏 the dimensions of the slab or general structural element connected at the pile 

head and 𝜌0 is a displacement factor that can be evaluated as a function of the length to breadth ratio 

of the considered element 𝜒 =  𝐿𝑠𝑙𝑎𝑏 𝐵𝑠𝑙𝑎𝑏⁄  (cf., Figure 4.2).  

When layered (i.e., non-uniform) soil deposits are encountered and the variation of the deformation 

moduli between successive layers is not large, equation (9.1) may be approximately applied by 

considering average values of the Young’s modulus and Poisson’s ratio characterizing the soil de-

posit determined as follows: 

𝐸𝑠𝑜𝑖𝑙
̅̅ ̅̅ ̅̅ =

1

∑ 𝑙𝑘
𝑁
𝑘=1

∑ 𝐸𝑠𝑜𝑖𝑙,𝑘𝑙𝑘

𝑁

𝑘=1

                                                                                                                        (9.2) 
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𝜐𝑠𝑜𝑖𝑙̅̅ ̅̅ ̅̅ =
1

∑ 𝑙𝑘
𝑁
𝑘=1

∑ 𝜐𝑠𝑜𝑖𝑙,𝑘𝑙𝑘

𝑁

𝑘=1

                                                                                                                         (9.3) 

where 𝐸𝑠𝑜𝑖𝑙,𝑘 and 𝜐𝑠𝑜𝑖𝑙,𝑘 are the Young’s modulus and Poisson’s ratio of the soil layer 𝑘. According 

to Poulos and Davis (1980), variations of 𝜐𝑠𝑜𝑖𝑙 along piles may be ignored because the displacement 

of such foundations is slightly dependent on the Poisson’s ratio of the soil.  

 

Figure 4.2: Relationship between length to breadth ratio and displacement factor of an infinitely rigid plate resting on a 

semi-infinite elastic half space (redraw after (Gorbunov-Posadov and Serebrjanyi, 1961)) (Laloui L. and Rotta Loria, 

2019). 

The value provided by the equation (9.1) is a lower bound because it has been developed taking into 

account the fact that below the slab there are only present the layers of soil, hence, not taking into 

account the effect of the piles (that stiffen the pile-slab structure). 

In the real case design, when the equations (9.2 and 9.3) have been used, the average values of 

𝐸𝑠𝑜𝑖𝑙 and 𝜐𝑠𝑜𝑖𝑙 have been calculated not taking into account the parameters of the layer D, because 

they are completely different from that of the other layers avoiding the overestimated values.  

The value of 𝐾ℎ calculated taking into account the previous assumptions has been applied on the pile 

head in the 2-D axisymmetric model, choosing the item “spring foundation”. 

 

4.3 Eurocodes dispositions for elastic analysis 
The constitutive law chosen, as mentioned before, is a thermo-mechanical elastic linear law; in fact 

during the FEM analysis all the components of the model (soil layers, pile and slab) have been 
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modelled as elastic. Since the goal of this work is adapt the conventional design procedure for energy 

piles, according with Eurocode, during elastic analysis, must use different values of Young’s Modulus 

and Poisson ratio. For Young’s Modulus the recommended value is equal to the Young’s Modulus of 

the cracked section; regarding the Poisson ratio the recommended value is equal to zero.  

The value of the Young’s Modulus of the cracked section is calculated as: 

𝐸𝑐𝑟 =  
𝐸𝑐𝑚

3
                                                                                                                                                        (9.4)  

Unfortunately the Eurocode do not provide the exact value of Young’s Modulus of the cracked 

section. The previous equation has been formulated so as to take into account the long-term 

deformation of the concrete, knowing that precisely in the long term and therefore once the concrete 

has cracked, the deformation of the concrete becomes about a third of that in the short term. 

In the following chapters the influence of the Young’s Modulus of the cracked section has been 

evaluated both for mechanical and thermal load to quantify the variation within the displacement and 

stress fields.  

 

4.3.1 General framework of the influence of Cracked Young’s Modulus on the stress field 

To understand the role and the influence of the Young’s Modulus of the cracked section a sensitive 

analysis has been performed to quantify the effect on the stress and displacement field under thermal 

and mechanical load. Within this general framework two different situation have been studied: single 

pile with and without infinite rigid slab. 

The influence of 𝐸𝑐𝑟 has been evaluated by vary the two ratios: 

 𝐿 𝐷⁄  where L is the pile length and D represent the pile diameter; 

 Λ =  𝐸𝐸𝑃 𝐺𝑠𝑜𝑖𝑙⁄  where 𝐸𝐸𝑃 is the Young’s Modulus of the concrete and 𝐺𝑠𝑜𝑖𝑙 is the shear 

modulus of the soil. The definition of this ratio (pile-soil stiffness ratio) is based on the work 

of Randolph and Wroth (1978) for the analysis of conventional piles subjected to solely 

mechanical loads and has been extended to the analysis of energy pile groups subjected to 

both mechanical and thermal loads (Rotta Loria, 2018 ). It considers the shear modulus of the 

soil (which is preferred to the Young’s modulus) because in pile-related problems the soil 

deforms primarily in shear and because the shear modulus is usually assumed to be unaffected 

by whether the loading is drained or undrained. 

In the Figures 4.3 and 4.4 the comparisons (in terms of stresses) between the mean Young’s Modulus 

and Young’s Modulus of the cracked section for an energy pile subjected both upon mechanical and  
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thermal load, in both study cases have been pictured. 

 
Figure 4.3: General framework of stress field variation for single pile subjected upon mechanical load. 

Figure 4.4: General framework of stress field variation for single pile subjected upon thermal load. 

 

In the figure (Figure 4.3) is pictured the effect on the stress field of the Young’s Modulus of the 

cracked section for free head pile and pile with a head restraint under mechanical load. As the value 

of the pile-soil stiffness ratio increase the difference between the stress fields given by the two values 
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of  Young’s Modulus tend to zero, in both study situation (free head pile and pile with an head 

restraint). 

In the figure (Figure 4.4) is pictured the effect on the stress field of the Young’s Modulus of the 

cracked section for free head pile and pile with a head restraint under thermal load. As the value of 

the pile-soil stiffness ratio decrease the difference between the stress fields given by the two values 

of  Young’s Modulus increase, in both study situation (free head pile and pile with an head restraint). 

In fact for Λ = 10 the values of the stresses given by 𝐸𝑐𝑚 and those given by 𝐸𝑐𝑟 are much far. 

Regarding the stress field, there are some important differences between mechanical and thermal 

load: 

 The value of pile-soil stiffness ratio play an important role: when the single pile is subjected 

upon mechanical load as the soil become stiffer the values of stress increase, instead the 

opposite happens for single pile subjected upon thermal load; 

 The difference between the values of the stresses given by the given by 𝐸𝑐𝑚 and those given 

by 𝐸𝑐𝑟 are more remarkable in the case of the single pile subjected upon thermal load: this 

means that using 𝐸𝑐𝑟 underrate so much the values of the stresses and the disposition given 

by the equation (9.4) that is valid for mechanical load is not for thermal load. 

 

4.3.2 General framework of the influence of Cracked Young’s Modulus on the displacement 

field 

In the Figures 4.6 and 4.7 the comparisons (in terms of displacements) between the mean Young’s 

Modulus and Young’s Modulus of the cracked section for an energy pile subjected both upon 

mechanical and  thermal load, in both study cases have been pictured. 

There are some points that must be highlighted: 

 In the both case study (single pile subjected upon thermal load and mechanical load) and in 

the both situation (free head pile and pile with an head restraint), as the pile-soil stiffness ratio 

increase the values of the displacements increase; 

 The difference between the displacements field given by 𝐸𝑐𝑟 and that of 𝐸𝑐𝑚, in the both case 

study, is less remarkable than the difference between the stresses field given by the two values 

of Young’s Modulus. 
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Figure 4.5: General framework of displacements field variation for single pile subjected upon mechanical load 

 

Figure 4.6: General framework of displacements field variation for single pile subjected upon thermal load. 

4.3.3 General framework of the influence of nil Poisson ratio on the stress field 

In the Figures 4.7 and 4.8 the difference between the two stress fields given by the values of Poisson 

ratio (𝜈 = 0.2 and 𝜈 = 0) is pictured. There are some points that must be highlighted: 

 The variation of stress fields given by the nil Poisson ration in both cases study is negligible; 

 This analysis has been performed using a value of Young’s Modulus equal to 𝐸𝑐𝑚. 
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Figure 4.7: General framework of stress field variation for single pile subjected upon mechanical load. 

 

Figure 4.8: General framework of stress field variation for single pile subjected upon thermal load. 
 

4.3.4 General framework of the influence of nil Poisson ratio on the displacement field 

In the Figures 4.9 and 4.10 the difference between the two displacement fields given by the two values 

of Poisson ratio (𝜈 = 0.2 and 𝜈 = 0) is pictured. The variation of the values of displacements both in 

the case of mechanical and thermal load, for both case studies, is negligible. 
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Figure 4.9: General framework of displacements field variation for single pile subjected upon mechanical load 

 

Figure 4.10: General framework of displacements field variation for single pile subjected upon thermal load. 

4.3.5 Maximum stress trend with the depth 

After the previous discussions it was also considered appropriate to evaluate, in function of the 

𝐿 𝐷⁄  and Λ, how the position of the maximum total stress along the pile varies. First of all, in the case 

study with the slab (therefore not free in the head) the values of the depth of the maximum total stress 

are always in the upper half of the pole (Figure 4.11) unlike the case without slab. Moreover in both 

cases that as the ground becomes less and less rigid the point of maximum total stress tends to rise 
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(in fact for Λ = 10000 indifferently from 𝐿 𝐷⁄ , the depth of the maximum total stress approaches the 

head of the pile). The dotted line represents the trend of the depth of the maximum total stress obtained 

with a 𝐸𝑐𝑟: in the case of a free pile in the head, the difference with the 𝐸𝑐𝑚 is much more marked 

than in the pile stuck in the head. 

 

 

Figure 4.11: Trends of the the depth of the maximum total stress in the case of free head pile and pile with head 

restraint. 

 

4.3.6 Influence of Cracked Young’s Modulus in the proposed design 

As in the general case, the influence of the cracked Young’s Modulus and the nil Poisson ratio was 

also seen in our real case study in the proposed design (𝐿𝐸𝑃 = 19.2 m). In the Figure 4.12 the trends 

of the mechanical (Figure 4.12 (a-c)) and thermal (Figure 4.12 (b-d)) stress have been portrayed. 

Despite the presence of the slab on the pile head, the influence of the cracked Young’s Modulus is 

more or less the same in both situation (free head pile and pile with head restraint): in fact, the values 
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of the maximum thermal and mechanical stresses obtained with 𝐸𝑐𝑚 are always two times bigger than 

those obtained with 𝐸𝑐𝑟. 

 
Figure 4.12 (a):Influence of the cracked Young’s Modulus in the case of free head pile subjected upon mechanical 

load; (b) case of free head pile subjected upon thermal load; (c) case of pile with a head restraint subjected upon 

mechanical load; (d) case of pile with head restraint subjected upon thermal load. 

 

In the Figure 4.13 (a-d) the trends of mechanical and thermal displacements in the case of free head 

pile and pile with head restraint are shown. The values of thermal displacements in both cases (piles 

subjected upon mechanical and thermal load) tends towards the positive part of the graph when the 

cracked Young’s Modulus is used, but this effect is less remarkable in the pile with head restraint 

(Figure 4.13 (d)). In the case of pile subjected upon mechanical load the values of displacements rise 

in both cases but is more remarkable in the free head pile case (Figure 4.12(a)).  
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Figure 4.13 (a): Influence of the cracked Young’s Modulus in the case of free head pile subjected upon mechanical 

load; (b) case of free head pile subjected upon thermal load; (c) case of pile with a head restraint subjected upon 

mechanical load; (d) case of pile with head restraint subjected upon thermal load. 

 

During the displacement checks, it must be verified that the total movement is less than the allowed 

limit. In the case of a free head pile, the best solution to adopt would be to perform analysis with the 

cracked Young’s Modulus because it gives us higher values. Our case study instead, consists of pile 

with head restraint: in this case, the best choice to adopt is to perform analysis with 𝐸𝑐𝑚 because it 

gives us higher values. 
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4.3.7 Influence of nil Poisson ratio in the proposed design  

In the Figures 4.14 and 4.15 are summarized the trends of the stresses (Figure 4.14) and displacements 

(Figure 4.15) with a Poisson ratio equal to 0.20 and zero. The differences given by the value of the 

Poisson ratio is negligible, as in the general framework. 

 

 
Figure 4.14 (a): Influence of the cracked Poisson ratio in the case of free head pile subjected upon mechanical load; (b) 

case of free head pile subjected upon thermal load; (c) case of pile with a head restraint subjected upon mechanical 

load; (d) case of pile with head restraint subjected upon thermal load. 
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Figure 4.15 (a): Influence of the cracked Poisson ratio in the case of free head pile subjected upon mechanical load; (b) 

case of free head pile subjected upon thermal load; (c) case of pile with a head restraint subjected upon mechanical 

load; (d) case of pile with head restraint subjected upon thermal load. 

 

4.3.8 Concluding remarks 

To perform a single pile analysis in order to verify the serviceability condition there are some points 

that must be highlighted: 

 The Eurocode recommendation to use a cracked Young’s Modulus it is not a safety advantage 

for single piles subjected upon thermal load because they underestimate the value of the 

stresses; 
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 The Eurocode recommendation to use a nil Poisson ratio does it does not provide substantial 

differences in terms of displacements and stresses. 

 

4.4 Serviceability verifications for both design situations 

4.4.1 Tension Limit State 

As mentioned in the chapter 4.1 the the compressive strength in the concrete must be limited in order 

to avoid longitudinal cracks, micro-cracking or high viscosity levels, where these may have 

unacceptable effects on the functionality of the structure. Experimentally it has been noticed that 

when: 

 If the compression stress level in the concrete under the characteristic combination exceeds a 

critical value longitudinal cracks may arise. In the absence of adequate measures (such as 

increasing the concrete cover in the compression or confinement area by transverse 

reinforcement) it may be appropriate to limit the compression stress to the value 

𝝈𝒄 =  𝒌𝟏 ∙ 𝒇𝒄𝒌                                                                                                                                     (9.5) 

where for 𝑘1 the recommended value is 0.6 for environmental class XD, XF and XS; 

 A linear visco-elastic behavior can be assumed if the stress in the concrete below the almost 

permanent loads is less than: 

𝝈𝒄 = 𝒌𝟐 ⋅ 𝒇𝒄𝒌                                                                                                                                     (9.6) 

where for 𝑘2 the recommended value is 0.45. If the stress in the concrete exceeds this value, 

it is recommended to consider a non-linear visco-elastic behavior; 

 It can be admitted that the appearance of cracks or unacceptable displacement are avoided 

when, under the combination of characteristic loads, the traction tension in the armature does 

not exceed  

𝝈𝒔 = 𝒌𝟑 ⋅ 𝒇𝒚𝒌                                                                                                                                     (9.7) 

where for 𝑘3 the recommended value is 0.8. If the stress is due only to imposed deformations, 

as in the case of impeded shrinkage, it is recommended that the traction stress does not exceed  

𝝈𝒔 = 𝒌𝟒 ⋅ 𝒇𝒚𝒌                                                                                                                                     (9.8) 

where for 𝑘4 the recommended value is 1. 

The above reported recommendations (according to Eurocode 2 (EN 1992, 2004)) have been 

estimated following some hypothesis: 

 Preservation of the flatness of the sections; 
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 Equal deformations between steel and surrounding concrete, both in traction and in 

compression; 

 Linear elastic behavior of concrete in compression: both steel and concrete have a linear 

elastic behavior and in fact the steel reaches a maximum tension equal to 𝑓𝑦𝑘, while for 

concrete we consider a linear elastic behavior, as we take stress values very low until reaching 

0.6𝑓𝑐𝑘; 

 The section is considered as not cracked when the tensile stress induced by the bending does 

not exceed (Eurocode 2 (EN 1992, 2004)): 

𝑓𝑐𝑡,𝑒𝑓𝑓 = 𝑓𝑐𝑡𝑚 = 0.3 ∙ 𝑓𝑐𝑘
2 3⁄

                                                                                                           (9.9) 

 Linear elastic behavior of the steel both in traction and in compression. 

In other words, the checks that must be carried out are following the equations (9.6) and (9.8). 

4.4.2 Tension Limit State for the real design case  

Resuming the load combinations for thermal loads (equations (8.7)-(8.9)) the most burdensome 

combination is the characteristic one in the case of single pile modelled with slab on its head (in 

COMSOL model is called “spring foundation”). The checks for the real design case (pile with length 

equal to 28 m) are summarized in the following tables: 

Serviceability check – Mechanical load dominant combination - Heating       

𝝈𝒄,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑐𝑘 
[Mpa] 

𝑓𝑐𝑘 
[Kpa] 

𝑘2 𝒌𝟐 ⋅ 𝒇𝒄𝒌 
[Kpa] 

check 

2922.23 45 45000 0.6 27000 
       

𝝈𝒔,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑦𝑘 
[Mpa] 

𝑓𝑦𝑘 
[KPa] 

𝑘4 𝒌𝟒 ⋅ 𝒇𝒚𝒌 
[Kpa] 

check 

-16441.45 -500 -500000 1 -500000 
 

Table 4.10: Serviceability check for characteristic combination in case of mechanical load dominant during heating. 

 

Serviceability check – Thermal load dominant combination - Heating       

𝝈𝒄,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑐𝑘 
[Mpa] 

𝑓𝑐𝑘 
[Kpa] 

𝑘2 𝒌𝟐 ⋅ 𝒇𝒄𝒌 
[Kpa] 

check 

4833.76 45 45000 0.6 27000 
       

𝝈𝒔,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑦𝑘 
[Mpa] 

𝑓𝑦𝑘 
[KPa] 

𝑘4 𝒌𝟒 ⋅ 𝒇𝒚𝒌 
[Kpa] 

check 

-27196.37 -500 -500000 1 -500000 
 

Table 4.11: Serviceability check for characteristic combination in case of thermal load dominant during heating. 
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Serviceability check – Thermal load dominant combination - cooling       

𝝈𝒔,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑦𝑘 
[Mpa] 

𝑓𝑦𝑘 
[KPa] 

𝑘4 𝒌𝟒 ⋅ 𝒇𝒚𝒌 
[Kpa] 

check 

-805479.15 -500 -500000 1 -500000 
 

Table 4.12: Serviceability check for characteristic combination in case of thermal load dominant during cooling. 

Even if the most burdensome combination is the characteristic one, but is not directly related with the 

opening cracks because is not directly related with the displacement. The combination suitable to 

these type of checks is the quasi-permanent one. In the following tables are summarized the results: 

Serviceability check – Heating thermal load        

𝝈𝒄,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑐𝑘 
[Mpa] 

𝑓𝑐𝑘 
[Kpa] 

𝑘2 𝒌𝟐 ⋅ 𝒇𝒄𝒌 
[Kpa] 

check 

2488.25 45 45000 0.45 20250 
       

𝝈𝒔,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑦𝑘 
[Mpa] 

𝑓𝑦𝑘 
[KPa] 

𝑘4 𝒌𝟒 ⋅ 𝒇𝒚𝒌 
[Kpa] 

check 

-13999.74 -500 -500000 1 -500000 
 

Table 4.13: Serviceability check for quasi-permanent combination in case of heating thermal load. 

 

Serviceability check – Cooling thermal load        

𝝈𝒔,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑦𝑘 [Mpa] 𝑓𝑦𝑘 
[KPa] 

𝑘4 𝒌𝟒 ⋅ 𝒇𝒚𝒌 [Kpa] check 

-406768.96 -500 -500000 1 -500000 
 

Table 4.14: Serviceability check for quasi-permanent combination in case of cooling thermal load. 

With the quasi-permanent combination values all the tension limit state verifications are satisfied. 

 

4.4.3 Cracking Limit State 

The importance of limiting cracks is one of the central aspects of the behavior of reinforced concrete 

structures in operation, as excessive cracks can irreversibly compromise not only the aesthetics of the 

structural elements, but in the long term, even its static function . In aggressive environments, in fact 

the corrosion of the reinforcements could strongly reduce the resistant area of the same thus 

decreasing the resistance of the entire element and modifying the calculation models seen so far. 

Analyzing a tie of reinforced concrete subjected to traction: 
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Figure 4.16: Load –deformation law, in which is described the 1st stage of crack opening (Giordano L.,2016) 

The deformation in a cracked element, however, depends on the area in which it is evaluated and in 

the case 1) the deformation can be evaluated as described above, but in case 2) no.  

 
Figure 4.17: Representative scheme of the zone of crack openings. 

Therefore starting from the fact that the base on which the deformation moves is large and therefore 

we can take more cracks, we will define the average deformation, 𝜀𝑠𝑚, since as we have already said 

the deformation involves more fissures. 

Looking at the Figure 4.16 initially, in the non-cracked case, then we will have a linear elastic 

behavior on the part of the rod up to the point 𝐶𝑟,1 where the first crack is formed: 

𝑁𝑐𝑟,1 =  𝑓𝑐𝑡 ∙ 𝐴0                                                                                                                                            (10.1) 

where 

𝐴0 =  𝐴𝑐 + 𝑛𝐴𝑠                                                                                                                                            (10.2) 

with 𝑛 is the homogenization coefficient. The deformation will be equal to 0.01% and is obtainable 

from the ratio:  
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𝜀𝑐𝑟 =  
𝑓𝑐𝑡

𝐸𝑐𝑚
                                                                                                                                                     (10.3) 

This stage just described is called STAGE I or STAGE OF CONCRETE NOT CRACKED. 

According with aforementioned hypothesis the concrete deformation is equal to that of the steel in 

the area adjacent to the reinforcement as: 

𝜀𝑠 = 𝜀𝑐                                                                                                                                                            (10.4) 

And knowing that the deformations are equal to: 

𝜀𝑠 =  
𝜎𝑠

𝐸𝑠
                                                                                                                                                          (10.5) 

𝜀𝑐 =  
𝜎𝑐

𝐸𝑐
                                                                                                                                                          (10.6) 

And obtaining: 

𝜎𝑠

𝜎𝑐
=  

𝐸𝑠

𝐸𝑐
= 𝑛                                                                                                                                                 (10.7) 

If the normal force increase , obviously exceeding 𝑁𝑐𝑟,1 we have a variation in stiffness, or more 

precisely a decrease in stiffness occurs and there is an increase in the number of cracks. These cracks, 

observing experimentally, stop at almost constant distance and starting from 𝑁𝑐𝑟,1 until the point 

𝑁𝑐𝑟,𝑛, the number of cracks stops to increase (Figure 4.18): 

 
Figure 4.18: Description of the moment in which the cracks start to open, until when they stop (Giordano L.,2016). 
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So at the point 𝑁𝑐𝑟,𝑛, the number of cracks no longer increases and therefore we can ultimately say 

that the number of cracks is not infinite, but finite. The dotted line represents the trend of the steel 

behavior, or that elastic-perfectly plastic. Therefore, after cracking, there is no longer any formation 

of other cracks, but there is an elastic-linear behavior with a rigidity of the tie equal to that of the bar 

without concrete and: 

𝜀𝑠𝑚,𝐼𝐼 = 𝜀𝑠𝑚 + ∆𝜀𝑠𝑚                                                                                                                                    (10.8) 

The contribute of ∆𝜀𝑠𝑚 tension stiffening that describes the stiffening effect of the concrete that is 

between one bar and the other and increases the secant stiffness, while the tangent one always remains 

the same. This stiffening effect is important because the steel is in Stage II in the crack and in Stage 

I in the central area of the section between two cracks. The transition from one stage to another is 

ensured by the adhesion stresses that develop between steel and concrete. This behavior is described 

by the following figure (Figure 4.19): 

 
Figure 4.19: Description of the moment in which the cracking is stabilized (Giordano L.,2016). 

Therefore, in stage I the cracks increase while in stage II the size of the crack increases. 

 

According to Eurocodes the cracks opening has been calculated as: 

𝑤𝑘 = 𝑆𝑟,𝑚𝑎𝑥(𝜀𝑠𝑚 − 𝜀𝑐𝑚)                                                                                                                            (10.9) 

where: 

 𝑤𝑘 is the design crack opening; 
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 𝑆𝑟,𝑚𝑎𝑥 is the distance between two cracks; 

 𝜀𝑠𝑚 is the average deformation of the steel; 

 𝜀𝑐𝑚 is the average deformation of the concrete. 

𝑆𝑟,𝑚𝑎𝑥 has been calculated as: 

𝑆𝑟,𝑚𝑎𝑥 =  𝑘3𝑐 + 𝑘1𝑘2𝑘4 ∙
𝜙

𝜌𝑒𝑓𝑓
                                                                                                                 (11.1) 

where: 

 𝑐 is the cover; 

 𝑘1 coefficient that take into account the adherence property of the steel. The recommended 

value is 0.8 for bars with improved adherence, or, 1.6 for smooth bars. 

 𝑘2 coefficient that take into account the deformation distribution. The recommended value is 

0.5 for bending and 1 for pure traction; 

 𝑘3 recommended value is 3.4; 

 𝑘4 recommended value is 0.425. 
 

and  

𝜀𝑠𝑚 − 𝜀𝑠𝑚 =  

𝜎𝑠 − 𝑘𝑡

𝑓𝑐𝑡,𝑒𝑓𝑓

𝜌𝑝,𝑒𝑓𝑓
(1 + 𝑛 ∙ 𝜌𝑝,𝑒𝑓𝑓)

𝐸𝑠
≥ 0.6

𝜎𝑠

𝐸𝑠
                                                                      (11.2)

 

The allowed limits are summarized in the following table: 

 

Group 

 

Environmental  

conditions 

 

Loads 

combination 

Reinforcement 

Sensitive Less sensitive 

Limit state 𝒘𝒌 Limit state 𝒘𝒌 

A Ordinary frequent Crack open. ≤ 𝑤2 Crack open. ≤ 𝑤3 

quasi-permanent Crack open. ≤ 𝑤1 Crack open. ≤ 𝑤2 

B Aggressive frequent Crack open. ≤ 𝑤1 Crack open. ≤ 𝑤2 

quasi-permanent decompression  Crack open. ≤ 𝑤1 

 

C 

 

More aggressive 

frequent Cracks 

formation 

 Crack open. ≤ 𝑤1 

quasi-permanent decompression  Crack open. ≤ 𝑤1 

Table 4.15: Allowed limit according to Eurocodes for crack opening (Eurocode 2). 

where: 

 𝑤1 = 0.2 𝑚𝑚;   
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 𝑤2 = 0.3 𝑚𝑚; 
 𝑤3 = 0.4 𝑚𝑚. 

 

4.4.4 Cracking Limit State for the real design case 

The checks for the real design case (pile with length equal to 28 m) in case of characteristic 

combination ,are summarized in the following tables: 

Serviceability check – Thermal load dominant combination - cooling  
𝒘𝒌,𝒎𝒂𝒙 [mm] 𝒘𝒌 [mm] check 

0.3 2.49 
 

Table 4.16: Serviceability check for characteristic combination in case of heating cooling load. 

In this case of quasi-permanent combination: 

 

 

Serviceability check – Thermal load dominant combination - cooling  
𝒘𝒌,𝒎𝒂𝒙 [mm] 𝒘𝒌 [mm] check 

0.3 1.50 
 

 
Table 4.17: Serviceability check for quasi-permanent combination in case of heating cooling load. 

In both cases, the crack opening check is not satisfied. Some points must be highlighted: 

 The opening crack verification has been carried out only when the cooling thermal load has 

been applied. This because when a cooling thermal load is applied, within the pile generate a 

tensile stress that easily overcome the concrete tensile strength. 

 Even in this type of check the most burdensome case is the single pile with a spring on its 

head. 

 

4.4.5 Deformation Limit State 

It is necessary to establish adequate deformation limit values, which take into account the nature of 

the structure, the finishes, the partitions and the accessories as well as the function of the structure 

itself. In this type of work the main point is verify that (Eurocode 7): 

𝑤𝑚+𝑡𝑜𝑡 ≤  𝑤𝑎𝑑𝑚 =  
min 𝑠𝑝𝑎𝑐𝑖𝑛𝑔

500
                                                                                                          (11.3) 

In this chapter only single pile analysis have been performed and do not taking into account the group 

pile effect that increase the value of head displacement because take into account the interaction 
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among the piles. In fact, the deformation limit state verifications have been carried out in the chapter 

5. 

4.4.6 Tension Limit State for the proposed design case 

In this chapter the SLS verification for the proposed design case (pile length equal to 19.2 m) have 

been carried out. Firstly, is important clarify some different details: 

 In the proposed design case the pile length is lower than that of the real case and this involves 

that the values of total stresses are lower; 

 In the proposed design the amount of reinforcement has been calculated with the equation 

(7.9) to ensure more ductility and this involves lower crack openings. 

The checks in case of characteristic combination are summarized in the following tables: 

Serviceability check – Mechanical load dominant combination - Heating       

𝝈𝒄,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑐𝑘 
[Mpa] 

𝑓𝑐𝑘 
[Kpa] 

𝑘2 𝒌𝟐 ⋅ 𝒇𝒄𝒌 
[Kpa] 

check 

1890.85 25 25000 0.6 15000 
       

𝝈𝒔,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑦𝑘 
[Mpa] 

𝑓𝑦𝑘 
[KPa] 

𝑘4 𝒌𝟒 ⋅ 𝒇𝒚𝒌 
[Kpa] 

check 

-12521.97 -500 -500000 1 -500000 
 

Table 4.18: Serviceability check for characteristic combination in case of mechanical load dominant during heating. 

Serviceability check – Thermal load dominant combination - Heating       

𝝈𝒄,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑐𝑘 
[Mpa] 

𝑓𝑐𝑘 
[Kpa] 

𝑘2 𝒌𝟐 ⋅ 𝒇𝒄𝒌 
[Kpa] 

check 

3046.63 25 25000 0.6 15000 
       

𝝈𝒔,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑦𝑘 
[Mpa] 

𝑓𝑦𝑘 
[KPa] 

𝑘4 𝒌𝟒 ⋅ 𝒇𝒚𝒌 
[Kpa] 

check 

-19358.54 -500 -500000 1 -500000 
 

Table 4.19: Serviceability check for characteristic combination in case of thermal load dominant during heating. 

Serviceability check – Thermal load dominant combination - Cooling       

𝝈𝒔,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑦𝑘 [Mpa] 𝑓𝑦𝑘 
[KPa] 

𝑘4 𝒌𝟒 ⋅ 𝒇𝒚𝒌 
[Kpa] 

check 

-265716.70 -500 -500000 1 -500000 
 

Table 4.20: Serviceability check for characteristic combination in case of thermal load dominant during cooling. 

The checks in case of quasi-permanent combination are summarized in the following tables: 
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Serviceability check – Heating thermal load       

𝝈𝒄,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑐𝑘 [Mpa] 𝑓𝑐𝑘 [Kpa] 𝑘2 𝒌𝟐 ⋅ 𝒇𝒄𝒌 [Kpa] check 
1585.55 25 25000 0.45 11250 

       

𝝈𝒔,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑦𝑘 [Mpa] 𝑓𝑦𝑘 [KPa] 𝑘4 𝒌𝟒 ⋅ 𝒇𝒚𝒌 [Kpa] check 
-10074.70 -500 -500000 1 -500000 

 

Table 4.20: Serviceability check for quasi-permanent combination in case of heating thermal load. 

 

Serviceability check – Cooling thermal load       

𝝈𝒔,𝒎𝒂𝒙,𝒎+𝒕𝒉 [kPa] 𝑓𝑦𝑘 [Mpa] 𝑓𝑦𝑘 [KPa] 𝑘4 𝒌𝟒 ⋅ 𝒇𝒚𝒌 [Kpa] check 
-124929.20 -500 -500000 1 -500000 

 

Table 4.21: Serviceability check for quasi-permanent combination in case of cooling thermal load. 

In both cases (characteristic combination and quasi-permanent) the tension limit state verifications 

have been satisfied. 

4.4.7 Cracking Limit State for the proposed design case 

The checks in case of characteristic combination are summarized in the following tables: 

Serviceability check – Thermal load dominant combination - cooling  
𝒘𝒌,𝒎𝒂𝒙 [mm] 𝒘𝒌 [mm] check 

0.3 0.63 
 

Table 4.23: Serviceability check for characteristic combination in case of heating cooling load. 

 

Serviceability check – Thermal load dominant combination - cooling  
𝒘𝒌,𝒎𝒂𝒙 [mm] 𝒘𝒌 [mm] check 

0.3 0.25 
 

Table 4.24: Serviceability check for quasi-permanent combination in case of heating cooling load. 

 

4.5 Comparison between both design situations 
In this chapter the comparison between the real design case and the proposed design case for 

characteristic and quasi-permanent combination have been carried out. In the Figure 4.21 – 4.24 

comparisons have been reported in both heating and cooling cases.  

In the Figure 4.21 the main difference regard the thermal stresses: in the case of proposed design as 

aforementioned in the previous chapter the values of stresses are lower than those of the real case. 
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This is very important because according to previous work (Rotta Loria et al.2017) designing a pile 

that is longer than it should not only involve higher displacement but also higher stresses. This could 

be a problem for serviceability limit state verifications, as seen in the previous chapter. 

In the Figure 4.22 the displacement trends have been pictured and some point must be highlighted: 

 The head displacement is higher in the pile with the higher length according to previous works 

(Rotta Loria et al. 2017); 

 Using the characteristic combination provides higher values of displacements, but it is not 

directly related with the SLS verification. 

The same points are also summarized in the Figures 4.23-4.24 for cooling thermal load. 

 
Figure 4.21: Comparative stress trends between two design cases for pile subjected upon thermal and mechanical loads. 



  
79 

Figure 4.22: Comparative displacement trends between two design cases for pile subjected upon heating thermal and 

mechanical loads. 

 

Figure 4.23: Comparative stress trends between two design cases for pile subjected upon cooling thermal and 
mechanical loads. 
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Figure 4.24: Comparative displacement trends between two design cases for pile subjected upon cooling thermal and 

mechanical loads. 

 

4.6 Concluding remarks 
In order to provide a complete design procedure for serviceability limit state verifications of energy 

piles subjected to mechanical and thermal loads, according with Eurocodes, the main conclusions 

have been pointed out: 

 The Eurocodes dispositions for elastic analysis (nil Poisson ratio and Young’s Modulus equal 

to that of the cracked section) underrate the thermal stresses and this represent a problem for 

the structure during its life. 

 The effect of cracked Young’s modulus is also visible in the thermal displacement: with a 

lower value of Young’s Modulus the displacement decrease; 

 The effect of the nil Poisson ratio is negligible; 

 Even if the most burdensome load combination is the characteristic one, the verifications must 

be carried out with the quasi- permanent combination because is directly related with the 

equations provided by Eurocodes; 

 When the verifications have been carried out with the characteristic combination there is the 

risk to increase the amount of the reinforcement, so overestimating it. 

 The reinforcement design method that ensure more ductility ensure the lower cracks opening. 
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Chapter 5 

Pile group effect 
During the last fifty years, the interaction factor method has been widely used to address the vertical 

displacement and the increased deformation of conventional pile groups subjected to mechanical 

loads when group effects and interactions occur among the piles. In recent years, the interaction factor 

method has been extended to address energy pile groups subjected to thermal loads (Rotta Loria, 

2018). Prior this work no application and no guideline were provided, in order to take into account 

the problems related with the analytical model and no application and no guideline were provided, in 

order to take into account the problems related with the analytical models and to quantify the 

approximation of them than 3D-FEM analysis. 

 

5.1 Introduction 
During the last decades the interaction factor method proposed by Poulos (1968) has been widely 

used to perform the analysis of the vertical displacement and increased deformation of pile groups 

caused by mechanical loads when group effects and interactions are present. This method assumes 

that the vertical displacement of any pile group, e.g., under serviceability conditions, may be 

estimated through elastic theory and superposition of effects by knowing: 

 the displacement interaction relationship, quantified by an interaction factor, among two piles 

of the group considered in an isolated pair; 

 the vertical displacement of one reference pile in the group that is the source of interaction for 

the receiver pile in the pair; 

 the loads applied to the piles.  
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The expediency and capability of this method to model the problem previously described, which, 

although being an approximation of reality, is often considered for design purposes, have played a 

major role for its diffusion. 

Originally, design charts for floating and end-bearing conventional piles have been proposed by 

Poulos (1968) and Poulos and Mattes (1974), respectively, to serve the aforementioned method in 

estimating the interaction factor. Afterward, analytical models have been proposed for floating and 

end-bearing conventional piles by Randolph and Wroth (1979b) and Randolph and Wroth (1979a), 

respectively. Another formulation of these models by Chow (1986) and an improvement related to 

the definition of the correct interaction factor by Mylonakis and Gazetas (1998) have been later 

presented. 

The analytical models have been developed due to their capability of estimating the interaction factor 

in a broader range of conditions and performing more comprehensively and flexibly than the charts 

in the analysis of pile groups. In these models, differently from the original method proposed by 

Poulos (1968), the interaction factor has been defined with reference to the vertical displacement of 

a source pile assumed to be isolated. The main reason for this choice has been the possibility to 

estimate the vertical displacement caused by mechanical loads through closed form solutions. 

In recent years, the interaction factor method has been extended and proven to be a suitable tool for 

estimating the vertical displacement of energy piles subjected to thermal loads alone or in conjunction 

with mechanical load. (Rotta Loria, 2018). 

Design charts have been proposed for floating and end-bearing energy piles by Rotta Loria and Laloui 

(2016b) and Rotta Loria and Laloui (2017a). The design charts and interaction factor method for 

energy piles have been developed with reference to the vertical displacement of an isolated energy 

pile. The main reason for this choice has been that the vertical displacement of piles subjected to 

thermal loads cannot be determined through closed form solutions, i.e., running a numerical analysis 

is required. Therefore, considering the source pile as isolated allows for the use of a simpler analysis 

(e.g., axisymmetric) than that required for a pile in a pair (e.g., three-dimensional), and preserves the 

opportunity of a simplified procedure as the interaction factor method that would otherwise disappear. 

The previous study (Rotta Loria, 2018) addresses the development of two analytical performance 

models, i.e., a layer model and a continuous model, capable of the following: 

 estimating the vertical displacement with depth of a thermally loaded source pile and receiver 

pile in a pair starting from the analysis of a single isolated pile;  

 defining the interaction factor with depth between these piles regardless of the design 

situation; 
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 analyzing the vertical displacement with depth of any energy pile groups using the interaction 

factor method. 

Prior this work, design charts and basic case study have been developed (pile embedded in a single 

soil layer), without identifying the limits of the various analytical models. In fact, one of the goals of 

this chapter is identify the best analytical model and quantify the approximation than a 3D-FEM. 

 

5.2 Interaction factor concept 

5.2.1 The problem: a group of two energy piles 

The simplest situation to describe the interaction among energy piles group can be described by two 

energy piles in a deep soil deposit. In the considered problem, the energy piles are: 

 subjected to a thermal load; 

 free of superstructure mechanical loads; 

 free to move vertically at their head. 

The first point is a result of the geothermal operation of these elements. Cooling and/or thermal energy 

storage operations of energy piles can be associated to positive temperature variations applied to these 

elements. Heating operations of energy piles can be associated to negative temperature variations 

applied to these elements. Reference to a situation in which no superstructure mechanical load is 

applied to the energy piles (second point) allows focusing on the impact of the thermal load on the 

response of these elements. The third point (pile free to move at their head) has been generally 

accounted for in the analysis of conventional pile groups subjected to mechanical loads for estimates 

of the vertical displacement on the safety side, because as explained in the first chapter, the presence 

of the slab reduce the displacements. This approach appears to also be valuable for displacement 

analysis of energy pile groups and is considered in the following. 

5.2.2 Idealization 

The previously described scheme is idealized considering the following assumptions. The energy 

piles are two identical isotropic, homogeneous and uniform cylindrical solids. The soil is assumed to 

be a semi-infinite, isotropic, homogeneous and uniform mass. The soil is semi-infinite mass 

characterized by a layer surrounding the lateral area of the energy piles and a layer located below the 

toe of the energy piles where predominantly end-bearing energy piles are considered. The same 

uniform temperature variation is applied along the length of each of the energy piles. Initially, in 

order to understand the interaction among the piles under thermal load, no mechanical load is applied 

to the energy piles and no head restraint is present (i.e., perfectly flexible slab) in order to evaluate 
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the most burdensome situation. The energy piles are characterized by a linear thermo-elastic behavior, 

whereas the soil is characterized by a linear elastic behavior (i.e., the soil is an infinite heat reservoir 

that remains at a fixed constant temperature). No slip or yielding occurs between each of the energy 

piles and the adjacent soil (perfect contact between the pile and soil is assumed), and thus, reference 

is made to loading situations in which elastic (i.e., reversible) conditions prevail. The application of 

the temperature variation to the energy piles involves a thermally induced deformation of these 

elements. An expansion of the energy piles is observed for cooling and/or thermal energy storage 

operations of these elements (positive temperature variations applied to the energy piles) whereas a 

contraction of the energy piles is observed for heating operations of these elements (negative 

temperature variations applied). In the former case, the upper portion of each energy pile displaces 

upwards, whereas the lower portion displaces downwards around a setting characterized by zero 

thermally induced displacements. In the latter case, the upper portion of each energy pile displaces 

downwards, whereas the lower portion displaces upwards.  

The considered elastic assumption involves that the null point does not move depending on whether 

positive or negative temperature variations are applied to the energy piles (Rotta Loria, 2018). 

Hence, the displacement variation along the length of these elements for the same temperature 

variation associated to their heating or cooling is the same in absolute value (Rotta Loria, 2018) due 

to the application of the elastic theory. The displacement field generated in each of the energy piles 

is transmitted in the adjacent soil. Interaction of the displacement fields generated by the thermally 

induced deformation of the energy piles thus occurs. 

The total deformation field of a group of two energy piles subjected to a thermal variation can be 

representatively decomposed through the elastic principle of superposition of effects in two individual 

schemes. 

 
Figure 5.1: The modelling approach (Rotta Loria et al.2017). 
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Figure 5.1 provides an example of this decomposition for a situation in which a positive temperature 

variation is applied to predominantly floating and end-bearing energy piles. This decomposition 

approach has been proved to be suitable for describing the displacement interaction between 

conventional piles subjected to mechanical loads (Poulos and Davis, 1980; Fleming et al., 2008). 

5.2.3 The interaction factor 

The additional displacement of a pile due to the loading (e.g., thermal) of an adjacent pile or in other 

words given by the interaction among the piles is expressed in function of an interaction factor Ω, 

where: 

Ω =  
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑝𝑖𝑙𝑒

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒 𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑝𝑖𝑙𝑒
=

𝑤𝑗

𝑤𝑖
                                                        (11.3) 

where 𝑤𝑗  is the vertical head displacement of a receiver pile in a pair, whereas 𝑤𝑖 is the vertical head 

displacement of a single isolated pile subjected to the same load applied to the source pile in the 

elementary unit. This definition of the interaction factor relates the effect of loading a source pile on 

a receiver pile in a pair with the response of the source pile in an isolated case.  

In the Rotta Loria’s work (Rotta Loria, 2018) the typical trends of interaction factor both for 

mechanical load and thermal have been presented and pictured in the Figure 5.2 that presents the 

typical evolution of the interaction factor with a normalised centre-to-centre distance between two 

predominantly floating piles in the case of thermal and mechanical loading.  

 
Figure 5.2: Displacement interaction between two piles in a deep soil layer (Rotta Loria, 2018). 
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The interaction decreases with increasing centre-to-centre distance between the piles. Mechanical 

loading causes a more pronounced displacement interaction between the piles compared to thermal 

loading. 

Figure 5.3 presents the typical evolution of the interaction factor with a normalised centre-to-centre 

distance between the piles in the elementary units previously considered. The interaction factor for 

predominantly end-bearing energy piles resting on infinitely rigid soil strata is greater than that for 

predominantly floating energy piles embedded in uniform soil deposits (on average 43% higher) 

(Rotta Loria, 2018). This phenomenon is generally observed for any pile spacing and pile slenderness 

ratio. 

 
Figure 5.3: Interaction factor for predominantly floating and end-bearing energy piles resting on infinitely rigid soil 

strata and socketed in uniform soil deposits, respectively, under the application of a thermal load ((Rotta Loria, 2018) 

The above figure show that the interaction factor for energy piles resting on finitely rigid soil strata 

generally lies between the interaction factor for energy piles resting on infinitely rigid soil strata and 

the interaction factor for energy piles surrounded by deep uniform soil deposits.  

These schemes reported in Rotta Loria’s work (Rotta Loria, 2018) are referred to a generic situations, 

but are useful to understand the pile group effect and for approaching to the study cases analyzed in 

this work.  
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5.3 The interaction factor method for energy pile groups based on analytical 

models 

5.3.1 Idealization, hypothesis and considerations 

The schematization of the problem described above and the hypotheses and considerations that have 

been widely used in developments of the interaction factor method for conventional piles (Poulos and 

Davis, 1980; Fleming et al., 2008) have been extended to piles subjected to thermal loads by Rotta 

Loria (Rotta Loria, 2018). 

The piles are identical, isotropic, homogeneous and uniform cylindrical solids. The soil is a semi-

infinite isotropic mass assumed to be composed of a unique homogeneous layer or different horizontal 

layers. The aforementioned assumptions represent typical approximations of reality employed in 

engineering theory. Despite they are approximations, when applied with judgement, however, they 

can adequately represent real problems (Poulos and Davis, 1980). 

A uniform temperature variation is applied to the source pile and a vertical mechanical load may be 

applied at the pile head as well. The temperature variations observed within energy piles are not 

uniform, but can be considered uniform by choosing representative values of the temperature field 

within the cross-section and along the length of the pile ((Rotta Loria, 2018). The consideration of a 

constant mechanical load applied at the pile head follows the widely used assumption of a negligible 

contribution of the uppermost slabs or other shallow foundations in the bearing capacity of piles for 

preliminary analyses and designs on the safety side (Poulos and Davis, 1980; Bowles, 1988; Fleming 

et al., 2008). No head restraint is present (i.e., infinitely flexible slab). This assumption conservatively 

analyses the vertical displacement of piles according to the widely used assumption of a negligible 

contribution of the uppermost slabs or other shallow foundations in the deformation of piles, at least 

for preliminary analyses and designs (Poulos and Davis, 1980; Bowles, 1988; Fleming et al., 2008). 

No slip or yielding occurs between the piles and the adjacent soil (i.e., perfect contact between the 

pile and soil is assumed). 

The piles are characterized by a linear thermo-elastic behavior. The soil is characterized by a linear 

elastic behavior. Loading situations in which reversible conditions prevail are thus assumed, 

according to the previous hypothesis of no slip or yielding between the piles and the adjacent soil. 

Since the elastic theory has been used ,the aforementioned hypothesis imply that the effect of thermal 

and mechanical loads can be superimposed at any time, based on the principle of superposition of 

effects, via separate analyses addressing thermal and mechanical loads, providing a simplified 

analysis tool. Considering the soil described by an elastic behavior involves assuming it is an infinite 

heat reservoir that remains at a constant fixed temperature. Hence, no influence caused by any 
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temperature sensitivity of the soil or thermal interaction between the source pile and the receiver pile 

is considered.  

Only in situations where the thermal expansion coefficient of the soil is higher than that of the piles 

(𝑋 > 1) the thermally induced soil deformation have a marked effect on the pile interaction, 

especially at successive stages of geothermal operations of the piles (Rotta Loria, 2018).  

In these situations, a simplified yet valuable approach for capturing the group displacement via the 

design charts has been proven to result from interaction factors still referring to pile pairs in isothermal 

soil (Rotta Loria, 2018). This situation happens in the case study analyzed in this work in the latter 

soil layer (Layer D); in fact, one of the goal of this chapter is quantify this effect on stress and 

displacement field. 

The displacement field within the piles is assumed to be homogeneous. This hypothesis is justified in 

view of the notable stiffness that usually characterizes energy piles compared to that of the soil. The 

effect of bending moments on the displacement field of the piles and the soil is neglected. This 

consideration is justified in view of the small impact of bending moments on the vertical displacement 

of the piles in the considered problem (Rotta Loria, 2018). 

 

5.3.2 The solution approach 

To provide a simplified analysis method tool during the design situation to quantify the group pile 

effect, a semi-analytical analysis has been performed. This (semi-analytical) analysis may be 

similarly applied to pile groups subjected to vertical mechanical loads. It consists of five key steps: 

1. The analysis of a single isolated source pile subjected to a thermal variation define the vertical 

displacement, 𝑤𝑖(𝑧), and the shear stress, 𝜏𝑖(𝑧), along the pile shaft. This analysis can be performed 

with any of the numerical methods currently available for this aim, although preferably with the finite 

element method (with an increasing of the computational time) (Figure 5.4.1 (a)); 

2. The calculation of the vertical displacement field of the soil, 𝑤(𝑟, 𝑧), at any given radial distance, 

𝑠, from the axis of the previously analyzed single isolated pile subjected to a temperature variation, 

and along the vertical coordinate, 𝑧 (Figure 5.4.1(b)). This step can be performed using the 

approximate pile-soil interaction factor as: 

Ω̃(𝑟, 𝑧) =
𝑤(𝑟, 𝑧)

𝑤𝑖(𝑧)
                                                                                                                                        (11.7) 
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3. The analysis of the vertical displacement, 𝑤𝑗(𝑠, 𝑧), of a receiver pile located at a spacing 𝑠 = 𝑟 + 𝑅 

(where 𝑅 = 0.5 𝐷 is the pile radius) from the source pile that was previously considered to be isolated. 

(Figure 5.4.1 (c)); 

 
Figure 5.4.1: The approach for analyzing the vertical displacement of general energy pile groups (Rotta Loria 2018). 

Figure 5.4.1(a): Analysis of single isolated pile; Figure 5.4.1(b): Calculation of vertical displacement of the soil and 

approximate interaction factor; Figure 5.4.1(c): Analysis of vertical displacement of receiver pile. 

4. The determination of the corrected pile-soil-pile interaction factor as (Randolph and Wroth, 1979b; 

Mylonakis and Gazetas, 1998; Rotta Loria, 2018) (Figure 5.4.2 (a)): 

Ω(𝑠, 𝑧) =
𝑤𝑗(𝑠, 𝑧)

𝑤𝑖(𝑧)
                                                                                                                                       (11.8) 

5. The analysis of the vertical displacement of any pile, 𝑗, composing a general group with a total 

number of piles, 𝑛𝐸𝑃, in which some or all of the piles may be subjected to a temperature variation 

(as in the case study analyzed in this work) as (Rotta Loria, 2018): 

𝑤𝑗(𝑧) = 𝑤1(𝑧) ∑ Δ𝑇𝑖Ω𝑖𝑗(𝑠, 𝑧)                                                                                                            (11.9)

𝑖=𝑛𝐸𝑃

𝑖=1

 

where 𝑤1(𝑧) is the vertical displacement along the length of a single isolated pile per unit temperature 

variation, Δ𝑇𝑖 is the applied temperature variation to pile 𝑖 and Ω𝑖𝑗 is the interaction factor for two 

piles in a pair corresponding to the spacing between pile 𝑖 and pile 𝑗 (Figure 5.4.2 (b)). 

This procedure described above will be valid for both analytical models that will be described in the 

following chapters. Therefore the formulation reported in equation (11.9) will be valid for both semi-

analytical methods to estimate the total displacement for each pile due to the own displacement due 

to the applied loads and the interaction with other piles in turn subjected to their own reference loads. 
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Figure 5.4.2: The approach for analyzing the vertical displacement of general energy pile groups (Rotta Loria, 2018). 

Figure 5.4.2 (a): Definition of corrected interaction factor; Figure 5.4.2 (b): Analytical process to define the pile group 

effect. 

 

5.4 Layer model 

5.4.1 Soil vertical displacement and approximate pile-soil interaction factor 

The present analytical model is based on an important assumption, or that the soil around the lateral 

surface of the piles subjected to loads that induce vertical deformation may be idealized as consisting 

of concentric cylindrical elements, with shear stresses distributed on the surface of each element (cf., 

Figure 5.5 (a)). To satisfy the vertical equilibrium, the entity of the shear stress on each cylindrical 

element must decrease inversely with the vertical surface area of the element (Cooke et al., 1981). 

The equation (12.1) describe the equilibrium equation along 𝑧 written for a single element using the 

cylindrical coordinate system (𝑟, 𝜃, 𝑧), in which the effects of volume forces due to body loads are 

neglected: 

𝜕𝜏𝑟𝑧

𝜕𝑟
+

𝜏𝑟𝑧

𝑟
+

𝜕𝜎𝑧𝑧

𝜕𝑧
= 0                                                                                                                                (12.1) 

where 𝜏𝑟𝑧 =  𝜏 is the shear stress increment and 𝜎𝑧𝑧 = 𝜎𝑧 is the vertical stress increment. The 

application of thermal loads in the context of energy piles assumes that 𝜕𝜏 𝜕𝑟⁄ ≫ 𝜕𝜎 𝜕𝑧⁄ . This means 

that the variation of τ along 𝑟 is much greater than that of 𝜎 along 𝑧 and verifying this situation 

through finite element analysis emerged that this phenomenon characterize those regions of soil in 

the vicinity of the pile shaft.  

From this consideration, it follows that equation (12.1) has been simplified by Frank (1975) (Rotta 

Loria, 2018) and integrated in order to provide the general solution for the shear stress in the soil: 
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𝜏(𝑟, 𝑧) =
𝜏𝑖(𝑧)𝑅

𝑟
                                                                                                                                          (12.2) 

The shear stress may be considered to be constant with depth in conventional applications of piles 

subjected to mechanical loads. This assumption may be valid because the vertical deformation of 

piles subjected to mechanical loads can be considered in a plane state of strain, 𝜀𝑧 = 0) or with 

simpler words, independent of the depth. 

The application of a mechanical load at the head of piles involves an approximate constant 

distribution of the vertical displacement with depth. This consideration is particularly applicable to 

the analysis of rigid piles with a predominantly friction character but is also acceptable for most piles. 

The shear stress varies significantly with depth in innovative applications of piles subjected to thermal 

loads, i.e., energy piles. This means that the vertical deformation of piles subjected to thermal loads 

is crucially dependent on the depth and thus not associated with a plane state of strain. 

The application of a thermal load along the length of piles involves an approximate linear distribution 

of the vertical displacement with depth and at worst a notably non-linear distribution of the vertical 

displacement. The latter condition occurs in the case of the energy piles with both great 

compressibility and slenderness. This consideration is applicable to the analysis of both rigid and 

deformable piles whether they have a predominantly frictional or end-bearing character. 

 
Figure 5.5: The layer model schematization: (a) the deformation mode of a layer of cylindrical elements characterizing 

any pile-soil system and (b) the effect due to deformation mode (Rotta Loria, 2018). 
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The shear strain associated with the aforementioned shear stress can be computed according to the 
elastic theory as 

𝛾 =
𝜕𝑤

𝜕𝑟
+

𝜕𝑢

𝜕𝑧
= −

𝜏

𝐺𝑠𝑜𝑖𝑙
                                                                                                                             (12.3) 

where 𝑢 is the radial displacement and 𝐺𝑠𝑜𝑖𝑙 is the shear modulus of the soil. In this model, both 𝑢 

and 𝑤 depend only on 𝑟 and 𝑧, respectively, and not on the angular coordinate, 𝜃. This aspect arises 

because there is an invariance of the displacement field around the latter axis. Moreover, because no 

twist characterizes the pile, there is no orthoradial component, 𝑣, in the displacement field. The 

application of thermal loads in the context of energy piles is based on  𝜕𝑤 𝜕𝑟⁄ ≫ 𝜕𝑢 𝜕𝑧⁄ .  This means 

that the variation of 𝑤 along 𝑟 is much greater than that of 𝑢 along 𝑧 and verifying this situation 

through finite element analysis emerged that this phenomenon characterizes regions of soil in the 

vicinity of the pile shaft. Together with the previous assumption related to a negligible contribution 

of 𝜕𝜎 𝜕𝑧⁄  represent, physically,  a negligible interaction between different soil layers with depth (cf., 

Figure 5.5 (b)). 

From the above consideration and the combination of equations (12.2) and (12.3), the first-order 

partial differential equation is found: 

𝜕𝑤

𝜕𝑟
= −

𝜏𝑖(𝑧)𝑅

𝑟𝐺𝑠𝑜𝑖𝑙
                                                                                                                                            (12.4) 

Integration of equation (12.4) provides the general solution for the vertical displacement of the soil 

(Randolph and Wroth, 1978) as: 

𝑤(𝑟, 𝑧) = 𝑤𝑖(𝑧) −
𝜏𝑖(𝑧)𝑅

𝐺𝑠𝑜𝑖𝑙
𝑙𝑛 (

𝑟

𝑅
)                                                                                                            (12.5) 

5.4.2 Receiver pile vertical displacement and corrected pile-soil-pile interaction factor 

The presence of a receiver pile usually decreases the displacement of the soil (Mylonakis and Gazetas, 

1998) and this effect becomes more pronounced as the relative stiffness of the receiver pile increases 

than to that of the soil. Considering the equation that describe the vertical equilibrium of an element 

of a receiver pile whose axis is located at a spacing 𝑠 from that of a corresponding element of the 

thermally loaded source pile gives the following equation (cf., Figure 5.6): 

(𝜎𝑧 (𝑧 −
𝑑𝑧

2
) − 𝜎𝑧 (𝑧 +

𝑑𝑧

2
)) 𝐴𝐸𝑃 + ∬ 𝐾𝑠 (𝑤(𝑟,̃ �̃�) − 𝑤𝑗(𝑠, �̃�)) 𝑑𝑆 = 0                                     (12.6) 
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where 𝐾𝑠 is the stiffness characteristic of the surrounding soil medium calculated as: 

𝐾𝑠 ≈
1.3𝐺𝑠𝑜𝑖𝑙

𝜋𝐷
(

𝐸𝐸𝑃

𝐸𝑠𝑜𝑖𝑙
)

−
1

40
 (1 + 7 (

𝐿

𝐷
)

−0.6

)                                                                                           (12.7) 

From the mathematical point of view the rigorous solution of equation (12.6) would require 

integration of (𝑤(�̃�, �̃�) − 𝑤𝑗(𝑠, �̃�)) over 𝑑𝑆 because of its non-homogeneity along the perimeter of 

the cross-section and the height of the element. In order to solve this equation an assumption has been 

done, considering a value of displacement 𝑤(�̃�, �̃�) = 𝑤(𝑟, 𝑧), where 𝑟 = 𝑠 − 𝑅. Three main 

advantages arise from this choice:  

 the average shear stress that is mobilized over the vertical external surface of the elements of 

a receiver pile is greater compared to that mobilized in the soil at a distance 𝑠 from a single 

isolated pile is implicitly considered for through a conservative approach;  

 the non-homogeneity of the displacement that is mobilized over the vertical external surface 

of the elements of a receiver pile is implicitly considered; 

 Integrating the displacement 𝑤(�̃�, �̃�) − 𝑤𝑗(𝑠, �̃�)) over 𝑑𝑆 can be avoided with a simpler 

expedient resolution of equation (12.6). Based on these considerations, equation (12.6) 

becomes: 

𝑑𝜎𝑧

𝑑𝑧
𝐴𝐸𝑃𝑑𝑧 − 𝜋𝐷𝐾𝑠 (𝑤(𝑟, 𝑧) − 𝑤𝑗(𝑠, 𝑧)) 𝑑𝑧 = 0                                                                   (12.8) 

 
Figure 5.6: Schematization of the vertical equilibrium of a generic element of a receiver pile (Rotta Loria, 2018). 
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Using the constitutive equations, equation (12.8) can be rewritten in the form of the second-order 

differential equation governing the equilibrium of each element of the receiver pile (Mylonakis and 

Gazetas, 1998) as: 

𝜕2𝑤𝑗

𝜕𝑧2
− 𝜆𝑙𝑡

2 (𝑤(𝑟, 𝑧) − 𝑤𝑗(𝑠, 𝑧)) = 0                                                                                                       (12.9) 

Where 𝜆𝑙𝑡 is the load-transfer coefficient given by the following equation: 

𝜆𝑙𝑡 = √
𝜋𝐷𝐾𝑠

𝐴𝐸𝑃𝐾𝐸𝑃
                                                                                                                                            (13.1) 

In general the load-transfer coefficient for each soil layer is constant. When the piles are no embedded 

in a single soil layer, but in a layered soil the values of the load-transfer coefficient could be the mean 

only when the parameters are much close each other. The previous statement is not valid when a soil 

layer with a completely different parameters is present, as in the case study analyzed in this work, 

and in this case the equation (12.9) becomes: 

𝜕2𝑤𝑗

𝜕𝑧2
− 𝜆(𝑧)𝑙𝑡

2 (𝑤(𝑟, 𝑧) − 𝑤𝑗(𝑠, 𝑧)) = 0                                                                                                 

In principle, the presence of the relative displacement (𝑤(𝑟, 𝑧) − 𝑤𝑗(𝑠, 𝑧)) in equation (12.9) is not 

in accordance with the no slip hypothesis presented in Section 5.2.2. However, in practice, it can be 

associated with the non-homogeneous distribution of the shear stress around a receiver pile in a pair 

and more generally around any piles in a group. 

The equation (12.9) being a second order equation, needs two boundary conditions to be solved. The 

first boundary condition is chosen based on the consideration that because the pile is free to move 

vertically at its head no vertical stress will be present in this setting. This condition can be 

mathematically expressed through the constitutive equation as (Mylonakis and Gazetas, 1998) 

𝜕𝑤𝑗

𝜕𝑧
|

𝑧=0
= 0                                                                                                                                                  (13.2) 

The second boundary condition is chosen depending on where the shear stress is equal to zero along 

the soil profile adjacent to a receiver pile, the displacement of this pile is the same as that of the soil 

(i.e., 𝑤(𝑟, 𝑧) − 𝑤𝑗(𝑠, 𝑧) = 0). Since the layer model accounts for no interaction between the different 

layers of elements, it may be considered that the location where zero thermally induced shear stress 
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occurs coincides with the location where zero thermally induced vertical displacement occurs (Rotta 

Loria, 2018). This phenomenon arises because, for compatibility, upward, downward and zero 

vertical displacements will be caused if and only if upward, downward and zero shear stresses are 

applied at the corresponding element in the adjacent soil. The aim is know the location where the 

vertical displacement of the soil is 𝑤(𝑟, 𝑧) = 𝑤𝑗(𝑠, 𝑧) = 0 in order to define the second boundary 

condition. This location can be determined from the analysis of a single isolated pile according to 

equation (12.5). The discussed boundary condition can be mathematically expressed as 

𝑤𝑗(𝑠, 𝑧 = 𝑧|𝑤=0) =  𝑤(𝑟, 𝑧 = 𝑧|𝑤=0) = 0                                                                                             (13.3) 

Equation (12.9), together with the boundary conditions expressed in equations (13.3) and (13.2), can 

calculate the values of 𝑤𝑗(𝑠, 𝑧). These values finally determine the values of the corrected pile-soil-

pile interaction factor,Ω(𝑠, 𝑧).. 

 

5.5 Continuous model 

5.5.1 Soil vertical displacement and approximate pile-soil interaction factor 

The assumption in this model is that the continuous distribution of the shear stresses at the pile shaft 

can be approximated as a distribution of point loads acting at the center of the elements costituting 

these piles as if they were linear entities generated by nodes (cf., Figure 5.7 (a)). At some distance, 

the effects of such stresses and point loads are indistinguishable (Chow, 1986). 

The aforementioned assumption implies that the equations of Mindlin (1936) for a vertical point load 

acting in a semi-infinite, homogeneous and isotropic elastic half-space being exploited to determine 

through the elastic principle of superposition of effects the vertical displacement caused by a 

distribution of point loads acting on a single isolated source pile, thermally loaded. The vertical 

displacement of the soil can be defined as (Mindlin, 1936): 

 

 

 

 

 

              (13.4) 

where 𝑤𝑘𝑙 is the vertical displacement of any soil node, 𝑘, caused by a point load, 𝑃𝑙 = 2𝜋𝑅𝐿𝑠𝑒𝑔𝜏𝑙, 

applied to the node, 𝑙, of a source pile (for which 𝐿𝑠𝑒𝑔 is the length of the element and𝜏𝑙 is the shear 



  
96 

stress acting along it). The parameter 𝑚 indicates the elements of the source pile from which the 

effects of the point loads are calculated; 𝑅1 = √𝑟𝑘
2 + (𝑧𝑘 − 𝑧𝑙)2(for which 𝑟𝑘 is the horizontal 

distance between node 𝑙 at which the load is applied and node 𝑘 at which the influence is considered, 

𝑧𝑘 is the depth of node 𝑘, and 𝑧𝑙 is the depth of node 𝑙); and 𝑅2 = √𝑟𝑘
2 + (𝑧𝑘 + 𝑧𝑙)2 . 

Point loads acting on the nodes of a pile that is effectively considered to be a line avoids the need for 

integrating (analytically and numerically) the equations of Mindlin (1936) along and around the 

circumference of the elements that constitute the pile. This approximation has been verified through 

finite element analyses, results in a notable expediency and comparable accuracy of the analysis. 

The equations of Mindlin (1936) involve that the continuous model allows the vertical displacement 

of stratified (non-homogeneous) soil deposits to be estimated only approximately. However, an 

effective and accurate procedure has been shown in this context to consider a mean value of the shear 

modulus of the soil layer where the displacement is calculated at any soil node, 𝑘, and the shear 

modulus of the soil layer where the point load is applied at any pile node, 𝑙 (Poulos and Davis,1980) 

(Rotta Loria, 2018). 

Equation (13.4) highlights that the present continuous model considers the effects of the shear stress 

acting on any element of a source pile on all of the elements of the surrounding soil in a “continuous” 

way, regardless of the layer model. In fact in the former model the interaction between the studied 

layers (for each step) is taken into account (cf., Figure 5.7 (b)). 

 
Figure 5.7: Schematization of continuous model: (a) Mindlin’s problem (Mindlin, 1936) and (b) the extension of this 

problem to that of a single isolated pile subjected to thermal loading (Rotta Loria, 2018). 
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5.5.2 Receiver pile vertical displacement and corrected pile-soil-pile interaction factor 

Differently from layer model, in the present context, in order to address the hypotheses and 

considerations characterizing the continuous model another second boundary condition have been 

studied (Rotta Loria, 2018). As mentioned above, unlike the layer model, the continuous model 

accounts for interaction between the different layers of elements. According to this hypothesis and to 

continuum mechanics theory, it may be considered that the location where zero thermally induced 

shear stress occurs does not coincide with the location where zero thermally induced vertical 

displacement occurs. The location where the vertical displacement of the soil is 𝑤(𝑟, 𝑧) = 𝑤𝑗(𝑠, 𝑧) ≠

0 is the first step to define the second boundary condition. To overcome the issue that the specific 

value of 𝑤(𝑟, 𝑧) ≠ 0 and the associated location where 𝜏(𝑟, 𝑧) = 0 is not known a priori, the 

equations of Mindlin (1936) can be exploited to determine through the elastic principle of 

superposition of effects the shear stress caused by a distribution of point loads acting on a single 

isolated source pile. This approach, which take into account the continuous character of the present 

model, allows for the direct determination of the location in the soil where 𝜏(𝑟, 𝑧) = 0 and thus where 

𝑤(𝑟, 𝑧) = 𝑤𝑗(𝑠, 𝑧) ≠ 0 from the analysis of a single isolated pile. The shear stress in the soil can be 

defined as (Mindlin, 1936): 

 

 

 

 

 

             (13.5) 

 

where 𝜏𝑘𝑙  is the shear stress acting on any soil node, 𝑘, caused by a point load, 𝑃𝑙, applied to the node, 

𝑙, of a source pile. The discussed boundary condition can be mathematically expressed as: 

𝑤𝑗(𝑠, 𝑧 = 𝑧|τ=0) = 𝑤(𝑟, 𝑧 = 𝑧|τ=0)                                                                                                        (13.6) 

Equation (12.9), together with equations (13.2) and (13.6), can calculate the values of 𝑤𝑗(𝑠, 𝑧). As 

before, these values can determine the values of. Ω(𝑠, 𝑧). The shear stress distribution that is found 

through equation (5.18) is an approximation of the actual shear stress distribution along the shaft of 

a receiver pile in a pair. The actual shear stress distribution caused by loading a source pile on a 

receiver pile in a pair may be determined rigorously as shown by Poulos and Davis (1980) or in a 

numerical analysis with a finite element model (2-D axisymmetric model). However, the null point 
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position of the shear stress distribution in the soil that is calculated through equation (13.4) has been 

verified through finite element analyses to be generally close to that along a receiver pile in a pair, 

e.g., within the distance of half a pile diameter. This fact, together with the consideration of the 

vertical displacement of the soil at the same distance 𝑟 from the axis of the source pile, makes equation 

(13.4) suitable to solve equation (12.9) for estimating the vertical displacement of a receiver pile 

whose axis is located at a distance 𝑠. Furthermore, it is in accordance with the interaction factor 

analysis procedure based on the analysis of a single isolated pile. 

 

5.6 Applications, validation and considerations for both design situations 
In order to evaluete the total pile displacement due to the pile group effect with analytical model, 

before to calculate the real displacement for both design cases, the validations have been carried out.  

In this chapter, the comparisons between layer model and continuous model have been performed 

with a MATLAB codes taking advantage of the aforementioned equation (equation (12.9)) with the 

respective boundary condition for layer and continuous model. In this way some point must be 

highlighted: 

 for the proposed design case (𝐿𝐸𝑃 = 19.2 𝑚) regarding the interaction factor for mechanical 

load (Ω𝑚) the values given by the numerical analysis both for layer and continuous model are 

not very far from those obtained from 3D-FEM analysis. As shown in the Figure 5.8 (a) the 

continuous model it is better able to capture the real trend, being almost overlapped on the 

one given by the 3D-FEM analysis; 

 for the real case design (𝐿𝐸𝑃 = 28 𝑚) regarding the interaction factor for mechanical load 

(Ω𝑚) the values given by the numerical analysis both for layer and continuous model are not 

very far from those obtained from 3D-FEM analysis, in fact the difference is negligible 

(Figure 5.8 (b)). It must specify that the 3D-FEM analysis has been performed modelling the 

soil layers with the linear thermal expansion coefficients equal to zero (𝛼𝑙𝑎𝑦𝑒𝑟 𝐴,𝐵,𝐶,𝐷 = 0) 

because in the MATLAB code they have not been take into account; 

 Regarding the interaction factor for the thermal load Ω𝑡ℎ for the proposed design case the 

values given by the numerical analysis both for layer and continuous model are not very far 

from those obtained from 3D-FEM analysis, in fact the difference is negligible (Figure 5.8 

(c)); 

 In the real design case (Figure 5.8 (d)) the situation is completely different: the difference 

between the analytical model is negligible, but they do not coincide with that of 3D-FEM 

analysis. The only difference between the real and the proposed case is that the real case 
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design penetrates the layer D (molasses) for 8 meters while the other leans only on the 

molasses. Therefore, the role of the layer D is important when the pile is subjected upon 

thermal load: during the thermal action the molasses tends to pull down the piles group thus 

giving a higher interaction factor as show by the trend of 3D-FEM analysis in the Figure 5.7 

(d). 

 
Figure 5.8: Analytical model validation with spacing for both design cases subjected upon both mechanical and thermal 

load. Figure 5.8 (a): interaction factor trend for proposed design case under mechanical load; Figure 5.8 (b): 
interaction factor trend for real design case under mechanical load; Figure 5.8 (c): interaction factor trend for proposed 

design case under thermal load; Figure 5.8 (d): interaction factor trend for real design case under thermal load; 

In the Figure 5.9 the trends with the depth of analytical models and 3D-FEM analysis are pictured for 

the real design case and the proposed one. In this way some point must be highlighted: 

 In the case of interaction factor for pile subjected upon mechanical load for both design 

situations (Figure 5.9 (a)-(b)) the trends of Ω𝑚 given by the MATLAB code manage to capture 

the real behavior with a very low margin of error; 
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 In the case of proposed design subjected upon thermal load the best model that manage to 

capture the real behavior is the continuous model (according to Rotta Loria et al. 2017) 

because with this analytical model the interactions among the soil layers have been take into 

account (Figure 5.9 (c)); 

 
Figure 5.9: Analytical model validation with depth for both design cases subjected upon both mechanical and thermal 

load. Figure 5.9 (a): interaction factor trend for proposed design case under mechanical load; Figure 5.9 (b): 

interaction factor trend for real design case under mechanical load; Figure 5.9 (c): interaction factor trend for proposed 

design case under thermal load; Figure 5.9 (d): interaction factor trend for real design case under thermal load. 

 The main point is pictured by the Figure 5.9 (d): in fact in average the best analytical model 

is the layer model, because the findings given by the continuous model are not truthful. So, 

the reason of that can be the presence of the layer D in the real design case: as mentioned 
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before the continuous model take into account of all interactions among the soil layers, but in 

this case the latter layer (layer D) is stiffer than the others and this it affects the reliability of 

the final results. In other words, since in the continuous model to evaluate the vertical soil 

displacement in a layered soil, must use the mean value of shear modulus of the soil layer 

where the displacement is calculated at any soil node, 𝑘 the mean value when the Layer D is 

taken into account is very different form that of soil layers. 

 

5.7 Equivalent pier method 
This study presents a method to evaluate the average vertical displacement of energy pile groups 

subjected to thermal loads. The method consists of replacing any regular pile group with a single 

equivalent pier of the same length and an equivalent diameter. This method was widely used with a 

conventional piles group and after, extended for energy piles group by Rotta Loria (2018). This 

equivalent pier is described by material properties that are a homogenization of those of the piles and 

the surrounding soil and by a load-displacement relationship of a characteristic energy pile in the 

group. The load-displacement relationship of the equivalent pier differs from that of a single isolated 

energy pile because it is modified to take into account the group effects. These effects include a 

greater vertical displacement of the piles subjected to loading in the group compared to the case in 

which they are isolated, thus involving a more pronounced average group displacement. This method 

present advantages and disadvantages: 

 This present analytical method is too easy to perform, paying attention during the calculation 

of the homogenization parameters; 

 With the previous models the differential displacement could be calculated because for each 

pile, the value of displacement can be calculated; instead, the equivalent pier provide directly 

only the average pile group displacement. 

5.7.1 Hypotheses and considerations 

To perform the equivalent pier method some hypothesis have been formulated. In fact the equivalent 

pier is: 

 free to move vertically at their heads (i.e., no head restraint); 

 characterized by an infinitely flexible slab; 

 free of superstructure mechanical loads.  

The first point allows a safety side analysis against the effects of both monotonic and cyclic thermal 

loads (involving potentially irreversible effects at the pile-soil interface) to be made. The second and 
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the third allow focusing for the purpose of the present study on the effects of the thermal loads applied 

to the energy piles rather than on those of the mechanical loads. In those cases, an effective approach 

may consist in assuming the slab as infinitely rigid. Poulos and Davis (1980) remark, however, that 

the average vertical displacement of a pile group characterized by an infinitely flexible slab is 

approximately equal to that of the same group with an infinitely rigid slab (Rotta Loria, 2018). 

The energy piles are approximated as solid cylindrical prisms and form a regular geometry in plain 

view (e.g., square groups of energy piles). The equivalent piers are also considered to be solid 

cylindrical prisms. The proposed approach can also consider other cross-sectional shapes of the 

energy piles and the equivalent piers as well as other energy piles arrangements. 

The elastic theory is also used for this present model in fact, the materials constituting the energy pile, 

the consequent equivalent pier and the soil domains are assumed to be isotropic, homogeneous and 

uniform. The material properties are considered to be insensitive to the considered temperature 

variations. The pipes inside the energy piles and the equivalent piers are not modelled. This choice 

involves considering the temperature field in these domains as that of the heat carrier fluid circulating 

inside the pipes in the reality. The materials constituting the energy piles and the equivalent piers 

follow a linear thermo-elastic behavior. The soil follows an elasto-plastic behavior, although the 

impact of the temperature variations observed in reality in this material on the response of the pile 

group is implicitly considered in the analyses. 

The energy piles are considered to be embedded in a deep soil layer at the same initial temperature 

𝑇0 and are subjected to a temperature variation, Δ𝑇 =  𝑇 − 𝑇0, where 𝑇 is an actual temperature value. 

This temperature variation is assumed to be 

 applied instantaneously and uniformly along the length of all of the piles in the group; 

 constant with time 

 equal for all the piles. 

The same temperature variation is assumed to be applied to the equivalent piers. Considering 

situations in which different temperature variations or (equal or different) thermal powers would be 

applied to the energy piles may indeed be feasible. 

The dominant mode of heat transfer in the soil is considered to be conduction. The impact of ground 

water advection is considered to be negligible. Thermal contact resistance between the energy piles 

and the soil is discounted. The variation of the thermal field at the ground surface as a consequence 

of a potential variation in the environmental conditions is assumed to be negligible. The 

aforementioned assumptions allow an expedient although simplified analytical resolution of the 

thermal problem characterizing the single energy piles that may be needed when defining the 

homogenized material properties of the equivalent piers. The horizontal (top) boundary described by 
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the soil surface is treated as adiabatic. Differences in the thermal field around the energy piles are 

expected for scenarios where the soil surface may be assumed to be adiabatic or characterized by a 

fixed constant temperature, with a consequent impact on the mechanical behavior of these ground 

structures (Bodas Freitas et al., 2013). However, because the former condition appears to more closely 

characterize real energy pile applications than the latter (especially for piles located far from the 

external boundaries of large thermally insulated buildings), it has been considered in Rotta Loria 

(2018) providing reliable values. In the following, compressive stresses, contractive strains and 

downward displacements (i.e., settlements) are considered to be positive. 

5.7.2 Geometry for equivalent pier 

The main idea of the equivalent pier approach is that any regular pile group can be modelled as a 

single equivalent pier by considering the soil region in which the piles are embedded as a 

homogenized continuum (cf., Figure 5.10). Such an equivalent pier is characterized by an equivalent 

diameter that can be calculated as (Poulos, 1993) 

𝐷𝑒𝑞 ≈ 1.27√𝐴𝑔                                                                                                                                            (13.7) 

𝐷𝑒𝑞 =
2

√𝜋
√𝐴𝑔 ≈ 1.13√𝐴𝑔                                                                                                                       (13.8) 

The equation (13.7) is referred for predominantly floating piles and (13.8) for predominantly end-

bearings piles. In the previous equations, 𝐴𝑔 is the plan area of the group. For any general 

configuration of piles, 𝐴𝑔 can be determined as: 

𝐴𝑔 = 𝐴𝑡,𝐸𝑃 + 𝐴𝑠𝑜𝑖𝑙                                                                                                                                        (13.9) 

where 𝐴𝑡,𝐸𝑃 is the total cross-sectional area of the piles composing the group (𝐴𝑡,𝐸𝑃 = 𝑛𝐸𝑃𝐴𝐸𝑃 where 

𝑛𝐸𝑃 is the number of piles in the group and 𝐴𝐸𝑃 is the cross-sectional area of a single pile) and 𝐴𝑠𝑜𝑖𝑙 

is the plan area of soil surrounding the piles delimited by the simplest polygon that better reproduces 

the shape of the pile group. In the general case, for a square piles group, 𝐴𝑔 can be calculated as 

𝐴𝑔 = [(√𝑛𝐸𝑃 − 1)𝑠 + 𝐷]
2

                                                                                                                        (14.1) 

where 𝑠 is the center-to-center distance (spacing) between the piles and 𝐷 is the pile diameter. 

Numerical analyses performed suggest that the choice of using equations (13.7) and (13.8) to 

determine 𝐷𝑒𝑞 leads to differences of up to 5% between the estimated values of average vertical 
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displacement. This result holds for both low and high magnitudes of thermal loads and mechanical 

loads imposed prior to the temperature variations to equivalent piers for common pile and soil strata 

stiffness and pile spacing. 

Considering an equivalent pier of the same length of the piles in the group and of an equivalent 

diameter appears to be preferable to considering an equivalent pier of the same circumscribed plan 

area as the group and an equivalent length. 

 
Figure 5.10: The equivalent pier schematization (Rotta Loria et al.2017). 

 

5.7.3 Homogenized material properties of the equivalent pier 

There are two important dimensionless parameters that characterize the response of energy pile 

groups subjected to thermal and mechanical loads: 

- the pile-soil stiffness ratio, Λ = 𝐸𝐸𝑃 𝐺𝑠𝑜𝑖𝑙⁄ , where 𝐸𝐸𝑃 is the Young’s modulus of the piles 

composing the group and 𝐺𝑠𝑜𝑖𝑙 is the shear modulus of the soil (𝐺𝑠𝑜𝑖𝑙 = 𝐸𝑠𝑜𝑖𝑙 (2(1 + 𝑣𝑠𝑜𝑖𝑙))⁄ , in 

which 𝐸𝑠𝑜𝑖𝑙 is the Young’s modulus of the soil and 𝑣𝑠𝑜𝑖𝑙 is the Poisson’s ratio of the soil); 

- the soil-pile thermal expansion coefficient ratio, 𝑋 =  𝛼𝑠𝑜𝑖𝑙 𝛼𝐸𝑃⁄ , where 𝛼𝑠𝑜𝑖𝑙 is the linear thermal 

expansion coefficient of the soil and 𝛼𝐸𝑃 is the linear thermal expansion coefficient of the piles.  

The material parameters involved in defining these two dimensionless ratios are considered for 

determining two key material properties in the characterization of the response of the equivalent pier 
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to thermal (and mechanical) loads: the equivalent Young’s modulus, 𝐸𝑒𝑞, and the equivalent linear 

thermal expansion coefficient, 𝛼𝑒𝑞. The equivalent pier can be characterized by an equivalent 

Young’s modulus effectively homogenizing that of the piles and of the soil embedded between them 

that can be calculated as the weighted average of the Young’s modulus of these bodies as (Poulos, 

1993) 

𝐸𝑒𝑞 =  
𝐴𝑡,𝐸𝑃𝐸𝐸𝑃 + 𝐴𝑠𝑜𝑖𝑙𝐸𝑠𝑜𝑖𝑙

𝐴𝑡,𝐸𝑃 + 𝐴𝑠𝑜𝑖𝑙
=  𝐸𝐸𝑃

𝐴𝑡,𝐸𝑃

𝐴𝑔
+ 𝐸𝑠𝑜𝑖𝑙 (1 −

𝐴𝑡,𝐸𝑃

𝐴𝑔
)                                                       (14.2) 

The equivalent pier can then be characterized by an equivalent linear thermal expansion coefficient 

that can be calculated as (Rotta Loria, 2018) 

𝛼𝑒𝑞 =  𝛼𝐸𝑃                                                                                                                                                     (14.3) 

𝛼𝑒𝑞 =
𝐴𝑡,𝐸𝑃𝛼𝐸𝑃 + 𝐴𝑒𝑥𝑐𝛼𝑠𝑜𝑖𝑙𝛾

𝐴𝑡,𝐸𝑃 + 𝐴𝑒𝑥𝑐
= 𝛼𝐸𝑃

𝐴𝑡,𝐸𝑃 + 𝐴𝑒𝑥𝑐𝑋𝛾

𝐴𝑡,𝐸𝑃 + 𝐴𝑒𝑥𝑐
                                                                        (14.4) 

The equation (14.3) and (14.4) are respectively for values of 𝑋 ≤ 1 and > 1, with 𝑋 = 𝛼𝑠𝑜𝑖𝑙 𝛼𝐸𝑃⁄ . 

In the previous equations, 𝛾 is a coefficient that relates the average temperature variation in the soil 

to that in the energy piles within the plan area 𝐴𝑒𝑥𝑐 in which the thermal strain potential of the soil is 

in excess compared to the thermal strain potential of the energy piles (Rotta Loria, 2018). 

The equation (14.4), together with the associated assumptions and governing parameters, is presented 

below. Equations (14.3) and (14.4) represent the key novelty that allows applying the classical 

equivalent pier concept originally proposed for the displacement analysis of conventional pile groups 

subjected to only mechanical loads to energy pile groups that are also subjected to thermal loads 

(Rotta Loria, 2018). The equation (14.3) expresses that when 𝑋 ≤ 1 , the deformation of the energy 

pile group may be interpreted and described by considering only the thermal expansion coefficient of 

the piles and the related thermally induced deformation because it governs that of the group. The 

equation (14.4) highlights that when 𝑋 > 1, the deformation of the energy pile group may be 

interpreted and described by considering also the thermal expansion coefficient of the soil 

surrounding the piles and the related thermally induced deformation because it profoundly 

characterizes that of the group. In particular, the equation (14.4) is based on a similar concept to that 

characterizing equation (14.2). The equation (14.4) accounts for the impact of a linear thermal 

expansion coefficient of the soil in excess compared to that of the piles on the deformability problem 

by considering superposition of the representative areas involved.  
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5.7.4 Modelling choice 

In order to perform the analysis for equivalent pier method for energy piles and conventional piles 

group, a 2-D axisymmetric (Figure 5.13 (a) and (b)) analysis with COMSOL has been performed. 

The model used is the same used in the chapter 4.2 for single pile analysis for both case study (𝐿𝐸𝑃 =

19.2 𝑚 and 𝐿𝐸𝑃 = 28 𝑚). 

 

Figure 5.11 (a): Modelling choice for the real design case. 

 
Figure 5.12 (b): Modelling choice for the proposed design case. 

In the calculation of the equivalent parameters some simplifications have been done: 

 in the calculation of equivalent Young’s Modulus 𝐸𝑒𝑞 given by the equation (14.2), the value 

of 𝐸𝑠𝑜𝑖𝑙 is equal to  �̅�𝑠𝑜𝑖𝑙 calculated as: 
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�̅�𝑠𝑜𝑖𝑙 =
𝐸𝐿𝑎𝑦𝑒𝑟 𝐴ℎ𝐿𝑎𝑦𝑒𝑟 𝐴 + 𝐸𝐿𝑎𝑦𝑒𝑟 𝐵ℎ𝐿𝑎𝑦𝑒𝑟 𝐵 + 𝐸𝐿𝑎𝑦𝑒𝑟 𝐶ℎ𝐿𝑎𝑦𝑒𝑟 𝐶 + 𝐸𝐿𝑎𝑦𝑒𝑟 𝐷ℎ𝐿𝑎𝑦𝑒𝑟 𝐷

ℎ𝐿𝑎𝑦𝑒𝑟 𝐴 + ℎ𝐿𝑎𝑦𝑒𝑟 𝐵 + ℎ𝐿𝑎𝑦𝑒𝑟 𝐶 + ℎ𝐿𝑎𝑦𝑒𝑟 𝐷
    (14.5) 

because in the present case study the piles are embedded in a layered soil. Obviously, for the 

proposed design case during the calculation of  �̅�𝑠𝑜𝑖𝑙 the contribute of layer D has been 

neglected. 

 the linear thermal expansion coefficients of the first three soil layers are lower than that of the 

piles or in other words, 𝑋 < 1 and the situation is that described in the equation (14.3); for the 

latter soil layer (layer D) the situation is the opposite because 𝑋 > 1. In order to perform a 

comparable analysis, with the results obtained from analytical models and 3-D FEM (where 

𝛼𝑠𝑜𝑖𝑙 = 0), the value of 𝛼𝑒𝑞 is equal to zero. 

5.7.5 General framework of the influence of the slab in the Equivalent pier method 

The equivalent pier method has been performed as free head model, but in both case study the 

presence of the slab play an important role. Even if Poulos and Davis (1980) remark that the average 

vertical displacement of a pile group characterized by an infinitely flexible slab is approximately 

equal to that of the same group with an infinitely rigid slab under mechanical load, the effect of the 

thermal load has been evaluated. More precisely in this chapter the role of 𝐾𝑠𝑠 for piles subjected 

upon thermal load has been evaluated in order to provide a complete procedure for any type of design 

situation.  

First of all, must clarify the meaning of 𝐾𝑠𝑠 called slab-soil stiffness ratio calculated as: 

𝐾𝑠𝑠 =
4𝐸𝑠𝑙𝑎𝑏𝐵𝑠𝑙𝑎𝑏𝑡𝑠𝑙𝑎𝑏

3(1 − 𝜈𝑠𝑜𝑖𝑙
2 )

3𝜋𝐸𝑠𝑜𝑖𝑙𝐿𝑠𝑙𝑎𝑏
4 (1 − 𝜈𝑠𝑙𝑎𝑏

2 )
                                                                                                        (14.6) 

Values of 𝐾𝑠𝑠 ≈ 0.001 correspond to a flexible slab whereas values of 𝐾𝑠𝑠 ≈ 0.1 correspond to an 

almost rigid slab (Brown, 1975). Practical ranges of 𝐾𝑠𝑠 are between 0.001 and 10 (Clancy and 

Randolph, 1996). The previous observation has been evaluated for pile-slab structure subjected upon 

mechanical load; the goal of this chapter is verify if this limit is also acceptable for pile-slab structure 

subjected upon thermal load. 

Modifying the nature of the model and applying the slab on the equivalent pier head as “spring 

foundation” there is one important point that must be clarified. The equation (9.1) that provide the 

value of the slab stiffness may be used also in this analysis, but in the previous analysis was applied 

on the single pile and consequently the value of 𝐾ℎ is divided by 𝐴𝐸𝑃; now, in this model the situation 

is completely different because an equivalent single pile analysis has been performed due to the 
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equivalent pier has been calculated also taking into account the soil parameters, following the 

equations (13.7), (13.8) and (14.2).  

The main point is understand if the slab stiffness calculated with equation (9.1) must be divided by 

the total pile area (𝐴𝑡,𝐸𝑃) or by the equivalent pier area (𝐴𝑒𝑞). As mentioned before if: 

 𝐾𝑠𝑠 < 0.1 the slab is flexible; 

 𝐾𝑠𝑠 > 0.1 the slab is rigid. 

Therefore, the value of slab stiffness for the equivalent pier method become: 

 𝐾ℎ
̅̅̅̅ =  𝐾ℎ 𝐴𝑒𝑞⁄  when the slab is rigid; 

 𝐾ℎ
̅̅̅̅ =  𝐾ℎ 𝐴𝑡,𝐸𝑃⁄  when the slab is flexible. 

For equivalent pier subjected upon mechanical load the concept is clear. The main point is understand 

if this limit value (𝐾𝑠𝑠 = 0.1) is also valid for equivalent pier subjected upon thermal load. 

In order to solve this problem a general sensitive analysis with a pile-slab structure made by four piles 

(Figure 5.14) and nine piles (Figure 5.15) respectively in the first and in the second case has been 

performed. The fundamental points of this sensitive analysis are: 

 The effect of the slab is negligible when the displacement is transferred entirely to the 

equivalent pier, or in other words when 𝑤𝑠𝑙𝑎𝑏 𝑤𝑝𝑖𝑙𝑒 = 1⁄  and this situation occurs when the 

slab is rigid (when 𝐾𝑠𝑠 = 0.1 is exceeded); 

 the influence of the spacing is negligible when the difference among the curves is less than 

5%; 

In the Figure 5.14 (a) the case of square slab with four piles subjected upon mechanical load has been 

pictured: in this case the aforementioned limit is valid, in fact when 𝐾𝑠𝑠 = 0.1 the ratio between the 

slab displacement and the pile displacement is more or less equal to 1. 

In the Figure 5.14 (b) the case of rectangular slab with four piles subjected upon mechanical load has 

been pictured: in this case the aforementioned limit is valid, in fact when 𝐾𝑠𝑠 = 0.1 the ratio between 

the slab displacement and the pile displacement is more or less equal to 1. 

In the Figure 5.14(c) the case of square slab with four piles subjected upon thermal load has been 

pictured: in this case the limit is lower than that of the same structure subjected upon mechanical load 

(𝐾𝑠𝑠 = 0.064). For more flexible slab cases the displacement of the slab is much higher than that of 

the equivalent pier, reaching values of 𝑤𝑠𝑙𝑎𝑏 𝑤𝑝𝑖𝑙𝑒 ≈ 2.75⁄ . 
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In the Figure 5.14 (d) the case of rectangular slab with four piles subjected upon thermal load has 

been pictured: in this case the limit is lower than that of the square slab with four piles subjected upon 

thermal laod (𝐾𝑠𝑠 = 0.05). 

 
Figure 5.13: 𝑤𝑠𝑙𝑎𝑏 𝑤𝑝𝑖𝑙𝑒⁄  trends varying the spacing and the shape of the slab with four piles. Figure 5.13 (a) square 

slab with four piles subjected upon mechanical load; Figure 5.13 (b) rectangular slab with four piles subjected upon 

mechanical load; Figure 5.13 (c) square slab with four piles subjected upon thermal load; Figure 5.13 (d) rectangular 

slab with four piles subjected upon thermal load 

Therefore for this cases with a little approximation the limit 𝐾𝑠𝑠 = 0.1 is also valid for pile-slab 

structures subjected upon thermal loads. 

In the Figure 5.15 a square and rectangular slab with nine piles subjected upon mechanical and 

thermal load has been represented. In the Figures 5.15 (a) and (b) the aforementioned limit 𝐾𝑠𝑠 = 0.1  
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valid, even if the curves tend to 1 for values less than 0.1 because a higher number of piles stiffen the 

structure in both cases (square and rectangular slab). In the Figures 5.15 (c) and (d) the limit is higher 

than 0.1: in other words, the slab transfer the total displacement to the pile for higher value of 𝐾𝑠𝑠.  

 
Figure 5.14: 𝑤𝑠𝑙𝑎𝑏 𝑤𝑝𝑖𝑙𝑒⁄  trends varying the spacing and the shape of the slab with nine piles. Figure 5.14 (a) square 

slab with nine piles subjected upon mechanical load; Figure 5.14 (b) rectangular slab with nine piles subjected upon 

mechanical load; Figure 5.14 (c) square slab with nine piles subjected upon thermal load; Figure 5.14 (d) rectangular 

slab with nine piles subjected upon thermal load 

Concluding: 

 the limit 𝐾𝑠𝑠 = 0.1 is also valid for slab-piles structures subjected upon thermal load; 
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 according to the first point, when the slab is flexible the value of 𝐾ℎ given by the equation 

(9.1) is divided by the area of the equivalent pier; when the slab is flexible the value of 𝐾ℎ is 

divided by the total area of the piles; 

 the value of 𝐾ℎ given by the equation (9.1) is a lower bound: less values are not acceptable 

because equation (9.1) is performed taking into account only the slab and the soil layers, not 

taking into account the piles stiffness. 

Linking up to the two case study, the value of Kss is much less than 0.1 and this mean that the slab in 

both cases is more flexible and therefore the 2-D FEM analysis have been performed with a free head 

equivalent pier. 

 

5.8 3-D FEM solution 

5.8.1 Modelling solution 

A 3-D finite element model of the site was developed using the software COMSOL Multiphysics 

(COMSOL, 2014). The 80×70×60 m3 model is composed of 438,443 tetrahedral, prismatic, 

triangular, quadrilateral, linear and vertex elements (Figures 5.15 – 5.16 - 5.17). The model 

reproduces the entire foundation supporting the water retention tank. It does not take into account the 

presence of the tubes in the energy stacks because to compare the results provided by the analytical 

models and the equivalent method of the pillar. Another important consideration must be made for 

the coefficients of linear thermal expansion of the soil layers: in this type of analysis, the linear 

thermal expansion coefficient for each layer of soil is equal to zero. This finite element model was 

used by Rotta Loria (2018) to run thermo-mechanical finite element predictions of Test 20EP1. 

 

5.8.2 Hypotheses and considerations 

As in the chapter 4.2, in this numerical analysis of the response of the reinforced concrete foundation 

in the soil under mechanical and thermal loads is based on the following assumptions: 

 the displacements and deformations of all of the materials can be representatively described 

through a linear kinematic approach under quasi-static conditions (i.e., negligible inertial 

effects); 

 the materials that constitute the pile foundation are considered to be isotropic with pores that 

are fully filled by air and are assumed to be purely conductive domains with equivalent 

thermo-physical properties that are given by the fluid and the solid phases; 
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 the materials that make up the soil layers are assumed to be isotropic, fully saturated by water 

and purely conductive domains with equivalent thermo-physical properties that are given by 

the fluid and the solid phases; 

 the loads that are associated with this problem have a negligible impact on the variation of the 

hydraulic field in the soil; 

 all the materials are considered to be representatively described by linear thermo-elastic 

behaviors. Under these conditions, a thermo-mechanical mathematical formulation is 

employed. 

 

 

 

Figure 5.15: Geometry, initial and boundary conditions of the 3-D finite element model (Rotta Loria, 2018). 
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Figure 5.16: plan view of the foundation listing the piles and other relevant features (Rotta Loria, 2018). 

 
 

 

Figure 5.17: 3-D view of the pile-slab structure in case of real design case (𝐿𝐸𝑃 = 28 𝑚). 

 

5.9 Findings and discussion  

5.9.1 Energy piles 

In this chapter the comparisons, in terms of average and differential displacement for both thermal 

(heating and cooling) and mechanical case, between the three analytical models and the 3-D FEM 

analysis have been carried out. In these comparisons the value of the average displacement 

correspondent to continuous model is not reported because as previously shown this model does not 

provide reliable results when a rigid stratum is present. So, in the comparisons and in the displacement 
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checks the value correspondent to continuous model, for energy piles, has not been calculated. In the 

following figures the normalized average displacement comparison for mechanical load, heating and 

cooling thermal load has been shown.. 

 

 

 

 

 

 
 

Figure 5.18: comparisons of normalized average displacement due to mechanical load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: comparisons of normalized average displacement due to heating thermal load. 
 



  
115 

 
Figure 5.20: comparisons of normalized average displacement due to cooling thermal load. 

In the following figures the normalized differential displacement comparison for mechanical load, 

heating and cooling thermal load has been shown. In all three figures the value of the differential 

displacement given by the layer model is overestimated than that given by 3-D FEM analysis. The 

value of differential displacement given by the equivalent pier is equal to zero, because this model 

provide only the average head displacement of the piles group. 

 
Figure 5.21: comparisons of normalized differential displacement due to mechanical load. 
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Figure 5.22: comparisons of normalized differential displacement due to heating thermal load. 

 
Figure 5.23: comparisons of normalized differential displacement due to cooling thermal load. 

The value of differential displacement provided by the layer model is overestimated, because the 

layer model has been conceived as a free head model and it does not take into account the presence 

of the slab and the effect due to it; in the 3-D FEM analysis, instead, the slab has been modelled as 

infinitely rigid slab in order to transfer the load to the piles. Since the EP1 is unloaded, in the layer 

model its displacement is due only to interaction among the other piles. In the 3-D FEM analysis the 
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slab equally redistributes the loads and therefore the displacement of the EP1 is due both to the 

interaction and to the action of the redistribution of the slab loads and is higher than that given by the 

layer model as shown in the following tables: 

LAYER MODEL 
  𝒘𝒎 𝒘𝒕𝒉+ 𝒘𝒕𝒉− 

EP1 0.12 -1.17 0.78 
EP2 0.98 -1.56 1.04 
EP3 1.49 -1.52 1.01 
EP4 1.54 -1.52 1.01 

Table 5.1: Displacement values for each pile given by the layer model for the real design case. 

 

FEM   
𝒘𝒎 𝒘𝒕𝒉+ 𝒘𝒕𝒉− 

EP1 0.95 -1.42 1.07 
EP2 0.88 -1.37 1.16 
EP3 1.07 -1.31 1.03 
EP4 1.21 -1.36 1.06 

 

Table 5.2: Displacement values for each pile given by the 3-D FEM analysis for the real design case. 

In fact the maximum differential displacement in both analysis has been calculated between EP1 and 

EP4: 

 in case of layer model: ∆𝑤𝑚𝑎𝑥 = 1.42 𝑚𝑚; 

 in case of 3-D FEM analysis: ∆𝑤𝑚𝑎𝑥 = 0.26 𝑚𝑚 

 
Figure 5.24: comparisons of average displacement normalized with the mechanical displacement in case of heating. 
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Figure 5.25: comparisons of average displacement normalized with the mechanical displacement in case of cooling. 

In figures 5.24 and 5.25 a comparison was made between the values of average vertical normalized 

displacement with the respective values of mechanical displacement, obtained with the various 

methods. In both figures the displacement values in case of the real design case (𝐿𝐸𝑃 = 28 𝑚) than 

those in case of the proposed design (𝐿𝐸𝑃 = 19.2 𝑚). In the Figure 5.25 in case of real design case 

the value of the thermal displacement is more or less 40-50 % higher than that of mechanical one, 

while in the case of cooling the thermal displacement is more or less the same of the mechanical one. 

 

5.9.2 Conventional piles 

Conventional piles group is made by 16 piles subjected only under mechanical load and in this chapter 

the results given by the analytical models, equivalent pier and 3-D FEM analysis will be discussed. 

In this case the results given by the continuous have also been reported because the shear modulus of 

the soil layers were similar among them. In the Figure 5.26 the average vertical displacement 

comparisons have been pictured, while in the Figure 5.27 the differential vertical displacement. 

In the Figures 5.26 and 5.27 the values given by all the analysis have been normalized respect the 

average vertical displacement calculated in the case of single pile analysis that does not take into 

account the interaction among the conventional piles. 

In the Figure 5.26 the values of average conventional piles group given by the analytical models and 

equivalent pier method are higher than that given by the 3-D FEM analysis because the latter analysis 
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take into account the presence of the slab and provide lower displacement values. To evaluete the 

average displacement in 3-D FEM analysis for the conventional piles group, only the effect due to 

mechanical load was taken into account, thus avoiding the potential effects due to thermal load on 

the conventional piles. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.26: Comparisons of the average displacement obtained between the various methods for conventional piles 
group. 

 

Figure 5.27: Comparisons of the differential displacement obtained between the various methods for conventional piles 
group. 
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In the Figure 5.27 the differential displacement obtained from different methods is more or less the 

same, except for the equivalent pier method because this method provide only the mean head 

displacement of the group. 

Another important point to highlight is the influence of the thermal load applied within the energy 

piles on the conventional piles group. This effect it is only perceptible when a 3-D FEM analysis is 

performed because it can not be studied with the analytical models or with the equivalent pier because 

in all the aforementioned method the piles must have the same length and is not to possible to study 

energy and conventional piles in the same analysis with this tools. In the Figure 5.28 and 5.29 the 

comparisons between the average and differential displacement have been pictured. 

In the Figure 5.28 the value FEM m is obtained from a 3-D analysis of the entire structure subjected 

only under mechanical load, while FEM m+h and FEM m+c are obtained from a 3-D analysis of the 

entire structure subjected under mechanical load coupled with respectevely with heating and cooling 

thermal load. Obviously the value given by FEM m+h analysis is lower than that given by FEM m 

because the effect of the thermal load applied within the energy piles is very strong for the closest 

piles and during heating, since the displacement is negative, the head average displacement is 

lower.The opposite applies in the case of the value given by FEM m+c analysis. 

In the Figure 5.29 the evaluation of the effect on the differential displacement of the thermal load 

applied within the energy piles has been done. 

 
Figure 5.28: Comparisons of the average displacement obtained between the various methods for conventional piles 

group taking into account the effect of the energy piles. 
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Figure 5.29: Comparisons of the differential displacement obtained between the various methods for conventional piles 

group taking into account the effect of the energy piles. 

5.9.3 Deformation limit state verification for energy piles group 

Resuming the deformation limit state verification described in the chapter 4.4.5, the checks is satisfied 

when the equation (11.3) is verified. In the following tables the verifications done for the energy piles 

group have been summarized: 
 

Average displacement obtained with Layer model for real design case (𝑳𝑬𝑷 = 𝟐𝟖 𝒎)   
|𝑤𝑚+ℎ| 𝑤𝑚+𝑐 

Design 0.408 1.996 
Limit 5.954 5.954 
Check 

  

Table 5.3: Deformation limit state checks for the average displacement for the real design case when all energy piles are 

active. 

 

 
Average displacement obtained with Layer model for proposed design case (𝑳𝑬𝑷 =

𝟏𝟗. 𝟐 𝒎)  
|𝑤𝑚+ℎ| 𝑤𝑚+𝑐 

Design 0.060 1.885 
Limit 5.954 5.954 
Check 

  

Table 5.4: Deformation limit state checks for the average displacement for the proposed design case when all energy 

piles are active. 
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For the differential displacement verifications for both design cases the highest differential 

displacement is calculated between EP1 and EP4 when EP1 is thermally active (for heating thermal 

load). In the following tables the checks are summarized: 
 

Differential displacement obtained with Layer 
model for real design case (𝑳𝑬𝑷 = 𝟐𝟖 𝒎)   

|𝑤𝑚+ℎ| 
Design 2.141 
Limit 5.954 
Check 

 

Table 5.5: Deformation limit state checks for the differential displacement for the real design case when EP1 is active. 

 
Differential displacement obtained with Layer 
model for real design case (𝑳𝑬𝑷 = 𝟏𝟗. 𝟐 𝒎)   

|𝑤𝑚+ℎ| 
Design 2.189 
Limit 5.954 
Check 

 

Table 5.6: Deformation limit state checks for the differential displacement for the proposed design case when EP1 is 

active. 

When a cooling thermal load is applied the highest differential displacement is valuated between EP4 

and EP1 when EP4 is thermally active. The checks are summarized in the following tables: 
 

Differential displacement obtained with Layer 
model for real design case (𝑳𝑬𝑷 = 𝟐𝟖 𝒎)   

𝑤𝑚+𝑐 
Design 1.985 
Limit 5.954 
Check 

 

Table 5.5: Deformation limit state checks for the differential displacement for the real design case when EP1 is active. 

 
Differential displacement obtained with Layer 
model for real design case (𝑳𝑬𝑷 = 𝟏𝟗. 𝟐 𝒎)   

𝑤𝑚+𝑐 
Design 1.884 
Limit 5.954 
Check 

 

Table 5.6: Deformation limit state checks for the differential displacement for the proposed design case when EP1 is 

active. 
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All checks have been done for the displacement given by the layer model because this model gives 

higher values both for thermal and mechanical displacement. 

 

5.10 Concluding Remarks 
In order to take into account the pile group effect because the displacement for each pile is higher 

than the case in which the single pile is analyzed, the following point must be highlighted: 

 in average the best analytical model is the layer model because provide acceptable values also 

when a rigid stratum is present, instead of the continuous model. This happens because the 

continuous model take into account the interaction between the soil layers and if there is a 

rigid soil layer the Young’s Modulus of it is much higher than that of others soil layers and 

when the mean value of shear modulus between two layers is very far from the real values of 

shear modulus of each soil layers; 

 when the soil layers parameters are similar among them the best model to use is the continuous 

model (as seen in the case of proposed design case subjected upon thermal and mechanical 

load); 

 equivalent pier method has been modelled as free head model but in case in which needs to 

add the slab because its effect is very important, the value calculated with the equation (9.1) 

must be divided by the total piles area (when the slab is rigid or when 𝐾𝑠𝑠 > 0.1) or by the 

equivalent pier area (when the slab is flexible or when 𝐾𝑠𝑠 < 0.1) both for thermal and 

mechanical load; 

 in order to perform a comparison with analytical models and the equivalent pier method, the 

3-D FEM analysis must be performed with the linear thermal expansion coefficient of each 

soil layers equal to zero. 
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Chapter 6  

Cyclic Analysis 

 

 

6.1 Introduction 
In the previous chapters all the analyzes to evaluate the stress and displacement field were carried out 

in stationary conditions (not time dependent) since the objective was to evaluate the effect of the 

thermal load acting alone or in combination with the load mechanical on stress and displacement of 

fields. Prior to this work, no time-dependent analysis have been performed on this case study with a 

complete 3-D FEM analysis with pipes running water inside them. In this chapter, time-dependent 

analysis has been performed to evaluate the long-term effect only of the thermal load on the pile-slab 

structure because the effect due to mechanical load is constant with time. 

 

6.2 Modelling choice 
In order to evaluate the long-term effect on the energy piles the modelling choice is the same 

described in the chapters 5.8.1 and 5.8.2 with two important differences: 

 in the previous model the pipes have not been modelled because the thermal variation were 

applied on all the pile domain, instead in this model the pipes have been modelled and the 

fluid that circulates inside the pipes is water. The inner diameter of the pipes is 𝑑𝑝,𝑖𝑛 =

26.2 𝑚𝑚 (the outer diameter is 32 mm and the wall thickness is 2.9 mm). A thermal 
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conductivity of 𝜆𝑝 = 0 W/(m °C) is imposed in the shallowest 4 meters of the inlet and outlet 

of the pipes to simulate the thermal insulation near the ground surface (Figure 6.1); 

 in the previous model the linear thermal expansion coefficient of each soil layers was equal 

to zero, while in this model they are different from zero. They are summarized in the following 

table: 

Soil layer 𝜶𝒔𝒐𝒊𝒍 

A 3.3⋅10−6 

B 3.3⋅10−6 

C 3.3⋅10−6 

D 0.23⋅10−4 

Table 6.1: Linear thermal expansion coefficients of each soil layer. 

 

Figure 6.1: 3-D view of the pile-slab structure with pipes in case of real design case (𝐿𝐸𝑃 = 28 𝑚). 
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6.3 Idealization of cyclic design load 
The first step to do to perform the most realistic possible analysis was to identify the most suitable 

type of solicitation to get as close as possible to reality. We know that in reality there are seasonal 

peaks in which the highest or lowest temperatures are reached and therefore, depending on the case, 

we need to heat or cool the structure supported by the energy piles. During the seasons then the 

temperature rises to a peak and then decreases as the season ends (imagine that in summer the peak 

occurs in August, but the season has started since June). So from here came the idea of soliciting the 

group of poles with a sinusoidal action in such a way as to perceive reality as closely as possible. In 

order to evaluate more possible case, the following configurations have been built: 

 6 months heating + 6 months cooling 

 
 8 months heating + 4 months cooling 
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 4 months heating + 8 months cooling 

 

6.4 Findings and discussion 

6.4.1 Displacement trends obtained in the real design case 

In this chapter the comparison between the displacement trends obtained with the three 

aforementioned configurations have been carried out in the case of the real design case with the pile 

length equal to 28 m (Figure 6.2 – Figure 6.4). 

In the figure 6.2 the comparison between all models have been done: in fact the time trends of the 

analytical models, equivalent pier, of the 3-D FEM analysis with linear thermal expansion coefficient 

equal to zero and with the first cyclic loading configuration, or the 6 months of heating plus 6 months 

of cooling , have been reported. For this type of configuration there was no increase in the pile head  

displacement because the sinusoidal is balanced and also because the heating and cooling thermal 

variations are very close to each other (Δ𝑇ℎ𝑒𝑎𝑡𝑖𝑛𝑔 =  +7.5 and Δ𝑇𝑐𝑜𝑜𝑙𝑖𝑛𝑔 =  −5). Another important 

particular is the entity of the cyclic displacement: the displacement given by the cyclic analysis over 

10 %  that given by the single pile analysis, but in general view is not burdensome neglect this 

contribute. In the Figure 6.3 the comparison between the stationary models and the second 

configuration (8 months of heating plus 4 months of cooling) has been pictured. For this type of 

configuration, the head displacement increase with the time reaching the value given by the equivalent 

pier method. In the Figure 6.4 the comparison between the stationary models and the second 

configuration (4 months of heating plus 8 months of cooling) has been represented. In this case an 

increasing of cooling displacement has been registered reaching the value given by the  3-D FEM 

analysis with linear thermal expansion coefficient equal to zero. Obviously the contribute given by 
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the cooling displacement during 4 months of heating plus 8 months of cooling is lower than that given 

by the 8 months of heating plus 4 months of cooling because the thermal variations are not the same. 

 

 
Figure 6.2: Displacement trend obtained with 6 months heating + 6 months cooling configuration in case of the real 

design case. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Displacement trend obtained with 8 months heating + 4 months cooling configuration in case of the real 
design case. 
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Figure 6.4: Displacement trend obtained with 4 months heating + 8 months cooling configuration in case of the real 

design case. 

 

6.4.2 Displacement trends obtained in the proposed design case 

In this chapter the comparison between the displacement trends obtained with the three 

aforementioned configurations have been carried out in the case of the proposed design case with the 

pile length equal to 19.2 m (Figure 6.5 – Figure 6.7). 

In the figure 6.5 the comparison between the stationary models and the second configuration (6 

months of heating plus 6 months of cooling) has been pictured. For this type of configuration there 

was no increase in the pile head  displacement because the sinusoidal is balanced and also because of 

for the same reasons stated for figure 6.2. The displacement given by the cyclic analysis does not 

exceed that given by the single pile analysis. In the Figure 6.6 the comparison between the stationary 

models and the second configuration (8 months of heating plus 4 months of cooling) has been 

pictured. For this type of configuration, the head displacement increase with the time 5% exceeding  

the value given by the single pile analysis. In the Figure 6.7 the comparison between the stationary 

models and the second configuration (4 months of heating plus 8 months of cooling) has been 

represented. In this case an increasing of cooling displacement not exceed the value given by the  3-

D FEM analysis with linear thermal expansion coefficient equal to zero. 
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Figure 6.5: Displacement trend obtained with 6 months heating + 6 months cooling configuration in case of the 

proposed design case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6: Displacement trend obtained with 8 months heating + 4 months cooling configuration in case of the 
proposed design case. 
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Figure 6.7: Displacement trend obtained with 4 months heating + 8 months cooling configuration in case of the 

proposed design case. 

 

Concluding: 

 In both design cases the most burdensome situation is the configuration 2 (8 months of heating 

plus 4 months of cooling ); 

 In this configuration, the value of displacement value provided by the real design case is 

higher than that in the proposed design case, even reaching the value provided by the 

equivalent pier method. 

 In the proposed design case the single pile analysis is a benefit of safety; 

 In the general case the value of layer model has never been exceeded and during a simplified 

design may use the values of displacement provided by it. 

In the following chapters will be called: 

- Configuration I: 6 months heating + 6 months cooling; 

- Configuration II: 8 months heating + 4 months cooling; 

- Configuration III: 4 months heating + 8 months cooling. 

 

6.4.3 Stress field comparisons between the study cases for Configuration I  

In the Figure 6.8 the comparison between the stress trends obtained with single pile analysis (2-D 

axisymmetric model), 3-D FEM analysis with linear thermal expansion coefficient equal to zero and 
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3-D FEM analysis with linear thermal expansion coefficient different from zero in case of the real 

design case for the Configuration I, have been pictured: 

 

 
Figure 6.8: Comparison of stress trends with depth in case of the real design case for Configuration I.  

Figure 6.8 (a): comparison between thermal stress trends due to heating thermal load; Figure 6.8 (b): comparison 

between thermal stress trends due to cooling thermal load; Figure 6.8 (c): comparison between total stress trends due to 

heating thermal load in conjunction with mechanical load; Figure 6.8 (d): comparison between total stress trends due to 

cooling thermal load in conjunction with mechanical load. 
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In the Figure 6.8 (a) the comparison between the stress trends in case of heating thermal load have 

been reported: the single pile analysis (with 𝛼𝑠𝑜𝑖𝑙 = 0 for each soil layer) tend to overrate the value 

of stress within the pile, but the maximum stress is almost similar to that given by 3-D FEM analysis 

with linear thermal expansion coefficient equal to zero. In case of cyclic analysis, as explained in the 

previous chapters, the value of stresses do not change drastically because the sinusoidal is balanced 

and the thermal variation are very close each other.  An important point to explain is the value of the 

tension in the bottom part of the pile depth: during the cyclic analysis in the layer D (molasse) there 

is a return in traction and in fact almost all the compression is lost because the 𝛼𝐿𝑎𝑦𝑒𝑟 𝐷 is greater than 

that of the pile (𝛼𝐸𝑃) and tends to pull down the pile. The reverse situation occurs for cooling thermal 

load (Figure 6.8 (b)). In the Figure 6.8 (c) and (d) the total stress trends have been pictured. In the 

Figure 6.8 (c) the maximum stress obtained from each analysis is almost the same. In the Figure 6.8 

(d) the values of the maximum stress are different each other because in the models where the linear 

thermal expansion coefficients are equal to zero and the maximum occurs in the bottom part of the 

pile (layer D) where in the cyclic analysis the behavior is completely different. Another important 

note is about the value of head pile stress in the single pile analysis: that value is negative because is 

the average value of the stress within each pile and in this analysis EP1 is mechanically unloaded and 

the values of stresses are all negative. 

In the Figure 6.9 the comparison between the stress trends obtained with single pile analysis (2-D 

axisymmetric model), 3-D FEM analysis with linear thermal expansion coefficient equal to zero and 

3-D FEM analysis with linear thermal expansion coefficient different from zero, in case of the 

proposed design case for the Configuration I, have been represented. 

In the Figure 6.9 (a) the comparison between the stress trends in case of heating thermal load have 

been reported. The single pile analysis (with 𝛼𝑠𝑜𝑖𝑙 = 0 for each soil layer) tend to overrate the value 

of stress within the pile, in fact the maximum stress is almost two times to that given by 3-D FEM 

analysis with linear thermal expansion coefficient equal to zero. The same situation occurs in the case 

of cooling thermal load (Figure 6.9 (b)). In the Figure 6.9 (c) and (d) the total stress trends have been 

pictured. The difference highlighted in the Figure 6.9 (d) occurs for the same aforementioned reason. 
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Figure 6.9: Comparison of stress trends with depth in case of the proposed design case for Configuration I.  

Figure 6.9 (a): comparison between thermal stress trends due to heating thermal load; Figure 6.9 (b): comparison 

between thermal stress trends due to cooling thermal load; Figure 6.9 (c): comparison between total stress trends due to 

heating thermal load in conjunction with mechanical load; Figure 6.9 (d): comparison between total stress trends due to 

cooling thermal load in conjunction with mechanical load. 

6.4.4 Stress field comparisons between the study cases for Configuration II 

In the Figure 6.10 the comparison between the stress trends obtained with single pile analysis (2-D 

axisymmetric model), 3-D FEM analysis with linear thermal expansion coefficient equal to zero and 
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3-D FEM analysis with linear thermal expansion coefficient different from zero in case of the real 

design case for the Configuration II, have been pictured: 

 

 

Figure 6.10: Comparison of stress trends with depth in case of the real design case for Configuration II. 

Figure 6.10 (a): comparison between thermal stress trends due to heating thermal load; Figure 6.10 (b): comparison 

between thermal stress trends due to cooling thermal load; Figure 6.10 (c): comparison between total stress trends due 

to heating thermal load in conjunction with mechanical load; Figure 6.10 (d): comparison between total stress trends 

due to cooling thermal load in conjunction with mechanical load. 
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In the Figure 6.10 (a) since the sinusoidal action in unbalanced and as the number of cycles increases 

and therefore the structure tends to store as much heat as possible, the values of the stresses increase. 

In fact, in the last cycle the values of the stresses are greater than those given by the first. But in 

general they never exceed those given by the models with linear thermal expansion coefficient equal 

to zero. The inverse situation occurs under the action of the cooling thermal load, because it tends to 

cool down less and the traction stresses decrease (Figure 6.10 (b)). 

In the Figure 6.11 the comparison between the stress trends obtained with single pile analysis (2-D 

axisymmetric model), 3-D FEM analysis with linear thermal expansion coefficient equal to zero and 

3-D FEM analysis with linear thermal expansion coefficient different from zero, in case of the 

proposed design case for the Configuration II, have been represented. 

In the Figure 6.11 (a) and (b) the values of thermal stresses change, but this variation is negligible 

even if the sinusoidal action is unbalanced. 

 

 
Figure 6.11: Comparison of stress trends with depth in case of the proposed design case for Configuration II.  

Figure 6.11 (a): comparison between thermal stress trends due to heating thermal load; Figure 6.11 (b): comparison 

between thermal stress trends due to cooling thermal load; 
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Figure 6.11 (c): comparison between total stress trends due to heating thermal load in conjunction with mechanical 

load; Figure 6.11 (d): comparison between total stress trends due to cooling thermal load in conjunction with 

mechanical load. 

 

6.4.5 Stress field comparisons between the study cases for Configuration III 

In the Figure 6.12 the comparison between the stress trends obtained with single pile analysis (2-D 

axisymmetric model), 3-D FEM analysis with linear thermal expansion coefficient equal to zero and 

3-D FEM analysis with linear thermal expansion coefficient different from zero in case of the real 

design case for the Configuration III, have been pictured. 

In the Figure 6.12 (a) since the sinusoidal action in unbalanced and as the number of cycles increases 

and therefore the structure tends to cool more and more, the values of the compressive stresses 

decrease. In fact, in the last cycle the values of the stresses are lower than those given by the first. But 

in general they never exceed those given by the models with linear thermal expansion coefficient 

equal to zero. The inverse situation occurs under the action of the cooling thermal load, because as 

the soil tend to cool more and more the tensile stresses increase (Figure 6.12 (b)). In the Figure 6.12 

(c) and (d) the total stress trends have been pictured. 
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Figure 6.12: Comparison of stress trends with depth in case of the real design case for Configuration III.  

Figure 6.12 (a): comparison between thermal stress trends due to heating thermal load; Figure 6.12 (b): comparison 

between thermal stress trends due to cooling thermal load; Figure 6.12 (c): comparison between total stress trends due 

to heating thermal load in conjunction with mechanical load; Figure 6.12 (d): comparison between total stress trends 

due to cooling thermal load in conjunction with mechanical load. 
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In the Figure 6.13 the comparison between the stress trends obtained with single pile analysis (2-D 

axisymmetric model), 3-D FEM analysis with linear thermal expansion coefficient equal to zero and 

3-D FEM analysis with linear thermal expansion coefficient different from zero in case of the 

proposed design case for the Configuration III, have been pictured. 

 

 
Figure 6.13: Comparison of stress trends with depth in case of the proposed design case for Configuration III.  

Figure 6.13 (a): comparison between thermal stress trends due to heating thermal load; Figure 6.13 (b): comparison 

between thermal stress trends due to cooling thermal load; Figure 6.13 (c): comparison between total stress trends due 

to heating thermal load in conjunction with mechanical load; Figure 6.13 (d): comparison between total stress trends 

due to cooling thermal load in conjunction with mechanical load. 



  
140 

In the Figure 6.13 (a) as the cycles increase the compressive stresses, due to the thermal load, 

decrease. In the Figure 6.13 (b) the tensile stress variation is different from zero, but is negligible. 

6.4.6 Concluding Remarks 

In order to perform a complete design procedure for energy piles, taking into account the long-term 

effects due to the action of the thermal load, some concluding points must be highlighted: 

 the most burdensome situation in both study cases is the Configuration II when the 

compressive stresses are evaluated; instead for the traction ones the most dangerous is the 

third;  

 when the situation 𝛼𝑠𝑜𝑖𝑙 𝛼𝐸𝑃 > 1⁄  or 𝑋 > 1 occurs in one of the soil layers, the stress trend 

could be completely different than that of given by the analysis with linear thermal expansion 

coefficient equal to zero; 

 as regards stresses, the analysis of the single pile (2-D axisymmetric analysis) is conservative 

in any case. Therefore, besides saving computational time, it also provides acceptable values, 

but sometimes it tends to overestimate the tensile stresses especially when the condition 

explained in the previous point occurs. 
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Chapter 7 

Concluding remarks 
 

 

7.1 Summary 
This master thesis focused on the thermo-mechanical behavior and performance of an innovative, 

multifunctional technology that can be used for energy transfer applications as well as for providing 

structural support to any type of built environment, i.e., energy piles. Energy piles are geostructures 

generally applied in groups that operate as structural supports and geothermal heat exchangers. As a 

consequence of their twofold operation, these geostructures are subjected to the unprecedented 

coupled action of mechanical and thermal loads. This action involves innovative challenges for 

engineers, particularly from analysis and design viewpoints. The reason is that it causes variations in 

the temperature, stress, deformation and displacement field in the subsurface. These phenomena 

profoundly influence the energy, geotechnical and structural behavior and performance of the energy 

piles, with a consequential impact on the behavior and performance of the superstructures they 

support and supply with energy.  

Exactly the main goal of this work has been provide a complete procedure in order to perform the 

Ultimate Limit State (ULS) and Serviceability Limit State (SLS) verifications, extending the 

procedure widely used for conventional piles. Analyzing all features of the entire problem (single pile 

and group piles) a complete guideline has been provided, in order to avoid some problems related to 

some design choices and approximations to do during the design phase. 
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Prior to this work, a substantial amount of research had been made available to address the 

thermomechanical performance of single energy piles (Rotta Loria, 2018), providing a complete 

framework about the effects due to thermal load applied on the single pile and taking into account the 

pile group effect. However, in contrast to the currently available knowledge for energy piles subjected 

to mechanical loads and thermal load, 

I. Limited knowledge, if available, was present to quantify the effects due to thermal load during 

the life of the structure; 

II. Even if simplified models have been developed in order to take into account the pile group 

effect, firstly, a real application was never performed. Moreover, with this lack, the possible 

problems that can be addressed during the design phase was never evaluated; 

III. No complete comparisons between all possible methods (in a real case application) was never 

done, in order to identify the best model to use during the design related to energy piles group; 

IV. No long-term analysis was never carried out in order to quantify the effect of the thermal load 

over time. 

To address the aforementioned challenges, this master thesis took the following steps: 

 Investigated the thermo-mechanical behavior and performance of energy pile considered 

isolated (single pile analysis) in order to quantify the thermal effects; 

 Perform all serviceability verifications for energy piles; 

 Extend the analytical models performed in the previous work (Rotta Loria, 2018) for the real 

case, in order to quantify the values given by all models to take into account the pile group 

effect; 

 Perform a complete time-dependent analysis in order to take into account the long-term effect. 

The methods employed in this master thesis comprised numerical modelling and analytical modelling. 

In these contexts: 

I. The coupling numerical and analytical modelling has been useful, above all, for the 

comparisons and the validations of the analytical models; 

II. Analytical modelling has been used to provide a simplified and quick tool to estimate the 

interaction among the piles; 

III. Numerical modelling has been used to provide a sophisticated and precise analysis tool to 

avoid any type of mistakes. 
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7.2 General conclusion  
The results presented in this master thesis project allow summarizing the following conclusions: 

 The effect of the thermal load is not significant at Ultimate Limit State, but during the life of 

the structure (Serviceability Limit State) because the stress and displacement fields change 

considerably; 

 During the geotechnical ultimate limit state design it is advisable not to pierce layers of rock 

to ensure a greater shaft capacity, but try to place the base of the pile on it. Not piercing it, the 

problem of estimating the lateral flow rate is excluded, which can be calculated with certain 

relationships according to certain conditions; 

 During the structural ultimate limit state design calculate the minimum reinforcement with 

the new relation, according to Eurocodes, avoids the risk of not verifying the SLS checks; 

 The Eurocodes dispositions for elastic analysis (nil Poisson ratio and Young’s Modulus equal 

to that of the cracked section) underrate the thermal stresses and this represent a problem for 

the structure during its life; 

 The effect of cracked Young’s modulus is also visible in the thermal displacement: with a 

lower value of Young’s Modulus the displacement decrease; 

 The effect of the nil Poisson ratio is negligible; 

 Even if the most burdensome load combination is the characteristic one, the verifications must 

be carried out with the quasi- permanent combination because is directly related with the 

equations provided by Eurocodes; 

 When the verifications have been carried out with the characteristic combination there is the 

risk to increase the amount of the reinforcement, so overestimating it; 

 the best analytical model (in average) is the layer model because provide acceptable values 

also when a rigid stratum is present, instead of the continuous model. This happens because 

the continuous model take into account the interaction between the soil layers and if there is 

a rigid soil layer the Young’s Modulus of it is much higher than that of others soil layers and 

when the mean value of shear modulus between two layers is very far from the real values of 

shear modulus of each soil layers; 

 when the soil layers parameters are similar among them the best model to use is the continuous 

model; 

 equivalent pier method has been modelled as free head model but in case in which needs to 

add the slab because its effect is very important, the value calculated with the equation (9.1) 
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must be divided by the total piles area (when the slab is rigid or when 𝐾𝑠𝑠 > 0.1) or by the 

equivalent pier area (when the slab is flexible or when 𝐾𝑠𝑠 < 0.1) both for thermal and 

mechanical load; 

 when both numerical and analytical analysis are performed with a linear thermal expansion 

coefficient of each soil layer equal to zero, the difference with the those performed with 

𝛼𝐿𝑎𝑦𝑒𝑟 in terms of displacement is not great; 

 during the cyclic analysis, the most burdensome situation for both type of stresses 

(compressive and tensile) is that when an unbalanced sinusoidal is applied; 

 when the situation 𝛼𝑠𝑜𝑖𝑙 𝛼𝐸𝑃 > 1⁄  or 𝑋 > 1 occurs in one of the soil layers, the stress trend 

could be completely different than that of given by the analysis with linear thermal expansion 

coefficient equal to zero; 

 as regards stresses, the analysis of the single pile (2-D axisymmetric analysis) is conservative 

in any case. Therefore, besides saving computational time, it also provides acceptable values, 

but sometimes it tends to overestimate the tensile stresses especially when the previous point 

occurs; 

 Linear thermo-elasticity theory appears to be an expedient and sufficiently accurate tool for 

describing the geotechnical and structural behavior of a wide number of energy pile groups 

for both research and engineering purposes. In fact the displacement never exceed the 2% of 

diameter (chapter 6, Figure 6.2-6.7): below this threshold value we can consider an elastic 

behavior; 

 Thermo-mechanical numerical analyses appear to be suitable tools for modelling the 

geotechnical, structural and energy behavior of most energy pile groups surrounded by 

saturated soil deposits without intrinsic groundwater flow. 
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