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Abstract 
The subject of the study is based on a comparison of the different Safety Formats 

for non-linear analyses of reinforced concrete columns with increasing slenderness 

values. The	mentioned	above	Safety	Formats	allows	to	perform	structural	verification	

according	 to	 global	 approach,	 accounting	 for,	 separately,	 aleatory	 and	 epistemic	

uncertainties	by	means	global	safety	factors.	

The aim of the study  is to analyze the results deriving from the different Safety 

Formats. To this purpose,	the	dependences	from	the	column	slenderness	comparing	

the	outcomes	of	the	different	safety	formats	is	highlighted.	The	influence	of	the	failure	

mode	is	also	discussed,	as	affects	significantly	the	ultimate	design	capacity.	

Finally, as	 the	Safety	Formats	are	methodologies	devoted	 to	estimate	 the	ultimate	

design	capacity	of	RC	structures	by	means	of	the	implementation	of	probability	theory	

with	 different	 degrees	 of	 simplification,	 the	 possible	 application	 of	 the	 Levels	 of	

Approximations	 approach	 proposed	 by	 fib	 Model	 Code	 2010	 is	 discussed	 and	

proposed.	
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Sommario 

L’oggetto dello studio si basa su un confronto di differenti Safety Formats per 

l’analisi non lineare, applicati a colonne in cemento armato aventi valori di 

snellezza crescenti. Il	Safety	Format	permette	di	identificare	la	resistenza	strutturale	

in	 termini	 globali,	 tenendo	 conto	 di	 fattori	 di	 sicurezza	 indipendenti,	 associati	 ad	

incertezze	aleatore	e	di	modello.	

Lo scopo dello studio è quindi quello di analizzare e discutere i risultati relativi 

all’applicazione di differenti Safety Formats. A	tal	proposito,	è stato interessante 

notare come i valori di resistenza globale ottenuti, evidenzino una dipendenza dalla 

snellezza, che	ha	condotto	ad	un’analisi	relativa	al	tipo	di	collasso.	

Infine, guardando al Safety Format come una metodologia di calcolo relativamente 

semplice, atta a indentificare il carico di collasso allo stato limite ultimo, in	ambito	

probabilistico	 e	 con	 l’accettazione	 di	 ipotesi	 più	 o	 meno	 semplificative,	 è	 stata	

discussa	 la	 possibile	 applicazione	 di	 un	 approccio	 riferito	 ai	 Livelli	 di	

Approssimazione,	proposta	nel	fib	Model	Code	2010	
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1 Introduction to structural reliability 

methods 

 At the base of structural safety, or generally at the base of simple conception of 

safety, there is statistics and probability theory. Contrary to what ordinary people 

may think, total certainty of security against structural collapse can not exist, that 

is why it is impossible to think a structural engineer like a designer able to ensure 

full safety of  structure. So, nature imposes man to deal whit risk and it	should	be	

accept	in several fields of science.. A particularly important topic in the civil area 

is risk of loss of human life, that represents one of important input data in phase 

of formulation of technical design codes. In order not to disturb the sensitivity of 

reader, it is right to underline the fact that the high or low risk of death is present 

in several and common situation of our life, like to take an airplane flight or to 

conduct a trip by car.  

Structural reliability of a generic structure depends by several factors that can be 

considered data of probabilistic analysis. In this chapter, we will introduce 

structural reliability methods, starting to definition of limit state equation and 

concluding to explain various level methods. For a correct introduction to Safety 

Format field, it will correct to introduce in this phase the reliability index and the 

reliability differentiation about structures with different importance, for which are 

accepted different failure probabilities. 
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1.1 Limit states 

A limit state is a condition in which a structure, or a part of this, does no longer 

fulfil its performance requirements. Depending on these performance 

requirements, it is possible to define a specific limit state that can be more or less 

compromising and so it can be associated to high or low level of failure probability. 

We can distinguish ULS and SLS. 

1.1.1 ULS – Ultimate Limit State 

Ultimate Limit State is the most important because it is associated directly to 

safety of people contained in a structure. It refers obviously to structural collapses 

(also partial collapse) and it aims to define ultimate bearing capacity. 

The following ULS can be considered: 

 

- Loss of static equilibrium of the system or a part of it ; 

- Fracture or great deformation in critical sections or particular 

connections;  

- Fatigue and other phenomenon depending on time ; 

- Collapse deriving from the	formation of mechanism ; 

- Instability phenomena or divergence of equilibrium of system (buckling, 

lateral buckling, aero-elastic instability) . 

1.1.2  SLS – Serviceability Limit State 

Serviceability Limit State refers to comfort of the users, visual aspects and 

generally to the performance of the structure during normal use. Its verification 

regards: 

- Deformations that can compromise the functionality of the structure, 

penalizing visual aspect, comfort of users or various installations. 

- Vibrations that clearly causes discomfort problems ; 

- Damages such as cracks that have a negative effect on visual aspects but 

also on the durability of the structure. 
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Another differentiation can be made between irreversible SLS and reversible SLS. 

In case of reversible SLS the critical value is no longer crossed after removal of 

load. This differentiation permitted us to distinguish a permanent local damage 

such as  a temporary deflection by a different problem of cracks in prestressed or 

simple reinforced concrete. In case of irreversible SLS, design criteria are similar 

to those for ULS. It can be quickly figured by the great sensitivity of prestressed 

concrete respect to the phenomenon of pitting, which makes the crack opening a 

structural damage. Alternative serviceability requirements can be expressed 

depending on the acceptability of crossing a limit value, their frequency and 

duration. 

1.2 Limit state design and reliability methods 

A generic limit state of a cross section or a particular construction element can 

be described by a limit state equation as: 

 

𝑔(𝑋) = 𝑍 = 0 
 

where X is a vector of n basic variables: 

- Material properties 

- Geometrical properties 

- Actions and loads 

- Model uncertainties. 

For each basic variable it is possible to consider an appropriate probabilistic 

model to describe variable values and their changing. However, variables can be 

expressed with a deterministic approach in case of negligible variation in time or 

space. 

Having defined the limit state function g(X) like a function depending on 

probabilistic variables, it is possible to consider the function g(X) like a random 

variable denoted Z. The function is defined so that g(X) > 0 corresponds to safe 

condition, and in reverse, g(X) < 0 to failure. Defining as f-(X) the n-dimensional 

probability density function relative to the n basic values, the failure probability 

P/  can be expressed as the integral of the pdf  f-(X) calculated into the domain in 
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which the limit state function g(X) is defined negative. It is good to note that 

explaining the integral domain in a certain way, this definition will allow to define 

the failure probability as a cumulative density function (see further). In analytical 

way, we can define P/ as: 

 

𝑃1 = ∫ 𝑓4(𝑋)
		
6(4)78 𝑑𝑋       (1.1) 

 

The elaboration and the application of this definition may lead having different 

level of complexity and accuracy. It is easy to realize that, the main issue of the 

formula is given by the presence of more variables in the definition of the limit 

state function. That is why it is not sure to solve the aforementioned integral using 

analytical formulation or numerical integration. In order to explain better the 

concept of limit state function and the meaning of his integration, it is useful to 

note that if n=2, the result of failure probability integral is volume under the joint 

probability density function corresponding to the domain where g(X) < 0 . 

A simple example can be consider by midspan cross section of a	simply supported 

isostatic beam, subject to distributed load. By a simple analysis, we can define a 

resisting bending moment 𝑀; of the cross section and a bending moment 𝑀<  

registered in midspan point, because of applied load. In this way the limit state 

function of the bending moment in midspan became: 

 

𝑔(𝑋) = 𝑍 = 𝑀; −𝑀< = 0 

 

representing with R the resistance values and with E the load effects, the limit 

state equation becomes: 

 

𝑔(𝑋) = 𝑍 = 𝑅 − 𝐸 = 0 

 

It can be expressed in a (R,E)  plain like a straight line that represent the 

boundary between survival domain Ds (Z>0) and failure domain Df (Z<0).  
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So the failure probability integral of the 1.1, can be rewritten as: 

𝑃1 = @ 𝑓;<(𝑟, 𝑒)	𝑑𝑟	𝑑𝑒 = 𝑃	[𝑅 − 𝐸 < 0]
	

FG
 

 

1.2.1 Level III method 

The reliability method of III level corresponds to a simple and theoretical 

resolution of the integral (1.2), obtaining the failure probability P/  by analytical 

formulation, numerical integration or Monte Carlo simulations. As underlined 

before, the theoretical resolution can be countered by the number of basic 

variables, so by the complexity of the cases. In particular, we can relate to 

analytical formulation only when the case in question is simple. Most of the time, 

little complexities of the study require us to follow other resolution ways, for 

example numerical integration. Also in this case, it is right to remember that a 

numerical integration can be conducted only if there is a little number of basic 

variables. A most general resolution way is entrusted to Monte Carlo simulation, 

that remains a good accuracy method but has an high computational cost. 

The clear aim of the analysis is to considered structure safe, calculating a failure 

probability 𝑃1  smaller than a predefined target value 𝑃8 . The failure probability 𝑃1 

and the reliability index b (see later) are conventional values that give a target of 

acceptable risk of the community, but if we want to be more precise, they do not 

correspond to a real failure frequencies because of some factors, like human errors 

that can sometimes be reason of collapse, are very difficult or impossible to take 

into account in a probabilistic analysis. 

The values of 𝑃1 and b are however useful and valid, in order to calibrate partial 

factors for code and to compare several structural safety levels. 

1.2.2 Level II methods  

In case of level II method only the mean values of the basic variables and the 

moments of first and second order are used in most cases. The first simplification 
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is given by a linearization in the design point of the limit state function and an 

easier probability density function (pdf). As design point, it can be taken the point 

on 𝑔(𝑋) = 0 with the highest probability density. It can be start to be clear the 

expression “first order approximation” for the limit state function and in particular 

the expression “FOSM = First Order Second Moment” which will be better 

investigated further. 

As specified before, the reliability index b  can be considered a measure of safety 

level of a structure: if we change its sign, it will correspond to the fractal of failure 

probability, respect to an appropriately standardized limit state function . So the 

reliability index b is directly related to failure probability thanks to the following 

relation, in which F represents the limit state function: 

𝑃1 = 	Φ(−𝛽) 

The table 1.1 contains the numerical relation between b  and 𝑃1 . 

Table 1.1 - Relationship between Pf and b 

Pf 10-1 10-2 10-3 10-4 10-5 10-6 10-7 

b 1,28 2,32 3,09 3,72 4,27 4,75 5,20 

 

Explain Ps  like the success probability, thanks to probability properties, it is 

possible to write: 

Φ(−𝛽) = 1 − Φ(−𝛽)  and as a consequences:  𝑃K = 	Φ(𝛽). 

 

1.2.3 Level I method 

 Going down with the levels, the aim, in order to solve the theoretical issue, 

becomes to simplify the calculation method; that is why we will introduce a level 

I that is a semi-probabilistic method. The variables taken into account with a 

probabilistic distribution, in this method, are represented by  characteristic values 

calculated as a low percentile, in case of strength distributions, or a high percentile, 

in case of distribution related to actions. 

 It is important to underline that the partial factor using in this method is 

calculated with values that are based on above mentioned level II. 
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In EN 1990 we can find the basic verification format, that consists of to verify that 

the limit state is not exceeded when, in the limit state equation, all basic variables 

are replaced by socalled design values, designated by subscript “d”. In case of a 

simple limit state function (like mentioned before in the case of the bending 

moment in a simple supported beam), it is translated by an inequality in which 

the design Resistance Rd  is at least equal to the design value of the load effect 𝐸L . 

So : 
 

𝐸L ≤ 𝑅L 
 

where : 

Ed = E(Fd1, Fd2, …, ad1, ad2, …, qd1, qd2, …) ; 

Rd = E(Xd1, Xd2, …, ad1, ad2, …, qd1, qd2, …) ; 

 

in which : 

F  is an action ; 

X  is a material property ; 

a  is a geometrical property ; 

q  is a variable representing the model uncertainty . 

1.2.4 Level 0 method 

Increasing simplicity of treatment, we end up leaving the probabilistic approach 

and so we introduce the level 0, which is a deterministic method that use a nominal 

or deterministic value of the basic variables and just one empirical global safety 

factor that have to cover up all the uncertainties. Verification is performed 

according to an equation with the following format:	

	

𝑅NOP ≥ 𝛾 ∙ 𝐸NOP 

 

This is sufficient to understand that, a certain treatment is too easy to summarize 

such important subject as structural safety. So, the introduction of probability-

based calculation methods was due to the observation that the deterministic 
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methods resulted in scattered safety levels and no coherent with	 the	 safety 

methodology that is available in case of new technology material.   

 

1.3 Target values for reliability index 

As explained before, reliability index and safety level are closely associated, that 

is why the choosing of a specific b  value corresponds to choose the acceptable 

failure risk in the design phase. It is clear that, the bond to statistics leads to define 

a failure  probability depending on time and, in particular, on the years of life of 

the structure that changes with its importance ( i.e. 50 years for a structure such 

as our house, that we can considered standard construction, or 100 years for a 

more importance structure such as a bridge). The definition of structural 

importance is released by statistics and it	takes to think to the structural failure 

consequences respect to the  loss of human life but also respect to economic, social 

and environmental consequences. So the importance of the failure consequences 

allows to define a reliability differentiation related to Consequences Classes 

explained in table 2 (Annex B of EN 1990). 
 

Table 1.2 - Definition of Consequences Classes 

Consequenc
e Classes 

Description 

Examples Consequences 
with respect to 
loss of human 

lives 

Economic, social 
and 

environmental 
consequences 

CC3 High Very Large 

Tribunes, Public buildings 
with high consequences of 
failure (concert, hall,…) 

CC2 Moderate Considerable 

Home and office buildings, 
public buildings with 
moderate consequences of 
failure (offices,…) 



 - 9 - 

CC1 Low Small or 
negligible 

Agricultural building where 
peolpe do not normally 
enter (depositories, 
greenhouses,…) 

 

 

The three consequences classes CC1, CC2 and CC3 are closely related to three 

reliability classes RC1, RC2 and RC3, respectively.  

 

Annex C of EN 1990 indicates target values for b for reference period of 1 and 

50 years, designed b1 and b2 respectively. In the following table, target value b  for 

reliability class RC2 are indicated. 

 

Table 1.3 - Target Value b  for a Reliability Class RC2 

Limit State tref = 1 year tref = 50 years 

Ultimate Limit State 4,7 3,8 

Serviciability Limit State 2,9 1,5 

 

It is worthy to underline that in the framework of EN 1990 to EN 1999 the 

following assumption for the distribution type have been considered: 

- Lognormal or Weibull distribution for material properties, strength and 

eventually model uncertainties ; 

- Normal distribution for self-weight ; 

- Extreme value distribution for variable actions (sometimes normal 

distribution like simplifications). 

Moreover, when the uncertainty source are related to actions of which the yearly 

maxima are mutually independent, the following relationship can be used to 

convert b value in equivalent to different reference period:  

𝜙(𝛽N) = [𝜙(𝛽)]N 

With bn the reliability index for tref = n years and b1 the reliability index for tref = 

1 year. 
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Finally, minimum value b  for ULS (Ultimate Limit State), recommended to EN 

1990, are shown in the following table, divided for reliability class RC. 

 

Table 1.4 - Recommended minimum values b (ULS) 

Reliability Class tref = 1 year tref = 50 years 

RC1 5,2 4,3 

RC2 4,7 3,8 

RC3 4,2 3,3 

 

 



 

 

2 Safety Formats for non-linear analysis 

Non-linear analysis can be seen as a powerful and precise calculation method  to 

estimate load capacity of civil structure. It is clear that,	according	to	fib Model	Code	

2010	approach,	such	analysis	is	related	to	high	level	of	approximation,	in which, with 

elevate computational cost, the aim is to find a more realistic collapse load, thanks 

to  better model description of mechanical material properties. It	 is	worthy	 to	

underline	that,	a	new	proposed	approach	of	Levels	of	Approximation,	can	be	related	

to	accuracy,	simplifications	and	computational	cost,	regarding	to	singular	non-linear	

analysis.	Non-linear analysis uses realistic constitutive law of materials and it is 

based on concepts of equilibrium and compatibility of deformations. A  more 

detailed model so represented an appropriate material behavior, material 

geometry and other general structural parameters . In the classic design phase, 

several limits, like calculation time or the lack of structural resistance distribution, 

do not allow to evaluate analyses with an high level of approximation and usually 

designer engineer deals with mean values of material parameters. So, the aim of a 

Safety Format for non-linear analysis is to determinate actual structural behavior 

by means of  a simple formula, able to find the most probable structural resistance, 

starting from mean values of parameters. 

 

Starting by low level of approximation, verification of structures is considered as 

local because of it is conducted on section level. According to Eurocode [1] 

structure can be verified thanks to following inequality: 
 

 𝐸L ≤ 𝑅L											(2.1)         
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in which 𝐸L is the design  value of the effects of actions and Rd the corresponding 

resistance. According to EN 1992-1-1 [2] the design value 𝐸L can be calculated by 

the designer engineer by means of : 

- Linear elastic analysis ; 

- Linear elastic analysis with limited redistribution ; 

 

Performing non-linear analysis on generic concrete structure, in order to calculate 

design value of effects actions 𝐸L  , it has been verified that the use of a design 

value in the analysis, leads to an overestimation of the structure deformability and 

so an incorrect assessment of the load bearing capacity, e.g. an unrealistic 

redistribution of internal actions occurs in case of beams and slender columns. By 

comparison with experimental test, it is emerged that the actual structural 

resistance can be better evaluated with a non-linear analysis that uses mean values 

of material properties. In this way we are so arrived to a discrepancy related to 

Eq. (2.1), given by the fact that 𝐸L is evaluated with mean values, in order to 

respect a better distribution of internal actions, while Rd is estimated with the 

design values, respecting semi-probabilistic approach. As previously mentioned, 

SFs have been proposed to solve this discrepancy with a methodology that 

calculates structural resistance with mean values of material resistances.	

2.1 Type of uncertainties 

The words “most probable resistance” start to give an idea of 	uncertainty related 

to structural constructions. Several simulations of a civil structure and its materials 

can not exist without uncertainties that, obviously, depend on the singular contests 

and applications. Therefore, it	is impossible to create a classification of	uncertainty, 

with the aim to analyze them and so find an analytical solution able to give a	value	

at the actual structural resistance. However, civil engineering recognizes two types 

of uncertainties: aleatory and epistemic. 

Aleatory derives from latin “alea” that means the rolling of dice. It is clear that 

the word aims to consider all the randomness of a scientific phenomenon. In the	

structure field, it is	possible	to	identify	a	great	number	of intrinsic randomness of 

variables related to structure, such	as the measurement of a physical quantity  (e.g. 

concrete strength measure). 
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The word epistemic derives from Greek “episteme” which means knowledge. 

Epistemic uncertainty points out the lack of knowledge in the definition of the 

structural model, that so becomes inexact or incomplete also because of it accepts 

simplifications. A practical instance of epistemic uncertainty can be given by the	

assumption of an hinge as connection model between two structural element: 

during the construction phase , it is not sure that the connection will work as a 

hinge; however this simplification is accepted in order to speed up the 

computation. 

2.1.1 Model Uncertainties 

In the previous chapter, the calculation model of SLU function has been presented 

depending on relevant variables Xi as follows: 

 

𝑅 = 𝑓(𝑋W, 𝑋X, 𝑋Y, …	, 𝑋N) 
 

In case of Xi are supposed exact and the model f(…) is complete and exact, the 

outcome R can be evaluated without any error or particular simplifications. But it 

has already been explained that,	 this is not an ordinary situation because of 

difficulties or impossibilities to define an accurate value to represent variables Xi. 

The previous exposition of different probabilistic levels methods, is finalized to 

arrive to a simple level method in which, lack of knowledge and model 

simplification are accepted. In a more accurate analysis, it becomes important to 

define model uncertainties and a methodology for their qualification and treatment 

in practical applications. The difference between model prediction and real 

outcome can be expressed as follows: 

 

𝑅 = 𝑓′(𝑋W, 𝑋X, 𝑋Y, …	, 𝑋N;	𝜃W, 𝜃X,𝜃Y, … , 𝜃N) 

 

Where 𝜃^ are variables which comprise model uncertainty and are treated as 

random variables. Their statistical properties can be evaluated from experiments 

and observations. 

Generally, model uncertainty can be obtained by a simple comparison between 

model results and outcomes of a	physical tests. Fig 2.1 shows a general concept 

for the assessment of model uncertainties. All parameters that affect tests, model 
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results and real structure behavior depend on both structural members and failure 

mode. 
 

 

Figure 1 - General concept of the assessment of model uncertainties  [Milan Holicky et al.] 

 

- Test results: test methods based on general experience and calibration 

accuracy. 

- Model results: the choose of a particular FEM model, all the uncertainties 

related to input data and all the possible simplifications. 

- Structural conditions: it leads to investigate the differences between real 

structure and tests under ideal conditions. 

 

In SF field, model uncertainties are generally summarized with 𝛾;L . It is worthy 

to underline that the evaluation of 𝛾;L is not topic of this thesis. Thanks to its 

independent from other uncertainty coefficient, from here on, 𝛾;L is assumed equal 

to 1 in the all next calculation parts [see later]. 

2.2 Safety Formats for non-linear analysis  

The fib Model Code 2010 proposes a design condition associated to higher level 

of approximation, in which verification of structure does not considers resistance 
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at section level, as explained in Eq.(2.1) , but it aims to take into consideration 

global actual behavior of structure and progressive redistribution of internal forces 

of RC structures. (A more detailed exploitation about different fields of the Levels 

of Approximations is reported further). 
 

 Regarding Safety Format in fib MC2010, a new global inequality can be written 

in the domain of actions : 
 

𝐹L ≤ 𝑅L										(2.2)          
 

where Fd is the design value of actions and Rd is the design resistance, that can be 

estimated by means of two methods that start to differentiate the Safety Formats: 
 

- PM.  Probabilistic Method ; 

- GRMs.  Global Resistance Methods : 

• GRF  Global Resistance Factor  

• ECOV  Estimation of the Coefficient of Variation  

• SMVM Simplified Mean Value Method 

• PSF  Partial Safety Factor 

• SHLUNE METHOD 

• GSF  Global Safety Format 

2.2.1 Introduction of global safety factor gG  

The first generalized safety format for non-linear analysis was proposed in 1995 

[8] and it is based on the idea that in a structures, only sensitivity of the overall 

structural behavior has to be investigated. It is also assumed that structural 

variable (e.g. material properties) are associated to aleatory distribution function 

(it will see that the log-normal distribution is considered as the better for material 

properties distribution function) . 

The global safety factor gG was introduced like a coefficient related to the overall 

structural resistance, in order to cover uncertainties of material which mechanical 

property values are represented by means of statistics distribution function. By a 

first approach, gG  is defined after the definition of distribution function of structural 

resistance, as the ratio between the mean value Rm  and the design value Rd : 
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𝛾` =
𝑅P
𝑅L

≈ exp(𝛼;	𝛽	𝑉;)														(2.3) 

 

where Rm is the mean resistance that corresponds to the	outcome of NLFEA, 

performed with the	mean values of the	material properties, while Rd is the design 

value defined thanks to a probabilistic relationship of EuroCode [1] : 
 

𝑅L = 𝑅P	exp	(−𝛼;	𝛽	𝑉;) 
 

where : 

- 𝛽   is the reliability index ; 

- 𝛼;		 is the FORM (First Order Reliability Method) resistance sensitivity 

factor ; 

- 𝑉;   is the coefficient of variation related to the resistance distribution . 

The values 𝛽 = 3,8	 and 𝛼 = 0,8  are used for an expected structural life of fifty 

years. The coefficient of variation 𝑉; can be obtained by Monte Carlo simulation .  

The just described definition of global coefficient factor can be exploit thanks to 

previous definition of statistical distribution function of structural resistance, that 

in general is taken as log-normal thanks to a number of favorite study cases on 

material properties; but it is worthy to underline that the hypothesis of log-normal 

distribution may not be verified because of both log-normal distribution and global 

resistant factor depend on the analyzed structure and on the failure mode. It is so 

possible to underline that the global resistance factor may not be unique. 

2.2.2 Probabilistic Method  PM 

The Probabilistic Method descends	from calculation of several non-linear analysis 

with different parameters in order to create a distribution of structural resistance 

R  that can be different from log-normal one. The number of NLFEAs to execute, 

require sampling techniques like Latin Hypercube, to optimize the input data, and 

Monte Carlo simulation. After obtaining R  distribution, the design value Rd  of 

global structural resistance is expressed in function of a specific reliability index 

with Eq.	: 
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𝑅L =
𝑅iW[𝜙(−𝛼;𝛽]

𝛾;L
 

  

where : 

- 𝑅  is the structural resistance predicted by NLFEA , 

- 𝛼; is the resistance sensitivity factor , 

- 𝛽  is the reliability index thanks to is possible to directly assess the design 

value of the global structural resistance , 

- 𝛾;L is the model uncertainty factor 

 

E.g. in the common case  of ULS, with	moderate consequences of failure and a 

reference period of 50 years, the aforementioned values can be considered [1]: 

- 𝛾;L = 1,06 

- 𝛼; = 0,8 

- 𝛽 = 3,8 

 

Admitting the two-parameters log-normal distribution as the better for concrete 

resistance, the previous eq. can be rewritten as: 
 

𝑅L =
𝜇;[𝑒𝑥𝑝(𝛼;𝛽𝑉;)]

𝛾;L
															(2.4) 

 

Where 𝜇; and 𝑉; are the mean value and the coefficient of variation of the 

distribution of global resistance described by the model. At this point, it is clear 

the need of  Monte Carlo simulation in order to estimate the just mentioned 

distribution parameters. Therefore, PM requires two models; the first is a non-

linear finite element model which represents the structure response; the second 

is a  probabilistic model for the uncertainty of the model parameters as mechanical 

and geometrical material properties, boundary conditions or other effects. Finally, 

it is interesting to note that at numerator of Eq.	(2.4) we can recognize the global 

safety factor 𝛾` described in (2.3). A new formal representation will be presented 

in the next paragraph, in order to introduce the other SFs. 
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2.3 Global Resistance Methods  GRMs 

The previous presentation of several SFs in fib Model Code 2010 puts GRF, ECOV 

and PFM under the voice Global Resistance Methods. The idea to define all SFs as 

global method, is justified by the theoretical formula (Eq.	2.5) that can summarized 

the calculation procedures, in which the design structural resistance is evaluated 

dividing the global resistance, obtained through NLFEA, by global safety factors 

𝛾;	and 𝛾;L . 

 

𝑅L =
𝑅(𝑓opq)
𝛾;	𝛾;L

																(2.5) 

 

in which: 

- 𝑅   is the global resistance, result of non-linear analysis ; 

- 𝑓opqrepresents the generical material parameters that are input of the non-

linear analysis ; their values depend on several Safety Formats and are 

different for each one ; 

- 𝛾;	 is the uncertainty material coefficient, different for each SF. 

- 𝛾;L	is the uncertainty model coefficient, different for each SF. 

2.3.1 Global Resistance Factor  GRF 

The Global Resistance Factor uses the aforementioned global safety factor 𝛾`	as 

unique uncertainty value which proposed value is  𝛾`	 = 1,27	. It can be considered 

as a product of material properties uncertainties and model uncertainties : 
 

𝛾`	 = 𝛾;	 ∙ 𝛾;L	 
 

According to [15] , for the uncertainty material factor 𝛾;	is proposed a value of 

1,20 ; like consequence, the estimation of uncertainty model coefficient 𝛾;L	has to 

take a value of 1,06  in order to obtain a global coefficient of 1,27 : 

 

𝛾`	 = 𝛾;	 ∙ 𝛾;L	 = 1,20	 ∙ 1,06 = 1,27																(2.6)        
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As regarding global structural resistance obtained by means of NLFEA, the GRF 

requires as analysis inputs the following representative material parameters: 
 

- 𝑓tP    for steel ; 

- 𝑓uPL  for concrete ; 

 

where 𝑓tP is the mean yield stress, calculated in function of 𝑓tv(characteristic yield 

stress) as:  
 

𝑓tP = 1,1	𝑓tv														(2.7)        

 

and 𝑓uPL is a reduced resistance value for the compressive concrete strength, able 

to take into account the difference of material property uncertainties between 

concrete and steel. Remembering that, according to Euro Code, the partial safety 

coefficients related to concrete and still are respectively 𝛾u = 1,5 and  𝛾K = 1,15 , 

the 𝑓uPL definition is similarly to (2.7) : 

 

𝑓uPL = 1,1	𝑓uv 	
wx
wy
= 1,1	𝑓uv

W,Wz
W,z

= 0,85	𝑓uv												(2.8)        

 

Finally the (2.5) can be rewritten for GRF as : 

 

𝑅L =
𝑅(𝑓uPL	, 𝑓tP	)

𝛾;	𝛾;L
																	(2.9) 

 

with: 

- 𝛾;	 	= 1,20 

- 𝛾;L = 1,06 

2.3.2 Estimation of Coefficient of Variation  ECOV 

The global structural resistance 𝑅 requires by ECOV is calculated with a NLFEA 

using the mean material parameters 𝑓uP	, 𝑓tP	both for concrete and still. The 

particularly of this method is easy to understand thanks to its name. The global 

resistance factor 𝛾;	is calculated in function of the coefficient of variation 𝑉;	of 

global structural resistance 𝑅 distribution (Eq. 2.10). It is so important to underline 
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the necessity to define this distribution that, for hypothesis, can be taken as a two-

parameters log-normal distribution. The hypothesis is justified by the good 

approximation that  log-normal distribution has to describe the material properties 

as random variables. So, in linear analysis field, the two log-normal hypothesis 

related to the global resistance and the material property are redundant, but with 

non-linear analysis, the global structural distribution can obviously be different to 

material parameters distribution; this difference is as big as the analysis tending 

to non-linearity.  That is why we can conclude that the ECOV approximation is 

closely related to the non-linearity magnitude of problem case. The aim of ECOV 

is represented by Eq. (2.10), valid in the hypothesis that the resistance follows a 

log-normal distribution : 

 

𝑉; =
1
1,65

ln
𝑅P
𝑅v

																						(2.10) 

 

in which 𝑅P and 𝑅v are the results of global resistance obtained with two NLFEAs 

using respectively mean values and characteristic values of material properties. 

Thanks also to the aforementioned reliability index 𝛽 and resistance sensitivity 

factor 𝛼;	, the global resistance factor  𝛾; can be calculated as: 

 

𝛾; = exp(𝛼;	𝛽	𝑉;)															(2.11) 

 

Finally the (2.5) can be rewritten for ECOV as : 
 

𝑅L =
𝑅(𝑓uP	, 𝑓tP	)
𝛾;	𝛾;L

																	(2.12) 

 

with: 

𝛾;	expressed by (2.11)  and 𝛾;L = 1,15  [37]. 
 

2.3.3 Simplified Mean Value Method  SMVM 

The simplified mean value method SMVM takes by ECOV the same idea to 

estimation of coefficient of variation, but in a more simple way. As expressed in 
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Eq (2.13), the SMVM puts a coefficient of variation 𝑉; equal to 1,15 , without to 

consider the distribution type of global resistance. 
 

𝑉; = 0,15															(2.13) 
 

At this point the global resistance factor  𝛾; can be calculated by means of (2.11). 

 

As regarding the value of global structural resistance 𝑅 presented in (2.5), it has 

be calculated through NLFEA performing with the mean material parameters 

𝑓uP	, 𝑓tP	both for concrete and still. It can be considered an other similarly with 

ECOV method. 
 

Finally the (2.5) can be rewritten for SMVM as : 

 

𝑅L =
𝑅(𝑓uP	, 𝑓tP	)
𝛾;	𝛾;L

																	(2.12) 

 

with: 

𝛾;	expressed by (2.11), using 	𝑉; = 0,15	(2.13)  and  𝛾;L = 1,15  [37].	

2.3.4 Partial Factor Method  PFM 

Partial Factor Method is the most simple method in theoretical line. It advises just 

a single NLA with extremely low material parameters i.e. design parameters, 

without to take into account any type of distribution function regarding parameters 

or structural resistance.  

 

It is clear that  using low values of resistance material, the non-linear analysis will 

return an underestimation of global structural resistance 𝑅 (related to PM global 

structural resistance which has been considered the most reliable value at the start 

of this study).  

In addition to resistance underestimation, another deficit of PFM can be considered 

reliability of analysis results, performed with design values. As explained into 

introduction regarding Eq.	 (2.1), the use of design parameters generates an 

erroneous assessment of global resistance, also connecting to failure mode 
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problems. So in non-linear field, actual bearing capacity can be better calculated 

by means of means material parameters, that is why PFM is recommended only in 

case of absence of more refined solution. 

 

In order to reconduct to the form of Eq.(2.5), the PFM can be summarized as: 

 	

𝑅L =
𝑅(𝑓uL	, 𝑓tL	)
𝛾;	𝛾;L

																	(2.13) 

 

in which 𝛾;	 is considered as unit coefficient,	and 𝛾;L = 1,15		[37].  

2.3.5 Schlune method 

After the fib Model Code 2010, two new methodology were formulated. The first 

was proposed in 2011 by Schlune et al. [5]. The second was published in 2013 by 

Allaix et al. [11]. 
 

The great innovation brought by Schlune method in fib MC2010 is the possibility 

to estimate  global structural reliability taking into account not only of bending 

moment and normal force, but also of issues related to shear failure. The 

formulation is a little different respect to the other SFs, but as any of them, Schlune 

method considers for the material resistance, the log-normal distribution function, 

that permits to uses similar equations of other SFs. The classical formal equation 

implies a NLFEA performed with mean value properties and  can be rewritten as: 

 

 

𝑅L =
𝑅(𝑓uP,^K	, 𝑓tP	, 𝑎NOP)

𝛾;
																	(2.14) 

 

in which : 

- 𝑓uP,^K	 is the mean in situ concrete compressive strength ; 

- 𝑓tP	    is the mean yield strength of steel reinforcement ; 

- 𝑎NOP  is the nominal value of geometrical parameters ; 

- 𝛾;       is a single global safety coefficient, described below. 
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At this point, the aforementioned hypothesis of log-normal distribution for material 

resistance material permits to define 𝛾; as : 
 

𝛾; =
exp(𝛼;	𝛽	𝑉;)

𝜗P
																	(2.15) 

 

The new factor 𝜗P takes into account the model uncertainties and it is defined as 

the mean ratio between the experimental and predicted resistances. His value can 

space between 0,7 and 1,2 and it depends on  failure mode. While the coefficient 

of variation 𝑉; takes into consideration  uncertainties related to geometry, model 

and material. It is calculated as: 
 

𝑉; = �𝑉6X + 𝑉PX + 𝑉1X														(2.16) 

 

where 𝑉6	, 	𝑉P	 	𝑎𝑛𝑑	𝑉1	 are the coefficients of variation respectively of  geometrical, 

model and material uncertainties. The material coefficient can be estimate as : 

 

𝑉1 ≈

��
𝑅P − 𝑅�1u

Δ𝑓𝑐 �
X
𝜎1uX + �

𝑅P − 𝑅�1t
Δ𝑓𝑦 �

X
𝜎1tX 				

𝑅P
												(2.17) 

 

where : 

- 𝜎1u	  is the standard deviation of concrete compressive strength and 𝜎1t	  is 

the standard deviation related on yield stress of the steel ; 

- ∆𝑓u	, ∆𝑓t are the finite variations of the material resistance ; 

- 𝑅�1u , 𝑅�1t  are the resistance results of non-linear analysis performed 

with the values (𝑓uP − ∆𝑓u) for the concrete compressive strength and 

(𝑓tP − ∆𝑓t) for the yield stress. 

 

It is so clear that this method needs the performance of three NLFEAs: one using 

mean values of material properties, and the others using respectively (𝑓uP − ∆𝑓u) 

for concrete and (𝑓tP − ∆𝑓t) for still. 
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2.3.6 Global Safety Format  GSF 

The new Format introduced by Allaix et al. [11] , as Schlune method, takes into 

consideration  nominal values of geometrical dimensions 𝑎NOP and considers log-

normal distribution to describe material behavior. It is important to notice that 

the GSF requires the assumption of log-normal distribution only for material 

resistances; any distribution assumption is done for the global structural resistance 

𝑅 (see later). 

 

The usual SF formulation can be rewritten as : 

 

𝑅L =
𝑅(𝑓uP	, 𝑓tP, 𝑎NOP)

𝛾;	𝛾;L
																	(2.18) 

 

You immediately notice that the global structural resistance 𝑅, output of just one 

NLFEA, requires mean values of material properties both for concrete and for still 

and the nominal values of geometrical dimensions 𝑎NOP. 

The global resistance factor 𝛾; is derived by the same formulation introduced for 

ECOV, Eq.(2.11) : 
 

𝛾; = exp(𝛼;	𝛽	𝑉;)		 

 

The difference is that GSF does not accept an estimation of the coefficient of 

variation 𝑉; after assumed log-normal distribution also for global resistance 𝑅, but 

requires a more precise calculation of 𝑉; using a probabilistic simulation by means 

of Monte Carlo simulation. Basically, a Monte Carlo simulation requires an high 

number of non-linear analysis performed with different random values of material 

resistances. The use of this simulation  technique creates, of course, an high 

computational and temporary cost, but permits to obtain results closer to 

Probabilistic Method. Moreover, Monte Carlo performance returns an actually 

distribution of global structural resistance 𝑅, that no longer needs to be estimated 

as log-normal. 

The model uncertainty factor 𝛾;L wants to consider the difference between real 

and numerical model behavior of the structure. That is why, it is predominantly 

evaluated by means of a comparison between experimental tests and numerical 



 - 25 - 

calculations, but also through probabilistic considerations. If the distribution of 

resistance model uncertainty 𝜗; is given, 𝛾;L can be calculated as : 
 

𝛾;L =
1

exp	(−𝛼�;	𝛽	𝑉�;)
= exp	(𝛼�;	𝛽	𝑉�;) 

 

Where 𝛼�; = 0,4𝛼; is the sensitivity factor for the resistance model uncertainty 

and 𝑉�; is the coefficient of variation of the resistance model uncertainty  𝜗; . 

However,	by	simplifying,	 𝛾;L can	be	taken	equal	to	1,15	as	previous	SFs		[37]. 
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3 Theory and design for instability 

3.1 Introduction to non-linear field 

Theory of elastic line defines the problem of elastic beam by means of static and 

kinematic equations, which are related in order to calculate internal actions and 

so  stress field. In the practicality of design area, stress domain allows to designer 

engineer to establish the structural local resistance, without give particular 

importance to strain domain and so to global stress-strain behavior related	to the 

structure. At the base of elastic theory, the static equations, which define 

equilibrium, are constructed after kinematic equations, in the undeformed 

configuration. Such formulation is possible thanks to the hypothesis of little 

displacement, characteristic of  linear elastic field.  In other words, in linear field, 

the elastic displacements are little enough  to mistake undeformed and deformed 

configuration. However, this simplification can not be considered valid in particular 

cases in which, geometrical parameters play a particular role on global level and 

do not allow to obtain linearity of global stress-strain relationship (it can be 

noticed also in external load – displacement graphic). The non-linearity of this 

process, encourages to analyze static equilibrium starting from undeformed 

configuration: it will lead to the distinction of stable, unstable and indifferent 

equilibrium and it could have important consequences on the global structural 

resistance. 

 

The	 entry in the non-linear field for	 the	material	 properties, starts to counter 

hypothesis of little displacements and	 so	 it	 does	 not	 enable	 to	 neglected	 the	

undeformed	configuration.	Anyway,	the	writing	of	static	equation	that	rules	problem,	

could	not	be	influenced	by	non-linearity	of	the	geometric	parameters.	To	this	purpose,	
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figure	3.1	 reports	 two	different	 cases	of	 load	applied	at	 the	same	column,	with	an	

elastic	 constrain	 at	 the	 base.	 In	 the	 first	 case,	 we	 have	 only	 the	 presence	 of	 a	

transversal	 concentrated	 load	 (Pt),	 which	 requires	 the	 columns	 works	 like	 a	

cantilever;	in	the	second	case		we	see	also	the	presence	of	a	second	concentrated	force	

(P),	acting	as	a	peak	load.	

 

Figure 3.1 - Load cases with different nature 

 

The static equations of the similar systems of  the figure 3.1, are following : 

 

𝑃� ∙ 𝐿 ∙ cos(𝜑) = 𝑊 ∙ 𝜑																																												(3.1)	

𝑃� ∙ 𝐿 ∙ cos(𝜑) + 𝑃 ∙ 𝐿 ∙ sin	(𝜑) = 𝑊 ∙ 𝜑													(3.2)	

	

Both equations obtained by equilibrium show a non-linear relationship, even 

though the supposition of a linear elastic behavior of the restraint.  At this point, 

the hypothesis of low displacement	values,	allows to rewrite : 

	

cos(𝜑) ≅ 1																																	(3.3)	

sin	(𝜑) ≅ 𝜑																																(3.4)	

	

And	the Eq. (3.1) and (3.2) can	be	rewritten	in	linear	form,	related	to	undeformed	

situation	:	

	

𝑃� ∙ 𝐿 = 𝑊 ∙ 𝜑																																												(3.5)	

𝑃� ∙ 𝐿 + 𝑃 ∙ 𝐿 ∙ 𝜑 = 𝑊 ∙ 𝜑																								(3.6)	
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When the peak load P is present (2nd  case) could not be legitimate to write 

static equilibrium in the undeformed configuration, even if the values of the 

displacements remain little. The hypothesis of negligible displacements is 

not only related to their entity but also to nature of the load condition. 

In	these	particular	cases,	the	stability	loss	becomes	an	important	element	for	

the	global	resistance;	in	the	cantilever	case,	it	can	be	read	as	a	rapid	increase	

of	displacement	as	result	of	a	little	growth	of	load	value.	The	figure	3.2	shows	

the	differences	between	the	two	load	line	of	the	two	previous	case.	It	presents	

the	trend	of	the	transversal	concentrated	load	Pt		in	function	of	the	rotation	at	

the	base	𝜑.	In	the	second	case,	the	value	of	the	peak	load	P	is	taken	equal	to	Pt.	

	

 
Figure 3.2 - Load lines 

 

 

The dotted line is related to the case of presence of the	peak load and	it	diverges	

from	 linear	 trend. His anomalous behavior represents the loss of equilibrium 

stability. So,	the previous graphic shows two structural global behavior that can be 

considered representative of the plastic failure and the buckling failure of the 

columns cases under exam. The load line shape can give an idea about the global 

resistance and so about the failure mode which characterizes the single column 

case. More detailed graphics, products of failure mode analysis, are reported in 

Appendix B .	

φ

PT

(1)

(2)
P=PT
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The differentiation between plastic collapse and buckling failure is closely related 

to mechanical and geometrical parameters. Structural failures caused by material 

failure is typical for shorten columns and is given by the achieving ultimate 

material resistance. Concrete crushing or steel yielding allows to the structure to 

benefit from all material resistance, independently by structural geometry and size. 

On the contrary, structural failure caused by buckling is typical for structures 

having high slenderness values. For slender structures, some loads, having 

particular entity or particular nature, force the structure to an instability domain 

in which material properties play an less important role, for the benefit of 

geometrical properties. In fact, when the failure instability occurs, the materials do 

not reach their strength limits. 

3.2 Buckling hardening branching 

This form of instability is typical of our column cases. It occurs in axially loaded 

elastic element such as column and it is characterized by a rapid change of 

configuration:  the unbuckled and buckled states are very near, but buckling 

structural deformation is completely different by structural deformation in pre-

buckling state. The figure 3.3 shows an hinge supported beam loaded with an axial 

force N. Its stability loss can be described by graphic which express the axial 

concentrated load N in function of deflection u (figure 3.4) . 

 

 

Figure 3.3 - Simply supported beam with axial load 

 

 

It is clear that the deflection u is a dual deformation respect to second order 

bending. In the undeformed configuration, u will destined to remain equal to zero, 

N
l

x

u
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while analyzing the deformed shape, it enables to define different equilibrium 

states: stable, unstable and neutral. 

 

Figure 3.4 - Buckling hardening branching 

 

Loading the beam with the increasing concentric force N, we do	not have any 

deflection until achieving the critical load Nc .   So the segment OC can represent  

stable equilibrium: in this phase the external load N takes on values that can be 

considered too low to compromise the equilibrium stability. In the point C, the 

axial load arrives to critical value Nc (N=Nc): from here,  equilibrium stability is 

undermined. The system can be still considered in equilibrium, but this kind of 

equilibrium is unstable.  

 

Theoretically, after the achievement of Nc (N>Nc), it is possible to continue along 

the N axis, without any deflection, until to arrive to maximum plastic value of axial 

load, given by the material strength and calculated on the cross section. In reality, 

the overcoming of critical value Nc and so the entry in the instability equilibrium 

state, makes equilibrium precarious;	 which	 means	 that a little equilibrium 

perturbation, such as an imposed deformation or a simple geometrical inaccuracy, 

is enough to diverge equilibrium and	so	to	lead	to	collapse.  

This particular phenomenon is analytically justified by existence of two stable and 

symmetric branches, starting to the	point C, that give origin to a bifurcation of two 

symmetric ways in which equilibrium persists and lives in presence of deflection. 

The branches are obtained by resolution of a transcendent equilibrium equation 

u

N
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and they give a different equilibrium solution respect to the obvious  configuration 

of pure compression in which u=0.  

As explained before, the loss of equilibrium stability determines a fast increase of 

deformation in compliance with a little growth of axial load. It is clear that, the 

two buckling branches lead to a fast achievement of strain limit, that causes 

buckling failure, without going as far as exploiting the strength material limit.  

 

With regard to buckling branches trend, it is interesting to underline that the 

present case of simply supported beam, leads to define a rigid-hardening buckling 

behavior, characterized by an associated growth of force and deformation that 

allows to define a stable behavior. Such behavior can be distinguished respect to 

other cases of rigid-softening buckling  branch, in which, after the achievement of 

critic load, the  displacements start to increase in compliance with a decrease of 

force value. Such rigid-softening behavior is defined unstable and it can be 

analyzed by potential stationarity study. For a better deepening about hardening 

and softening branches, please refer to [33] Carpinteri A. -Scienza delle Costruzioni 

2,	Pitagora,	Bologna,	1992.		

3.3 Critical load for axially loaded columns 

In the previous paragraph, references was made about a critical load Nc that marks 

border line between stable and unstable equilibrium. It is well known that slender 

structures suffer from instability loss: for them critical load of course represents 

strength limit that, if exceeded, leads to failure.  

The columns under exam in this study are only loaded with an axial force, rather 

than concentrated bending moment (there are only two case in which the axial 

force is constant and collapse takes place because of an increase transversal 

concentrated load).  That is why, in first place, it was decided to report the 

theoretical example of simple supported beam loaded whit concentric load (static 

scheme was previously reported in Fig.3.3) which allows to define Euler’s equation. 

It was also reported problem related to inelastic material behavior, which we 

consider characteristic of non-linear analysis and hence near to constitutive laws 

in exam. 
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3.3.1 Instability of linear elastic columns 

The Figure 3.3 shows a simply supported beam loaded with a concentrically axial 

force. It is inserted in a reference system, marked by x coordinate, whit origin in 

hinge.  If secondary order effects are taken into account, the axial force N causes 

a bending moments which can not be found until the deflections are determined. 

The column is therefore statically indeterminate, and it is necessary to solve the 

differential equation for the deflection curve of the column. The section rigidity EI 

is constant along the column. As the secondary effects are taken into account, the 

moment equilibrium gives as follow : 

𝑀 −𝑁 ∙ 𝑢 = 0													(3.1) 

where u is the displacement along the transversal direction of the column axis. 

The bending moment (M) is determined by the well-know formula: 

𝑀 = −𝐸𝐼
𝑑X𝑢
𝑑𝑥X

													(3.2) 

which inserted in the Eq. (3.1) gives the following differential equation:  

𝐸𝐼
𝑑X𝑢
𝑑𝑥X

+ 𝑁 ∙ 𝑢 = 0											(3.3) 

This is an ordinary homogeneous second order differential equation, which can be 

solved using the following boundary conditions:  

𝑢(𝑥 = 0) = 0															𝑢(𝑥 = 𝑙) = 0													(3.4) 

It can be introduced the factor α as follows:  

αX =
𝑁
𝐸𝐼
																	(3.5) 

The	Eq.(3.3)	can	be	rewritten	as:	

𝑑X𝑢
𝑑𝑥X

+ αX ∙ 𝑢 = 0											(3.6) 

The complete solution of Eq. (3.6) is:  
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𝑢 = 𝐴𝑐𝑜𝑠(𝛼𝑥) + 𝐵𝑠𝑖𝑛(𝛼𝑥)											(3.7) 

The two constants A and B are determinate from the boundary conditions 

(discarding the trivial solution A=B=0) and as a result, the solution of Eq. (3.7) is 

given by:  

𝑠𝑖𝑛(𝛼𝑙) = 0					 → 				𝛼𝑙 = 𝜋 + 𝑛𝜋							(𝑛 = 0,1,2, … )											(3.8) 

The axial loads N obtained through this solution are the eigenvalues and the 

corresponding solutions u(x) are eigenfunctions. The eigenfunctions give the 

information about the column deformed shape, but the deformed magnitude can 

not be determinate. When n = 0, αl = π, which gives the first and lowest value of 

N, which corresponds to the Euler’s equation:  

𝑁uo =
𝜋X𝐸𝐼
𝑙X

																	(3.9) 

The corresponding eigenfunction u(x) matches to curve with n=0 inflection point. 

It is shows in Fig. 3.5. It is clear that when n=0 we have just one concavity  of 

 the  deflection  curve.  

  

 

Figure 3.5 - Eigenfunction u(x) with n=0 

 

The Euler’s equation (3.9) can be used to define the critical buckling stress:  

𝜎uo =
𝑁
𝐴
=
𝜋X𝐸𝐼
𝐴	𝑙X

=
𝜋X𝐸𝜌X

𝑙X
																	(3.10) 

NCR
l

x

u
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Introducing the slenderness factor λ, defined as the ratio of the length of the 

column over the radius of gyration of the transversal section, the Eq. (3.10) can 

be rewritten as:  

𝜎uo =
𝜋X𝐸
𝜆X

																	(3.11) 

This equation means that when the material characteristics are fixed, the strength 

critical value (σc) depends only by λ. Moreover, it shows that the critical buckling 

stress (that can be seen as the load-carrying capacity) goes to infinity when l → 

0. By	this	equation,	it	is	possible	to	define	a	theoretical	failure	condition,	represented	

by	Euler	hyperbola.	It	is	clear	that this condition can not be physically possible and 

the materials have a	well	known	limited strength, which Euler’s equation must	deal	

with.	That	is	why	the	real	failure	condition	can	be	represented	by	strength	curve	with	

a	cut off at the corresponding material strength 𝜎q (see Fig. 3.6).  

 

Figure 3.6 - Euler's hyperbola 

 

Therefore, for slender columns, critical stress is usually lower than the compressive 

strength. As contrary, a stocky column has a critical buckling stress higher than 

the compressive strength, which means that the element reaches the material 

capacity. The blue curve in Fig. 3.6 identifies an interaction between the two types 

λ

σ

σp

λc
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of failures which	have	the	aim	to	represent	the	actual	strength	behavior. If there was 

no interaction, a critic slenderness λc could be identified as: 	

𝜆u = 𝜋�
𝐸
𝜎q
																(3.12)	

The	expression	𝜎q	wants	to	identify	strength	limit	which	is	related	to	plastic	failure.	

3.3.2 Instability of inelastic columns 

Structural problems related to instability can occur when applied loads generate 

stress beyond the elastic limits. In this	case, the structure behavior depends on 

two non-linearities: the rigidity decrease due to the compression force and the 

deformability increase of the material due to stress beyond the linear limits. 	

Engesser’s method  

Engesser’s method is based on the Euler’s equation, with a modification of the 

modulus of elasticity. He introduces the tangent modulus of the stress-strain 

relationship at the current stress level. Therefore, the corresponding inclination is 

used as elastic modulus (Eσ) of the material (see Fig. 3.7). Hence, the critical stress 

can be calculated as:  

𝜎uo =
𝑁uo
𝐴u

=
𝜋X𝐸¥

¦𝑙𝑖§
X 																	(3.13) 

For a reinforced concrete column, it possible to consider a parabolic stress-strain 

behaviour of the concrete. The tangent modulus is determined as:  

𝐸¥ = 𝐸8�1 −
𝜎
𝜎q
																(3.14) 

where 𝜎q must be taken equal to 𝑓u for concrete. Eq.(2.14) can be inserted into 

Eq. (2.13) to derive the critical stress (σcr). 
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As this column is reinforced, the influence of the steel can be taken into account 

as a contribution calculated on the basis of the critical stress assumed for the 

concrete. 

 

Figure 3.7 - Stress-strain curve typical for concrete 

 

Thus, the critical load (Ncr) for the column can be calculated as:  

𝑁uo = 𝜎uo𝑏ℎ + 𝜎K𝐴K											(3.15) 

However, this simplification returns a σcr value that is underestimated since the 

stiffness of the reinforced column is higher than the stiffness of the unreinforced 

column.  

Ritter’s method  

Ritter took the Engesser’s method introducing a simplification. His theory 

deterined the stiffness-stress relation of concrete as follows:  

𝐸¥ = 𝐸8 ª1 −
𝜎
𝜎q
«																(3.16) 

ε

σ

Eσ
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which leads a difference between the stiffness corresponding to a parabolic law 

(calculated with Engesser’s method) and the Ritter stiffness (see Eq. (3.16). 

Substituting the Eq. (2.16) into Eq. (2.13) leads to:  

𝜎uo,;^��po =
𝜎u

1 + 𝜎u
𝜋X𝐸u8

¦𝑙𝑖§
X 																(3.17) 

 

 

 



 

 

4 Experimental database for RC columns 

4.1 Bibliography references 

In this chapter are presented all informations regarding experimental tests 

performed on slender columns , which data have been taken from literature. The 

presentation is divided for bibliography references. The columns have different 

geometrical and mechanical properties; the only common factor is related to the 

shape of them section: They always have  rectangular or square section. 
 

 

1. Kim, J.K. and Yang, J. K. 1993 [16]  

In this investigation, 30 tests on simply supported columns were reported. Two of 

the columns failed at the ends and are therefore disregarded from the list. The 

investigation contained three different levels of compressive strength (low, 

medium and high). For the purposes of the analysis, just 8 columns, with a low 

compressive strength, were considered. Furthermore, two different reinforced 

ratios were tested, 1.98% and 3.95%. Columns characterized by a reinforced ratio 

of 3.95% present reinforcement placed at the center of the cross-section. The data 

are reported in the appendix, section A.1.  

 

2. Mehmel, A., Schwarz, H.,Kasparek, K. H. and Makovi, J. 1969 [17]  

This investigation contained 16 tests. Fourteen of these present the same 

eccentricity in both ends and two have different eccentricities at the ends. For this 
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reason, those two columns, were disregarded. Three different types of 

reinforcement were used and the cross-section had three different sizes. The data 

are reported in the appendix, section A.2.  

 

3. Drysdale, R. G. and Huggins, M. W. 1971 [18]  

This investigation contained 58 tests, but just 4 columns were considered because 

those tests are characterized by short term loading to failure and eccentricity along 

principal axes of inertia. Those columns were characterized by a square cross-

section and a reinforcement ratio of 3.14%. The data are reported in the appendix, 

section A.3.  

 

4. Khalil, N., Cusens, A. R. and Parker M. D. 2001 [19]  

In this investigation 20 columns were tests. Just 11 columns are considered 

because they are characterized by a short-term load. The considered columns have 

a constant width of 152mm. The slenderness and the reinforcement ratio were 

varied. The data are reported in the appendix, section A.4.  

 

5. Saenz, L. P. and Martin, I. 1963 [20]  

This test campaign were performed at the University of Havana with 52 rectan- 

gular section concrete columns. Reinforcement ratio and slenderness were varied. 

Columns were restrained at the ends, but the authors declared that there were no 

certainty that absolute fixedness was developed. The data are reported in the 

appendix, section A.5.  

 

6. Foster, S. J. and Attard, M. M. 1997 [21]  
In this investigation, the data related to 68 eccentrically loaded conventional and 

high-strength concrete columns were reported. Just 26 conventional concrete 
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columns were considered. The columns were 150 x 150 mm at the mid-section 

and two dif- ferent percentage of steel reinforcement ratio were used. The data 

are reported in the appendix, section A.6.  

 

7. Pancholi, V. R. 1977 [22]  

The tests were performed on 38 columns and those included creep investigations. 

Hence, just 29 columns were considered. Those elements were characterized by a 

high slenderness ratio, two different dimensions of square cross-section and two 

different reinforcement ratios. The load were applied at the centre of gravity of 

the section, then no eccentricity were considered. The data are reported in the 

appendix, section A.7.  

 

8. Dracos, A. 1982 [23]  

This paper included short and long term studies, hence, just 36 columns were con- 

sidered. Slenderness, cross-section, reinforcement ratio and eccentricity were 

varied. All columns were simply supported. The data are presented in the appendix, 

section A.8.  

 

9. Iwai, S., Minami, K. and Wakabayashi, M. 1986 [24]  

A total of 396 column with rectangular cross sections, including square sections, 

were testes. The ratio of column length to minimum depth ranged from 6 to 26. 

Loads were applied monotonically at each column end with equal eccentricities at 

various angles from an axis of symmetry. For this reason just 11 columns were 

considered. The data are reported in the appendix, section A.9.  
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10. Chuang, P. H. and Kong, F. K. 1997 [25]  

In this investigation, 26 eccentrically loaded simply supported columns were 

tested. Normal strength concrete as well as high strength concrete was used, then, 

just 20 columns were considered. The concrete cross-section had two different 

sizes and three types of reinforcement and reinforcement ratio were used. The 

data are reported in the appendix, section A.10.  

 

11. Barrera, A. C., Bonet, J. L., Romero, M. L. and Miguel, P. F. 2011 

[26]  

In this experimental program, 44 rectangular columns with different sections were 

executed. The length of the columns are 3 m for all the specimens and these were 

subjected first to a constant axial load and later to a monotonic lateral force up to 

failure. These specimens symbolize two semi-columns connected by a central 

element, which represents the stiffener effect of an intermediate floor or the 

connection between a column and the foundation, represented by a stub element. 

Normal strength concrete as well as high strength concrete was used, then, just 23 

columns were considered. The data are reported in the appendix, section A.11.  

 

12. Baumann, O. 1935 [27]  
The experimental investigation made by Baumann was subdivided into two 

sections, a pilot series and a main series. Both series consider both axially and 

eccentrically loaded columns. The pilot series consists of 12 tests and the main 

series of 31 tests. The columns in the pilot series and in the first 15 tests of the 

main series were simply supported. In the remaining data of the main series, the 

end conditions were changed, and, consequently all these columns were 

disregarded. The cross-section was varied in many of the tests . The data are 

presented in the appendix, section A.12.  

Fig. 4.1 shows column types, with end supports and applied loads. It is important 

to underline that also A, B and C column types are taken in consideration in the 
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non-linear model calculation. Type A columns have theoretical null eccentricity, 

that in the model has been taken equal to 0,5mm , in order to represent a little 

value of geometrical eccentricity and also to give a direction input to columns 

deflections. Type B columns have a first order eccentricity e1 , that was also 

considered in the model; while, for	type C columns anyone	eccentricity	value	was	

considered	in	the	model	because	of	its	different	load	models	(see	chapter	5).	

	

 All columns were verified for Euro Code requirements which ensure safety, 

serviceability and durability. They are explained in the following paragraph.	

In Tab. 4.1 the number and the type of tests made by each investigator is 

presented.  

4.2 EC2 Columns requirements 

The following requirements are taken by [2]. This requirements deal with columns 

for which the larger dimension b is not greater than 4 times the smaller dimension 

h.  

Longitudinal reinforcement  

- Longitudinal bars shall have a diameter of not less than φmin. The 

recommended value is 8 mm.  

- The total amount of longitudinal reinforcement shall not be less than As,min. 

The recommended value is 0.002Ac.  

- The area of longitudinal reinforcement shall not exceed As, max. The 

recommended value is 0.04Ac.  

A minimum areas of reinforcement are given in order to prevent a brittle 

failure, wide cracks and also to resist forces arising from restrained actions.  
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Transverse reinforcement  

- The transverse reinforcement shall be anchored adequately.  

- The diameter of the transverse reinforcement shall not be less than 6 

mm or one quarter of the maximum diameter of the longitudinal bars, 

whichever is the greater.  

- The spacing of the transverse reinforcement along the column shall at 

maximum of scl,tmax. The recommended value is the least of the 

following three distances: 

• 20 times the minimum diameter of the longitudinal bars;  

•  the lesser dimension of the column; 

•  400 mm.  

- Every longitudinal bar placed in a corner shall be held by transverse 

reinforcement. No bar within a compression zone shall be greater than 

150 mm from a restrained bar.  

 

 

Figure 4.1 - Column types 
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Table 4.1 – Complete	database	of columns 

Referen

ces  

Investigators  Year  Number 

of tests  

Type of 

tests 

[16] Kim, J.K. and Yang, J. K.  1993 8 B 

[17] Mehmel, A., Schwarz, H.,Kasparek, K. H. and 

Makovi, J.  
1969 14 B 

[18] Drysdale, R. G. and Huggins, M. W.  1971 4 B 

[19] Khalil, N., Cusens, A. R. and Parker M.D. 2001 11 B 

[20] Saenz, L. P. and Martin, I.  1963 52 D 

[21] Foster, S. J. and Attard, M. M.  1997 23 B 

[22] Pancholi, V. R.  1977 29 A 

[23] Dracos, A.  1982 36 A 

[24] Iwai, S., Minami, K. and Wakabayashi, M.  1986 11 4 A and 7B 

[25] Chuang, P. H. and Kong, F. K.  1997 20 B 

[26] Barrera, A. C., Bonet, J. L., Romero, M. L. and 

Miguel, P. F.  
2011 23 C 

[27] Baumann, O. 1935 27 14 A and 

13 B 

 

 

 

 

The geometrical properties of the 40 investigated columns are explained in 

following tables (Tab.	4.2	–	4.3	–	4.4	–	4.5).  The informations are also given for 

material mechanical properties and about literature bearing collapse, which 

represents the actual collapse load obtained by experimental tests. 
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Table 4.2 - Geometrical properties of investigated columns - pt.1 
n° Reference Test n° ltot 

[mm] 

L 

[mm] 

l/h 

[-] 

𝝀  

[-] 

1 [21] 2L20-30 1450 650 10 33 

2 [21] 2L20-60 1450 650 10 33 

3 [24] C000 680 600 6 20 

4 [21] 2L8-120R 1450 650 10 33 

5 [24] C020 680 600 6 20 

6 [21] 4L8-30 1450 650 10 33 

7 [21] 4L20-120 1450 650 10 33 

8 [21] 4L8-120R 1450 650 10 33 

9 [27] III 3210 3000 23 79 

10 [24] B020 1880 1800 16 54 

11 [26] N30-10.5-C0-3-30 3300 2940 24 82 

12 [27] 3.3 3400 2700 21 74 

13 [25] A-17-0.25 3400 2800 17 59 

14 [17] 5.1 3400 2700 22 75 

15 [26] H60-10.5-C0-1-30 3300 2940 24 82 

16 [27] Va 3240 3000 23 80 

17 [27] I 3210 3000 32 111 

18 [20] 24D-2 2697 2697 30 104 

19 [25] C-31.7-0.25 3800 3260 32 110 

20 [24] RL300 3000 2920 25 87 

21 [27] 2 3230 3010 26 90 

22 [17] 4.1 4500 3800 30 104 

23 [27] 8 3230 3010 26 89 

24 [27] VI 3000 3000 33 113 

25 [20] 15E -2 3597 3597 40 139 

26 [23] S28 5000 5000 48 167 

27 [27] 9 6510 6310 40 139 

28 [23] S30 5000 5000 48 167 

29 [27] 12 6510 6310 40 139 

30 [27] 6 6510 6310 41 141 

31 [27] 15 6510 6310 40 140 

32 [27] 3 6510 6310 41 141 

33 [23] S25 6000 6000 58 200 

34 [22] 17A 4940 4940 65 225 

35 [22] 5 6004 6004 60 208 

36 [22] 6 6004 6004 60 208 

37 [22] 8 6004 6004 79 274 

38 [22] 20 5327 5327 70 243 

39 [22] 18 5327 5327 70 243 

40 [22] 7 6004 6004 79 274 
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Table 4.3 - Geometrical properties of investigated columns - pt.2 
n° Reference Test n° b 

[mm] 

h 

[mm] 

db 

[mm] 

d'b 

[mm] 

dh 

[mm] 

d'h 

[mm] 

1 [21] 2L20-30 150 150 127,7 22,4 127,7 22,4 

2 [21] 2L20-60 150 150 125,7 24,4 125,7 24,4 

3 [24] C000 120 120 100,0 20,0 100,0 20,0 

4 [21] 2L8-120R 150 150 122,7 27,4 122,7 27,4 

5 [24] C020 120 120 100,0 20,0 100,0 20,0 

6 [21] 4L8-30 150 150 122,7 27,4 122,7 27,4 

7 [21] 4L20-120 150 150 124,7 25,4 124,7 25,4 

8 [21] 4L8-120R 150 150 127,7 22,4 127,7 22,4 

9 [27] III 140 140 126,0 14,0 126,0 14,0 

10 [24] B020 120 120 100,0 20,0 100,0 20,0 

11 [26] N30-10.5-C0-

3-30 

140 150 120,0 20,0 130,0 20,0 

12 [27] 3.3 254 159 134,0 25,0 134,0 25,0 

13 [25] A-17-0.25 300 200 280,0 20,0 180,0 20,0 

14 [17] 5.1 253 158 128,0 30,0 128,0 30,0 

15 [26] H60-10.5-C0-

1-30 

140 150 120,0 20,0 130,0 20,0 

16 [27] Va 178 140 164,0 14,0 126,0 14,0 

17 [27] I 200 100 190,0 10,0 90,0 10,0 

18 [20] 24D-2 127 90 74,0 15,9 74,0 15,9 

19 [25] C-31.7-0.25 200 120 180,0 20,0 100,0 20,0 

20 [24] RL300 120 180 100,0 20,0 160,0 20,0 

21 [27] 2 250 125 237,5 12,5 112,5 12,5 

22 [17] 4.1 253 150 125,0 25,0 125,0 25,0 

23 [27] 8 250 126 237,4 12,6 113,4 12,6 

24 [27] VI 198 98 188,2 9,8 88,2 9,8 

25 [20] 15E -2 127 90 74,0 15,9 74,0 15,9 

26 [23] S28 104 104 76,0 28,0 82,0 22,0 

27 [27] 9 250 162 233,8 16,2 145,8 16,2 

28 [23] S30 104 104 76,0 28,0 82,0 22,0 

29 [27] 12 250 162 233,8 16,2 145,8 16,2 

30 [27] 6 250 160 234,0 16,0 144,0 16,0 

31 [27] 15 247 161 230,9 16,1 144,9 16,1 

32 [27] 3 250 160 234,0 16,0 144,0 16,0 

33 [23] S25 104 104 76,0 28,0 82,0 22,0 

34 [22] 17A 76 76 58,5 17,5 58,5 17,5 

35 [22] 5 100 100 74,0 26,0 74,0 26,0 

36 [22] 6 100 100 74,0 26,0 74,0 26,0 

37 [22] 8 76 76 58,5 17,5 58,5 17,5 

38 [22] 20 76 76 58,5 17,5 58,5 17,5 

39 [22] 18 76 76 58,5 17,5 58,5 17,5 

40 [22] 7 76 76 58,5 17,5 58,5 17,5 
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Table 4.4 - Mechanical properties of investigated columns – longitudinal reinforce 
n° Reference Test n° 100ρ 

[-] 

As 

[mm2] 

φs 

[mm] 

n° tot 

[-] 

n° b 

[-] 

n° h 

[-] 

1 [21] 2L20-30 2,044 459,96 12,10 4 2 2 

2 [21] 2L20-60 2,044 459,96 12,10 4 2 2 

3 [24] C000 3,963 570,645 9,53 8 3 3 

4 [21] 2L8-120R 2,044 459,96 12,10 4 2 2 

5 [24] C020 3,963 570,64 9,53 8 3 3 

6 [21] 4L8-30 4,089 919,92 12,10 8 3 3 

7 [21] 4L20-120 4,09 919,92 12,10 8 3 3 

8 [21] 4L8-120R 4,089 919,92 12,10 8 3 3 

9 [27] III 1,600 314,00 10,00 4 2 2 

10 [24] B020 3,963 570,64 9,53 8 3 3 

11 [26] N30-10.5-C0-

3-30 

3,231 678,58 12,00 6 2 3 

12 [27] 3.3 1,100 452,39 12,00 4 2 2 

13 [25] A-17-0.25 3,270 1962,00 24,99 4 2 2 

14 [17] 5.1 3,100 1256,64 20,00 4 2 2 

15 [26] H60-10.5-C0-

1-30 

1,436 301,59 8,00 6 2 3 

16 [27] Va 2,500 615,00 14,00 4 2 2 

17 [27] I 1,600 314,00 10,00 4 2 2 

18 [20] 24D-2 2,500 285,48 9,53 4 2 2 

19 [25] C-31.7-0.25 3,350 804,00 16,00 4 2 2 

20 [24] RL300 2,642 570,64 9,53 8 3 3 

21 [27] 2 0,600 201,00 8,00 4 2 2 

22 [17] 4.1 1,200 452,39 12,00 4 2 2 

23 [27] 8 0,600 201,00 8,00 4 2 2 

24 [27] VI 1,600 314,00 10,00 4 2 2 

25 [20] 15E -2 2,500 285,48 9,53 4 2 2 

26 [23] S28 4,183 452,39 12,00 4 2 2 

27 [27] 9 0,800 314,00 10,00 4 2 2 

28 [23] S30 4,183 452,39 12,00 4 2 2 

29 [27] 12 0,800 314,00 10,00 4 2 2 

30 [27] 6 0,800 314,00 10,00 4 2 2 

31 [27] 15 0,800 314,00 10,00 4 2 2 

32 [27] 3 0,800 314,00 10,00 4 2 2 

33 [23] S25 4,183 452,39 12,00 4 2 2 

34 [22] 17A 5,439 314,16 10,00 4 2 2 

35 [22] 5 4,524 452,39 12,00 4 2 2 

36 [22] 6 4,524 452,39 12,00 4 2 2 

37 [22] 8 5,439 314,16 10,00 4 2 2 

38 [22] 20 5,439 314,16 10,00 4 2 2 

39 [22] 18 5,439 314,16 10,00 4 2 2 

40 [22] 7 5,439 314,16 10,00 4 2 2 
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Table 4.5 - Mechanical properties of investigated columns – transversal reinforce 
n° Reference Test n° Asw 

[mm2] 

φst 

[mm] 

n°staffe/m 

[1/mm] 

S 

[mm] 

1 [21] 2L20-30 31,20 6,30 33,33 30,0 

2 [21] 2L20-60 31,20 6,30 16,67 60,0 

3 [24] C000 15,90 4,50 16,67 60,00 

4 [21] 2L8-120R 31,20 6,30 8,33 120,0 

5 [24] C020 15,90 4,50 16,67 60,0 

6 [21] 4L8-30 31,20 6,30 33,33 30,0 

7 [21] 4L20-120 31,20 6,30 8,33 120 

8 [21] 4L8-120R 31,20 6,30 8,33 120,0 

9 [27] III * * * * 

10 [24] B020 15,90 4,50 16,67 60,0 

11 [26] N30-10.5-C0-3-30 28,27 6,00 10,00 100,0 

12 [27] 3.3 28,27 6,00 8,33 120,0 

13 [25] A-17-0.25 78,54 10,00 6,67 150,0 

14 [17] 5.1 28,27 6,00 6,25 160,0 

15 [26] H60-10.5-C0-1-30 28,27 6,00 10,00 100,0 

16 [27] Va * * * * 

17 [27] I * * * * 

18 [20] 24D-2 7,31 3,05 10,99 91,0 

19 [25] C-31.7-0.25 28,27 6,00 6,67 150,0 

20 [24] RL300 15,90 4,50 16,67 60,0 

21 [27] 2 * * * * 

22 [17] 4.1 28,27 6,00 7,14 140,0 

23 [27] 8 * * * * 

24 [27] VI * * * * 

25 [20] 15E -2 7,31 3,05 10,99 91,0 

26 [23] S28 8,30 3,25 10,00 100,0 

27 [27] 9 * * * * 

28 [23] S30 8,30 3,25 10,00 100,0 

29 [27] 12 * * * * 

30 [27] 6 * * * * 

31 [27] 15 * * * * 

32 [27] 3 * * * * 

33 [23] S25 8,30 3,25 10,00 100,0 

34 [22] 17A 8,30 3,25 13,16 76,0 

35 [22] 5 8,30 3,25 10,00 100,0 

36 [22] 6 8,30 3,25 10,00 100,0 

37 [22] 8 8,30 3,25 13,16 76,0 

38 [22] 20 8,30 3,25 13,16 76,0 

39 [22] 18 8,30 3,25 13,16 76,0 

40 [22] 7 8,30 3,25 13,16 76,0 
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Table 4.6 - Mechanical properties of investigated columns – Starting eccentricity – Bearing capacity 
n° Reference Test n° fc 

[MPa] 

fy 

[MPa] 

fu 

[MPa] 

e0/h 

[-] 

Type Nexp 

[KN] 

1 [21] 2L20-30 40,00 480,00 - 0,133 B 750,00 

2 [21] 2L20-60 43,00 480,00 - 0,133 B 700,00 

3 [24] C000 27,0 347,16 516,81 - A 559,58 

4 [21] 2L8-120R 56,00 480,00 - 0,053 B 1092,00 

5 [24] C020 26,97 347,16 516,81 0,200 B 327,32 

6 [21] 4L8-30 43,00 480,00 - 0,053 B 1100,00 

7 [21] 4L20-120 40,00 480,00 - 0,133 B 900,00 

8 [21] 4L8-120R 56,00 480,00 - 0,053 B 1247,00 

9 [27] III 16,08 294,20 - - A 343,23 

10 [24] B020 27,56 355,00 507,00 0,200 B 271,46 

11 [26] N30-10.5-C0-

3-30 

29,50 538,00 645,00 - C 280,00 

12 [27] 3.3 35,30 509,90 - 0,082 B 782,57 

13 [25] A-17-0.25 38,20 493,00 - 0,250 B 1181,44 

14 [17] 5.1 40,60 426,80 - 0,165 B 735,50 

15 [26] H60-10.5-C0-1-30 58,50 531,00 668,00 - C 412,00 

16 [27] Va 26,38 281,84 - - A 684,50 

17 [27] I 15,20 294,20 - - A 264,78 

18 [20] 24D-2 20,82 247,52 - - A 198,39 

19 [25] C-31.7-0.25 44,40 520,00 - 0,250 B 333,38 

20 [24] RL300 30,99 360,88 507,98 0,167 B 474,32 

21 [27] 2 33,54 304,01 - - A 696,27 

22 [17] 4.1 40,50 509,90 - 0,163 B 367,75 

23 [27] 8 20,40 304,01 - 0,200 B 235,36 

24 [27] VI 24,91 294,20 - - A 392,27 

25 [20] 15E -2 20,06 247,52 - - A 161,03 

26 [23] S28 24,43 304,00 - 0,144 B 44,00 

27 [27] 9 24,52 294,20 - 0,200 B 205,94 

28 [23] S30 25,66 300,00 - 0,144 B 48,00 

29 [27] 12 29,71 294,20 - 0,300 B 112,78 

30 [27] 6 32,17 294,20 - 0,200 B 225,55 

31 [27] 15 33,05 294,20 - - A 549,17 

32 [27] 3 33,54 294,20 - - A 666,85 

33 [23] S25 24,72 282,00 - 0,144 B 36,00 

34 [22] 17A 25,75 300,42 - - A 31,88 

35 [22] 5 33,05 278,45 - - A 72,74 

36 [22] 6 35,61 278,45 - - A 72,24 

37 [22] 8 36,49 300,42 - - A 31,88 

38 [22] 20 38,07 300,42 - - A 37,86 

39 [22] 18 38,20 300,42 - - A 33,88 

40 [22] 7 39,29 300,42 - - A 29,89 



 

 

5 Structural model for reinforced 

concrete columns 

The analysis conducted on several structures provides the creation of a structural 

model which can be explained describing how software works, structural restrains, 

external forces and started eccentricity. Moreover, it is important to focus on 

material mechanical behavior that gives an easy opportunity to underline non-

linear factors and how they affect concretely the study.  

In the classical linear SLU approach, anyone concrete tension	resistance is	taken	

into	consideration	and concrete	compression	behavior	is	simplified	by classic Sargin 

parabola, followed by plastic pateau. Differently from classical linear SLU approach, 

in these study cases, a little bi-linear contribution of concrete in tension and a 

more important contribution of the concrete compression strength given by 

transversal bars contribution were considered. It will arrive to describe a material 

constitutive low totally different to classical parabola-rectangular; this takes origin 

by Ravzi-Saatcioglu model. 

5.1 Material behavior 

5.1.1 Compressive concrete behavior 

The Ravzi-Saatcioglu model is assumed for stress-strain relationship of concrete in 

compression and is featured by different behavior between unconfined and 

confined concrete. The unconfined concrete strength just takes into account the 
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standard cylinder test result fcm .		The peculiarity of the model is represented by 

the confined concrete strength, called fccm , which takes into account triaxial state 

of stress generated by reaction of transversal reinforcement. It is possible	to	note 

that a longitudinal compression applied on a concrete cube generates not only a 

longitudinal compression strain but also a transversal tension strain depending on 

Poisson’s coefficient that describes the relation between two axial strains for 

different materials. In the actual case of reinforced concrete columns, the 

transversal tension strains are prevented by transversal bars. This mechanism does 

not allow to concrete to expand in lateral direction and also causes a lateral 

pressure in the concrete which increases its strength according to: 

 

𝑓�X = 𝑓­X + 𝑘′W ∙ 𝑓�W										(5.1) 
 

where 	𝑘′W is a function of the Poisson’s coefficient (𝜈) and 𝑓�W ,	𝑓�X and 𝑓­X are 

stresses under triaxial and uniaxial stress conditions, actioning in direction 1 

(transversal) and 2 (longitudinal).  

With best approximation, it is possible to define 	𝑘′W as: 
 

	𝑘′W =
1 − 𝜈
𝜈

																	(5.2) 

  

The previous equations (5.1) and (5.2) are valid with linear elastic and isotropic 

material. In non-linear material case, Poisson’s ratio various with load and 

moreover the stress strain characteristics and Poisson’s ratio can change in all 

three orthogonal directions. 

However, in the case of non-linear elastic concrete, the previous Eq.(5.1) can be 

rewritten in terms of uniaxial strength and lateral confinement pressure: 
 

𝑓′uu = 𝑓′u + 𝑘W ∙ 𝑓W										(5.3) 
 

where 𝑓′uu  and 𝑓′u are respectively  the confined and unconfined concrete strength 

and 𝑓W corresponds to the lateral confinement pressure, that depends on the 

diameter of the stirrups and their spacing. While the 𝑘W factor is not the same as 

𝑘′W but it continues to preserve an indirect dependence on Poisson’s ratio. Thanks 

to experimental data, it can be directly correlated to the lateral confinement 

pressure 𝑓W	, which entity depends on Poisson’s coefficient. To this purpose, 
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experimental tests permit to define a decreasing addiction of  𝑘W respect to 𝑓W , 

according to: 
 

𝑘W ≅ 6,7	 ∙ (𝑓W)i8,W°								(5.4) 
 

The fig.(5.1) is very important to capture the non-neglectable difference between 

compressive strength of confined concrete and unconfined concrete. It is reported 

to generic data and it has not the role to underline entity of strength increase buy 

only  change of the shape in the constitutive law. 

 

 

Figure 5.1 - Confined and unconfined compressive constitutive low 

 

The Eq.(5.3) explains the relation between unconfined and confined concrete 

strength, while strain value in correspondence of strength peak of confined 

concrete 𝜀uW is given by : 
 

𝜀uW = 𝜀u8W ∙ (1 + 5𝑘)															(5.5) 

 

where	𝜀u8W is the strain corresponding to peak stress of unconfined concrete; it 

depends on 𝑓′u as reported in Euro Code (see later). The 𝑘 coefficient takes its 

value by the scale value of 𝑘W: 
 

𝑘 =
𝑓W
𝑓′u

∙ 𝑘W																	(5.6) 
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The parameters related to unconfined concrete are the classical concrete 

parameters known from EC2. They are reported below with the same 

nomenclature used in Euro Code, which identifies concrete strength with its mean 

value fcm ; in the previous graphic fcm  must be considered the value of the peak 

concrete stress. 

 

Table 5.1 - Unconfined concrete parameters 

Young’s Modulus 𝑬𝒄𝒎 = 𝟐𝟐 ¶
𝒇𝒄𝒎
𝟏𝟎

º
𝟎,𝟑

 

Compressive strain at the peak 

stress  
𝜀u8W(‰) = 0,7(𝑓uP)8,YW < 2,8 

Compressive strain at 0,85 %  

of  fcm 
½
𝜀u8.¾z = 3,5																																								𝑓uP ≤ 58	𝑀𝑃𝑎

𝜀u8.¾z = 2,8 + 27 ¶
98 − 𝑓uP
100 º

¿

						𝑓uP > 58	𝑀𝑃𝑎
 

 

 

The concrete constitutive laws can finally be described as : 
 

              

 𝜎u = À
𝑓′u ∙ ¶2

Á
ÁyÂÃ

− ¦ Á
ÁyÂÃ

§
X
º 																			≤ 		0,2 ∙ 𝑓u															𝑝𝑒𝑟	𝜀 < 𝜀u8W

𝑓′u ∙ Ä1 − 0,15 ∙ ¦
ÁiÁyÂÃ

ÁyÂ.ÅÆiÁyÂÃ
§
	
Ç 					≤ 		0,2 ∙ 𝑓u														𝑝𝑒𝑟	𝜀 > 𝜀u8W

					(5.7)			 

 

𝜎uu =

⎩
⎪
⎨

⎪
⎧
𝑓′uu ∙ Ì2

𝜀
𝜀uW

− �
𝜀
𝜀uW
�
X
Í

W
WÎXv

											≤ 		0,2 ∙ 𝑓u												𝑝𝑒𝑟	𝜀 < 𝜀uW

𝑓′uu ∙ ¶1 − 0,15 ∙ �
𝜀 − 𝜀uW
𝜀u¾z − 𝜀uW

�
	
º 			≤ 		0,2 ∙ 𝑓u										𝑝𝑒𝑟	𝜀 > 𝜀uW

								(5.8)					 

                       

5.1.2 Tensile concrete behavior  

Resistance model of concrete takes into account the tension strength contribution 

in order to achieve a more accurate results. Stress-strain tension curve is 
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considered with a bilinear law (fig.5.2). The two laws are divided by stress peak  

𝑓u�P. 
 

 

Figure 5.2 - Concrete tensile behavior  

The value of concrete tensile strength suggested by EC2 [2] is : 
 

𝑓u�P = À
0,30 ∙ (𝑓uP − 8[𝑀𝑃𝑎]	)X YÏ 																𝑓uP ≤ 58	𝑀𝑃𝑎	

2,12 ∙ ln Ð1 + �
𝑓uP
10 �

Ñ															 							𝑓uP > 58	𝑀𝑃𝑎	
																	(5.9) 

 

While after the peak value,  softening branch is linear and can be graphically 

described by its negative slope : 
 

𝑆𝐿𝑂𝑃𝐸 =
𝑓u�P

𝜀u�P­ − 𝜀u�P
=

𝑓u�P
𝜀u�P 	¦

𝜀u�P­
𝜀u�P

− 1§
																	(5.10) 

 

The ratio ÁyÔÕÖ
ÁyÔÕ

  depends on concrete compressive strength 𝑓uP. It can be described 

by following  graphic. However, concrete tensile behavior has been calibrated in 

each software, starting from  first attempt, with the aim to best fit experimental 

results. 

 

Figure 5.3 – Tensile softening slope 
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5.1.3 Reinforcement behavior  

Also a  simple model approach provides the same behavior for steel reinforcement 

in both compressive and tensile case; it can be graphically observed with a 

symmetry respect to origin in Fig.(5.4). The behavior is a simple bi-linear which 

wants to distinguish the first elastic field, characterized by a slope described by 

Young’s Modulus 𝐸K ,		taken always equal to 210.000 MPa, and a second plastic 

field that wants to simplified hardening behavior with a little leaning linear line. 

The two fields are divided by yield parameters of stress and strain. The value of 

𝑓tP is taken by the database, while when the ultimate tension still strength 𝑓­ is 

not declared by the authors, it is supposed as : 

 

𝑓­ = 1,03	 ∙ 	𝑓tP														(5.11) 

 

The value of  𝑓­  is supposed to correspond at a strain value of  70‰. 

 

 

Figure 5.4 - Steel reinforcement stress-strain law 

 

5.2 Software 

Open System for Earthquake Engineering Simulation (OpenSees) is an object-

oriented, software framework created at the Pacific Earthquake Engineering 
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Center. This software is used for the development of applications to simulate the 

performance of structural systems. The element used in the analysis for the 

modelling of the columns were fiber beam elements, which takes into account of 

a distributed plasticity (a simple distinction between concentrated and distributed 

plasticity in given in Fig. 5.5)	. Moreover, the force-based approach has been used, 

which means:  

- Equilibrium between element and section forces is exact;  

- Section forces are determined from the basis forces by interpolation 

within the basic system. Interpolation comes from static equilibrium and 

provides constant axial force and linear distribution of bending moment, 

in the absence of distributed element loads;  

- A low number of nodes can be used.  

Force based approach can be distinguished by displacement-based approach, which 

uses standard FEM procedure, with an interpolation of section displacement 

starting from approximate displacement field. Moreover, in order to approximate 

non linear element response, constant axial deformation and linear curvature 

distribution are imposed along element length; that is why mesh with a low 

number of nodes can not be able to represent high order distribution of 

deformations. 

 

 

Figure 5.5 -	Differences	between	concentrated	and	distributed	plasticity 

 

Finally,	Fig	5.6	shows	as	every	beam	section	can	be	considered	as	divided	in	different	

fiber	areas	with	a	specified	material	constitutive	law.		
 



 - 58 - 

 

Figure 5.6 -	Fiber	beam	elements

 

 

5.2.1 Models for non-linear simulations 
 

As  mentioned in chapter 4, the investigated columns have a static scheme of 

simple supported beam; anyway a distinction  in three columns type can be done  

referring to  starting eccentricity,  singular local behavior of material and load 

models: 

 

- Type A. It is referred to columns with none started eccentricity. Anyway, 

for the purpose to reproduce geometrical eccentricity and to give a 

direction input to column deflection, a little started value of eccentricity  

e0=0,5mm  was considered  in the model. Columns which presents massive 

elements at both ends,  in these points are modelled with a linear material 

constitutive  law, with the purpose to reflect a more rigid behavior in those 

parts of structure.    Finally, the axial load is applied up to failure and a 

load path with displacement control were considered ; 

- Type B.  Differing to previous type, for type B columns have a physical 

started eccentricity which is obviously reported in the model as a first 

order eccentricity e1. Linear material constitutive law and load model are 

the same of type A ; 
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- Type C. This kind of scheme  concerns only two columns of the domain. Its 

main feature is the presence of an increase transversal concentrated load  

applied on the middle span until up failure occurs, while the axial load 

remains constant. Anyone started eccentricity was considered and a more 

rigid behavior (obtained assigning a linear material constitutive low) was 

obtained not only at the ends of columns, but also in the middle span. 
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6 Results and discussion 

The analysis conducted is aimed at comparison between various Safety Formats 

for non-linear analysis of RC columns with increasing slenderness values. We 

started from a rich database of columns, containing a complete description of the 

structures.	 The attention can be soon focused on mechanical and geometrical 

properties, which we can considered in this context like mean values: these allow 

to realize a computational model, able to identify a first bearing capacity to 

compare to the actual collapse load, that is nothing more than the experimental 

load value taken by literature.  Abusing language, we can called  “Mean Resistance” 

the resistance outcome of the analysis performed with mean material properties 

values. Up to this point, there was an high number of references to comparison, 

that is why it will be legitimate for the reader to think about a first real comparison 

between the just introduced resistance values. It is worthy to underline that, while	 

literature reported results are	 given by reality, mean resistance is son of a 

calculation model which is influenced not only by material randomness, but also 

by model aleatory. Since this thesis does	not	aim to release model uncertainties, 

such comparison is considered meaningless for this study. In other words, we can 

conclude banishing every comparison between non-linear analysis outcome and 

bearing capacity coming from literature.		

6.1 Probabilistic Method Results 

For the purpose to fill the meaning of the previous comparison, we can take into 

consideration a structural resistance equal affected by model uncertainties, that 

can be justly compared with “Mean Resistance”. So, a first analysis is	proposed to 
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identify  N collapse loads of  structures, using what could be defined as the most 

reliable of the Safety Formats, as well as the most expensive on a computational 

level: the Probabilistic Method. Reliability and computational cost just described, 

derive from the fact that at the base of the PM there is the well known Monte 

Carlo simulation technique. Assuming a lognormal distribution for resistance 

parameters of the materials (fc, fy), the theoretical procedure provides that on each 

column, an high number of tests are carried out, having as input different 

resistance values of  materials, randomly identified according to lognormal 

distribution. 

 

Since civil engineering must deal with extremely low probability of structural 

failure, a good outcome of Monte Carlo simulation would require a number of tests 

with at least three orders of magnitude. The choice to perform a sampling selection 

of the input data through Latin Hypercube Sampling, is so compulsory, in order to 

perform a much lower number of tests. This probabilistic model was assumed in 

agreement with the Probabilistic Model Code and allowed to reduce probabilistic 

analysis to a domain of 40 columns, each of them having 30 cases of mechanical 

material characteristics [35] . 

At the end of non-linear tests performed with the software “OpenSees”, the thirty 

load cases allow to identify for each column: the average µR of the collapse load, 

calculated on 30 results, and the coefficient of variation VR of the distribution of 

the 30 collapse loads, obtained as outcomes. As described in the previous chapters, 

these data are useful to assess the global resistance factor 𝛾; , which can be 

evaluated as: 

𝛾; = 𝑒𝑠𝑝(𝛼; ∙ 𝛽 ∙ 𝑉;) 

where aR = 0,8 is the FORM sensitivity factor, considered in the hypothesis of 

dominant resistance variable, and b = 3,8 is the reliability index for an ordinary 

structure corresponding to Reliability Classes RC2, with a lifetime of 50 years [1]. 

In this way is possible to define the bearing capacity of Probabilistic Method as: 

𝑅L =
𝜇;

𝛾; ∙ 𝛾;L
 

where µR  and 𝛾;	are the aforementioned parameters defined in Monte Carlo 

simulation, while 𝛾;L  is the global safety factor for the model uncertainties, which 
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assessment is not subject of this thesis ;  it can be taken equal to 1 . This 

simplification is implemented thanks to independence between the two global 

safety factor 𝛾;   and 𝛾;L ; which means that the choice of a specific value of 𝛾;L   

does not influence the calculation of 𝛾; .  

	

Considering the high computational cost, and also a base of reliable probability 

model, in this context, Probabilistic Method can be considered the principal Safety 

Format in terms of computational answers comparable to actual structure bearing 

capacity. That is why, a first congruent comparison can be express by the ratio 

between the bearing capacity of the previous called “Mean Resistance”, and that 

one of the Probabilistic Method (Fig.6.1). It is clear that the “Mean Resistance”  has 

nothing to do with anyone safety coefficient and it does not take into consideration 

anyone probabilistic model of uncertainty; that is why, a great overestimation of 

the bearing capacity is expected. By Fig.6.1 it is possible to note that all ratios 

bypass the unit value and it is also possible to see a dependence of ratios on 

slenderness that can anticipate several matters of this study. As regards 

slenderness dependence, it is useful to know that a previous study [35] on the 

assessment of the global safety factor for the model uncertainties 𝛾;L , permits to 

exclude any dependence of 𝛾;L on geometrical and mechanical properties, or other 

variables of the analysis. This represents a great hypothesis in order to apply the 

unit value for 𝛾;L and so to consider the independence of model uncertainties in 

this study.	
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Figure 5.1 - Ratio between bearing capacities obtained by non-linear analyses performed with mean 
material properties values and Probabilistic Method 
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6.2 Safety Formats results 

After Probabilistic Method, other five Safety Formats have been applied in order 

to compare different results of collapse loads. For this purpose, for each column 

are performed 4 non-linear analyses with following material properties:  

- Mean properties    fcm , fym.  ; 

- Design properties  fcd , fyd. 

- Characteristic properties  fck , fyk. 

- Representative properties  fcmd , fym. 

Where fcmd =0,85 fcm  is considered a representative value. 

The most conservative results are obtained by the design values of the Partial 

Safety Factor and the representative values of the Global Resistant Factor. Design 

values are calculated according to EC2 respectively for concrete and steel as: 

𝑓uL =
𝛼uu ∙ 𝑓uv
𝛾u

 

𝑓tL =
𝑓tv
𝛾K

 

where  acc=1 is the reduction coefficient for long-lasting resistors (in Italy 

acc=0,85); 

𝛾u	= 1,5 the partial safety coefficient related to concrete ; 

𝛾K = 1,15 the partial safety coefficient related to steel. 

 

 

A simplified summary of the theoretical basis of SFs is given in the following 

table (6.1):	
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Table 6.1 - Safety Format Formula 

Safety Format Formula Global Resistance Factor 

PM 𝑅L =
𝜇;

𝛾; ∙ 𝛾;L
 

𝛾; = 𝑒𝑠𝑝(𝛼; ∙ 𝛽 ∙ 𝑉;) 

𝑉; =
𝜎;
𝜇;
					𝑀𝑜𝑛𝑡𝑒	𝐶𝑎𝑟𝑙𝑜 

PSF 𝑅L =
𝑅(𝑓uL, 𝑓tL)
𝛾; ∙ 𝛾;L

 𝛾; = 1 

GRF 𝑅L =
𝑅opq(𝑓uPL, 𝑓tP)

𝛾; ∙ 𝛾;L
 𝛾; = 1,27	∗	

SMVM 𝑅L =
𝑅P(𝑓uP, 𝑓tP)
𝛾; ∙ 𝛾;L

 

𝛾; = 𝑒𝑠𝑝(𝛼; ∙ 𝛽 ∙ 𝑉;) 

𝑉; = 0,15 

ECOV 𝑅L =
𝑅P(𝑓uP, 𝑓tP)
𝛾; ∙ 𝛾;L

 

𝛾; = 𝑒𝑠𝑝(𝛼; ∙ 𝛽 ∙ 𝑉;) 

𝑉; =
1
1,65

𝑙𝑛
𝑅P(𝑓uP, 𝑓tP)
𝑅v(𝑓uv, 𝑓tv)

 

GSF 𝑅L =
𝑅P(𝑓uP, 𝑓tP)
𝛾; ∙ 𝛾;L

 

𝛾; = 𝑒𝑠𝑝(𝛼; ∙ 𝛽 ∙ 𝑉;) 

𝑉; =
𝜎;
𝜇;
					𝑀𝑜𝑛𝑡𝑒	𝐶𝑎𝑟𝑙𝑜 

	

		*		𝛾;	is	take	equal	to	1,27	in	this	context	in	which	𝛾;L = 1,00	

6.3 Comparation of Safety Formats 

The overall comparation between all Safety Formats is provided by a summary on	

graphic in Fig.6.2 that shows the ratio Ri/RPM , where Ri  is the collapse load obtained 

with following SFs: PSF, GRF, ECOV, SMVM, GSF, while RPM   is the bearing capacity 

of Probabilistic Method, which represents for us the most reliable value of collapse 
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load. The NLA results are so plotted in function of the ratio l/h which, in our case 

of rectangular sections, can play the role of the column slenderness value. 
 

The position order of Safety Formats in the graphic legend is not casual. It respects 

a theoretical hierarchy of the Levels of Approximation, born taking into account 

an increasing computational cost of the different methodologies. 

Considering the Probabilistic Method results as the nearest to the actual bearing 

capacities, we are tempted to expect a consequent results hierarchy, able to create 

a standard trend for each column. This expected trend is disputed by the color 

trend observed in the previous graphic; this allows to focus on the changing of 

Safety Format results hierarchy, related to the Levels of Approximation (subject 

treated in further chapter). 

The graphic highlights important dependencies by slenderness. For a more 

exhaustive explanation of study outcomes, they are made clear in the next different 

paragraphs. 

Finally, at the end of this paragraph two explanatory tables  (Tab. 6.3 – 6.4) are 

reported. They show all columns bearing capacities reads as NLAs outcomes and 

so as Safety Formats results (together with relative global resistance factor 𝛾;).  

For the purpose to contextualize and assess Safety Formats in probabilistic field, 

by log-normal distribution of each column global resistance, calculated Monte Carlo 

simulation effected by  [35] , SF result probabilities and its cumulative values have 

been identified for each columns. Appendix A shows a set of Probability Density 

Functions and Cumulative Density Functions, related to log-normal global 

resistance distribution, in which SF results appear with them relative fractal values. 

6.3.1 ECOV  -   Increasing overestimation 

The most remarkable result is of course the linear increasing trend of ECOV. By 

Fig.6.2 it is possible to see a clearly growth of the yellow points that, starting to 

the ratio h/l=60 , exceed the unit value: this result can be assessed like an 

overestimation respect the PM collapse value, which we consider exact in this 

context of analysis simulation independent by the model uncertainties. It is worthy 

to note that this exceeding respect to unit value and so this important 

overestimation of the collapse load, arises only with ECOV and in case of very 

slender columns. However this phenomenon represents a solid element to raise 
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Figure 6.2 - Ratio Ri/RPM 
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an issue of overestimation, which is fair to relate to a Eulerian failure mode 

because of high slenderness. The juxtaposition between the collapse value 

overestimation and an unexpected failure mode is matter introduced by Castaldo 

et al. , which will be discuss further, in order to identify a solution against 

overestimation. 

Returning to the linear increasing trend, it should be pointed out that it arises not 

only with the Estimation of Coefficient of Variation, but also in others Safety 

Formats. The increasing trend dependent on lambda, is related to the evolution of  

the global resistance factor gR  which also assumes a decrease fit in function of  

slenderness. The decrease trend of the global resistance factor gR  has already been 

highlighted	 and justified in previous studies, but it regarded a computation related 

to the Probabilistic Method. The analytical differences between different Safety 

Formats outcomes are given by a different decreasing trend that the global 

resistance factor gR  assumes in function of the Safety Format applied (See later). 

6.3.2 GRF – GSF  -   Independence from slenderness 

Nothing particular interest can be escape by these outcomes which do not show 

any dependence with slenderness values. Anyway it is worthy to underline that, 

while the Global Safety Format uses different values of the global resistance factor 

gR  for each column, the Global Resistance Factor always uses the same value ( gR 

=1,20 ). Moreover, in the GSF, the global resistance factor gR  is estimate for each 

column  taking advantage from Monte Carlo Simulation. This computational effort, 

from one the one hand, permits to cover the differences between GSF and PM 

outcomes in every column case, but on the other side, it prohibits to consider GSF 

as more convenient than Probabilistic Method.  

 

The Global Resistance Factor method performs the analysis with a representative 

value of material properties, obtained by means of the multiplication factor 0,85 , 

and then divides the analysis result by a fixed value of the global resistance factor 

gR . A similar process is proposed by the Partial Factor Method (which results are 

commented in the next paragraph) that in the previous presentation has been 

presented like a global resistance method with a unit value of gR . It uses the mean 
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material value for non-linear analysis and also provides for the division by a fixed 

value of the global resistance factor gR. The underlined similar procedure does not 

take directly into consideration the material properties uncertainties by means of 

a resistance coefficient of variation, that is why, it leads to think an incapacity of 

the methods with a constant value of the global resistance factor gR , to give a 

dependence of tests by from slenderness. This thesis can so justified the  constant 

trend of GRF outcomes; moreover it is useful to note that GRF uses an high value 

of the global resistance factor (gR =1,20) respect to PFM. 

	

The exceptional case of slenderness independence with the variation of the global 

resistance factor gR for each column, is given by GSF, and its independency was 

justified by its analogy with Probabilistic Method, that leads very similar results. 

6.3.3 PFM – SMVM  -  Growth and decline of Resistance 

values 

In this paragraph we face to comment a slenderness dependence of global 

resistance, which arises with both Safety Formats that use a constant value of the 

global resistance factor gR : the Partial Factor Method and the Simplified Mean 
Value Method. In the previous paragraph, an allegation was made against the Safety 

Formats which use a fixed value of gR , because they can not  take directly into 

consideration material properties uncertainties by means of a resistance coefficient 

of variation and so they permits to expected  independence outcomes respect to 

slenderness . Regarding this idea, now we are called upon to justified results that 

show an increase (PFM) and a decrease (SMVM) trend in function of slenderness. 
 

The Partial Safety Factor is the unique method to exploit a non-linear analysis 

performed whit the design values of the material parameters.  These are derived 

by common formulae of Eurocode, that break down  material resistance values.  It 

is clear that a less value of material resistance leads to a little value of global 

resistance, but as mentioned before, in case of high slenderness values, the material 

properties and their related uncertainties play a less important role, to the benefit 

of geometrical issue associated to Eulero buckling.  Therefore, the reduction of 
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material properties values is able to return little values of global resistance only 

in case of small slenderness, i.e. in the case in which the mechanical properties of 

the materials can better influence non-linear analysis performance. On the 

contrary, on high slenderness, a great reduction of material properties values does 

not allow to ensure an high safety level that the design values are common to give 

in a standard structure calculation.  

 

A parallel matter can be related to the only decrease trend, given by Simplified 

Mean Value Method. After performing the analysis with the mean value of material 

properties, it uses a constant value of the global resistance factor gR=1,58   , derived 
by a concrete coefficient of variation equal to 0,15. This hypothesis of uncertainty 

estimate is of course in favor of security (the global resistance obtained with SMVM 

is always lower than PM), but such estimate appears too precautionary for high 

slenderness;  that is why the global resistance factor gR = 1,58  gives an excessive 
underestimation of global resistance. 

6.4 Comparisons of Global Resistance Factors gR 

After a full analysis of global resistance in terms of bearing capacity, it is 

remarkable underline and compare the associated trend of gR  in the several 

methodologies of Safety Formats.  Fig. 6.3 contains different trend of gR  in function 

of slenderness, marked by colors associated to Safety Formats. The trend were 

obtained by linear interpolation for all Safety Formats, except for ECOV which 

global resistance factor registers a more strong dependences on slenderness, that 

is why in that case second order polynomial interpolation was used. The particular 

graphic interpolations are reported in the Appendix D,	 together	with	 a	 graphic	

contained	 the	 linear	 interpolation	 of	 ratio	 𝛾;,<ÚÛÜ 𝛾;,ÝÞÏ 	 	 which	 have	 the	 goal	 to	

underline	a	more	strong	dependence	on	slenderness	of	ECOV	respect	to	Probabilistic	

Method	.	
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Figure 6.3 - Comparison of Global Resistance Factor gR 
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The peculiarity of Fig. 6.3 is	 the	 inclusion	 to	 comparison	 of	 a	 dummy	 global	

resistance	factor	related	to	PFM.	It	can	be	defined	as	“equivalent	global	coefficient”	

and	it	is	calculated	as	ratio	between	global	resistance	obtained	by	analysis	performed	

with	mean	mechanical	properties	values	and	global	resistance	obtained	by	analysis	

performed	with	design	mechanical	properties	:	

𝛾;,<ÚÛÜ,pß =
𝑅(𝑓uP)
𝑅(𝑓uL)

	

 

 

Finally table 6.2 summarizes values taken by global resistance factor for each SF. 

 

Table 6.2 - Values of global resistance factor gR   

Safety Format Range of variation Mean Global Resistance Factor gR   

PM - GSF 1,27 - 1,40 1,33 

ECOV 1,27 - 1,45 1,35 

PFMeq 1,33 - 1,70 1,55 

SMVM constant 1,58 

GSF constant 1,27 

 

6.5 Conclusions related to actual slenderness values 

At the end of analysis, same considerations are given in order to define calculation 

validity about several Safety Formats. In previous paragraphs, dependences on 

slenderness was underlined for different Safety Formats and in just one case 

(ECOV), this dependence has led to a	global resistance overestimation. For the 

purpose to formulate a final conclusion, it is worthy to underline that our column 

domain ranges on slenderness between l/h=5 and l/h=80.  For conversion of the 

ratio l/h in the standard slenderness value 𝜆 , for rectangular cross section 
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columns, it will multiply for a value of √12. To this purpose, slenderness definition 

is reported: 

𝜆 =
𝑙
𝜌
																														 

where 𝜌  is the radius of gyration of cross section, that, related to rectangular 

section, can be write as : 

𝜆 =
𝑙
𝜌
= 𝑙 ∙ �

𝐴
𝐼
	= 	𝑙 ∙ �𝑏 ∙ ℎ ∙

12
𝑏 ∙ ℎY

		=
𝑙
ℎ
∙ √12																				 

Explaining	the	real	slenderness	value		𝜆	,	the	obtained	values	achieve	very	high	levels	

that	can	not	be	considered	in	the	structural	standards	(e.g.	bridge	piers	can	arrive	to	

have	slenderness	equal	to	𝜆 = 90	).	That	is	why,	analyzing	a	restrained	domain,	given	

by	common	slenderness	value,	it	is	possible	to	conclude	that:	

- Slenderness continues to influence global resistant, but for relative low 

values, its influence is not so power to disturb the Safety Format hierarchy; 

which means that the results are comply with expectations related to levels 

of approximations. In other words, all stranger set of results occurs in very 

slender columns,	and	the	domain	restriction	of	columns	is	able	to	keep	out	

outcome	weirdness	; 

- ECOV	 is	 confirmed	 very	 reliable	 Safety	 Format	 for	 a	 restrained	 columns	

domain	with	 	𝜆Páâ = 170	 .	The	global	 resistance	overestimation	respect	 to	

Probabilistic	 Method	 occurs	 only	 in	 cases	 with	 170 < 𝜆 < 225	;	 such	

slenderness	 values	 are	 not	 typical	 of	 structural	 elements,	 that	 is	 why	 the	

assessment	of	ECOV	performances	can	be	considered	positive. 

In the Fig. 6.4 is reported a different view about overall results, expressed in 

function on real slenderness 𝜆 . As underlined before, the graphic is important 

to the purpose to underline the global underestimation of all Safety Formats 

and also results accuracy respect to Probabilistic Method. 
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Figure 6.4 - R(i) / R(PM)  for common structural slenderness values



Table 6.3 - OpenSees analysis results 
  

Literature Mean 

Resistance 

OpenSees 

Test n° l/h Nexp Nexp Opensees N (fcd,fyd) N (fck,fyk) N (fcmd,fym) 

2L20-30 9,7 750,0 694,0 389,9 527,6 485,7 

2L20-60 9,7 700,0 739,0 438,1 609,1 552,9 

C000 5,7 559,6 560,0 346,3 464,6 438,2 

2L8-120R 9,7 1092,0 1152,0 657,2 928,5 826,8 

C020 5,7 327,3 328,5 209,5 275,9 261,6 

4L8-30 9,7 1100,0 1032,0 647,9 869,0 811,1 

4L20-120 9,7 900,0 830,0 527,3 699,7 654,2 

4L8-120R 9,7 1247,0 1319,0 809,6 1097,7 1009,0 

III 22,9 343,0 347,0 214,0 289,0 264,6 

B020 15,7 271,5 262,0 168,8 221,2 207,4 

N30-10.5-C0-3-

30 

23,6 8,3 8,1 4,0 6,6 5,7 

3,3 21,4 782,0 866,0 512,1 709,0 623,8 

A-17-0.25 17,0 1181,0 1369,0 917,8 1186,7 1126,7 

5,1 21,5 735,0 843,0 557,9 723,2 658,2 

H60-10.5-C0-1-

30 

23,6 8,6 8,9 3,8 7,7 6,3 

Va 23,1 684,0 680,4 417,7 565,8 523,6 

I 32,1 265,0 258,0 172,9 221,3 202,5 

24D-2 30,0 198,0 193,0 124,2 163,2 150,2 

C-31.7-0.25 31,7 333,0 280,0 205,2 243,5 227,7 

RL300 25,0 474,0 414,0 259,8 350,5 322,5 

2 25,8 696,3 762,0 449,3 624,5 551,9 

4,1 30,0 367,0 448,1 288,1 380,3 340,7 

8 25,6 235,0 244,1 149,4 201,2 179,9 

VI 32,8 392,3 363,2 234,9 307,7 279,5 

15E - 2 40,0 161,0 129,0 89,1 111,9 102,3 

S28 48,1 44,0 64,7 46,3 56,4 52,0 

9 40,2 206,0 209,0 134,0 174,8 157,9 

S30 48,1 48,0 66,3 47,4 57,8 53,2 

12 40,2 113,0 172,6 125,2 157,2 143,0 

6 40,7 225,0 240,0 156,3 204,5 183,2 

15 40,4 549,0 558,0 358,0 471,9 422,8 

3 40,7 667,0 563,0 361,0 475,5 425,5 

S25 57,7 36,0 42,3 32,1 37,6 35,1 

17A 65,0 31,9 37,1 27,1 32,8 30,3 

5 60,0 72,7 78,0 54,2 68,2 62,1 

6 60,0 72,2 82,0 56,6 71,1 69,7 

8 79,0 31,9 31,0 22,1 27,1 24,9 

20 70,1 39,8 37,9 28,2 34,8 31,9 

18 70,1 33,9 39,8 28,3 34,8 32,0 

7 79,0 29,9 32,3 22,9 27,4 25,0 
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Table 6.4- Safety Formats Results 

  
PFM GFR SMVM ECOV 

 
GSF 

 
PM 

Test n° l/h Nd 
[KN] 

Nd 
[KN] 

Nd 
[KN] 

Nd 
[KN] 

𝛾R 
 ECOV 

Nd 
[KN] 

𝛾R 
MonteCarlo 

Nd 
[KN] 

2L20-30 9,7 389,9 382,4 439,9 418,2 1,66 495,7 1,40 493,6 

2L20-60 9,7 438,1 435,3 468,4 517,1 1,43 524,1 1,41 527,2 

C000 5,7 346,3 345,0 354,9 396,5 1,41 414,8 1,35 414,9 

2L8-120R 9,7 657,2 651,0 730,2 773,3 1,49 794,5 1,45 790,0 

C020 5,7 209,5 206,0 208,2 238,0 1,38 250,8 1,31 250,9 

4L8-30 9,7 647,9 638,6 654,1 751,1 1,37 753,3 1,37 758,4 

4L20-120 9,7 527,3 515,1 526,1 605,4 1,37 619,4 1,34 620,4 

4L8-120R 9,7 809,6 794,5 836,0 939,3 1,40 962,8 1,37 957,4 

III 22,9 214,0 208,4 219,9 247,5 1,40 255,1 1,36 253,8 

B020 15,7 168,8 163,3 166,1 191,6 1,37 200,0 1,31 200,0 

N30-10.5-

C0-3-30 

23,6 4,0 4,5 5,1 5,6 1,45 5,5 1,46 5,5 

3,3 21,4 512,1 491,2 548,9 598,4 1,45 609,9 1,42 609,8 

A-17-0.25 17,0 917,8 887,2 867,7 1051,3 1,30 1086,5 1,26 1088,7 

5,1 21,5 557,9 518,3 534,3 635,1 1,33 633,8 1,33 632,3 

H60-10.5-

C0-1-30 

23,6 3,8 4,9 5,6 6,8 1,31 6,2 1,43 6,3 

Va 23,1 417,7 412,3 431,2 483,9 1,41 506,9 1,34 508,3 

I 32,1 172,9 159,4 163,5 194,3 1,33 196,9 1,31 196,2 

24D-2 30,0 124,2 118,3 122,3 141,6 1,36 146,2 1,32 145,7 

C-31.7-0.25 31,7 205,2 179,3 177,5 216,4 1,29 225,8 1,24 225,5 

RL300 25,0 259,8 254,0 262,4 304,4 1,36 306,7 1,35 306,9 

2 25,8 449,3 434,6 483,0 527,6 1,44 540,4 1,41 538,4 

4,1 30,0 288,1 268,3 284,0 331,0 1,35 329,5 1,36 328,8 

8 25,6 149,4 141,7 154,7 170,7 1,43 183,5 1,33 183,8 

VI 32,8 234,9 220,1 230,2 267,4 1,36 273,1 1,33 272,0 

15E - 2 40,0 89,1 80,5 81,8 99,1 1,30 98,5 1,31 98,7 

S28 48,1 46,3 40,9 41,0 50,2 1,29 52,2 1,24 52,2 

9 40,2 134,0 124,3 132,5 150,2 1,39 158,3 1,32 158,0 

S30 48,1 47,4 41,9 42,0 51,4 1,29 53,5 1,24 53,7 

12 40,2 125,2 112,6 109,4 145,3 1,19 132,8 1,30 131,6 

6 40,7 156,3 144,3 152,1 178,5 1,34 183,2 1,31 182,1 

15 40,4 358,0 332,9 353,7 409,5 1,36 407,3 1,37 406,1 

3 40,7 361,0 335,1 356,8 412,0 1,37 409,5 1,37 407,5 

S25 57,7 32,1 27,7 26,8 34,0 1,25 34,1 1,24 34,0 

17A 65,0 27,1 23,9 23,5 29,5 1,26 29,2 1,27 29,1 

5 60,0 54,2 48,9 49,4 60,9 1,28 59,1 1,32 59,4 

6 60,0 56,6 54,9 52,0 63,0 1,30 62,6 1,31 62,6 

8 79,0 22,1 19,6 19,6 24,2 1,28 24,4 1,27 24,3 

20 70,1 28,2 25,1 24,0 32,3 1,17 29,2 1,30 30,5 

18 70,1 28,3 25,2 25,2 31,1 1,28 30,4 1,31 30,3 

7 79,0 22,9 19,7 20,5 23,8 1,36 25,4 1,27 25,3 
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7 Failure Mode-based Safety Factor 

Up to here it have not been given particular importance to failure mode of slender 

columns. It is well-known that possible collapse of a peak loaded column, can be 

obtained by insufficient material resistance, associated to a plastic collapse, or by 

a more complex problem of Eulerian instability in which structure can not exploit 

all its material resistance and finds the failure with smaller load values. Previously, 

a first distinction between two just explained collapses was done indirectly, thanks 

to the several dependences related to column slenderness. In fact, in the phase of 

trend evaluation of global resistance factor 𝛾;  , it has been noticed interesting 

influences of slenderness l , which can be considered indirectly proportional to 𝛾;   

in both cases of ECOV and PM.  The decrease trend allows to associate smaller 

values of 𝛾; for columns with higher values of l, which means that, in case of high 

slenderness, the aleatory uncertainty of the material properties has a little 

influences on the final resistance. The justification to this phenomenon was given 

by an automatic association between high slenderness and Eulerian instability 

collapse: when the failure is generated by instability issue, structure can not enjoy 

all material resistance, that is why material properties and so its  randomness, 

play a less important role in the failure analysis. 

7.1  Identification of the failure mode  

After a first step of automatic and lawful association between high slenderness 

and Eulerian collapse, in	this	context,	it can be interesting to evaluate data,	in order 

to identify a more accurate collapse distinction. In	this	paragraph,	the	presentation	

of	two	kind	of	graphics	is	reported:	

- 	Global	load-deflection	diagram	;	
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- Local	stress-strain	diagram	related	to	most	critical	fiber	of	the	cross-section.	

The	assessment	of	both	graphics	will	lead	to	define	failure	mode.	

7.1.1 Global load-deflection diagrams 
After	 explained	 theoretical	 concepts	 on	 the	 global	 displacement	 related	 to	 second	

order	effects,	in	this	practical	phase,	it	was	useful	to	represent	the load line of same 

columns, expressed in function of global horizontal displacement, obviously	

associated to deflection, with	a	view	to	buckling	evaluation.	

Of course, as underlined in Fig.(3.2), Eulerian collapse can be identified in cases 

in which load line records a fast increase of global deflection values  u in 

compliance with a little growth of axial force N. This phenomenon leads to create 

a non-linear trend between N and u, that turns up with equilibrium instability. On 

the other side, the collapse can be considered plastic, so with a total strength 

material exploitation, in cases in which non-linearity related to second order effects 

does not appear.  

 

To this purpose, it is worthy to underline that taking into account non-linear 

constitutive material laws, all load lines will be influenced by this other kind of 

non-linearity, related to material properties. In conclusion, the failure assessment 

deals to evaluation of two non-linearity kind: the first is related to material 

constitutive law and there is always; the second is related to second order effect 

and it is able to give a good idea about when buckling failure occurs.  

The following figures (Fig.7.1 - 7.2 - 7.3 - 7.4) show the applied axial load in 

function of the global deflection related to two test (	4L8-30		and		17-A	)	performed 

with two different parameter set (see later NLA1 and NLA2) which uses mean 

value for concrete strength and design value for steel strength, for first case, and 

vice versa for the second. 
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4L8-30 - NLA 1 - Global load-deflection 

diagram 

𝜆 =33,60 
Figure 7.1 

	
4L8-30 - NLA 2 - Global load-deflection 

diagram  

𝜆 =33,60 
Figure 7.2	

	
17-A - NLA 1 - Global load-deflection diagram 

𝜆 =225 
Figure 7.3	

17-A - NLA 2 - Global load-deflection diagram 

𝜆 =225 
Figure 7.4	
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As expected, by figures, it is clear the non-linearity influence related to material 

properties. It can be noticed in all four diagrams. However, it is possible to focus 

on the different trend which axial load take in case of low slenderness (test 4L8-

30 ) and high slenderness (test 17-A).		Non-linearity related to second order effects 

can be noticed in Fig 7.3 – 7.4 and it is characterized by a rapid deviation of the 

curve by the starting linear trend. On the contrary, Fig 7.1 – 7.2 show a slow loss 

of non-linearity which can be  so correlated to material constitutive law. At	the	

end,	it	is	possible	to	note	the	differences	related	to	the	entity	of	axial	force	values,	that	

draws	attention	to	strength	material	exploitation.		

7.1.2 Local stress-strain diagram 
On local level, it can be interesting to evaluate stress-strain trends related to 

particular fiber of the midspan cross-sections. In particular, every stress-strain 

diagram is created in the same time for : 

- External concrete fiber of core section ; 

- External concrete fiber of cover section ; 

- Steel fiber in traction . 

Analyzing the graphics, the main goal is to identify in which of three fibers failure 

occurs. To this purpose, on the horizontal axis the stress limits are reported whit 

a vertical red line that reports the strain value 𝜀u8 corresponding peak stress point. 

The Fig. (7.5 – 7.6 – 7.7) shows the stress-strain diagrams related to the test  4L8-

30 . It is referred to column whit a little slenderness value (𝜆 = 33,60) for a 

preliminary non-linear analysis (see later NLA 1) performed with material 

properties using mean value for concrete and design value for steel.		

By following set of three graphics (Fig.7.5 – 7.6 – 7.7 ), it is possible to finalize that 

failure occurs in the extreme fiber of the unconfined concrete. In	particular,	the 

Fig.7.6 underlines a complete path of concrete constitutive law, with an exploitation 

of the softening branch  that clearly leads to failure for strength limit.	

On the other side, a typical case of buckling failure is	reported	in	the	next	set of 

three graphics (Fig.7.8	–	7.9 –	7.10	).	It	shows	fiber outcomes related to test S28 

(𝜆 = 166,62). It is clearly visible that materials do	not	achieve	 𝜀u8	:	failure	occurs	

in	elastic	field	with	low	stress	values	respect	to	limit	strength.	
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Figure 7.5 - 4L8-30 - NLA 1 - Confined concrete behavior 

 
Figure 7.6 - 4L8-30 - NLA 1 - Unconfined concrete behavior 

 
Figure 7.7 - 4L8-30 - NLA 1 – Steel behavior 
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Figure 7.8 - S28 - NLA 1 - Confined concrete behavior 

 
Figure 7.9 - S28 - NLA 1 - Unconfined concrete behavior 

 
Figure 7.10 - S28 - NLA 1 – Steel behavior 
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7.2 Failure Mode 

Generally, in a Safety Format discussion, it can be very interesting to focus on  

failure mode of structures. It is worthy to underline, in first place, that the GRMs 

have to be able to estimate the effective collapse load, by means of a global 

structural analysis and with a relatively low computational effort, and in second 

place, that the Probabilistic Method is obviously assumed as the reference safety 

format as explained above. Clearly, in order to ensure safety, GRMs have to identify 

global resistance values smaller than PM. In particular, the mean trend hierarchy 

of this study is composed as following: GRF – PFM – SMVM – ECOV – GSF . A 

specific chapter related to this matter is further reported; it is based on the Levels 

of Approximation for non-linear analysis in probabilistic fields and ends up 

creating a LoA hierarchy. 

 Studies conducted on flexural behavior of RC beams with regular square of 

circular web openings [14] allowed to show that some of these beams do not 

follow the conventional aforementioned hierarchy of SF results and the same 

beams are interested by different failure mode, depending on applied Safety 

Format. It is clear that hierarchy absence and different failure mode for different 

Safety Formats, are closely connected phenomena; that is why failure respecting 

of expected hierarchy, can be considered as an alarming element for purpose to 

identify a case in which, the Safety Format falls in mistake respect to failure mode 

evaluation, not respecting the security rules. An example of different failure mode 

can be given by the fact that, the failure mode affects both material and region: so 

in a simply supported beam, the bending mechanism involves  both materials 

(concrete and steel) in the midspan, while shear mechanism involves only concrete 

near restraints.  

According to Castaldo et al. , some structure cases allow to escape some 

imperfections of Safety Formats, given by incapacity to take into account the actual 

distribution of the structural resistance as a function of the possible failure mode. 

In other words, the GRMs sometimes can not be able to estimate  effective failure 

mode, generating in this way a safety level not adequately guaranteed. A simple 

expectation can be done by the coefficient of variation in the ECOV, that is 

evaluated with a simplified approach which, obviously, does not consider any 

modification in the failure mode. Moreover, as explained before, the GSF assumes 
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the mean value of distribution of the global structural resistance equal to the value 

achieved from NLA, by employing the mean values of the material properties.  

7.3 Proposal of failure mode-based safety format 

factor 

The innovative proposal of a new coefficient 𝛾ãÞ called failure mode-based safety 

factor has the aim to reduce the global resistance values obtained by GRMs in 

order to get resistance values nearest to reality. That is why 𝛾ãÞ	has been 

calibrated in order to obtain results, in terms of design global resistance Rd 

evaluated with the GRMs, in compliance with the resistance Rd estimated with the 

probabilistic method  PM. The previously analytical definition of global resistance 

Rd can be modified as: 
 

𝑅L =
𝑅opq

𝛾; ∙ 𝛾;L ∙ 𝛾ãÞ
																		(7.1) 

 

It is important to underline that the proposal to use a new safety factor associated 

to failure mode, waives a prior analysis which evaluates the failure mode 

sensitivity of the particular structural case. A simple methodology for this purpose, 

is to conduct two NLAs: 

- One NLA simulation using the mean values for the concrete properties and 

the design values for the reinforcement properties; 

- One NLA simulation using the design values for the concrete properties 

and the mean values for the reinforcement properties. 

If failure modes of these two analyses are the same, it is possible to evaluate  

structural case as independent to failure mode and so all the GRMs can be adopted 

to estimate design ultimate load as well as PM. In other way, it is possible to 

accept formula above admitting 𝛾ãÞ=1,00. Whereas, if failure modes of two 

analyses are different, 𝛾ãÞ coefficient becomes crucial in order to balance  failure 

mode sensitivity of the particular case. Obviously in these cases, 𝛾ãÞ	can not be 

equal to one (recommended value according Castaldo et al. 𝛾ãÞ=1,15). 



 - 87 - 

7.4 Failure mode sensitivity 

In order to check effectiveness of the previous methodology, a limited number of 

columns of database have been subjected to previous two preliminary NLAs with 

mean and design material properties for concrete and steel, as explained above. 

As concluded in paragraph (6.5) , the missing of hierarchy between several Safety 

Format results can be noticed for high slenderness values that can not be 

considered typical of structural problems. So it is reasonable to expect that the 

methodology of two NLAs will return equal failure modes. The appendix B reports 

previous described graphics related to preliminary analyses: it is clearly that global	

axial	 force-deflection	diagrams	and	local	stress-strain diagrams do not show any 

strong difference between NLA 1 and NLA 2.  
 

It is possible to say that there is no worthy interaction between geometrical and 

material properties. In fact, failure mode remains the same also in case of change 

of material properties. This result, in first place, gratifies performance of non-linear 

preliminary analyses and so confirm  𝛾ãÞ  independence on slenderness values. 

For a theoretical respect of Eq. (7.1) in this study about slender columns, it is 

possible to assign  𝛾ãÞ = 1 . 
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8 Levels of Approximation 

At the end of the analysis, a satisfying evaluation of Safety Formats leads to 

underline not only accuracy of results but also computational cost. As explained 

before, Probabilistic Method is undoubtedly the most expensive but return a great 

reliability of results. It is, therefore, legitimate to relate an high computational cost 

with a more accurate outcome. To this purpose, in this chapter, a little benefit-cost 

analysis is reported introducing concept of Levels of Approximation. 
 

Before to explain how LoAs can adapt to non-linear analysis, it is worthy to call 

back some general concepts on structural analysis. This thesis stared with a little 

description about non-linear analysis, related its to high level of approximation 

respect to linear analysis which deals with more simply material constitutive law. 

Moreover,  the introduction in a structural analysis finalizing to assess global 

structural resistance, rather than local failure related to internal action of the 

critical cross section, leads to categorize this kind of analysis on accuracy levels 

requiring challenging efforts.  

 

In view of new fib Model Code 2020, an easy classification about levels of 

approximation related to Safety Format for non-linear analysis is reported : 

 

- LoA I, requires limited number of non-linear analysis with hypothesis  related 
to the coefficient of variation of global structural response; 
 

- LoA II, requires limited number of non-linear analysis with a     simplified 
method for the estimation of the coefficient of variation of global structural 
response; 
 

- LoA III, requires the definition of probabilistic models in order to perform 

the reliability analysis. 
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The relative response on the global resistance side, can be also related to LoAs 

thanks to specific level of reliability identified by the target reliability index β. 
 

The further graphics show different representation of Safety Format results. For 

each column, a bar graphic underline the different ratios between Ri/RPM. The 

exceeding of unit limit underline the already mentioned ECOV overestimation for 

very high slenderness values. However, in this phase, the aim is to discuss the 

changing of order in terms of resistance results. Like done for the graphic legend 

in Fig.6.2 , the horizontal axes of the bar charts are always consisting of the same 

order which is related to different Levels of Approximation: 

1. LoA I   – GRF 

2. LoA I   – PFM 

3. LoA I   – SMVM 

4. LoA II  – ECOV 

5. LoA III – GSF 

6. LoA III – PM 

 

By this different representation, it is visible the Safety Format hierarchy in terms 

of results and accuracy respect to Probabilistic Method.  Bar charts are reported 

by low to high slenderness; so the alteration of underestimation between GRF, 

PFM, SMVM occurs with good frequency but it does not represent an ambiguity 

because of they belong to same first levels of approximation. Particular attention 

can be focused on ECOV and its overestimation for very high slenderness values; 

anyway this equivocation , related to uncommon slenderness values in structural 

field, has already been addressed in paragraph 6.5.  

So	 for	a	restrained	domain,	 it	 is	possible	 to	conclude	that	Safety	Format	hierarchy	

presents	 the	 expected	 results	 discuss	 in	 Chapter	 7,	 with	 a	 little	 and	 legitimate	

overestimation	respect	to	Probabilistic	Method.	
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9 Appendix A – Probability Density Functions and 
Cumulative Density Functions of columns global resistance 
log-normal distributions 
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2L8-120R 
log-normal  -  µN = 1146 KN  -  VN = 0,1368 

p-value=0,71	

 

2L8-120R 
log-normal  -  µN = 1146 KN  -  VN = 0,1368 

p-value=0,71	

 

4L8-30 
log-normal  -  µN = 1039,2 KN  -  VN = 0,1093 

p-value=0,81	

 

4L8-30 
log-normal  -  µN = 1039,2 KN  -  VN = 0,1093 

p-value=0,81	
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H60-10.5-C0-1-30 
log-normal  -  µN = 8,95 KN  -  VN = 0,1337 

p-value=0,68	

 

H60-10.5-C0-1-30 
log-normal  -  µN = 8,95 KN  -  VN = 0,1337 

p-value=0,68	

 

N30-10.5-C0-3.30 
log-normal  -  µN = 8,05 KN  -  VN = 0,1335 

p-value=0,80	

 

N30-10.5-C0-3.30 
log-normal  -  µN = 8,05 KN  -  VN = 0,1335 

p-value=0,80	
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2 
log-normal  -  µN = 759,2 KN  -  VN = 0,1215 

p-value=0,56	

 

2 
log-normal  -  µN = 759,2 KN  -  VN = 0,1215 

p-value=0,56	

 

8 
log-normal  -  µN = 244,5 KN  -  VN = 0,1005 

p-value=0,98	

 

8 
log-normal  -  µN = 244,5 KN  -  VN = 0,1005 

p-value=0,98	
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S28 
log-normal  -  µN = 64,8 KN  -  VN = 0,0732 

p-value=0,31	

 

S28 
log-normal  -  µN = 64,8 KN  -  VN = 0,0732 

p-value=0,31	

 

S30 
log-normal  -  µN = 66,6 KN  -  VN = 0,0744 

p-value=0,72	

 

S30 
log-normal  -  µN = 66,6 KN  -  VN = 0,0744 

p-value=0,72	
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7 
log-normal  -  µN = 32,2 KN  -  VN = 0,0835 

p-value=0,85	

 

7 
log-normal  -  µN = 32,2 KN  -  VN = 0,0835 

p-value=0,85	

 

17-A 
log-normal  -  µN = 37,0 KN  -  VN = 0,0863 

p-value=0,80	

 

17-A 
log-normal  -  µN = 37,0 KN  -  VN = 0,0863 

p-value=0,80	
 

 

 

  

 

 

 

 



 

 

 

 

10 Appendix B – Graphics related to preliminary non-linear 
analyses (NLA1 and NLA2): Global axial load – deflection 
diagram and local fiber stress – strain diagram 
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2L8–120R 
NLA 1 – l/h=9,7 – e0/h=0,053	

 

2L8–120R 
NLA 2 – l/h=9,7 – e0/h=0,053 

 

4L8–30 
NLA 1 – l/h=9,7 – e0/h=0,053 

 

4L8–30 
NLA 2 – l/h=9,7 – e0/h=0,053 
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2 
NLA 1 – l/h=25,8 – e0=0	

 

2 
NLA 2 – l/h=25,8 – e0=0 

 

8 
NLA 1 – l/h=25,6 – e0/h=0,200 

 

8 
NLA 2 – l/h=25,6 – e0/h=0,200 

 

 

 



 - 108 - 

 

 

 

 

S28 
NLA 1 – l/h=48,1 – e0/h=0,144	

 

S28 
NLA 2 – l/h=48,1 – e0/h=0,144 

 

9 
NLA 1 – l/h=40,2 – e0/h=0,200 

 

9 
NLA 2 – l/h=40,2 – e0/h=0,200 
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17-A 
NLA 1 – l/h=65 – e0=0	

 

17-A 
NLA 2 – l/h=65 – e0=0 

 

18 
NLA 1 – l/h=70,1 – e0=0 

 

18 
NLA 2 – l/h=70,1 – e0=0 
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2L8-120R - NLA 1 - Confined concrete behavior 

 

 
2L8-120R - NLA 2 - Confined concrete behavior 

 
2L8-120R - NLA 1 - Unconfined concrete behavior 

 

 
2L8-120R - NLA 2 - Unconfined concrete behavior 

 

 
2L8-120R - NLA 1 – Steel behavior 

 

 
2L8-120R - NLA 2 – Steel behavior 
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4L8-30 - NLA 1 - Confined concrete behavior 

 

 
4L8-30 - NLA 2 - Confined concrete behavior 

 
4L8-30 - NLA 1 - Unconfined concrete behavior 

 

 
4L8-30 - NLA 2 - Unconfined concrete behavior 

 

 
4L8-30 - NLA 1 – Steel behavior 

 

 
4L8-30 - NLA 2 – Steel behavior 
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5.1 - NLA 1 - Confined concrete behavior 

 

 
5.1 - NLA 2 - Confined concrete behavior 

 
5.1 - NLA 1 - Unconfined concrete behavior 

 

 
5.1 - NLA 2 - Unconfined concrete behavior 

 

 
5.1 - NLA 1 – Steel behavior 

 

 
5.1 - NLA 2 – Steel behavior 
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2 - NLA 1 - Confined concrete behavior 

 

 
2 - NLA 2 - Confined concrete behavior 

 
2 - NLA 1 - Unconfined concrete behavior 

 

 
2 - NLA 2 - Unconfined concrete behavior 

 

 
2 - NLA 1 – Steel behavior 

 

 
2 - NLA 2 – Steel behavior 
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8 - NLA 1 - Confined concrete behavior 

 

 
8 - NLA 2 - Confined concrete behavior 

 
8 - NLA 1 - Unconfined concrete behavior 

 

 
8 - NLA 2 - Unconfined concrete behavior 

 

 
8 - NLA 1 – Steel behavior 

 

 
8 - NLA 2 – Steel behavior 
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S28 - NLA 1 - Confined concrete behavior 

 

 
S28 - NLA 2 - Confined concrete behavior 

 
S28 - NLA 1 - Unconfined concrete behavior 

 

 
S28 - NLA 2 - Unconfined concrete behavior 

 

 
S28 - NLA 1 – Steel behavior 

 

 
S28 - NLA 2 – Steel behavior 
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9 - NLA 1 - Confined concrete behavior 

 

 
9 - NLA 2 - Confined concrete behavior 

 
9 - NLA 1 - Unconfined concrete behavior 

 

 
9 - NLA 2 - Unconfined concrete behavior 

 

 
9 - NLA 1 – Steel behavior 

 

 
9 - NLA 2 – Steel behavior 
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17-A - NLA 1 - Confined concrete behavior 

 

 
17-A - NLA 2 - Confined concrete behavior 

 
17-A - NLA 1 - Unconfined concrete behavior 

 

 
17-A - NLA 2 - Unconfined concrete behavior 

 

 
17-A - NLA 1 – Steel behavior 

 

 
17-A - NLA 2 – Steel behavior 
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18 - NLA 1 - Confined concrete behavior 

 

 
18 - NLA 2 - Confined concrete behavior 

 
18 - NLA 1 - Unconfined concrete behavior 

 

 
18 - NLA 2 - Unconfined concrete behavior 

 

 
18 - NLA 1 – Steel behavior 

 

 
18 - NLA 2 – Steel behavior 

 

 

 



 

 

 

11 Appendix C – Example of OpenSees C++ code 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 - 120 - 

 

# 
# 
# ------------------- CONFIGURATION AND REFERENCE SYSTEM -------------------------
--- 
# 
#                       SISTEMA DI RIFERIMENTO GLOBALE 
#  
#  ^ Y 
#  | 
#  | 
#  | 
#  | 
#  | 
#  | 
#    --O------------> X 
#    /| 
#     / | 
#    / 
#   Z 
# 
#    ̂  Y           
#  | 
#     |--<|#  eccentricity 
#  |   
#  | 
#  |   
#  |      
#  | 
#  o--<|° -------> X 
#    /     °   eccentricity 
#     /   /|\   
#    /    | 
# Z    | P 
# 
# 
# 
# SET UP -------------------------------------------------------------------------
--- 
# units: Newton, mm, sec 
# 
#wipe command is used to destroy all constructed objects, i.e. all components of 
the model, all components of the analysis and all recorders. 
wipe 
# 
#model basic is used to define spatial dimension of model and number of DOF at 
nodes.  
#model basic $ndm (spatial dimension of the problem) $ndf (number of DOF at node) 
model basic -ndm 2 -ndf 3  
# 
#     
# --------------- Define Column Geometry, Material, Eccentricity --------------- 
# 
# define GEOMETRY -------------------------------------------------------------- 
# 
set  Lcolonna  650; 
set  b  150; 
set  h  150; 
set  coverb  27.35; 
set  coverh  27.35; 
set  As1  114.99014510302; 
set  nsteeltop  2; 
set  nsteelcenter  0; 
set  nsteelbottom  2; 
# 
#  define MATERIAL PROPERTIES --------------------------------------------------- 
# 
#  define CONFINED CONCRETE properties 
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# 
set  fccm  32.5694381629616; 
set  fccu  6.51388763259231; 
set  Eccm  31869.4974790669; 
set  epscc1  0.00315232672247369; 
set  epsccu1  0.031; 
set  fcctm  2.29579699985319; 
set  Ect  708.316305291366; 
# 
#  define UNCONFINED CONCRETE properties 
# 
set  fcm  29.1698774497178; 
set  fcu  5.83397548994355; 
set  Ecm  30719.6781604866; 
set  epsc1  0.00199171762914162; 
set  epscu1  0.0105; 
set  fctm  2.29579699985319; 
set  Et  708.316305291366; 
# 
#  define STEEL properties 
# 
set  fym  480; 
set  fsu  494.4; 
set  bs  0.03; 
set  Es  210000; 
set  epsy  0.00228571428571429; 
set  esh  0.045; 
set  epsu  0.07; 
set  Esh  576.000000000001; 
set  lsr  9.91735537190083; 
# 
# 
#  define ECCENTRICITY ---------------------------------------------------------- 
# 
set  eh  8; 
# 
# 
#  define Column ---------------------------------------------------------- 
# 
set  rin  400; 
# 
# ----------------------------------- End -------------------------------------- 
# ------------------------------------------------------------------------------ 
                  
# 
# 
# -------------------------- Define nodal coordinates -------------------------- 
# 
# In a 2D problem only the x and y coordinates need to be defined, using the node 
command:  
# node $nodeTag $X $Y 
# 
node 1 $eh -$rin; 
node 2 0.0 -$rin; 
node 3 0.0 0.0 
node 4 0.0 [expr $Lcolonna/9]; 
node 5 0.0 [expr ($Lcolonna*2)/9]; 
node 6 0.0 [expr ($Lcolonna*3)/9]; 
node 7 0.0 [expr ($Lcolonna*4)/9]; 
node 8 0.0 [expr ($Lcolonna*5)/9]; 
node 9 0.0 [expr ($Lcolonna*6)/9]; 
node 10 0.0 [expr ($Lcolonna*7)/9]; 
node 11 0.0 [expr ($Lcolonna*8)/9]; 
node 12 0.0 $Lcolonna; 
node 13 0.0 [expr $Lcolonna+$rin]; 
node 14 $eh [expr $Lcolonna+$rin]; 
# 
# 
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# Boundary conditions are defined using fix command:  
# fix $nodeTag DX DY RZ.  
# where a fixed constraint is defined with a 1, a free constraint is define with 0  
# 
fix 1 1 0 0; 
fix 14 1 1 0; 
# 
# 
# 
# --------------- Define ELEMENTS & SECTIONS -------------------------------------
-------- 
# 
# Define materials for nonlinear columns 
# ------------------------------------------ 
# 
# CONCRETE     
# 
# This command is used to construct a UniaxialMaterial object which represents 
uniaxial stress-strain relationships. 
# uniaxialMaterial $matType $matTag $fck $epscu1 $fcu $epscu1 $lambda (ratio 
betwwn unloading slope at $epscu1 and initial slope) $ft $Et            
# 
# uniaxialMaterial Concrete02  [expr -$fck] [expr -$epsc1] [expr -$fcu] [expr -
$epscu1] 0.10 $fctm $Et 
# 
# Unconfined Concrete  
uniaxialMaterial Concrete02 1 -$fcm -$epsc1 -$fcu -$epscu1 0.10 $fctm $Et 
# 
#  Confined Concrete 
uniaxialMaterial Concrete02 2 -$fccm -$epscc1 -$fccu -$epsccu1 0.10 $fcctm $Ect 
# 
# STEEL  
# 
# uniaxialMaterial $matType $matTag $fy $Es $b (strain-hardening ratio) $R0 $CR1 
$CR2 (parameters to control the transition from elastic to plastic branches)  
# 
#                       
#uniaxialMaterial Steel02 3 $fym $Es $bs 15 0.925 0.15 
# 
# 
uniaxialMaterial ReinforcingSteel 3 $fym $fsu $Es $Esh $esh $epsu -DMBuck $lsr 0.8 
# 
# 
#uniaxialMaterial ReinforcingSteel 3 $fym $fsu $Es $Esh $esh $epsu -GABuck $lsr 2.0 
0.0 0.5 
# 
# 
# --------------- Rigid link -----------------------------------------------------
------ 
# 
# rigidLink $type $masterNodeTag $slaveNodeTag 
# 
# type: beam (both the translation and rotation degrees of freedom are constrained) 
# 
#rigidLink beam 2 1  
#rigidLink beam 4 5  
# 
# 
# FIBER SECTION properties -------------------------------------------------------
------ 
# 
# -------------- CROSS SECTION ---------------------------------------------------
------ 
# 
# La sezione è viene disposta con l'asse Z lungo la direzione 1    
# 
# 
# 
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#      |\ Z 
#         coverh  |      coverh         
#           |   |  |   |   | 
#             |-------- h --------| 
#             --------------------     --   --   -- 
#             |   o     o     o   |     |   -- coverb  | 
#             |       |     |     | 
#             |                   |     |     B 
#        |                   |     b       |   
#    O        |   o     +   o   |     |  -----> Y     --     
#  Carico     |                   |     |  
#             |       |     | 
#             |        |     | 
#             |   o     o     o   |     |    -- coverb 
#             ---------------------     --   -- 
#               
#      |----H----| 
# 
# 
# 
#   
# 
 
set B [expr $b/2.0] 
set H [expr $h/2.0] 
 
section Fiber 1 { 
    # Create the concrete core fibers 
  # VA DATA PRIMA LA COORDINATA Z  !!!!!! 
  #patch rect $matTag $numSubdivY $numSubdivZ $yl $zl $yJ $numero di 
suddivisioni nella dir y, numero di suddivisioni in dir z, coordinate vertice 1  y 
e z, coordinate vertice 2 y e z. 
    patch rect 2 20 20      [expr $coverh-$H] [expr $coverb-$B]  [expr $H-$coverh] 
[expr $B-$coverb] 
 
    # Create the concrete cover fibers (top, bottom, left, right) 
  # VA DATA PRIMA LA COORDINATA Z  !!!!!! 
    patch rect 1 20 10       [expr -$H] [expr $B-$coverb]  $H $B 
    patch rect 1 20 10         [expr -$H] [expr -$B]  $H [expr -$B+$coverb] 
    patch rect 1 10 20       [expr -$H] [expr -$B+$coverb]   [expr -$H+$coverh] 
[expr $B-$coverb] 
    patch rect 1 10 20       [expr $H-$coverh] [expr $coverb-$B]   $H [expr -
$coverb+$B] 
 
    # Create the reinforcing fibers (top, middle, bottom) 
  # VA DATA PRIMA LA COORDINATA Z  !!!!!! 
  #layer straight $matTag $numFiber $areaFiber $yStart $zStart $yEnd $zEnd 
 layer straight 3 $nsteeltop $As1      [expr -$H+$coverh] [expr $B-$coverb]  
[expr $H-$coverh] [expr $B-$coverb] 
 layer straight 3 $nsteelcenter $As1   [expr -$H+$coverh] 0.0   [expr $H-$coverh] 
0.0 
    layer straight 3 $nsteelbottom $As1     [expr -$H+$coverh] [expr -$B+$coverb]  
[expr $H-$coverh] [expr -$B+$coverb] 
}     
 
# define geometric transformation: performs a linear geometric transformation of 
beam stiffness and resisting force from the basic system to the global-coordinate 
system 
 
geomTransf Linear 1 
geomTransf Corotational 2 
geomTransf PDelta 3  
# 
# 
# element connectivity:  
# 
# Construct an element and add it to the domain 
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# element $eleType $eleTag $iNode $jNode$numIntgrPts $secTag (identifier for 
previoysly-defined section object) $transfTag (identifier for previously-defined 
coordinates-transformation object) 
#  COLUMN:   
 
element nonlinearBeamColumn 1 3 4 5 1 3  
element nonlinearBeamColumn 2 4 5 5 1 3 
element nonlinearBeamColumn 3 5 6 5 1 3 
element nonlinearBeamColumn 4 6 7 5 1 3 
element nonlinearBeamColumn 5 7 8 5 1 3  
element nonlinearBeamColumn 6 8 9 5 1 3 
element nonlinearBeamColumn 7 9 10 5 1 3 
element nonlinearBeamColumn 8 10 11 5 1 3 
element nonlinearBeamColumn 9 11 12 5 1 3 
 
 
#element elasticBeamColumn $eleTag $iNode $jNode $A $E $Iz $transfTag <-mass 
$massDens> <-cMass> 
 
 
element elasticBeamColumn 10 1 2 60000 30000 84375000  3 
element elasticBeamColumn 11 2 3 60000 30000 84375000  3 
 
element elasticBeamColumn 12 12 13 60000 30000 84375000  3 
element elasticBeamColumn 13 13 14 60000 30000 84375000  3 
 
 
set Vol [expr ($Lcolonna*$b*$h)] 
set PCol [expr ($Vol*25/(1000000))]     
# in N 
 
 
# define GRAVITY ------------------------------------------------------------- 
pattern Plain 1 Linear { 
   load 2 0 $PCol 0 
   # load 4 0 -$PCol 0 
     # load 5 0 0 0 
   # load 6 0 0 0 
   # load 7 0 -$PCol 0 
   # load 8 0 -$PCol 0 
  # DISTRUBUTED LOADS ------------------------------------------------------------
- 
  # set Linfl 4000 
  # set G1 -0.0091 
  # set G2 -0.008 
  # set q1 [expr $G1*$Linfl] 
  # set q2 [expr $G2*$Linfl] 
  # eleLoad -ele 17 18 19 20 21 22 23 24 25  -type -beamUniform $q1 
  # eleLoad -ele 26 27 28      -type -beamUniform $q2 
#} 
# ------------------------------ 
# Start of analysis generation 
# ------------------------------ 
 
# Create the system of equation, a sparse solver with partial pivoting 
 system BandGeneral 
 
# Create the constraint handler, the transformation method 
 constraints Transformation 
 
# Create the DOF numberer, the reverse Cuthill-McKee algorithm 
 numberer RCM 
 
# Create the convergence test, the norm of the residual with a tolerance of  1e-12 
and a max number of iterations of 10 
 test NormDispIncr 1.0e-13  1000 3 
 
# Create the solution algorithm, a Newton-Raphson algorithm 
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 algorithm Newton 
 
# Create the integration scheme, the LoadControl scheme using steps of 0.05 
 integrator LoadControl 0.1 
 
# Create the analysis object 
 analysis Static 
 
# ------------------------------ 
# End of analysis generation 
# ------------------------------ 
 
 
# ------------------------------ 
# Finally perform the analysis 
# ------------------------------ 
 
# perform the gravity load analysis, requires 20 steps to reach the load level 
 analyze 10 
 
# ------------------------------------------------- maintain constant gravity loads 
and reset time to zero 
loadConst -time 0.0 
 
puts "Model Built" 
 
# Print out the state of elements  
print ele 1 
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source Colonna.tcl 
 
loadConst -time 0.0 
puts "Gravity Analysis Completed" 
puts "Cyclic Analysis Completed" 
#display displacement shape of the column 
recorder display "Displaced shape2" 20 20 500 500 -wipe 
 
prp 300. 200. 1; 
vup  0 1 0; 
vpn  0 0 1; 
display 1 5 40  
 
# vup 0 0 1  
# vpn 1 0 0 ----> vista Y-Z 
 
# vup 0 1 0  
# vpn 0 0 1 ----> vista X-Y 
 
# vup 0 0 1  
# vpn 0 1 0 ----> vista X-Z 
# Set the gravity loads to be constant & reset the time in the domain 
loadConst -time 0.0 
 
# ---------------------------------------------------- 
# End of Model Generation & Initial Gravity Analysis 
# ---------------------------------------------------- 
 
 
# ---------------------------------------------------- 
# Start of additional modelling for lateral loads 
# ---------------------------------------------------- 
 
# Define lateral loads 
# -------------------- 
 
# Set some parameters 
set P 1.0;  # Reference lateral load 
 
set dof 2 
set nodo 1 
 
# Set lateral load pattern with a Linear TimeSeries 
pattern Plain 3 "Linear" { 
 
     # Create nodal loads at nodes 3 & 4 
        # nd    FX  FY   MZ   
   
  load 1      0  $P     0.0 
  # load 7     $H2 0.0  0.0 
  
     
} 
 
# ---------------------------------------------------- 
# End of additional modelling for lateral loads 
# ---------------------------------------------------- 
 
 
 
# ---------------------------------------------------- 
# Start of modifications to analysis for push over 
# ---------------------------------------------------- 
 
# Set some parameters 
set dU 0.0010;         # Displacement increment 
         # Displacement increment 
# Change the integration scheme to be displacement control 
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#                             node dof init Jd min max 
integrator DisplacementControl  $nodo $dof   $dU  1 $dU $dU 
 
# ---------------------------------------------------- 
# End of modifications to analysis for push over 
# ---------------------------------------------------- 
 
 
# ------------------------------ 
# Start of recorder generation 
# ------------------------------ 
 
#Fibra da analizzare su cc 
set FibCCy [expr $H-$coverh] 
set FibCCz [expr $B-$coverh] 
 
set FibUCy [expr $H] 
set FibUCz [expr $B] 
 
 
# Stop the old recorders by destroying them 
# remove recorders 
nodeDisp 1 1 
# Create a recorder to monitor nodal displacements 
recorder Node   -file DispV.out  -node 1  -dof 2   disp 
recorder Node   -file DispO.out  -node 8  -dof 1   disp 
# Create a recorder to monitor base shear 
recorder Node   -file NForce.out  -node 14    -dof  2   reaction  
recorder Node   -file VReaction.out  -node 14    -dof  1   reaction  
recorder Element -file CConcreteCompressed.out  -ele 5 section 2 fiber  -$FibCCy 0 
2 stressStrain 
recorder Element -file CConcreteTraction.out  -ele 5 section 2 fiber  $FibCCy 0 2 
stressStrain 
recorder Element -file UCConcreteCompressed.out  -ele 5 section 2 fiber  -$FibUCy 0 
1 stressStrain 
recorder Element -file UCConcreteTraction.out  -ele 5 section 2 fiber  $FibUCy 0 1 
stressStrain 
recorder Element -file Steel.out  -ele 5 section 2 fiber $FibCCy $FibCCz 3 
stressStrain 
# recorder Element -file SScore.out  -ele 1 section 3 fiber 0 50 1 stressStrain 
# recorder Element -file SScover.out  -ele 1 section 1 fiber 0 200 2 stressStrain 
 # recorder plot SScore.out "Stress-strain" 10 10 400 400 -columns 2 1  
 # recorder plot SScover.out "Stress-strain" 10 10 400 400 -columns 2 1  
 # recorder Element -file I29.out -ele  29 localForce 
 # recorder Element -file I35.out -ele  35 localForce 
 # recorder Element -file D29.out -ele  section 1 deformation 
 # recorder Element -file D35.out -ele  section 1 deformation 
 
# End of recorder generation 
# --------------------------------- 
# ------------------------------ 
# Finally perform the analysis 
# ------------------------------ 
 
# Set some parameters 
set maxU [expr 0.1*$Lcolonna];         # Max displacement 
set currentDisp 0.0; 
set ok 0 
 
while {$ok == 0 && $currentDisp < $maxU} { 
 
 set ok [analyze 1] 
    
 # if the analysis fails try initial tangent iteration 
 if {$ok != 0} { 
     puts "regular newton failed .. lets try an initial stiffness for this step" 
     test NormDispIncr 1.0e-4  2000 
     algorithm ModifiedNewton  
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  #-initial 
     set ok [analyze 1] 
     if {$ok == 0} {puts "that worked .. back to regular newton"} 
     test NormDispIncr 1.0e-4  2000  
     algorithm Newton  
 } 
  
  set currentDisp [nodeDisp $nodo $dof] 
} 
 
 
if {$ok == 0} { 
  puts "Pushover analysis completed SUCCESSFULLY"; 
} else { 
  puts "Pushover analysis FAILED";     
} 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

12 Appendix D – Different interpolations of Global Resistance 
Factor gR   related to several Safety Formats 
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Figure 9.1 - Second order polynomial interpolation – ECOV 
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Figure 9.2 – First order  polynomial interpolation – PM -GSF 
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Figure 9.3 – Linear interpolation of ratio between 𝛾;, 𝐸𝐶𝑂𝑉 / 𝛾;, 𝑃𝑀 
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Figure 9.4 – First order  polynomial interpolation – 𝛾;,pß­^äáåpN� PFM 
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