
POLITECNICO DI TORINO

Corso di Laurea in Computer Engineering

Tesi di Laurea

A Study on the Use of Mobile-specific
HTML5 WebAPI Calls on the Web

Relatore
prof. Antonio Lioy

Francesco Marcantoni

Marzo 2019

Alla mia famiglia

Summary

The growth of smartphones diffusion in the last decade and the pervasiveness of the web in the
current lifestyle pose the attention on the privacy and security of the users. While it is well
known how browser-related data accessed during navigation can be used to harm the privacy of
the user, this work aims to fill the knowledge gap concerning mobile-specific information retrieved
by web-pages when visited from a smartphone.

In particular this study focuses on Firefox browser for Android devices. To detect the number
of websites that have access to mobile-specific information we propose a crawler called FFAutoma-
tor, consisting in a Python script, that exploits the possibility to remotely control an Android
device from the computer to instrument the browser and scrape the information we need from
them. The script is able to open a new instance of the browser, load a website and simulate the
user interaction with it. It take cares of injecting touch events corresponding to gestures on the
touchscreen. We designed this program to be robust and to run for long time in order to analyze
as many websites as possible. Plus, it was developed to successfully handle issues that can come
up during simulation of web-navigation and that can compromise the results. An example is an
unwanted redirection from the current website to an external one.

Detection is done using a proxy server to intercept http traffic coming to the phones and to
inject JavaScript code that can log whenever a method is called or a property is read by the
website and the contained frames. To allowed code to be run in pages it was necessary to turn off
some policies that are enforced by the browser to prevent external JavaScript code to run in it.

We then elaborate the logs obtained after having crawled, through the script described before,
the first 200k most popular websites according to Alexa ranking. Results are analyzed in a
quantitative way, showing the number of websites that exploit APIs retrieving mobile-specific
data and which of them are the most used. We also study the source of the JavaScript files that
contain those APIs to look at the number of websites that execute external files to gather data.
Given that, we differentiate the calls originated from frames and external sources from the one
requested by main page.

In this study we propose also e mitigation technique, to protect who browse the web from
smartphones without affecting the user-experience. This consists in an extension that can be
installed in Firefox browser for Android that detects all mobile-specific APIs accessing data from
the smartphone and allows also the users to choose to block this data retrieval or not. Plus
the user can create custom rules that applies only to some chosen domains and than the default
settings applying for all the other pages. The technique used to detect APIs in the extension, is
the same exploited for scraping for websites. JavaScript code is injected from external sources
loaded in the extension and, being the extension considered a trusted source by the websites,
there is not any problem related to security policies.

4

Contents

1 Introduction 8

1.1 Problem statement . 10

1.2 Contributions . 10

1.2.1 Analysis on websites exploiting HTML5 WebAPIs 10

1.2.2 Mitigation technique . 11

1.3 Overview . 11

1.4 Environment description . 11

2 Related Work 13

2.1 Android smartphones . 13

2.2 Mobile web-browsing . 14

2.3 Browser functionalities . 14

2.3.1 Firefox browser architecture . 15

2.3.2 Vulnerabilities overview . 17

2.3.3 Usage of HTML5 API . 17

2.4 Sensors access in Android mobile devices and related vulnerabilities 19

2.5 Browser extensions . 19

3 Approach 21

3.1 HTML5 Mobile Functions selection . 21

3.2 JavaScript Calls Interception . 22

3.2.1 Native code interception . 22

3.2.2 HTTP response interception . 23

3.3 Injected Code . 23

3.3.1 Hooking methods . 23

3.3.2 Hooking properties . 23

3.3.3 Getting source of the JavaScript file . 24

3.4 Proxy Server . 24

3.4.1 Buffering prevention . 25

3.4.2 Injection . 25

3.5 System calls interception . 26

3.6 Preliminary Tests . 26

3.6.1 Results . 28

3.6.2 Why Firefox . 28

5

4 Web Navigation Automation 29

4.1 Interfacing smartphones with the computer . 29

4.2 Instrumenting Touch Gestures . 30

4.2.1 Interaction with the device . 30

4.2.2 Simulating navigation . 32

4.3 Logs Structure . 33

4.4 The Program . 34

4.4.1 Structure . 34

4.4.2 Visiting websites . 34

4.4.3 Logs saving . 35

4.4.4 Number of gestures injected . 35

4.4.5 Cleaning the environment . 36

4.4.6 Files saving . 37

4.5 Issues in automatic browsing . 37

4.5.1 Redirection to external websites . 37

4.5.2 Permissions acceptance . 39

4.5.3 Malicious websites . 41

4.5.4 Unreachable websites . 42

4.5.5 Loading time . 42

4.5.6 Unhandled corner cases . 43

5 Results 44

5.1 Usage analysis . 44

5.1.1 Correspondence with Android calls . 45

5.1.2 Distribution . 45

5.2 Sources of the calls . 49

5.2.1 iframes . 49

5.2.2 Analysis of sources . 49

6 Extension 52

6.1 Why an extension . 52

6.2 Architecture . 54

6.2.1 Content script . 54

6.2.2 Dynamic extension page . 55

6.2.3 Local storage . 55

6.3 Programmer manual . 55

6.3.1 Permissions . 56

6.3.2 Per website customization . 57

6.3.3 Content script (injector.js) . 58

6.3.4 Injected code . 61

6.3.5 Extension pop-up . 63

6.4 User Manual . 68

6.4.1 Installation guide . 68

6.4.2 User Interface . 69

6

7 Conclusion 71

7.1 Future works . 71

A FFAutomator manuals 73

A.1 User manual . 73

A.1.1 Prerequisites . 73

A.1.2 Input . 73

A.1.3 Output . 74

A.1.4 Google SafeBrowsing API . 75

A.2 Programmer manual . 75

A.2.1 Environment setup . 75

A.2.2 Main loop . 77

A.2.3 Functions . 79

Bibliography 92

7

Chapter 1

Introduction

Usage of smartphones among population constantly increased in the last ten years. In the United
States, almost the totality of mobile phone owners has a smartphone [1]. Among all the function-
alities offered by those devices, one of the most employed is web browsing. For the first time, in
2016, internet traffic generated from mobile devices overcame the one produced by desktop com-
puters worldwide [2] and in 2016 56% of traffic to top-sites in the United States came from mobile
devices [3]. The main factors that influenced this trend are the improvements in communication
technology (e.g. the introduction of fast mobile internet connections), the development of web
browsers offering now features comparable to the desktop ones and the improvement in smart-
phone usability (e.g. the implementation of practical gestures and the usage of bigger screens)
[4].

Moreover, smartphones constantly monitor their status and are always aware of what is hap-
pening around them. This is possible thanks to the capability of those devices of retrieving
information from the surrounding environment (using, for example, the ambient light sensor or
the microphone) and from their status, as speed or orientation (using for example gyroscope,
accelerometer and GPS). While this characteristic of smartphones enhances the experience of the
user with the device, it also has a dangerous throwback: this data constantly collected by the
smartphone can be gathered and used by an adversary to obtain sensitive information about the
user. In the last years, an increasing concern for the privacy of smartphone users brought mobile
OS developer to give the user the possibility to control which information any application can
collect. Considering Android OS, only with version 6 of the operating system (released in 2015),
the user had the possibility to grant or not, to the application, the access to pieces of informa-
tion gathered by the smartphone [5]. On the other hand, only the access to most critical data
(position, camera, microphone, contacts etc.) requires an action by the user while the others,
including most of the one read by sensors, don’t.

The combination of the increase in the usage of mobile devices to navigate the web and the
quantity of data that can be retrieved by the smartphone led to new dangers for the privacy
of the users. Browsers for smartphones are capable, like all other applications, to retrieve data
from smartphones through the OS and through the HTML5 WebAPIs [6], websites can access
most of them. This means that potentially, whenever we visit a webpage, the latter can acquire
information on our device. This happens also for navigation from desktop PC and not necessary
only for mobile devices, but the latter offers a wider range of data, thanks to the greater quantity
of sensors they have when compared to desktop configurations.

The pervasiveness of the web in contemporary society makes many security-interested users
concerned about their security during navigation. This preoccupation is justified by the huge
amount of attacks that are carried by web-pages and that users can suffer while surfing the
internet. A subset of them can be avoided with a careful navigation. For example phishing
attacks require a distracted user that types his personal information in some fake website that
is very similar to the real one. On the contrary other threats can harm even security-aware
users. Malware can be hosted by web-server and executed when the user visit the website and
loads the page. An example is JavaScript code that exploited user computational power to mine

8

1 – Introduction

cryptocurrencies [7]. Malicious code is delivered to the user through different ways, it can be
coded in the webpage, in third-party elements or in advertising [8]. Most popular browsers now
rely on external services to prevent navigation in domain that are considered unsafe, an example is
the Google SafeBrowsing API that gives access to a continuously updated library of websites
containing malicious code.

Alongside with traditional attacks one the web, in the last years, people started developing
worries about internet surveillance. The Snowden disclosures in 2013 [9] and the previous boom
of social-networks with the habit of self-disclosing personal information, made many users aware
of how, nowadays, is important to have control on personal information. Most of them ask for
the possibility to remain anonymous while visiting websites or, at least, to leave behind the
minimum amount of evidences. All the most popular browsers now implement private modes
to accommodate the described needs of the users. One of the advantage of this way of surfing
the web is that hosts will not be able to track the user through different sessions [10]. In order to
do that, cookies are blocked and other data stored by the browser during the session, as history
and web cache, is deleted when navigation ends [11].

Traditionally, servers keep track of connections with the hosts through the cookies. They are
small pieces of information exchanged by two terminals when an HTTP connection happens and
they are exploited to offer a personalized experience for each client. An example is the shopping
cart in e-commerce websites that contains the products a user is willing to buy even if the browser
is closed and reopened. In the last few years, the massive introduction of third-party elements
in websites, made the cookies the perfect tool to keep track of the users surfing the web and profile
them collecting information about their habits. The library can recognizethe the users visiting
the first-party websites where it is implemented and consequently can infer the full history of the
them.

Exploitation of cookies is not the only way to profile the users tracking them during navigation.
Another one is called browser fingerprinting (or device fingerprinting). This approach
consists in collecting characteristics of the machine running the browser and of the browser itself
to generate e unique fingerprint of the device. Assuming that data used to build this mark makes
it unique (uniqueness) and that does not change over time (stability), it is possible to know which
is the machine currently navigating a given webpage [12]. Studies proved that a part of the device
information can be used to reach this goal. The browser recent history for example consists
in a unique fingerprint to identify an host as proved by Olejnik et al. [13] who had success in
uniquely identifying the 69% of the total histories analyzed. Lot of software houses and computer
companies started to develop protections against fingerprinting in their products. Recently Apple
presented in the new MacOS, an updated version of Safari that should contrast fingerprinting
techniques providing websites only few standard pieces of information to make the device as less
unique as possible [14].

The growing usage of smartphones for web navigation made traditional techniques deployed for
fingerprinting devices less effective because the pieces of information that were used to build the
unambiguous fingerprint for desktops turned out to be standardized in the majority of browsers
for mobile devices. Plus, most of them are not customizable by the user and for this reason there
is a lack of uniqueness among different machines. For this reason, it is less affective to fingerprint
users navigating from a smartphone using traditional device characteristics [15]. On the other
hand, the development of new mobile-specific HTML5 WebAPIs offered new possibilities for
trackers to exploit data that cannot be retrieved by desktop machines. A lot of studies analyzed
which, among the huge amount of input collected by smartphones sensors and collected by web-
servers, can result in a new opportunity to fingerprint a device. Olejnik et al. [16] studied how
the precision of Battery Status API in retrieving information about maximum capacity of the
battery and discharging time, made those pieces of information suitable to fingerprint users. The
worry caused by this leakage made Mozilla completely abandon the API in version 52 of Firefox
browser in 2017, demonstrating how dangerous the leakage of this information. Plus Mozilla
showed interest in keeping who uses its products safe.

Another issue related to sensors in modern smartphones is that the high resolution of read
data gives the possibility to detect imperfections caused by manufacturing of sensors themselves.
It means that the biases introduced in building process can uniquely label a module and conse-
quently the device where it is installed. Das et al. [17] prove that the combination of several

9

1 – Introduction

classifiers strongly increases the accuracy in generating a unique fingerprint for the device. They
succeeded in identifying smartphones through data retrieved from the motion sensors of the
device. Furthermore, their classification technique is able to distinguish between same model
smartphones, demonstrating that the possibility for an adversary to associate data readings to
the device that produced them, does not depend only on the sensors implementation in each
model but on the manufacturing process of each individual device.

1.1 Problem statement

Although many studies focused on how data retrieved by websites using HTML5 WebAPIs can
be used in a harmful way related to users, there is not any study about how this potential privacy
issue is extended on mobile devices. Even if the problem of information leaks coming from HTML5
WebAPIs has been treated in [18], there is no reference to a smartphone-related issue. That is,
questioning how many websites among the most popular ones, gather information from the mobile
devices.

In addition, according to the different usage of web browsers depending on the platform they
are used on [4, 19] and to the different vulnerabilities and information leakages specific to mobile
browsers, there are no studies on how these affect the privacy of the users.

The aim of this study is too deeply analyze how information about mobile devices is requested
by websites through a quantitative and qualitative analysis. While with the first one we count
the number of websites exploiting mobile-specific WebAPIs, with the second one we analyze
the kind of data read to understand whether there are dangers for the users or not. Given
that, we want to propose a technique that suits mobile devices to mitigate discovered dangers.
Countermeasures to the threats caused by HTML5 WebAPIs have been developed by previous
studies. Snyder et al. [18] developed an extension for desktop version of Firefox that, based on
the preferences of the user, blocks the access to the selected APIs. On the other hand there is
not any solution tailored for the smartphones and, even though many companies, as Mozilla, that
develop browsers are focused in reducing risks for the users, there is currently a security flaw for
who use smartphones.

1.2 Contributions

1.2.1 Analysis on websites exploiting HTML5 WebAPIs

Recently many studies focused on the capability of websites to collect data from devices used to
visit them. Some of them studied how many websites among the most visited one, read device
information without really needing it to work properly [18], while others pinpointed the type of
harm, a given information, can cause to the user [16, 17, 20]. Considering the booming of browsing
from mobile devices, and the consequent introduction of mobile-specific APIs with HTML5, we
investigate how many of the most visited websites in the world exploit those APIs finding that
more than 5% in the top 5000 read mobile-specific inputs from the device. We first look at which
APIs actually retrieve smartphone-specific data and then we register when a website calls. The
approach followed to intercept those function consists in exploiting an external proxy server to
inject custom JavaScript code in the pages, the code hooks any access to the considered resources
logging it into a log-file. Sites are visited from Android devices, instrumenting it to automatically
load domains and simulating a brief navigation for all of them.

We also analyze results obtained by the scraping of all websites, looking for possible dangers for
the users. Looking at well-known techniques exploiting characteristics of smartphones to track
users harming their privacy, we identify how many website present this threatening behavior.
Plus, we look for distribution of those harmful pages among the most visited ones, finding that
the percentage of them is bigger at the top of Alexa top 1 Million list and decreases going down
the list.

10

1 – Introduction

1.2.2 Mitigation technique

To reduce the risk of being tracked when surfing the web from the smartphone, we developed an
extension for Firefox for Android, that has the double function of detecting when a website access
information of the device and blocking them whenever it is requested by the user. The latter has
the possibility to customize the extension creating fine grained white-lists allowing functions on
websites that need them to being properly visualized. This add-on pursuits its goals by injecting
JavaScript code both for the detection and the blockage. Being the first always active, the code
is suited not to affect user-experience during navigation.

1.3 Overview

The structure of the thesis is the following:

• Chapter 2: In this chapter we describe the state-of-the-art for what concerns security and
privacy of the users during navigation. We analyze the already known issues with HTML5
WebAPIs and we provide a background for fingerprinting techniques, being them the current
most exploited technique to stealthily track users. Furthermore we give a context concerning
Android with a focus on how the OS manages permissions-protected data retrieval and
which information can be used to extract private information of the user. We study also
the vulnerabilities found on browsers and how add-ons have been used to mitigate them.

• Chapter 3: This chapter contains the description of the approach used to intercept and
register all the mobile-specific HTML5 in a single website. It includes the different paths we
evaluated and which one resulted to be the best for our needs. We also explain the purpose
of each tool we used and we describe the environment on which we conducted our study.

• Chapter 4: In this chapter we explain how we managed to extend our approach from a
single website to the most popular ones taken by the Alexa top 1 Million list. We describe
the algorithm behind the program we developed to automatically visit as many pages as
possible, minimizing the total time needed. We particularly focus also on issues found during
navigation and how we handled them to build a robust software. We also analyze how we
controlled issues caused by corner-cases that required too much time and complexity to be
handled.

• Chapter 5: In this chapter we show the results with a critical analysis of them, including
statistics and meaningful patterns we found in our study.

• Chapter 6: In this chapter we propose our solution to mitigate the previously described
threats through a Firefox extension, designed for mobile navigation, that gives to the user
full control on data collected by websites. We underline here also the differences from
the approach used for scraping of the information, that allowed to make user navigation
experience as untouched as possible.

• Chapter 7: In this chapter we summarize the results obtained by the study and we provide
hints for possible future works that can follow the path traced by our research.

• Appendix A.2.3: In the appendix we provide the user and programmer manual for the
FFAutomator program we developed to crawl website and scrape information out of them.

1.4 Environment description

According to other studies involving exploration of the most popular websites, we retrieved them
from the Alexa top 1 Million list. Given the huge amount of websites we had to visit, we
exploited four Android smartphones at the same time. We flashed the version 7.1.2 of the
operating system and we gained the root access to have full control on the device with the

11

1 – Introduction

possibility of working at system level. Even if we operated on the top of the browser, it turned
out that accessibility to the lowest levels of the system was fundamental to know if data was
really read from the hardware and to solve issues during navigation that will be deeply discussed
in Section 4.5. To do that, we exploit the Xposed framework [21]. It is a tool that can be
installed only in rooted devices and that allows the user to install modules operating at system
level and that can be developed exploiting libraries provided by the framework itself.

Regarding the control of the smartphones, to make them automatically visit websites and
collect information about exploited APIs, we used adb. Android debug bridge, a command-
line tool contained in the Android SDK, offering an interface to communicate with any smartphone
from the computer. The mobile browser we used for the study is Mozilla Firefox version 59.0.1
and the motivations that lead us to this choice will be discussed in Section 3.6.2.

For what concerns the JavaScript interception in web-pages, we injected code that logs every
access to properties and every call to functions we are interested in, exploiting a proxy server.
To run the latter, we used mitmproxy [22], an open-source software that offers a powerful API
to parse HTTP responses received by the web-server and consequently inject custom code. In
particular we used the command-line version of this program called mitmdump because it is
more verbose and because it provides more options that are essentials for our study.

12

Chapter 2

Related Work

In this chapter we describe the implementation of modern browsers including possible differences
between platforms they run on with a focus on Android mobile devices. We also analyze the secu-
rity issues created by those complex programs, together with the main countermeasures developed
to protect the users.

2.1 Android smartphones

The Android share in smartphones market constantly grew since its introduction in 2008, reach-
ing the 82.8% in 2015 [23]. This increase in usage, together with the huge range of services
a smartphone can nowadays offer, brought to an interest of attackers in finding and exploiting
vulnerabilities in this operating system.

Many studies have been conducted on the leakage of user’s personal information caused by
an improper usage of Android APIs in the applications. Grace et al. [24] found flaws regarding
untrested apps accessing protected information from the trusted ones. Those leaked data can be
used for fingerprinting the device as underlined by Enck et al. [25] that, analyzing top 1100 free
apps in the offical store, found some of them collecting device info as the IMEI. Plus, the high
number of vendors running Android on their devices, introduces substantial differences depending
on the model of the smartphone. This makes Android devices easier to identify if the right
information is collected. The second most popular OS running on smartphones is iOS from
Apple. Being the latter the only vendor implementing that system in a device, it is not trivial to
distinguish them using the same attributes exploited for Android phones [26].

A wide branch of research focused on this issue, developing several approaches to detect
dangerous applications and to mitigate the risks for the users. Following different approaches
and covering different aspects of the issue, many developers proposed solutions. Some of them
perform static analysis of the taints [27, 28] while others exploit a dynamic approach [29]. The
common outcome of those studies is that most of the leakages are caused by advertising libraries
and that the main problem is discerning in user-intended data propagation or not, problem that
is addressed by Yang et al. [30]. Seo et al. [31] extended Android permissions system to allow
developers to separate permissions in-app, limiting the access of external libraries to protected
APIs.

For the same purpose, the Android permissions system [32] was studied since it was intro-
duced at run-time with 6.0 version of Android (SDK 23) in 2015. The rising concern was about
third-party libraries accessing protected information without notifying the user, once the permis-
sions were granted to the application hosting them. While the user can choose at run-time which
pieces of personal information the application can access, there was interest in knowing about the
origin of the methods and whether they were necessary for the core of the application to work
properly. For this reason several paths were followed to keep track of protected calls invoked at
the OS level, to understand first, if they were essential for the correct working of the application
and second if the source could be trusted or not [33].

13

2 – Related Work

All those studies on taints are focused on Android applications, but similar leakages can
happen also during web navigation given the wide range API system supported by most popular
browsers that makes websites able to read lot of information that the smartphone acquires and
elaborates. Our study aims to cover this gap taking into account also the intent of the user in
disclosing personal information with the websites.

2.2 Mobile web-browsing

Browsing from a smartphone is an activity that became very popular in the last years with
the development of devices facilitating web navigation even in screens that are very small when
compared to the ones desktop computers. This transition was possible thanks to the introduction
of multi-touch gestures and to the performance improvment of devices and of the mobile network
[4].

This trend [2] led to the development of mobile-specific versions of regular websites. The
experience using the smartphone is different because of the different input styles and of the small
screen size. The differences regarding both the layout and the functionalities of the pages,
expose the user to greater threats. As an example, studies proved that phishing attacks are
easier to deploy on mobile websites rather than desktop counterpart and there is a big part of
literature trying to mitigate this issue proposing detection systems for those malicious websites.
This ease is given by the short address bar (because of the reduced dimension of the screen) that
hides part of the URL making the discovery of fake domains, imitating the real one, more difficult.
Plus, because of the nature of mobile browsing, users navigating from smartphones use to be less
careful to details in pages that could have helped them in spotting the scam [34, 35].

Given the above listed differences, countermeasures developed for navigation from desktop
browsers are often ineffective in identifying and blocking threats designed for mobile browsers.
Plus, web-servers can detect if the source of navigation is a mobile device and load a dedicated
version of the website with special content. Given that, Tripathi et al. [36] propose a framework
to detect malicious websites designed for mobile browsing. Detection of malicious domains is done
through a static analysis of the content of the webpage. The user has to type the URL of the
domain in the browser extension that will communicate with a back-end server and will send
a real-time response to the user about potential dangers. While recognizing the effort in creating
a real-time solution that is suitable for all kind of users, being an extension very easy to install
and intuitive to use, there is no reference to fingerprinting attacks that can take advantage of the
mobile-specific APIs that are not available in desktop configurations. Furthermore, considering
the kind of attacks that are addressed, it is enough to warn the user about the risks without
granting a safe navigation of the domain.

2.3 Browser functionalities

In the last ten years, there was a constant growth in browser complexity, with several features
being added. One of the main causes of this advancement is the expansion of the browsers
to slowly substitute functions provided by native applications in different devices. Most of the
browsers implement versions for different platforms including desktop and mobile reusing the
same code and consequently increasing the number of lines of code in them. Vendors justify
this phenomenon, that can be seen even in browsers OS as Chrome OS, stating that features
cannot be removed in order to continue supporting websites exploiting them. On the other hand,
security-concerned users and activists oppose to this trend, reporting possible flaws and proposing
mitigation techniques. It was demonstrated, for example, that WebRTC API leaks IP address
of the client. This endangers both the users navigation from a VPN and not because, even
if the private IP is not considered a sensitive information, it can be used together with other
characteristics to fingerprint the user. For this reason many add-ons taking care of this issue have
been released for major browsers [37].

Another example is the Battery Status API [38], that after several attacks proving that
it could be used to track the users through the uniqueness of some pieces of information about

14

2 – Related Work

batteries that could have been read through it [16], was abandoned by Mozilla in Firefox browser
[39, 40].

Many online services that are usable from mobile devices, like social networks, allow the user
to choose between the webpage and the native-app. While exploiting the application the user can
enjoy a better experience [41], web-pages guarantees a lower risk of leaking private information.
For this reason a privacy concerned user should prefer using the browser to access a service instead
of the dedicated app. On the other hand, browsers leak information too and to obtain a secure
experience, users have to resort to mitigation techniques. Papadopoulos et al. [42], propose an
Xposed module that blocks the propagation of data from Android application preventing leakages.
Unfortunately, installing Xposed framework and the related modules is not a trivial operation and
is not suitable for all kind of Android users. Instead, leakages prevention in web browser can be
done through extensions. These software packages are nowadays easy to install through web-
markets provided by the browser vendor and can be reached by less experienced users too.

With the introduction of HTML5, many functions have been standardized by W3C (World
Wide Web Consortium) to facilitate their integration on websites and improve support by browsers.
They include, for example, the access to the location of the device, the access to the microphone
and cameras and the possibility to reproduce multimedia objects [43]. The improved version of
HTML implemented features that were previously widely used by web-pages thanks to external
plugins or proprietary software. An example is given by the Adobe Flash Player plugin, used to
play media contents on the websites, that was progressively abandoned and substituted with the
HTML5 media elements [44].

A mobile OS like Android provides to application developers an API to access device in-
formation and to fulfil a wide variety of tasks on the smartphone. Similarly, browsers support
HTML5 WebAPIs to create a link between the JavaScript functions and the system API. This is
why websites are becoming as powerful as regular applications and, for this reason, considering
the several studies focused on apps accessing sensitive information, a specific study on them is
necessary. APIs that we believe filling the gap between websites visited by smartphone and mo-
bile applications, grant access to the microphone, cameras, vibration motor and all sensors that
are nowadays available in modern smartphones (accelerometer, gyroscope, proximity and ambient
light) [45, 46, 47, 48, 49, 50].

2.3.1 Firefox browser architecture

The browser we will take into account in this study is Firefox for Android and we will explain
the reason of our choice in Section 3.6.2. Firefox for mobile devices, in particular Android OS, is
based on the version for desktop platforms. It has a layered structure that can be seen in Fig. 2.1
[51]. The layered structure facilitates the porting from desktop to other platforms and this is the
reason why the browser engine, that is the core of the browser, is the same in both Android and
desktop versions. The main components of Firefox are:

• User interface: is the layer that makes the user communicate with the browser engine that
is the core of the application. In Firefox the UI is built with XUL (XML User Interface
Language), a markup language developed by Mozilla.

• Gecko: is the browser engine of Firefox. It is developed by Mozilla and now, in last
versions of the browser, include layers that were previously separated. Now Gecko includes
also the JavaScript interpreter (SpiderMonkey in Firefox) and the network module that
handles secure connection. Another subcomponent is the rendering engine that parses the
HTML document, integrates the CSS and renders the document with the related layout.
Gecko is also the module that handles persistent memory of the browser and extensions.

• Android OS: the operating system is not properly a subsystem of the browser but provides
lot of libraries for the user interface and manages the access to the hardware of the device.

15

2 – Related Work

Figure 2.1. Model of Firefox architecture on Android

Firefox OS

In 2013 Mozilla started developing a mobile operating system, called Firefox OS, based on
the namesake browser, that inherits its main components too. It runs on a very basic Linux
kernel and rendering operation is powered by Gecko [52]. Applications are substituted with web-
applications that are developed in HTML5, CSS and JavaScript. The hardware of the device
is retrieved used the HTML5 WebAPIs previously described. This was possible thanks to the
introduction of APIs providing access to the hardware of the phone. This consisted in a big step
toward the creation of web-applications that could be compared, for what concerns functionalities,
with regular applications. So, even if Mozilla abandoned the Firefox OS project in 2016, other
operating systems based on the web are being developed like Chrome OS by Google. This trend
proves how HTML5 WebAPIs can be compared to OS system calls and how important is to ensure
that websites use them in a safe way to guarantee the security of the user.

16

2 – Related Work

2.3.2 Vulnerabilities overview

According to recent studies, lot of those features implemented by browsers expose users to sev-
eral attacks and well known “Common Vulnerabilities and Exposures” (CVEs). The latter are
discovered bugs found in software and publicly reported. There are many researches in litera-
ture regarding the usage of new HTML5 functionalities to facilitate attacks both for the user
(browser-side) and for the server (server-side).

Considering the browser-side of the connection, possible attacks that are easier to commit
thanks to HTML5 features are:

• Cross Site Scripting (XSS): it is an attack consisting in the injection of external malicious
code in a website. When the user loads the trusted webpage, the code is executed, retrieving
user sensitive data. Some tags in HTML5 allow an adversary to inject and execute code
without being filtered by common XSS defenses implemented by modern browsers. For
example Don et al. [53] proved that the onError field in Media elements (introduced in
HTML5), executes code when an error occurs in the media player. An adversary could insert
any script in that section that would have been executed bypassing XSS security measures.

• Browser fingerprinting: it is a technique that consists in gathering information related
to the browser and to the environment running it, including the hardware of the machine,
and then using it as a fingerprint of the device. making web-pages capable of tracking the
users. HTML5 introduced new elements in web-pages that are well known to be used for
fingerprinting as the canvas element and other APIs retrieving data from hardware. Fin-
gerprinting has been subject for many studies in the last years that analyzed the techniques
used to make it possible. The first comprehensive study about fingerprinting was conducted
by Eckersley [54], with the Panopticlick project. They built a website that can be visited to
discover how vulnerable the browser (and the device) is for what concerns online tracking.
Part of detection is done through the open-source library fingerprintjs2, publicly available
on GitHub [55]. It contains all APIs that were proved to be used to track users, but it does
not contain yet any mobile-specific ones even if they planned to add support to the Ac-
celerometer. Data from Accelerometer and other sensors available nowadays on all mobile
devices, can be exploited to find manufacturing imperfections that uniquely characterize
each sensor [56, 57]. We visited https://panopticlick.eff.org/ and we tested Firefox
browser from the Android device we used for testing. From the results, that can be seen
in Fig. 2.2, the browser is exposed to fingerprinting attacks but there is no mention to the
mobile APIs we are going to treat in this study.

2.3.3 Usage of HTML5 API

Snyder et al. [58] studied the number of features used by the most popular 10000 websites
according to Alexa and found that more than 50% of them are never used. Plus they discovered
that lot of them are most of the times blocked by ad-blockers and other anti-tracking extensions
meaning that probably most of them are not essential for the visitor but useful for the author.
This research was entirely done on Firefox for desktop and for understandable reasons does not
consider mobile-specific APIs. Plus, to intercept data retrieval through methods or properties,
they use a Firefox extension to inject JavaScript code in the page.

We used a proxy server instead of a plugin to make our approach suitable for any kind of
browser without the need to port the extension to other platforms. Furthermore, not all mobile
browsers support extensions yet. Another difference, compared to our approach, is that to control
when a property (related to the considered APIs) was read by the website, the authors exploited
the JavaScript method Object.watch(). That function allows to associate an handler function
to a property and it is executed every time the value of that property changes. The usage of
watchpoints was deprecated and removed by Mozilla in Firefox 58. For this reason we had to
bypass this issue, hooking access to properties exploiting the getters. We will discuss about this
later in Section 3.3.

17

https://panopticlick.eff.org/

2 – Related Work

Figure 2.2. Results of the fingerprinting test done from Firefox in Android smartphone exploiting
https://panopticlick.eff.org/

Same authors [18], using the same approach of the paper described in the previous paragraph,
propose a solution to prevent websites from accessing information that can be used against the
user or exploiting APIs containing vulnerabilities. They developed an extension that is able to
manipulate web-pages, blocking unwanted (and sometimes unnecessary) methods and limiting, at
the same time, the possibility to break the website ruining its usability. This study is still done
in the desktop version of Firefox and usability of websites was tested thanks to people visiting
websites and describing the differences they found with or without the active extension. To avoid
breaking the websites, the developed extension blocks functions using JavaScript proxy Object.
It also offers the user the possibility to choose the APIs to block, with the option of creating
custom rules for each domain.

18

https://panopticlick.eff.org/

2 – Related Work

2.4 Sensors access in Android mobile devices and related
vulnerabilities

Modern smartphones contain a wide range of sensors that collect information about the current
state of the device and the environment surrounding it. Applications have access to those sensors
exploiting the OS API and most of them do not request explicit permissions by the user. While
many sensors are clearly a danger for the privacy of the user (GPS, camera, microphone etc.), some
of them can look harmless and they do not even require permissions (gyroscope, accelerometer,
proximity etc.). This last group of sensors can be used through the Android sensor framework.
Applications can listen to dedicated events that are generated by the framework every time values,
read by sensors, change or when the accuracy of the sensor changes. 1

The access to these sensors constitute a danger for the users given the several attacks exploiting
that have been proved by recent studies. We already described fingerprinting attacks and how
they can exploit data retrieved by sensors in Section 2.3.2. In addition, other privacy violations
reported in recent studies, are:

• Activity recognition: many studies proved that sensors can be used by an adversary to
infer private information of the users. It is possible to deduce for example the activity of the
smartphone owner, so if it is walking, running or in a transportation vehicle exploiting the
motion sensors and the GPS. This is done through a classifier and does not rely neither
on historical patterns nor in previous training of the users habits [59].

• Inference of input on touchscreens: information from motion sensors, that include the
accelerometer and the gyroscope can be used to predict what the user is typing on the
touchscreen of their smartphone. This is possible because, when typing, depending on the
position on the screen, the orientation and the speed of the smartphone changes in a peculiar
way. Xu et al. [60] developed a malicious application that was able to retrieve (using this
technique) the password used to unlock the device and the sequence of numbers typed on
the dialer. Porting the study in the browser environment, it is trivial to retrieve the layout
of the current page and so infer the activity of the user.

• Location detection: a study from Han et al. [61] demonstrates the possibility to infer
the position of a vehicle in a city through the motion sensor. In the proof-of-concept, no
permissions to access position were granted by the authors and the position of the phone
was correctly inferred with an high precision.

The described exploits of unprotected sensors to infer sensitive information, caused the devel-
opment of defensive systems. Bai et al. [62] face the problem with an approach focused on the
application. They instrument the original APK (Android Package), to make it communicate with
a policy controller. The latter directly modifies the values generated by the events and allows the
user to choose about turning off the sensors or randomizing data generated. This approach can
be applied to browsers too but it requires a recompilation of the application and is not a usable
path for an average user.

2.5 Browser extensions

In the previous sections, we described several threats for the privacy of the users navigating
the web using a desktop or a mobile device. The most common countermeasures developed
during the last years to address this problem concerns the creation of browser extensions
that, with different approaches, try to address common issues without compromising the user
experience. Extensions are widely supported by most common browsers for desktop platforms
while this is not true for mobile OS. As an example, Google Chrome for Android does not support

1Android Sensors: https://developer.android.com/guide/topics/sensors/sensors_overview

19

https://developer.android.com/guide/topics/sensors/sensors_overview

2 – Related Work

extensions yet, same as Firefox for iOS. Extensions are used to enhance features of the browser
and, for what concerns Chrome, Firefox, Opera and MicrosoftEdge, rely on similar APIs to
enhance compatibility. It means that after having developed an extension for Firefox, porting it
to another browser, among the previously cited, is relatively easy. 2.

Extensions developed to improve security during navigation has the goal of limiting tracking
capabilities of websites. They usually implement two main functions:

• blocking: extensions are used to block content on the page that can be dangerous for the
user, usually stopping requests coming from tracking scripts. Those are scripts used by
third-party libraries to provide services to the first-party website. Those services include an-
alytic, advertisements, social-network integration and more. Being the same library present
in several websites, it can identify the user through cookies or browser fingerprinting to infer
their navigation profile and thus personal information.

• detecting: extensions communicate the user whether a website is using some well-known
dangerous service, giving information about it and how it can be exploited from malicious
usage.

Merzdovnik et al. [63] study the effectiveness of most popular extensions in identifying and
blocking trackers from third-party libraries. They conducted the research on browsers from desk-
top and on smartphones, taking into account libraries in Android application, but there is no
reference to navigation from mobile phones. Results show that most of trackers are blocked by
the most popular extensions while there are few problems with minor libraries and some finger-
printing scripts. On the other hand these extensions contain flaws regarding the detection of the
trackers. All of them rely on a manually updated static black-list containing the domain of the
well-know trackers that are blocked based on that. Given the dynamic nature of those libraries,
the list of domain is always outdated, endangering the users. Plus they take into account only
domains related to tracking companies, so user data retrieved from non-tracking-domains is not
addressed. Starov et al. [64] developed PrivacyMeter, an extension that calculates on-the-fly a
privacy score for each visited website based on privacy threatening features retrieved from the
website. The HTML5 APIs considered by the last described study, to identify possible danger-
ous websites, do not include any mobile-specific function and the extension is not tested on any
smartphone.

2Firefox WebExtensions API: https://developer.mozilla.org/en-US/Add-ons/WebExtensions Chrome exten-
sion API: https://developer.chrome.com/extensions

20

https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.chrome.com/extensions

Chapter 3

Approach

The study consists of three main steps. First, we selected the mobile-specific functions among
all the ones introduced with HTML5, filtering the list available at mobilehtml5.org [6]. Then,
we found a procedure to intercept the selected JavaScript methods when called by websites in
the mobile browser and we tested it on an expressly created dummy website containing all the
considered APIs. After testing that, we verified that for each call in the browser the corresponding
Android system function to retrieve data from the device is launched. Last, we automated this
procedure making the smartphone autonomously visit all websites from the Alexa top 1 Million
list and save the log for each one containing information related to the APIs called.

3.1 HTML5 Mobile Functions selection

First of all, we identified the functions used to retrieve mobile-specific data among the HTML5
WebAPIs[6]. We considered functions as mobile-specific if they can be always used in a mobile
device, while can be useless in desktop configurations. For instance, the microphone is always
available in smartphones while it is not included in all computers (e.g. most of the workstations
do not have any microphone when bought). The WebAPIs we considered communicate with the
smartphone in two different ways. First, the method is explicitly called and the communication
with the device happens in one shot. Second, through events, means that properties of a class are
managed by an event listener. This happens when data is retrieved by sensors that continuously
fire events to update the system. Given that, to be more clear, JavaScript methodologies that
will be considered in this study are divided into two groups. One shot methods:

• Geolocation: in Geolocation interface there are getCurrentPosition method which
retrieves one-shot position of the device and watchPosition method. The latter is similar
to the previous one, but now a process to continously watch the location is launched and
its PID is returned.

• Vibration: method vibrate from class navigator makes the phone vibrate with the
possibility to customize the length and the intensity of the vibration.

• Media Capture: in Navigator interface the method getUserMedia is used to access the
camera, the microphone or both.

Events to retrieve data are handled setting a listener and specifying the name of the event that
has to be managed. They are:

• Motion Sensor: deviceorientation event to get the orientation of the device and
devicemotion event to retrieve the acceleration along the three axes.

• Screen Orientation: change event to retrieve changing in screen orientation (portrait or
landscape).

21

mobilehtml5.org

3 – Approach

• Proximity: deviceproximity event to measure the distance between the device sensor
and any other object close to it.

• Ambient Light Sensor: devicelight event to get information about ambient light in the
environment.

Given those two substantial differences in the way we retrieve data, it was necessary to find
the best strategy not to miss any of them. It was straightforward that we needed a way to hook
into JavaScript methods, but we had to find a solution for the events. The browser, by default,
listens to all events coming from Android and whenever it happens, it fires the corresponding
event propagating the flow of information. Now, in our case, the targets for the events fired by
the browser were the screen.orientation object, for the event signaling that orientation of the
screen changed, and the window object for all the others.

There are two ways to instantiate a listener in JavaScript. First, using the addEventListener

method on the target object passing as arguments the name of the event we want to listen to and
the callback function called when events are caught. Second, it is possible to directly associate a
function with the event property of the target object.

The first case can be managed as a normal method, intercepting addEventListener and
checking that the first argument corresponds to one of the events we want to control. The second
must be managed in a different way, and it is necessary to implement a hook to register whenever
a property is accessed. We will talk about this in Section 3.3 related to the injected code.

3.2 JavaScript Calls Interception

The goal of the study is to establish whether a website can retrieve data from the device through
browsers HTML5 functions. First of all, we had to decide how it could be done. There are two
different approaches that can be followed to hook HTML5 methods. First is hooking the function
directly in the browser, intercepting methods that are called in the application consequently to a
given JavaScript method. Second is to hook externally the JavaScript functions at webpage level
injecting code that is capable to catch them and execute some code that logs it.

3.2.1 Native code interception

We followed this approach on the Android version of Firefox. The browser functions linking the
code executed in the web pages with the methods from the Android API to access the device is
done through native libraries written in C++ and integrated into the Java code. The goal is to
intercept the Java functions of the Android API and read the stack-trace, finding the link to the
HTML5 functions in the document. A stack-trace is the list of all the memory frames allocated
in the stack by routines called at a certain time of a program execution. Through that, it is
possible to start from current function and then go up until the first of the “nested” procedures
that originated the one taken into account.

The issue we faced is that the stack-trace ends with the generic Firefox thread without reaching
any JavaScript routine. At this point, we downloaded the source code and, reading it, we realized
which are the native functions used. Given that, those procedures cannot be intercepted as Java
calls, indeed we used Frida [65], a tool that after being installed in the device, and after being
instrumented by the user, is able to hook the desired native functions. Even using this tool it was
impossible for us to register when those native functions were called. The reason is that because
of the sensitivity of data that can be accessed through them, the function calls are obfuscated to
prevent malicious software from reading delicate information.

To make interception of those calls possible, it is necessary to recompile the whole browser
without hiding those function calls and then use Frida to hook them. This approach is difficult
to follow because of the complexity of the browser and because it would introduce substantial
differences with the version commonly downloaded by users. Another reason that made this
approach weak is that browser is a very complex program and it may use other ways to get data

22

3 – Approach

from the device without using the native libraries. For instance, it may use some sort of cache
to store data retrieved by the phone and use it the next time it is requested. In this case the
JavaScript function is called while the corresponding native call is not.

Summing up, this approach does not ensure that all websites exploiting mobile-specifc We-
bAPIs are found because the correspondence between the JavaScript function and the calls of the
browser is not guaranteed.

3.2.2 HTTP response interception

JavaScript functions are intercepted using a JavaScript code injection handled by a proxy server.
Each response coming from the server hosting the website passes through a Proxy Server that
injects in the document some proper JavaScript code that is used to hook the functions and to
print a message in the system log every time an interception happens. In this way what we check
is whether or not a JavaScript method is called, and, being the interception at page level, it
is independent of how the browser manages them. For this reason, this approach can be even
extended to any kind of browser.

Even if this approach seems pretty straightforward, it creates issues related first, to the exe-
cution of external code in a page that can be blocked by security measures enforced by browsers
and second to a possible interference of injected code with the page that may alter its execution.
Those issues will be discussed in Section 3.4.2 that describes how the code injection through the
proxy server happens.

3.3 Injected Code

Given the two different of ways used to gather information, described in Section 3.1, two different
hooking strategies are required. One to intercept methods and another to check whether events
are accessed. Given the difference between the two approaches, we decided to use to separate
scripts injected together in each website.

3.3.1 Hooking methods

To hook methods of an object we used a Node.js module available on GitHub called javascript-
hooker [66]. This script allows to hook any JavaScript function called in a webpage, passing as
arguments:

• object: the object containing the method;

• method: string with the name of the method;

• function: function called before the execution of the hooked method.

The script creates a wrapper around the functions and makes the wrapper substitute the original
method. Given our needs, we print a message in the log when the function is called, then the
original function is executed and at the end, it returns the original return value. In this way, we
reach the goal of minimizing the effect of injected code in the original document. In the wrapper
we can access the arguments passed to the original function, thanks to that we can intercept the
addEventListener and then check if the first argument corresponds to any of the events we are
interested in and generate the proper string in the log only if the correspondence exists.

3.3.2 Hooking properties

For what concerns the listening to events associating a function to the specific target property,
as described in Section 3.1, we need to intercept the setter of the property. Thanks to the

23

3 – Approach

Object.defineProperty(), it is possible to substitute the setter of a property adding logging
code but then there is no way to set the original value and the page will not work as expected
(the page does not listen anymore to the events which target was modified).

To avoid breaking the website, we followed a strategy seen in Chameleon [67], an open-source
browser extension available on GitHub. The approach consists of overwriting getter for properties
of each Event prototype, instead of substituting the setter relative to the target property. In this
way, every-time the property is read, our custom function is called. Following this strategy, the
website script execution is altered anyway. The reason is that the original value that the website
expects to be returned from accessing the property, can be read only before the new getter is set,
otherwise, the script enters in an infinite loop.

While this is not a problem for properties that are supposed to remain the same during
navigation on the website (e.g. properties related to display characteristics), it can be a problem
with data retrieved by sensors because it is supposed to change several times during a regular
navigation in a website. The solution adopted to limit problems related to that is making the
returned data compliant with the expected ones. For example, data regarding orientation retrieved
by gyroscope is a decimal number in a range between −365 and +365.

Another way that could be used to hook functions directly assigned to the Event property of the
target Object is to check if there is any function assigned to it after the page is completely loaded.
This result can be obtained making the document wait for the page to be fully loaded through
window.onload() event handler and, only after that, check the value of the aforementioned target
property. This approach will not be implemented because, given the lack of interception, it is not
possible to retrieve the stack-trace of the function and consequently the source file containing the
function that, as described in Section 3.3.3 is an information we need to proceed with elaboration
on the results.

Summing up, data retrieved through events, is handled in two different ways:

• listening to addEventListener on the target object checking the argument matches with
the desired event;

• defining new getters for the properties of the events prototype.

3.3.3 Getting source of the JavaScript file

Every time a website uses one of the function we are interested in, it is important to know the URL
of the JavaScript file executing it. This information can be used to check, for example, if the script
belongs to the same domain or to an external one and identify any possible association between
the usage of these API calls and a domain. To register the calling source we use the stack property
of the Error object in JavaScript. We implemented a function called getScript(), declared in
both the injected scripts that creates an Error object and then reads its stack property. The
latter is a string containing the list of functions (ordered from the most recent to the initial global
scope call) separated by a new line character. Each element contains the name of the function
and the source, separated by a @.

The number of the functions called before the searched one is fixed because we exactly know
how many routines are necessary to intercept a function. So we access the list of functions in the
proper position and then, manipulating the string, it is easy to retrieve the URL of the source file
that is saved and printed in the log as it is described in Section 4.3.

3.4 Proxy Server

Considering the approach we decided to follow and described in Section 3.2.2, we need to create
a Proxy Server, set up as a man-in-the-middle that intercepts all the traffic exchanged between
the device and the web-server.

24

3 – Approach

A proxy configured in this way is called Transparent Proxy and acts like a gateway for
the devices. To intercept in and out communications is necessary to manually configure the IP
address of the proxy in each device. After this setup the server will forward all the HTTP
requests to its default gateway granting a connection for the host. Clearly all the corresponding
responses will go through the server as well and it is in this case that the proxy is supposed to
inject the JavaScript code.

We have implemented the Proxy Server in the same private network where the smartphones
were connected using the open-source software mitmproxy [22]. This program, through the
mitmdump command, offers a powerful Python scripting API to control the behavior of the server
and to instruct it on how to modify traffic passing through it. Plus, this software has his own
certificates that can be downloaded from the official website and manually installed on the device.
In this way it is possible to make connections to the websites trusted by the smartphones exploit-
ing the HTTPS protocol. This is crucial because many of the websites that should be analyzed
enforce secure connections and traffic can be decrypted and tampered (with our JavaScript code)
only if the connection to the proxy is trusted.

Furthermore, mitmdump provides other useful options as anticache that prevents the proxy
from sending a 304 - PAGE NOT MODIFIED response, forcing it to retrieve always the page
from the web-server and ssl-insecure that allows connections even if the upstream server does
not have a valid TLS certificate. Thanks to this configuration we make our proxy server as
transparent as possible avoiding any unwanted interference with web navigation.

3.4.1 Buffering prevention

HTTP is an asymmetric communication protocol that connects a client to a server. Clients send
REQUEST packets to the server and the latter get back sending a RESPONSE containing the
content of the web page. Each of these packets is composed by a body usually carrying the
content of the page and a header that instead contains meta-data. The latter contains useful
information for client-server communication as the size and the date of the file contained in the
payload. One of those fields is named content-type and contains the kind of data carried by the
packet in the body. It can be an HTML document, JavaScript code, images etc.

The first problem we ran into was that by default mitmproxy stores in a buffer both headers
and bodies of all HTTP responses. When the visited website contains images, videos or heavy
files in general, the proxy downloads them before sending the response to the device. In this way,
loading process got stuck until all responses are downloaded and the average time spent on each
website can be very long.

To avoid that, given that we had to inject the JavaScript code in HTML documents and that
the header of each response is always buffered, we make the mitmproxy check first whether the
content-type field contains data related to HTML (identified by text/html) or not. If so, the
stream attribute of the response is set to False and as in the default case, the whole response is
buffered in the proxy, ready to be manipulated, otherwise it is set to True and the response body
is directly sent to the device preventing the server from becoming a bottleneck.

3.4.2 Injection

Python API for mitmproxy allows controlling the flow coming from the server to the device parsing
the HTTP response, giving us the possibility to manipulate the desired portion of responses. Once
the content is processed by the proxy, it checks that the body contains the HTML document and
the latter is parsed. Now a new HTML Script tag is created and inserted at the beginning of the
head section of the document.

All the code is directly injected in the head of the document (if there is one) or in the body

otherwise and is not loaded from an external source. This way to execute code in HTML document
is called in-line scripting. Thanks to this, we eliminate the time needed from the website to
download the script and the code is executed immediatly when it gets parsed from the browser.

25

3 – Approach

For this reason, we can be sure that the hooking functions are loaded before any other method,
that must be detected, is called by the page.

On the other hand, to protect users from code-injection attacks, browser enforces rules called
Content Security Policy (CSP). However, web-servers communicate to the browser whether
or not enforcing those rules through the Content-Security-Policy field contained in HTTP
RESPONSE. To be sure that the in-line injected script is correctly loaded without being blocked,
all the security tags related to CSP are stripped from the response header by the proxy through
the available HTTP manipulation API.

3.5 System calls interception

We described in Section 3.2.2 that part of the process consists in verifying that for each JavaScript
call there is an associated system call. We have already implemented a system to detect JS calls
so, for the others we exploit the Xposed framework, installing the PermissionHarvester module,
developed by Diamantaris et al. [33].

The latter intercepts at run-time all permission-protected functions writing them in the log
with a full stack trace. Even if this module intercepts many of the calls we are interested in, it
is not enough because all the functions used to retrieve data from sensors are not permission-
protected, as described in Section 2.4 and, for this reason, they are not taken into account by the
previously described module.

To integrate data gathered by sensors we searched which are the functions called whenever
a sensor is accessed by the OS and we consequently developed a custom Xposed module to hook
them [21].

Android applications cannot directly read the current value of a sensor but they have to register
a listener for it and consequently read the captured events. Each sensor can be obtained calling
the getDefaultSensor() method on a android.hardware.SensorManager object. The latter
must be previously declared specifying the name of the sensor while with the getDefaultSensor

function, a Sensor instance is created (this happens only if the corresponding hardware exists,
otherwise it returns null). Then, a listener must be registered for each sensor calling the method
android.hardware.SensorManager.registerListener() passing as one of the arguments the
Sensor object previously instantiated.1

Xposed provides a library with functions that can be used to hook non-native methods avail-
able in any package installed on the Android device, and then execute custom code before or after
them. The function we exploit is findAndHookMethod() passing as arguments: the name of the
function, the related package, the type of the arguments that the function we want to intercept
requires and the callback function that we want to be fired after the method is hooked. We use this
procedure to intercept both methods, getDefaultSensor() and registerListener() printing
on the logs the related stack trace.

To make interception possible, it is necessary that all arguments correspond to the ones effec-
tively called by the application otherwise the intercepting method will not recognize the function.
Considering that the arguments of registerListener function can vary depending on the op-
tions the developer want to specify, our module needs to hook all different combinations of values
passed to avoid the risk of losing them.

3.6 Preliminary Tests

After having identified the functions we want to log, and after having decided the best approach
to do that, as described in Section 3.1, we started doing some tests using an Android device to

1More information on sensors in Android available at https://developer.android.com/guide/topics/sensors/
sensors_overview

26

https://developer.android.com/guide/topics/sensors/sensors_overview
https://developer.android.com/guide/topics/sensors/sensors_overview

3 – Approach

Figure 3.1. The interface of the website used to test the correctness of the followed approach

evaluate the effectiveness of the methodology described in previous sections. The goal of those
testings was to check if the approach we had designed was correct and to help us in choosing
which was the best mobile browser to conduct this study on.

Among browsers available in the Google Play Store, we filtered the ones with more than
100,000,000 and then, among the remaining one, we took only the ones having enough support
at HTML5 APIs according to the website we consulted to obtain them [6]. Among all of them,
the ones with a wider support for those APIs are Google Chrome and Mozilla Firefox.

The first tests were done on a dummy website. It was running on a local web-server, powered
by Node.js, and was developed expressly to test our strategy. It is structured with an index.html

file to create a very basic front-end interface that prints data retrieved by the device and that
gives the possibility to call a function after tapping a button in order to better analyze what
happens when a call is done. JavaScript code is in a separate file called webapis.js that contains
the methods we are willing to intercept on public websites. A screenshot of the website running
on the device used for testing can be seen in Fig. 3.1.

During the study the demo website was useful for several reasons:

• we could check whether the functions were actually supported by the browser;

• we could control if our script could actually hook into functions and properties access;

• we could verify that proxy server and code injection was working properly;

• we could check if the Android API was actually used by the browser to get data requested
by the website.

To make this website as similar as possible to a real one, we created a self-signed certificate,
used to make our web-server trusted by browsers. It was necessary because both Firefox and
Chrome prevent, by default, websites not showing a valid certificate from accessing some of those

27

3 – Approach

APIs like the one to retrieve GPS location. In this case, it would have been impossible to test
functions belonging to Geolocation API. The local web-server listens to two different ports, one
to serve the client with an insecure connection and the other to enforce the secure one.

When visiting a website we would take into account all calls done from the website, including
JavaScript files contained into iframes. Those elements in the HTML documents are used to
represent, given the URL, an entire web-page inside the first one. Our approach automatically
hooks methods even in the iframes because packets containing them go through our proxy server
that treats them as regular HTML pages, injecting code into them too.

3.6.1 Results

Together with the demo, we visited also other websites offering features exploiting the APIs we
are interested in, to spot possible issues with our approach, but we did not find any issue. Those
tests confirmed also the information about browser support to the WebAPIs that we acquired
from mobilehtml5.org [6]. Plus it proved that injection of code using a man-in-the-middle proxy
works fine both for secure connections and not and that, after visiting websites several times, the
injected code is always executed before the code belonging to the page. Furthermore, whenever
visiting websites containing iframes all the calls are regularly recorded and it is possible to identify
them thanks to the portion of the log containing the source file.

3.6.2 Why Firefox

Preliminary testing phase was executed on both browsers (Google Chrome and Mozilla Firefox)
keeping the logs. In both of them debug logging could be enabled in the settings menu and the
logs could be filtered by the Android system logs through specific tags that are chromium for
Google Chrome and GeckoConsole for Firefox. The hooking system, being inside the web-pages
and not browser-dependent as explained in Section 3.2.2, works fine for both browser (taking into
account the supported methods only described in mobilehtml5.org [6]).

Besides that, we looked at functions of the Android API called by the system to provide data
to the browser and we checked the correspondence with the related system functions. What we
did was visiting the dummy website, calling the JavaScript methods and see what was registered
into the log filtering only the functions related to the system. It would be possible after that to
check which are the functions used by the OS to communicate data to the browser.

While it was possible to find this link on Firefox for all the considered JavaScript functions,
it was impossible to find a pattern in Google Chrome. For the best of our knowledge, this
happens because Chrome relies on Google Play Services to access the information managed
by them. They are a collection of individual services introduced by Google introduced in 2012,
designed to limit dependencies of application from devices. They are an interface that continu-
ously communicates with the hardware for retrieving and storing information. Given that, they
provide a unified client interface that applications can use to gather data they need. Considering
the method that we are using to get Android calls and that is discussed in Section 3.5, there is
no possibility to hook into them and is not even possible to intercept communication between the
Play Services and the interface in the application.

On the other hand, Firefox does not use Google Play Services, but data is directly read through
the Android API calling the functions that can be read by logs. This is the main reason why we
continued our study focusing only on Firefox.

28

mobilehtml5.org
mobilehtml5.org

Chapter 4

Web Navigation Automation

Once the environment was all set we started our large-scale testing, visiting the most popular
websites taken by the Alexa top 1 Million list. In this chapter, we discuss the methodologies
used to programmatic visit them and save the logs of each website organizing the results to be
automatically elaborated. For each website, the interaction of the user must be simulated so
that each website is navigated to discover even functions that are called only when a sub-page is
reached. Everything is managed by a program we implemented and that for sake of simplicity we
will call FFAutomator.

Given the huge amount of websites that must be visited, we used four smartphones, all of
them with the same Android version installed (7.1.2) and with the same Firefox version (59.0)
in order to have results unbiased by the phone they were retrieved from. Three of them are LG
Nexus 5X and the other one is a OnePlus One.

4.1 Interfacing smartphones with the computer

The smartphones used for testing must be controlled by the computer that acts like a user
sending commands to them and at the same time collects the information contained in the device
log. The Android SDK offers a command-line tool called adb that offers a complete interface to
communicate with the phones.1 This tool instantiates a client on the computer for each connected
device (identifiable thanks to the serial number of the phone). Each client sends commands to the
adb server which is started on the computer after the first run and that is in touch with the adb
daemon (adbd) running in the background on each device and that effectively executes commands
on it.

Having several devices connected at the same time at the computer, it is possible to select
which one is affected by the adb command using the -s option followed by the device serial
number. The adb functionalities we used in our study are:

• adb logcat: prints on the command line the current complete log of the device with the
possibility to increase verbosity, printing, for example, the date and time of each log.

• adb shell: creates an interactive shell on the phone. This command can still be used in a
non-interactive way sending single commands. This function opens to a variety of requests
that belong to Unix-like shell (e.g. kill to send signals to a process) or to the phone-
specific shell (e.g. am to start the activity of an application). Moreover, is possible to run
any command with super user rights placing su before the command string.

1https://developer.android.com/studio/command-line/adb.

29

https://developer.android.com/studio/command-line/adb.

4 – Web Navigation Automation

On the other hand, for what concerns communication between the computer and Firefox, there
is not any interface that can be exploited. For this reason, any task that the browser should do
(e.g. close a navigation tab or clean the cache) has to be executed simulating the gestures of a user.
There are several techniques to do that and we will discuss them in Section 4.2. Consequently,
there is no way to make Firefox send messages to the client. For this reason, the only possibility
for the FFAutomator to be aware of what is happening in the application is reading the log of
the latter.

Clearly, this methodology opens to several issues for what concerns synchronization. Logs
in Android are stored in four different buffers (depending on which part of the system originated
them) before being written in the system files. For this reason, depending on how much the
system is exploiting the buffers, there may be an unpredictable latency between the origin of the
log and when it is readable through the adb logcat command. Techniques adopted to mitigate
this issue are described in Section 4.5.

4.2 Instrumenting Touch Gestures

As explained in Section 4.1, the only way to control what happens in the Firefox application on
the device is through the simulation of touch gestures and taps. These interactions are needed for
two different aims:

• simulating user navigation on each website randomizing gestures that are commonly done
by a user for navigation;

• interacting with the options and the menus of the browser.

According to Keinanen at al. [68] more than a half of the gestures used in web-navigation
are single taps and swipes. Other multi-touch interactions, as pinch-to-zoom, are used for the
convenience of the user when reading small texts or tapping on small buttons but they are not
necessary to fully navigate a website and excluding them from the simulated touch events does
not limit the ability to visit all sub-pages of a domain.

4.2.1 Interaction with the device

The most important requisite of the commands used to interact with the device is that the type
of gesture and the coordinates where it happens must be totally under control of FFAutomator
because they have to recreate a well-known chain of actions to obtain a result.

input The adb shell tool offers the possibility to send touch signals using the command

$ adb shell input <type_of_gesture>

where type of gesture can be a tap, aswipe or the code corresponding to the key available on
the device. Depending on the gesture, it requires other arguments. For a single tap it is necessary
to add two integers corresponding to the coordinates of the screen where the tap should happen
or, for the swipe, two couples of coordinates are requested. They represent the starting point and
the end-point of the gesture, plus an integer indicating the time length of the scroll expressed in
milliseconds (ms).

The input command of the Android shell is a Java application belonging to com.android.commands
package. 2 It works at high level in the OS, and two executions of it cannot be executed back to

2Code available at: https://android.googlesource.com/platform/frameworks/base/+/android-
7.1.2 r36/cmds/input/src/com/android/commands/input/Input.java

30

4 – Web Navigation Automation

back because of the substantial time frame (1-2 seconds) elapsing between them. This amount of
time is not acceptable both for navigation and interaction with browser given our need to use the
minimum amount of time for each website, to run our tests on as many websites as possible. Using
input program, the touch events are injected at Java level communicating with the InputManager
API. [69]

sendevent Another way to inject user gestures into the device is, instead of operating at high-
level (Java level), manipulating the system at low-level. Android OS is based on Linux kernel
and inherits from it lot of features at system-level [70]. Input management is an example of this
inheritance. When the user interacts with the touchscreen, the latter generates events that are
written in a device file in /dev/input folder. Then, they are decoded by the drivers in the Linux
kernel and sent to the higher level of the system. 3

Events are sent to the kernel with a standard format consisting in four fields:

<device_file> <type> <code> <value>.

It is important to clarify the difference between an event and a gesture. The first is a single
interaction with the hardware while the second is a chain of events that is meaningful for the
system and that recreate a gesture.

As an example, this is a series of events corresponding to a single tap on the screen, that can
be retrieved at run-time thanks to the getevent command in the Android shell:

/dev/input/event0: EV_ABS ABS_MT_TRACKING_ID 00001006

/dev/input/event0: EV_KEY BTN_TOUCH DOWN

/dev/input/event0: EV_KEY BTN_TOOL_FINGER DOWN

/dev/input/event0: EV_ABS ABS_MT_POSITION_X 000002ec

/dev/input/event0: EV_ABS ABS_MT_POSITION_Y 00000434

/dev/input/event0: EV_ABS ABS_MT_PRESSURE 000000c0

/dev/input/event0: EV_ABS ABS_MT_TOUCH_MAJOR 00000005

/dev/input/event0: EV_ABS ABS_MT_TOUCH_MINOR 00000003

/dev/input/event0: EV_SYN SYN_REPORT 00000000

/dev/input/event0: EV_ABS ABS_MT_TRACKING_ID ffffffff

/dev/input/event0: EV_KEY BTN_TOUCH UP

/dev/input/event0: EV_KEY BTN_TOOL_FINGER UP

/dev/input/event0: EV_SYN SYN_REPORT 00000000

It is possible to see that the device file corresponding to the touchscreen is /dev/input/event0.
This chain of events is the same for all the gestures of same category. The parameters changing
are:

• the tracking ID at line 1, that is a parameter used in multi-touch devices to handle different
touches on the screen at the same time;

• the coordinates on the screen, at line 4 and 5;

• the pressure of the finger on the screen at line 6.4

The sendevent command, available in Android, allows injecting an event at the time. Sending
the right sequence of events, back to back, it is possible to inject entire gestures. The requested
arguments are the same retrieved by getevent but they must be decimal numbers instead of
hexadecimal. To find the exact chain of events needed to recreate a gesture we run the getevent
while doing the desired action on the smartphone. The shell saves in this way the dump of

3Android input documentation: https://source.android.com/devices/input/#input-pipeline

4More information on the events are available in the official documentation at https://www.kernel.org/doc/

Documentation/input/event-codes.txt

31

https://www.kernel.org/doc/Documentation/input/event-codes.txt
https://www.kernel.org/doc/Documentation/input/event-codes.txt

4 – Web Navigation Automation

the generated events that, after being converted to decimals, can be used as parameters. Thus,
modifying the parameters regarding the coordinates on the screen, it is possible to recreate the
action we want on the device.

Unlike the input Java program, sendevent is a C program and the shorter execution time makes
it more suitable for our needs.

4.2.2 Simulating navigation

The aim of the FFAutomator is to scrape information from websites simulating the user naviga-
tion. To do that, we had two possibilities:

• use tools designed to do fuzzy testing on Android apps;

• use one of the input simulation described in Section 4.2.1 to send gestures with random
coordinates.

Monkey tool The monkey is a command-line tool included in the Android SDK that helps
the developer in testing application on devices with the technique of fuzzing.5 The latter is
a procedure used in software testing that consists in stressing the software sending a stream of
inputs while logging its behavior, trying to discover as many bugs as possible. We can exploit
this technique to stress-test the websites trying to execute as many JavaScript scripts as possible.

The monkey tool is a pseudo-random generator of events thus is possible to set a seed to recreate
always the same sequence of inputs but it is still possible to send anyway random gestures every
time, that is what we wanna do given that we do not want to discover any bug but only to explore
the content of websites. Other options of the command allow to select the target application, that
in our case is Firefox browser, the number of events that the monkey injects and even the delay
between a gesture and the following one. This is important to give to the website the possibility
to load a possible new page or to render a part of the current one after scrolling. It is also possible
to control the kind of the injected gestures. We can exclude, for example, interactions with the
buttons of the smartphone (e.g. the volume rocker) or with the navigation bar of Android. On
the other hand, the control we have on the tool is limited to the options described above and it
creates the following issues:

• There is no way to control in the tool the ranges of coordinates that the Monkey uses.
Given that, touch gestures are not confined to the web page and they can end up in the
menus and interfere with the navigation. It is possible to mitigate that creating a dummy
application that runs in the background creating a fictitious activity over the areas that
must not be touched by the FFAutomator, that catches all the touch events. Even if we
tested this approach and it was working we noticed unexpected behaviors of the browser
given by interaction with “prohibited” areas.

• Taking into account the differences between events and gesture, that is explained in Sec-
tion 4.2.1, the Monkey sends a stream of random events that compose e gesture. For this
reason, there is no possibility to isolate single gestures. Having the possibility to send single
actions is very important because allows checking the response of the website to them. We
will describe this aspect in Section 4.5.

Randomizing single input It is possible to simulate the user navigation by sending a se-
quence of single gestures using one of the methods described in Section 4.2.1, generating random
coordinates every time. We tried that using the sendevent command for the reasons described in
Section 4.2.1. What we had to do is call the sendevent method changing the arguments related
to coordinates.

5Documentation can be found at https://developer.android.com/studio/test/monkey

32

https://developer.android.com/studio/test/monkey

4 – Web Navigation Automation

To simulate swipes we proceeded in the same way we did for taps and we realized that swipes
are composed by repetition of same events, so we created a “module” and clearly, in each module,
their coordinates get closer to the end-point of the action. We can consider each module as a step
of the pointer from the starting point to the final one. The more steps we introduce the longer
will be the time to recreate a gesture and thus the swipe will be slower. We want them to be as
fast as possible but using not enough step can make the gestures fails. To find the right trade-off
we calculate the distance between the starting-point and the ending-point and we divide it into
steps depending on the length with the goal to create every time steps of the same length.

4.3 Logs Structure

When the injected code described in Section 3.3 intercepts the execution of functions that retrieve
data from the device, or the access to mobile-specific properties, has to write a report on the
logfile. Those lines in the logfile must be identified by a specific tag to make the elaboration of
the results, at the end of the scraping process, easier and more efficient. Furthermore, we want
them to contain all needed information to facilitate post-processing as well.

The logs are printed using the console.log() function provided by JavaScript. In Firefox for
Android, all the logs generated by that function are saved in the Android OS system log with the
GeckoConsole tag. Logs from our system will be categorized with the other ones generated by
the browser.

The pieces of information we want to save in the log are stored in a CSV file, with fields
separated by a semicolon. They are:

• Timestamp: it can be useful to understand if data is accessed at loading time or after
navigation in the website. It is automatically registered by adb logcat command adding
-v time option;

• Type of access: we want to differentiate the data accessed through methods and the one
accessed through properties, plus as it will be better explained in Section 4.5.2 we want to
use a specific tag for calls requesting explicit permissions by the user. The used tags are:

– MWEBAPILOG for mobile-specific methods;

– PROPMWEBAPILOG for mobile-specific properties;

– MWEBAPILOGP for permission requesting methods.

We choose the tags to have a common root (MWEBAPILOG), to have the possibility to
choose how fine grained the research can be.

• Identifier of the function called or property accessed: we used the Object.property
notation to indicate the name of the function or of the properties accessed by the website;

• Domain of website: is the current domain of the website that requests the data, it is
retrieved through the location.href property of the window object;

• URL of the source: the source-file containing the JavaScript code used to gather in-
formation from the device. It is obtained using the getScript() function described in
Section 3.3.3;

• User Agent: user agent is important to register that the interception happened from a
mobile device. It indicates the used Android OS and Firefox version.

Summing up, the structure of the log is the following:

<timestamp> GeckoConsole: <type_tag> <domain> <source_file_url> <user_agent>

and this is an example of the output we expect in the logfile:

07-11 16:13:54.864 I/GeckoConsole(6872):

MWEBAPILOGP;getCurrentPosition;us.justdial.com;

https://us.justdial.com/mnbldr/d=&b=&g=hmpgjs&ver_=n4.50;

Mozilla/5.0 (Android 7.1.2; Mobile; rv:59.0) Gecko/59.0 Firefox/59.0

33

4 – Web Navigation Automation

Algorithm 1 FFAutomator core

1: procedure FFAutomator core
2: do
3: current url← read next line of the file containing websites
4: Create new logfile
5: Redirect the smartphone log output to logfile
6: Start Firefox activity on the smartphone with current url
7: current time← get current time
8: timeout time← current time + timeout
9: do

10: Simulate a user gesture
11: current time← get current time
12: while current time ≤ timeout time
13: Close logfile
14: Download files containing functions
15: Close tabs and clean the cache and the cookies
16: while End-of-file is reached
17: end procedure

4.4 The Program

FFAutomator is the program we wrote to handle automatic visit of websites to harvest information
from them. We decided to use Python3 to develop the program because of the wide range of
available libraries and modules and because of the flexibility in interaction with the Linux Shell.
As described in Section 4.1, this is particularly important because we are mostly using Linux shell
commands to interact with the devices. To do that, we use the subprocess module of Python.
It contains functions used to execute external programs from the current procedure with the
possibility to regulate their execution. It means that we can control the input/output redirection
and if the call is blocking or not.

4.4.1 Structure

The pseudo-code contained in Algorithm 1 shows the core structure of the program with the main
steps composing it. The program is based on two main loops:

• the external loop is used to read the Alexa Top 1 Million list file line by line. Each line
of the file contains the name of the website preceded by a number representing its rank.

• the internal loop sends a touch action to the device at each iteration to simulate the navi-
gation of a real user.

In the next sections, we analyze the different parts of the Algorithm 1 explaining the techniques
used to complete each task.

4.4.2 Visiting websites

In Android, all activities, regardless of their status, are handled by the Activity Manager. The
latter can be instrumented using the am command of the Android shell. Our goal is to create a
new tab in Firefox browser that contains the domain of the website that we want to visit. To
do that, we use the start command (belonging to the Activity Manager API) followed by those
options:

• -a android.intent.action.VIEW to specify that the activity we are willing to start is a
view;

34

4 – Web Navigation Automation

• -n org.mozilla.firefox/org.mozilla.gecko.BrowserApp describes the component we
want to be launched with the activity, preceded by the name of the package;

• -d <domain> used to define on which data the activity is acting. In our case, it represents
the string that will be written in the address bar.

When launching a new view of the browser, a new tab is opened. Now, a huge amount of
websites must be taken into account and each open tab requires allocation of resources by the
phone. For those reasons, it is required that, after a website is browsed, all tabs are closed. We
manage this, sending touch gestures to open the tab menu and the selecting close all tabs option
from it.

4.4.3 Logs saving

To facilitate data processing, we decided to organize the logs in separate files, one for each website.
As it is possible to see in Line 4 of Algorithm 1, when a new domain is read from the list, a new
file is created by the program. The logfile is named after the domain of the website as it is read
by the script. In this way, we can be sure that each log is unequivocal and there is no risk of
overwriting them.

Once the file is created, to redirect the output of adb shell logcat to the logfile, the program
creates a new process in background using the subprocess.Popen function that executes the
Linux shell command adb shell logcat. Plus we set the created file as the standard output
(stdout) of the process. The latter and the main program continue running in parallel so the logs
are continuously written on file while the program interacts with the device. Once the website
navigation is over, the process in the background is killed using the value returned by the function
that created it and the file that contains the log is closed by the program.

To ensure that each file contains only the logs generated by the device while the website was
browsed, we clean all the logging buffers on the device thanks to the command adb logcat

-b all -c. An issue we faced, is that there may be a delay between the launch of the cleaning
command and the effective flushing of buffers. This happens especially when the adb server on
the computer has to manage several devices. To bypass this problem, after having launched the
cleaning command, we read the first lines of the new logs and we compare them with the ones
collected for the previous website. If they are the same it means that the log buffers were not
properly cleaned, so we make the program wait 2 seconds and repeat the operation. In this way,
we ensure that each file contains only logs from the associated website.

4.4.4 Number of gestures injected

The internal loop in the program, that can be seen from lines 9 to 12 of Algorithm 1 has the
purpose of simulating navigation in the websites. Given the huge number of domains we have to
explore, it is important to find the minimum amount of time that each domain should be visited,
to catch all the functions we are interested in. In this way, we can maximize the number of
websites visited without making the quality of the results worse.

There are two different ways to simulate web navigation:

• injecting a fixed number of gestures for each website, guaranteeing that each page can be
visited with the same depth;

• deciding how much must be time spent on each page and then set a timeout for navigation.
In this case, we don’t know how many gestures are sent but we are sure that each page will
be explored for the same amount of time.

To decide which is the best approach, we tested both methodologies on the same websites
and then we analyzed the results. We run the program on the first 750 websites with the goal
of navigating each domain for around 30 seconds, considering that there is also a overhead given

35

4 – Web Navigation Automation

by cleaning data related to the old session and by some checks that will be discussed later in
Section 4.5.

We started with the first alternative, injecting 60 complete gestures in each website. Each page
was visited for 47 seconds (including the overhead described previously) and the websites using
potentially dangerous calls we identified were 48. Then we introduced a timeout of 30 seconds
for each website and we repeated the experiment on the same websites. The average time needed
for each website was of 37 seconds while the number of actions injected decreased to an average
of 40. After all, results remained the same with 49 websites identified. Results are summed up in
Table 4.1.

Table 4.1. COMPARISON BETWEEN RESULTS ON FIRST 750 WEBSITES

60 gestures injected 30 seconds timeout

Websites identified 48 49
Avg time on each website 47 s 37 s
Avg number of gestures injected 60 30

A slight difference in the results is expected and acceptable because the loading of a website
can fail for several reasons that will be explained deeply in Section 4.5. For now is enough to say
that the results found with the two different approaches can be considered similar. From them,
we can infer that most of the websites retrieve the data we are interested in at loading time or,
at least, after a short navigation. So, there is no point in injecting a big number of gestures and
the best trade-off between the page exploration and time elapsed in visiting a website is using a
30 seconds timeout.

4.4.5 Cleaning the environment

After every website is visited, it is necessary to clean all the data related to it. It is important to
avoid any interference between different websites. For example, it may happen that two domains
redirect to the same website and so, the second time, it is retrieved by the cache of the browser.
This is a behavior we want to avoid. Our goal is to bring the browser at same initial conditions
for all websites in order not to make browsing on a page being influenced by any previous one.

To ensure that, we clean all private data saved by the browser after each navigation through
the settings →Clear Private Data entry in the options menu. The position of the entries in the
drop-down menu is fixed and does not change while using the program, so it possible to control
it automatically by sending taps at the specific coordinates.

After testing websites we realized that the application got stuck after processing the first few
websites. Even if the program continued working, no websites were loaded into the browser and
obviously, no function was identified and registered. We do not know why this happens but we
can assume it is caused by an increased usage of RAM in the device that causes the application
to block. Plus, after long testing, it may happen that browser crashes while visiting a website,
opening the dialog to report the error to Mozilla. To avoid these two faulty behaviors, we realized
that it was necessary to close the app so that the process is killed and the RAM cleaned.

The first approach to solve this problem consisted of killing the process through the Android
shell command kill. In this way, we solved problems regarding crashes but the application con-
tinued getting stuck after visiting a bunch of websites. Given that, we assumed that when we kill
the process through the shell, the associated activity did not get removed by the list of recent ap-
plications in multitasking menu. To bring the device as much as possible at the initial state, after
each website is visited and private data erased, we send to the smartphone the gestures related to
opening the multitasking menu and clearing all the activities currently open (that usually consists
in Firefox only).

As for private data cleaning, the position where actions must be executed is fixed and so it
is possible to automatically do it after each navigation is over. The necessary actions consist in

36

4 – Web Navigation Automation

tapping the multitasking button on the navigation bar for the Nexus 5X or the menu soft-button
for the OnePlus One and then tap on Clear All in the top-right corner of the screen.

4.4.6 Files saving

It is important to download the source files containing the functions we intercepted during navi-
gation. In the logfiles, the lines related to a data access detection contain the URL of the source
file as described in Section 3.3.3. Exploiting the wget command of Linux shell, it is possible to
download any element from a website, given the associated URL.

Once the logfile is written, we open it and, through a manipulation using Bash language, we
reach our goal piping the following commands:

• cat command to visualize the file;

• grep command to isolate the logs regarding the HTML functions we intercepted using the
associated TAG ;

• cut command with the the proper option to isolate the field containing the URL of the file
from the complete string;

• sort and uniq commands to eliminate the duplicates;

• wget command with arguments passed thanks to xargs directive to download them.

This is the full list of commands used:

cat <name_of_logfile> |

grep WEBAPILOG |

cut -d ";" -f 4 |

sort |

uniq |

xargs wget --quiet -P <path_of_destintion_folder>

The file is saved with the same name it is stored in the web-server in a folder named after the
website to easily search and identify them later.

The operation of downloading the sources can be long if the scripts are very big or if there are
many of them. On the other hand, it is completely independent of the navigation of the websites
because it involves only the files containing the logs stored in the computer. For this reason, to
prevent it from blocking the main operations on Firefox that are time-sensitive, we use the Popen

function from subprocess module to make it run in parallel without blocking the main thread.

4.5 Issues in automatic browsing

Once the core of the program was outlined we started some testing to figure out which are the
issues in navigation that must be faced to avoid any misbehavior in the process. Our approach
consisted of testing it and then fix the program every time a problem came up. In the following
sections we describe those cases together with the techniques we used to mitigate them.

4.5.1 Redirection to external websites

When visiting a website, we used the simulation of touch gestures to explore the document but
it happens that tapping on some links redirects to third-parties websites, belonging to different
domains. This can contaminate the results creating false positives when the original website
does not use any API of interest but can redirect to a website that uses them.

37

4 – Web Navigation Automation

The ideal scenario to solve this issue consists in making the browser communicate with the
FFAutomator to make it aware of a redirection so that it can take the proper countermeasures.
As described in Section 4.1, the only way to make the browser exchange information with the
program is exploiting the logs.

First of all, we need to allow redirection to a different website it it happens automatically when
a website is loading. This case can be handled waiting a certain amount of seconds at loading
time before starting the navigation. On the other hand, we want to detect redirection given by
touch gestures. To do that we have to control the domain of the website every time an action is
generated by FFAutomator. This is one of the reasons why we need atomicity when generating
gestures on the phone and why a fuzzer does not suit our needs, as we explained in Section 4.2.2.

RedirectionDetector module To communicate the current domain to the FFAutomator we
developed an Xposed module called RedirectionDetector that is able to recognize when something
is written in the address bar of the browser. We use the same approach followed to intercept
declaration of Sensor objects in Section 3.5. We use findAndHookMethod function in Xposed
framework to hook the onDraw method of the android.view.View class returning the View object.
The module checks if the Object caught is an implementation of android.widget.TextView and if
it is so, it must be the Firefox address bar. In this way, our code in the module is executed when
the URL in the active tab of the browser changes.

As it is described in Section 4.4.1, the URL of the next website is typed in the bar all at once
and same happens when a link is opened in a website. Given that there is no way for the program
to type anything in the address bar, the code in the module is fired only in the two cases described
above.

The code in the module then, checks whether the accessed string matches with a URL and
prints it on the log after having eventually cleaned the protocol part (http:// or https://) and
www. at the beginning. To recognize the logs, we add ‘‘REDIRECTIONTO:’’ tag before the URL.

Handling redirection From the FFAutomator side, we implement a function called checkCurrentDomain()

that extracts the last entry in the log that contains the REDIRECTIONTO tag exploiting the
following bash series of commands:

cat <path_to_logfile> | grep -a ‘‘REDIRECTIONTO:’’ | tail -n 1

and redirecting the output to a variable using the check output function from the subprocess
module. The returned string is then processed and the domain is extracted. If there is nothing
written in the address bar, an eventuality that may happen for example if the browser cannot
resolve the address because of problems with internet connection, the function returns the string
“None”.

The current domain is checked in three different moments during navigation of a website.
They are:

• after the website loading is issued by the program, it waits for a certain time for the web-
site to load (it will be discussed deeper in Section 4.5.5), and then, it retrieves the cur-
rent domain. At this point, we assume that a possible automatic redirection has already
been executed, and the address bar contains the final address. So, the value returned by
checkCurrentDomain() function is the domain that will be stored by the program as a
frame of reference to detect redirections later.

• before a gesture is injected into a website, to be sure that no action is done on a website
that is not supposed to be loaded. In case the current domain is different by the sample
one, a back action is executed on the phone to return to the correct page. Thanks to the
atomicity of the injected events we are sure that it is not possible to have more than a
redirection given by a tap on an external link in the page, for each iteration of the loop in
the program.

38

4 – Web Navigation Automation

• after the action is injected, to check if the gesture redirected navigation to another website.
This is necessary because, in the possibility that an unwanted website is browsed, it is
necessary to delete the part of the logfile that was generated while the wrong website was
loaded. To do that, we create a backup copy of the logfile as soon as the control on the
domain we make before injecting gestures is successful. In this way, we can be sure that the
saved copy is consistent. If in the control done after an action is executed, we discover that
the domain has changed, we inject back action in the device and we copy back the backup
logfile instead of the new with a rollback operation. On the other hand, if no redirection
happens, the backup file is deleted. All those operations are done exploiting bash commands
through the subprocess module.

Redirection dead end In some websites, redirection brought to pages that prevent the user
from going back, in this cases when the back action is sent to the device, instead of returning to
the previous page, the current page is reloaded. To prevent navigation from remaining stuck in
this dead end, the program sends the input to go back for two times, if after two attempts the
current domain is still wrong, we reload the initial website as it is done at the beginning.

Handling old Domain What we noticed after the first tests, is that sometimes while Firefox
is loading the new website, our module prints in the log the last domain associated with the
previously visited website. It happened at the beginning before the website is loaded, and the
current domain written in the address bar. It can be caused by the application that continues
calling the canvas method with the old value.

To overcome this annoying problem, after the visit of a website is over, we store in a variable
the last domain registered for that page. Then, we add in the checkCurrentDomain() function
a control on the old domain. So, if the current domain discovered by the method is the same as
the previous website, it is ignored.

4.5.2 Permissions acceptance

Among all the functions that can be called by a webpage exploiting the HTML5 WebAPIs, some
of them, after being called, require an explicit approval of the user through a popup on the page,
handled by the browser. Those functions are the following:

• Geolocation;

• Vibration;

• Media Capture (camera and microphone).

Accepting the usage of them is important to make the Operating System gather data from the
device and find the correspondence between the system calls and the JavaScript functions.

In the configuration options accessible in Firefox by typing about:config in the address bar,
it is possible to grant by default all those permissions. Those settings in the Android version of
Firefox 59.0 are supported only for the Media Capture API, setting the

media.navigator.permission.disabled

to true.

For what concerns the Geolocation and the Vibration APIs, the program must grant permis-
sions as soon as the dialog appears in the screen. Even in this case, the communication happens
through the logs. After doing some tests, both with the dummy website and with real ones, we
realized that the dialog always appears on the screen after the related function was called. Given
that, we have already registered in the logfile when those functions are called, and consequently
we have the information that should trigger the FFAutomator reaction, consisting in accepting
the permission request.

39

4 – Web Navigation Automation

Monitoring permission requests If the permission-related functions are called as soon as the
page is loaded, we can assume that they will be fired during the time the program waits to load the
page at the beginning. So, after the page is loaded, before injecting any action on the device, we
control if there is any function that requires any permission. To identify them, we give a different
tag to the strings in the log that represent those functions. The tag is MWEBAPILOGP and
the command used to isolate those strings in the logfile is the bash command:

cat <path_to_logfile> | grep -a ‘‘MWEBAPILOGP’’ | tail -n 1

that returns the whole line of the file. This is then processed and the type of the function is
extracted. Based on it, FFAutomator fires a function that sends touch gestures to accept the
permission as the user would.

On the other hand, for the functions that are called after the injection of a gesture, the issue is
that, if any gesture is injected on the screen while the dialog box is open, the latter will be closed
and permission not accepted. Plus, being the actions randomly injected, there is the possibility
that permissions are even declined. Thanks to the atomicity of navigation simulation, we can
check if there is the need to accept permissions before injecting new gestures. In this case, any
race condition between granting permission and reproducing user navigation should be avoided.

An issue we faced with this approach is that popups generated by the browser have always
the same width, while the height can vary depending on how long the URL of the current website
(that appears in the dialog) is. To mitigate this issue, we don’t inject only one tap on the “Allow”
button but, a series of taps, one below the other, each one far from the previous no more than the
height of the button (that is always the same), to guarantee that the right area of the display, is
pressed at least once.

To avoid that at next control on the logfile, an already considered string is taken into account
and the consequent action fired, every time FFAutomator recognizes a function that needs explicit
permissions, after accepting them, writes a dummy string in the same file. This string contains
the tag “DISCMWEBAPILOG” and nothing else. At the next checking, if no other function is
intercepted, the returned string will be the latter and the program will not start the granting
permissions process.

Errors mitigation Considering the difficulties in synchronizing the FFAutomator and the de-
vice it is possible that some delay in loading the page or in writing the logfile makes this acceptance
process fails. The only way to avoid this issue is enlarging the time waited before issuing any
action. Even if with this approach the failings are drastically reduced, the navigation for each
website will not be deep enough in the time slot dedicated for each page. For this reason, in the
approach we followed, we accept a certain number of errors, but we log all of them, in order to
reprocess those faulty websites later.

To check in which websites the program failed to grant permissions, we developed two different
functions, one for Geolocation and one for vibration (User Media does not need it because the
permissions are automatically granted by the browser), that check if those functions have been
intercepted in the last logfile and, based on that, search for the associated system calls. The latter
has been identified through the tests on our dummy website. After a website has been visited,
the program checks if in the logfile there are the permission protected functions using the usual
series of bash commands used for previous extractions of data from the files and exploiting the tag
associated to those methods (MWEBAPILOGP). If they are found, the function subsequently
checks, in a similar way, if the log contains also the Android system calls captured by the Xposed
module described in Section 3.5. If no correspondence is found, the name of the website is written
in a separate file so that it can be visited again later.

Limits in insecure connections Is worth mentioning that Geolocation function can be used
only when the website supports Secure Connections. If the connection is HTTP, our system
will detect the called function, but there will be no prompt and obviously, no Android system calls
will be registered. In the log of the browser, it is registered with a specific message when some

40

4 – Web Navigation Automation

Figure 4.1. An example of how Firefox prevents users from visiting malicious websites

functions are called but results are not retrieved because of security reasons. This is handled by
the program, searching in the logfile, if the string indicating the error in retrieving protected data
(location in our case) is present. If it happens, no correspondence is expected, so those websites
are not inserted in the file containing the faulty websites.

4.5.3 Malicious websites

What happened sometimes during navigation is that the website, even if it can be reached, it
is blocked by Firefox because considered deceptive or containing malwares. Firefox browser
helps users avoiding those pages integrating version 4 of Google Safe Browsing API since the
release of Firefox 56.

When a malicious website is visited, the screen represented in Fig. 4.1 appears to the user
and prevents navigation. For this reason we do not have to navigate into them and they can
be skipped when encountered. Google provides an API to communicate with this service and to
know if a domain is in its list of dangerous ones. 6

Exploiting that API, we wrote a function that sends an HTTP POST request to dedicated
Google server, waits for its response and finally returns True if the domain is malicious or False
if it is considered safe. Before starting visiting a website, the FFAutomator calls this function to
check if it is worth to be visited. If not, its name is added in a proper file that, at the end of the
testing operations, will keep track of all websites not visited because considered dangerous.

6More information about Google Safe Browsing API can be found at: https://developers.google.com/

safe-browsing/v4/

41

https://developers.google.com/safe-browsing/v4/
https://developers.google.com/safe-browsing/v4/

4 – Web Navigation Automation

4.5.4 Unreachable websites

A part of the websites failed to load when visited by the browser. This issue has several possible
causes that can be grouped into two main categories:

• Local network problems: this category contains all issues related to our setup. It includes
the misbehavior of the browser application on the device, a faulty internet connection in the
private network and errors at the proxy server level that can fail in redirecting traffic. It
may also happen that proxy server takes too much time to respond, inducing the browser
in a timeout.

• Server problems: it includes errors that are independent of our configuration. It includes
the impossibility in getting the web-server IP address because of DNS problems and the
unreachable server, returning a 502 - BAD GATEWAY ERROR.

The expected number of websites the browser fails to load is around the 10% of the total
websites visited. We can assume it considering the analogies between our study and the one from
Englehardt et al. [71] that, scraping information from website contained in the same list we use,
finds that percentage.

Client-side While it is impossible to be aware of server-side problems, for what concern our
local network, we noticed that, after the FFAutomator launches the activity on the device, if the
client cannot reach the server, it takes more than a minute for the browser to display the error
page. Until that, there is no URL displayed in the address bar. For this reason, thanks to the
Xposed module described in Section 4.5.1, the program can be aware if there was an error of that
kind searching for the output from the module in the log. If no string associated to the redirection
on the page is found it means that the website did not load yet. If, after an interval of time that
will be discussed in Section 4.5.5, there is not yet any output in the log, we interrupt processing
that website loading the next one and we record the name of the faulty domain in an error logfile.

Keeping track of those failures is important because, given that those errors are caused by
temporary malfunctions, it is possible to visit them later when they will maybe be reachable and
navigate them correctly.

4.5.5 Loading time

As we described in Section 4.4.4, we set a timeout before starting visiting the website and we
stop when it is over. If the available time slot starts as soon as the activity is launched, there
is the risk, especially for websites that contain plenty of contents, that most of the gestures are
ineffective and useless because are injected while the website is still loading.

We can avoid this, waiting for load event to be fired by the website. To do that we inject,
together with the script used to intercept functions, a listener to that event. When is caught,
a string with the “FULLYLOADED” tag is written in the log. FFAutomator looks for this
string in the logfile and starts browsing the page only when it finds it.

Faster loading To make loading of the websites faster, we block images loading in websites
through Firefox settings. It is possible to do that going into the about:config menu and setting:

browser.image_blocking

to 0. A placeholder is set by the browser instead of all the images in the HTML document. Images
are not necessary for the purpose of our study and there is no reason to think that blocking their
download from the server can interfere with the regular behavior of the website.

42

4 – Web Navigation Automation

Empirical approach Waiting for the complete loading of the website, in most of the cases,
requires an amount of time that is not acceptable for the requirements we set about time spent
on each web-page. What we did consists in waiting for at most 10 seconds that the website is
loaded and after that, starting with events injection. Clearly, we check in the meantime if the
FULLYLOADED tag is printed in the log and, in that case, we stop waiting and we start the
navigation.

After testing 15000 websites, we measure the time interval between the launch of the activity
and the registration of FULLYLOADED tag in the log. The average time is of 19 seconds. It is a
long time compared to our expectations but it can be reasonable considering that all connections
go through the proxy server. However, waiting 19 seconds for each website is not possible because
would require a time slot too long for each page, but not waiting means wasting most of the
time allocated for each website (as described in Section 4.4.4) while it is still loading. Plus, the
FULLYLOADED tag is written when all objects in the document are loaded but it does not
mean that the website cannot be visited in the meantime. There are cases when the page is not
completely loaded but it can be still explored with touch gestures.

4.5.6 Unhandled corner cases

While we tried to address as many issues as possible, that we discovered after doing the first
tests, there are some corner cases that we did not manage on purpose because they happened
seldom and, avoiding them, would have required a lot of time more for each page making the
approach no more suitable for our needs. Most of them are caused by the synchronization made
through the logs, as said in Section 4.1, that does not guarantee a full control over the behavior
of FFAutomator.

Two permission popups firing at the same time There is a very rare possibility when
a website asks at the same time for vibration and geolocation access. The program will accept
only the last one registered. We did not handle it for two reasons. First, this is a very remote
possibility we never encountered in the first 15000 websites and second, the domain of the websites
creating this issue is already registered in the proper logfile described in Section 4.5.2 and so can
be post-processed later.

Redirections error We noticed that sometimes the process used to recover the old logfile when
a redirection to a new website is detected, fails and we can find unwanted output in the file. Still,
redirection process works and the homepage is restored. For this reason, we can recognize those
files by processing the logs when the tests are over.

To evaluate if it was worth or not to better handle those cases we considered results from 15000
files. We developed a script that for each file extract the domain considered as the default one by
FFAutomator when processing it. To do that we read the timestamp of each line of the file and
we skip the first 10 seconds of output. Doing that we simulate the first 10 seconds the program
waits to make the browser load the page. After that, we save all the other domains registered
by RedirectionDetector module and then, every time we find a log related to a mobile-related
function, we extract the domain originating it and, if it does not match with the original default,
we control if it belongs to any of the other domains visited during navigation. Analyzing those
results we did not find any unexpected result and everything was correct. Plus it would be easy
to clean the logs removing all output logged between the unexpected domain and the restored
correct one.

43

Chapter 5

Results

In this chapter we describe the results obtained by the study. We start with a quantitative
analysis of the results, showing statistics about the number of websites we found using mobile-
specific WebAPIs. Then, we critically discuss possible issues related to the number of websites
exploiting those APIs. The results have been gathered from the first 100000 websites out of the
Alexa Top 1 Million list.

5.1 Usage analysis

Starting from the files saved by the FFAutomator program, containing raw data, we categorize
the usage of each API. So we will have as many files as many mobile-specific APIs we considered,
containing the name of the domains exploiting it, together with the position in the Alexa list.

Table 5.1. NUMBER OF WEBSITES EXPLOITING THE APIs CONSIDERED IN THE
STUDY ON THE MOST VISITED 200000 WEBSITES

WebAPIs Number of websites exploiting it

Device orientation 2115
Geolocation 1605
Device motion 1296
Screen orientation change 652
Ambient light sensor 147
Proximity sensor 140
Vibration 57
Media capture 11

6023

In Table 5.1 it is possible to see which of the APIs we considered are the most used among
the most popular websites. Among the first 200000 entries of the list, 5101 websites exploit at
least one of the considered APIs, while 766 of them use more than one at the same time. The
most used are the ones related to acceleration and orientation sensors, plus the GPS data. The
latter API is meaningful also on desktop computers. However we considered it as mobile-specific
because only smartphones have an integrated GPS receiver while, when the latter is not present,
it is retrieved not from the wireless geolocation and mac address identification.

Given that only Vibration, Media capture and Geolocation APIs, explicitly request permissions
to the user, while this is not necessary for all the others, we analyzed how many websites retrieve
information without making the user aware. Those websites are 3484 and issues related to this
aspect will be discussed in Chapter 6.

44

5 – Results

5.1.1 Correspondence with Android calls

Starting from the list of files associated to websites exploiting mobile-specifc WebAPIs we look
for traces of Android calls based on the WebAPI exploited. First of all we identified the Android
call generated by the smartphones exploiting the dummy websites we talked about in Section 3.6.
While for the APIs retrieving data using methods there is always a call accessing the Android
API, for what concerns sensors, several functions hooked through the Xposed module described
in Section 3.5 can be found.

The found hooked functions are the following:

getDefaultSensor(<Code and name of the sensor>)

getDefaultSensor(Game Rotation Vector)

getDefaultSensor(Rotation Vector)

getDefaultSensor(Tilt Detector)

orientationListener

The first function is called for all the sensor related APIs and the argument passed is the code
and name of the sensor installed in the smartphone. They are different depending on the model
of the phone. The other functions are called specific to the APIs related to the orientation and
acceleration of the smartphone and the last one is specific for orientation change.

As it is possible to see in Table 5.2, most of the calls related to sensor have a correspond-
ing system level call. On the other hand, the permission protected ones lack of the OS level
counterpart. This is because of the failures in granting permissions to the websites requesting
them.

Table 5.2. CORRESPONDENCE BETWEEN API CALLS AND ANDROID OS CALLS

WebAPIs
Websites containing

corresponding Android calls
Percentage of

consistent websites

Device orientation 2093 99%
Device motion 1288 99%
Screen orientation change 652 100%
Ambient light sensor 147 100%
Proximity sensor 139 99%
Permission-protected APIs 1126 65%

5.1.2 Distribution

The distribution of the websites using mobile-specific APIs among the first 100000 entries, is
not uniform. The number of websites decreases, together with the popularity of the domains.
This trend can be seen in the histogram in Fig. 5.1, where, in the first 5000 websites, the number
of websites using the considered APIs is more than double the ones in the last chunk from 195001
to 200000.

A comparable evolution can be seen in the histogram in Fig. 5.2 showing only APIs that are
not permission-protected. A possible reason for this behavior can be found in the mobilization of
websites to guarantee a better experience to the users using smartphones. Given that, once the
server knows the client is a smartphone, can load scripts to access data that would be useless to get
with desktop configurations. Last, in the representation in Fig. 5.3, it is clear that after the first
slots, the percentage of websites is almost uniform. This is probably caused by the exploitation
of Geolocation API in desktop versions of websites, even if position is not retrieved by the GPS.

45

5 – Results

Figure 5.1. The histogram representing distribution of websites using mobile-specific WebAPIs

46

5 – Results

Figure 5.2. The histogram representing distribution of websites using mobile-specific
WebAPIs based on sensors

47

5 – Results

Figure 5.3. The histogram representing distribution of websites using mobile-specific
WebAPIs requiring user approval

48

5 – Results

5.2 Sources of the calls

From the collected logs we deduced there are three different sources of scripts exploiting the
mobile-specific WebAPIs. They are:

• First-party website: files are contained in the same domain of the website. We can assume
that those libraries are loaded by the visited domain and do not rely on any external library.
In this case, the URL of the current page and the one hosting the file are the same.

• Third-party website: files are loaded by an external sources but in the original domain.
In this eventuality the URL is the same while the path of the document containing the
JavaScript code belongs to a different domain.

• iFrames: files are loaded by an iFrame. The latter renders an external webpage inside the
first one. In this case, injecting the code directly in the element, it is treated as a regular
website. For this reason both the registered URL and the path of the source belong to
the same external domain. To discern this case from a redirection of the visited domain to
another one, and to make manage eventuality of not handled redirection, described in Sec-
tion 4.5.1, we check if the URL is recorded by our Xposed module used to detect redirection.
If it is so, we do not consider the log as originated by an iFrame.

5.2.1 iframes

As we explained in Section 3.6, we collect all the calls executed by every element of the website,
including iframes. In the logs we save the domain of the source of the page gathering information.
Saving the URL contained in the address bar in the logfile, we know exactly which is the current
page and the domain of the source. Thanks to those pieces of information we save, we can figure
out whether an API is exploited by the DOM or by an iframe.

We found that 946 websites out of 5101, contain iframes that use WebAPIs to access smart-
phone specific information. Among them we searched if domains contained in the iframes ap-
peared in different websites. The two most frequent domains are related to online media-players
and they sum up to 428 consisting in 45.2% of pages containing external websites collecting data.

5.2.2 Analysis of sources

Websites collecting information from a third-party source (including both iFrames and external
files) we found that 40 external domains collect mobiles-specific information in 2514 websites,
that is the 49% of all the websites we registered. Analyzing them, we found that they offer service
for media-players and advertisement and they mainly collect information from sensors about the
orientation and motion of the device. Considering only the sources that appear in more than
50 websites, we analyzed the category of the offered service and the type of data they collect,
summarizing the results in Table 5.3. Analyzing the content of the latter, in the first column the
domains hosting the files are listed. In the second one, there are the number of websites that
execute the external sources while in the third is shown how many among those websites exploit
iFrames to show that content. If it is so, we list the URL of the website in the frame in fourth
column. Given that few third-party domains are used in more than one third of the websites, we
analyzed the classification of them, to know the service they offer to the first-party website. We
retrieve categories of the domains through Cyren1, an online service to check that offer statistics
about domains, to allow the users to check the safeness of a website. Last, in the sixth column,
we list all the mobile-specific WebAPIs used by those domains.

It is possible to see how the services offered by third-party websites concern advertisement,
media streaming and shopping. For what concerns the used WebAPIs, they reflect the numbers

1https://www.cyren.com/security-center/url-category-check

49

https://www.cyren.com/security-center/url-category-check

5 – Results

described in Table 5.1 except for Geolocation API that is exploited only by one of them while it
is the second most popular in previous analysis. The usage of orientation and orientation change
APIs can be associated to media streaming domains that need to render the content in portrait or
landscape mode. On the other hand, most of them gather information about acceleration of the
device through the motion API and most of them offer advertisement libraries. Only one of them
read multiple sensors, getting data from proximity sensor and ambient light sensor in addition to
acceleration and orientation.

It is important to underline how one the external sources found, c.adsco.re, falls into the
category of malware. This website is not considered malicious by the Google SafeBrowsing
API and so we decided to analyze the content of script retrieving the data. It came out that the
same file retrieving information about device motion and device orientation is also responsible
for accessing information that are well known to be exploited for device fingerprinting. It uses
methods to create and manipulate canvas elements, plus it reads the properties in the next listing,
that are well known to be used to fingerprint the device.

getTimezoneOffset

HTMLHtmlElement.clientHeight

HTMLHtmlElement.clientWidth

Navigator.cookieEnabled

Navigator.doNotTrack

Navigator.mimeTypes

Navigator.platform

Navigator.plugins

Navigator.userAgent

Screen.availHeight

Screen.availLeft

Screen.availTop

Screen.availWidth

Screen.colorDepth

Screen.height

Screen.left

Screen.top

Screen.width

Storage.getItem

Storage.setItem

Window.devicePixelRatio

Window.innerHeight

Window.innerWidth

50

5 – Results

T
a
b
le

5
.3

.
S
T

A
T

IS
T

IC
S

O
N

U
S
A

G
E

O
F

T
H

IR
D

-P
A

R
T

Y
S
C

R
IP

T
S

IN
T

H
E

M
O

S
T

P
O

P
U

L
A

R
2
0
0
0
0
0

W
E

B
S
IT

E
S

D
om

ai
n

N
u

m
b

er
of

w
eb

si
te

s
h

os
ti

n
g

it

H
os

ti
n

g
th

ro
u

gh
iF

ra
m

es
iF

ra
m

e
d

o
m

a
in

C
la

ss
ifi

ca
ti

o
n

E
x
p

lo
it

ed
W

eb
A

P
Is

fa
st

.w
is

ti
a.

co
m

48
1

4
fa

st
.w

is
ti

a
.c

o
m

co
m

p
u

te
rs

a
n

d
te

ch
n

o
lo

g
y

o
ri

en
ta

ti
o
n

ch
a
n

g
e

f.
v
im

eo
cd

n
.c

om
31

2
31

2
p

la
ye

r.
v
im

eo
.c

o
m

m
ed

ia
st

re
a
m

in
g

co
m

p
u

te
rs

a
n

d
te

ch
n

o
lo

g
y

o
ri

en
ta

ti
o
n

c.
ad

sc
o.

re
19

9
-

-
m

a
lw

a
re

m
o
ti

o
n

o
ri

en
ta

ti
o
n

cd
n

.a
d

m
ix

er
.n

et
17

6
-

-
a
d

ve
rt

is
em

en
ts

a
n

d
p

o
p

-u
p

s
m

o
ti

o
n

g.
al

ic
d

n
.c

om
16

0
75

w
an

w
a
n

g
.a

li
y
u
n

.c
o
m

m
.a

li
y
u

n
.c

o
m

sh
o
p

p
in

g
g
en

er
a
l

lo
ca

ti
o
n

o
ri

en
ta

ti
o
n

ae
u

.a
li

cd
n

.c
om

13
9

91
m

b
es

t.
a
li

ex
p

re
ss

.c
o
m

sh
o
p

p
in

g
g
en

er
a
l

o
ri

en
ta

ti
o
n

fa
st

.w
is

ti
a.

n
et

13
0

11
6

fa
st

.w
is

ti
a
.n

et
co

m
p

u
te

rs
a
n

d
te

ch
n

o
lo

g
y

o
ri

en
ta

ti
o
n

ch
a
n

g
e

st
at

ic
.y

ie
ld

m
o.

co
m

96
-

-
a
d

ve
rt

is
em

en
ts

a
n

d
p

o
p

-u
p

s
o
ri

en
ta

ti
o
n

ap
i.

b
2c

.c
om

91
-

-
g
en

er
a
l

li
g
h
t

m
o
ti

o
n

o
ri

en
ta

ti
o
n

p
ro

x
im

it
y

cl
ie

n
t.

p
er

im
et

er
x
.n

et
78

-
-

co
m

p
u

te
rs

a
n

d
te

ch
n

o
lo

g
y

m
o
ti

o
n

d
ls

w
b

r.
b

ai
d

u
.c

om
72

70
p

os
.b

a
id

u
.c

o
m

se
a
rc

h
en

g
in

es
a
n

d
p

o
rt

a
ls

m
o
ti

o
n

se
cu

re
-d

s.
se

rv
in

g-
sy

s.
co

m
53

39
go

og
le

ad
s.

g
.d

o
u

b
le

cl
ic

k
.n

et
tp

c.
go

og
le

sy
n

d
a
ca

ti
o
n

.c
o
m

a
d

ve
rt

is
em

en
ts

a
n

d
p

o
p

-u
p

s
m

o
ti

o
n

51

Chapter 6

Extension

In this chapter we describe a Firefox extension we developed for the Android platform, to
mitigate the possible dangers for users caused by mobile-specific data gathered by websites during
navigation.

6.1 Why an extension

An extension is an easy and practical way for every user to implement functions on Firefox
without requiring any additional knowledge of the browser. Firefox developers proved to care
about the privacy of the users in many situations, addressing possible misuse of available WebAPI
to harm user security. For example, they removed the support to the Battery Status API [38]
from version 52 (2016) of the browser [40], after several studies [16, 39] proved it could be used
to fingerprint the user through different sessions.

A growing concerning about user privacy led Mozilla to regulate the access to the hardware
sensors we described in previous sections of our study in next version of the software. Until version
59 (the one we considered in our research), setting to false the device.sensors.enabled value
in about:config tab, set to true by default, would prevent Firefox from communicating with all
sensors in the device (i.e. proximity, ambient light, motion and orientation). In version 60 and 61,
in the tab described before and that can be seen in Fig. 6.1 it is possible to enable/disable only
specific sensors but all of them are set to true by default. For this reason, it is required an explicit
action of the user to turn them off and it is not possible through regular settings but requires the
access to the about:config tab. This procedure is not straightforward for less experienced users
that would probably ignore this possibility.

With versions 62 and 63 (the most recent version that can be used at the moment) that are
now respectively in beta and nightly stage, the options about the sensors remain the same with
the only difference that proximity and ambient-light sensors are disabled by default.1

Another aspect that motivates the development of an extension is that rules set in the
about:config tab are global. It means that they apply to all the tabs of the browser, with-
out giving the user the possibility to customize the options for each website. With our extension
users will have the chance to enable or disable the access to smartphone data, creating custom
rules based on the domain. Plus our extension has the goal to detect which data is currently
retrieved by the website to make the user aware of which pieces of information are accessed by
the page.

1More information about release versions of Firefox can be found at: https://wiki.mozilla.org/Firefox/

Roadmap/Updates

52

https://wiki.mozilla.org/Firefox/Roadmap/Updates
https://wiki.mozilla.org/Firefox/Roadmap/Updates

6 – Extension

Figure 6.1. The about:config tab with the options related to sensors

53

6 – Extension

6.2 Architecture

The MWAdetector extension we developed is composed of two main parts, the content script,
and the dynamic HTML page opened when the user taps on the plugin and that makes him
set different options. The idea is to make the content script run before page loads, injecting the
code to detect data retrieval and to block it depending on user settings. For what concerns inter-
cepting HTML5 APIs, we use the same scripts exploiting in the website scraping and described
in Section 3.3 with the proper modifications that will be discussed in Section 6.3.4. Most of the
functions we used belong to WebExtensions API provided by Mozilla. 2

What we want to detect The goal is to detect and possibly block all the APIs taken into
account in the previous part of the study and described in Section 3.1. Summing up we want to
intercept:

• geolocation methods

• vibration methods

• media methods (camera and microphone)

• device orientation properties

• orientation change properties

• device motion properties

• ambient light properties

• proximity properties

Clearly we need to distinguish the two ways data can be gathered, so if it is through a function
or through direct access to events properties.

6.2.1 Content script

The content script in browser extensions run in the context of each web-page but in a separated
JavaScript environment. For this reason, it is not possible to run hooking scripts in it because
they cannot be aware of functions called in the DOM of the page. To bypass this limit, we use
the content script to manipulate the DOM of the page and to inject the scripts in it, like it is
described in Section 3.4.2, for the previous study. For the latter we exploited a Firefox version
where defenses against code injection were disabled but in this case the extension must work on
browsers as they are installed by the store. Plus, disabling those measures would expose the users
to greater risks that are not balanced by benefits brought by the extensions. So, Firefox will
prevent execution of in-line scripts in websites enforcing the CSP. We bypass those limitations,
writing JavaScript code in extarnal files that will be packed together in the extension. Content
script inject them as external sources and being the extension a trusted source, their execution
will be allowed.

To make the injected code communicate with the content script whether a data is retrieved
or not, we exploit the Firefox CustomEvent API.3 The communication works in this way and
can be seen in Fig. 6.2:

2Information about WebExtensions API can be found at: https://developer.mozilla.org/en-US/Add-ons/

WebExtensions

3More information about custom events at: https://developer.mozilla.org/en-US/docs/Web/API/

CustomEvent

54

https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/docs/Web/API/CustomEvent
https://developer.mozilla.org/en-US/docs/Web/API/CustomEvent

6 – Extension

• injected-code side: whenever a call to a function or an access to a property is intercepted,
a custom event, containing a tag related to what was intercepted, is fired. The method
used is dispatchEvent(<name of the event>, {detail:<intercepted_tag>}) from the
window object.

• content-script side: in the content script, eight boolean variables are declared as false.
Then, a listener to the custom event is declared and every time an event is caught, its content
is checked and the corresponding variable is set to true. After the page is fully loaded, the
content script contains information about which data is retrieved by the website.

6.2.2 Dynamic extension page

User interacts with the extension through a dynamic HTML page that is opened in a new tab
when the user taps on the extension name in Firefox menu. It is developed as a regular webpage,
exploiting HTML, CSS and JavaScript. When the extension page is opened, we want to display,
first of all, which data is retrieved by the current page loaded. Unlikely the communication
between content script and injected code we talked about in Section 6.2.1, in this case we cannot
use events because those scripts run in different contexts. So, we exploit the sendMessage
function included in the runtime API of WebExtensions. Exploiting the latter, it is possible to
send messages from a script of the extension to another and we used it to create an asynchronous
communication between the page and the content script.

Given that the content script contains all variables associated to the accessed data, we make it
listen to a message and when it arrives, we send back a message to the extension page containing
the tags related to the APIs we are intercepting and the associated value in a JSON format.
When the extension page is opened by the user, the associated JavaScript code is executed and
the first action it does consists in adding a listener to messages and sending a dummy message
to the content script specifying the current active tab as the target. It is used only to notify the
content script that the page is loading and is ready to receive a response. When the page script
receives the information from the content script, it reads the JSON file and writes in the page the
names of the API exploited by the website.

6.2.3 Local storage

In the extension page the user can also creates custom rules for each domain that are saved in
local storage. The settings are modified by the user in the HTML page of the add-on while are
read by the content script. The content script will read the stored values and, based on them,
it will inject the code used to block a given API. Local storage can be seen as a persistent indirect
communication channel between the two parts of the extension as can be seen in Fig. 6.2. The
changing done by the users through the extension HTML interface will be immediately saved and
will become effective at the following page loading. Local storage belongs to the browser but data
is associated to the extension. It means that deleting the extension, all the saved data associated
to it is deleted. On the other hand, memory remains until the extension is installed and killing
Firefox does not affect it.

6.3 Programmer manual

In previous section we described the architecture of the extension and the approach we followed
to provide the user the possibility to customize the behavior of the program. We explained also
how the choice of the user become effective in the webpage and how the latter communicates back
to the extension which mobile-specific API is exploited. In this section we will describe how each
feature, previously described, has been implemented in the extension analyzing the components
of the software.

To build the extension it is enough to create a .xpi archive containing all the files in extension
folder that can be found in the archive containing the software developed in this study. As it will

55

6 – Extension

Figure 6.2. Diagram showing data flows in the extension

be described in Section 6.4, it is possible to directly build and move the extension to the device
executing the install.sh script contained in the same folder. The content script (injector.js) and all
the other scripts that are injected in the web-pages (detector.js, propdetector.js, jamproximity.js,
jammotion.js, jamvibration.js, jammedia.js, jamorientation.js, jamchange.js, jamposition.js and
jamlight.js) are contained in the same folder. Together with all need JavaScript files, it is possible
to find the popup folder that contains all file requested by the popup interface to run. Being the
extension page composed by two pages, it contains two couples of HTML and JavaScript files.
They are popup.html and popup.js that creates the main page and then rules.html and rules.js
for the page containing the table with the rules.

6.3.1 Permissions

The extension requires permission to run in the browser and be able to offer all the futures.
Permission must be written in the manifest.json file and are requested to the user when the
extension is installed. The portion of the manifest regarding permissions is the following:

"permissions": [

"<all_urls>",

"storage",

"tabs"

]

• all urls means that the extension can interact with all domains without restrictions;

• storage means that the extension have the access to the local storage of the browser. This
is needed to save configurations regarding the blocking rules;

• tabs is used to have access to properties of the tab. In this extension we need this permission
to have access to the current URL of the page and to send messages to the content-script.

56

6 – Extension

{"custom-settings" : { "mozilla.org" : { "orientation" : false,

"motion" : true,

"light" : true,

"proximity" : true,

"change" : false,

"position" : false,

"media" : false,

"vibration" : false } },

{ "google.com" : { "orientation" : true,

"motion" : true,

"light" : true,

"proximity" : true,

"change" : false,

"position" : false,

"media" : false,

"vibration" : false } },

"default-settings" : { "orientation" : false,

"motion" : true,

"light" : true,

"proximity" : true,

"change" : false,

"position" : false,

"media" : false,

"vibration" : false }

}

Figure 6.3. JSON format of stored rules

6.3.2 Per website customization

The user settings are stored by the extension exploiting the Firefox storage API4 included in
WebExtensions API. Through this interface, an extension can save and retrieve data from the
local storage of the browser. Information remains saved in memory through several sessions until
the user deletes it.

Each custom rule is stored in JSON format, associating to each domain the tags of all the
APIs we are willing to block, together with a boolean value that describes if the API must be
blocked or not. All the loaded domains are contained in the "custom-settings" key. On the
other hand, the default configuration is saved under the "default-settings" tag. An example
of stored data can be seen in Fig. 6.3.

This structure makes data accessible as a dictionary having as key the saved domain and as
value a similar structure with the name of the API as the key, and the boolean value containing
information about the exploitation or not as value.

Data, formatted as shown in Fig. 6.3 can be stored in memory using the set function of
Storage API. This is an example, where stat is the variable containing the set of custom-rules:

browser.storage.local.set({"custom-settings" : stat});

On the other hand, to get data from storage, the get method is used. The function returns a
Promise object. To the latter we run the then method that executes the callback function passed

4Information about storage API can be found in: https://developer.mozilla.org/en-US/docs/Mozilla/

Add-ons/WebExtensions/API/storage/local

57

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/storage/local
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/storage/local

6 – Extension

browser.storage.local.get([’default-settings’]).then(function(data){

stat = Object.values(data)[0];

if (stat == null){

// there is no data associated to ’custom-settings’ key

}

else{

// ’stat’ contains the requested structure

// and can be read here

}

}, onError);

Figure 6.4. How data is read from storage

as first argument when the promise is returned. The callback function receives as argument the
data structure and reads it. In case the key requested has no values associated, the promise will
be null. An example showing how the custom rules are read can be seen in Fig. 6.4.

6.3.3 Content script (injector.js)

The content script of the extension, named injector.js, is a JavaScript code that is mainly used
to inject the code in the website, collect the results coming from it and send the information to
the extension page.

It is declared in the manifest.json of the as it follows:

"content_scripts": [

{

"run_at": "document_start",

"match_about_blank": true,

"all_frames": true,

"matches": ["<all_urls>"],

"js": ["injector.js"]

}]

The content script has to inject code to intercept APIs usage, for this reason the code must be
injected and executed as soon as possible. document start option makes the extension execute the
script every time a page starts loading. It is executed while the DOM is loading without waiting
for the document to be ready. The script is loaded for all the domains, setting the <all urls>

pattern in matches. Plus, we set true to all frames attribute, to extend the execution of the
this script to all the frames of the webpage.

First script the script does is trying to retrieve information about the default-settings

about APIs blocking from the browser storage using code in Fig. 6.4. The retrieved data is saved
in 8 variables to be ready to use later if no custom-settings is found. If data retrieval fails,
it means that it is the first execution of the extension, so all variables are set to False and the
default-settings are stored in the browser for the first time. After that, the function injecting
code is called (activateJammer()) and then the script declares listener to receive information
about the detected APIs from the webpage, as described in Section 6.2.1.

The script listens to events properly fired by the injected script, adding proper listeners to
the window object. Every time an event is caught, it contains the tag of the API that has been
intercepted and a variable corresponding to it is updated. This is the code responsible of this
task:

window.addEventListener("getChromeData", function(data) {

58

6 – Extension

if (data.detail == ’light’)

light = true;

if (data.detail == ’proximity’)

proximity = true;

if (data.detail == ’devicemotion’)

motion = true;

if (data.detail == ’deviceorientation’)

orientation = true;

if (data.detail == ’change’)

change = true;

if (data.detail == ’position’)

position = true;

if (data.detail == ’media’)

media = true;

if (data.detail == ’vibration’)

vibration = true;

}, false);

The information related to the detected APIs, must be sent to the extension web-page provid-
ing user interface but the latter is active only when the user decide to open it. So it is necessary a
synchronization between the two endpoints to avoid injector.js to send data when the pop-up
is inactive. As we explained in Section 6.2.1, we make the script wait for a message from the UI
that notifies the activation of the webpage and then the message containing the information will
be sent. The function sending the message to the UI is the callback function of the listener used
to be aware of pop-up activation. The code is the following:

browser.runtime.onMessage.addListener(msgfrompopup);

function msgfrompopup(msg) {

browser.runtime.sendMessage({"light":light,

"proximity":proximity,"motion":motion,"orientation":orientation,"change":change,

"position":position, "media":media, "vibration":vibration});

}

The sent data is organized as a JSON file containing as key, the tag of the API and as value
the boolean variable instantiated by the content-script and with the value obtained through the
injected code.

activateJammer() This function, requiring no parameters, is used to inject in the website the
JavaScript responsible for blocking data retrieval through the APIs we considered in this study.
The function has to check if a custom-rule is set for the current domain and inject code based
on it, otherwise the default-rule applies. The function tries to obtain all the rules associated to
custom-settings in local storage, and saves the domain of the current browser tab, exploiting
the getDomain() method that will be described later, in dom variable. If both the data structure
retrieved by storage and dom are not null, the function tries to retrieve the rule for the dom among
the found rules. If it exists, the code is injected following the rule, otherwise, the injectDefault()
function is called. The latter reads the variables set at the beginning of script execution and inject
the code based on them. On the contrary, if dom is null, on the other hand if custom-settings
is not stored in memory, it means that no rule has never been applied by the user and so the
injectDefault() function is called.

Fig. 6.5 shows the structure of the function, at the end another function is called (injectDetectors())
that injects the code to detect the calls, while the code is different, the way it is injected is the
same and can be seen in Fig. 6.6. The file containing the code to inject (jamorientation.js
in this example), must be in the same folder of injector.js when the extension is built. The
function creates a new HTML element containing JavaScript code and adds as source the URL
of the file obtained through browser.extension.getURL() from WebExtension API. The created
element is insert in the root of the document that is the head of the DOM or the body if the
first does not exist.

59

6 – Extension

function activateJammer(){

browser.storage.local.get(["custom-settings"]).then(

function(data){

stat = Object.values(data)[0];

dom = getDomain(location.href);

console.log(stat);

if (dom && stat!=null){

if (stat[dom] != null){

if (stat[dom].orientation){ \\inject code

blocking data about orientation

}

if (stat[dom].motion){ \\inject code

blocking data about motion

}

if (stat[dom].light){ \\inject code blocking

data about ambient light

}

if (stat[dom].proximity){ \\inject code

blocking data about proximity

}

if (stat[dom].change){ \\inject code

blocking data about orientation change

}

if (stat[dom].position){ \\inject code

blocking data about position

}

if (stat[dom].media){ \\inject code blocking

data from camera and microphone

}

if (stat[dom].vibration){ \\inject code

blocking access to vibration engine

}

}

else {

console.log("Custom rule not found");

injectDefault();

}

}

else {

if (dom==null){

console.log("CURRENT DOMAIN NOT

RECOGNIZED");

}

else{

console.log("Applying default settings ")

injectDefault();

}

}

},onError);

injectDetectors();

}

Figure 6.5. Structure of activateJammer() function

60

6 – Extension

var jammer = document.createElement(’script’);

jammer.type = ’text/javascript’;

jammer.async = false;

var jammerURL = browser.extension.getURL("jamorientation.js");

jammer.src = jammerURL;

root.insertBefore(jammer, root.firstChild);

Figure 6.6. Code used to inject code from the content script

getDomain(url) This function is used to retrieve the domain of the page opened in the current
active tab. The URL is not enough because is not general enough, while we want a rule to apply
for all subdomains and pages of the root website. The code is shown in Fig. 6.7 The function
receives as argument the URL of the page extracted with the Tabs API. First step consists in
removing the part related to the protocol (‘‘http://’’ or ‘‘https://’’) and then is cut all
the portion of the URL after the symbols ‘‘?’’ and ‘‘:’’, in the case they are present. With
this last operation we get rid of possible HTTP queries and ports. It is now tested if the URL is
an explicit IP address, matching it with a regular expression. If the match fails, the remaining
portion of the string is split based on the ‘‘.’’ and the last two field (the domain and TLD
(top-level domain)) will compose the result. In the eventuality that the TLDs are composed by
two fields separated by a dot (e.g. co.uk), we add another field to the result. Last we control if
the obtained string contains forbidden characters. If the function is not able to build a correct
domain returns null.

6.3.4 Injected code

Detecting

For what concerns the code exploited to detect access to data, we mostly reused the scripts used
in Section 3.3, adapting parts of them to the new usage. The most important change is that
now, instead of printing a string in the log, the code sends a custom event to the content script
as described in Section 6.2.1. As opposed to the first part of the research involving scraping
information from websites, here we cannot introduce fake but compliant data as we did in Sec-
tion 3.3 because the user experience must remain untouched by the extensions. For this reason,
the approach consisting in overwriting the getters of the properties of the events cannot be
followed. On the other hand here we do not have time limits and we can wait for the website to
be fully loaded, assuming that the user will wait for the page to be completely rendered before
accessing the extension. It is possible to see in Fig. 6.8 the example of the interception of listeners
instantiated through the assignment to the related DOM property. So, the injected code executes
a method that checks if the properties that can be associated with a listener function are set
when the window.onload event is fired by the DOM. A deeper analysis of this approach can be
found in Section 3.3.

Blocking

To prevent websites from accessing data, according to user settings, we follow two different strate-
gies according to the way information is accessed:

• events: in this case we follow the approach used in the first part of the study to detect
access to properties. So, we substitute the getters for the properties of the events with
dummy functions. In this way, after the event is caught by the page listener, the accessed
properties return null. Code in Fig. 6.10 shows how properties related to the events fired
by sensors are substituted with null.

61

6 – Extension

function getDomain(url){

var host;

var dom;

var tmp;

try{

if (url.indexOf("://") > -1)

host = url.split(’/’)[2];

else

host = url.split(’/’)[0];

host = host.split(’:’)[0];

host = host.split(’?’)[0];

//support for ip addresses (e.g. local web servers)

if (/^(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.

(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.

(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\.

(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)$/.test(host))
return host;

//we wanna block whole domain so we extract last 2 fields

divide by ’.’

tmp = host.split(’.’);

if (tmp.length < 2)

throw "Domain too short";

if (tmp.length > 2){

dom = tmp[tmp.length-2]+’.’+tmp[tmp.length-1];

if (tmp[tmp.length-2].length == 2 &&

tmp[tmp.length-1].length == 2)

dom = tmp[tmp.length-3]+’.’+dom;

}

else

dom = host;

if (/^[a-zA-Z0-9-.]+$/.test(dom))
return dom;

else {

throw "Domain contains forbidden characters"

return null;

}

}

catch(error){

console.log("ERROR IN CHECKING DOMAIN CORRECTNESS:" +

error.toString());

return null;

}

}

Figure 6.7. Code of the getDomain() function

• methods: we substitute the methods used to retrieve data with dummy functions perform-
ing no action. It is possible just substituting the method property of the related Object
with an empty one. The code is similar to the one used for event properties and shown in
Fig. 6.10 with the only difference that now the whole method retrieving data is substituted
with a blank function.

62

6 – Extension

function checkifset (obj, prop){ if (obj[prop] != null){

if (prop==’ondevicemotion’) window.dispatchEvent(new

CustomEvent(’getChromeData’, {detail: ’devicemotion’}));

if (prop==’ondevicelight’) window.dispatchEvent(new

CustomEvent(’getChromeData’, {detail: ’light’}));

if (prop==’ondeviceorientation’) window.dispatchEvent(new

CustomEvent(’getChromeData’, {detail: ’deviceorientation’}));

if (prop==’ondeviceorientationabsolute’) window.dispatchEvent(new

CustomEvent(’getChromeData’, {detail: ’deviceorientation’}));

if (prop==’ondeviceproximity’) window.dispatchEvent(new

CustomEvent(’getChromeData’, {detail: ’proximity’}));

if (prop==’onuserproximity’) window.dispatchEvent(new

CustomEvent(’getChromeData’, {detail: ’proximity’}));

}

}

window.onload = function() {

checkifset(window,’ondevicemotion’);

checkifset(window,’ondevicelight’);

checkifset(window,’ondeviceorientation’);

checkifset(window,’ondeviceorientationabsolute’);

checkifset(window,’ondeviceproximity’);

checkifset(window,’onuserproximity’);

}

Figure 6.8. Functions detecting listeners instantiated assigning a function to the window property.

hook(window,"addEventListener",function() {

var array =

[’deviceproximity’,’userproximity’,’devicelight’,’deviceorientation’,

’deviceorientationabsolute’, ’devicemotion’];

if (array.indexOf(arguments[0]) >= 0){

if (arguments[0] == ’deviceorientation’ || arguments[0] ==

’deviceorientationabsolute’)

{ window.dispatchEvent(new CustomEvent("getChromeData", {detail:

"deviceorientation"})); }

if (arguments[0] == ’devicemotion’){ window.dispatchEvent(new

CustomEvent("getChromeData", {detail: "devicemotion"})); }

if (arguments[0] == ’devicelight’){ window.dispatchEvent(new

CustomEvent("getChromeData", {detail: "light"})); }

if (arguments[0] == ’deviceproximity’ || arguments[0] ==

’userproximity’)

{ window.dispatchEvent(new CustomEvent("getChromeData", {detail:

"proximity"})); } } });

Figure 6.9. Function used to intercept methods called by the webpage

6.3.5 Extension pop-up

The extension pop-up is developed as a regular webpage. It is built using HTML5, CSS and
JavaScript. When it is opened there is an homepage and from this other sub-pages can be visited.

63

6 – Extension

Object.defineProperty(DeviceOrientationEvent.prototype, ’absolute’, {get:

function(){} });

Object.defineProperty(DeviceOrientationEvent.prototype, ’alpha’, {get:

function(){} });

Object.defineProperty(DeviceOrientationEvent.prototype, ’beta’, {get:

function(){} });

Object.defineProperty(DeviceOrientationEvent.prototype, ’gamma’, {get:

function(){} });

Figure 6.10. Injected code used to substitute the getters to DeviceOrientationEvent properties
with blank functions returning null value

In our extension, the pop-up consists in two pages. The first shows the user the results of analysis
on the current webpage, displaying the detected APIs, and allow him to modify the default settings
and create new rules for what concerns blocking them. The second page, that can be reached from
the first one, contains a table with the currently set rules and allows the user to delete them. This
section will focus on the scripts executed and not on the HTML interface that will be described
in Section 6.4.

Main page (popup.js)

This script is executed when the popup page is loaded, that is when the DOMContentLoaded
event is caught. At this point, the script updates the information about the blocked calls on the
UI calling, the updateBlockedCalls() function. Then, it adds listeners to events fired by HTML
page that are controlled by the user. They regard:

• adding a new custom rule or modifying an existing one (customsubmission());

• modifying the default rule (defaultsubmission());

• retrieve the domain from the current active tab (getCurrentDomain());

Those functions are described in next paragraphs.

After having set those listeners, whose callback function will be discussed later, the page sends
to the content script an empty message to notice it that the popup has been loaded, as described
in Section 6.2.2, together with the message sending, the URL from the active tab is retrieved,
elaborated through getDomain() function and stored in a global variable (named domain). Before
starting the communication with the content-script, the page sets a listener to catch the response.
When the latter is received a callback function is executed. This function parses the message,
extracting the tags of the APIs that are exploited by the active tab and saving the information
in boolean global variables, one for each API. The data are used by the function to write in the
HTML page of the pop-up the name of the exploited APIs. After that, the default-settings

are retrieved by the storage and the part of the page regarding the default rule is updated. The
code is shown in Fig. 6.11. Information are displayed to the user writing it in a paragraph element
for what concerns the detected APIs and flagging the checkbox in the menu used to change rules.

updateBlockedCalls() This function is used to update the list of the APIs that are blocked
for the current website. They correspond to the default rule or to the custom one whet(her it is
set. If the custom rules exists, also the checkboxs in the corresponding menu will be flagged. The
domain is retrieved through the getDomain(url) function that is the same used in injector.js and
described in Section 6.3.3. Using the domain, the value corresponding to custom-settings is
retrieved from storage. From the retrieved value containing all custom rules, the one corresponding
to the active domain is searched. If it exists, the contained values are read and the corresponing

64

6 – Extension

function response(res){

var changed = false;

if (res.change || res.orientation || res.motion || res.light ||

res.proximity || res.position || res.media || res.vibration){

if (res.change){ ch = true;}

...

if (res.vibration){ vi=true;}

}

if (or || mo || ch || pr || li){

document.getElementById("callsdetectedtitle").innerHTML =

"<h5> Current website is collecting information

about:</h5>";

par = "<p class=\"callsused\">";

if (or)

par = par + "DEVICE ORIENTATION
";

...

if (vi)

par = par + "VIBRATION
";

document.getElementById("callsdetected").innerHTML =

par+"</p>";

}

else {

document.getElementById("callsdetectedtitle").innerHTML =

"<h5> Current website isn’t using any dangerous call</h5>";

}

stat = browser.storage.local.get(["default-settings"]);

stat.then(readStatus, onError);

}

function readStatus(data){

stat = Object.values(data)[0];

if (stat.orientation)

document.getElementById(’ord’).checked = true;

...

if (stat.vibration)

document.getElementById("vid").checked = true;

}

Figure 6.11. Functions used to update the detected calls and the default rule

names are written in the HTML page. If the domain does not exist in the set of custom rules or if
custom-settings key does not exist (because no custom rule have been set), default-settings
is retrieved and same actions take place.

customsubmission() and defaultsubmission() The functions are called when the related
buttons are tapped in the HTML page. Functions read information from the checkbox menus
and store the results in the browser local storage. These functions are wrappers respectively for
setCustom() and setDefault() that actually create the JSON data structure and save them. The

65

6 – Extension

function customsubmission(){

dom = getDomain(document.getElementById("custdom").value);

if (dom == null)

document.getElementById(’domainresponse’).innerHTML = "Domain

not valid, please insert a correct one
";

else{

stat = browser.storage.local.get(["custom-settings"]);

stat.then(setCustom, onError);

console.log(JSON.stringify(stat));

document.getElementById(’domainresponse’).innerHTML = "Added

domain: "+dom+"
";

}

}

function setCustom(data){

dom = getDomain(document.getElementById(’custdom’).value);

stat = Object.values(data)[0];

if (stat == null){

stat = {}

console.log(’no custom settings, adding: ’+dom);

stat[dom] = {

"orientation": document.getElementById("or").checked,

...

"vibration": document.getElementById("vi").checked

}

browser.storage.local.set({"custom-settings" : stat});

console.log("ADDED DOM, EMPTY DICT");

return;

}

else{

console.log(dom);

console.log(JSON.stringify(stat));

stat[dom] = {

"orientation": document.getElementById("or").checked,

...

"vibration": document.getElementById("vi").checked

}

browser.storage.local.set({"custom-settings" : stat});

console.log("ADDED DOM");

return;

}

}

Figure 6.12. The functions used to set custom rules. The functions for the default rule are the
same without the controls described in the section.

differences between the two functions regards the need for custom-settings to control whether
the domain is valid or not and if the custom-settings key exists in browser storage. In this case
the structure is created, otherwise is modified adding the rule. The domain is typed in a form
in the HTML page and retrieved by the script. In this case the user can add rules for domains
without the need of visiting them. In Fig. 6.12 is shown the code used to set custom rules.

66

6 – Extension

browser.storage.local.get(["default-settings"]).then(function(data){

stat = Object.values(data)[0];

row = "<tr><td>Default</td>";

if (stat.orientation)

row = row + "<td>Blocked</td>"

else

row = row + "<td>Allowed</td>"

...

if (stat.vibration)

row = row + "<td>Blocked</td>"

else

row = row + "<td>Allowed</td>"

row = row + "<td></td></tr>"

var r = document.getElementById(’rules’).insertRow();

r.innerHTML = row;

},onError);

Figure 6.13. The code used to create a row of the table and to add it.

getCurrentDomain() This function assigns the value of the domain variable to the form where
the user writes the domain they want to associate the custom rule. The user can execute this
function, firing the event that reaches this script, when the domain they want to insert in the
form is the one in the current active tab.

Rules page (rules.js)

The rules.js script handles the reviewing and the removal of the custom rules created by the
user. The features handle the creation of a table containing the custom rules, the removal of a
single rule, through a button close to the chosen line and last the removal of all the custom rules
at once.

populateTable() This function is launched when the page is completely loaded, being inserted
in a listener to DOMContentLoaded. The table HTML element already exists in the page and
contains only the header. The function retrieves data from storage related to default-settings,
creates the row of the table as it is shwon in Fig. 6.13 and adds it to the existing one. The same op-
eration is then repated for all rules contained in the stored value corresponding to custom-rules.
At the end of each custom rule, a button is added and the deleteRule() function is added to the
click listener. Tapping on the button the custom rule is deleted and the corrsponding row too.

deleteRule(key) The function is used to delete the custom rule from the local storage and the
row from the table. It receives as argument the domain that is the key to the rule contained in
the storage, and is also the string shown in the table. To remove the rule from the storage, the
custom-settings value is retrieved, the value associated to the URL is deleted and the structure
is saved again. After that each line of the table is read and the one having the searched domain
is deleted. The code of the function is shown in Fig. 6.14

cleanTable() This function is used to delete all the custom rules at once. The whole dictionary
corresponding to custom-settings key in the browser storage is removed and then all lines in
the table are deleted.

67

6 – Extension

function deleteRule(key){

var key = key.split(’_’)[1];

console.log("DELETING "+key);

browser.storage.local.get(’custom-settings’).then(function(data){

stat = Object.values(data)[0];

delete stat[key];

browser.storage.local.set({’custom-settings’ : stat});

}, onError);

var table = document.getElementById("rules");

for (var i = 0, row; row = table.rows[i]; i++) {

console.log(row.cells[0].innerHTML);

if (row.cells[0].innerHTML.substring(3, row.cells[0].innerHTML.length-4)

== key){

table.deleteRow(i);

}

}

}

Figure 6.14. The code of deleteRule(key)

zip -r detector@genso.com.xpi *

adb -s $1 push detector@genso.com.xpi /sdcard

rm detector@genso.com.xpi

Figure 6.15. Content of the script that creates the extension archive and moves it in the device

6.4 User Manual

6.4.1 Installation guide

The extensions is not available on the official add-ons store, but can be easily installed on any
Android smartphone having Firefox browser installed.The extension has been tested in Firefox
59.0 and more recent versions, and it requires a computer running a Linux based OS with adb

tool installed.

In the folder containing all needed files for the extension there is a bash script called install.sh.
This script, which code can be seen in Fig. 6.15 creates the package of the extension and sends
it the device that must have adb debugging enabled in developer settings (a guide is available at
https://developer.android.com/studio/command-line/adb#Enabling). The script must be
executed by command-line passing as only argument the device identifier using: $./install.sh

<serial_id>. The script zips all the content in a .xpi archive, pushes it in the device memory
and then deletes it.

Before installing the extension, it is necessary to enable in the browser configuration page, the
installation of untrusted xpi files. To do that it is enough to type about:config on the address
bar and set to false the entry named xpinstall.signatures.required. At this point, from
Firefox browser on the smartphone it necessary to type file:///sdcard in the address bar and
tap on the name of the extension (by default detector@genso.com.xpi) that is contained in the
install.sh script. After that the extension is installed.

68

https://developer.android.com/studio/command-line/adb#Enabling

6 – Extension

Figure 6.16. The extension page containing the data accessed by the website and the blocked ones

6.4.2 User Interface

The interface of the extension, that can be seen in Fig. 6.16, displays on the top the eventual data
that is accessed by the website in the current tab and then, below, shows which APIs are blocked
for the current website. The user can modify the default rules that will be applied by default to
all the domains or they can type a domain (or retrieve the current one that is visited through the
proper button) and choose custom rules for it as it is shown in Fig. 6.17. In this way, the user
can intuitively create whitelists, setting a predefined standard and then creating different rules
for specific domains.

From the main page the user can switch to the rules page that can be seen in Fig. 6.18
where they can see the overview of the custom environments for all the domains and eventually
remove the unwanted ones singularly or clear them all. The way custom rules are handled by the
extension will be analyzed in Section 6.3.2.

69

6 – Extension

Figure 6.17. The extension page providing customization for blocking rules

Figure 6.18. The extension page containing the custom rules set by the user

70

Chapter 7

Conclusion

The results from the study show how many among the most popular websites access data from
smartphones without making the user aware of it and even if Firefox browser is trying to mitigate
this issue, disabling a part of them, there is nowadays a risk for the user. Most of the scripts
gathering information from the device are stored in third-party domains and are responsible for
most of data retrieval. The remote web-servers hosting those script collect information from
several web-pages, with the possibility to exploit characteristics of smartphones to track the user
during navigation.

The usage of real smartphones in our approach, even if required a bigger effort caused by
the introduction of complex systems as Android phones in the study, led to the creation of a
faithful replica of a real navigation executed by a user. We can be sure, in this way of two things:
first, that APIs detected with our approaches are executed also when a real user visit it; second,
that the page is not aware of the simulation and can’t limit the execution of some scripts. The
simulation of touch events done through the FFAutomator script helps in simulating a real user
browsing the web and contributed in improving the result, even if most of calls happen at loading
time. On the other hand, it is impossible to visit portions of websites that require the login of
the user to be accessed. For example we could not study the behavior of personal pages of the
users that are present in many kind of websites, from social-networks to e-commerce.

Detection of APIs done through a proxy server makes the followed approach suitable to be
applied also in other contexts. For example if the application used to browse the net changes or
if even only the version is modified, no further adaptation is required and our approach can be
easily replicated.

7.1 Future works

For what concerns the elaboration on results, it would be interesting to cross-reference the sources
of the JavaScript files detected by our study with the ones extracted by other studies that de-
tected websites gathering data that can be exploited for fingerprinting. Given the many well-
documented proof-of-concepts about the usage of sensors data to fingerprint the habits of the
user, it would be interesting to search if the found domains are known to collect also data to
fingerprint navigation.

It would be interesting to see if the most popular ad-blockers and privacy enforcing extension
block the external domains we found in our study. Plus, it would be worth to replicate our same
study using one of the mobile-browser developed to preserve the privacy of the user (an example
is Mozilla Firefox Focus1), to see if the issues created by mobile-specific WebAPIs are addressed.

1more information about Firefox Focus can be found at: https://support.mozilla.org/en-US/kb/focus

71

https://support.mozilla.org/en-US/kb/focus

7 – Conclusion

Our study focus only on Firefox browser for the reasons explained in Section 3.6.2, but there are
also other very popular mobile-browser that are currently used. The most important is probably
Google Chrome. The latter supports most of the APIs intercepted in the research but, in
addition, has support to Generic Sensor API2. The latter provides an unified API that contains
all functions to read data collected by all the sensors in the smartphone. Being this API not
supported by Firefox, website using them were not detected. It would be interesting to be able
to replicate our study on same websites but on different browsers to check how dangers for the
users change, depending on the application used to navigate.

It would be interesting also to port MWAdetector extension to other mobile browsers. Now,
Firefox is the online mobile browser that guarantees support for extensions but, given the increas-
ing popularity of mobile browsing, it is not unlikely a support to them in the short period. In
that case it would be useful to extend our software to a greater number of applications in order
to reach as many people as possible.

2further information about Generic Sensor API can be found at: https://www.w3.org/TR/generic-sensor/

72

https://www.w3.org/TR/generic-sensor/

Appendix A

FFAutomator manuals

A.1 User manual

FFAutomator has been developed as a script, so it does not need to be installed. The software
is composed by a main script and a separated module exploited to communicate with Google
SafeBrowsing API. Together with a bash script named scriptsdownloader.sh that is responsible
for downloading JavaScript sources. All the scripts need to be in the same directory. The software
was developed in Python3 and was run on Arch Linux with kernel 4.16.8.

A.1.1 Prerequisites

• Python3: Python3 interpreter can be installed in any Linux distribution exploiting almost
all package managers. In Arch-based distributions it can be installed using pacman through
the command pacman -S python3. The version of the interpreter we used is Python3.6.5.

• Android debug bridge (adb): this tool is necessary to make the script communicate with
the Android mobile device. It provided with the Android SDK, or it can be installed in
Arch-based distributions with the android-tools package through the command pacman

-S android-tools. The version we used is 1.0.39.

• Firefox for Android: our study focused on Firefox for Android v. 59.0 but the FFAu-
tomator can instrument navigation in any Firefox version.

• Android OS device: we exploited Android version 7.1.2. While there is no requirement for
Firefox version, our software may not work with other releases, mostly because the approach
we used to simulate the user gestures on the screen may not work. It is also necessary that
root privileges are acquired because FFAutomator needs them for some crucial operations.
Plus, the software relies on logs produced by Xposed modules, so the framework must be
installed, together with the three modules we provide together with the software.

For what concerns the device, the software is developed to work with OnePlus One and LG
Nexus 5X. The way we simulate gestures changes for each device, so they may not work on
other models.

A.1.2 Input

The program is structured to be easily used in parallel with more than one mobile device, dividing
the list containing the ranks of the domain in smaller ones. The domains to visit must be contained
in a csv file, structured as the Alexa list. It means that each line contains the rank of the website
(starting from 1) and the domain, separated by a comma (<rank>,<domain>). The websites are
sorted in ascending order with no gaps.

73

A – FFAutomator manuals

To facilitate the visit of the websites we decided to make the execution of each script inde-
pendent from the others. When multiple devices are exploited, the list must be divided in N
smaller lists where N is the number of smartphones used. Each obtained sublist contains websites
that are N positions far from the previous. It means that if we have 4 devices, we will have the
following lists:

• list 1 contains websites 1,5,9,13...

• list 2 contains websites 2,6,10,14...

• list 3 contains websites 3,7,11,15...

• list 4 contains websites 4,8,12,16...

Using this division, if we stop all the scripts at the same time, the visited websites will form a
complete chunk with no gaps inside.

The arguments that must be passed to the script in order are:

• Serial number of the smartphone: is the alphanumeric identifier of the Android device,
it is used by adb to communicate with a smartphone when several of them are connected
at the same time. This serial number can be seen through Android debug bridge with the
command adb devices.

• Number of devices used: integer indicating the number of the devices used. It also
indicates in how many sublists, the original list is divided into. This information is useful
to obtain the line of the file we have to start at, depending on the number of devices used,
the line of each file will contain a different website.

• Rank of the starting website: integer indicating the rank of the website that must be
visited at the beginning, skipping all the previous ones. If the script is interrupted, it is
possible to restart it exactly where it was stopped.

• Model of the device: this string indicates which device model is currently used. The
supported models are the OnePlus One, that corresponds to opo and the LG Nexus 5X that
is identified with nex.

• Path to the file: is the path of the file containing the list of websites. Each file must be
organized as described before.

The program is thought to be launched from command-line in a Linux based OS. A usage
example is:

$ python3 ffautomator.py abc123 4 9 opo file1.csv

the program is called to communicate with a OnePlus One with abc123 as device serial. It is
used with other three devices and the list of domains is contained in file1.csv that contains the
domain with rank 9 that must be the first website to be visited.

A.1.3 Output

For each website, the program generates a logfile named after the visited domain. Those files are
contained in a folder named after the id of the device. Each file contains all the logs generated
by the device during navigation of a website. Furthermore, all JavaScript files containing code
to access sensitive information of the device are stored into a folder named after the domain and
stored in a directory named jsfiles.

The program stores also information about the execution of the program itself. It is saved in
several files, each one related to a different issue. They are:

74

A – FFAutomator manuals

• loadingfailslog: contains the name of the websites that are not fully loaded when naviga-
tion starts and websites that fail to be loaded. First category is signaled with a WARNING

string while the second one with the ERROR one.

• failedgrantingpos and failedgrantingvib: contain the names of the domain that ask
respectively for the access to the GPS position and for the control on vibration engine but
whose permissions were not granted by the program.

• unsafewebsites: contains the domain that are considered malicious by the Google SafeBrows-
ing API.

• rollbacklog: keeps track of any redirection that happened during navigation and the con-
sequent rollback to the previous domain. Each log describes the two domains interested in
the faulty redirection.

A.1.4 Google SafeBrowsing API

The python sb module we developed is used to communicate with Google SafeBrowsing API.
The user requires to register an account to access that API (here is a guide to do that: https:

//developers.google.com/safe-browsing/v4/get-started).

After that the sb.py file must be modified, modifying the value of apikey variable with the key
provided after registration and clientId field in JSON variable body with the created username.
After that the module will send lookup requests automatically when called by the main script.

A.2 Programmer manual

The program consists in a main module, ffautomator.py, that provides the core functionalities of
the software. That is, navigation through the websites including the simulation of user interactions
and the handling of misbehaviors that can lead to poor quality results.

Being the program a script it does not require compilation and it is enough to execute it with
Python3. In the archive it is contained in automator folder, together with the other scripts that
will be described later and that are sb.py and scriptsdownloader.sh. After the execution of the
program all the output files will be contained in the same folder too.

The script is composed by a main loop that is responsible for the automatic navigation of the
websites on the smartphone, by an initial part when variables and file are set up and last by several
functions that are used to control the flow of web-navigation and to simulate user interactions.

A.2.1 Environment setup

As a premise, it is important to point out that, given the large usage of interactions with the adb

command in Linux shell, we used the subprocess module that can be imported in Python. It
provides functions to execute command-line programs and script. We mainly use two functions of
that module. They are run that interrupts the flow of the script, until the launched command re-
turns and Popen that detaches the process without interrupting the current one. Plus the function
check output when it is necessary to read the output of the command. Documentation about
the subprocess module can be found at https://docs.python.org/3.6/library/subprocess.
html.

Arguments

Once launched, the script looks at arguments passed through command line, verifying their cor-
rectness and associating them to variables:

75

https://developers.google.com/safe-browsing/v4/get-started
https://developers.google.com/safe-browsing/v4/get-started
https://docs.python.org/3.6/library/subprocess.html
https://docs.python.org/3.6/library/subprocess.html

A – FFAutomator manuals

• serial: variable containing the serial string used to identify the device by adb and that is
passed as first argument. It will be used in the script, every time an adb command is called.

• firstsite: variable containing the number corresponding to the line where the reading of
the file with the list of domains must start. It is obtained thanks to the second and third
arguments that correspond to the number of devices used and the rank of the website where
navigation should begin.

• model: the model of the device used that is get from fourth argument. This variable is
used every time different actions must be executed based on the smartphone model. The
supported models are the OnePlus One and the LG Nexus 5X. Other variables are set at the
beginning, they correspond to the resolution of the screen (x and y) and to the pixel width
of the navigation bar (nav) that is exploited by some android devices.

• path: the path of the csv file containing the domains to visit.

Output files

While files containing the logs from the devices are created in the main loop for each website, the
ones containing information about the correctness of the results and actions done by the software
to control the navigation, are created at the beginning. In case the file already exists they are
opened, in this way if the program is stopped and restarted later, the file will continue being
written without loosing any data. This is the part of code that creates/opens files:

rollbacklog = open(’rollbacklog’, ’a+’, 1) # logs of any redirection that required a

rollback

loadingfailslog = open(’loadingfailslog’, ’a+’, 1) # logs of incomplete or failing

websites loading

unsafewebsites = open(’unsafewebsites’, ’a+’, 1) # logs of websites considered

malicious by SafeBrowsing API

failedgrantingpos = open(’failedgrantingpos’, ’a+’, 1) # logs of websites accessing

position but script failed granting it

failedgrantingvib = open(’failedgrantingvib’, ’a+’, 1) # logs of websites accessing

vibration but script failed granting it

Global variables

Some global variables have been used when it was necessary to share information among different
functions. They are:

• firstrowlog: contains the string corresponding to the first row of the logfile created for
each website. It is used to check whether the logs of the device are correctly flushed after
every website. Before saving the logs, the first row is read and if it is the same to the
one contained in this variable, the device logs are flushed again, otherwise it is stored in
it. It is impossible that the two rows correspond because they contain the timestamp that
will always be different. This variable is initialized to a series of symbols (that will never
correspond to a real log) at the beginning of the program in order to consider the logs
correctly cleaned at the first visit.

• domainold: contains the last domain registered in the log. It is used to avoid that the
domain from the previous visited website contaminates the new logs. When the read domain
corresponds to the old one, it is discarded.

• initialdomain: it is the domain read by the device as soon as the website is loaded. It is
used as the basis of comparison to detect a possible redirection to a different domain.

• currentdomain: it is the domain currently visited by the browser. It is compared to
initialdomain to spot a redirection.

76

A – FFAutomator manuals

• pos and vib: they are boolean variables that are set to false every time a new website
is visited and turn to true when the access to the location or the the vibration engine is
requested by the website. They are then used to check if permissions have been correctly
granted by the script.

A.2.2 Main loop

The flow of the program is represented in Fig. A.1. The main steps represented in the algorithm
are the following:

• website launch: csv file is parsed and read line by line through the proper Python3 module
(https://docs.python.org/3.6/library/csv.html). It is read line by line and each line
is parsed in an array to read different columns. In our case we have only 2 of them, the
one at index 0 contains the rank of the domain while at index 1 we have the domain itself.
Website can be launched in the mobile browser through an adb command to launch activities
on Android. Then the command is executed using the run function. This is the code used
to do that, in different parts of the script:

bashff = "adb -s " + serial + " shell am start -a android.intent.action.VIEW

-n org.mozilla.firefox/org.mozilla.gecko.BrowserApp -d ’"

...

command = bashff + row[1] + "’"

subprocess.run(command.split(" "))

• log cleaning attempts: the function that cleans the device logcat (cleanLogcat()) re-
turns a value that indicates the success of the operation. If it fails, the function is repeated
for at most 20 times, waiting two seconds between each attempt. Once the log is flushed, it
is redirected to a file named after the current domain that will contain all the logs produced
by the smartphone. The code is the following:

m = 0

result = False

while m < 20 and not result:

result = cleanLogcat()

if (result):

print ("logcat cleaned")

else:

m = m + 1

print ("ERROR cleaning logcat, retrying ... (attempt: " +str(m)+")"+"

["+row[1]+"]")

time.sleep(2)

...

with open("logs"+serial+"/" + row[1] + ".txt","ab+") as out: # generates the

logfile for the current website

proc = subprocess.Popen(logcommand.split(" ") ,stdout=out)

• website loaded: once the website is launched, the scripts controls if it is completely loaded
or not for at most 10 seconds. If after this amount of time the website is not completely
loaded it is logged in the proper loadingfailslog file, as a WARNING. Otherwise the
execution continues. After that the current domain is retrieved and saved as initialdomain.
If the retrieval of the latter fails (the returned value is “None”) navigation on the website
is not simulated because it would be useless, and the event is reported in the same file used
before but with the ERROR tag. This is the code handling it:

end_time = time.time() + 10 # set a 10seconds timer

while time.time() < end_time and not checkLoading(): # wait for at

most 10 seconds that the website fully loads

pass

if time.time() < end_time:

77

https://docs.python.org/3.6/library/csv.html

A – FFAutomator manuals

print("OK - 100% LOADED")

else:

print("NOT 100% LOADED")

loadingfailslog.write(str(datetime.datetime.now()) +" WARNING:

website is probably not 100% loaded;" + row[1] + "\n")

--- READ INITIAL DOMAIN OF THE WEBSITE ---

initialdomain = checkCurrentDomain()

currentdomain = initialdomain

• navigation length control: each website must be visited for a maximum amount of time.
It is set before the loop starts and at each iteration the current time is read and, if the
difference with the initial time saved at the beginning is greater than the chosen timeout,
the loop is interrupted. Anyway, the iterations of the loop can be decided by the developer
before execution, changing the range in the for cycle. In this way is possible to change the
stop condition of navigation that is the number of injected events or total amount of time.
At each iteration, a single gesture is sent through sendEvent() function and permissions
are accepted with function handlePermissions.

• rollback control: in some parts during the simulation of the navigation, that can be seen
in Fig. A.1, the scripts control whether a redirection happened in the browser to en external
domain. If this happens, the script calls a function that send a back event to the smartphone
in order to go to the correct website. Then, the lines saved in the logs and belonging to the
wrong website must be deleted. To do that, every time we check the domain and we discover
to be in the correct website, we copy the current logfile in a temporary file and we restore it
if we discover that we are on a wrong domain. The correctness of current URL is controlled
before sending a touch gesture and after it. Even if it can seem redundant, it was very
useful to catch all possible wrong redirection. In the first control, if we spot that after the
rollback the domain is still an unexpected one, it means that navigation reached a website
that continuously reload even after a back event. In this case we reload the initialdomain

to stop this deadend. It is important to notice that after reloading the website we force a
REDIRECTIONTO tag with the correct initial website on the log to avoid any remaining
log from the faulty redirection. The code, being longer than the previous ones reported, is
in Fig. A.2. The code contains only the controls done before sending the events, the other
one is the same but without the call to the functions to send the gestures (sendEvent()) and
to accept permissions (handlePermissions).

• download the scripts: after navigation ends, all the scripts are downloaded. Depending
on the number of functions found the downloading process can be long. For this reason we
use an external bash script containing the command to download all the files and we run
it with subprocess.Popen function that detach its execution from the main script. While
downloading operations go on, the script continues its execution with the next website. This
is the code:

dl = "./scriptsdownloader.sh logs"+serial+"/"+row[1]+".txt" +" "+row[1]

subprocess.Popen(dl.split(" "))

and this is the content of the external bash script:

cat $1 | grep WEBAPILOG | cut -d ";" -f 4 | sort | uniq | xargs wget --quiet

-P "jsfiles/$2"

• reset firefox: to avoid interference between navigation of different websites, after each
one, all the environment of the browser is cleaned. All the tabs are closed and private data
including cache is eliminated. Everything is done simulating a series of touch events on
proper coordinates on the display. Plus, the browser activity is closed from the multitasking
menu every visit and once every 200 websites elaborated, Firefox is closed (and killed)
through the proper option in the browser menu. The following code was developed for the
OnePlus One. For the Nexus 5X, it remains the same but coordinates slightly change:

78

A – FFAutomator manuals

if model == ’opo’:

if it >= 200:

it = 0

sendTouchOPO(1000, 155) # open firefox menu

sendTouchOPO(400,1740) # ’Quit Firefox’

time.sleep(8)

else:

sendTouchOPO(900,163) # open tabs view

sendTouchOPO(1024,152) # open tabs menu

sendTouchOPO(634,288) # ’close all’

sendTouchOPO(1000, 155) # open firefox menu

sendTouchOPO(656,1437) # settings

sendTouchOPO(240,1869) # clear private data

sendTouchOPO(773,1760) # clean all

subprocess.run(killfirefox.split())

sendMenuOPO() # open multitasking view

subprocess.run(("adb -s "+serial+" shell input swipe 600 200 600 1500

50").split(" ")) # croll view of the multitasking menu

sendTouchOPO(950,160) # kill all

it = it + 1

• log permission acceptance failures: when pos or vib variables are set to True, it means
that current websites exploit functions that are permission protected and that script has to
accept. If it fails in granting them, there will be no trace of system calls in the logs. So
the software calls the functions checkLocationCall and checkVibrationCall which read if the
system calls are logged in the file and return the result. At this point, the script prints the
name of the website in the logfiles described in previous section. This is the code:

if pos and not checkLocationCall():

failedgrantingpos.write(str((i*4)+1)+","+row[1]+"\n")

if vib and not checkVibrationCall():

failedgrantingvib.write(str((i*4)+1)+","+row[1]+"\n")

A.2.3 Functions

In this section are described all the functions exploited to do what was described in previous
section.

cleanLogcat() The function in Fig. A.3 flushes all the logs on the device through adb logcat

-b all -c command. Before executing that command, the logcat command is killed to avoid
race conditions that would have prevented the flushing operation. After that, the logging process
is restarted and the first two lines are extracted and compared to ones saved by the same function
for the previous website. If they correspond it means that the cleaning command had failed and
function returns False. On the other hand if it is successful the new first lines are saved in global
variable firstrowlog and it returns True.

checkCurrentDomain() The function in Fig. A.4 is used to retrieve the domain currently
visited by the website. It reads the logfile that is being written and through the bash text
manipulation functions the last line containing REDIRECTIONTO tag is extracted. The split
function to isolate the URL from the line is in a try block so that in the eventually no line is
extracted, meaning the no website is loaded, we can be aware of the failure returning None string.
If a URL is found but is the same from previous website, it means that website is not loaded as
well and None is returned. On the other hand, if the extraction is successful, the current domain
is returned.

79

A – FFAutomator manuals

Figure A.1. Flowchart of ffautomator script

checkPermissionRequests() The function in Fig. A.5 is used to check if the current visited
website has requested permission to executed permission protected functions. They are the ones
related to GPS position, vibration and media sources (cameras and microphone). Permissions

80

A – FFAutomator manuals

popup is requested by the browser as soon as the function is called. The logs related to those
particular calls have the special tag MWEBAPILOGP. Through the bash manipulation functions the
last call with that tag is retrieved and based on the function contained in the log the returned
string is different. Possible returned values are position, vibration and media. If an exception
is raised during extraction, it means that no permission protected calls have been detected and
nothing is returned. Plus, to avoid that the same call is detected more than one time making
the script accept permission that are not requested, a dummy string is printed in the log with
DISCMWEBAPILOGP tag. If the function extract this string, nothing will be returned as well.

handlePermissions() The function in Fig. A.6 is used to accept permission whether they are
requested by the website. It calls the checkPermissionRequests function previously described
to see if it is necessary to accept a permission request. If it is so, a sequence of taps is sent to
the device at the coordinates of the popup button. A single tap is not enough because, while the
width of the popup is always the same, the height changes depending on the length of the domain
that is printed in the popup. Plus, the coordinates change depending on the model of the device
and on which permission is requested. Once the permission is accepted, the related variable is set
to True. This variable will be used in functions (checkLocationCall and checkVibrationCall)
to check if the related system calls is executed at system level. Functions used to send gestures
will be discussed later in this section.

checkLoading() The function in Fig. A.7 is used to check if website is fully loaded. The
code injected in each website prints in the log a string with FULLYLOADED tag, when the events
corresponding to the completed loading of the page is fired. Through the bash manipulation
functions the we search a line containing that tag in the current logfile. If it is found the function
returns True, otherwise an exception is raised and the returned value is False.

sendTouchOPO(x,y) and sendTouchNex(x,y) These functions are used to send a tap event
to the device. It was necessary to create two of them because of the difference between the Android
devices. Each model needs its own function. Functions receive as arguments the coordinates where
the touch gesture has to happen and then sends a sequence of events to the special file at system
level that controls the touchscreen. In Fig. A.8 it is shown the code related to the OnePlus One
model, for others the function would be the same, except for the arguments in sendevent func-
tions. A guide on how to realize the chain of events to create a gesture can be found at https://
qatesttech.wordpress.com/2012/06/20/adb-shell-sendevent-sending-touch-like-events/.

sendSwipeOPO(x,y) and sendSwipeNex(x,y) These functions are the analogous of sendTouchOPO(x,y)
and sendTouchNex(x,y) but to send swipe gestures. As for the other functions, in Fig. A.9 we
report only the code for the OnePlus One. Differently for the functions to send taps, now the
coordinates are not passed as arguments but are randomly generated by the function itself. And
we need two couples of coordinates, the first representing the starting point and the second the
ending point. Sending swipes requires also the length of the gestures, that is the number of steps
necessary to reach the end point from the starting one. to make all swipes last the same, the
number of steps must be proportioned to the distance between the two endpoints of the gestures.
At the beginning of the function we calculate that distance and based on the result we divide it
in a different number of steps, retrieving dx and dy that are the lengths of each step on the two
axis.

sendEvent() The function in Fig. A.10 is used to randomly send a touch gesture to the device.
It is composed by two identical parts, one for each device used, because based on the model the
functions to send gestures change. In the script we need to simulate navigation in websites through
random events, so the type of the gesture that is sent (tap or swipe) is randomly extracted. On the
other hand we wanted to have control on the percentage of the event sent because for navigation
we thought that taps were more effective than swipes. For this reason we extract a number out
of 4, and we send a swipe only if it is 0, otherwise we sent a tap. With this strategy, the 75%

81

https://qatesttech.wordpress.com/2012/06/20/adb-shell-sendevent-sending-touch-like-events/
https://qatesttech.wordpress.com/2012/06/20/adb-shell-sendevent-sending-touch-like-events/

A – FFAutomator manuals

of events sent are taps. This percentage can be easily modified, changing the parameters of the
random extraction.

checkLocationCall() and checkVibrationCall() These functions are used to check whether
permissions are accepted for permissions protected calls. We know that if permissions are ac-
cepted, the related system-calls are generated by the OS. We identified them and so we look for
them in the generated logfile using bash text manipulation commands. If in the extraction of
them an exception is raised, it means that system calls have not been executed and permissions
was not correctly accepted. In this case function return False, otherwise True. In Fig. A.11 it is
shown the code of checkLocationCall, it differs from checkVibratioCall for the name of the
system call that is searched in the file and for controlling if the website provides a secure con-
nection (HTTPS). This check is necessary because if the website relies on a insecure connection,
the position is not retrieved by the phone and, even if the permission is granted, the data is not
gathered.

rollBack() The function in Fig. A.12 is used to restore the correct version of the log that was
saved as a backup, in case the navigation is redirected to an external domain. The function
exploits bash commands to copy back the backup copy overwriting the current faulty one and
then it logs on the file the action indicating the two involved domains.

82

A – FFAutomator manuals

if currentdomain in initialdomain or initialdomain in currentdomain:

time.sleep(0.2)

createcopy = ("cp logs"+serial+"/"+row[1]+".txt

logs"+serial+"/"+row[1]+"2.txt")

subprocess.run(createcopy.split(" "))

handlePermissions() #function handling permissions acceptance

sendEvent() #function sending gesture

time.sleep(0.2)

currentdomain = checkCurrentDomain()

else:

goBack()

print("ROLLBACK1")

rollBack()

time.sleep(0.7)

currentdomain = checkCurrentDomain()

if currentdomain in initialdomain or initialdomain in currentdomain:

createcopy = ("cp logs"+serial+"/"+row[1]+".txt

logs"+serial+"/"+row[1]+"2.txt")

subprocess.run(createcopy.split(" "))

time.sleep(1)

handlePermissions() #function handling permissions acceptance

sendEvent() #function sending gesture

time.sleep(0.3)

currentdomain = checkCurrentDomain()

else: # if after going back the domain is still different reload the

initial website

subprocess.run(command.split(" "))

time.sleep(2)

rollBack()

dummyred = "adb -s " + serial + " shell log -p v -t Dummylog \"DUMMY

REDIRECTIONTO: " + str(initialdomain) + "\"" #dummy redirection

log to avoid that a slowcompromise the program the addess bar is

not written immediatly)

subprocess.run(dummyred.split(" "))

time.sleep(0.7)

handlePermissions()

sendEvent()

time.sleep(0.3)

currentdomain = checkCurrentDomain()

Figure A.2. This is the code responsible to handle the rollback to the correct domain

83

A – FFAutomator manuals

def cleanLogcat():

global firstrowlog

subprocess.run(("adb -s "+serial+" shell su -c \’pkill logcat\’").split("

")) # kills all processes using logcat to avoid cleaning race

conditions

subprocess.run(("adb -s "+serial+" logcat -b all -c").split(" "))

p1 = subprocess.Popen(["adb", "-s", serial, "logcat", "-v", "time"],

stdout=subprocess.PIPE)

first = subprocess.check_output(["head", "-n", "2"], stdin=p1.stdout)

p1.stdout.close()

p1.terminate()

if firstrowlog in str(first):

return False

else:

firstrowlog = str(first)

return True

Figure A.3. cleanLogcat function

def checkCurrentDomain():

p1 = subprocess.Popen(["cat", "logs"+serial+"/" + row[1] + ".txt"],

stdout=subprocess.PIPE)

p2 = subprocess.Popen(["grep", "-a","REDIRECTIONTO"], stdin=p1.stdout,

stdout=subprocess.PIPE)

url = subprocess.check_output(["tail", "-n", "1"], stdin=p2.stdout)

p1.stdout.close()

p2.stdout.close()

p1.terminate()

p2.terminate()

try:

domain = str(url).split(": ")[2][:-3]

if domain == domainold:

print("----------> DOMAIN is the last one, not saved :

["+domainold+"] <------------\n")

return "None"

else:

print("CURRENT DOMAIN --------------> " + str(url).split(":

")[2][:-3] + "<--------------------")

return domain

except:

print("ERROR in REDIRECTION DETECTION (NOT FOUND)")

return "None"

Figure A.4. checkCurrentDomain function

84

A – FFAutomator manuals

def checkPermissionRequests():

p1 = subprocess.Popen(["cat", "logs"+serial+"/" + row[1] + ".txt"],

stdout=subprocess.PIPE)

p2 = subprocess.Popen(["grep", "-a","MWEBAPILOGP;"], stdin=p1.stdout,

stdout=subprocess.PIPE)

permission = subprocess.check_output(["tail", "-n", "1"], stdin=p2.stdout)

p1.stdout.close()

p2.stdout.close()

p1.terminate()

p2.terminate()

try:

domain = str(permission).split(";")[1]

options are: vibrate - getCurrentPosition - watchPosition -

getUserMedia

a dummy log ’DISCMWEBAPILOGP’ is written to avoid next accpeting

conditions on calls already processed

if the dummy log is detected nothing happens

if domain == "vibrate":

logprint = "adb -s " + serial + " shell log -p v -t Dummylog

\"DISCMWEBAPILOGP;nothing\""

subprocess.run(logprint.split(" "))

return "vibrate"

elif domain == "getCurrentPosition" or domain == "watchPosition":

logprint = "adb -s "+ serial +" shell log -p v -t Dummylog

\"DISCMWEBAPILOGP;nothing\""

subprocess.run(logprint.split(" "))

return "position"

elif domain == "getUserMedia":

logprint = "adb -s " + serial +" shell log -p v -t Dummylog

\"DISCMWEBAPILOGP;nothing\""

subprocess.run(logprint.split(" "))

return "media"

else:

return "nothing"

except Exception as e:

print("Can’t retrieve any permission protected WEBAPI call, "+str(e))

return "nothing"

Figure A.5. checkPermissionRequests function

85

A – FFAutomator manuals

def handlePermissions():

global pos

global vib

perm = checkPermissionRequests()

print("--------> " + perm)

if perm == "vibrate":

time.sleep(0.5)

if model == ’opo’:

sendTouchOPO(970, 400)

sendTouchOPO(970, 460)

sendTouchOPO(970, 520)

sendTouchOPO(970, 600)

sendTouchOPO(970, 700)

sendTouchOPO(970, 800)

sendTouchOPO(970, 900)

else:

sendTouchNex(920, 400)

sendTouchNex(920, 460)

sendTouchNex(920, 520)

sendTouchNex(920, 550)

sendTouchNex(920, 600)

vib=True

print("PERMISSION vibrate accepted")

elif perm == "position":

time.sleep(0.5)

if model == ’opo’:

sendTouchOPO(980, 330)

...

sendTouchOPO(970, 900)

else:

sendTouchNex(920, 330)

...

sendTouchNex(920, 730)

pos=True

print("PERMISSION position accepted")

elif perm == "media":

time.sleep(0.5)

if model == ’opo’:

sendTouchOPO(980, 440)

...

sendTouchOPO(980, 1340)

else:

sendTouchNex(920, 430)

...

sendTouchNex(920, 1330)

print("PERMISSION media accepted")

else:

print("NO PERMISSION REQUESTED")

Figure A.6. handlePermissions function (parts of code that are analogous to the previ-
ous ones have been hidden)

86

A – FFAutomator manuals

def checkLoading():

p1 = subprocess.Popen(["cat", "logs"+serial+"/" + row[1] + ".txt"],

stdout=subprocess.PIPE)

p2 = subprocess.Popen(["grep", "-a","FULLYLOADED"], stdin=p1.stdout,

stdout=subprocess.PIPE)

loaded = subprocess.check_output(["tail", "-n", "1"], stdin=p2.stdout)

p1.stdout.close()

p2.stdout.close()

p1.terminate()

p2.terminate()

try:

l = str(loaded)

if "FULLYLOADED" in l:

return True

else:

return False

except Exception as e:

return False

Figure A.7. checkLoading function

def sendTouchOPO(x,y):

subprocess.run(("adb -s "+serial+" shell sendevent /dev/input/event0 3 57

153").split(" "))

subprocess.run(("adb -s "+serial+" shell sendevent /dev/input/event0 1

330 1").split(" "))

subprocess.run(("adb -s "+serial+" shell sendevent /dev/input/event0 1

325 1").split(" "))

subprocess.run(("adb -s "+serial+" shell sendevent /dev/input/event0 3 53

"+str(x)).split(" "))

subprocess.run(("adb -s "+serial+" shell sendevent /dev/input/event0 3 54

"+str(y)).split(" "))

subprocess.run(("adb -s "+serial+" shell sendevent /dev/input/event0 3 58

168").split(" "))

subprocess.run(("adb -s "+serial+" shell sendevent /dev/input/event0 0 0

0").split(" "))

subprocess.run(("adb -s "+serial+" shell sendevent /dev/input/event0 3 57

-1").split(" "))

subprocess.run(("adb -s "+serial+" shell sendevent /dev/input/event0 1

330 0").split(" "))

subprocess.run(("adb -s "+serial+" shell sendevent /dev/input/event0 1

325 0").split(" "))

subprocess.run(("adb -s "+serial+" shell sendevent /dev/input/event0 0 0

0").split(" "))

Figure A.8. sendTouchOPO function

87

A – FFAutomator manuals

def sendSwipeOPO():

x1 = randomx()

x2 = randomx()

y1 = randomy()

y2 = randomy()

d=math.sqrt((x2-x1)**2+(y2-y1)**2)

if d < 150:

steps = 2

elif d < 280:

steps = 2

elif d < 550:

steps = 2

elif d < 1100:

steps = 3

else:

steps = 4

xt = x1

yt = y1

dx = int((x2-x1)/steps)

dy = int((y2-y1)/steps)

subprocess.Popen(("adb -s "+serial+" shell sendevent /dev/input/event0 3

57 9").split(" "))

subprocess.Popen(("adb -s "+serial+" shell sendevent /dev/input/event0 1

330 1").split(" "))

subprocess.Popen(("adb -s "+serial+" shell sendevent /dev/input/event0 1

325 1").split(" "))

for _ in range(0,steps):

subprocess.Popen(("adb -s "+serial+" shell sendevent

/dev/input/event0 3 53 "+str(xt)).split(" "))

subprocess.Popen(("adb -s "+serial+" shell sendevent

/dev/input/event0 3 54 "+str(yt)).split(" "))

subprocess.Popen(("adb -s "+serial+" shell sendevent

/dev/input/event0 3 58 188").split(" "))

subprocess.Popen(("adb -s "+serial+" shell sendevent

/dev/input/event0 0 0 0").split(" "))

xt = xt + dx

yt = yt + dy

subprocess.Popen(("adb -s "+serial+" shell sendevent /dev/input/event0 3

57 -1").split(" "))

subprocess.Popen(("adb -s "+serial+" shell sendevent /dev/input/event0 1

330 0").split(" "))

subprocess.Popen(("adb -s "+serial+" shell sendevent /dev/input/event0 1

325 0").split(" "))

subprocess.Popen(("adb -s "+serial+" shell sendevent /dev/input/event0 0

0 0").split(" "))

Figure A.9. sendSwipeOPO function

88

A – FFAutomator manuals

def sendEvent():

if model == ’opo’:

if random.randint(0,4) > 0:

x1 = randomx()

y1 = randomy()

sendTouchOPO(x1, y1)

else:

sendSwipeOPO()

else:

if random.randint(0,4) > 0:

x1 = randomx()

y1 = randomy()

sendTouchNex(x1, y1)

else:

sendSwipeNex()

Figure A.10. sendEvent function

89

A – FFAutomator manuals

def checkLocationCall():

p1 = subprocess.Popen(["cat", "logs"+serial+"/" + row[1] + ".txt"],

stdout=subprocess.PIPE)

p2 = subprocess.Popen(["grep", "-a","getLastKnownLocation"],

stdin=p1.stdout, stdout=subprocess.PIPE)

calll = subprocess.check_output(["tail", "-n", "1"], stdin=p2.stdout)

p1.stdout.close()

p2.stdout.close()

p1.terminate()

p2.terminate()

try:

call = str(calll)

print(call)

if ’getLastKnownLocation’ in call:

return True

else:

p1 = subprocess.Popen(["cat", "logs"+serial+"/" + row[1] +

".txt"], stdout=subprocess.PIPE)

p2 = subprocess.Popen(["grep", "-a", "\"A Geolocation request can

only be fulfilled in a secure context\""], stdin=p1.stdout,

stdout=subprocess.PIPE)

errr = subprocess.check_output(["tail", "-n", "1"],

stdin=p2.stdout)

try:

err = str(errr)

print("EXC2: "+err)

if ’fulfilled’ in err:

return True

except Exception as e:

return False

return False

except Exception as e:

print("EXC: "+str(e))

return False

Figure A.11. checkLocationCall function

90

A – FFAutomator manuals

def rollBack():

global initialdomain

global currentdomain

print("Rollback backup LOG")

rollbacklog.write(str(datetime.datetime.now()) +" Rollback needed ---"

+str(initialdomain) +" ---> " +str(currentdomain)+" ["+row[1]+"]\n")

rollback = "cp logs"+serial+"/"+row[1]+"2.txt

logs"+serial+"/"+row[1]+".txt"

#print(str(datetime.datetime.now()) + "rollback logs")

logrollback = "adb -s "+serial+" shell log -p v -t ROLLBACK

\"init:"+str(initialdomain)+ " curr: "+str(currentdomain)+"\""

subprocess.run(rollback.split(" "))

subprocess.run(logrollback.split(" "))

currentdomain = initialdomain

Figure A.12. rollBack function

91

Bibliography

[1] A. Lella, “U.S. Smartphone Penetration Surpassed 80 Per-
cent in 2016.” https://www.comscore.com/Insights/Blog/

US-Smartphone-Penetration-Surpassed-80-Percent-in-2016, Accessed: 2018-04-
18

[2] Global Stats, “Mobile and tablet internet usage exceeds desk-
top for first time worldwide.” http://gs.statcounter.com/press/

mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide,
Accessed: 2018-04-19

[3] G. Sterling, “Mobile Devices Now Driving 56 Percent Of Traffic To Top Sites.” https:

//marketingland.com/mobile-top-sites-165725, Accessed: 2018-10-13
[4] Fazal-e-Amin, “Characterization of web browser usage on smartphones”, Computers in hu-

man behavior, vol. 51, October 2015, pp. 896–902, DOI 10.1016/j.chb.2014.10.054
[5] Google Developers, “Request App Permissions.” https://developer.android.com/

training/permissions/requesting, Accessed: 2018-09-15
[6] M. Firtman, “Mobile HTML5 Compatibility on Mobile Devices.” http://mobilehtml5.

org/, Accessed: 2018-04-22
[7] A. Zimba, Z. Wang, M. Mulenga, and N. H. Odongo, “Crypto mining attacks in information

systems: An emerging threat to cyber security”, Journal of Computer Information Systems,
May 2018, pp. 1–12, DOI 10.1080/08874417.2018.1477076

[8] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu, “The ghost in the
browser analysis of web-based malware”, First Conference on First Workshop on Hot Topics
in Understanding Botnets, Berkeley, CA, USA, 2007, pp. 4–4

[9] G. Greenwald, “No place to hide: Edward snowden, the NSA, and the U.S. surveillance
state”, Macmillan, May 2014, ISBN: 9781627790734

[10] Y. Wu, D. Meng, and H. Chen, “Evaluating private modes in desktop and mobile browsers
and their resistance to fingerprinting”, 2017 IEEE Conference on Communications and Net-
work Security (CNS), October 2017, pp. 1–9, DOI 10.1109/CNS.2017.8228636

[11] C. Warren, E. El-Sheikh, and N.-A. Le-Khac, “Privacy preserving internet browsers: Forensic
analysis of browzar”, Computer and Network Security Essentials (K. Daimi, ed.), pp. 369–
388, Cham: Springer International Publishing, 2018, DOI 10.1007/978-3-319-58424-9 21

[12] P. Laperdrix, “Browser fingerprinting: Exploring device diversity to augment authentification
and build client-side countermeasures”. PhD thesis, Rennes, INSA, 2017

[13] L. Olejnik, C. Castelluccia, and A. Janc, “On the uniqueness of web browsing history
patterns”, annals of telecommunications - annales des télécommunications, February 2014,
pp. 63–74, DOI 10.1007/s12243-013-0392-5

[14] D. Cameron, “Apple Declares War on ’Browser Fingerprinting,’ the Sneaky
Tactic That Tracks You in Incognito Mode.” https://gizmodo.com/

apple-declares-war-on-browser-fingerprinting-the-sneak-1826549108, Accessed:
2018-09-18

[15] T. Hupperich, D. Maiorca, M. Kührer, T. Holz, and G. Giacinto, “On the robustness of mobile
device fingerprinting: Can mobile users escape modern Web-Tracking mechanisms?”, 31st
Annual Computer Security Applications Conference, New York, NY, USA, 2015, pp. 191–
200, DOI 10.1145/2818000.2818032

[16] L. Olejnik, G. Acar, C. Castelluccia, and C. Diaz, “The leaking battery”, Data Privacy Man-
agement, and Security Assurance (J. Garcia-Alfaro, G. Navarro-Arribas, A. Aldini, F. Mar-
tinelli, and N. Suri, eds.), vol. 9481 of Lecture Notes in Computer Science, pp. 254–263,

92

https://www.comscore.com/Insights/Blog/US-Smartphone-Penetration-Surpassed-80-Percent-in-2016
https://www.comscore.com/Insights/Blog/US-Smartphone-Penetration-Surpassed-80-Percent-in-2016
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
http://gs.statcounter.com/press/mobile-and-tablet-internet-usage-exceeds-desktop-for-first-time-worldwide
https://marketingland.com/mobile-top-sites-165725
https://marketingland.com/mobile-top-sites-165725
https://doi.org/10.1016/j.chb.2014.10.054
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
http://mobilehtml5.org/
http://mobilehtml5.org/
https://doi.org/10.1080/08874417.2018.1477076
https://doi.org/10.1109/CNS.2017.8228636
https://doi.org/10.1007/978-3-319-58424-9_21
https://doi.org/10.1007/s12243-013-0392-5
https://gizmodo.com/apple-declares-war-on-browser-fingerprinting-the-sneak-1826549108
https://gizmodo.com/apple-declares-war-on-browser-fingerprinting-the-sneak-1826549108
https://doi.org/10.1145/2818000.2818032

Bibliography

Cham: Springer International Publishing, 2016, DOI 10.1007/978-3-319-29883-2 18

[17] A. Das, N. Borisov, and E. Chou, “Every move you make: Exploring practical issues in
smartphone motion sensor fingerprinting and countermeasures”, Proceedings on Privacy En-
hancing, 2018, pp. 88–108, DOI 10.1515/popets-2018-0005

[18] P. Snyder, C. Taylor, and C. Kanich, “Most websites Don’T need to vibrate: A Cost-
Benefit approach to improving browser security”, 2017 ACM SIGSAC Conference on
Computer and Communications Security, New York, NY, USA, 2017, pp. 179–194, DOI
10.1145/3133956.3133966

[19] C. C. Tossell, “An empirical analysis of internet use on smartphones: characterizing visit
patterns and user differences”. PhD thesis, Rice University, 2012

[20] L. Olejnik, “Report on sensors APIs: privacy and transparency perspective.” https:

//lukaszolejnik.com/SensorsPrivacyReport.pdf, Accessed: 2018-09-30

[21] rovo89, “Xposed framework.” https://repo.xposed.info, Accessed: 2018-06-14

[22] A. Cortesi, M. Hils, and T. Kriechbaumer, “mitmproxy.” https://mitmproxy.org, v. 3.0.3

[23] H. N. Anh, “Smartphone industry: The new era of competition and strategy”, bachelor’s
thesis, Centria University of Applied Sciences, 2016

[24] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of capability leaks in
stock android smartphones”, NDSS Symposium 2012, February 2012, p. 19

[25] W. Enck, D. Octeau, P. Mcdaniel, and S. Chaudhuri, “A study of android application secu-
rity”, In Proc. USENIX Security Symposium, 2011

[26] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the beast: Diverting modern
web browsers to build unique browser fingerprints”, 2016 IEEE Symposium on Security and
Privacy (SP), May 2016, pp. 878–894, DOI 10.1109/SP.2016.57

[27] L. Li, A. Bartel, J. Klein, Y. L. Traon, S. Arzt, S. Rasthofer, E. Bodden, D. Octeau, and
P. D. McDaniel, “I know what leaked in your pocket: uncovering privacy leaks on android
apps with static taint analysis”, CoRR, vol. abs/1404.7431, 2014

[28] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “AndroidLeaks: Automatically detecting
potential privacy leaks in android applications on a large scale”, Trust and Trustworthy
Computing (S. Katzenbeisser, E. Weippl, L. J. Camp, M. Volkamer, M. Reiter, and X. Zhang,
eds.), vol. 7344 of Lecture Notes in Computer Science, pp. 291–307, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, DOI 10.1007/978-3-642-30921-2 17

[29] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “TaintDroid: An Information-Flow tracking system for realtime privacy
monitoring on smartphones”, ACM Transactions on Computer Systems, vol. 32, June 2014,
pp. 5:1–5:29, DOI 10.1145/2619091

[30] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang, “AppIntent: analyzing
sensitive data transmission in android for privacy leakage detection”, 2013 ACM SIGSAC
conference on Computer & communications security, New York, NY, USA, 2013, pp. 1043–
1054, DOI 10.1145/2508859.2516676

[31] J. Seo, D. Kim, D. Cho, T. Kim, and I. Shin, “FLEXDROID: Enforcing In-App privilege
separation in android”, Network and Distributed System Security Symposium, Reston, VA,
2016, DOI 10.14722/ndss.2016.23485

[32] Y. Zhauniarovich and O. Gadyatskaya, “Small changes, big changes: An updated view on the
android permission system”, Research in Attacks, Intrusions, and Defenses, 2016, pp. 346–
367, DOI 10.1007/978-3-319-45719-2 16

[33] M. Diamantaris, E. Papadopoulos, E. Markatos, S. Ioannidis, and J. Polakis, “Real-time app
analysis for augmenting the android permission system”, (under submission)

[34] H. Shahriar, T. Klintic, and V. Clincy, “Mobile phishing attacks and mitigation techniques”,
Journal of Information Security, vol. 6, no. 3, 2015, pp. 206–212, DOI 10.4236/jis.2015.63021

[35] L. Wu, X. Du, and J. Wu, “MobiFish: A lightweight anti-phishing scheme for mobile phones”,
2014 23rd International Conference on Computer Communication and Networks (ICCCN),
August 2014, pp. 1–8, DOI 10.1109/ICCCN.2014.6911743

[36] S. J. Tripathi, V. S. Gangwani, and M. E. Student, “Design the framework for detecting
malicious mobile webpages in real time”, International Research Journal of Engineering and
Technology, vol. 4, February 2017, pp. 441–444

[37] N. M. Al-Fannah, “One leak will sink a ship: WebRTC IP address leaks”, 2017 Interna-
tional Carnahan Conference on Security Technology (ICCST), October 2017, pp. 1–5, DOI

93

https://doi.org/10.1007/978-3-319-29883-2_18
https://doi.org/10.1515/popets-2018-0005
https://doi.org/10.1145/3133956.3133966
https://lukaszolejnik.com/SensorsPrivacyReport.pdf
https://lukaszolejnik.com/SensorsPrivacyReport.pdf
https://repo.xposed.info
https://mitmproxy.org
https://doi.org/10.1109/SP.2016.57
https://doi.org/10.1007/978-3-642-30921-2_17
https://doi.org/10.1145/2619091
https://doi.org/10.1145/2508859.2516676
https://doi.org/10.14722/ndss.2016.23485
https://doi.org/10.1007/978-3-319-45719-2_16
https://doi.org/10.4236/jis.2015.63021
https://doi.org/10.1109/ICCCN.2014.6911743

Bibliography

10.1109/CCST.2017.8167801
[38] A. Kostiainen and M. Lamouri, “Battery status API.” https://www.w3.org/TR/

battery-status/, Accessed: 2018-07-20
[39] L. Olejnik, “Battery Status readout as a privacy risk.” https://blog.lukaszolejnik.com/

battery-status-readout-as-a-privacy-risk/, Accessed: 2018-07-20
[40] C. Cimpanu, “Battery Status API being Removed from Firefox due to Privacy Concerns.”

https://www.w3.org/TR/battery-status/, Accessed: 2018-07-20
[41] W. Jobe, “Native apps vs. mobile web apps”, International Journal of Interactive Mobile,

vol. 7, October 2013, pp. 27–32, DOI 10.3991/ijim.v7i4.3226
[42] E. P. Papadopoulos, M. Diamantaris, P. Papadopoulos, T. Petsas, S. Ioannidis, and

E. P. Markatos, “The Long-Standing privacy debate: Mobile websites vs mobile apps”,
26th International Conference on World Wide Web, April 2017, pp. 153–162, DOI
10.1145/3038912.3052691

[43] A. K. Ratha, S. Sahu, and P. Meher, “HTML5 in web development: A new approach”,
International Research Journal of Engineering and Technology (IRJET), vol. 5, March 2018,
pp. 551–554

[44] Y. Maheshwari and Y. R. Reddy, “A study on migrating flash files to HTML5/JavaScript”,
10th Innovations in Software Engineering Conference, February 2017, pp. 112–116, DOI
10.1145/3021460.3021472

[45] A. Kostiainen, “Ambient light sensor API.” https://www.w3.org/TR/ambient-light/, Ac-
cessed: 2018-07-13

[46] Anssi Kostiainen, “Vibration API.” https://www.w3.org/TR/vibration/, Accessed: 2018-
07-13

[47] R. Tibbett, T. Volodine, S. Block, and A. Popescu, “Device orientation event.” https:

//www.w3.org/TR/orientation-event/, Accessed: 2018-07-13
[48] M. Lamouri and M. Cáceres, “Screen orientation API.” https://www.w3.org/TR/

screen-orientation/, Accessed: 2018-07-13
[49] A. Kostiainen and R. Bhaumik, “Proximity sensor API.” https://www.w3.org/TR/

proximity/, Accessed: 2018-07-13
[50] D. C. Burnett, A. Bergkvist, C. Jennings, A. Narayanan, and B. Aboba, “Media capture

API.” https://www.w3.org/TR/mediacapture-streams/, Accessed: 2018-07-13
[51] A. Abdulmunim, “Mobile web browsers in android deriving reference architecture”, IJCAI:

proceedings of the conference / sponsored by the International Joint Conferences on Artificial
Intelligence, vol. 180, January 2018, pp. 17–22, DOI 10.5120/ijca2018916284

[52] E. Janczukowicz, “Firefox os overview”. PhD thesis, Télécom Bretagne, 2013
[53] G. Dong, Y. Zhang, X. Wang, P. Wang, and L. Liu, “Detecting cross site scripting vul-

nerabilities introduced by HTML5”, 2014 11th International Joint Conference on Com-
puter Science and Software Engineering (JCSSE), May 2014, pp. 319–323, DOI 10.1109/JC-
SSE.2014.6841888

[54] P. Eckersley, “How unique is your web browser?”, Privacy Enhancing Technologies (M. J.
Atallah and N. J. Hopper, eds.), vol. 6205 of Lecture Notes in Computer Science, pp. 1–18,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, DOI 10.1007/978-3-642-14527-8 1

[55] Valentin Vasilyev, “Modern & flexible browser fingerprinting library.” https://github.com/

Valve/fingerprintjs2, Accessed: 2018-09-22
[56] G. Nakibly, G. Shelef, and S. Yudilevich, “Hardware fingerprinting using HTML5”, arXiv

preprint arXiv:1503.01408, March 2015
[57] R. Upathilake, Y. Li, and A. Matrawy, “A classification of web browser fingerprinting tech-

niques”, 2015 7th International Conference on New Technologies, Mobility and Security
(NTMS), July 2015, pp. 1–5, DOI 10.1109/NTMS.2015.7266460

[58] P. Snyder, L. Ansari, C. Taylor, and C. Kanich, “Browser feature usage on the mod-
ern web”, 2016 Internet Measurement Conference, November 2016, pp. 97–110, DOI
10.1145/2987443.2987466

[59] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava, “Using mobile phones
to determine transportation modes”, ACM Trans. Sen. Netw., vol. 6, March 2010, pp. 13:1–
13:27, DOI 10.1145/1689239.1689243

[60] Z. Xu, K. Bai, and S. Zhu, “TapLogger: Inferring user inputs on smartphone touchscreens us-
ing on-board motion sensors”, Fifth ACM Conference on Security and Privacy in Wireless and

94

https://doi.org/10.1109/CCST.2017.8167801
https://www.w3.org/TR/battery-status/
https://www.w3.org/TR/battery-status/
https://blog.lukaszolejnik.com/battery-status-readout-as-a-privacy-risk/
https://blog.lukaszolejnik.com/battery-status-readout-as-a-privacy-risk/
https://www.w3.org/TR/battery-status/
https://doi.org/10.3991/ijim.v7i4.3226
https://doi.org/10.1145/3038912.3052691
https://doi.org/10.1145/3021460.3021472
https://www.w3.org/TR/ambient-light/
https://www.w3.org/TR/vibration/
https://www.w3.org/TR/orientation-event/
https://www.w3.org/TR/orientation-event/
https://www.w3.org/TR/screen-orientation/
https://www.w3.org/TR/screen-orientation/
https://www.w3.org/TR/proximity/
https://www.w3.org/TR/proximity/
https://www.w3.org/TR/mediacapture-streams/
https://doi.org/10.5120/ijca2018916284
https://doi.org/10.1109/JCSSE.2014.6841888
https://doi.org/10.1109/JCSSE.2014.6841888
https://doi.org/10.1007/978-3-642-14527-8_1
https://github.com/Valve/fingerprintjs2
https://github.com/Valve/fingerprintjs2
https://doi.org/10.1109/NTMS.2015.7266460
https://doi.org/10.1145/2987443.2987466
https://doi.org/10.1145/1689239.1689243

Bibliography

Mobile Networks, New York, NY, USA, 2012, pp. 113–124, DOI 10.1145/2185448.2185465
[61] J. Han, E. Owusu, L. T. Nguyen, A. Perrig, and J. Zhang, “ACComplice: Location inference

using accelerometers on smartphones”, 2012 Fourth International Conference on Communica-
tion Systems and Networks (COMSNETS 2012), January 2012, pp. 1–9, DOI 10.1109/COM-
SNETS.2012.6151305

[62] X. Bai, J. Yin, and Y.-P. Wang, “Sensor guardian: prevent privacy inference on android
sensors”, EURASIP Journal on Information Security, vol. 2017, June 2017, p. 10, DOI
10.1186/s13635-017-0061-8

[63] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner, M. Schmiedecker, and
E. Weippl, “Block me if you can: A Large-Scale study of Tracker-Blocking tools”, 2017
IEEE European Symposium on Security and Privacy (EuroSP), April 2017, pp. 319–333,
DOI 10.1109/EuroSP.2017.26

[64] O. Starov and N. Nikiforakis, “PrivacyMeter: Designing and developing a Privacy-Preserving
browser extension”, Engineering Secure Software and Systems (M. Payer, A. Rashid, and
J. M. Such, eds.), Cham, 2018, pp. 77–95, DOI 10.1007/978-3-319-94496-8 6

[65] O. A. V. Ravn̊as, “Frida.” https://frida.re, Accessed: 2018-06-14
[66] B. Alman (cowboy), “Monkey-patch (hook) functions for debugging and stuff.” https://

github.com/cowboy/javascript-hooker, Accessed: 2018-04-23
[67] ghostwords, “Browser fingerprinting protection for everybody.” https://github.com/

ghostwords/chameleon, Accessed: 2018-06-09
[68] L.-M. Kein̊anen, “Touch screen mobile devices invading the internet: Ux guidelines towards

one web”, Master’s thesis, Aalto University, 2011
[69] S. S Machiraju, A. K Athukuri, S. Gampa, N. B Makela, and V. N Inukollu, “Applica-

tion based smart optimized keyboard for mobile apps”, Computer Science & Information
Technology (CS & IT), January 2017, pp. 175–186, DOI 10.5121/csit.2017.70117

[70] F. Khomh, H. Yuan, and Y. Zou, “Adapting linux for mobile platforms: An empirical study
of android”, 2012 28th IEEE International Conference on Software Maintenance (ICSM),
2012, pp. 629–632, DOI 10.1109/ICSM.2012.6405339

[71] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site measurement and analy-
sis”, 2016 ACM SIGSAC Conference on Computer and Communications Security, New York,
NY, USA, 2016, pp. 1388–1401, DOI 10.1145/2976749.2978313

95

https://doi.org/10.1145/2185448.2185465
https://doi.org/10.1109/COMSNETS.2012.6151305
https://doi.org/10.1109/COMSNETS.2012.6151305
https://doi.org/10.1186/s13635-017-0061-8
https://doi.org/10.1109/EuroSP.2017.26
https://doi.org/10.1007/978-3-319-94496-8_6
https://frida.re
https://github.com/cowboy/javascript-hooker
https://github.com/cowboy/javascript-hooker
https://github.com/ghostwords/chameleon
https://github.com/ghostwords/chameleon
https://doi.org/10.5121/csit.2017.70117
https://doi.org/10.1109/ICSM.2012.6405339
https://doi.org/10.1145/2976749.2978313

	Introduction
	Problem statement
	Contributions
	Analysis on websites exploiting HTML5 WebAPIs
	Mitigation technique

	Overview
	Environment description

	Related Work
	Android smartphones
	Mobile web-browsing
	Browser functionalities
	Firefox browser architecture
	Vulnerabilities overview
	Usage of HTML5 API

	Sensors access in Android mobile devices and related vulnerabilities
	Browser extensions

	Approach
	HTML5 Mobile Functions selection
	JavaScript Calls Interception
	Native code interception
	HTTP response interception

	Injected Code
	Hooking methods
	Hooking properties
	Getting source of the JavaScript file

	Proxy Server
	Buffering prevention
	Injection

	System calls interception
	Preliminary Tests
	Results
	Why Firefox

	Web Navigation Automation
	Interfacing smartphones with the computer
	Instrumenting Touch Gestures
	Interaction with the device
	Simulating navigation

	Logs Structure
	The Program
	Structure
	Visiting websites
	Logs saving
	Number of gestures injected
	Cleaning the environment
	Files saving

	Issues in automatic browsing
	Redirection to external websites
	Permissions acceptance
	Malicious websites
	Unreachable websites
	Loading time
	Unhandled corner cases

	Results
	Usage analysis
	Correspondence with Android calls
	Distribution

	Sources of the calls
	iframes
	Analysis of sources

	Extension
	Why an extension
	Architecture
	Content script
	Dynamic extension page
	Local storage

	Programmer manual
	Permissions
	Per website customization
	Content script (injector.js)
	Injected code
	Extension pop-up

	User Manual
	Installation guide
	User Interface

	Conclusion
	Future works

	FFAutomator manuals
	User manual
	Prerequisites
	Input
	Output
	Google SafeBrowsing API

	Programmer manual
	Environment setup
	Main loop
	Functions

	Bibliography

