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Quello che per un uomo è ”magia”,

per un altro è ingegneria
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Abstract

Safety-critical applications require reaching high fault coverage figures for

on-line testing in order to be compliant with functional safety standards cur-

rently in use. In the present days, in order to meet such strict requirements,

different solutions are adopted by semiconductor manufactures. The range

of applied approaches may vary from pure hardware-based mechanisms to

software-based ones. Each of these possible solutions presents both advan-

tages and drawbacks. Typically: software approaches are less intrusive and

have the advantage of reduced test application time compared to hardware

ones. Conversely, although hardware approaches are normally invasive and

have longer test application time, they also yield high defect coverage. This

thesis aims to suggest an innovative Design for Test infrastructure, accessi-

ble via software, for enabling a high fault coverage on-line test of arithmetic

units within embedded processor cores. The end-goal of this alternative de-

sign is to overcome limitations of both hardware and software-based test

approaches, while striving for a low invasive on-line test. Such architecture

was implemented on an open source processor, the OpenRISC 1200 and its

effectiveness evaluated by means of exhaustive fault injection campaigns.

v



vi



Ringraziamenti

Ed eccomi qui a scrivere i ringraziamenti per la mia tesi, avvenimento

che, fino a qualche settimana fa, sembrava lontanissimo.
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Chapter 1

Introduction

Nowadays the usage of electronics devices in everyday life has been growing

considerably. In particular they are used in safety-critical applications at

high level of criticality, as they could cause damage to the human beings

and/or properties, hence the correct behaviour of these elements becomes a

priority. Moreover the manufacturing cost of these electronic elements has

reduced over the years, while the costs of the testing process has actually

increased, reaching the point of being comparable with the manufacturing

ones. For these reasons the manufacturing companies are interested in tech-

niques that allow achieving the best trade-off between costs and results.

In the next sections are addressed: i) the impact of these electronic devices

in safety-critical application, ii) what is intended with ”testing” and iii) the

principal test procedures.
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1.1 Electronic Devices and Safety Critical

Applications

As mentioned, there is a massive presence of electronics devices that have the

task of regulating very critical applications. For example in the automotive

field, as shown in Figure 1.1, electronic devices are used for a number of

different applications. Some of them are not particularly relevant from the

safety point of view, while others, like the airbag system and the anti-lock

blocking system (ABS) are elements expected to work properly and without

errors during the entire operational life of the vehicle.

Figure 1.1: Electronic devices usage within a modern car

The part of the overall safety of a system depends on the system oper-

ating correctly in response to its inputs (including the safe management of

operator error, hardware and software failures and environmental changes)
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is defined as Functional Safety. The main objective of functional safety is to

remove the risk of physical injury or damages to the health of people, either

directly or indirectly (through damage to properties or to the environment),

by the proper implementation of one or more automatic protection functions.

In order to regulate the functional safety of a system, international functional

Safety Standards for different application fields have been introduced. For

example the ISO 26262 is an international safety standard for functional

safety management of electronic systems for automotive applications, which

defines the various requirements that the automotive companies must meet

about their products.

In order to meet the various requirements imposed by those standards,

high quality test procedures must be applied to the devices. Such mechanisms

could be very expensive, for this reason companies are interested in solutions

that allow achieving the best results, but at reasonable cost.

1.2 Introduction to Testing

Each product must perform a Mission, which is characterized by a Function

and a Duration (operating life time). If the product is used in applications

with processing criticalities (in which a processing error may cause loss of hu-

man lives or significant economic damages) it becomes extremely important

that the product is able to complete its mission. Consequently, the quality

of an electronic system has a growing importance with respect to the device

success. A key parameter when assessing the quality of a product is the De-

3



pendability. This criterion is defined as the trustworthiness of a computing

system that allows reliance to be justifiably placed on the service it delivers.

The dependability of a product may be evaluated in a scientific way trough

some attributes such as:

• Reliability : it is the probability that a product will perform its intended

function adequately for a specific period of time.

• Availability : it is the probability that a system behaves correctly and

is able to perform its task at a generic time (it differs from reliability

since it relates to a single time instead of a period).

• Safety : it is the probability that the system either behaves correctly or

it is able to interrupt its activity without causing serious damages.

In order to satisfy the reliability constraints a product has to be tested.

Test is defined as the process aiming at identifying faulty products, hence

the ones that do not function according to the specifications. As mentioned

before, over the years the testing cost has become comparable with the pro-

duction cost (cost of the silicon) (Figure 1.2). It is therefore important to

analyze the various test techniques, as each one of them has advantages and

disadvantages, and chose the optimal one in order to minimize the cost and

maximize the results.

The incorrect behaviour of the devices is caused by a Fault or, in other

words, by a defect in the system. It is relevant to point out that a fault

4



Figure 1.2: Comparison between test and production cost

not necessarily causes a failure in the system, in facts the fault needs to be

activated at first; this creates an Error inside the system (i.e. a discrepancy

between the expected behaviour and the actual one), which then needs to be

propagated to the output in order to generate a failure (Figure 1.3).

Fault

Error

Failure

Activation

Propagation

Figure 1.3: Fault, Error and Failure evolution
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From this definition it is possible to notice two important aspects about

the fault detection process: 1) the Controllability and, 2) the Observability.

Basically a device could be seen as a black-box that receives inputs and pro-

duces outputs. Controllability is intended as the possibility to act on the

inputs of the system, in order to excite the faults. Observability is meant

as the possibility to see the propagation of the error to the output. In case

a fault has been activated and leads to an error, but the misbehaviour of

the system is not visible through its outputs we have what is called Error-

Masking.

A fault can have different sources, but in general they can be divided in

two categories:

• Design faults

• Physical faults

Design faults are related to rules violation and/or incomplete specifica-

tions during the designing phase. Physical faults are related to how the

component has been mounted and fabricated.

Physical faults can also be divided in:

• Manufacturing faults (errors in the interconnections, component im-

properly assembled).

• Manufacturing defects (not directly related to human errors but to the

manufacturing process).

6



• Physical malfunction (due to phenomena like electromigration or cor-

rosion).

These physical defects have also a classification based on their duration

and they could be divided in:

• Permanent

• Temporary

In particular a temporary fault again could be defined as Intermittent

or Transient. With intermittent is intended a malfunction that occurs at

intervals, usually irregular, in a device that behaves normally at other times.

With transient is meant a malfunction that remains active for a short period

of time.

Generally the physical defects are not approached in a direct manner, as

this could be difficult to deal with, hence an abstract model called Logical

Faults is used. The way a logical fault shapes a physical defect is called Fault

Model. Different fault models exist and the identification of the optimal one

depends on several parameters, such as the characteristics and the type of

circuit, but the most commonly used is the Stuck-At Fault Model. This model

is based on the assumption that a specific signal of the circuit has a fixed

value 0 (stuck-at-0) or 1 (stack-at-1). For example in the Figure 1.4 the value

on the input of the gate is assumed to be 0, no matter the real value applied

to the input B.

7



Figure 1.4: Stuck-at-fault example

As already mentioned, a fault in a device is detected by observing the

misbehaviour produced by the fault itself on the device’s outputs. The device

to be tested during the test phase is called Unit Under Test (UUT). Normally,

in order to detect a fault, a properly identified set of stimuli, also defined

as Test Vectors, are applied to the UUT. The response of the UUT is then

captured and compared with the outputs of the circuit with no errors (Faulty-

Free Circuit), if there is a difference the circuit is faulty, otherwise it is

considered as functioning (Figure 1.5).

Figure 1.5: Test application

The higher the quality of the applied test, the higher will be the quality

of the final product. The metric usually used to have a measure of this pa-

rameter is the Defect Level. This parameter is defined as the percentage of

faulty devices that pass the test and is measured in part per million (ppm)

or parts per billion (ppb).
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The choice of the test vectors is an important phase as it can produces

costs that might not be negligible. In facts a higher number of test vectors

can imply a considerably long test time. Also, considering that in certain

types of test strategies these vectors have to be stored in memories, they

might require considerable amount of memory space. Usually, in order to

avoid these contraindications, the test vectors are generated and evaluated

using software tools.

The effectiveness of the chosen test vector given a specific fault model, is

called Fault Coverage. This parameter is defined as the percentage of possi-

ble faults detected by the test over the total number of faults.

The application of the set of test vectors to the UUT is the test appli-

cation phase. Generally the high number of test vectors and the number of

devices to test (hundreds or even thousands) can make the test application

phase very expensive in terms of time. Hence, special machines called Auto-

matic Test Equipment (ATE) are used in order to maximize the quantity of

devices tested. This tool is used to apply test stimuli, collect the responses

produced by the UUT and compare them with the expected ones. Due to its

complexity, accuracy and speed the cost of an ATE is rather high.

Integrated Circuit test can be classified in several different types:

• Verification Testing : it aims at executing a final verification of design

correctness and compliance with specification defining also the exact

9



operating limits of the circuit in terms of temperature, voltages and

other parameters.

• Production Testing : its objective is to guarantee the correct behaviour

of the produced devices.

• Reliability Testing : this type of test measures the functionality of the

product during an interval of time in a real-life environment. The major

fields in reliability testing are the environmental test (product that

has to work in extreme condition of the environment such as high/low

temperature or levels of humidity) and the electrical test (product that

has to survive to high/low voltages or currents). An example of this

type of test is the Burn-In, a manufacturing test phase used for safety-

critical modules and designed to check for the early life faults that

that can affect the products. In facts in the early life of a product the

Failure Rate (frequency at which a component fails) is high but rapidly

decreasing as defective products are identified and discarded, then in

the mid-life of a device the failure rate is low and constant while in the

late life of the product the failure rate increases as age and wear take

their toll on the product. This trend of the failure rate with respect to

the product life is referred as the Bathtub Curve (Figure 1.6).

• Incoming Inspection: it is performed by the buyer (generally a system

company) of a circuit, to make sure that it works correctly before it is

used.

• In-field Testing : this type of test could be divide in On-Line Testing

10



and Power On Self-Test. The first one is used for the continuous test-

ing of the device even during its operational life, without stopping its

normal operations, while the second one is based on testing the device

when it is powered-on.

Figure 1.6: Bathtub curve

Usually when dealing with safety-critical applications, Functional Safety

Analysis is used to evaluate the safety level achieved by the product. It

comprises of quantitative evaluations such as the Failure Mode Effect and

Diagnostic Analysis (FMEDA). FMEDA is a structured approach to define

ways the safety device can fail. Hence it is useful to understand how much

reliable the product might be and if there are good mechanisms able to detect

the failures and to bring the system to a safe state. For example in [1] is

presented a FMEDA analysis for automotive applications.
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1.3 Safety Mechanism

In general a device is tested just before being delivered to the final user,

this is called End-Of-Manufacturing Testing. The main goal of this process

is to identify all the samples that are not working inside the specification

window of the product. In safety critical fields such as the automotive one,

this is achieved by reducing the Defective Parts Per Million (DPPM). This

is a measurement used today by many customers to measure quality perfor-

mance. One DPPM means one defect in a million.

The most critical systems in terms of safety need not only to be tested at

the end of their production cycle, but should also be tested when they are

already deployed in their operational field (In-Field testing).

In order to better manage these critical applications, various solutions,

also referred to as Safety Mechanisms, are adopted. These safety mechanisms

provide the possibility to identify the presence of errors (and maybe correct

them), or permit the in-filed testing. These solutions are very important

in any system with a goal of high reliability that can have the undesirable

presence of Single Points Of Failure (SPOF) and Latent Faults. A SPOF is

a part of a system that, if it fails, will stop the entire system from working.

Latent faults are instead faults that are present in the system, although but

hidden from regular means of detection, they become more dangerous in

conjunction with a second fault.

Safety mechanisms can be grouped in two main categories:

12



• Hardware-based safety mechanisms

• Software-based safety mechanisms

The hardware-based safety mechanisms are solutions that require adding

to the original circuit more hardware in respect to the original one. If the

main goal is to detect/correct a fault, a product can be designed to be a

Fault Tolerant System ([2], [3]). This type of system is able to stops the

propagation of the fault and to send to the user the expected output value

(Triple-Modular-Redundancy or TMR, Figure 1.7), or an alarm signal adver-

tising that an error has occurred (Duplication With Comparison or DWC,

Figure 1.8).

Figure 1.7: TMR, the UUT is replicated 2 times and a majority voter decides
the output

Otherwise if the objective is to achieve in-filed testing there are solutions

that permit to achieve high fault coverage, still using more hardware than in

the original product. However, the need of extra hardware and the long test

application time make these in-field safety mechanisms rather costly. More-

over, the utilization of such techniques requires a temporary disconnection

of the UUT from its normal operation in order to apply the test, as in the
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Figure 1.8: DWC, the UUT is replicated 1 times and a comparator module
verifies if the two outputs are in agreements or not

case of this test, applied when the devices is switched on (POST). These

limitations make a pure hardware-based mechanism not suitable to satisfy

the safety standard requirements, as a given fault coverage must be guaran-

teed periodically, even when the system is already fully in function (on-line

testing).

For this reason software-based mechanisms are applied. This family con-

sists in a set of software procedures, or test programs, that form what is

called Software Test Library (STL). It consists of a set of software procedures

executed by the processor core, which main target is to test the processor

coreitself and the peripherals surrounding it. One of the main advantages

of this type of approach is that no extra hardware is needed, although the

generation of a high-quality test program is still a time consuming process.

Moreover, the fault coverage achievable by a pure software approach is nor-

mally lower in respect to the one obtained by a hardware approach.

As discussed, both hardware and software approaches have advantages

and disadvantages. For this reason it could result advantageous merging

these two approaches, in order to create a hybrid one. This solution per-
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mits to exploit the advantages and reduce the limitations of the two distinct

strategies.

In the next chapter are discussed the meaning of a combinational and se-

quential circuit, the fault simulation process and the software and hardware-

based mechanisms in order to give to the reader the necessary background.

Moreover, the proposed approach of combining hardware and software mech-

anisms to create a hybrid architecture is described in details in Chapter 3.

Chapter 4 presents experimental results and further analyses on the proposed

approach. Finally Chapter 5 reports the conclusions of this work, along with

forecasts for future directions.
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Chapter 2

Background

A description of a combinational and sequential circuit and of a fault sim-

ulator tool is presented in this chapter. Follows a more detailed discus-

sion on the two main categories of in-field testing approaches, hardware and

software-based, focused on the existing strategies and their advantages and

disadvantages.

2.1 Combinational and Sequential Circuit

A Combinational Circuit is defined as a time independent circuit which does

not depends upon previous inputs to generate any output but only on their

present values (Figure 2.1).

Figure 2.1: Combinational circuit
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Instead, as shown in Figure 2.2 a Sequential Circuit is a circuit which

is dependent on present as well as past inputs to generate any output. It

requires memory elements that are dependent to clock signal (in order to

memorize a value) and reset signal (in order to initialise the memorised value

to a default one).

Figure 2.2: Sequential circuit

2.2 Fault Simulation

A Fault Simulator (Figure 2.3) is a software tool that receives as inputs:

• Circuit Description: files describing the circuit. In general they are

VHDL or Verilog file.

• Fault List : text file containing the faults that are considered in the

circuit, they could be all the possible faults or only a part of them.
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• Test Set : set of patterns that are applied to the circuit.

Figure 2.3: Fault simulation environment

The fault simulator computes the behavior of the circuit in the presence

of each fault when the given test set is applied. The choice of the patterns

to apply to the circuit is an important phase, as it can produce costs that

will not be negligible. In facts a higher number of test vectors can imply
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a long test time and, with the facts that in certain types of tests strategies

these test vectors have to be stored in memories, in terms of memory space.

Usually in order to avoid these contraindications the test vectors are gener-

ated using a software tool called Automatic Test Pattern Generator (ATPG).

The main purposes of a fault simulator are the analysis of a faulty circuit

behaviour and the Fault Coverage computation, which permits also to find

the Untested Faults (faults undetectable with the applied test patterns).

2.3 Built-In Self-Test

Built-In Self-Test (BIST) is an approach very effective in terms of achieving

a high fault-coverage. It is based on inserting additional hardware in the

system whose purpose is to test the device itself when being in the field.

The basic scheme of a BIST approach is shown in Figure 2.4. The principal

components of the BIST are:

• Unit Under Test (UUT): it is the circuit to be tested, it is delimited

by its Primary Inputs (PIs) and Primary Outputs(POs).

• Test Pattern Generator (TPG): it generates the test patterns for the

UUT, they can be generated in a pseudo-random manner or determin-

istically.

• Multiplexer : it disconnects the UUT from the PIs when the Test Mode

is activated in order to fed the UUT with the pattern of the TPG.
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• Output Data Evaluator (ODE): it analyzes the sequence of values on

the POs and compares it with the expected one.

• BIST Controller : it controls the test execution, managing the TPG

and ODE modules, reconfiguring the UUT and driving the multiplexer.

It is activated by the Normal/Test signal and generates the Go/Nogo

signal.

• Normal/Test : when it has the ”Normal” value the UUT is fed with

its PIs, no BIST test is performed. Instead if its value is ”Test” it

activates a BIST session, then the UUT is fed with the TPG patterns

and the ODE captures the outputs.

• Reconfigure: in some BIST architecture the UUT internal logic is re-

configured in order to improve the controllability and observability.

If the UUT to be tested using BIST is a block of logic we are talking about

Logic Built-In Self-Test (LBIST), instead if it is a memory, it is defined as

Memory BIST (MBIST). A memory is a device that is able to read/store

a data to/from a determined location defined by an address, for this reason

the BIST architecture must be extended also for what concerns the addresses

generation (Figure 2.5).

A TPG and an ODE module can be implemented in different ways. For

example, a very popular solution is to use Linear Feedback Shift Registers

(LFSRs). From the test pattern generation point of view, the LFSR archi-

tecture is presented in Figure 2.6, where a circle can correspond to a open or
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Figure 2.4: BIST architecture
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Figure 2.5: MBIST architecture
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close connection, depending on the chosen pseudo-random pattern generation

function to be implemented. They are pseudo-random pattern because after

some test cycles the pattern are repeated and each new generated pattern

has a dependency from the previous one. Usually, to avoid this drawback, a

Phase Shifter is used. This is composed of some xor gates fed by couples or

triples of LFSRs outputs, in order to generate uncorrelated values.

Figure 2.6: LFSRs as pseudo-random pattern generator architecture

Then the LFSR could also be used to implement a compactor for the

ODE. In this case its task is to compact in a single vector of n bits, named

Signature, the sequence of output values of the UUT. To do this is used what

is called a Multiple Input LFSRs (MISRs). The architecture of a MISR is

shown in Figure 2.7 and, again, a circle could indicate an open or close con-

nection depending on the wanted compaction function.

Exist several examples of both MBIST and LBIST. For example in [4]

a strategy that combine the existing best practices and present a concept

of full-scale functional safety solution for testing memories in automotive

System-on-Chips based on the designed versatile BIST engine and in-field
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Figure 2.7: MISR architecture

error correction capability is discussed; while in [5] is presented a method-

ology to include LBIST in a multicore processor for periodic online testing

and presents also the results obtained of the presented work done on actual

Arm IP.

From the point of view of the area overhead, exist solutions that par-

tially reuse some Design for Testability (DfT) techniques intended for end-

of-manufacturing test. For instance the Self-Testing Using MISR and Parallel

SRSG (STUMPS) architecture reuses the Scan Chains. Scan chain is a DfT

method that during the test mode reconfigures all the flip-flops of the UUT

in order to form a shift-register and shift-in and out patterns in the UUT.

The STUMPS architecture (Figure 2.8), as described in [6], is used to first

shifting-in the pseudo-random patterns generated by the LFSRs and then

shifting-out the system responses that will be compacted in the MISR.

In conclusion BIST approaches permits to reach good level of fault cov-

erage with the cost of a non-negligible area overhead. Moreover BIST is
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Figure 2.8: STUMPS architecture

effective only when huge amount of patterns are generated, which requires a

significant amount of test time. Besides, since random values are forced into

flip-flop and PIs, the state of the system is completely destroyed. Therefore,

it is very difficult to adopt such approach for periodic in-field testing. Indeed,

solutions based on BIST find applicability during the POST.

2.4 Software-Based Self-Test

Software-based mechanisms are popular solutions for the on-line testing.

These mechanisms are developed according to the Software-Based Self-Test

(SBST) approach. A SBST is a special kind of test for processors, it is used

both for in-field test and for end-of-manufacturing test as a complement to

other solutions. Such strategy, initially proposed by [7], has been studied by
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different research groups (for example [8] and [9]) as described in [10]). Then

this type of test has also been extended in safety applications, for example

in [11] is described an approach for the development of test programs for

microprocessors used in safety-critical automotive embedded systems.

In general a SBST is based on a carefully devised test program that is

executed by the processor in order to exciting possible faults. In general a

SBST procedure is divided in three phases (Figure 2.9):

1. Test program upload : the test code and the test data are downloaded

into processor memory.

2. Test program execution: the processor executes the test program fetch-

ing the instructions from the memory.

3. Test result download : along the execution of the test program, results

have to be stored in a suitable location readable from the outside.

Typically the memory where the test program is stored could be of two

types: i) RAM memory and ii) Flash memory. The RAM memory is a

volatile memory, for this reason the test programs are uploaded every time

they have to be executed. The Flash memory instead is a non-volatile mem-

ory, hence the test programs are uploaded just once and they are run any

time it is required.

When used for in-field test, the SBST test program could be executed at

the moment of system reset, or during the normal operations. In the first
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Figure 2.9: SBST flow
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case there are not particular constraints that the test program has to respect

because the state of the processor has not to be preserved and then restored.

Instead when the execution of the test program is activated during the nor-

mal operation, the devices is temporarily disconnected from its normal flow

of operation. For this reason the test duration has to be enough long to detect

the possible fault but also enough short to guarantee the correct behavior of

the device. For example a safety critical application as the airbag activation

of a vehicle that is tested in-filed during the normal operation, must not be

so long in order to guarantee that the airbag is correctly activated in case an

accident occurs just in that moment.

The main advantages are: i) the reduced test application time and ii) it

is not required to add extra hardware to the processor for executing the self-

test, since the already existing programmable resources have been already

exploited. Normally, the only hardware required is a Flash memory that

should be reserved for storing the test code and occasionally a portion of

RAM memory for storing the data needed by the test. In order to generate

a good test program different techniques can be adopted. In [12] a com-

bination of SBST methodologies with verification-based self-test programs

supplemented by directed random test-program generation is discussed. In

[13] is presented a methodology to generate automatically a test program

from only a simulatable RTL description of the processor and the instruction

set architecture (ISA specification). Nevertheless, as discussed in [14], the

most common SBST strategies are in general of three types:

• ATPG-Based : this methodology guarantees the highest possible cov-
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erage, given the fact that test patterns for a specific module are auto-

matically generated by means of an Automatic Test Pattern Generator

(ATPG). A tool that, given a circuit description, generates tests vec-

tors. Further work is needed to transform the obtained patterns into a

valid sequence of instructions that the processor will execute.

• Deterministic: it consists into the implementation of a documented

algorithm or methodology. The expected fault coverage level goes from

medium to high. In some cases, it requires several adjustments and

simulations, until an appropriate level of fault coverage is reached.

• Evolutionary-based : this methodology uses an evolutionary engine to

continuously generate functional test programs. The fault coverage can

be very high, but it requires the generation of many programs increas-

ing the generation time.

One of the disadvantages of a software-based self-test, is that the achiev-

able fault coverage of a set of test programs is usually limited by the fact

that a given test program can exclusively reproduce pure functional stimuli.

Hence, a certain amount of faults that could potentially lead to a failure

cannot be excited, as they can be detected only with values that the ”legal”

instructions of the processor are not able to reproduce. Another issue is the

responses of each test program, which are essential for determining whether

a given fault can be labelled as detected or not. In facts normally results are

accumulated via software in order to form a signature and compare it with

the expected one. However it may happen that not all the faults effects are
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reflected in the final signature, hence some of them can be missed or their

effect could be masked.
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Chapter 3

Proposed Approach

As mentioned before, both SBST and BIST approaches have both undeniable

advantages as well as limitations. Briefly, concerning the SBST, it is evident

that the intrinsic flexibility of a software approach does not bring any penalty

in terms of silicon area in the final device, nevertheless it suffers from:

1. limited controllability : exclusively pure functional pattern can be pro-

duced;

2. limited observability : faults effects might be masked and not correctly

stored in the final signature;

Contrarily, BIST has full access to the underlying hardware but:

3. it is nearly impossible to maintain the system state unaltered during

the self-test procedure;

4. the test application time is long.
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Hence the idea is to create a Hybrid architecture to overcome the lim-

itations of the current solutions adopted for both hardware and software

approaches. In doing this it becomes possible to complement the execution

of a SBST, which yields to an acceptable fault coverage at run-time, with

the direct application of specific test patterns to the targeted units in order

to have a more completed fault coverage (which can be hardly achieved with

the SBST solely).

Hybrid approaches to the in-field testing are not new ([15], [16], [17] and

[18]). In respect to other existing works like [19], [20] and [21], the proposed

DfT does not require detailed knowledge of the processor it is applied to.

Moreover, the extra DfT hardware is not a completely separated module but

is inserted within the processor core exploiting the existing functionalities of

the processor.

The proposed approach is intended for the on-line testing of arithmetic

modules, both combinational and sequential. The resulting architecture is

called OPTIMUS, which stands for O-nline Programmable T est I nfrastructure

for comM pU tational moduleS.

In the next sections OPTIMUS (general implementation, internal reg-

isters usage, main components and available operational modes) and the

possible test procedure are presented.
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3.1 OPTIMUS

The architecture of OPTIMUS is visible in Figure 3.1. As mentioned above,

it has been implemented in order to handle combinational and sequential

arithmetic blocks. The working principle of OPTIMUS is, having the full

access of the primary input of the two module, to compact in a signature

the output of the modules in order to increase the observability and also to

feed the module with loaded test pattern maintaining the processor in a safe

state in case a special instruction has occurred.

In the next sections are described the implementation, the principal com-

ponents and functionalities of OPTIMUS.

3.1.1 Implementation

Here is addressed the insertion of OPTIMUS in the processor. Figure 3.2

shows the Inputs and the Outputs of OPTIMUS. OPTIMUS is a sequential

circuit, so it needs to use a CLOCK and RESET signal, these signal are the

same used from the entire processor. The other signal can be divided in three

groups:

1. the signals related to the Combinational unit;

2. the signals related to the Sequential unit;

3. the signals related to implement the Special Purpose Register (SPR)

interface in order to correctly write and read the internal registers.
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Figure 3.1: OPTIMUS schematic assuming it is applied to a combinational
and a sequential unit
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1 //CLOCK and RESET
2 input c l k ;
3 input r s t ;
4

5 //COMBINATIONAL UNIT
6 input [ comb in −1:0 ] da t i i n comb ;
7 output [ comb in −1:0 ] dat o in comb ;
8 input [ comb out −1:0 ] dat i out comb ;
9 output [ comb out −1:0 ] dat o out comb ;

10

11 //SEQUENTIAL UNIT
12 input [ s eq in −1:0 ] d a t i i n s e q ;
13 output [ s eq in −1:0 ] d a t o i n s e q ;
14 output r s t o u t ;
15 output c l k ou t ;
16 input [ seq out −1:0 ] d a t i o u t s e q ;
17 output [ seq out −1:0 ] da t o ou t s eq ;
18

19 //SPR INTERFACE
20 input [ sp r in −1:0 ] s p r i n ;
21 output [ spr out −1:0 ] sp r out ;

Figure 3.2: Inputs and outputs of OPTIMUS

3.1.1.1 Combinational Unit Signals

OPTIMUS is inserted around the combinational module, so it needs the

declaration of four signals:

• dat i in comb: it composes the original inputs of the combinational

circuit before the insertion of OPTIMUS, it comes from other modules

of the processor. This signal is an input of OPTIMUS;

• dat o in comb: it is the effective input of the combinational circuit, it

could be the dat i in comb signal or, in case the necessary conditions

are verified, the test pattern. This signal is an output of OPTIMUS

and the input of the combinational module;

• dat i out comb: it is the combinational circuit output, if the internal
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MISR is active, it is used to capture the response of the module and

compute the signature. This signal is an input of OPTIMUS and the

output of the combinational module;

• dat o out comb: it is the OPTIMUS output that is sent to other mod-

ules of the processor for what concerns the combinational unit. It could

be the dat i out comb signal or, in case non functional pattern are ap-

plied to the combinational circuit, it could be a safe value in order

to maintain the processor in a safe state. This signal is an output of

OPTIMUS.

3.1.1.2 Sequential Unit Signals

Again, as discussed for the combinational unit, OPTIMUS is inserted around

the module. Hence, the input and output signals of OPTIMUS concerning

the sequential circuit are:

• dat i in seq : it composes the original sequential circuit inputs before

the insertion of OPTIMUS, it comes from other modules of the proces-

sor. This signal is an input of OPTIMUS;

• dat o in seq : it is the effective input of the sequential module, it could

be the dat i in seq signal, or in case the necessary conditions are ver-

ified, the test pattern. This signal is an output of OPTIMUS and an

input of the sequential unit;

• rst out : it is the reset signal for the sequential circuit, it could be

the reset signal used by the entire processor or, in case OPTIMUS is
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activated to handle the sequential circuit, a reset controlled externally

using the SPR functionalities. This signal is an output of OPTIMUS

and an input of the sequential unit;

• clk out : it is the clock signal for the sequenial module, it could be

the clock signal used by the entire processor or, in case OPTIMUS is

activated to handle the sequential circuit, a clock controlled externally

using the SPR functionalities. This signal is an output of OPTIMUS

and an input of the sequential module;

• dat i out seq : it is the sequential circuit output, if the internal MISR

is active, it is used to capture the response of the module and compute

the signature. This signal is an input of OPTIMUS and the output of

the sequential module;

• dat o out seq : it is the OPTIMUS output that is sent to other modules

of the processor for what concerns the sequential circuit. It could be

the dat i out seq signal or, in case non functional pattern are applied

to the sequential module, it could be a safe value in order to maintain

the processor in a safe state. This signal is an output of OPTIMUS.

3.1.1.3 SPR Interface

OPTIMUS has been implemented as a module inside a processor having all

the internal registers addressed as Special Purpose Registers. This implemen-

tation permits to easily load and store value in the module. The operation is

done respectively using 2 instructions: i) Move To Special Purpose Register
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(MTSPR) and ii) Move From Special Purpose Register (MFSPR).

An example of these two instructions is presented in Figure 3.3.

1 l . mtspr r0 , r3 , 0 xca f e
2 l . mfspr r4 , r0 , 0 xca f e

Figure 3.3: Example of MTSPR and MFSPR instructions

The first instruction is a write operation. It is saying to move the con-

tent of register r3 into the special register defined by content of register r0

logically ORed, with the hexadecimal value 0xcafe. In particular the value

of r0 is always 0 hence the instruction is saying to move the value of r3 in

the SPR with address 0xcafe. The second instruction is instead a read oper-

ation. It indicates that the content of the SPR, which address is defined by

the content of register r0 logically ORed with the hexadecimal value 0xcafe,

is moved in register r4. Again as before if it used register r0 this means that

the content of the SPR with address 0xcafe is moved into register r4.

Hence, as part of the SPRs in the processor, OPTIMUS has to conform

to the internal SPR interface for writing and reading data. The number of

needed signal and their width may vary depending on what type of processor

OPTIMUS is implemented, but in general there are:

• spr in: input signals of the SPR interface, used to correctly select the

unit and the SPR registers of the unit that has to be read or written.

This signal is an input of OPTIMUS

• spr out : output signal of the SPR interface, this signal presents the

value of the SPR register that is read. This signal is an output of OP-
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TIMUS.

The SPRs of OPTIMUS can be grouped in six categories:

• Control

• Trigger

• Safe

• Pattern

• Reset & Clock

• MISR

3.1.1.4 Control SPR

This category contains the register that is used to activate and configure

OPTIMUS for different operational modes (they will we described in next

sections). Basically it is used to disconnect the unit under test from its

normal inputs in order to feed it with the test patterns (and the clock and

the reset signal for sequential circuit). This register permits also to send as

output a safe pattern, in order to maintain the processor in a safe state. It

also selects the data that reach the MISR to compute the final signature.

It is composed of 3 bits, as follows: the bit[0] is used to manage the input

and the safe pattern that are relative to the combinational circuit, the bit[1]

serves to manage the sequential circuit and the bit[2] drives the input of the

MISR that, if active, receive the responses that come from the combinational

or from the sequential circuit (Figure 3.4).
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Figure 3.4: SPR Control reg bits

3.1.1.5 Trigger SPR

In this type of register is stored the value of the primary input that the

sequential or the combinational circuits have when a specific instruction is

invoked in the test program. When this programmable instruction appears

with OPTIMUS correctly configured, the inputs of the unit under testing

are switched from the ”real” ones to the test ones. In particular this register

is used both for the combinational and the sequential units, also if the two

modules have different numbers of input bits. For this reason it has been

implemented in order to have the size of the module with higher number of

inputs. For the module with fewer bits, the extra ones are discarded.

3.1.1.6 Safe SPR

In this category of SPR is stored the safe value of the combinational or of the

sequential circuit, that OPTIMUS sends as output for the other modules of

the processor, when one of the two modules is fed with test pattern in order

to guarantee that the processor maintains a safe state. This is necessary

as the test patterns that feed a module are not functional patterns, so they

could result in a non-supported instruction by the processor instruction set
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that can drive the processor in a not stable state. Again as described before

this type of register has been designed in order to fit the size of the module

with the higher number of output bit. For the module with less bits, the

extra ones are discarded.

3.1.1.7 Pattern SPR

In this category of register is stored the test pattern to be applied to the

tested unit when OPTIMUS is active and a Trigger Instruction has occurred.

Again the total size of this group of registers follows the same rule discussed

for the Trigger SPRs.

3.1.1.8 Reset & Clock SPRs

These two registers of one single bit are used as clock and reset input to

the sequential module under test when the test patterns are applied. In

facts, when dealing with these type of circuits, the test pattern has not to

be simply applied. It actually also requires to be captured by the registers

of the module by means of a clock pulse and sometimes also of a reset pulse.

For these reasons these registers have been designed in order to recreate a

pulse. In Figure 3.5 is shown how they work: initially their value is 0, then

with a MTSPR instruction the value 1 is written and after a clock pulse they

are automatically turned to 0 again.

3.1.1.9 MISR SPR

From this category belong the Control and the Data SPRs for the MISR. The

MISR Control register is a single bit register used to activate the internal
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Figure 3.5: Reset & Clock SPRs pulse

MISR. Once the MISR is active the computation of the signature using the

data that are coming starts and is stored in the Data MISR register that can

only be written by OPTIMUS itself. If the MISR is not active no signature

is computed. Again the Data MISR register is designed in order to have a

total amount of bits equal to the output bits of the largest unit that can be

tested. The value of the Data MISR register will be the spr dat o output of

OPTIMUS using MFSPR instructions.

3.1.2 OPTIMUS Main Components

Here are addressed the components that permit the signature computation

(MISR) and the detection of the trigger instruction (Trigger Comparator).

3.1.2.1 MISR

It has been implemented as shown in Figure 3.6. The input misr signal comes

from the output of the combinational or of the sequential circuit, depending

which of the two modules is tested. Consequently, until the MISR is enabled,

the signature is stored in the data MISR SPRs.

As discussed, in order to make a fault detectable, it is necessary that the
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Figure 3.6: OPTIMUS internal MISR

responses of a circuit are propagated to the outputs. In facts the two tested

circuits are internal modules of the processor, then the signature computed

by the MISR needs to be moved. To do this the contents of the data MISR

SPR is first of all moved to some general-purpose register through MFSPR

instruction, then using Store operation the data contained in this register is

visible to the output of the processor (Figure 3.7).

Figure 3.7: Propagation of the signature to the processor output
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3.1.2.2 Trigger Comparator

This component is in charge of detecting whether a trigger instruction is

present or not. In Figure 3.1 it was drawn for simplicity as a green square

with a ”=?” inside, but in figure 3.8 is possible to see its real implementation.

Figure 3.8: Trigger comparator

Basically this block compare the value contained in the Trigger SPR with

the one that the tested unit is receiving. Instead of using a trigger com-

parator for each unit, in order to reduce the needed hardware, multiplexers

driven from the Control SPR are used to select if the unit to be tested is the

combinational one or rather the sequential one. Again the implementation

respects the size of the module with the largest number of bits. The extra

bits of the module with less width are filled with ”00...00”. The two signals

to be compared reach a XOR gate, the output of this gate will be all 0s only if

the two signals were equal. Then the XOR gate output is reduced to a single

bit using an OR reduction operation and finally its value is complemented.

At the end the final value will be ”1” if the input of the unit and the value

contained in the Trigger SPR are equal, otherwise the final value will be ”0”.
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3.1.3 OPTIMUS Operational Mode

OPTMUS is able to perform three different operational modes:

• Normal Mode

• Combinational Test Mode

• Sequential Test Mode

In particular the last two modes require using non-functional pattern as

input for the combinational or the sequential units.

3.1.3.1 Normal Mode

In this mode OPTIMUS is not active. This means that it works as if it is

transparent. Hence the inputs and the outputs of both the combinational

circuit and the sequential one pass through OPTIMUS with no modifications

(Figure 3.9). To configure this mode the ctrl SPR needs to have value ”X00”.

The X could be either 1 or 0, as it drives the data that goes in the internal

MISR. If it is not active, is not relevant which data arrive. Thanks to the fact

that the MISR can be independently activated writing ”1” in the ctrl misr

SPR, in Normal Mode is also possible to use a normal SBST procedure with

augmented observability to capture the response of the combinational (ctrl

SPR = ”100”) or of the sequential (ctrl SPR = ”000”) circuit.

3.1.3.2 Combinational Test Mode

In this mode OPTIMUS is configured to test a combinational unit. The ctrl

SPR is set to ”101” and in order to compute the signature the ctrl misr is
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Figure 3.9: OPTIMUS during normal operations
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equal to ”1”. Then each time the inputs of the combinational circuit that

arrive to OPTIMUS are equal to the value stored in the Trigger SPR the

effective input of the combinational module and its output sent to the other

modules are swapped respectively with the content of the Pattern and Safe

SPRs. This also means that, if OPTIMUS is active to test the combinational

module, the input/output signals have a modification only when the trigger

instruction appears. For this reason between Trigger Instructions is possible

to set new values for the various SPRs. While the combinational unit is

tested, the sequential one operates normally (Figure 3.10).

3.1.3.3 Sequential Test Mode

When configured in this operational mode, OPTIMUS is ready to test a se-

quential circuit. The ctrl SPR has value ”010” and the ctrl misr ”1”. When

configured in this way the real clock and reset signals of the tested circuit

are disconnected and substituted with the value in the rst and clk SPRs and

the safe patterns for the sequential circuit are sent to the other modules of

the processor. In particular dealing with sequential circuits requires that,

from a trigger instruction and the other, the inputs of the circuit must be

stable. For this reason the configuration in Figure 3.11 is used. This permits

to fed the sequential module with a stable value and the next test pattern

is applied only after that the Pattern SPR is loaded with a new content and

a Trigger Instruction is invoked. Again when the sequential circuit is under

test, the combinational one operates normally (Figure 3.12).
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Figure 3.10: OPTIMUS with test pattern applied to the combinational unit
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Figure 3.11: Stable input for the sequential unit between test pattern appli-
cations

3.2 Test Generation Flow

As previously discussed, OPTIMUS supports the direct application of test

pattern to both combinational and sequential circuits without affecting the

other modules of the processor. However, it is important to support the inser-

tion of OPTIMUS within the processor with a suitable test generation flow.

A trivial approach could be to generate the test patterns trough an ATPG

process considering all the possible faults that affect the tested circuit. This

approach could lead to a a high number of test patterns being generated, neg-

atively affecting the test application time and the memory space required for

saving the test program. A better approach consists in leveraging the hard-

ware offered by OPTIMUS. As mentioned, the SBST techniques are limited

to error-masking problems when computing the test program signature. This

drawback can be mitigated by exploiting the internal MISR of OPTIMUS

(which can be independently activated). This means that at the beginning

of a SBST test program, the MISR can be activated and then, at the end of

the self-test procedure, disabled. Then, the final signature computed by the

MISR can be retrieved and compared with the expected one. By adopting
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Figure 3.12: OPTIMUS with test pattern applied to the sequential unit
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this approach, a higher number of faults can be detected by the test pro-

grams. At this point, starting from the faults which are not detected by the

test programs, it is possible to ask to an ATPG tool to generate test patterns

for the remaining faults. Thus, by exploiting the execution of test programs is

possible to reduce the number of required test patterns to fully test the MUT.

A further strength of this approach lies when generating test patterns

for a sequential circuit. Sequential ATPG hardly reaches high fault coverage

figures, and it becomes harder and harder as the complexity of the circuit

grows. Instead, by first applying the software self-test is possible to detect

faults that require complex sequence of data, that an ATPG tool cannot

generate. Hence, the sequential ATPG is used for generating sequential test

patterns for the remaining faults, and it is extremely likely that the fault

coverage would be higher than with a basic sequential ATPG.

In the next chapter the implemetation of OPTIMUS in a open-source

processor and its consequences are discussed. Then results obtained with

different test generation flow are presented.
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Chapter 4

Case of Study and

Experimental Results

The experiments were conducted on the OpenRISC 1200 (OR1200) soft-core

processor (Figure 4.1). The OpenRISC 1200 (OR1200) is a 32-bit open-

source soft-core processor [22], implementing a five stages integer pipeline.

Its basic instruction pipeline fetches instructions from the memory subsys-

tem, dispatches them to available execution units and maintains a state his-

tory to ensure a precise exception model and that operations finish in order.

The OR1200 implements 32 General Purpose Registers (GPRs) of 32 bit

width used for logical and arithmetical operation. It implements also various

Special Purpose Registers (SPRs) used for special tasks or to permits the

communication between the core and its peripherals. The architecture of

the OR1200 is intended for embedded, portable and networking applications

such as the automotive and portable computer environments.
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Figure 4.1: OR1200 CPU

All the logic simulation were performed using Mentor Graphics Model-

Sim®(Questasim), whereas Synopsys Design Compiler® used as logic syn-

thesis tool. Then Synopsys TetraMAX® was used as ATPG tool and as a

fault simulation environment. Concerning the fault model, stuck-at faults

were exclusively considered.

The only computational modules included within the OR1200 are the

Arithmetic Logic Unit (ALU) and the Multiply and Accumulate (MAC). The

former is a pure combinational module, in charge of executing basic logic

and arithmetic operations. The latter is instead a complex sequential mod-

ule, which is mainly used for multiplication, division and multiplication with

accumulation of the result operations.
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In the next section the specific implementation of OPTIMUS in the

OR1200 is discussed. Then the results and the consequences obtained with

the insertion of OPTIMUS are discussed.

4.1 OPTIMUS in the OR1200

Figure 4.2 clarifies how OPTIMUS was designed for the ALU and the MAC

of the OR1200, also underlining the number of bits of the various signals and

the 20 (numbered from 0 to 19) SPRs required. The ALU receives an amount

of input signals of 120 bits and generates as output 36 bits, while the MAC

receives 141 inputs bits, where two of them are the clock and the reset signal.

In Figure 4.3 and 4.4 the various inputs and outputs of the two mod-

ules are visible, while in Figure 4.5 and 4.6 is shown how these signals were

grouped in single signals in order to handles the two modules with OPTIMUS.

For what concerns the SPRs, in the OR1200 processor the special purpose

registers of all units are grouped into thirty-two groups. Each group can have

different register address decoding depending on the theoretical number of

registers in that particular group. In the OR1200 is present a unit called

or1200 sprs, which is in charge to handle MTSPR and MFSPR operations.

Starting from the 32 bits of the spr addr it decodes the group number and

generates the spr cs signal. In this modules this signal is on 32 bit, but the

various module with SPR interfaces use only a single bit of this signal: the
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Figure 4.2: OPTIMUS in the OR1200 processor
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1 input c l k ;
2 input r s t ;
3 input e x f r e e z e ;
4 input id macrc op ;
5 input macrc op ;
6 input [32 −1 :0 ] a ;
7 input [32 −1 :0 ] b ;
8 input [2 −1 :0 ] mac op ;
9 input [4 −1 :0 ] a lu op ;

10 output [32 −1 :0 ] r e s u l t ;
11 output ma c s t a l l r ;

Figure 4.3: Inputs and outputs of OPTIMUS

1 input [32 −1 :0 ] a ;
2 input [32 −1 :0 ] b ;
3 input [32 −1 :0 ] mul t mac resu l t ;
4 input macrc op ;
5 input [4 −1 :0 ] a lu op ;
6 input [2 −1 :0 ] sh rot op ;
7 input [4 −1 :0 ] comp op ;
8 input [5 −1 :0 ] cust5 op ;
9 input [6 −1 :0 ] cust5 l imm ;

10 output [32 −1 :0 ] r e s u l t ;
11 output f l a g f o rw ;
12 output f l ag we ;
13 output cyforw ;
14 output cy we ;
15 input car ry ;
16 input f l a g ;

Figure 4.4: Inputs and outputs of OPTIMUS

Figure 4.5: Grouping of the MAC signals to form one input of 139 bits and
one output of 65 bits
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Figure 4.6: Grouping of the ALU signals to form one input of 120 bits and
one output of 36 bits

unit of group 0 the spr cs[0], the group 1 spr cs[1] and so on. The 5-bit group

index (bits [15:11]) of the spr addr signal defines the number of the group,

while the 11-bit register index (bits [10:0]) defines the address of the SPR

register of a group. For this reason theoretically the maximum number of

SPRs that a group can have are 211 = 2,048.

For the MFSPR operations, the or1200 sprs unit, is also in charge of se-

lect the correct value from all the SPRs of the various units. For this reason

the unit has been modified in order to consider also the data coming from

OPTIMUS (Figure 4.7).

Moreover the OR1200 processor has predefined number of groups for the

various units and the groups 24-31 are left for custom units. For this reason

to OPTIMUS has been assigned the group 24 and, with the facts that it has

20 SPR (numbered from 0 to 19) registers, it use 5 bits of address. Hence

the spr addr used by OPTIMUS expressed as hexadecimal number is in the

range 0xc000-0xc013 (Figure 4.8).

Table 4.1 shows the 20 SPRs, also giving information about their number,

bit size, if they are readable (R), writable (W) or both (R/W) and the type of

the category they belong to, among the six described in the previous chapter.
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Figure 4.7: Addition of SPR data coming from OPTIMUS in the OR1200
SPRS unit

Figure 4.8: SPR ADDR for OPTIMUS
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NUMBER NAME SIZE ACCESS CATEGORY

0 reg0 ctrl contr 3 R/W CONTROL
1 reg1 trigger 32 R/W TRIGGER
2 reg2 trigger 32 R/W TRIGGER
3 reg3 trigger 32 R/W TRIGGER
4 reg4 trigger 32 R/W TRIGGER
5 reg5 trigger 11 R/W TRIGGER
6 reg6 safe 32 R/W SAFE
7 reg7 safe 32 R/W SAFE
8 reg8 safe 1 R/W SAFE
9 reg9 pattern 32 R/W PATTERN
10 reg10 pattern 32 R/W PATTERN
11 reg11 pattern 32 R/W PATTERN
12 reg12 pattern 32 R/W PATTERN
13 reg13 pattern 11 R/W PATTERN
14 reg14 rst 1 R/W RESET & CLOCK
15 reg15 clk 1 R/W RESET & CLOCK
16 reg16 ctrl misr 1 R/W MISR
17 reg17 data misr 32 R MISR
18 reg18 data misr 32 R MISR
19 reg19 data misr 1 R MISR

Table 4.1: SPRs of OPTIMUS
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In order to support the SPR interface of the OR1200, OPTIMUS needs

these 5 signals:

• spr cs : it is a chip select signal, if active it means that the unit has

been select and write operations could be possible. This signal is an

input of OPTIMUS;

• spr write: this signal enable the write operation, if both the chip select

and this signal are active, supposing that a valid spr addr is given, a

register is written. This signal is an input of OPTIMUS;

• spr addr : it indicates the address of the register to be written or read.

This signal is an input of OPTIMUS;

• spr dat i : it is the value that has to be written in the SPR register.

This signal is an input of OPTIMUS;

• spr dat o: in case of read operation, this signal presents the value of

the SPR register. This signal is an output of OPTIMUS.

4.2 Post-Synthesis Results

The entire system (namely the CPU including OPTIMUS) was synthesized

using the NandGate 45nm technology library. Table 4.2 reports the post-

synthesis results of the two CPUs: the original OR1200 and the one with

OPTIMUS implemented. It can be noticed that, since OPTIMUS architec-

ture is shared between the ALU and the MAC, it is possible to achieve a
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reasonable 20% of area overhead. As an example, if OPTIMUS was imple-

mented only for the MAC unit, the area overhead would have been around

15%. Concerning the timing, OPTIMUS introduces a performance degrada-

tion of 5%, with a slightly reduction of the achievable operating frequency

(the clock period increases of about 0.14 ns).

DESIGN TYPE AREA [µm2] Cycle Time [ns]

OR1200 CPU with OPTIMUS 3382.54 2.62
OR1200 27057.00 2.48

Table 4.2: Designs comparison

Table 4.3 shows more in detail the area occupied by OPTIMUS. Nearly

half of the total area is devoted to the registers (SPRs and MISR), while the

other half stems from the Combinational Logic (CL). A considerable portion

of the CL is devoted for implementing the various multiplexers (needed for

applying the test patterns to the Primary Inputs, as well as the safe output

values as Primary Outputs) and the comparator used to check the presence

of the Trigger Instruction. The remaining area implements the processor

SPR Interface.

MODULE AREA[µm2] TOTAL AREA [%]

Registers 3287.76 9.7

CL
SPR Interface 1051.49 3.1

Muxes & Comparator 2436.29 7.2

Table 4.3: Area Breakdown
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4.3 Self-Test Programs Effectiveness and

Characteristics

In order to verify the effectiveness of the proposed test generation flow, it

was performed first a fault simulation using an in-house STL, developed tar-

geting the on-line test of the CPU. Basically each test program computes

internally a signature, which is then stored in memory at the end of the test

program execution. The generation of ATPG patterns started from the fault

list obtained from the execution of the STL on the ALU and on the MAC. In

order to do this, a fault simulation tool (TetraMAX®) is used. It receives

the netlist of the OR1200, generates the ATPG patterns for the considered

unit and writes them in a .stil file. Then this file is read by a program written

in Python in order to convert the patterns in instructions that the processor

has to execute (Figure 4.9).

Figure 4.9: Generation of a test program for OPTIMUS

In figure 4.10 and 4.11 is shown a typical structure of a .stil file and of a

test program of OPTIMUS for a combinational circuit and for a sequential

one respectively. In both cases, first of all the ctrl and the ctrl misr are con-

figured, then the Trigger and Safe SPRs are uploaded with the wanted values.

Then there is a sequence of loads in the Pattern SPR and Trigger Instructions
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that invoke the application of the test patterns. Here, in case a sequential

unit is tested, could appear also sequences of clock and reset pulses. At the

end OPTIMUS is turned off and the internal MISR is disabled, the value of

the data misr SPRs is saved into some general purpose register and finally,

using a store in memory instructions it is propagated to the processor output.

It is important to notice that, the fault coverage of the STL, with the

internal MISR of OPTIMUS activated, was computed before the actual gen-

eration of test patterns. Table 4.4 shows the fault coverage obtained for the

two modules using the following approaches:

• Pure STL: the modules are tested using the original STL that does

not consider the implementation of OPTIMUS (internal MISR not en-

abled).

• STL+MISR: the two modules are tested using the same STL but here

OPTIMUS is considered and the MISR is enabled.

• OPTIMUS ATPG Test : starting from the result acquired with the

MISR activated, the modules are tested using the test program ob-

tained from the generation of the ATPG patterns for the remaining

faults.

UUT PURE STL [%] STL+MISR [%] OPTIMUS ATPG TEST [%]

ALU 94.98 95.49 99.51
MAC 94.16 95.3 98.08

Table 4.4: Fault Coverage with different strategies
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1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 . . . . . . . . . . . . . . . . . . . . . . . . . . .
12 ” pattern X” :{
13 Force PIs : 0 xaa f f a ;
14 Measure POs : 0 xbaf ; }
15 . . . . . . . . . . . . . . . . . . . . . . . . . . .
16 . . . . . . . . . . . . . . . . . . . . . . . . . . .
17 . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 . . . . . . . . . . . . . . . . . . . . . . . . . . .
19 . . . . . . . . . . . . . . . . . . . . . . . . . . .
20 . . . . . . . . . . . . . . . . . . . . . . . . . . .
21 . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 . . . . . . . . . . . . . . . . . . . . . . . . . . .
24 ” pattern X+1”:{
25 Force PIs : 0 xafeba ;
26 Measure POs : 0 x0af ; }
27 . . . . . . . . . . . . . . . . . . . . . . . . . . .
28 . . . . . . . . . . . . . . . . . . . . . . . . . . .
29 . . . . . . . . . . . . . . . . . . . . . . . . . . .
30 . . . . . . . . . . . . . . . . . . . . . . . . . . .
31 . . . . . . . . . . . . . . . . . . . . . . . . . . .
32 . . . . . . . . . . . . . . . . . . . . . . . . . . .
33 . . . . . . . . . . . . . . . . . . . . . . . . . . .
34 . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 . . . . . . . . . . . . . . . . . . . . . . . . . . .
36 . . . . . . . . . . . . . . . . . . . . . . . . . . .
37 . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 //Combinational Mode
2 l . mtspr COMBMODE, CTRL
3

4 //Enable MISR
5 l . mtspr MISR ON, CTRL MISR
6

7 // Set Tr igger
8 l . mtspr TRIG ALU, TRIGGER
9

10 // Set Safe
11 l . mtspr SAFE ALU, SAFE
12

13 // Set Pattern X
14 l . mtspr PATTERN X, PATTERN
15

16 // Tr igger I n s t r u c t i o n
17 l . addi r1 , r0 , 0 xc1ao
18 . . . . . . . . . . . . . . . . . . . . . . . . . . .
19 . . . . . . . . . . . . . . . . . . . . . . . . . . .
20 // Set PATTERN X+1
21 l . mtspr PATTERNX+1, PATTERN
22

23 // Tr igger I n s t r u c t i o n
24 l . addi r1 , r0 , 0 xc1ao
25 . . . . . . . . . . . . . . . . . . . . . . . . . . .
26 . . . . . . . . . . . . . . . . . . . . . . . . . . .
27 // Disab le OPTIMUS
28 l . mtspr OFF, CTRL
29

30 // Disab le MISR
31 l . mtspr MISR OFF, MISR
32

33 //Download Response
34 l . mfspr r3 , DATA MISR
35

36 // s t o r e in RAM
37 l . sw RAM, r3

Figure 4.10: Structure of a .stil file and its transformation in test program
for a combinational circuit
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1 . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 . . . . . . . . . . . . . . . . . . . . . . . . . . .
8 . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 . . . . . . . . . . . . . . . . . . . . . . . . . . .
12 ” pattern X” :{
13 Force PIs : 0xdead ;
14 Measure POs : 0 xbee f ;
15 ” c l k”=Pulse ;
16 Measure POs : 0 xca f e ;}
17 . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 . . . . . . . . . . . . . . . . . . . . . . . . . . .
19 . . . . . . . . . . . . . . . . . . . . . . . . . . .
20 . . . . . . . . . . . . . . . . . . . . . . . . . . .
21 . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 . . . . . . . . . . . . . . . . . . . . . . . . . . .
24 . . . . . . . . . . . . . . . . . . . . . . . . . . .
25 . . . . . . . . . . . . . . . . . . . . . . . . . . .
26 . . . . . . . . . . . . . . . . . . . . . . . . . . .
27 . . . . . . . . . . . . . . . . . . . . . . . . . . .
28 ” pattern X+1”:{
29 Force PIs : 0xb01a ;
30 Measure POs : 0 xca f e ;
31 ” r s t”=Pulse ;
32 Measure POs : 0xc1a0 ;}
33 . . . . . . . . . . . . . . . . . . . . . . . . . . .
34 . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 . . . . . . . . . . . . . . . . . . . . . . . . . . .
36 . . . . . . . . . . . . . . . . . . . . . . . . . . .
37 . . . . . . . . . . . . . . . . . . . . . . . . . . .
38 . . . . . . . . . . . . . . . . . . . . . . . . . . .
39 . . . . . . . . . . . . . . . . . . . . . . . . . . .
40 . . . . . . . . . . . . . . . . . . . . . . . . . . .
41 . . . . . . . . . . . . . . . . . . . . . . . . . . .
42 . . . . . . . . . . . . . . . . . . . . . . . . . . .
43 . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 // Sequent i a l Mode
2 l . mtspr SEQMODE, CTRL
3

4 //Enable MISR
5 l . mtspr MISR ON, CTRL MISR
6

7 // Set Tr igger
8 l . mtspr TRIG MAC, TRIGGER
9

10 // Set Safe
11 l . mtspr SAFE MAC, SAFE
12

13 // Set ATPG X
14 l . mtspr ATPG PATTERN X, ATPG
15

16 // Tr igger I n s t r u c t i o n
17 l . muli r1 , r0 , 0 x e f f e
18

19 //CLK Pulse
20 l . mtspr PULSE, CLK
21 . . . . . . . . . . . . . . . . . . . . . . . . . . .
22 . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 // Set ATPG X+1
24 l . mtspr ATPGPATTERN, ATPG
25

26 // Tr igger I n s t r u c t i o n
27 l . muli r1 , r0 , 0 x e f f e
28

29 //RST Pulse
30 l . mtspr PULSE, RST
31 . . . . . . . . . . . . . . . . . . . . . . . . . . .
32 . . . . . . . . . . . . . . . . . . . . . . . . . . .
33 // Disab le OPTIMUS
34 l . mtspr OFF, CTRL
35

36 // Disab le MISR
37 l . mtspr MISR OFF, MISR
38

39 //Download Response
40 l . mfspr r3 , DATA MISR
41

42 // s t o r e in RAM
43 l . sw RAM, r3

Figure 4.11: Structure of a .stil file and its transformation in test program
for a sequential circuit
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Table 4.5 shows instead the principal characteristics (execution time in

clock cycle and size in bytes) of the test programs used: the basic STL and

the two test programs generated for the applications of the ATPG patterns

for the ALU and the MAC.

TEST PROGRAM DURATION[CC] SIZE[BYTES]

STL 49,590 30,296
ALU Self-Test 10,268 20,556
MAC Self-Test 11,996 24,012

Table 4.5: Self-test programs characteristics

A total of 124 test patterns were generated for the ALU, while 43 full

sequential patterns for the MAC. For sake of completeness, it was computed

also the size and the execution time of the self-test procedure, which applies

patterns generated from scratch, that is without first exploiting the fault cov-

erage achieved with an STL. For the ALU 282 patterns were generated while

146 full sequential patterns for the MAC. Although the ALU still reached

more than 99% of fault coverage, while for the MAC the ATPG was not able

to go beyond the 97% of fault coverage. The ALU and MAC patterns were

translated into self-test procedures. For the ALU the test program execution

time was of 23,224 clock cycle and the size in bytes of almost 46,468 bytes.

For the MAC the self-test program results in an execution time of 41,022

clock cycles and a size of 82,028 bytes. How is possible to notice with these

data, not starting from a previous result of fault simulation and then gener-

ate the ATPG pattern, comports a higher number of required pattern and a

longer and greater test program.
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4.4 OPTIMUS FMEDA

When dealing with safety-critical applications, it is important to verify the

safeness of the additional hardware introduced within the CPU. The intro-

duction of OPTIMUS comports a reduction of the reliability of the entire sys-

tem. Consequently, a Failure Mode Effect and Diagnostic Analysis (FMEDA)

was performed. The focus of this analysis was oriented to the identification of

possible critical failure modes and identifications of faults whose occurrence

lead to the such failure.

Faults inside OPTIMUS become relevant exclusively when the module is

not supposed to be active, which is during the normal operation of the user

code. Then, two possible Failure Modes (FM) were identified:

• FM1 : also if OPTIMUS is not supposed to be active, the Primary

Inputs of the module under test are replaced;

• FM2 : again, OPTIMUS is not active but the Primary Outputs of a

tested circuit are replaced with the safe patterns;

Trough faults injection campaigns, the faults leading to these two FM

were first identified. A set of application programs were fault simulated

with faults injected within OPTIMUS only (for a total of 27,468 stuck-at

faults). After the fault simulation process, concerning FM1, 10% of critical

faults were identified. As countermeasures, two options are possible: the first

one concerns the usage of the self-test routines developed for ALU and MAC

that exploit OPTIMUS. By adopting this strategy, the 99.67% of such critical
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faults were detected. The second choice concerns selective hardening of the

gates causing the FM1, using a DWC configuration for each gate. This option

yields higher reaction time to the failures (the DWC allows for immediate

detection) while maintaining the overhead low. By using the latter solution,

the OPTIMUS area overhead moves from 20% to 24.23%. It is worth noting

that if a classical DWC configuration was used (i.e., all the logic duplicated),

the overhead would have been beyond the 40%. For FM2, 2% of faults lead to

this specific failure mode. Since these faults cause MUT POs to be replaced

with the safe output, they can be hardly identified with the already existing

self-test routines. Also in this case, the best option would be the selective

hardening of the gate causing this failure (area overhead around 21.35%).

When adopting selective DWC both failure modes (clearly, gates causing

both FM1 and FM2 are replicated only once), the area overhead reaches

25.38%.

4.5 Further Analyses

As discussed, not starting the generation of the ATPG patterns from the re-

sults obtained with a STL, could lead to high number of test pastern required

and big test program (for the point of view of the execution time and the

size). But it also true that often the creation of a good STL requires a lot of

time, time that could stretch the Time To Market (TTM) of a product. For

this reason in this chapter is discussed if OPTIMUS could be used in order to

substitute the STL and reduce the TTM. The analysis was conducted on the

ALU and on the MAC using as test vector random numbers, hence values
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that did not require effort to be found but that are able to detect only a low

number of faults.

4.5.1 Analyses on the ALU

The experiments were conducted using OPTIMUS on the ALU starting from

zero (then full ATPG), five, ten, twenty and thirty random test patterns. In

Figure 4.12 is possible to notice how, also if the number of test pattern

was augmented, the fault coverage obtained with these random test pattern

without activating OPTIMUS, was saturating around a value of 87%. Hence

no other random patterns were used.

Figure 4.12: Fault coverage obtained with random test vectors for the ALU

Then, knowing that using all these test programs with the activation

of the internal MISR of OPTIMUS first and the usage of the ATPG pat-

terns then, was possible to achieve almost the same Fault Coverage (around

99.4%), analyses on the required test pattern and the characteristics of the

test programs were conducted.
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Analysing Figures 4.13, 4.14 and 4.15 is possible to notice that higher are

the number of random test vectors used, lower is the number of ATPG pat-

tern, specially using the STL. Then also the duration and the size of the test

program of OPTIMUS requires less effort. But if combined with the charac-

teristics of the random vector programs there is the risk to obtain value that

are worse than the one obtained with a STL.

Figure 4.13: Number of ATPG patterns generated using a full ATPG ap-
proach, using different numbers of random test vectors or using the STL for
the ALU

These results tell that, from what concerns a combinational circuit, OP-

TIMUS through a full ATPG test process could be used as a substitution of

the STL. This because, also if it requires a higher number of ATPG patterns,

the execution time and the size of the test programs are lower than the ones

required using a STL+OPTIMUS approach.
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Figure 4.14: Number of clock cycles required from the different test programs
to test the ALU. The orange color is used for the test program of OPTIMUS,
while the blue color for the normal test program. The height is the sum of
the two methods

Figure 4.15: Size in bytes required from the different test programs to test
the ALU. The orange color is used for the test program of OPTIMUS, while
the blue color for the normal test program. The height is the sum of the two
methods

74



4.5.2 Analyses on the MAC

Again, as done for the ALU, is possible to notice in Figure 4.16 that with

thirty random test vectors the fault coverage of the MAC is saturated at a

value around 75%.

Figure 4.16: Fault coverage obtained with random test vectors for the MAC

Again with all the different test strategies almost the same fault coverage

of 97% has been achieved. In Figures 4.17, 4.18 and 4.19 are shown the

obtained results. As expected a full ATPG approach requires the highest

number of ATPG patterns, while with the STL the lowest. As the ALU

the clock cycles required from the full ATPG method and the random test

programs+OPTIMUS is still lower than the one needed by the STL. Instead

the size of the test program is greater that the one of the STL. For these

reasons OPTIMUS could replace the STL only if there is no problem of

memory space in order to save the test program.
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Figure 4.17: Number of ATPG patterns generated using a full ATPG ap-
proach, using different numbers of random test vectors or using the STL on
the MAC

Figure 4.18: Number of clock cycles required from the different test programs
to test the MAC. The orange color is used for the test program of OPTIMUS,
while the blue color for the normal test program. The height is the sum of
the two methods
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Figure 4.19: Size in bytes required from the different test programs to test
the MAC. The orange color is used for the test program of OPTIMUS, while
the blue color for the normal test program. The height is the sum of the two
methods
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Chapter 5

Conclusions and Future Works

In this work OPTIMUS has been presented, a hybrid approach for the on-line

test of computational modules composed of a programmable DfT module,

accessible via software, which works in conjunction with a software-based

test program. The main advantages of this proposed architecture are:

1. the minimum interference with the other modules embedded within the

processor core during the self-test;

2. the capability of achieving high fault coverage of computational mod-

ules during the on-line test.

The most relevant improvements of this work could be:

• to modify OPTIMUS in order to be used with more complex processors

(i.e. superscalar processor);

• consider different fault models (i.e delay fault);
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• evaluate the usage of OPTIMUS with other modules of the processor

(i.e. the decoder or the control unit)
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