
Politecnico di Torino
Master Degree in Computer Engineering

Master Thesis

A Big Data Solution for Silhouette
Computation

Advisor
Paolo Garza
Co-Advisor
Eliana Pastor

Candidate
Sara Prone

Academic Year 2018/2019

Abstract

i

Abstract ii

For data analysis, the partitioning into groups based on data characteristics is
crucial. This process is called clustering and its result is a set of groups containing
all the original objects, where objects in the same group are more similar to each
other than to objects in other groups. The clustering process only partitions data
into clusters, so at the end of the process the number of records is the same as the
original, with the additional information about their division in groups. Since in real
world the data sets are likely to contain huge amounts of data, a way to reduce these
quantities maintaining the most important features of original objects is proposed
in this work. The idea is simply to summarize the already clustered data, dividing
them into cells with a certain size and computing a representative object for each
cell. This object represents all the original records contained in the cell and it has a
weight equal to the number of represented records. In this way, clusters of weighted
objects are generated and a resultant so-called weighted clustering is obtained. The
weighted clustering is a representation of the original partition into clusters, with a
reduced cardinality (i.e. an amount of records lower than the starting one is used
to represent all the original records).

The reduction of cardinality is crucial because operations on lower amounts of
data are faster and easier. In many cases, the representation of the original records
with a lower number of representative objects allows to perform operations that
would have been not feasible on original data. To evaluate the quality of the clusters
of weighted objects representation, the silhouette index has been used. It is an
index used to evaluate the quality of a clustering (i.e. a partition into clusters). A
modification of this index that considers weights of objects has been created in this
thesis. This version, called weighted silhouette, is particularly important because
the silhouette index time complexity is quadratic in the number of considered data.
For this reason, the application of the normal silhouette index on large data sets
is not feasible. Using the weighted version proposed in this work, the index can
be computed for high amounts of clustered objects. Before the computation of the
weighted silhouette, the proposed weighted clustering process must be applied in
order to generate a representation of the original objects using a lower number of
weighted objects.

ii

Contents

Abstract i

1 Introduction 1
1.1 About clustering . 2
1.2 About clustering evaluations . 3
1.3 The main idea . 4
1.4 Next chapters . 5

2 Background 7
2.1 Clustering validation indices . 8

2.1.1 The silhouette index . 8
2.1.2 Implementations of the silhouette index 10

2.2 Weighted data . 12
2.2.1 Weighted clustering . 12
2.2.2 Weighted silhouette index . 13

3 Proposed solution 16
3.1 Weighted clustering . 17

3.1.1 Weighted clustering pseudocode 19
3.1.2 Weighted clustering example 22

3.2 Weighted silhouette . 28
3.2.1 Weighted silhouette pseudocode 31
3.2.2 Weighted silhouette example 34

3.3 Weighted clustering modification . 39
3.3.1 Weighted clustering modification pseudocode 45
3.3.2 Weighted clustering modification example 51

iii

Abstract iv

4 Experiments 58
4.1 Input data sets . 59
4.2 Random competitors . 63
4.3 Main experiments . 66
4.4 Blobs data set experiments and results 69

4.4.1 Silhouettes results . 69
4.4.2 Thresholds . 74
4.4.3 Silhouettes results on weighted clustering modification 90
4.4.4 Time analysis . 95
4.4.5 Clustering evaluation on randomly clustered data sets 98

4.5 Other data sets results . 103
4.5.1 Complex 8 . 103
4.5.2 Complex 9 . 105
4.5.3 Compound . 106
4.5.4 Cure-t1-2000n-2d . 108
4.5.5 Moons . 110

5 Conclusions and future works 112

iv

Chapter 1

Introduction

1

Introduction 2

1.1 About clustering

We are living in a world where everyone and everything produces data. Everyday
a larger amount of information that can be represented as data is produced. The
organization of this enormous amount of information is crucial: understanding in-
formation and learning from that is not possible without the knowledge of how to
analyze, manage and classify it. In particular classify data and divide them into
groups plays an essential role in data science. These groups take the name of clus-
ters and the process of grouping them into different clusters is the data clustering
or cluster analysis. It is also called unsupervised learning or unsupervised classifica-
tion [1], since data are partitioned into clusters without any knowledge about their
natural partitions.

Cluster analysis or clustering is the organization of a number of objects, usu-
ally very large, into different clusters, trying to discover their natural grouping. A
definition of clustering can be the following: given N objects, divide them into K
groups based on a measure of similarity, such that two objects in the same group
are more similar to each other than to objects in other groups, while objects in
different groups are less similar to each other than to objects in the same group
[2]. The grouping is normally done based on similarity, in a way to achieve internal
homogeneity and external separation [3]. The following figures show an example of
clustering: points in Figure 1.1 are the original two dimensional objects that have
to be clustered, while in Figure 1.2 the desired clusters are identified with different
colors. The diversity of clusters in terms of size, shape and density can be noticed.
While a human eye easily recognize the division of points in Figure 1.1 into eight
groups, the automatic partition of them is not so trivial. Algorithms that aim to
find a good division in clusters starting from a set of data are called clustering
algorithms.

2

Introduction 3

Figure 1.1: Original data

Figure 1.2: Desired clusters

1.2 About clustering evaluations

Clustering algorithms organize objects into clusters. A typical clustering process
includes the following steps [4]:

• objects representation, optionally including feature extraction and/or selection
• definition of a similarity criterion appropriate to the type of data
• clustering (grouping)
• data abstraction, if needed
• production of output, if needed

An ideal cluster is a compact and isolated set of objects. In reality the partition
into clusters is not trivial and the obtained clusters may not be the desired ones.

3

Introduction 4

In some cases, with the current available clustering algorithms it is not possible to
obtain the desired partitions. Moreover, the result of a clustering process varies
depending not only on the used clustering algorithm but also on the set parameters
and on the used criterion of similarity. There is the need of metrics to evaluate the
quality of the clustering. These metrics indirectly evaluate the similarity measures
used in the clustering process, since these similarity criteria combined with the
mechanism are responsible for the obtained partitions [5].

Clustering validation indices, also called CVIs [6], are used to measure the quality
of a clustering (i.e. a partition in clusters). These indices can be divided into three
categories: external, internal and relative approaches [1]. External CVIs use external
information to evaluate the clustering: if some prior knowledge such as the exact
(or desired) partition exists, external CVIs can be used to evaluate how much the
evaluated partition is similar to the prior partition. When such prior knowledge is
absent, such as in unsupervised clustering, internal CVIs are used. In internal indices
the quality of clustering is usually measured based on two aspects: the intra-cluster
compactness and the inter-cluster separation, also known as isolation [6]. In relative
methods different data partitioning results obtained by a clustering algorithm setting
different values of input parameters are considered; they are compared with other
partitioning schemes in order to find the best results [1]. In this work an internal
clustering validation index has been studied and used: the silhouette index proposed
by Rousseeuw in 1987. Some other examples of internal indices are the Dunn index,
the I index, and the Calinsky-Harabasz index. They all use geometric information to
evaluate the clustering [6]. The silhouette index is based on a measure of distance
between the clustered objects: it uses the comparison of a measure of closeness of
each object to the cluster where it has been allocated and a measure of distance
from the closest alternative cluster [7].

1.3 The main idea

Clustering algorithms assign each object of a starting data set to a cluster, adding
important information to the objects themselves: after clustering process, data can
be seen as part of particular group where all the components share some features or
have similar characteristics. This task adds information to data, without changing
the cardinality of the data set.

Almost always, in real life, objects to be clustered are in very large number.
Think for example to the huge quantity of web pages, e-mails, blogs, transactions,
that every day create terabytes of new data. The quantity of available images

4

Introduction 5

and videos grows continuously, and also their quality and size increase thanks to
the spread of inexpensive cameras. The increase in the quantity of data requires
improvements in techniques to automatically understand, process, and summarize
the available data [2]. Given the huge amount of data in data sets, also after the
clustering when they are assigned to groups based on similarity, their analysis and
the extraction of relevant information from them can be slow and complex because
of the high cardinality.

In this work we propose a simple way to represent clustered data with a lower
number of representative objects, in order to reduce cardinality. The idea is simply
to divide clustered data into cells, where each cell has a number of dimensions equal
to the number of dimensions of each original object (i.e. the considered character-
istics of the original data). Then an object that represents the whole set of data
contained in a cell is computed for each cell. To each representative object is finally
assigned a weight, corresponding to the number of original records contained in the
represented cell. This process can be applied after the partitioning in clusters. Each
representative object keeps the cluster of the objects in the represented cell, in this
way clusters of weighted representative objects are obtained. The final cardinal-
ity can be decided by setting a parameter: the size of the cells. These clusters of
weighted objects will be called weighted clusters and the idea is that they can be
used instead of the original clusters when operations on the originals are too slow
because of their high cardinality. In the second part of the work, a modification of
the silhouette index to evaluate the quality of weighted cluster is proposed. It ex-
pands the silhouette index, adding the consideration of the weights when computing
closeness of each object to objects of the same cluster and distance of each object
from objects of other clusters.

1.4 Next chapters

Section 2 contains a brief summary of background researches on computation of
clustering validation indices and on assignment of weights to data. While a lot of
material can be found about the silhouette index, studies about weighted data are
not so common in the research community. In particular, no solutions have been
found similar to the one proposed in this work, that aims to reduce the cardinality
of already clustered data using weights.

In Section 3 the proposed solution is described. It starts illustrating the initial
idea of weighted clustering algorithm: the division in cells, the computation of
representative points, the assignment of weights. Then the proposed modification

5

Introduction 6

of silhouette index that considers the weights is described. Finally, a modification
of the weighted clustering algorithm that handles better situations with scattered
data is presented. For each process there are an initial description, the pseudo-code
with comments and an example.

The following part (Section 4) is about the performed experiments and the ob-
tained results. It starts with a description of the input data set used in the ex-
periments and of the competitors used to evaluate our results. Then the detailed
illustration of the main experiments done with a particular data set is reported and
the results are fully commented. Finally, most important results and special cases
are described for all the other considered data set.

The conclusive section contains an overview on all the obtained results and some
hints on possible future works in this field.

6

Chapter 2

Background

7

Background 8

2.1 Clustering validation indices

The clustering process is an unsupervised process, this means that there are no pre-
defined classes and no examples to show how to group data. Clustering algorithms
compute a division in clusters that most of the times is not known a priori, so the
obtained clustering requires to be evaluated [8]. When instead the desired partition
in clusters is known, evaluation metrics are a way to compare the obtained clustering
to the desired one.

The clustering validation indices are used to measure the quality of a division
in clusters obtained with a certain clustering algorithm. Among them, silhouette
index has been studied. This index can be calculated for each object of the starting
data set, and it allows to know if the object has been assigned to the best fit cluster
or if there was a better choice. The silhouette index can also be computed for the
whole clustered data set: it is the average of all the indexes computed for each single
object of the data set. In this case it gives a measure of the quality of the clustering.

2.1.1 The silhouette index

The silhouette index, also called SIL, was proposed by Rousseeuw in 1987. Unlike
most of clustering validation indices, the silhouette can be used for clusters of ar-
bitrary shapes [1]. The author specifies that in order to calculate this index two
premises are required [5]:

• a clustering of the original objects obtained using some clustering algorithm
• a structure for the storage of proximity values between objects

The silhouette index is defined as follows. Assuming the data of the data set D
have been clustered into K clusters, let us denote these clusters with {C1, C2, ...,
Ck, ..., CK}, where Ck indicates the kth cluster, with k = 1, 2, ..., K.
For each object Xi assigned to the cluster Ck, let a(Xi) be the average distance
between Xi and all the other objects Xk belonging to the same cluster Ck. The
value of a(Xi), being the mean of within-cluster distances, is a measure of how well
the object Xi is assigned to its cluster Ck. The smaller is a(Xi), the better is the
assignment of Xi to cluster Ck.

a(Xi) =
1

Nk − 1

∑
Xk∈Ck

d(Xi,Xk) (2.1)

8

Background 9

where Nk is the number of objects in cluster Ck and d(Xi, Xk) is a measure of
distance between Xi and Xk.

The average dissimilarity between Xi and other objects Xl belonging to the clus-
ter Cl, where l = 1, 2, ..., K and l 6= k is defined as:

δ(Xi,Xl) =
1

Nl

∑
Xl∈Cl

d(Xi,Xl) (2.2)

where Nl is the number of objects in cluster Cl. The cluster with the smallest av-
erage dissimilarity is called the neighbouring cluster of Xi because, excluding cluster
Ck, it is the best cluster for this object.

Let b(Xi) be the smallest average distance δ(Xi,Xl) computed for object Xi. This
value indicates the distance between Xi and its neighbouring cluster.

b(Xi) =
K

min
l=1,l6=k

δ(Xi,Xl) (2.3)

The silhouette index of object Xi is finally defined as:

S(Xi) =
b(Xi)− a(Xi)

max(a(Xi), b(Xi))
(2.4)

Which can also be written as:

S(Xi) =


1− a(Xi)/b(Xi), if a(Xi) < b(Xi)

0, if a(Xi) = b(Xi)

1− b(Xi)/a(Xi), if a(Xi) > b(Xi)

(2.5)

While the silhouette index SIL of the whole clustered data set is defined as:

SIL =


1
ND

∑
Xi∈D

S(Xi), if ND 6= 1

0, if ND1
(2.6)

where ND is the number of objects in the original data set D. Note that the SIL
is 0 if the data set D contains only one point.

From these definitions is clear that −1 ≤ S (Xi) ≤ 1 and so also −1 ≤ SIL ≤ 1.
The element Xi is assigned to the right cluster when S (Xi) is close to 1. When this

9

Background 10

value is near to -1, this means that the neighbouring cluster of Xi is a better choice
than the chosen cluster, so the object Xi is located in the wrong cluster. A value of
the silhouette index SIL close to 1 indicates that the partition in clusters has been
done well. Given two clustering obtained from the same data set using different
clustering algorithms or different parameters, the one with higher value of SIL is
the best one. If an optimal partitions in clusters is available for the considered data
set, the evaluation of the quality of the clustering obtained with a certain clustering
algorithm can be done by comparing the SIL of the obtained clustering and the SIL
of the given optimal clustering.

The silhouette index is based on two components: a(Xi) and b(Xi). The first
component is the average distance between Xi and other objects belonging to the
same cluster, so it can also be interpreted as a measure of cluster compactness.
The other component is the smallest of the average distances between Xi and the
objects belonging to other clusters. The difference between b(Xi) and a(Xi), can be
considered as a measure of cluster separability [1].

2.1.2 Implementations of the silhouette index

Apache Spark offers the library org.apache.spark.ml.evaluation.ClusteringEvaluator,
available since Spark 2.3.0 for Scala, Java, Python and R, which computes the
silhouette index using the squared Euclidean distance [9].

Deriving the Euclidean distance between two data involves computing the square
root of the sum of the squares of the differences between corresponding values. The
equation for the calculation of this distance between a point P(p1, p2, ..., pN) and
a point Q(q1, q2, ..., qN) is reported in Equation 2.7, where N is the number of
dimensions of the considered points.

δ(P,Q) =

√√√√ N∑
i=1

(pi − qi)2 (2.7)

The squared Euclidean distance metric uses the same equation as the Euclidean
distance, but does not take the square root:

δsquared(X,Y) =
n∑

i=1

(xi − yi)2 (2.8)

As a result, clustering processes using the Euclidean distance metric are slower

10

Background 11

than the ones using the squared Euclidean distance. Even if this second metric
is faster, in some cases the use of the Euclidean distance may be preferred. For
example the output of Jarvis-Patrick and K-Means clusterings is not affected if
Euclidean distance is replaced with its squared version, but the output of hierarchical
clustering is likely to change [10].

In this work it has been decided to provide a new implementation of the com-
putation of the silhouette index that uses the Euclidean distance, missing in Spark.

11

Background 12

2.2 Weighted data

2.2.1 Weighted clustering

In traditional clustering each cluster is simply a group containing a subset of the
initial data, i.e. each initial object is assigned to a cluster and the result of this
operation is the clustering. In this work, some transformations are applied to the
clustering in order to reduce the cardinality of each cluster. At the end of the
process a so-called weighted clustering is obtained, where clusters are composed by
weighted objects. Each cluster is converted to a weighted cluster which contains some
representative objects, each one of them represents a sub set of the original objects in
the considered cluster. The weighted adjective is used because these representative
objects have a weight, which corresponds to the number of represented objects.

The issue of assigning a weight to data has been addressed a lot in the research
community. Most clustering algorithms treat data as entities with equal weights, but
it is clear that in most cases not all objects in a data set have the same importance in
cluster analysis [11]. For example, outliers should have less impact than other objects
on clustering results. So it can be useful to compute objects weights before applying
a clustering algorithm to a data set. Implementations of weighted clustering can be
found, that assign a weight to each object before the clustering process, and then
consider the weights during the clustering. In some solutions the sample weights in
clustering algorithms need to be provided by users or heuristic methods. Attempts
to compute sample weights are Li et al. [12], which determine the sample weight for
an object Xi as the number of objects around Xi less than a threshold. Zhang et al.
[13] calculate sample weights for documents by computing the so-called PageRank
value of each document based on the citing relationship between them. Jian Yu,
Miin-Shen Yang, E. Stanley Lee [11] consider a probability distribution over a data
set to represent its sample weights, then apply the maximum entropy principle to
automatically compute sample weights for clustering.

All these solutions assign the weights before the clustering process and use them
during the partition in clusters. In this work we describe a way to summarize already
clustered data using some representative points with weights, in order to make easier
and faster the after clustering operations such as the silhouette calculation.

12

Background 13

2.2.2 Weighted silhouette index

While many researches have been made on cluster analysis considering weights, just
little material can be found about evaluation of weighted clustering.

The silhouette index previously described (Section 2.1.1) works for traditional
clustering (i.e. each cluster is simply a group containing a subset of the initial
data). In our work, a cluster is not a subset of the initial objects but it is a set of
representative objects, where each one of them represents a subset of the original
data and has a weight equal to the quantity of represented data. Each representative
objects clearly belongs to a cluster: the cluster that was assigned to the objects that
it represents. For the evaluation of the quality of this new type of clusters, the
standard silhouette index can not be applied since it does not consider the weights.

In theWeightedCluster library for R [14], an implementation for the computation
of a weighted version of the silhouette index is provided. The clustering methods
available in the WeightedCluster library are based on a measure of dissimilarity
between the objects, used to compare them. Two main stages of cluster analysis are
described: the algorithms for partitioning the objects into clusters and the measure
of the quality of the obtained clustering. The WeightedCluster library considers the
weight of the objects in both these main phases of the analysis [14].

For the computation of an indicator for the quality of the weighted clusters (i.e.
clusters of weighted objects), the following modification of the silhouette index is
proposed. The original formulation of this index supposes that one weighting unit is
equivalent to one observation (i.e. the data are not weighted). For weighted data, a
variant of the silhouette index called weighted silhouette is available in this library.
As the original silhouette index, this modification measures the coherence of the
assignment of an objects to its cluster [14].

The clusters to be evaluated are clusters of weighted objects: each object has
the features of the original data and a weight. Let D be a set of weighted objects. A
single weighted object is denoted with Xi, and its weight is wi. Using some weighted
clustering algorithm, the weighted objects of D have been clustered into K clusters
of weighted objects, denoted with {C1, C2, ..., Ck, ..., CK}, where Ck indicates the
kth cluster, with k = 1, 2, ..., K. Considering a weighted object Xi with weight wi

belonging to the cluster Ck, Wk is the sum of all the weights of objects assigned to
the same cluster Ck:

Wk =
∑

Xk∈Ck

wk (2.9)

13

Background 14

where wk is the weight assigned to weighted object Xk belonging to cluster Ck.
For the weighted object Xi, a(Xi) is defined as the average weighted distance

between Xi and all the other objects Xk belonging to the same cluster Ck:

a(Xi) =
1

Wk − 1

∑
Xk∈Ck

wk · d(Xi,Xk) (2.10)

where Wk is defined in Equation 2.9, wk is the weight of Xk and d(Xi, Xk) is a
measure of distance between Xi and Xk.

For the weighted object Xi, let δ(Xi,Xl) be the average weighted distance between
Xi and any other object Xl belonging to another cluster Cl, where l = 1, 2, ..., K
and l 6= k:

δ(Xi,Xl) =
1

Wl

∑
Xl∈Cl

wl · d(Xi,Xl) (2.11)

where Wl is the sum of the weights of objects belonging to cluster Cl.
For the weighted object Xi belonging to cluster Ck, b(Xi) is defined as the smallest

average weighted distance δ(Xi,Xl) computed between Xi and any other object Xl

belonging to another cluster Cl with l = 1, 2, ..., K and l 6= k:

b(Xi) =
K

min
l=1,l6=k

δ(Xi,Xl) (2.12)

The weighted silhouette of Xi is computed as:

S(Xi) =
b(Xi)− a(Xi)

max(a(Xi), b(Xi))
(2.13)

Which can also be written as:

S(Xi) =


1− a(Xi)/b(Xi), if a(Xi) < b(Xi)

0, if a(Xi) = b(Xi)

1− b(xi)/a(Xi), if a(xi) > b(Xi)

(2.14)

The weighted silhouette index of the whole weighted clustering is defined as:

wSIL =
1

ND

∑
Xi∈D

S(Xi) (2.15)

14

Background 15

where D is the starting set of weighted objects, and ND is the number of weighted
objects in D.

Also for this modified index is clear that −1 ≤ S (Xi) ≤ 1 and so also −1 ≤
wSIL ≤ 1. A value S (Xi) can be computed for each object, but more attention is
paid to the average silhouette wSIL. If this is weak, it means that the groups are
not clearly separated or that the homogeneity of the groups is low [14].

In Equation 2.10 the weighted sum of distances is divided by Wk-1. If some of
the wi or some of the Wk are lower than 1, the a(Xi) are undefined and the silhouette
can not be computed. The assumption for dividing by Wk-1 is that the weighting
unit is equivalent to one observation: this happens when objects are not weighted
or when the weights are computed from an aggregation of identical objects. There
may be other cases, for example when the weights are used for representing the
importance of an object of the original data set, where weights may be lower than
1. To solve this issue, in the WeightedClustering library the use of aw(Xi) instead
of a(Xi) is proposed [14]:

aw(Xi) =
1

Wk

∑
Xk∈Ck

wk · d(Xi, xk) (2.16)

The aw(Xi) value can be interpreted as the distance between the object Xi and
its own cluster, considering all the objects of the cluster. In the original formulation,
Xi is removed from the set before computing the a(Xi) value. Another interpretation
for the aw(Xi) can be the a(Xi) value when the weighting unit is as small as possible,
i.e. when it tends to zero [14].

15

Chapter 3

Proposed solution

16

Proposed solution 17

3.1 Weighted clustering

Let us assume the data of a data set have been partitioned into clusters using a
certain clustering algorithm. The result is a number of clusters, each one of them
contains a subset of the original data set. The traditional clustering is considered:
each data after the clustering process has been assigned to one and only one cluster,
differently from the Fuzzy clustering in which an object can be classified to more
than one clusters [8].

The process to obtain the weighted clusters consists in the partition of the clus-
tered data into cells. A representative point called weighted macropoint will be
computed for each cell, and it will represent all objects in the cell. It will have a
weight equal to the number of represented objects. A value called step is received as
only input parameter and it defines the size of cells on each dimension. Each cell will
have a number of dimensions equals to the number of dimensions of initial objects,
i.e. the number of features considered for initial data, and on each dimension the
size of the cell will be equal to the step value.

The procedure for obtaining the cells and their representative points (weighted
macropoints) is the following. Starting from the already clustered data, one cluster
at a time is considered and it is divided into cells using the step value. Let us
assume the cluster Ck is the considered one. A generic point belonging to cluster
Ck is identified by P(p1, p2, ..., pj, ..., pN), where N is the number of dimensions
of the objects and pj is the value of object P on the jth dimension. In order to
divide each cluster in cells of dimension step, first the minimum value of the cluster
is computed on each dimension:

minj = min
P∈Ck

pj (3.1)

where Ck is the cluster considered to be divided into cells, P ∈ Ck indicates a
point of cluster Ck, pj is the value of point P on the jth coordinate, and the result
minj is the value of the minimum on the jth dimension among all points of cluster
Ck.

The cluster of points is then divided into a number of cells with size step on each
coordinate, starting from the minimum of the set computed with Equation 3.1. A
point P(p1, p2, ..., pj, ..., pN) is assigned to the cell identified by the point C (c1, c2,
..., cj, ..., cN), where cj is computed for each dimension j = 1, 2, ..., N as:

17

Proposed solution 18

cj = Floor
(
pj −minj

step

)
· step+minj (3.2)

where pj is the jth coordinate of point P, minj is the minimum value computed on
the jth coordinate among all the points of the considered cluster with Equation 3.1,
and the result cj is the value of the point that identifies the cell on its jth coordinate.
In this way the cell to which the point P has been assigned is identified by a point
C which contains on each coordinate the minimum value of the cellâĂŹs points
computed on that coordinate.

After assigning each point P to a cell, a representative point called macropoint
M is computed for each cell as the average value on each dimension computed on all
the points belonging to cell C. Let NC be the number of points in cell C. All these
points are represented by the macropoint M (m1, m2, ..., mj, ..., mN), where mj is
computed on each dimension as:

mj =
1

NC

∑
P∈C

pj (3.3)

where NC is the number of points in the cell identified by the point C, P ∈ C
indicates a point belonging to cell C, and pj is the jth coordinate of point P. Being
NC the number of points in cell C represented by the macropoint M, the weight of
M is set to NC. All points belonging to cell C are represented by the macropoint
M with weight wM = NC. In the resulting weighted clustering the macropoint M is
assigned to the cluster Ck, which was the cluster of all the original points represented
by M.

In this way, starting from the original cluster Ck containing Nk points, a new
weighted cluster wCk is obtained. The weighted cluster wCk contains a number of
weighted points (i.e. the computed macropoints) that depends on the step value, so
the cardinality of the resulting representation can be set by setting this parameter.

18

Proposed solution 19

3.1.1 Weighted clustering pseudocode

Algorithm 1 Weighted Clustering

Input: the original clustering: the set clusters which contains clusters of
points; the value of step

Output: the result of weighted clustering process: the set weightedClusters
which contains clusters of weighted macropoints
1: clusters; . Clusters of points
2: weightedClusters = {}; . Set of computed weighted clusters
3: For each cluster, compute the cells, the weighted macropoints, and the weighted

cluster corresponding to the considered cluster:
4: for cluster in clusters do
5: weightedCluster = {}; . Weighted cluster corresponding to the cluster
6: clusterPoints = cluster.points;
7: For each dimension, compute the minimum value between cluster points:
8: min = computeMin(clusterPoints);
9: step = args.step;

10: For each point of the cluster, compute the cell:
11: for point in clusterPoints do
12: Compute the value of the cell for the point on each coordinate:
13: cell = computeCell(point, min, step);
14: Add the point to the set of points belonging to the computed cell:
15: cell.points.add(point)

16: cells; . All computed cells
17: For each cell, retrieve the value of the macropoint on each dimension:
18: for cell in cells do
19: cellPoints = cell.points;
20: macropoint = computeAverage(cellPoints);
21: macropoint.weight = cellPoints.size;
22: Add the computed macropoints to the weighted cluster:
23: for cell in cells do
24: weightedCluster.add(cell.macropoint);

25: Add the computed weighted cluster to the set of weighted clusters:
26: weightedClusters.add(weightedCluster);

27: return weightedClusters;

19

Proposed solution 20

Algorithm 2 computeMin

Input: the original points of a cluster or a cell, referred with points
Output: minimum value min among all points computed on each dimension

1: N = number of dimensions;
2: for i ← 0 to N-1 do
3: mini = MAXVALUE;
4: for point in points do
5: for i ← 0 to N-1 do
6: if pointi < mini then
7: mini = pointi
8: return min;

Algorithm 3 computeCell

Input: point to be assigned to a cell, min of the cluster of the point, step
Output: identifier of the cell the point has been assigned to, computed on

each dimension
1: N = number of dimensions;
2: for i ← 0 to N-1 do
3: celli = Floor((pointi-mini)/step)*step+mini;

4: return cell;

Algorithm 4 computeAverage

Input: original points of a cell cellPoints
Output: values of the macropoint representing all the cellPoints on each

dimension
1: N = number of dimensions;
2: for i ← 0 to N-1 do
3: sumi = 0;
4: counti = 0;
5: for point in cellPoints do

20

Proposed solution 21

6: sumi += pointi;
7: counti++;
8: for i ← 0 to N-1 do
9: macropointi = sumi/counti;

10: return macropoint;

Weighted Clustering algorithm

The Weighted Clustering process starts from a set of points already partitioned
into clusters: clusters (line 1). For each cluster, the correspondent weighted cluster
weightedCluster is retrieved as follows. The original points of the considered cluster
are extracted (line 6), and the minimum among all these points is computed on
each dimension (line 8), using computeMin (Algorithm 2). In line 9 the step value is
retrieved from command line arguments. For each point of the considered cluster, the
identifier of the cell the point has to be assigned to, is computed on each dimension
(line 13), using the logic described in computeCell (Algorithm 3). Given the values
of the identifier of the cell on each coordinate, the considered point is added to the
set of points belonging to that cell (line 15). At the end of this process, a set of cells
has been obtained, each cell containing a sub set of original points of the considered
cluster (line 16). For each one of these cells, the coordinates of the correspondent
macropoint are computed as the average of the values of all the points belonging to
the cell on that coordinate (line 20), using computeAvg (Algorithm 4). The weight
of the macropoint is set to the number of points belonging to the cell represented by
the macropoint (line 21). Finally, the macropoints retrieved for the current cluster
are added to the correspondent weightedCluster (line 24), and the weightedCluster
is added to the set of weightedClusters (line 26). The set of weightedClusters is the
result of the Weighted Clustering algorithm.

21

Proposed solution 22

3.1.2 Weighted clustering example

In the following figures, a graphical explanation can be found abouSt the assignment
of points to cells, the computation of macropoints for the cells, the retrieving of
weighted clusters. The original points considered for the example are displayed in
Table 3.1 and in Figure 3.1, already divided into two clusters.

px py cluster
P1 2 1 1
P2 1 2 1
P3 2 2 1
P4 2 3 1
P5 3 3 1
P6 3 5 1
P7 5 2 2
P8 5 5 2
P9 6 1 2
P10 6 2 2
P11 6 3 2
P12 6 5 2

Table 3.1: Original points partitioned into cluster 1 and cluster 2: point (px, py) is
assigned to cluster cluster

22

Proposed solution 23

Figure 3.1: Original points partitioned into cluster 1 (red points) and cluster 2 (blue
points)

At the beginning, the minimum values of the clusters are computed. Results are
displayed in Table 3.2 and in Figure 3.2.

An example of computation of the minimum for a cluster is reported in the
following lines. Let us consider cluster 2 (indicated with C2). It contains points P7,
P8, P9, P10, P11 and P12. Among all these points the minimum MIN2(minx, miny)
is computed on each dimension x and y as:

minx = min
Pi∈C2

px = min{5.0, 5.0, 6.0, 6.0, 6.0, 6.0} = 5.0

miny = min
Pi∈C2

py = min{2.0, 5.0, 1.0, 2.0, 3.0, 5.0} = 1.0

So the minimum for cluster 2 is MIN2(minx, miny) = (5.0, 1.0).

minx miny cluster
MIN1 1 1 1
MIN2 5 1 2

Table 3.2: Minimums on each dimension among points of cluster 1 and 2

23

Proposed solution 24

Figure 3.2: Minimums among points of cluster 1 (the brown point) and 2 (the light
blue point)

The partition of points into cells is performed as illustrated in the next example.
The assignments of points to the computed cells are shown in Table 3.3 and in Figure
3.3. The step value is set to 1.5.

Example of assignment of a point to a cell:
Let us consider the point P12(px, py) = (6.0, 5.0). It belongs to cluster C2, minimum
of cluster 2 is MIN2(minx, miny) = (5.0, 1.0). Point P12 is assigned to cell C (cx, cy),
computed as:

cx = Floor ((px −minx) /step) · step+minx = Floor ((6.0− 5.0) /1.5) · 1.5+5.0 = 5.0
cy = Floor ((py −miny) /step) · step+miny = Floor ((5.0− 1.0) /1.5) · 1.5+1.0 = 4.0

So point P12 is assigned to cell C (cx, cy) = (5.0, 4.0).

24

Proposed solution 25

px py cluster cx cx
P1 2 1 1 1 1
P2 1 2 1 1 1
P3 2 2 1 1 1
P4 2 3 1 1 2.5
P5 3 3 1 2.5 2.5
P6 3 5 1 2.5 4
P7 5 2 2 5 1
P8 5 5 2 5 4
P9 6 1 2 5 1
P10 6 2 2 5 1
P11 6 3 2 5 2.5
P12 6 5 2 5 4

Table 3.3: Assignement of points to cells: point (px, py) is assigned to the cell
identified by the point (cx, cy)

Figure 3.3: Assignement of points to cells (yellow and light blue sqares)

For each cell, the macropoint that represents all its points is computed as de-
scribed in the next example. Macropoints representing the cells can be found in
Table 3.5 and in Figure 3.4.

Example of macropoint computation:

25

Proposed solution 26

Let us consider again point P12(px, py) = (6.0, 5.0), assigned to cell C (cx, cy) =
(5.0, 4.0). Also point P8 = (5.0, 5.0) has been assigned to cell C, so the macropoint
associated to cell C must represent both point P8 and point P12. The macropoint
M (mx, my) computed for cell C is defined on each dimension as:

mx = 1
NC

∑
P∈C

px = 1
2
(5.0 + 6.0) = 5.5

my = 1
NC

∑
P∈C

py = 1
2
(5.0 + 5.0) = 5.0

So point P8 = (5.0, 5.0) and point P12 = (5.0, 6.0), both assigned to cell C = (5.0,
4.0), are represented by macropoint M (mx, my) = (5.5, 5.0). Since the represented
points are two, the weight of M is set to 2.0.

px py cluster cx cx mx my weight
P1 2 1 1 1 1 1.67 1.67 3
P2 1 2 1 1 1 1.67 1.67 3
P3 2 2 1 1 1 1.67 1.67 3
P4 2 3 1 1 2.5 2 3 1
P5 3 3 1 2.5 2.5 3 3 1
P6 3 5 1 2.5 4 3 5 1
P7 5 2 2 5 1 5.67 1.67 3
P8 5 5 2 5 4 5.5 5 2
P9 6 1 2 5 1 5.67 1.67 3
P10 6 2 2 5 1 5.67 1.67 3
P11 6 3 2 5 2.5 6 3 1
P12 6 5 2 5 4 5.5 5 2

Table 3.4: Cells and macropoints for each point: point (px, py) is assigned to the cell
identified by (cx, cy), and identified by the macropoint (mx, my) with weight weight

26

Proposed solution 27

Figure 3.4: Macropoints for cells in cluster 1 (yellow points) and cluster 2 (light blue
points)

The original two clusters were composed by twelve points, six in the first cluster
and six in the second one. Using a step of 1.5, cluster 1 has been divided into four
cells and cluster 2 into three cells. In this way, a representation of the original clusters
with a reduced cardinality is obtained: the weighted cluster 1 contains four weighted
macropoints, and the weighted cluster 2 contains three weighted macropoints, so the
total cardinality has been reduced from twelve to seven.

Result of the weighted clustering process is shown in the following table.

mx my weight weighted cluster
M1 1.67 1.67 3 1
M2 2 3 1 1
M3 3 3 1 1
M4 3 5 1 1
M5 5.67 1.67 3 2
M6 5.5 5 2 2
M7 6 3 1 2

Table 3.5: Resultant weighted clusters composed by weighted macropoints: macro-
point (mx, my) with weight with weight weight is assigned to the weighted cluster
weighted cluster

27

Proposed solution 28

3.2 Weighted silhouette

Most of the times clustering processes are applied without any knowledge about
the truth natural partitioning of the data set, so validation indices have a lot of
importance at the end of the process. After the division of the original data set in
clusters, these indices can be used to obtain information about the quality of the
clustering. Even when an optimal division in clusters is available, validation indices
can be useful to compare the quality of the obtained clustering with the quality of
the optimal one. Among all indices, the silhouette has been studied.

The time complexity of the silhouette index computation is quadratic in the
number of considered points [15]. It is time consuming and it does not scale well
when the number of data involved in the clustering is high. For Big Data the use of
the original version of the silhouette is not feasible. To solve this issue the weighted
clustering method previously described can be applied. Then a weighted version of
the silhouette index will operate on a reduced number of data, since the weighted
clustering reduced the cardinality.

The so-called weighted silhouette operates on a quantity of weighted data ob-
tained with the weighted clustering algorithm that is lower than the quantity of
original data. The aim is to solve the scalability issue.

This implementation of the weighted silhouette starts from an idea similar to the
one described in Section 2.2.2. Using the weighted clustering algorithm previously
presented (Section 3.1), a number of weighted clusters equal to the number of orig-
inal clusters is retrieved. The weighted clusters contain weighted macropoints that
represent the original objects and have a weight equal to the number of represented
objects. The number of macropoints in each cluster depends on the value of the
step but is generally lower than the original number of points in the cluster. These
clusters of weighted macropoints need to be evaluated.

Let us denote a single weighted macropoint with Mi, and its weight with wi. The
number of weighted clusters (i.e. clusters of weighted macropoints) is K, and the
set of all clusters is {C1, C2, ..., Ck, ..., CK} where Ck indicates the kth cluster, with
k = 1, 2, ..., K. Considering a weighted macropoint Mi with weight wi assigned to
the weighted cluster Ck, let Wk be the sum of all the weights of the macropoints
belonging to the same weighted cluster Ck:

Wk =
∑

Mk∈Ck

wk (3.4)

28

Proposed solution 29

where wk is the weight associated to macropoint Mk.
For the considered weighted macropoint Mi, the value of textita(Mi) is defined

as the average weighted distance between Mi and all the other macropoints Mk

belonging to the same cluster Ck:

a(Mi) =
1

Wk − 1

∑
Mk∈Ck

wk · d (Mi,Mk) (3.5)

where Wk is defined in Equation 3.4 and d(Mi, Mk) is computed as the Euclidean
Distance between Mi and Mk.

Let δ (Mi,Ml) be the average weighted distance betweenMi and any other macro-
point Ml belonging to another cluster Cl, with l = 1, 2, ..., K and l 6= k:

δ(Mi,Ml) =
1

Wl

∑
Ml∈Cl

wl · d(Mi,Ml) (3.6)

where Wl is the sum of the weights of macropoints belonging to cluster Cl, wl is
the weight of macropoint Ml and d(Mi, Ml) is the Euclidean Distance between Mi

and Ml.
For the macropointMi, b(Mi) is the smallest average weighted distance computed

between Mi and any other macropoint belonging to another cluster Cl 6= Ck:

b(Mi) =
K

min
l=1,l 6=k

δ(Mi,Ml) (3.7)

The weighted silhouette of the weighted macropoint Mi is finally defined as:

S(Mi) =
b(Mi)− a(Mi)

max(a(Mi), b(Mi))
(3.8)

While the weighted silhouette index which gives information about the quality
of a single cluster of weighted macropoints is:

SILk =

0, if (Nk = 1 AND weight = 1)
1
Nk

∑
Mi∈Ck

S(Mi), otherwise (3.9)

where Ck is the considered weighted cluster and Nk is the number of macropoints
in Ck. Note that the SILk is 0 if the weighted cluster Ck contains only one macropoint
and the weight of this macropoint is 1.

29

Proposed solution 30

Finally the weighted silhouette index which gives information about the quality
of the whole weighted clustering is defined as:

SIL =

0, if (ND = 1 AND weight = 1)
1
ND

∑
Mi∈D

S(Mi), otherwise (3.10)

where D is the set containing all the macropoints computed during the weighted
clustering process and ND is the quantity of these macropoints. Note that the SIL is
0 if the set D contains only one macropoint and the weight of this macropoint is 1.
The case ND < 0 is not considered as it corresponds to an empty set of macropoints.

As described in Section 3.1, the weight assigned to each macropoint is equal to
the number of original objects represented by the macropoint. One macropoint is
computed for each cell, and a cell is created only if there are objects in the covered
area. From these considerations it is clear that math1 ≤ weight ≤ ND, where ND is
the number of objects in the original data set. So the value of Wk, being obtained
as a sum of weight, will never be less than 1. In the case of only one considered
macropoint and weight of this macropoint equal to 1, Wk would be equal to 1 but
the weighted silhouette is set to 0 by definition without performing any previous
operation. It is clear that the division by Wk-1 in Equation 3.5 is always safe.

30

Proposed solution 31

3.2.1 Weighted silhouette pseudocode

Algorithm 5 Weighted Silhouette

Input: the result of the weighted clustering process: the set of weighted
clusters wClusters

Output: the silhouettes computed for each single macropoint, for each single
weighted cluster and for the whole set of macropoints
1: wClusters; . The collection of weighted clusters
2: datasetSumWeights = 0;
3: datasetSumSilhouettes = 0;
4: For each weighted cluster, compute the weighted silhouette of all its

macropoints and the average weighted silhouette of the weighted cluster:
5: for wCluster in wClusters do
6: macropoints = wCluster.macropoints;
7: clusterSumWeights = 0;
8: clusterSumSilhouettes = 0;
9: if macropoints.size == 1 AND m.weight == 1 then

10: datasetSumWeights += 1;
11: datasetSumSilhouettes += 0;
12: Average weighted silhouette of the weighted cluster:
13: S(wCluster) = 0;
14: else
15: for m in macropoints do
16: A(m) = computeA(m, wCluster)
17: B(m) = computeB(m, wCluster, wClusters);
18: Weighted silhouette of the macropoint:
19: S(m) = computeS(A(m), B(m));
20: clusterSumWeights += m.weight;
21: clusterSumSilhouettes += S(m) * m.weight;
22: datasetSumWeights += m.weight;
23: datasetSumSilhouettes += S(m) * m.weight;

24: Average weighted silhouette of the weighted cluster:
25: S(wCluster) = clusterSumSilhouettes / clusterSumWeights;

26: Average weighted silhouette of the whole set of weighted macropoints:
27: SIL = datasetSumSilhouettes / datasetSumWeights;

=0

31

Proposed solution 32

Algorithm 6 computeA

Input: macropoint m and its weightedCluster wCluster
Output: A(m)

1: macropoints = wCluster.macropoints;
2: sumWeights = 0;
3: sumFactors = 0;
4: for macropoint in macropoints do
5: sumWeights += macropoint.weight
6: if NOT(macropoint.equals(m)) then
7: factor = macropoint.weight*EuclideanDistance(m, macropoint);
8: sumFactors += factor;
9: A(m) = sumFactors / (sumWeights - 1);

10: return A(m);

Algorithm 7 computeB

Input: macropoint m, its weighted cluster wCluster_m, all the weighted
clusters wClusters

Output: B(m)
1: for wCluster_i in wClusters do
2: if NOT(wCluster_i.equals(wCluster_m)) then
3: sumWeights = 0;
4: sumFactors = 0;
5: macropoints = wCluster_i.macropoints;
6: for macropoint_i in macropoints do
7: sumWeights += macropoint_i.weight;
8: factor = macropoint_i.weight*EuclideanDistance(m, macropoint_i);
9: sumFactors += factor;

10: dissimilarities.add(sumFactors / sumWeights);

11: B(m) = MIN(dissimilarities);
12: return B(m);

32

Proposed solution 33

Algorithm 8 computeS

Input: A(m), B(m)
Output: S (m)

1: if A(m) < B(m) then
2: S(m) = 1 - A(m)/B(m);
3: else if A(m) > B(m) then
4: S(m) = B(m)/A(m) - 1;
5: else
6: S(m) = 0;

7: return S(m);

Weighted silhouette algorithm

Starting from the set of weighted macropoints already partitioned into weighted
clusters wClusters (line 1), for each weighted cluster the weighted silhouette of all
its macropoints and the average weighted silhouette of the cluster are computed as
follows. Variables datasetSumWeights and datasetSumSilhouettes (lines 2 and 3) are
used as accumulators for the sum of the weights of all macropoints and the sum of
the weighted silhouettes of all macropoints. They will be used to compute the av-
erage weighted silhouette of the whole set as an average of the weighted silhouettes
computed for all the macropoints. For each weighted cluster wCluster, the macrop-
oints belonging to wCluster are retrieved (line 6). Variables clusterSumWeights and
clusterSumSilhouettes (lines 7 and 8) are used as accumulators for the sum of the
weights and the sum of the weighted silhouettes of wCluster ’s macropoints. They
will be used to compute the average weighted silhouette of wCluster as an average
of the weighted silhouettes of all its macropoints. If the number of macropoints
in wCluster is equal to 1, and the weight of this only macropoint m is equal to 1
(line 9), the weighted silhouette of wCluster is set to 0 without computing any other
parameter (line 13). Else, for each macropoint m of the considered weighted clus-
ter wCluster the values of A and B are retrieved, and the weighted silhouette S is
computed (lines 16, 17 and 18, explanation in next algorithms). Given the weighted
silhouettes of all the macropoints of the considered weighted cluster wCluster, the
average weighted silhouette of wCluster is computed (line 25). Given the weighted
silhouettes of all the macropoints of all clusters, the average weighted silhouette of
the whole set is computed (line 27).

33

Proposed solution 34

ComputeA algorithm Starting from a macropoint m and its weighted cluster

wCluster, the value of A is computed for the macropoint m. The macropoints
belonging to wCluster are retrieved (line 1). Variables sumWeights and sumFactors
are used as accumulators for the sum of the weights of all the macropoints in wCluster
and the sum of the weighted distances between m and all the other macropoints in
wCluster. For each macropoint in wCluster different from the considered macropoint
m (line 6) the weighted distance from m is computed using the Euclidean Distance
(line 7). Given all these weighted distances the A parameter is computed as their
weighted average (line 9).

ComputeB algorithm Starting from a macropoint m, its weighted cluster

wCluster_m and the list of all weighted clusters wClusters, the value of B is com-
puted for m. For each weighted cluster in the list, if it is different from wCluster_m
(line 2), the weighted distances between m and all the macropoints of the weighted
cluster are computed. Variables sumWeights and sumFactors (lines 3 and 4) are
used, for each weighted cluster different from wCluster_m, as accumulators for the
sum of the weights of all the macropoints in the cluster and the sum of the weighted
distances between m and all the macropoints in the other cluster. The macropoints
belonging to the cluster are retrieved (line 5), and for each one of them the weighted
distance from m is computed using the Euclidean Distance (line 8). The dissim-
ilarity between m and the macropoints of the cluster is retrieved as the weighted
average of the computed weighted distances (line 10). Given the dissimilarities be-
tween the considered macropoint m and all the weighted clusters different from its
cluster, the value of B is the minimum of these dissimilarities (line 11).

ComputeS algorithm Starting from values of A and B for a macropoint m,

the value of the silhouette S is computed for m following the definition:

S(m) =


1− A(m)/B(m), if A(m) < B(m)

0, if A(m) = B(m)

1− B(m)/A(m), if A(m) > B(m)

(3.11)

3.2.2 Weighted silhouette example

Let us consider again the clustered objects used for the weighted clustering exam-
ple, displayed in Figure 3.1. The weighted macropoints that represent the original

34

Proposed solution 35

objects, partitioned in two clusters, are displayed in Table 3.6 and in Figure 3.5.

mx my weight weighted cluster
M1 1.67 1.67 3 1
M2 2 3 1 1
M3 3 3 1 1
M4 3 5 1 1
M5 5.67 1.67 3 2
M6 5.5 5 2 2
M7 6 3 1 2

Table 3.6: Set of weighted macropoints divided in two weighted clusters: macropoint
(mx, my) with weight weight belongs to the weighted cluster weighted cluster

Figure 3.5: Set of weighted macropoints divided in weighted cluster 1 (yellow points)
and 2 (light blue points)

The weighted silhouette computed on these weighted clusters should have the
same value as the silhouette computed on the clusters of standard objects (i.e.
objects without weights) obtained as follows: for each weighted macropoint Mi with
coordinates (mx, my) and weight wi, a number equal to wi of standard objects

35

Proposed solution 36

should be considered, all of them with coordinates (mx, my). Table 3.7 lists these
correspondent points.

px py cluster
P1 1.67 1.67 1
P2 1.67 1.67 1
P3 1.67 1.67 1
P4 2 3 1
P5 3 3 1
P6 3 5 1
P7 5.67 1.67 2
P8 5.67 1.67 2
P9 5.67 1.67 2
P10 5.5 5 2
P11 5.5 5 2
P12 6 3 2

Table 3.7: Standard points corresponding to the macropoints

As described in Section 2.1.1, the silhouette on the standard clusters is computed
for each point Pi as follows:

a (Pi) =
1

Nk−1
∑

Pk∈Ck

d (Pi,Pk)

b (Pi) =
K

min
l=1,l 6=k

1
Nl

∑
Pl∈Cl

d (Pi,Pl)

S (Pi) =
b(Pi)−a(Pi)

max(a(Pi),b(Pi))

While the silhouette of the whole data set, which evaluates the quality of the entire
clustering is computed as:

SIL = 1
ND

∑
Pi∈D

S(Pi)

In Table 3.8 the silhouette values computed for all the standard points are listed.

36

Proposed solution 37

px py cluster silhouette
P1 1.67 1.67 1 0.6924893048173986
P2 1.67 1.67 1 0.6924893048173986
P3 1.67 1.67 1 0.6924893048173986
P4 2 3 1 0.629138760543797
P5 3 3 1 0.4348668651717875
P6 3 5 1 0.15965091377204932
P7 5.67 1.67 2 0.5833763013920013
P8 5.67 1.67 2 0.5833763013920013
P9 5.67 1.67 2 0.5833763013920013
P10 5.5 5 2 0.41993424213309505
P11 5.5 5 2 0.41993424213309505
P12 6 3 2 0.5916055721594646

Table 3.8: Values of the silhouettes computed for the standard points: point (px,
py) belonging to cluster cluster has a silhoutte index of silhouette

The resultant silhouettes is the average between all the silhouettes of single
points: SIL = 0.540227284545124.

The weighted silhouette is computed for each weighted macropoint Mi as de-
scribed in Section 3.2:

a (Mi) =
1

Wk−1
∑

Mk∈Ck

wk · d (Mi,Mk)

b (Mi) =
K

min
l=1,l 6=k

1
Wl

∑
Ml∈Cl

wl · d (Mi,Ml)

S (Mi) =
b(Mi)−a(Mi)

max(a(Mi),b(Mi))

The weighted silhouette of the whole set of weighted macropoints, which evaluates
the quality of the weighted clustering is:

SILweighted =
1
ND

∑
Mi∈D

S (Mi)

The weighted silhouette values of weighted macropoints are listed in the following
table.

37

Proposed solution 38

mx my weight weighted cluster weighted silhouette
M1 1.67 1.67 3 1 0.6924893048173986
M2 2 3 1 1 0.629138760543797
M3 3 3 1 1 0.4348668651717875
M4 3 5 1 1 0.15965091377204932
M5 5.67 1.67 3 2 0.5833763013920013
M6 5.5 5 2 2 0.41993424213309505
M7 6 3 1 2 0.5916055721594645

Table 3.9: Values of the weighted silhouettes computed for the weighted macrop-
oints: macropoint (mx, my) belonging to weighted cluster weighted cluster has a
weighted silhoutte index of weighted silhouette

The resultant weighted silhouette is the average between all the weighted silhou-
ettes of the macropoints: wSIL = 0.5402272845451239.

As desired, wSIL = SIL.

38

Proposed solution 39

3.3 Weighted clustering modification

The weighted silhouette results obtained were in some cases not as good as expected.
Observations about the standard deviation of points in cells, that represents their
dispersion, lead to the conclusion that these bad results were caused by too dense
macropoints. In case of high values of step, the obtained cells are large and macro-
points weights are high. As shown in the example in Section 3.2.2, a macropoint
M (mx, my) with weight wM corresponds exactly, in the weighted silhouette compu-
tation, to a number wM of standard points (i.e. not weighted points or points with
weight = 1) with coordinates (mx, my). If a cell is large and contains a lot of scat-
tered points, the representation of all of them in one single point, the macropoint
M (mx, my), is too dense. This leads to values of weighted silhouette higher than
the silhouette computed on starting points, and for big values of step the distance
between the weighted silhouette and the desired silhouette is not acceptable. In
order to solve this issue, a secondary partition using a lower value of step is applied
on cells with high standard deviation and high cardinality.

In order to select the cells to be divided a second time, a percentage value of
the standard deviation of points in the cell is considered. For each cell, during
the computation of its macropoint, the standard deviation of represented points is
retrieved on each dimension. An array with the standard deviation values computed
on all the coordinates is associated to each macropoint and it represents the amount
of variation (dispersion) of the set of points represented by the macropoint. For
each macropoint also the minimum and the maximum values on all the coordinates
are computed and used to obtain the range of variation. This range is then used
to calculate the percentage value of the standard deviation, that is finally used to
decide if a cell has to be splitted or not.

The process of selection and split of the cells with an high percentage of standard
deviation is the following. Let M be the macropoint that represents a cell C. The
cell C contains the points {P1, P2, ..., Pi, ..., PNC}, where NC is the number of
points in cell C, and P i is the ith point belonging to cell C. The points represented
by the macropoint have N dimensions corresponding to the considered features of
initial data, so a generic point is defined as Pi(pi1, pi2, ..., pij, ..., piN), with j = 1, 2,
..., N, where N is the number of coordinates and pij is the value of the of point Pi on
the jth coordinate. A macropoint M represents a certain number of points and have
the same N dimensions of the represented points, with the additional information
of the weight. It is defined as M (m1, m2, ..., mj, ..., mN), with j = 1, 2, ..., N, where
N is the number of coordinates and mj is the value of the macropoint M on the

39

Proposed solution 40

jth coordinate. The weight of M is wM and it is set to the number of represented
original points.

Three vectors need to be defined for each cell C : one for the minimums, one for
the maximums and one for the standard deviations. Then a vector with the ranges
of variations on each dimension is derived from the minimums and maximums.
Let MIN = [min1, min2, ..., minj, ..., minN] be the vector with the minimums for
cell C. The value of minj is computed on each dimension j = 1, 2, ..., N as:

minj = min
Pi∈C

pij (3.12)

where pij is the value of point Pi ∈ C on the jth coordinate, and C is the con-
sidered cell. The same is the defined for the vector of the maximums of cell C on
each dimensions: MAX = [max1, max2, ..., maxj, ..., maxN]. The value of maxj is
computed for each dimension j as:

maxj = max
Pi∈C

pij (3.13)

The range of variation defined as RANGE = [range1, range2, ..., rangej, ...,
rangeN] is obtained on each dimension j as:

rangej = maxj −minj (3.14)

For the standard deviations vector STDDEV = [stddev1, stddev2, ..., stddevj,
..., stddevN], first the value of the arithmetic average meanj is computed on each
dimension j = 1, 2, ..., N :

meanj =
1

NC

∑
Pi∈C

pij (3.15)

where NC is the number of points in cell C, pij is the jth coordinate of point
Pi ∈ C, and C is the considered cell.
Then, the variance variancej is obtained for each dimension j as:

variancej =
1

NC

∑
Pi∈C

(pij −meanj)
2 (3.16)

40

Proposed solution 41

where meanj is the mean computed for cell C on the jth dimension. Finally, the
standard deviations vector for cell C, defined as STDDEV = [stddev1, stddev2, ...,
stddevj, ..., stddevN], is retrieved on each dimension j as:

stddevj =
√

variancej (3.17)

where variancej is the variance computed on the jth coordinate for the considered
cell C. For each cell, the value of the range of variation rangej and the value of the
standard deviation stddevj have been computed on each dimension j = 1, 2, ..., N. A
vector PERCSTDDEV = [percStddev1, percStddev2, ..., percStddevj, ..., percStddevN]
is used to contain the percentages of the standard deviation compared to the range
of variation. The percStddevj is defined on each dimension j as:

percStddevj =
stddevj · 100

rangej
(3.18)

Given this value, the idea is to select all the cells with at least one value of
percStddevj greater than a certain threshold thPercStddev. These cells are defined
cells to be splitted.

The value of thPercStddev can be set according to the desired precision. The
application of the algorithm with a low value of threshold will lead to a more pre-
cise representation of the original clustering (i.e. the weighted silhouette computed
on it will be closer to the desired value). A trade-off between the quality of the
obtained result and the reduction of the cardinality has to be considered. If the
value of the threshold thPercStddev is low, a lot of cells will be splitted granting
a weighted clustering more similar to the original clustering; in this case a large
number of macropoints will be computed and so the representation will be more
precise, but the reduction of the cardinality will be lower. On the other side, if the
value of thPercStddev is high, less cells will be splitted granting a lower number of
macropoints, improving the reduction of the cardinality but worsening the preci-
sion. A more precise discussion about the choice of the threshold can be found in a
dedicated section (4.4.2).

The selection of all the cells with a value of percStddevj greater than the threshold
thPercStddev for at least one dimension j, as shown in the next sections, led to the
split of some unnecessary cells. As said before, the problematic cells are the ones with
a large size and a lot of scattered points inside. The dispersion of points has been
measured with the standard deviation. When a cell contains a low number of points,

41

Proposed solution 42

even if the dispersion of its points is high (i.e. the percentage of standard deviation
computed for the cell is greater than the threshold), the split is not necessary. To
solve this issue another check is performed on each cell in order to decide if it has
to be splitted. The percentage of represented points of the cell compared to the
number of points of its cluster is computed for each cell (note that thisi is done once
for each cell, not for each dimension of the cell). This percentage for a cell C is
defined as percRepresentedPointsC:

percRepresentedPointsC =
NC · 100

Nk
(3.19)

where NC is the number of points in the cell C, i.e. the number of points rep-
resented by the macropoint M associated to cell C, also equal to the weight of
M ; Nk is the number of points contained in the original cluster Ck, which is the
clusters the cell belongs to. When percRepresentedPointsC is greater to a certain
threshold thPercRepresentedPoints, the cell C is selected. The value of the thresh-
old thPercRepresentedPoints has to be set in a way to grant that cells containing a
low number of points are not splitted. A more precise discussion about the choice
of this threshold will be presented in the section dedicated to the thresholds.

The conditions on percStddev and on percRepresentedPoints are used together.
Given the thresholds thPercStddev and thPercRepresentedPoints the condition to
choose if a cell C has to be splitted or not is the following:

1: N = number of dimensions;
2: toBeSplitted_stddev = FALSE;
3: toBeSplitted = FALSE;
4: for j ← 0 to N-1 do
5: if percStddevj > thPercStddev then
6: toBeSplitted_stddev = TRUE;
7: break;
8: if toBeSplitted_stddev = TRUE then
9: if percRepresentedPointsC > thPercRepresentedPoints then

10: toBeSplitted = TRUE;

Once selected the cells to be splitted, the points inside them are reassigned to
new smaller cells. The original cells had size step on each dimension. The new
cells need a size proportional to the previous one and to the standard deviation.
The standard deviation of a cell represents the amount of variation of the set of
points contained in the cell. The more this value is high, the more the new sub-cells

42

Proposed solution 43

need to be small. An array with the standard deviation values computed on all the
coordinates is associated to each macropoint and represents the dispersion of the
points represented by the macropoint. All the point belonging to a cell selected to be
splitted are reassigned to new cells with a size equal to newStep, with newStep<step.
In order to define the newStep value, first the maximum value of standard deviation
is computed for each cell among all dimensions j = 1, 2, ..., N :

maxPercStddevC =
N

max
j=1

percStddevj (3.20)

where N is the number of dimensions and percStddevj is the value of percentage
standard deviation computed for the considered cell C on dimension j.
Given thismaxPercStddevC value, a newStep is computed for a cell C ∈ cellsToBeSplitted
as newStepC:

newStepC = step− step ·maxPercStddevC
100

(3.21)

Note that the value newStepC is computed for a single cell C and so different cells
have different values of newStep based on the dispersion of their points, represented
by their percentage of standard deviation. In this way cells with a lot of scattered
points are divided into smaller new cells (i.e. the higher is the maximum percentage
of standard deviation of C, the smaller is the value of newStepC).

Considering one cluster at a time, the points belonging to the cellsToBeSplitted
selected for the cluster are reassigned to new smaller cells using the newStep value.
The points belonging to the other cells remain assigned to them. The reassignment
of points is performed in the following way. Let Ck be the considered cluster of
points. The set of points belonging to Ck and to all the cells of Ck selected as to be
splitted is called points to be remapped. All points in this set will be partitioned into
new smaller cells. The starting point of this partition into new cells is the minimum
of the set points to be remapped computed on each dimension j = 1, 2, ..., N. The
minimum value computed on the jth coordinate among all the points to be remapped
of the considered cluster CK is newMinj:

newMinj = min
C∈cellsToBeSplitted

Pi∈C

pij (3.22)

where C ∈ cellsToBeSplitted indicates cells in cluster Ck selected to be splitted;
Pi ∈ C indicates points belonging to cells in cluster Ck selected to be splitted; pij is

43

Proposed solution 44

the value of the jth coordinate of point Pi.
A point Pi(pi1, pi2, ..., pij, ..., piN) belonging to the considered cluster CK and

to the cell to be splitted C, is assigned to the new cell identified by the point
newC (newc1, newc2, ..., newcj, ..., newcN), where newcj is computed for each di-
mension j = 1, 2, ..., N as:

newcj = Floor
(
pij − newMinj
newStepC

)
· newStepC + newMinj (3.23)

where pij is the jth coordinate of point Pi, newStepC is the value of newStep
computed for cell C (Equation 4.7), and newMinj is the minimum value computed
on the jth coordinate among all the points to be remapped of the considered cluster
CK (Equation 3.22). In this way each new cell, as for old cells, is identified by a point
which contains on each coordinate the minimum value of the cell’s points computed
on that coordinate (Equation 3.23).

After assigning each point to a new cell, the new representative points (macro-
points) are computed. For each new cell the new macropoint newM is defined,
as for previous cells, as the average value on each dimension computed on all the
points belonging to cell newC. Let NnewC be the number of points in cell newC. All
these points are represented by the macropoint newM (newm1, newm2, ..., newmj,
..., newmN), where newmj is computed for each dimension j as:

newmj =
1

NnewC

∑
Pi∈newC

pij (3.24)

where Pi ∈ newC indicates a point Pi belonging to the new cell identified by the
point newC, and pij is the jth coordinate of point Pi. Being NnewC the number of
points in cell newC represented by the macropoint newM, the weight of newM is
set to NnewC. The macropoint newM remains assigned to the cluster Ck.

The new clusters contain all the macropoints of the old cells not selected to be
splitted, and all the new macropoints of the new cells obtained from the points to be
remapped. In this way, the points belonging to cluster Ck that where assigned to one
of the cells selected to be splitted have been divided in a number of new cells greater
than the number of old cells. The more the points of the old cells were dispersed,
the more the new cells are small. The result is that for critical areas the number of
macropoints is higher and the weighted clustering is more precise. It is clear that
applying this modification, the cardinality of the new weighted clusters is higher
than the cardinality obtained without the secondary split. As demonstrate in the

44

Proposed solution 45

next sections, a little increase in the number of macropoints allows a considerable
improvement in the weighted silhouette results for the new weighted clusters.

3.3.1 Weighted clustering modification pseudocode

Algorithm 9 Weighted Clustering Modification

Input: the original clustering: the set clusters which contains clusters of
points; the value of step

Output: the result of weighted clustering process: the set weightedClusters
which contains clusters of weighted macropoints
1: clusters; . Clusters of points
2: weightedClusters = {}; . Set of computed weighted clusters
3: For each cluster, compute the cells, the weighted macropoints, and the weighted

cluster corresponding to the considered cluster:
4: for cluster in clusters do
5: weightedCluster = {}; . Weighted cluster corresponding to the cluster
6: clusterPoints = cluster.points;
7: Compute the minimum value between cluster points on each dimension:
8: min = computeMin(clusterPoints);
9: step = args.step; . Step from command line arguments

10: For each point of the cluster, compute the cell:
11: for point in clusterPoints do
12: Compute the value of the cell for the point on each coordinate:
13: cell = computeCell(point, min, step);
14: Add the point to the set of points belonging to the computed cell:
15: cell.points.add(point)

16: cells; . All computed cells
17: For each cell, retrieve the value of the macropoint on each dimension and

set its weight:
18: for cell in cells do
19: cellPoints = cell.points;
20: cell.macropoint = computeAverage(cellPoints);
21: cell.macropoint.weight = cellPoints.size;
22: For each cell, compute the percStddev on each dimension and the

percRepresentedPoints:
23: for cell in cells do

45

Proposed solution 46

24: Compute the minimum and the maximum values on each dimension:
25: cellPoints = cell.points;
26: cell.min = computeMin(cellPoints);
27: cell.max = computeMax(cellPoints);
28: Retrieve the range of variation:
29: cell.range = computeRange(cell.min, cell.max);
30: Compute the standard deviation values on each dimension:
31: cellStddev = computeStddev(cellPoints);
32: Compute the percentage of standard deviation on each dimension:
33: cell.percStddev = computePercStddev(cell.stddev, cell.range);
34: Compute the percentage of represented points of the cell:
35: cell.percRepresentedPoints = cellPoints.size*100/clusterPoints.size;

36: Retrieved the thresholds values from command line arguments:
37: thPercStddev = args.thPercStddev;
38: thPercRepresentedPoints = args.thPercRepresentedPoints;
39: Select the cells to be splitted:
40: for cell in cells do
41: if isCellToBeSplitted(cell.percStddev, thPercStddev,

cell.percRepresentedPoints, thPercRepresentedPoints) == TRUE then
42: cellsToBeSplitted.add(cell)
43: else
44: cellsNotToBeSplitted.add(cell)

45: Compute the minimum on each dimension among all the points in cells to
be splitted:

46: pointsToBeRemapped = cellsToBeSplitted.points;
47: newMin = computeMin(pointsToBeRemapped);
48: Compute the newStep for each cell to be splitted:
49: for cell in cellsToBeSplitted do
50: cell.newStep = computeNewStep(step, cell.percStddev);

51: For each point to be remapped, compute the new cell:
52: for point in pointsToBeRemapped do
53: oldCell; . Old cell to which the point previously belonged to
54: newCell = computeCell(point, newMin, oldCell.newStep);
55: newCell.points.add(point);

56: newCells; . All new computed cells
57: For each newCell, retrieve the value of the new macropoint on each

46

Proposed solution 47

dimension and set its weight:
58: for newCell in newCells do
59: newCellPoints = newCell.points;
60: newCell.macropoint = computeAverage(newCellPoints);
61: newCell.macropoint.weight = newCellPoints.size;
62: Add the old and the new macropoints to the weighted cluster:
63: for cell in cellsNotToBeSplitted do
64: weightedCluster.add(cell.macropoint);

65: for newCell in newCells do
66: weightedCluster.add(newCell.macropoint);

67: Add the computed weighted cluster to the resultant weightedClusters:
68: weightedClusters.add(weightedCluster);

69: return weightedClusters;

Algorithm 10 computeMax

Input: original points of a cell: cellPoints
Output: maximum value max among all cellPoints computed on each

dimension
1: N = number of dimensions;
2: for i ← 0 to N-1 do
3: maxi = MINVALUE;
4: for point in cellPoints do
5: for i ← 0 to N-1 do
6: if pointi > maxi then
7: maxi = pointi
8: return max;

Algorithm 11 computeRange

Input: min and max of the cell on each dimension
Output: range of variation of the cell on each dimension

1: N = number of dimensions;
2: for i ← 0 to N-1 do

47

Proposed solution 48

3: rangei = maxi - mini;
4: return range;

Algorithm 12 computeStddev

Input: original points of a cell cellPoints
Output: standard deviation value stddev between all cellPoints computed on

each dimension
1: N = number of dimensions;
2: Arithmetic mean between all the points of the cell on each dimension:
3: mean = computeAverage(cellPoints);
4: for i ← 0 to N-1 do
5: for point in cellPoints do
6: factor(point)i = (meani-pointi)2

7: factorsi.add(factor(point)i);

8: variancei = average(factorsi)
9: stddevi = sqrt(variancei)

10: return stddev;

Algorithm 13 computePercStddev

Input: standard deviation cellStddev and range cellRange on each dimension
for a cell

Output: cellPercStddev on each dimension for the cell
1: N = number of dimensions;
2: for i ← 0 to N-1 do
3: cellPercStddevi = cellStddevi * 100 / cellRangei;

4: return cellPercStddev;

Algorithm 14 isCellToBeSplitted

Input: data about a cell: percStddev on each dimension and
percRepresentedPoints ; thresholds: thPercStddev and thPercRepresentedPoints

Output: toBeSplitted = TRUE if the cell has to be splitted, FALSE if not

48

Proposed solution 49

1: toBeSplitted_stddev = FALSE;
2: toBeSplitted = FALSE;
3: N = number of dimensions;
4: for i ← 0 to N-1 do
5: if percStddevj > thPercStddev then
6: toBeSplitted_stddev = TRUE;
7: break;
8: if toBeSplitted_stddev = TRUE then
9: if percRepresentedPoints > thPercRepresentedPoints then

10: toBeSplitted = TRUE;
11: return toBeSplitted;

Algorithm 15 computeNewStep

Input: The old step, the cellPercStddev of the cell on each dimension
Output: newStep value computed for the cell

1: maxCellPercStddev = maximum(cellPercStddev); . Maximum value among all
the dimensions

2: newStep = step-(step*maxCellPercStddev/100);
3: return newStep;

Weighted Clustering Modification algorithm

The weighted clustering process starts from a set of points already partitioned
into clusters: clusters (line 1). For each cluster, the correspondent weighted cluster
weightedCluster is retrieved as follows. The original points of the considered cluster
are extracted (line 6), and the minimum among all these points is computed on
each dimension (line 8) using the computeMin function (Algorithm 2 in Section
3.1.1). In line 9 the step value is retrieved from command line arguments. For each
point of the considered cluster, the identifier of the cell the point has to be assigned
to, is computed on each dimension (line 13) with the logic presented in function
computeCell (Algorithm 3 in Section 3.1.1). Given the values of the identifier of the
cell on all dimensions, the considered point is added to the set of points belonging
to that cell (line 15). At the end of this process, cells containing original points
have been obtained (line 16). For each one of these cells, the coordinates of the
correspondent macropoint are computed as the average of the values of all the points

49

Proposed solution 50

belonging to the cell on that coordinate (line 20) using function computeAverage
(Algorithm 4 in 3.1.1). The weight of the macropoint is set to the number of points
belonging to the cell represented by the macropoint (line 21).

From here, the modification is applied. For each cell, the percStddev and the
percRepresentedPoints are computed. To do that, the minimum, the maximum, the
range and the standard deviation are computed among the points of the cell on each
dimension (lines 26-31) using the corresponding functions: computeMin (Algorithm
2), computeMax (10), computeRange (11) and computeStddev (12). Given these
values, the percentage of standard deviation compared to the range of variation of
points in the cell percStddev is computed on each dimension (line 33, Algorithm
13). The percentage of represented points compared to the number of points in the
cluster percRepresentedPoints is computed for the cell (line 35). Retrieved these
percentages, they are used to decide for each cell if it has to be splitted. The
thresholds thPercStddev and thPercRepresentedPoints are retrieved from command
line arguments (lines 37 and 38). Given these values, for each cell it is chosen if it
has to be splitted or not (line 41) with the logic presented in Algorithm 14. If yes,
it is added to the cellsToBeSplitted set, else it is added to the cellsNotToBeSplitted
set. All the points belonging to all the cells selected as to be splitted are put in
the set pointsToBeRemapped (line 46). For these points the remapping process is
applied as following. The minimum newMin among all these points is computed on
each dimension (line 47, Algorithm 2). The value of the newStep is computed for
each cell (line 50, Algorithm 15). Each point selected as point to be remapped is
assigned to a newCell using the newStep of its old cell and starting from the newMin
(line 54) computed with Algorithm 3. The point is then added to the set of points
assigned to the newCell (line 55). The set of all the computed new cells is defined
newCells (line 56). For each one of these cells, the coordinates of the correspondent
macropoint are computed as the average of the values of all the points belonging
to the cell on that coordinate (line 60). The average is retrieved with Algorithm 4.
The weight of the macropoint is set to the number of points belonging to the cell
represented by the macropoint (line 61).

Finally the macropoints of the old cells selected as cellsNotToBeSplitted and the
new macropoints of the newCells computed for the current cluster are added to the
correspondent weightedCluster (line 64 and 66), and the weightedCluster is added
to the list of weightedClusters (line 68). The list of weightedClusters is the result of
the weighted clustering process.

50

Proposed solution 51

3.3.2 Weighted clustering modification example

A graphical explanation of how points are assigned to cells has been previously
presented (in Section 3.1.2). During that process, the points already divided into
clusters have been divided into cells. Each cell has its representative macropoint that
represents all the points contained in the cell. This resultant condition is shown in
Table 3.10 and in Figure 3.6, considering only cluster 1.

px py cluster cx cx mx my weight
P1 2 1 1 1 1 1.67 1.67 3
P2 1 2 1 1 1 1.67 1.67 3
P3 2 2 1 1 1 1.67 1.67 3
P4 2 3 1 1 2.5 2 3 1
P5 3 3 1 2.5 2.5 3 3 1
P6 3 5 1 2.5 4 3 5 1

Table 3.10: Cells and macropoints for cluster 1: point (px, py) is assigned to the
cell identified by (cx, cy), and represented by the macropoint (mx, my) with weight
weight

Figure 3.6: Cells and macropoints for cluster 1

51

Proposed solution 52

In order to apply the modified weighted clustering described in Section 3.3, the
minimums, maximums, ranges and standard deviations have to be computed for
each cell on each dimension.

In the following lines an example of computation of these values is presented.
Let us consider the cell C1(cx, cy) = (1.0, 1.0). This cell contains the points P1 =
(2.0, 1.0), P2 = (1.0, 2.0) and P3 = (2.0, 2.0). The dimensions are x and y, and the
minimum is computed on each dimension as:

minx = min
Pi∈C1

pix = min(2.0, 1.0, 2.0) = 1.0

miny = min
Pi∈C1

piy = min(1.0, 2.0, 2.0) = 1.0

The maximum is computed on each dimension as:

maxx = max
Pi∈C1

pix = max (2.0, 1.0, 2.0) = 2.0

maxy = max
Pi∈C1

piy = max (1.0, 2.0, 2.0) = 2.0

The range of variation on each coordinate is:

rangex = maxx −minx = 2.0 - 1.0 = 1.0
rangey = maxy −miny = 2.0 - 1.0 = 1.0

For the standard deviation, first the arithmetic average is calculated on each dimen-
sion:

meanx = 1
NC1

∑
Pi∈C1

pix = 1
3
(2.0 + 1.0 + 2.0) = 1.67

meany = 1
C

∑
Pi∈C

piy = 1
3
(1.0 + 2.0 + 2.0) = 1.67

Then the variance is computed on each coordinate:

variancex = 1
NC1

∑
Pi∈C1

(pix −meanx)
2 = 1

3

(
(2.0− 1.67)2 + (1.0− 1.67)2 + (2.0− 1.67)2

)
= 0.22
variancey = 1

NC1

∑
Pi∈C1

(piy −meany)
2 = 1

3

(
(1.0− 1.67)2 + (2.0− 1.67)2 + (2.0− 1.67)2

)

52

Proposed solution 53

= 0.22

Finally the standard deviation is retrieved:

stddevx =
√
variancex =

√
0.22 = 0.47

stddevy =
√

variancey =
√
0.22 = 0.47

Values of minimums, maximums, ranges and standard deviations on each dimensions
for cells of cluster 1 are reported in the following table.

cx cy cluster minx miny maxx maxy rangex rangey stddevx stddevy
C1 1 1 1 1 1 2 2 1 1 0.47 0.47
C2 1 2.5 1 2 3 2 3 0 0 0 0
C3 2.5 2.5 1 3 4 3 4 0 0 0 0
C4 2.5 4 1 3 5 3 5 0 0 0 0

Table 3.11: Minimums, maximums, ranges and standard deviations on each dimen-
sion computed for cluster 1 cells

The percentage of standard deviation compared to the range for cell C1 is re-
trieved on each dimension:

percStddevx = stddevx·100
rangex

= 0.47·100
1.0

= 47.0%

percStddevy =
stddevy·100

rangey
= 0.47·100

1.0
= 47.0%

The maximum percentage of standard deviation maxPercStddevC1 for the cell C1 is
47.0%

Let the threshold thPercStddev be equal to 15.0. For simplicity, the thPercRepre-
sentedPoints will not be considered in this example. The only cell selected to be
splitted is C1, since the maxPercStddev for the other cells are equal to 0. The points
to be remapped are all the points in C1: P1, P2 and P3.

The minimum of the set pointsToBeRemapped, which is the starting point for the

53

Proposed solution 54

division in new cells, is retrieved on each coordinate:

newminx = min
Pi∈pointsToBeRemapped

pix = min(2.0, 1.0, 2.0) = 1.0

newminy = min
Pi∈pointsToBeRemapped

piy = min(1.0, 2.0, 2.0) = 1.0

Table 3.12 and Figure 3.7 show the minimum computed on each dimension among
all the points to be remapped.

newminx newminy cluster
newMIN 1 1 1

Table 3.12: Minimum on each dimension among points of the set pointsTo-
BeRemapped selected for cluster 1

Figure 3.7: Minimum among points of the set pointsToBeRemapped selected for
cluster 1 (brown point)

The newStep value is computed for the cell C1 as:

54

Proposed solution 55

newStepC1 = step− step·maxPercStddevC1
100

= 1.5− 1.5·47.0
100

= 0.79

Given this value each point to be remapped is assigned to a new cell with the same
process used for original weighted clustering.

An example of assignment of a point to a new cell is reported in the following
lines. Let us consider the point P1(p1x, p1y) = (2.0, 1.0). The value of newStepC1

is 0.79. Point P1 belongs to the set pointsToBeRemapped, minimum of this set is
newMIN (newminx, newminy) = (1.0, 1.0).
Point P1 is assigned to the new cell newC (newcx, newcy), computed as:

newcx = Floor((p1x − newMinx)/newStepC1) · newStepC1 + newMinx = Floor((2.0−
1.0)/0.79) · 0.79 + 1.0 = 1.79
newcy = Floor((p1y − newMiny)/newStepC1) · newStepC1 + newMiny = Floor((1.0−
1.0)/0.79) · 0.79 + 1.0 = 1.0

So point P1 is reassigned to cell newC (newcx, newcy) = (1.79, 1.0).

The division in new cells using newStepC1 and the assignment of each point to the
new computed cell are shown in Table 3.13 and in Figure 3.8.

px py cluster newminx newminy newcx newcx
P1 2 1 1 1 1 1.79 1.0
P2 1 2 1 1 1 1.0 1.79
P3 2 2 1 1 1 1.79 1.79

Table 3.13: New cells: point (px, py) is reassigned to the cell identified by (newcx,
newcy)

55

Proposed solution 56

Figure 3.8: Partition of points to be remapped into new cells

Finally, the macropoints are computed for the new cells.
Example of macropoint computation: let us consider the new cell newC (newcx,

newcy) = (1.79, 1.0). Point P1 = (2.0, 1.0) is the only one assigned to cell newC,
so the macropoint associated to newC must represent only point P1. The new
macropoint newM for cell newC is calculated on each dimension as:

newmx = 1
NnewC

∑
Pi∈newC

pix = 1
1
(2.0) = 2.0

newmy = 1
NnewC

∑
Pi∈newC

piy = 1
1
(1.0) = 1.0

Point P1 = (2.0, 1.0) assigned to cell newC = (1.79, 1.0) is represented by macropoint
newM = (2.0, 1.0). Since the represented point is only one, the weight of newM is
set to weightnewM = 1.0.

The macropoints representing the new cells are shown in Table 3.14 and in Figure
3.9.

56

Proposed solution 57

px py cluster newcx newcx newmx newmy weight
P1 2 1 1 1.79 1 2 1 1
P2 1 2 1 1 1.79 1 2 1
P3 2 2 1 1.79 1.79 2 2 1

Table 3.14: New cells and new macropoints: point (px, py) is reassigned to the cell
identified by (newcx, newcy), and represented by the macropoint (newmx, newmy)
with weight weight

Figure 3.9: New cells (orange square) and new macropoints (brown points)

The original cell C1 contained three points. Using the modification of weighted
clustering, with a computed newStep of 0.79, cell C1 has been divided into three
new cells. Cluster 1 was intially divided into four cells and now it is divided into
six cells: three new and three old ones. In this way, a more precise representation
of the original cluster is obtained.

57

Chapter 4

Experiments

58

Experiments 59

4.1 Input data sets

For the experiments a number of different data sets with different shapes and car-
dinalities have been used. All of them contain two-dimensional data: they can be
considered as sets of points in a plane, each point identified by two numerical coor-
dinates. Some data sets have been generated using Python library sklearn.datasets
[16]: functions make_blobs and make_moons have been used to generate data sets
with blobs and moons shapes. Since these data sets were not clustered, the K-means
algorithm has been used to partition them into clusters. The K-means belongs to
the clustering algorithms based on partition, it is known to be concise, efficient and
fast [17]. It requires the user to give a value of K (the number of clusters to be
identified), which was not a problem in this work since the data sets were generated
by us using K=3 for Blobs and K=2 for Moons. Examples of data sets with these
two shapes and with number of points set to 10000 for both of them can be seen in
Figure 4.1 and in Figure 4.2. The data have been clustered using a Spark version
of the K-means algorithm (the Java library org.apache.spark.ml.clustering.KMeans,
[9]). In all the following figures, different colors correspond to different clusters.

Figure 4.1: Blobs dataset with 10000 points

Figure 4.2: Moons dataset with 10000 points

59

Experiments 60

For further experiments, some already clustered data sets with more complex
shapes have been used, taken from the project Clustering Benchmarks (available at
https://github.com/deric/clustering-benchmark/). This project contains a collection
of clustered data sets that can be found in the literature. Most of them are artificially
created. In particular, the artificial shapes Complex8, Complex9, Compound and
Cure-t1-2000n-2d were chosen. They are displayed in the following images.

Figure 4.3: Complex8 data set with 2551 points

Figure 4.4: Complex9 data set with 3031 points

60

Experiments 61

Figure 4.5: Compound data set with 399 points

Figure 4.6: Cure-t1-2000n-2d data set with 2000 points

For other kinds of experiments some randomly clustered data sets have been
used: starting from the data contained in some of the previous presented data sets,
a process of random partition into clusters was applied. This process simply consists
in the random assignment of each record to a cluster, given the number of clusters
in which the data have to be partitioned, as shown in the following code.

61

Experiments 62

Algorithm 16 Random assignment of points to clusters

Input: points to be clustered; number K of clusters to be created
Output: the assignment of each point to one of the K clusters

1: points; . Set of points to be clustered
2: K; . Number of clusters to be created
3: Assign each point to a randomly chosen cluster:
4: for point in points do
5: Generate a random number between 0 and K-1:
6: clusterNum = randomNumber(0,K-1);
7: Assign the point to the randomly chosen cluster:
8: point.cluster = clusterNum;

Example of the obtained random generated clusters are shown in the following
figures for the data sets Blobs and Complex8.

Figure 4.7: An example of Blobs data randomly assigned to three clusters

Figure 4.8: An example of Complex 8 data randomly assigned to eight clusters

62

Experiments 63

4.2 Random competitors

The aim of the weighted clustering algorithm presented in this thesis work is to
reduce the cardinality of a set of clustered data without loosing the most important
characteristics of the data. This is done through the representation of a number
of records using only one representative record, that tries to summarize all their
characteristics. This process allows to obtain a new set of clustered data with a
reduced cardinality, which makes operations on it simpler and faster.

Since no works with the same aim have been found, some artificial competitors
have been created. The results obtained using these competitors have been compared
with the results given by our weighted clustering. In order to reduce the cardinality
of a set of clustered data, the easiest approach is to randomly select a number of
data from each cluster, lower than the number of data originally in the cluster. This
has been applied in two different ways. Both the solutions require the knowledge
of the number of clusters, which is not a problem because our process starts from
already clustered data.

The first approach, called random strategy 0, consists in the random selection
of a number of points from each cluster, where the number of selected points from
a certain cluster depends from the original number of points of the cluster. The
information about the number of data contained in each cluster is requested, which
again is not a problem since the process operates directly on the clusters of data.
The total quantity of points to be randomly selected is given by the user: it has to
be set to values lower than the original cardinality of the entire dataset in order to
reduce the cardinality. If the cardinality needs to be reduced a lot, a smaller value
of this parameter is chosen. Given this value, the number of points to be randomly
selected from each cluster is computed proportionally to the number of points in the
considered cluster, as shown in Equation 4.1.

numRandomPoints0Ck =
totNumRandomPoints · numPointsCk

totNumPoints
(4.1)

where Ck is the considered cluster; numRandomPoints0Ck is the number of points
to be randomly selected from cluster Ck using strategy 0; totNumRandomPoints is
the total number of points to be randomly selected, given by the user; numPointsCk

is the original number of points contained in cluster Ck; totNumPoints is the original
total number of points of the data set.

When a point is selected from a cluster, it keeps the information about its cluster.
In this way the new clusters of randomly selected points with reduced cardinality,

63

Experiments 64

called startegy 0 random clusters, are the clusters composed by the randomly selected
points.

The second solution does not consider the cardinality of the single clusters: the
total number of data to be selected is simply divided by the number of clusters; a
number of points equal to the result of this division is selected randomly from each
cluster, as described in Equation 4.2.

numRandomPoints1Ck =
totNumRandomPoints

numClusters
(4.2)

where Ck is the considered cluster; numRandomPoints1Ck is the number of points
to be randomly selected from cluster Ck using strategy 1 (this value is the same for
each cluster); totNumRandomPoints is the total number of points to be randomly
selected, given by the user; numClusters is the number of clusters.

Each randomly selected point keeps the information about its cluster. So, as
for strategy 0, the new clusters with reduced cardinality called startegy 1 random
clusters are simply the clusters of randomly selected points.

Examples of random clusters obtained using strategies 0 and 1 are reported in
the following figures. The starting data set was the Complex 8 (Figure 4.3), the
number of points to be randomly selected was set to 500 (while the original data set
cardinality was 2551), and the number of clusters was set to 8 (equal to the number
of original clusters).

Figure 4.9: Clusters of 500 randomly selected points for data set Complex 8 obtained
using strategy 0

64

Experiments 65

Figure 4.10: Clusters of 500 randomly selected points for data set Complex 8 ob-
tained using strategy 1

It is evident that using strategy 0, where the number of random points of each
cluster depends from the size of the considered cluster, larger numbers are used to
represent larger clusters. On the other side, in strategy 1 the same number of points
is selected for each cluster. For small clusters the number of randomly selected
points is close to the number of original points, while for large clusters the number
of representative points is dramatically smaller than the quantity of original points.

65

Experiments 66

4.3 Main experiments

Defined the weighted clustering and the weighted silhouette processes, experiments
have been performed to evaluate their results. The silhouette index has been used
to compare the quality of the original clustering, measured with the silhouette index
applied on the original data, with the quality of the weighted clustering, measured
with the weighted silhouette index applied on the weighted data. Also silhouettes
indices computed on the set of random selected data obtained with strategies 0 and
1 have been considered. To summarize, the comparison has been performed between
silhouettes computed in four different ways:

• the silhouette index calculated on the whole original clustering (i.e. the start-
ing set of points that has been previously clustered with some clustering algo-
rithm); this is the desired silhouette value
• the weighted version of the silhouette index computed on the weighted clus-

tering (i.e. the set of weighted macropoints partitioned in clusters, obtained
through the application of the weighted clustering algorithm on the original
clusters)
• the average of Niterations silhouette indices computed on the sets of random

clusters obtained applying strategy 0 Niterations times on the original clusters
(i.e. the sets of points randomly selected from each cluster using strategy 0)
• the average of Niterations silhouette indices computed on the sets of random

clusters obtained applying strategy 1 Niterations times on the original clusters
(i.e. the sets of points randomly selected from each cluster using strategy 1)

The number of points considered in the first case is simply the total number of
points in all the clusters of the original clustering. The number of macropoints
considered in the case of weighted silhouette applied on weighted clustering depends
on the value of the parameter step: the higher the step, the lower the number of
macropoints. The number of points randomly selected to create random clusters can
be set by the user. In order to compare the weighted silhouette with the silhouettes
on random clusters, the total number of points to be randomly selected during the
application of random strategy 0 or 1 has been set to the number of macropoints
obtained with the weighted clustering. In this way, qualities of partitions in clusters
with the same cardinality are compared. In weighted clustering the cardinality
of the original clustering is reduced dividing into cells and representing each cell
with a macropoint. In random cases the cardinality is reduced choosing randomly
the requested number of points, using strategy 0 or 1 to choose how many points

66

Experiments 67

to select from each cluster. Remember that in strategy 0 the number of points
randomly selected from a cluster is a fraction of the total number of points to be
selected that is proportional to the number of points in the cluster. In strategy 1 the
number of points randomly chosen from a cluster is a fraction of the total number
of points equal for all clusters (i.e. the total number of points is simply divided by
the number of clusters).

The silhouette index on the original set of clusters is computed and this result is
the desired value of silhouette. Considering a set of clusters with reduced cardinality
(i.e. obtained applying weighted clustering or random strategies on the original
clustering), if its silhouette index is close to the desired value of silhouette it means
that the considered clustering is a good representation of the original clustering.
Given two sets of clusters with reduced cardinality, the one with the silhouette
nearest to the desired value is the one that best represents the original clustered
data.

A number of weighted clusterings is retrieved using different values of step. In
these experiments 12 different weighted clusterings have been considered, obtained
with 12 different values of step. Each value of step corresponds to a certain number
of obtained macropoints. Let ND be the number of points in the original data
set. Values of step are chosen in order to obtain quantities of macropoints equal
to fractions of ND that cover the interval between ND/1.5 (cardinality reduced by a
1/1.5 factor) and ND/150 (cardinality reduced by a 1/150 factor).

The random selection of points from clusters is performed on the original clus-
ters using strategies 0 and 1 with a number of points to be selected equal to the
number of macropoints obtained with the weighted clustering. The silhouette index
is applied on these sets of random clusters. Since the points are selected randomly,
the results are fortuitous and the silhouette index on a set of random clusters can
randomly be close the desired value of silhouette or far from it. For this reason, the
random selection of points is applied Niterations times for each number of points to be
selected. In this way, Niterations sets of random clusters are generated, and the silhou-
ette index is calculated on each one of them. The final value of silhouette that will
be compared with the desired and the weighted silhouettes is the arithmetic mean
between the Niterations silhouette indices. This is done both for strategies 0 and 1.
The Niterations parameter can be set by the user, and in the following experiments
will always be set to 10.

To sum up, the results that have been compared are: the silhouette index on the

67

Experiments 68

original clustering, the weighted silhouette index on the weighted clustering with a
certain step, the mean of Niterations silhouette indices computed on Niterations sets of
random clusters obtained using strategy 0 with a number of points to be randomly
selected equal to the number of macropoints, and the mean of Niterations silhouette
indexes computed on Niterations sets of random clusters obtained using strategy 1
with number of points equal to the number of macropoints. This comparison has
been done for each data set for different values of step in order to consider different
factors of cardinality reduction. Clearly the desired silhouette (i.e. the silhouette
index calculated on the original partition in clusters) does not depend on the step
so is a constant.

The quality of the original clustering is evaluated by the silhouette on the original
data (i.e. the desired silhouette), while the quality of the weighted clustering is
evaluated by the weighted silhouette. The goodness of the weighted clustering as a
representation of the original clustering with a reduced cardinality can be measured
as the distance between the weighted silhouette and the desired silhouette. The
lower is this distance, the better the weighted clustering represents the original.

In the same way, the quality of a single set of random clusters (i.e. clusters of
random selected points) is represented by the silhouette computed on it, and the
goodness of the random clusters as a representation of the original clusters with a
reduced cardinality is indicated by the distance between the silhouette on the set
of random clusters and the silhouette on original data. Comparisons have been
made both considering one silhouette computed on one set of random clusters and
considering the mean of 10 silhouettes computed on 10 different sets of random
clusters. Of course the second case, being an average of 10 results obtained on 10
sets of clusters, does not represent an existing set of clusters. So the distance between
this average silhouette and the desired silhouette does not indicate the quality of
a real representation. So if the goal is to obtain a representation of the clustering
with a reduced cardinality, random strategies are not so useful.

Finally, some minor experiments have been performed to study special situations
encountered for some data sets. They are described in the next sections, where
experiments and results are reported for each data set.

68

Experiments 69

4.4 Blobs data set experiments and results

4.4.1 Silhouettes results

The data set with Blobs displayed in Figure 4.1 of Section 4.1 is considered. It
has been generated using a Python library and then clustered with the K-means
algorithm.

The original number of points in this data set is ND = 10000. This cardinality has
been chosen because it m sil thakcomputaee shof theoution ette index still feasible.
Since the time complexity of the silhouette is quadratic in the number of data, for
higher cardinalities the index takes too long to be retrieved. Twelve different step
values has been considered, chosen in order to have numbers of macropoints covering
the interval [ND/1.5, ND/150]. For example, the application of weighted clustering
on the Blobs data set using a step of 0.03 gives a number of macropoints equal to
6694, which is the 1/1.49 of 10000. The weighted silhouette computed on weighted
clustering obtained with this value of step is compared to the silhouette of the
original clustering and to the averages of the silhouettes on random clusters obtained
with strategies 0 and 1 with number of points set to 6694. The distance between the
desired silhouette and the weighted silhouette indicates the quality of the weighted
clustering as a representation of the original clustering with a cardinality reduced
from 10000 to 6694.

The following values of step are used, covering the interval of number of macro-
points between 52 and 6694. In Table 4.1 correspondences step - obtained number
of macropoints are displayed, while in Figure 4.11 comparisons between obtained
number of macropoints and original number of points are reported for each step
value. Of course, the original number of points is a constant.

69

Experiments 70

step numMacropoints
0.03 6694
0.04 5329
0.05 4211
0.07 2822
0.1 1730
0.15 953
0.2 607
0.3 315
0.4 203
0.5 141
0.7 78
0.9 52

Table 4.1: Number of macropoints obtained for Blobs data set using the weighted
clustering algorithm, depending on the value of step

Figure 4.11: Comparison between original number of points (numPoints) and num-
ber of macropoints (numMacropoints) obtained applying weighted clustering on
Blobs data set with different steps

Using these values of step, the silhouette on the original data, the weighted sil-
houette on the result of the weighted clustering process, the average of silhouettes on
random clusters obtained with strategy 0, and the average of silhouettes on random
clusters obtained with strategy 1 are computed for each step. These silhouettes are

70

Experiments 71

compared in Figure 4.12. The weighted silhouette is computed on the result of the
weighted clustering presented in Section 3.1, without the modifications described in
Section 3.3. Remember that average silhouettes on results of both random strate-
gies 0 and 1 are obtained as an average of 10 silhouettes computed on 10 results
of random clusters. It is reasonable to compare the weighted silhouette result with
only one silhouette calculated on one set of random clusters. In figures 4.13 and
4.14, the worst cases (minimum and maximum) among the computed silhouettes on
results of random strategies are shown separately for strategy 0 and strategy 1.

Notice that for this particular data set strategies 0 and 1 are the same, since the
number of points is equally distributed between the three clusters of the Blobs data
set. Silhouettes on these sets of random clusters are slightly different because the
selection of points is random.

Figure 4.12: Silhouette on the original data (silhouette), weighted silhouette on
weighted clustering (weighted silhouette), average silhouette on random clusters
strategy 0 (avg silhouette 0), and average silhouette on random clusters strategy
1 (avg silhouette 1)

71

Experiments 72

Figure 4.13: Details of the worst cases (min silhouette 0 and max silhouette 0) of
silhouettes on random clusters strategy 0

Figure 4.14: Details of the worst cases (min silhouette 1 and max silhouette 1) of
silhouettes on random clusters strategy 1

In any case, both for the weighted clustering and for the random strategies, the
quality of the representation decreases (i.e. the silhouette results are more distant
from the desired value) with the increase of the step value. This clearly happens
because an increase of the step means a reduction of the number of macropoints or
random selected points that represent the initial points. The worsening for greater
steps is terrific for weighted clustering, that for higher values results to be even
worse than random strategies.

72

Experiments 73

Comparing the weighted silhouette result with only one silhouette computed on
only one set of random clusters, weighted clustering (whose quality is measured by
the weighted silhouette) results for most of the steps better than random strategies
worst cases, as shown in Figure 4.13 and in Figure 4.14. So the quality of a single
representation obtained using a random approach is lower than the average silhou-
ette of random strategies results. For higher steps the weighted silhouette is even
more distant from the desired value than the worst case of silhouette on random
clusters. For lower steps, the average of the silhouettes computed on results of ran-
dom strategies may be more similar to the desired silhouette, but this average does
not represent the quality of any clustering. If the goal is to produce a representa-
tion of the original clustering with a reduced cardinality, the weighted clustering is
generally better than the random methods.

For high values of step the weighted silhouette rises up, increasing the distance
from the desired silhouette. As already said, the increase of this distance is caused
by the decrease in the number of macropoints that represent the original points.
The rise of the weighted silhouette for high values of step has been studied.

The idea was that probably these bad results were caused by too dense macro-
points. In case of high values of step, the obtained cells are large and if the cell
contains a lot of points the weight of its macropoint will be high as well. A macro-
point M (mx, my) with weight wM corresponds exactly, in the weighted silhouette
computation, to a number wM of not weighted points with coordinates (mx, my).
If a cell contains a lot of scattered points, the representation of all of them in the
single macropoint M (mx, my) is too dense. This leads to an increase of the cohe-
sion, the measure of how similar an object is to its own cluster. As a result, the
weighted silhouette takes higher values than the silhouette computed on starting
data. For big values of step the distance of the weighted silhouette from the desired
silhouette is not acceptable, being greater than the distance of the silhouette on
random strategies results. In order to solve this issue, a secondary partition of cells
with large size and high standard deviation is applied, using a lower value of step.
This process has been described in the section dedicated to the weighted clustering
modification (Section 3.3) and requires the values of two thresholds. In the next
section these threshold are studied and possible choices of values are presented.

73

Experiments 74

4.4.2 Thresholds

The modification of weighted clustering process, described in Section 3.3, tries to
solve the issues caused by too dense macropoints. In order to apply this process the
value of two thresholds need to be decided: thPercStddev and thPercRepresented-
Points.

Percentage of standard deviation

During the weighted clustering process, after the division of a cluster into cells, the
range of variation rangej and the standard deviation stddevj are computed for each
cell on each dimension j = 1, 2, ..., N where N is the number of dimensions (2 in
our experiments). The range indicates the maximum variation of the points of the
considered cell on the considered coordinate. The standard deviation on a certain
dimension represents the variations of points values on that dimension compared
to the value of the macropoint on that dimension. Remember that the macropoint
represents the points of a cell and it is computed on each coordinate as an average
of the points values on that coordinate. Given these values, the percentages of
standard deviation compared to the range of variation percStddevj are defined on
each dimension j as:

percStddevj =
stddevj · 100

rangej
(4.3)

For each j, percStddevj is compared with the threshold thPercStddev, and the cell
is selected as cell to be splitted if at least one of them is greater than the threshold.

The value of thPercStddev has to be set in a way to select critical cells: cells with
high number of points and high dispersion of these points. To do that, some data
has been collected for different values of the threshold. The thPercStddev has been
set to {15, 20, 25, 30, 40, 50}, and the following information have been collected:

• number of cells selected to be splitted

– for each cluster: numCellsToBeSplitted
– for the entire clustering: totNumCellsToBeSplitted (sum of numCell-

sToBeSplitted of all clusters)

• percentage of cells selected to be splitted

– for each cluster: percCellsToBeSplitted = numCellsToBeSplitted · 100 /
numCells

74

Experiments 75

– for the entire clustering: totPercCellsToBeSplitted = totNumCellsToBe-
Splitted · 100 / totNumCells

– average: avgPercCellsToBeSplitted (average of percCellsToBeSplitted of
all clusters)

Numbers of cells to be splitted for cluster 1 and for the whole data set using
thPercStddev = {15, 20, 25, 30, 40, 50} are shown in Figure 4.15 for cluster 1 and
Figure 4.16 for the data set. Information about other clusters are not reported
because in the Blobs case the points are equally distributed between three clusters
with the exact same shape, so other clusters are totally similar to cluster 1.

Figure 4.15: Numbers of cells to be splitted obtained for cluster 1 with thPercStddev
= {15, 20, 25, 30, 40, 50}. NumCellsToBeSplittedx indicates the number of cells
selected to be splitted using thPercStddev = x

75

Experiments 76

Figure 4.16: Numbers of cells to be splitted for the entire data set using thPercStddev
= {15, 20, 25, 30, 40, 50}. TotNumCellsToBeSplittedx indicates the number of cells
selected to be splitted using thPercStddev = x

Using thPercStddev = 50 the quantity of cells to be splitted is almost zero for
all steps, so this threshold will not be considered. For all threshold values, for lower
steps the number of cells selected results to be higher, but it is important to con-
sider that for lower steps the total number of cells is greater. For this reason the
percentage of cells to be splitted has been considered instead of the number of cells
to be splitted.

Percentages of cells to be splitted for cluster 1, obtained as numCellsToBeSplitted-
cluster1 · 100 / numCellscluster1, and for the entire clustering, obtained as totNumCell-
sToBeSplitted · 100 / totNumCells, computed for each value of step are shown in the
next images (4.17 and 4.18). In Figure 4.19 the average percentage for the whole
clustering is displayed, computed as the average of the percentages of all clusters.

76

Experiments 77

Figure 4.17: Percentage of cells to be splitted for cluster 1:
percCellsToBeSplittedcluster1 = numCellsToBeSplittedcluster1 · 100 / numCellscluster1.
PercCellsToBeSplittedx indicates the percentage obtained using thPercStddev = x

Figure 4.18: Percentage of cells to be splitted for the entire clustering: totPercCell-
sToBeSplitted = totNumCellsToBeSplitted · 100 / totNumCells. TotPercCellsToBe-
Splittedx indicates the percentage obtained using thPercStddev = x

77

Experiments 78

Figure 4.19: Average of percCellsToBeSplitted among all clusters: avgPercCell-
sToBeSplitted. AvgPercCellsToBeSplittedx indicates the average obtained using th-
PercStddev = x

It is clear that thPercStddev = {30, 40, 50} are not good choices: as already
said, the value 50 leads almost always to empty sets of cells to be splitted; 30 and
40 are not good since our purpose is to split more cells for higher values of step,
when cells are bigger and the situation starts to be critical. So the candidates for
thPercStddev are values {15, 20, 25}.

Let us consider the lowest of the possible values: thPercStddev = 15. In the
following figures, some further charts are reported to highlight how do the number
of macropoints and the value of the weighted silhouette change using the modified
weighted clustering with this threshold. In Figure 4.20 the number of macropoints
obtained with the normal weighted clustering and the one obtained with the mod-
ification are compared. In the modification only the threshold thPercStddev = 15
is considered. In a similar way, in Figure 4.21 the value of the weighted silhouette
computed on the normal weighted clustering result and the value computed on the
modified weighted clustering result are compared.

78

Experiments 79

Figure 4.20: Number of macropoints obtained with the normal weighted cluster-
ing (numMacropoints) and with the modified weighted clustering (numMacrop-
oints_mod). In the modification only the threshold thPercStddev = 15 is considered.

Figure 4.21: Weighted silhouette computed on the normal weighted clustering result
(weighted silhouette) and on the modified weighted clustering result(weighted silhou-
ette mod). In the modification only the threshold thPercStddev = 15 is considered.

Looking at the first chart it is evident that the number of macropoints obtained
with the modification is too high for low values of step, where an increase in this
number is not really needed. For these low values the obtained weighted silhouettes
are similar enough to the desired one, so the number of macropoints should ideally
be the same as the one obtained without the modification. About the second figure

79

Experiments 80

it can be noticed that for lower steps the weighted silhouettes with and without
the modification are almost the same, confirming the fact that the increase in the
number of macropoints with the modification is not useful. For higher steps the
weighted silhouette on the modified weighted clustering is much better than the
normal one (i.e. the weighted silhouette on it is much more similar to the desired
value of silhouette). Even if for high step values the number of macropoints is only
slightly higher in the modified version, the improving in the quality is clearly huge.
To solve the issue of the useless increase in the number of macropoints for low steps,
a new threshold is introduced.

The thPercStddev threshold is used to select the cells with an high standard
deviation. This means that the points in the selected cell are scattered. The se-
lection using only thPercStddev does not consider number of points contained in
cells. As said before, the worsening of the weighted clustering representation arise
when the obtained cells are large and contain a lot of scattered points. The variety
of points in a cell is measured with the percStddev, and using thPercStddev if its
points have an high standard deviation the cell is selected. Since a cell is critical
if its points are scattered and if it contains a lot of points, the number of points
contained in the cell has to be considered as well. For this purpose, the threshold
thPercRepresentedPoints is introduced.

Percentage of represented points

During the weighted clustering process, as already explained, the percentages of
standard deviation compared to the range of variation percStddevj is computed for
each cell on each dimension j. After this computation, the percRepresentedPoints is
retrieved for each cell. This value is not dimensional, for each cell only one value of
percRepresentedPoints is computed. The definition of percRepresentedPoints for a
cell C belonging to cluster K is:

percRepresentedPointsC =
NC · 100

Nk
(4.4)

where NC is the number of points in the considered cell C and Nk is the total
number of points in cluster K.

Considering a cell, its percStddevj for each dimension j and its percRepresented-
Points have been computed. The percStddevj on each dimension is compared with
the threshold thPercStddev, and the cell is selected as possible cell to be splitted if
at least one of them is greater than the threshold. The percRepresentedPoints is

80

Experiments 81

compared with the threshold thPercRepresentedPoints, and the cell is selected as cell
to be splitted if the previous condition was satisfied and its percRepresentedPoints
results greater than thPercRepresentedPoints.

Other data has been collected in order to choose thresholds values. The thresh-
old thPercStddev has been set to the values selected before: {15, 20, 25}; while
thPercRepresentedPoints has been set to {2, 4, 5, 10}. The collected data are the
same as before:

• number of cells selected to be splitted

– for each cluster
– for the entire clustering

• percentage of cells selected to be splitted

– for each cluster
– for the entire clustering
– average among all clusters

Numbers of cells to be splitted for cluster 1 and for the entire data set using
thPercStddev set to {15, 20, 25} and thPercRepresentedPoints set to {2, 4, 5, 10}
are represented in the following figures. As before, information about other clusters
are not reported because they are totally similar to cluster 1.

81

Experiments 82

Figure 4.22: Numbers of cells to be splitted for cluster 1 using thPercStddev = {15,
20, 25} and thPercRepresentedPoints = {2, 4, 5, 10}. NumCellsToBeSplittedx_y
indicates the number obtained using thPercStddev = x and thPercRepresentedPoints
= y

Figure 4.23: Numbers of cells to be splitted for the entire data set using thPerc-
Stddev = {15, 20, 25} and thPercRepresentedPoints = {2, 4, 5, 10}. TotNum-
CellsToBeSplittedx_y indicates the number obtained using thPercStddev = x and
thPercRepresentedPoints = y

82

Experiments 83

Since the total number of cells is greater for lower steps and the number of cells
selected to be splitted is affected by this, the percentage of cells to be splitted has
been considered.

Percentages of cells to be splitted for cluster 1, obtained as numCellsToBeSplitted-
cluster1 · 100 / numCellscluster1 are shown in Figure 4.29. Percentages for the entire
clustering totNumCellsToBeSplitted · 100 / totNumCells are displayed in Figure
4.30. Finally, in Figure 4.31 the average of the percentages of all clusters is repre-
sented.

Figure 4.24: Percentage of cells to be splitted for cluster 1:
percCellsToBeSplittedcluster1 = numCellsToBeSplittedcluster1 · 100 / numCellscluster1.
PercCellsToBeSplittedx_y indicates the percentage obtained using thPercStddev =
x and thPercRepresentedPoints = y

83

Experiments 84

Figure 4.25: Percentage of cells to be splitted for the entire clustering: totPerc-
CellsToBeSplitted = totNumCellsToBeSplitted · 100 / totNumCells. TotPercCell-
sToBeSplittedx_y indicates the percentage obtained using thPercStddev = x and
thPercRepresentedPoints = y

Figure 4.26: Average of percCellsToBeSplitted among all clusters: avgPercCell-
sToBeSplitted. AvgPercCellsToBeSplittedx_y indicates the average obtained using
thPercStddev = x and thPercRepresentedPoints = y

84

Experiments 85

It can be noticed that for all thresholds values the percentage of cells to be
splitted grows up for higher steps. This is good because the worsening of the results
happens for high values of step.

The use of both thPercStddev and thPercRepresentedPoints allows the selection
of cells with an high number of points and an high standard deviation, i.e. the
quantity of points in the selected cell is large and these points are scattered. This is
the situation that leads to the increase of weighted silhouette values, since all these
scattered points are represented in one single macropoint with an high weight. The
obtained clusters of macropoints result to have a cohesion factor much higher than
the original one, leading to bad results of silhouette. This condition becomes worse
as the step assumes greater values, because the resultant cells are larger. The split
of an higher number of cells for higher values of step can solve this problem.

For the choice of thresholds values, the silhouettes graphs need to be considered
together with the percCellsToBeSplitted graphs. From Figure 4.12 that displays
values of silhouette, weighted silhouette and average of the random silhouettes, it is
clear that the worsening of the weighted silhouette starts from step values between
0.2 and 0.3. Value of thresholds such as thPercStddev = 15 and thPercRepresented-
Points = 4 can be used, since they cause a percentage of cells to be splitted greater
than 0 starting from step values around 0.3. Performing the same analysis on other
data sets, same values of thresholds results to be a good choice.

Looking at the previous figures, it can be easily noticed that, considering both
the thresholds, the trend is only slightly influenced by the thPercStddev value. Since
for the same value of thPercRepresentedPoints we have almost the same trend for
any values of thPercStddev, the thPercRepresentedPoints seems to have a way more
impact than the other threshold. It can be useful to show the charts about numbers
and percentages of cells to be splitted considering only the thPercRepresentedPoints
threshold (i.e. setting the other threshold to 0). These charts are reported in the
following figures.

85

Experiments 86

Figure 4.27: Numbers of cells to be splitted for cluster 1 using thPercStddev = 0
and thPercRepresentedPoints = {2, 4, 5, 10}. NumCellsToBeSplitted0_y indicates
the number obtained using thPercStddev = 0 and thPercRepresentedPoints = y

Figure 4.28: Numbers of cells to be splitted for the entire data set using thPercStddev
= 0 and thPercRepresentedPoints = {2, 4, 5, 10}. TotNumCellsToBeSplitted0_y
indicates the number obtained using thPercStddev = 0 and thPercRepresentedPoints
= y

86

Experiments 87

Figure 4.29: Percentage of cells to be splitted for cluster 1:
percCellsToBeSplittedcluster1 = numCellsToBeSplittedcluster1 · 100 / numCellscluster1.
PercCellsToBeSplitted0_y indicates the percentage obtained using thPercStddev =
0 and thPercRepresentedPoints = y

87

Experiments 88

Figure 4.30: Percentage of cells to be splitted for the entire clustering: totPerc-
CellsToBeSplitted = totNumCellsToBeSplitted · 100 / totNumCells. TotPercCell-
sToBeSplitted0_y indicates the percentage obtained using thPercStddev = 0 and
thPercRepresentedPoints = y

Figure 4.31: Average of percCellsToBeSplitted among all clusters: avgPercCell-
sToBeSplitted. AvgPercCellsToBeSplitted0_y indicates the average obtained using
thPercStddev = 0 and thPercRepresentedPoints = y

88

Experiments 89

Let us consider thPercStddev = 4. Some further charts are reported in the
following, in order to highlight the changes in number of macropoints and in the
value of the weighted silhouette using the modified weighted clustering with this
threshold. In Figure 4.32 the number of macropoints obtained with the normal
weighted clustering and the one obtained with the modification are compared. In
Figure 4.33 the value of the weighted silhouette computed on the normal weighted
clustering result and the value computed on the modified weighted clustering result
are compared. In the modification only the threshold thPercRepresentedPoints = 4
is considered.

Figure 4.32: Number of macropoints obtained with the normal weighted cluster-
ing (numMacropoints) and with the modified weighted clustering (numMacrop-
oints_mod). In the modification only the threshold thPercRepresentedPoints =
4 is considered.

89

Experiments 90

Figure 4.33: Weighted silhouette computed on the normal weighted clustering re-
sult (weighted silhouette) and on the modified weighted clustering result(weighted
silhouette mod). In the modification only the threshold thPercRepresentedPoints =
4 is considered.

As expected, the trends are totally similar to the previous ones, so the thPercStd-
dev threshold seems to be useless. It is necessary to say that the apparent uselessness
of the threshold has been noticed only for this particular data set and for these val-
ues of step. For time reasons no more studies on this topic have been done. It has
to be noticed that the aim of the thPercStddev in the weighted clustering algorithm
is to detect the sparsity of points in cells, while the thPercRepresentedPoints is used
to detect the cells with an high number of points. Using only the second threshold
would mean miss the check on the sparsity. Moreover, the standard deviation shold
be computed anyway because it is used in the calculation of the newStep, so the
execution time of the algorithm would be only slightly reduced by the elimination
of the thPercStddev. In future studies, if this threshold would be discovered to be
not necessary, a different way to compute the newStep could be defined in order to
totally avoid the computation of the standard deviation. In this way, the execution
time of the weighted clustering algorithm would be reduced by a significant factor.

4.4.3 Silhouettes results on weighted clustering modification

As in Section 4.4.1, the Blobs data set clustered using K-means algorithm is consid-
ered (reported in Figure 4.1 of Section 4.1).

The weighted silhouette computed on the modification of the weighted clustering
algorithm result is used to evaluate the quality of this algorithm. The chosen step

90

Experiments 91

values are the same used in Section 4.4.1, but using the modified weighted cluster-
ing the number of obtained macropoints is greater because some cells are splitted.
Remember that the cells selected using the thresholds are then splitted using a new
value of step: the newStep. This new value is computed for each cell C as:

newStepC = step− step ·maxPercStddevC
100

(4.5)

where step is the original value received as input parameter, maxPercStddevC is
the maximum percStddevj among all dimensions j for cell C.

As newStep<step, the number of macropoints obtained with the modified weighted
clustering will be higher than the one of the original weighted clustering. In Table
4.2 and in Figure 4.34, correspondences step - obtained number of macropoints
with original weighted clustering - obtained number of macropoints with modified
weighted clustering are displayed. The number of macropoints obtained with the
modified version of the weighted clustering process is computed as the sum of the
number of old macropoints (i.e. macropoints associated to cells not selected as to
be splitted) and the number of new macropoints (i.e. macropoints computed for the
new cells obtained with the newStep).

step numMacropoints numMacropointsmodified

0.03 6694 6694
0.04 5329 5329
0.05 4211 4211
0.07 2822 2822
0.1 1730 1730
0.15 953 953
0.2 607 607
0.3 315 361
0.4 203 322
0.5 141 260
0.7 78 175
0.9 52 96

Table 4.2: Number of macropoints obtained for Blobs data set with the
weighted clustering (numMacropoints) and with the modified weighted clustering
(numMacropointsmodified), depending on the value of step

91

Experiments 92

Figure 4.34: Comparison between number of macropoints obtained for Blobs data
set with the weighted clustering (numMacropoints) and with the modified weighted
clustering (numMacropoints_mod) depending on the step for Blobs data set

The number of macropoints obtained with the modification is the same as before
for low steps and it grows up of a little factor for greater steps. The increasing is
clearly minimal but the improvement is remarkable as shown in Figure 4.35, where
the desired silhouette, the weighted silhouette on weighted clustering result and the
weighted silhouette on modification of weighted clustering result are compared for
each step.

Figure 4.35: Comparison between desired silhouette (silhouette), weighted silhou-
ette on weighted clustering result (weighted silhouette) and weighted silhouette on
modified weighted clustering result (weighted silhouette mod)

92

Experiments 93

The silhouette on the original data, the weighted silhouette on the result of the
weighted clustering modification, the average of silhouettes on the sets of random
clusters obtained with strategy 0, and the average of silhouettes on the sets of ran-
dom clusters obtained with strategy 1 are computed for each step and are compared
in the following figure. The number of points randomly selected in the two random
strategies has been set to the number of macropoints obtained using the modified
weighted clustering.

Figure 4.36: Silhouette on the original data (silhouette), weighted silhouette on
weighted clustering modification (weighted silhouette), average silhouette on random
clusters strategy 0 (avg silhouette 0), and average silhouette on random clusters
strategy 1 (avg silhouette 1)

Even if for Blobs data set the two random strategies are the same, silhouettes on
random clusters strategy 0 and on random clusters strategy 1 are slightly different
among them and compared to previous results, because the selection of points is
random.

The weighted silhouette calculated on modified weighted clustering result is much
better than without the modification, but still worse than the average of random
strategies. It has to be said that this happens only with this particular data set,
probably because Blobs shapes are regular and compact so the choice of random
points that are a good representation of the clustering is easy. Moreover, the average
silhouette on random clusters is retrieved as the arithmetic mean of 10 silhouettes
computed on 10 different results of random strategies. The resultant average of
these silhouettes does not evaluate the quality of a clustering, so even if it is closer
to the desired silhouette this does not mean that there is a set of random clusters

93

Experiments 94

that represents the original clustering better than the weighted clustering.
If only one set of random clusters is considered, the silhouette on it will probably

be worse than our weighted silhouette. This is clear in the next figures, where the
worst cases (minimum and maximum) of silhouettes on random clusters are shown
specifically for strategies 0 and 1.

Figure 4.37: Details of the worst cases (min silhouette 0 and max silhouette 0) of
silhouettes on random clusters strategy 0

Figure 4.38: Details of the worst cases (min silhouette 1 and max silhouette 1) of
silhouettes on random clusters strategy 1

Comparing the weighted silhouette on modified weighted clustering with only
one silhouette computed on only one set of random clusters, the modified weighted

94

Experiments 95

clustering results to be a better representation of the original clustering.

4.4.4 Time analysis

Times information have been collected during the execution of the algorithms for
the reduction of cardinality (weighted clustering and random strategies) and also
for the silhouette and weighted silhouette computation. In the following charts all
times are reported in nanoseconds. Times collected during the executions, with the
different values of step, of all these algorithms are displayed in Figure 4.39.

Silhouette time indicates the time to compute the silhouette index on the original
clustering containing all the data. Weighted clustering time is the time to perform
the weighted clustering algorithm: split the clusters using the step and calculate the
macropoints and their weights. The time to compute the weighted silhouette on the
result of the weighted clustering (without modification) is the Weighted silhouette
time. Random clusterings 0 time refers to the time to generate the 10 sets of random
clusters applying strategy 0 for 10 times. Silhouettes 0 time is the time to compute
the silhouettes indices on the 10 results of random strategy 0 and calculating their
average. Random clusterings 1 time refers to the time to generate the 10 sets of ran-
dom clusters using strategy 1. Silhouettes 1 time indicates the time to compute the
silhouettes index on the results of random strategy 1 and computing their average.

Figure 4.39: Comparision between times of separated processes

The Silhouette time should be a constant since the silhouette computation on the
original clustering is always the same. Little variations in this value are probably
caused by variations of computer performance during the execution. It can be

95

Experiments 96

noticed that the weighted clustering time is the lowest among the clustering times
(weighted clustering and random strategies) for all values of step. Also the Weighted
silhouette time is lower than all other silhouettes computation times.

In the following figure, times of entire processes have been considered: starting
from the original clustering until the silhouette computed on the representation of
the original clustering with a reduced cardinality.

Figure 4.40: Comparison between times of entire processes

The Silhouette time is the lowest since it does not have the clustering part before
the computation of the silhouette. Moreover, this value is low because the Blobs
data set contains only 10000 points. Remember that the time complexity for the
silhouette index is quadratic in the number of data. For higher cardinalities the
computation of the silhouette on the whole original clustering is not even feasible.
In these situations the use of algorithms like the weighted clustering is necessary.

Among the three processes that creates and evaluate the representation of the
original clustering, the weighted clustering together with the weighted silhouette
computation is clearly the fastest.

Considering the modification of weighted clustering algorithm, Weighted cluster-
ing modification time indicates the time necessary to apply the modified weighted
clustering on the original clustering: primary split into cells, computation of stan-
dard deviation and other parameters, filter and selection of cells to be splitted,
secondary split, calculation of the macropoints. Weighted silhouette modification
time refers to the time for the computation of the weighted silhouette on the result

96

Experiments 97

of modified weighted clustering.
In figures 4.41 and 4.43, the same times considered before are shown for the

modification of the weighted clustering.

Figure 4.41: Comparison between times of separated processes

Figure 4.42: Comparison between times of entire processes

It is clear that the modification of weighted clustering causes a terrific increase
in the required time for obtaining the weighted clusters. In the modification, even
when no cells are splitted, a lot of time is used for the computation of all standard
deviations and percentages in order to decide if a cell is critical or not. In the
following figure times for weighted clustering with and without modification are
compared.

97

Experiments 98

Figure 4.43: Times comparison between weighted clustering and modified weighted
clustering

The rise of the computation time introduced by the modification is clearly caused
by the computation of parameters used to decide if a cell has to be splitted or not.
If the increase in the necessary time were caused by the split, the time would have
been lower for low steps, were no cells are splitted. Since the time is high even for
low steps, the cause is the computation of standard deviations, range of variations
and other parameters for all the cells in order to select the ones to be splitted.

No longer research has been performed about this issue, but in the future further
studies need to be done about how to lower computation time for the modified
weighted clustering.

4.4.5 Clustering evaluation on randomly clustered data sets

In order to better evaluate the weighted and the random representations, another
experiment has been performed. Starting from the Blobs data set, a new assignment
of points to clusters has been performed. Given the number of clusters to form (three
for Blobs), each point is randomly assigned to one of the clusters. The resultant
clustering will have a very low quality since the position of points has not been
considered during the partition in clusters. An example of random assignment of
Blobs data to clusters can be found in Figure 4.7 of Section 4.1.

This randomly obtained clusters can be evaluated using the silhouette index. The
index will be near -1 as the quality of the clustering is low. Anyway, applying the
weighted clustering and the two random strategies, the weighted silhouette and the
silhouettes on random results should be as close as possible to the desired silhouette.

98

Experiments 99

The more they are close to the desired value, the more their reduced cardinality
representation is a good representation of the original randomly obtained clusters.
The experiment is the following.

• The random assignment of points to clusters is performed a number of times
(four in this experiment), obtaining a number (four) of sets of random clustered
data
• For each set, the silhouette index is computed, obtaining four values of desired

silhouettes
• These values are sorted in descending order, obtaining a ranking of the four

partitions in clusters based on their quality
• Weighted clustering, random strategy 0 and random strategy 1 are applied on

each one of the four sets of random clustered points, using different values of
step
• The weighted silhouette is calculated for all the obtained weighted clusterings

and the silhouettes are computed on all the random results
• For each strategy and evaluation, the silhouettes retrieved for the four parti-

tions in clusters are sorted
• The rankings of the four sets based on these silhouettes, should theoretically

be the same as the ranking obtained using the silhouette index on all original
data

The silhouettes obtained are shown in the following four figures, divided by clustering
strategy. The desired silhouettes in the desired order are in the first figure, where
the silhouette indexes computed on the four original sets of randomly clustered
points are displayed. The quality ranking is indicated by the relative position of the
silhouette lines.

99

Experiments 100

Figure 4.44: Silhouettes on the four original sets of randomly clustered points

Figure 4.45: Weighted silhouettes on the weighted clusterings obtained from the
four sets of randomly clustered points

100

Experiments 101

Figure 4.46: Averages of 10 silhouettes computed on 10 sets of clusters of random
points, obtained applying strategy 0 on each of the the four sets of randomly clus-
tered points

Figure 4.47: Averages of 10 silhouettes computed on 10 sets of clusters of random
points, obtained applying strategy 1 on each of the the four sets of randomly clus-
tered points

The figures show that only the weighted silhouettes, that represent the qualities
of weighted clusterings, maintain the relative positions of the desired silhouettes,
that represent the qualities of original random clusters. Moreover, it is evident that
in these cases the weighted silhouette works way better than the random strategies.
A comparison between the weighted silhouette on weighted clustering and the sil-

101

Experiments 102

houettes on random results for strategies 0 and 1 is reported in Figure 4.48, where
only one of the sets of randomly clustered points is considered.

Figure 4.48: Silhouettes comparison for one of the sets of randomly clustered points

Clearly the weighted silhouette gives very good results in this case. This means
that the quality of the weighted clustering is similar to the quality of the original
clustering, and so for our criterion the weighted clustering is a good representation
of the original. An explanation of why in this case the weighted clustering works
much better than the random strategies is that the shapes obtained with the random
assignment to clusters are really complex and so the random choice of some points
that represents these clusters does not lead to good results (while with the simple
circular shapes of the Blobs data set the random selection of points easily gave a
good representation of the original clusters).

102

Experiments 103

4.5 Other data sets results

4.5.1 Complex 8

The Complex 8 data set (Figure 4.3) is way more complex than Blobs. It contains
eight clusters with complex shapes that differ widely in shape, cardinality and den-
sity of points. For this reason, the strategy 1 for the random selection of points, that
selects the same quantity of points from each cluster, works really bad. This proofs
that if the distribution of data into clusters is not known, techniques of random
selection of points can not be used.

Figure 4.49 shows the comparison for different step values between silhouette
result on the original clustering, weighted silhouette on the weighted clustering and
averages of silhouettes on sets of random clusters obtained with the two random
strategies. The step values are always chosen in a way to guarantee numbers of
macropoints that cover the range between ND/1.5 (cardinality reduced by a 1/1.5
factor) and ND/150 (cardinality reduced by a 1/150 factor), where ND is the cardi-
nality of the original data set (2551 for Complex 8).

In Figure 4.50 the same comparison is done with the weighted silhouette on the
modified weighted clustering result. The thresholds values used in the modifica-
tion of weighted clustering are the ones described in Section 4.4.2: thPercStddev
= 15 and thPercRepresentedPoints = 4. The weighted silhouette on the modified
weighted clustering is clearly closer to the desired value, compared with the pre-
vious result (i.e. the one without the modification). For high values of step the
modified weighted clustering is the best representation of the original clustering.
About random strategies, while the strategy 1 keeps giving bad results, the distance
between the average silhouette on strategy 0 clustering and the desired silhouette is
lower. This is caused by the modification of the weighted clustering that leads to
a greater number of macropoints (remember that the number of points to be ran-
domly selected in random strategies is set to the number of macropoints obtained
with the weighted clustering). Since the number of randomly selected points in
random strategies is equal to the number of macropoints, in Figure 4.50 also the
average random silhouette on strategy 0 results knows an improvement.

103

Experiments 104

Figure 4.49: Complex 8 data set: silhouette on original data (silhouette), weighted
silhouette on weighted clustering (weighted silhouette), average silhouette on results
of strategy 0 (avg silhouette 0), and average silhouette on results of strategy 1 (avg
silhouette 1)

Figure 4.50: Complex 8 data set: silhouette on original data (silhouette), weighted
silhouette on weighted clustering modification (weighted silhouette mod), average
silhouette on results of strategy 0 (avg silhouette 0), and average silhouette on
results of strategy 1 (avg silhouette 1)

104

Experiments 105

4.5.2 Complex 9

The Complex 9 data set (Figure 4.4) contains nine clusters different in shape, size
and density as in Complex 8 but with more complex shapes. As in Complex 8,
random strategy 1 gives terrible results while strategy 0 knows a little improve-
ment in the second figure, where the modified weighted clustering is considered and
so the number of considered points is higher. Remember that the values reported
in the graphs are obtained as an average of 10 silhouettes computed on 10 differ-
ent set of random clusters so these silhouettes do not indicate the qualities of real
representations.

Figure 4.51: Silhouettes comparison for Complex 9 data set

Figure 4.52: Silhouettes comparison for Complex 9 data set considering the modified
weighted clustering

105

Experiments 106

4.5.3 Compound

The Compound data set (Figure 4.5) contains six clusters that again differ a lot
in shape, size and density of points. In particular it contains some clusters with
really scattered points. Once again, since the number of points in each cluster is
not the same, strategy 1 gives terrible results. In Figure 4.53, where the standard
weighted clustering is considered, the average of silhouettes obtained using strategy
0 starts to fall for step values around 5, and falls to 0 for steps greater than 8. This
happens because the Compound data set contains only 399 points distributed among
six clusters. When a low number of points is selected for the random strategies (i.e.
when the used step leads to a low number of macropoints) it is possible that for some
clusters just one point is randomly selected. By definition, if a cluster contains only
one point, the silhouette of the point is 0. In this work, the silhouette index is set
to 0 also for empty clusters. This leads to a decrease in the silhouette value of the
whole data set. In case of strategy 0, the number of points is distributed among the
clusters proportionally to their points, so even when it is low there are clusters with
more than one points. These points have silhouette greater than zero and so the
resultant silhouette index, being the average of all silhouettes, is greater than zero.
In strategy 1, being the number of selected points equal for all the clusters, for high
step values all clusters contain zero or one point and so the resultant silhouette is
0. In Figure 4.54 the modified weighted clustering is considered. Being the number
of macropoints higher due to the split of some cells, also the number of points to be
randomly selected is higher and so the average silhouette on the result of random
strategy does not fall to 0. In both figures the distance between the weighted
silhouette on weighted clustering and the desired silhouette has a dramatic increase
for high step. This is probably caused by the spread of the points in some clusters.
Looking at Figure 4.5 it is evident that points in some clusters are really scattered.
This is partially corrected by the modification of the weighted clustering with the
split of cells with scattered points. Figure 4.55 shows the average among all the
clusters percentages of splitted cells using the thresholds thPercStddev = 15 and
thPercRepresentedPoints = 4. This percentage is obtained for each cluster as:

percCellsToBeSplittedk =
cellsToBeSplittedk · 100

cellsk
(4.6)

where Ck is the considered cluster, cellsToBeSplittedk is the number of cells in
the cluster selected to be splitted and cellsk is the total number of original cells i
the cluster.

106

Experiments 107

It is clear that for high steps almost all cells are splitted, so the thresholds values
are not the problem. The reason why the split of the cells is not enough (i.e. random
strategy 0 gives better results) can be the value of newStep which is not enough low.
Remember that the newStep is obtained for each cell as:

newStepC = step− step ·maxPercStddevC
100

(4.7)

where C is the considered cell, step is the original value received as command line
argument and maxPercStddevC is the maximum percentage of standard deviation
computed for cell C among all the dimensions.

Even if the maxPercStddevC is high, it is not enough to guarantee an adequate
value of newStep. It has to be said that a too low value of newStep, since almost
all cells are splitted, would lead to a weighted clustering very similar to the one
obtained with a step near to the hypothetical low value of newStep. The number
of macropoints retrieved with a low newStep would be high (i.e. it wold be almost
the same as the number of macropoints obtained with a step = newStep) and so the
aim of the reduction of cardinality as the step grows wold not be accomplished.

Figure 4.53: Silhouettes comparison for Compound data set

107

Experiments 108

Figure 4.54: Silhouettes comparison for Compound data set considering the modified
weighted clustering

Figure 4.55: Average percentage of cells selected to be splitted for data set Com-
pound, obtained as the mean of percentages of all clusters

4.5.4 Cure-t1-2000n-2d

The Cure-t1-2000n-2d data set (Figure 4.6) contains six clusters that differ a lot in
shape and size. Differently from Compound, clusters of Cure-t1-2000n-2d data set
are dense.

108

Experiments 109

Strategy 1 gives bad results because the number of points in each cluster is not
the same. Strategy 0 works well, probably due to the simple round shapes. Always
remember that the average silhouette represented for random strategies is the mean
of 10 different silhouettes. The modification of the weighted clustering works well
in this case. For high steps the weighted silhouette is the one that gives the best
results (the closest to the desired value).

Figure 4.56: Silhouettes comparison for Cure-t1-2000n-2d data set

Figure 4.57: Silhouettes comparison for Cure-t1-2000n-2d data set considering the
modified weighted clustering

109

Experiments 110

4.5.5 Moons

The Moons data set (Figure 4.2) is really simple. It contains only two clusters with
the same shape and size. Strategy 1 is the same as strategy 0 since the distribution
of points in clusters is regular. The division in clusters does not follow the two
moons that human eyes immediately notice because the considered clustering is not
the optimal one but the one obtained applying the K-means algorithm.

Given the simplicity of this data set all strategies give pretty good results. The
weighted clustering is better than the random strategies since it is predictable and
gives almost perfect results. The quality of random strategies results is partly for-
tuitous, it is obtained as an average of 10 trials and, as can be seen in next figures,
it is always worse than the quality of weighted clustering. The modified weighted
clustering gives results even better than the weighted clustering, splitting some cells
only for high values of step were the weighted silhouette is slightly worse. The split
happens only for high steps where the weighted silhouette starts to be greater than
the desired silhouette. Since the distance between the weighted silhouette and the
desired value is always minimal, it is desirable for the number of macropoints ob-
tained with the modified weighted clustering to remain low. As shown in Figure
4.60 this is satisfied, so not useless increase of cardinality is introduced with the
modification of the weighted clustering.

Figure 4.58: Silhouettes comparison for Moons data set

110

Experiments 111

Figure 4.59: Silhouettes comparison for Moons data set considering the modified
weighted clustering

Figure 4.60: Comparison between number of macropoints obtained with the
weighted clustering and with the modified weighted clustering for the Moons data
set

111

Chapter 5

Conclusions and future works

112

Conclusions and future works 113

The goal of the representation of a number of clustered data using a lower number
of records has been achieved. Using the weighted clustering algorithm it is possible
to represent an original set of clustered data with a new set of clustered weighted
data. The number of weighted data is lower than the original, so operations on the
obtained weighted clusters will be faster and easier. The reduction factor can be set
as needed by setting the value of the step parameter before applying the weighted
clustering algorithm.

If the aim is the reduction of the cardinality, the algorithm presented in this
work is a valid solution among the few ones available at the moment. As showed
in this work, the random strategy that does not consider the distribution of objects
into clusters (i.e. random strategy 1) makes no sense for all data sets containing no
evenly distributed data. The random strategy that considers the data distribution
(i.e. random strategy 0) gives pretty good results of silhouette index only when
performed a number of times, computing the silhouette index on a number of clusters
of randomly selected points, and finally considering an average of these silhouettes.
These silhouette results are not referred to any existing single representation of the
original data, so if a single representation is needed random strategies are not valid
solutions.

The goal can also be the computation of the silhouette index for huge data sets,
when the index can not be applied since its time complexity is quadratic in the
number of considered data. Even if in some cases random strategy 0 seems to give
results with the same quality in less time, it has to be considered that this happens
only with simple shapes. In real world clusters shapes are more complex, and the
records are probably more than two-dimensional. In these situations, a randomly
selection of some points that successfully represent original points is clearly not
usual. For this reason the weighted clustering used together with the weighted
silhouette seems to be a better solution to obtain an approximation of the silhouette
index.

With the introduction of the modification in the weighted clustering algorithm,
a little increase in the number of macropoints leads to a huge improvement in the
quality of the weighted clustering, measured by the weighted silhouette. The mod-
ification consists in the computation of standard deviation and cardinality of each
cell, the checks on them, the possible split of some cells and the calculation of new
macropoints for the new cells. It causes a crucial rise in the weighted clustering com-
putation time. Even if no cells or a low number of cells are critical (i.e. have high
standard deviations and contain high number of points), the requested time is long
because of the computation of all the parameters used to decide if a cell is critical.

113

Conclusions and future works 114

This part can be optimized, for example avoiding the calculation of all parameters
when the cell is clearly not critical. A simple improvement that can be tried is to
check the number of points represented by the macropoint of the cell before the
computation of all other parameters: if percRepresentedPoints < thPercRepresent-
edPoints the cell will not be splitted so the computation of range of variation and
standard deviation is not useful. Other experiments can be performed to find if the
thPercStddev is really needed to select the cells to be splitted. If it is not, another
way to compute the newStep value can be find and the computation of the standard
deviation can be avoided. In this thesis, for time reasons, no more researches and
trials have been performed.

About the weighted silhouette, the computation time is low and the results are
the desired ones. As shown in the weighted silhouette example (Section 3.2.2) the
weighted silhouette of a weighted clustering containing macropoints is exactly equal
to the silhouette computed on a clustering containing standard points obtained as
follows: given a macropoint with coordinates (mx, my) and weight w, a number
w of standard points are considered, all with coordinates (mx, my). Concerning
the weighted silhouette no further work is necessary. It can be used as it is to
evaluate the results obtained with the future developments of weighed clustering
algorithm. Given any process that produces clusters of weighted objects that are
an approximation of some original clusters, the weighted silhouette index presented
in this thesis is a solution of great value to retrieve an approximate value of the
silhouette index.

114

Bibliography

[1] A. Starczewski and A. Krzyfffdfffdak, A Modification of the Silhouette Index
for the Improvement of Cluster Validity Assessment. LNCS, 2016.

[2] A. K. Jain, Data clustering: 50 years beyond K-means. Elsevier, 2010.

[3] R. Xu and D. Wunsch, Survey of Clustering Algorithms. IEEE, 2005.

[4] A. Jain, M. Murty, and P. Flynn, Data Clustering: A Review. ACM Computing
Surveys, 1999.

[5] T. R. dos Santos and L. E. Zfffdfffdrate, Categorical data clustering: What
similarity measure to recommend? Elsevier, 2014.

[6] X. Gao and M. Yang, Understanding and Enhancement of Internal Clustering
Validation Indexes for Categorical Data. MDPI, 2018.

[7] G. Menardi,Density-based Silhouette diagnostics for clustering methods. Springer
Science+Business Media, 2010.

[8] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, On Clustering Validation Tech-
niques. Journal of Intelligent Information Systems, 2001.

[9] Spark 2.4.0 documentation - clustering, https://spark.apache.org/docs/latest/-
ml-clustering.html.

[10] Euclidean and euclidean squared, http://www.improvedoutcomes.com/docs/-
WebSiteDocs/Clustering/Clustering_Parameters/Euclidean_and_Euclidean-
_Squared_Distance_Metrics.htm.

[11] J. Yu, M.-S. Yang, and E. S. Lee, Sample-weighted clustering methods. Elsevier,
2011.

[12] J. Li, X. Gao, and L. Jiao, A novel typical-sample-weighted clustering algorithm
for large data sets. LNAI, 2005.

115

116

[13] C. Zhang, Q. Shi, and D. Xue, Document clustering algorithm based on sample
weighting. Journal of The China Society For Scientific and Technical Informa-
tion, 2008.

[14] M. Studer, WeightedCluster Library Manual: A practical guide to creating ty-
pologies of trajectories in the social sciences with R. LIVES Working Papers
24, 2013.

[15] S. Petrovic, A Comparison Between the Silhouette Index and the Davies-
Bouldin Index in Labelling IDS Clusters. Proceedings of the 11th Nordic Work-
shop of Secure IT Systems, 2006.

[16] Scikit learn - api reference, https://scikit-learn.org/stable/modules/classes.ht-
ml#module-sklearn.datasets.

[17] Q. Yuan, H. Shi, and X. Zhou, An Optimized Initialization Center K-means
Clustering Algorithm based on Density. IEEE, 2015.

116

	Abstract
	Introduction
	About clustering
	About clustering evaluations
	The main idea
	Next chapters

	Background
	Clustering validation indices
	The silhouette index
	Implementations of the silhouette index

	Weighted data
	Weighted clustering
	Weighted silhouette index

	Proposed solution
	Weighted clustering
	Weighted clustering pseudocode
	Weighted clustering example

	Weighted silhouette
	Weighted silhouette pseudocode
	Weighted silhouette example

	Weighted clustering modification
	Weighted clustering modification pseudocode
	Weighted clustering modification example

	Experiments
	Input data sets
	Random competitors
	Main experiments
	Blobs data set experiments and results
	Silhouettes results
	Thresholds
	Silhouettes results on weighted clustering modification
	Time analysis
	Clustering evaluation on randomly clustered data sets

	Other data sets results
	Complex 8
	Complex 9
	Compound
	Cure-t1-2000n-2d
	Moons

	Conclusions and future works

