
Politecnico di TorinoIngegneria Informatica(Computer Engineering)
Tesi di Laurea MagistraleDevelopment of a Cross-Platform MobileApplication and an Image Cloud Storage for anIoT System

AdvisorsProf. Daniele TrincheroIng. Giovanni Paolo Colucci
Ana Laura TULA

APRIL 2018

Summary
The iXemWine platform, developed by the research group from the iXemLaboratory, uses wireless technology applied to precision agriculture in rural areasthat allows wine producers to monitor their vineyards through a web application.Given the widespread use of smartphones, there was a need to create a mobileapplication to help the visualization the data collected from different sensors in ameaningful way. The two main mobile operating systems, Android and iOS, usesboth distinct languages to create native applications which are fast and optimized,but this leads to a duplication of the code base. There are cross-platform solutionsaim to simplify this problem by using a single programming language for developingapplications that are targeted for multiple platforms.The main goal of this project is to develop a cross-platform mobile applicationwith a focus on the Android operating system using React Native, a JavaScriptframework for writing natively rendering mobile applications for iOS and Android.The goal of the second part of the project is to investigate the different optionsfor cloud storage service and develop a possible solution to store the pictures takenby the sensor’s camera and visualize them in the application.

i

AcknowledgmentI would like to thank my family, for their unconditional support, for guiding me, fortheir infinite patience and for allowing me to find my path in life. This thesis is theculmination of a long journey that has certainly not been easy one, and would nothave been possible without them.To my mother, for being my role model and pushing me to be better and what abetter way to thank you that writing this thesis in English.To my father, who has shaped the person I am today and who took me to my firstcomputer lesson as a kid without knowing I would follow that course.To my siblings, for putting up with me and always having my back.To my grandmother, mi nona, who is always with me.To my aunt, mi tía Ester, Juana and mi late grandmother, mi nona Clara, who werea big part of my life growing up and always showed their support.To my lifelong friends who, despite the time and distance, are always present and tothe new ones, my family during these years, with whom I shared this experience andhave unforgettable memories.At last but not least, I would like to thank the whole iXem Laboratory team,specially my thesis Advisors, Prof. Trinchero and Ing. Giovanni Colucci, for theirguidance throughout the development of the thesis.

ii

Table of Contents1 Introduction..11.1 Introduction...11.2 Thesis Goals...11.3 General overview of the iXemWine Platform..12 Cross-platform vs Native..32.1 Native...3Benefits...3Drawbacks..32.2 Cross-platform..3Drawbacks..4Benefits...43 Javascript...53.1 ECMAScript..53.2 Transpilers...53.3 Polyfill..63.4 Modules..63.5 Bundling...73.6 Minification..73.7 JavaScript environments..73.7.1 Node...83.8 Metro..93.8.1 The Journey to a Bundle...94 React...114.1 The DOM...114.2 React..114.2.1 Component...124.2.2 Component Lifecycle..13Mount...14Update..14Unmount..144.2.3 Refs...14Creating Refs..15Accessing Refs..154.2.4 Higher-Order Components...164.2.5 Reconciliation...165 React Native...185.1 Internals...185.1.1 Threading Model..185.1.2 Bridge...195.1.3 JavaScript Environment...195.1.4 JavaScript Syntax Transformers and Pollyfills..195.2 Differences with React Web...20iii

5.3 Components and APIs...205.3.1 Basic Components..205.3.2 User Interface...225.3.3 List Views...225.3.3.1 FlatList..225.3.3.2 SectionList...235.3.4 iOS/Android specific..235.3.5 Others...245.3.5.1 Animated...24Interpolation...25Handling gestures and other events...255.3.6 Style...255.3.7 Direct Manipulation...265.3.8 Installation...265.3.8.1 Dependencies...265.3.9 React Native CLI Commands..285.3.10 The CLI..305.3.11 Debugging...305.3.12 Linking libraries..306 Data Visualization..326.1 Scalable Vector Graphics (SVG)..326.2 D3.js...336.2.1 D3-scales...336.2.2 D3-shape...336.2.3 D3-array...337 Implementation..347.1 Actors of the system..347.1.1 Community...357.2 Functionality..357.2.1 Authenticate...367.2.2 Visualize the list of Vineyards...377.2.3 Visualize the Nodes and Cameras inside a Vineyard.................................387.2.4 Visualize the Sensors data in Charts...397.2.5 Visualize the pictures taken by a Camera...427.2.6 Search for vineyards in the Community..437.2.7 Edit preferences ans see the profile..448 Application Navigation...468.1 React Navigation..468.1.1 Navigator..468.1.2 Authentication flow..468.1.3 App containers...478.1.4 Navigation Prop...478.1.5 Passing parameters to routes...488.1.6 Handling state..488.1.7 Navigation lifecycle..488.1.8 Application navigation...49iv

9 Application State..519.1 Flux..519.2 Redux...529.2.1 Combining Reducers..539.2.2 React-redux..549.2.3 Async Requests..549.2.4 Redux Thunk...549.2.5 Persisting State..559.2.6 Application State...5510 Web Services...5810.1.1 Promises:..5810.1.2 Async/Await..5810.1.3 JSON Web Token..5910.1.4 Moment..6010.1.5 Data Transformations..6111 Deploy...6211.1 Generating Signed APK..6211.2 Generate the release APK...6212 Image Cloud Storage...6312.1 Own cloud infrastructure(In-house-servers)..6312.2 Amazon cloud service..6312.3 Functionalities to provide..6412.3.1 Authentication..6512.4 Flask...66Routing...66HTTP methods...66The Response object...6712.5 SQLAlchemy..6812.6 Amazon Simple Storage Service..6812.7 AWS Command Line Interface...6912.8 Boto3..69Creating Clients..6912.8.1.1 Upload a File...7012.8.1.2 Generate a pre-signed URL...7012.9 Proposed Solution..7113 Conclusion..7213.1 Future work...7214 References...73

v

Index of Illustrations Illustration 1.3.1: Overview of the Application..2 Illustration 4.2.1: Lifecycle diagram...13 Illustration 4.2.2: Commonly used lifecycle methods...13 Illustration 4.2.3: High Order Component...16 Illustration 5.1.1: The Threads and the Bridge...18 Illustration 5.3.1: ScrollView parts...21 Illustration 5.3.2: Android platforms installed...27 Illustration 5.3.3: Project structure..28 Illustration 5.3.4: Options for commands available in the current Project................30 Illustration 7.1.1: Representation of a user’s data...35 Illustration 7.2.1: Use Cases...36 Illustration 7.2.2: LoginScreen: Authentication of the user.......................................37 Illustration 7.2.3: Visualization of the list of vineyards...38 Illustration 7.2.4: Visualization of sensors and cameras in a vineyard......................39 Illustration 7.2.5: Visualization of the temperature and the dew point of a Temperature-Humidity Sensor..41 Illustration 7.2.6: Visualization of the humidity of a Temperature-Humidity Sensor...41 Illustration 7.2.7: Visualization of a Two Layer Leaf Wetness Sensor......................42 Illustration 7.2.8: Photo grid visualization of the pictures taken by a camera..........43 Illustration 7.2.9: Search and visualization of the vineyard's position.......................44 Illustration 7.2.10: User's profile and language change screen...................................45 Illustration 8.1.1: Application Navigation..50 Illustration 9.1.1: Flux achitecture...52 Illustration 9.2.1: Redux flow...53 Illustration 9.2.2: Application State...56 Illustration 9.2.3: Actions and Screens...57 Illustration 10.1: Token-based Authentication...60 Illustration 12.2.1: Camera backend architecture..64 Illustration 12.5.1: Database for Cloud Image System...68 Illustration 12.9.1: Proposed Solution for Cloud Image System................................71

vi

Index of TablesTable 4.2.1: Types of React Components..12Table 5.3.1: Main properties of Flex...26Table 12.3.1: Backend functionalities..65

vii

Index of ListingsListing 4.2-1: Access a Ref...15Listing 5.3-1: React Native CLI installation...28Listing 5.3-2: Creation of a new React Native Project...28Listing 5.3-3: Launch the application in an Android device or emulator...................29Listing 5.3-4: Launch the application in iOS device or emulator................................29Listing 5.3-5: Command to verify the connected smartphones...................................29Listing 5.3-6: Linking a native library...31Listing 8.1-1: Navigate to a another screen and pass parameters...............................48Listing 8.1-2: Read a parameter..48Listing 9.2-1: Function prototype for a middleware..54Listing 10-1: Pseudo code for calculating the signature..59Listing 10-2: Getting current date and time...60Listing 10-3: Initialization with specific date..60Listing 11.2-1: Commands to generate the APK..62Listing 12.4-1: Minimal Flask application...66Listing 12.4-2: Example of GET and POST method..67Listing 12.4-3: Example of query string..67Listing 12.4-4: make_response example..67Listing 12.8-1: Create a client...69Listing 12.8-2: Upload a file..70Listing 12.8-3: Generate a presigned URL to return to the client..............................70

viii

ix

Politecnico di Torino TULA Ana Laura1Introduction1.1 IntroductionThe Internet of Things (IoT)[1] provides efficient resource utilization while reducingthe human intervention to increase the productivity. Within an IoT system awireless sensor network (WSN)[2] can be used. A WSN is a network of devices thatcan communicate the information gathered from a monitored field through wirelesslinks. The data is then forwarded through multiple nodes, and with a gateway, thedata is at last forwarded to a Server, which exposes a RESTful API for the clients touse.The aim of the iXemWine[3] platform is collecting data from the crops for precisionagriculture. This allows wine producers to benefit from the advantages of IoT and tomonitor their vineyards through a web application.Given the widespread use of smartphones, there was a need to create a mobileapplication to help the visualization the data collected from different sensors in ameaningful way.1.2 Thesis GoalsThe main goal of this project is to develop a cross-platform mobile application with afocus on the Android operating system using React Native[4], a JavaScript[5]framework for writing natively rendering mobile applications for iOS[6] andAndroid[7].The goal of the second part of the project is to investigate the different options forcloud storage service and develop a possible solution to store the pictures taken bythe sensor’s camera and visualize them in the application.1.3 General overview of the iXemWine PlatformThe platform iXemWine is a Low-Power Wide-Area Network[8], with sensors able totransmit information over long distances, even in non-line of sight, by means ofunlicensed frequencies.When data is received by Gateways, it is sequentially forwarded to the NetworkServer using standard TCP/IP[9] connections.
1

Politecnico di Torino TULA Ana LauraThe application Server, written in Python[10], receives data by the Network Serverusing the MQTT[11] protocol. The server also provides a RESTFul[12] API[13], asshown in Illustration 1.3.1, that can be used to retrieve all the information by meansof HTTP[14] requests.The REST API returns data in a language-independent format that clients can easilyconsume, this allows the interaction with many interfaces and a consistent userexperience.

2

Illustration1.3.1: Overview of the Application

Politecnico di Torino TULA Ana Laura2Cross-platform vs Native2.1 NativeNative applications are the ones that are developed exclusively for a specific platformand its Operating System in a language compatible with them, for example, the iOSdevices use Objective-C[15] or Swift[16] while the Android devices uses Java[17] orKotlin[18].Benefits
• Developed for the specific platform, they are fast and responsive.
• The platform’s software development kit (SDK) allows access to all the deviceAPIs.
• Platform comes with familiar and original user interface (UI) components.
• Allows use of device-specific functionalities.
• Android and iOS have large communities behind them. If there’s a frequentproblem, it is highly likely to find a ready-made solution in the form of athird-party library or an API.Drawbacks
• Requires separate development processes for every platform, since the code forone platform only works for that platform.
• With different code bases, it is always difficult to release same features on allplatforms at the same time.
• The cost of development and maintenance of the mobile application is high.2.2 Cross-platformCross-platform mobile applications are developed using an intermediate languagethat is not native to the device’s operating system. This means that some, or all, ofthe code can be shared across platforms – for instance, across both iOS and Android.To build mobile applications, the cross-platform frameworks provides a platform-independent API that uses a programming language, like JavaScript that thedevelopers use to build the mobile application, including the user interface, datapersistence and business logic. 3

Politecnico di Torino TULA Ana LauraThose solutions can be split into two categories:
• HTML5 based (PhoneGap[19], Apache Cordova[20], Ionic[21]): Developerscreate mobile applications using web technology, they load a mobile browserin the application and perform all logic operations within that browser,offering also added functionalities that traditional web technology does not.
• Native Widget based (React Native): Developers can use JavaScript toconstruct their application from components that are subsequently mappedinto the platform specific widgets. In order to use native widgets, theJavaScript part of the application has to communicate with the native partthrough a “bridge”.Drawbacks
• Not as many third-party components, also some of them might behavedifferently than expected. A lot of components have small communities behindthem, and the creators can’t always update them frequently.
• Not as efficient as a native application.
• Limited device API access.Benefits
• React Native provides nearly identical performance to native.
• React Native actually renders using its host platform’s standard renderingAPIs, which enables it to stand out from most existing methods of cross-platform application development.
• Currently popular among mobile application developers.
• Its ecosystem is expanding rapidly every day along with new features.
• The development effort is lower since there is a high percentage of the codethat can be reused.

Taken into account all of this, a decision was reached to choose a cross-platformapproach using the React Native framework for the development of the iXemWinemobile application.
4

Politecnico di Torino TULA Ana Laura3Javascript
JavaScript is a high-level, interpreted programming language that conforms to theECMAScript specification. It is characterized as dynamic, weakly typed, prototype-based and multi-paradigm. JavaScript is primarily a client-side language.The vast majority of websites uses JavaScript, major web browsers have differentdedicated JavaScript engines to interpret and execute the code (or uses some sort oflazy compilation), for example:

• Chrome[22] and Node[23]: V8[24]
• Firefox[25]: SpiderMonkey[26]
• Safari[27]: JavaScriptCore[28]
• Microsoft Edge[29]/IE[30]: Chakra[31]They each implement the ECMAScript standard, but may differ for anything notdefined by it.3.1 ECMAScriptECMAScript is the standard upon which JavaScript is based. ECMAScript 2015[32],also known as ES6, is a fundamental version of the standard. Since a long timepassed between the previous release, this release is full of important new features andmajor changes in suggested best practices in developing JavaScript programs.This update adds significant new syntax for writing complex applications, includingclasses and modules, which simplifies the defining of complex objects with their ownprototypes. Other new features include iterators and for/op loops, Python-stylegenerators, arrow functions, binary data, typed arrays, collections (maps, sets andweak maps), promises, number and math enhancements, reflection, proxies (meta-programming for virtual objects and wrappers) and template literals.3.2 TranspilersTranspilers, or source-to-source compilers, are tools that read source code written inone programming language, and produce the equivalent code in another language. As stated previously, every browser uses a different JavaScript engine and each one,has:

5

Politecnico di Torino TULA Ana Laura
• different performance characteristics
• implements a different subset of ES2015 features
• is approaching full compliance with the spec at different rates.That means that, some features works fine for those users running the most recentChrome, Firefox, or Safari, but it won't work for users running older versions, or foranyone using Internet Explorer.Kangax[33] created an ES6 compatibility table where developers can track thesupport of various ES6 features on various JavaScript engines, the ES6 compatibilitytable[34] shows that there was a clear progress, but it is not quite time to write ES6directly. Instead, developers write source code in ES6, and let a transpiler translate itto plain ES5 that works in every browser.One of the most popular tools is Babel[35], a tool-chain mainly used to convertECMAScript 2015 code into a backwards compatible version of JavaScript thatworks both in current and older browsers or environments.Babel also has plugins available to provide specific conversions used in webdevelopment. For example, developers working with React[36], can use Babel toconvert JSX[37] (JavaScript eXtension) markup into JavaScript using the Babelpreset "react".3.3 PolyfillWhen Babel compiles the code, is taking the syntax and running it through varioussyntax transforms in order to get browser compatible syntax. But it is not addingany new properties needed to the browser’s global namespace or any JavaScriptprimitive. This can be achieved by using a polyfill.A polyfill is code that defines a new object or method in browsers that don’t supportthem natively. A polyfill can be used to implement various browser features otherthan ECMAScript standards, for example SVG[38], Canvas, Web Storage (localstorage/session storage) among others.3.4 ModulesAlmost every language has a concept of modules — a way to include functionalitydeclared in one file within another. Typically, a developer creates an encapsulatedlibrary of code responsible for handling related tasks. That library can be referencedby applications or other modules. 6

Politecnico di Torino TULA Ana LauraThe benefits of using modules:
• code can be split into smaller files of self-contained functionality.
• The same modules can be shared across any number of applications.
• Code referencing a module understands it’s a dependency. If the module file ischanged or moved, the problem is immediately obvious.
• Module code helps eradicate naming conflicts.ES6 introduced built-in modules that offers up a variety of alternatives for importingand exporting modules.3.5 BundlingBundling is the process of following imported files and merging them into a singlefile: a “bundle”. In web development the bundling, or the “concatenation” of all thefiles into one big file (or a couple files as the case may be) is in order to reduce thenumber of requests. This is referred as the “build step” or “build process”.3.6 MinificationMinification is the process of removing all unnecessary characters from the sourcecodes of interpreted programming languages or markup languages without changingtheir functionality. These unnecessary characters usually include white spacecharacters, new line characters, comments, and sometimes block delimiters, which areused to add readability to the code but are not required for it to execute.Minification reduces the size of the source code, making its transmission over anetwork more efficient. 3.7 JavaScript environmentsNowadays, there can be considered mainly three types of JavaScript environments:1)Client-side browser JavaScript: Scripts written in JavaScript that areembedded in a web page's HTML and run client-side by a JavaScript enginein the user's web browser.2)Client-side native JavaScript: Most devices can have a JavaScript run-time,therefore, developers can ship JavaScript files with Android/iOS/Desktopapplications and then run them there. These engines also support adding

7

Politecnico di Torino TULA Ana Laura“hooks” from JavaScript into the native code, and that's how React Nativeprovide its API.3)Server-side JavaScript: Server-side JavaScript refers to JavaScript that runson server-side and is therefore not downloaded to the browser. Servergenerally has two meanings:
◦ A piece of software that listens for network requests and then responds tothem.
◦ A computer running such a piece of software.Node is a tool that can be either of those, and also allows to use JavaScript for non-server and non-web purposes.3.7.1 NodeNode is a JavaScript run-time environment built on Chrome’s V8 Javascript engine.Generally, the server itself is run directly from Node (e.g. with the HTTP built-inmodule) rather than being embedded in another server like Apache[39] (as is mostcommon for PHP[40]). In this case, a browser doesn't need to be involved at all. Ifone is, then it will probably be one acting as a client and making a request to theserver.A fourth case can be added to the previous environments:4) Build-scripts running on runtines like NodeDevelopers can use JavaScript to generate JavaScript files, that is, to build andcombine several JavaScript files into a single file, and transpile it if needed. Thisprocess is how to bundle the files for (1) and (2) and maybe also (3). Metro is a server-side build-script (which runs on Node) that is used by React Nativeto work as a:

• Development Server: Start a server that serves JavaScript code as a web pagewould (1 & 3). During the development stage it allows to iterate quickly on adevice by connecting to the development server running on the machine.
• Bundler: Bundle all the JavaScript code in a native application that later canbe installed on a mobile device (2).

8

Politecnico di Torino TULA Ana Laura3.8 MetroMetro[41] is the development platform for React Native, it does that by exposing aHTTP server so clients, in this case, emulators or connected devices cancommunicate with it and it also exposes a Websocket[42] server so it can pushupdates into them.In development, the bundle will come from the the development server. That way ifthe code is changed, the server will send a request to the client, through theWebsocket, to download the new code or update the code on the fly. So, the bundleis dynamically generated from the source code.In production, an offline bundle is used since the code is already on the device anddoes not need to be downloaded.Metro is a JavaScript bundler. It takes in options, an entry file, and the output is a JavaScript file including all JavaScript files back.Metro has three separate stages in its bundling process:
• Resolution: Metro needs to build a graph of all the modules that are requiredfrom the entry point. To find which file is required from another file, Metrouses a resolver. In reality this stage happens in parallel with thetransformation stage.
• Transformation: All modules go through a transformer. A transformer isresponsible for converting (transpiling) a module to a format that isunderstandable by the target platform (eg. React Native). Transformation ofmodules happens in parallel based on the amount of cores availables.
• Serialization: As soon as all the modules have been transformed they will beserialized. A serializer combines the modules to generate one or multiplebundles. A bundle is literally a bundle of modules combined into a singleJavaScript file.3.8.1 The Journey to a BundleMetro is itself a package that is run on Node and that is the reason Node is adependency of React Native. The main task is to build JavaScrip code, and that alsoentails:
• Monitoring all the files in the project: Using the module jest-haste-map[43]from another project called Jest[44] gives the ability of monitoring the filesystem and emitting changes every time it detects changes. In order to achieve9

Politecnico di Torino TULA Ana Laurathis, it uses watchman[45] if it is installed. Watchman is an open sourceproject from Facebook which monitor the file system as a daemon process soit reduces the start-up time. However if not installed, it falls back tofs.watch[46], this has a start-up overhead but after that is the same as usingwatchman.
• Transform the source code: Metro does what any other bundler do, which is touse Babel, the difference is the way it is executed. Transpilation is a veryexpensive process, most bundlers have a main process and execute thetranspilation process one file after the other. Metro uses a different approach,the main process doesn't transform any file, but it spawns a set of childprocesses that are called workers. Files are sent in parallel to each of theseworkers, so the transpilation happens at the same time and then return theresult back. Usually it spawns one worker per core.
• Store cache artifacts: Metro ships with an internal multi-layer cache locatedinside the Main process. If the file was never transpiled, it will transpile thefile and save it in the cache.
• Build bundles: Metro produces bundles through serializers, which receive thegraph and can manipulate them in any way.
• Execute code on devices.

10

Politecnico di Torino TULA Ana Laura4React
4.1 The DOMBrowsers render HTML to a web page, before this happens they create a DocumentObject Model[47] of the page. The DOM is an object-oriented tree-like structurerepresentation of the web page, constructed in memory, which can be modified witha scripting language such as JavaScript. A HTML document can have encapsulated HTML content inside of other HTMLcontent. The browser when loading the HTML document interrupts and parses thishierarchy to create a tree of node objects that simulates how the markup isencapsulated.The problem with the DOM is that it is not optimized for dynamic applications. So,updating it slows the application when there are a several things to be changed; asthe browser has to reapply all styles and render new HTML elements.4.2 ReactReact is an open source JavaScript library created by Facebook for building userinterfaces[48]. It introduces a declarative approach for building UIs that allowsdevelopers to:

• write declarative views that “react” to changes in data
• abstract complex problems into smaller modules called componentsReact is declarative, in the sense that allows developers to declare what they wantand the library will take care of the DOM manipulation efficiently, without workingdirectly with the browser API.To minimize the number of costly DOM operations required to update the UI, Reactbuilds and maintains an internal representation of the rendered UI. It includes theReact elements returned from the components. This representation lets React avoidcreating DOM nodes and accessing existing ones beyond necessity, as that can beslower than operations on JavaScript objects. Sometimes it is referred to as a“virtual DOM”.

11

Politecnico di Torino TULA Ana Laura4.2.1 ComponentComponents are JavaScript functions or classes that returns a node (somethingReact can render, e.g. a <div/>) and receives an object of the properties that arepassed to the element. These object, called props, are passed to a component and used to compute thereturned node. Changes in these props will cause a re-computation of the returnednode, which means a re-render. Unlike in HTML, these can be any JavaScript value.During the development stage, React can validate the types of component props atruntime. This allows developers to ensure the correct passing of props and helpdocument the component’s APIs.There are two main types of components in React: Class Components and StatelessFunctional Components. The most obvious reason is that Class components are ES6classes while Functional Components are functions. Additional differences are listedin the following Table 4.2.1:Stateless Functional Component (SFC) Class Component(React.Component)
• Simplest component: use when a state is not needed.
• A function that takes props and returns a node.
• Should be “pure” (it should not have any side effects like setting values, updating arrays, etc.)
• Any change in props will cause the function to be re-invoked.

• An abstract class that can be extended to behave the way developers need.
• Have additional features that SFCs do not:

◦ Have instances
◦ Maintain their own state
◦ Have lifecycle methods (similar to hooks or event handlers) that are automatically invoked

• Rendering becomes a function ofprops and class properties.Table 4.2.1: Types of React Components
12

Politecnico di Torino TULA Ana LauraClass Components can have a state which adds an internally-managed storage to acomponent. State is a class property on the component instance, this.state, and canonly be updated by invoking this.setState() and passing it an object to be merged, ora function of previous state. The calls to setState() calls are batched and runasynchronously.Components are units containing both the rendering logic and the UI logic andinstead of separating them, Rect puts markup in JavaScript. So, writing Reactmeans writing JSX, an XML-like syntax extension of JavaScript that transpiles toJavaScript, where lowercase tags are treated as HTML/SVG tags and uppercase aretreated as custom components. Using JSX allows to write concise HTML/XML-likestructures (e.g., DOM like tree structures) in the same file where is the JavaScriptcode, then Babel will transform these expressions into actual JavaScript code.4.2.2 Component LifecycleThe component lifecycle contains three major phases: mounting, updating andunmouting.

The Illustration 4.2.2 [49] shows the order in which the most common lifecyclemethods are called:

13

Illustration 4.2.1: Lifecycle diagram

Illustration 4.2.2: Commonly used lifecycle methods

Politecnico di Torino TULA Ana LauraMountSince class-based components are classes, the first method that runs is theconstructor method. Typically, is the place to initialize the component’s state, orother class properties, bound methods, etc. The render() method is the most used lifecycle method. It is in all React classes, thisis because render() is the only required method within a class component. As thename suggests it handles the rendering of the component to the UI. It happensduring the mounting and updating of the component.React requires that the render() is pure. Pure functions are those that do not haveany side-effects and will always return the same output when the same inputs arepassed. This means that it is not possible to setState() within a render().Now that the component has been mounted and is ready, componentDidMount() iscalled. This is the place to initiate API calls, if data needs to be loaded from aremote endpoint. Unlike the render() method, componentDidMount() allows the useof setState(). Calling the setState() here will update state and cause anotherrendering but it will happen before the browser updates the UI. This is to ensurethat the user will not see any UI updates with the double rendering.UpdateThis phase is triggered every time the state or props changes, which cause a rerender. The method componentDidUpdate() can do anything that isn’t needed for UI(network requests, etc.). In this lifecycle, setState() can be used, but it has to bewrapped it in a condition to check for state or prop changes from previous state.Incorrect usage of setState() can lead to an infinite loop.UnmountThe unmounting phase is the last stage of the component lifecycle, so when acomponent is removed from the DOM, React invokes componentWillUnmount()right before it gets removed. This method is used to clean up any open connectionssuch as WebSockets or intervals, remove event listeners. This component will neverbe re-rendered and because of that it doesn’t make sense to call setState() duringthis lifecycle method.4.2.3 RefsRefs[50] provide a way to access DOM nodes or React elements created in the rendermethod. In the typical React data flow, props are the only way that parentcomponents interact with their children. To modify a child, re-render it with new14

Politecnico di Torino TULA Ana Lauraprops. However, there are a few cases when modify a child outside of the typicaldataflow, for example managing focus and text selection.Creating RefsRefs are created using React.createRef() and attached to React elements via the refattribute. As Listing 4.2-1 shows, Refs are commonly assigned to an instanceproperty when a component is constructed so they can be referenced throughout thecomponent.

Accessing Refs
When a ref is passed to an element in render, a reference to the node becomesaccessible at the current attribute of the ref:
The value of the ref differs depending on the type of the node:

• When the ref attribute is used on an HTML element, the ref created in theconstructor with React.createRef() receives the underlying DOM element asits current property.
• When the ref attribute is used on a custom class component, the ref objectreceives the mounted instance of the component as its current.15

Listing 4.2-1: Access a Refconst node = this.myRef.current;

Drawing 4.2.1: Create a Ref

class MyComponent extends
React.Component {
 constructor(props) {
 super(props);
 this.myRef = React.createRef();
 }
 render() {
 return <div ref={this.myRef} />;
 }
}

Politecnico di Torino TULA Ana Laura
• Function components can not use the ref attribute because they don’t haveinstances.4.2.4 Higher-Order ComponentsA higher-order component[51] (HOC) is an advanced technique in React for reusingcomponent logic. They are a pattern that emerges from React’s compositionalnature.Concretely, a higher-order component is a function that takes a component andreturns a new component. Since it returns a new component, it adds an extra layerof abstraction. In this layer can be added state, behavior, or even style, as shown inthe Illustration 4.2.3.

Whereas a component transforms props into UI, a higher-order componenttransforms a component into another component. HOCs are common in third-partyReact libraries, such as Redux’s connect().
4.2.5 ReconciliationReconciliation[52] is the process by which React syncs changes in the applicationstate to the DOM, so it:

• Reconstructs the virtual DOM
• Diffs the virtual DOM against the DOM
• Only makes the changes needed

16

Illustration 4.2.3: High Order Component

Politecnico di Torino TULA Ana LauraWhen a component’s props or state change, React decides whether an actual DOMupdate is necessary by comparing the newly returned element with the previouslyrendered one. When they are not equal, React will update the DOM.

17

Politecnico di Torino TULA Ana Laura5React Native
A framework that relies on React for writing real, natively rendering mobileapplications for iOS and Android using JavaScript. The fact that it actually rendersusing its host platform’s standard rendering API enables it to stand out from mostexisting methods of cross-platform application development.There are separate threads for UI, layout and JavaScript that communicateasynchronously through a “bridge”. The JavaScript thread can request UI elementsto be shown and if is blocked, the UI will still work.5.1 Internals5.1.1 Threading ModelThere are two important threads running in each React Native application. One ofthem is the main thread, which also runs in each standard native application. Ithandles displaying the elements of the user interface and processes user gestures. Theother one is specific to React Native, its task is to execute the JavaScript code in aseparate JavaScript engine. The JavaScript thread deals with the business logic ofthe application. It also defines the structure and the functionalities of the userinterface. These two threads never communicate directly and never block each other.If the application accesses any native API, it is done on a separate native modulethread. For example - Animations are handled in React Native by a separate nativethread to offload the work from the JavaScript thread.

18
Illustration 5.1.1: The Threads and the Bridge

Politecnico di Torino TULA Ana Laura5.1.2 BridgeBetween the two threads there is the bridge, which is the core of React Native. Thebridge has three important characteristics[53], it is:
• Asynchronous. It enables asynchronous communication between the threads.This ensures that they never block each other.
• Batched. It transfers messages from one thread to the other in an optimizedway.
• Serializable. The two threads never share or operate with the same data.Instead, they exchange serialized messages.

5.1.3 JavaScript EnvironmentWhen using React Native, JavaScript code will run in two environments:
• In most cases, React Native will use JavaScriptCore, the JavaScript enginethat powers Safari.
• When using Chrome debugging, all JavaScript code runs within Chrome itself,communicating with native code via WebSockets. Chrome uses V8 as itsJavaScript engine.While both environments are very similar, there may end up hitting someinconsistencies.

5.1.4 JavaScript Syntax Transformers and PollyfillsReact Native ships with the Babel JavaScript compiler. A full list of React Native'senabled transformations can be found in metro-react-native-babel-preset, forexample. It provides ES5 and ES6 transformations like arrow functions, classes,spread operator, modules and async/await, template literals, etc. Also, specifictransformations like JSX and Flow.Many standards functions are also available on all the supported JavaScript runtimesby means of pollyfills.
19

Politecnico di Torino TULA Ana Laura5.2 Differences with React Web
• Both uses JSX for defining components but React Native has a separate set oftags, some base components for defining user interface for mobile.
• React-Native is not made from web elements and can’t be styled in the same way.
• No browser APIs: CSS animations, Canvas, SVG, etc., but some have been polyfilled (fetch, timers, console, etc.)
• Navigation: In a web browser, links to different pages are possible using theanchor (<a>) tag. When a user clicks on a link, the URL is pushed to thebrowser history stack. When the user presses the back button, the browserpops the item from the top of the history stack, so the active page is now thepreviously visited page. React Native doesn't have a built-in idea of a globalhistory stack like a web browser does.
• Event handling: Unlike web, not every component has every interaction, thereare only a few “touchable” components, like Button and TouchableOpacity.Web handlers will receive the event as an argument, but React Nativehandlers often receive different arguments.
• React Native’s components are not globally in scope like React web components.

◦ Import from 'react-native'
• The div tag in web corresponds to the View tag and the span tag to Text tagin React Native. All text must be wrapped by a <Text /> tag.

5.3 Components and APIsReact Native provides a number of built-in components, the following are the mostimportant ones used in the application:5.3.1 Basic Components
• View: The most fundamental component for building a UI. It is a containerthat supports layout with flexbox, style, and touch handling, and accessibilitycontrols. View is designed to be nested inside other views and can have 0 tomany children of any type. 20

Politecnico di Torino TULA Ana Laura
• Text: A component for displaying text.
• Image: A component for displaying images. There are two ways to load theblob data, the first approach loads the image data from the network bypassing an object with a uri property to source. The other way is using a localimage file, by calling require() and passing the result to source.
• TextInput: A component for inputting text via a keyboard.
• ScrollView: Provides a scrolling container that can host multiple componentsand views. Is a special kind of View that has two parts, as shown inIllustration 5.3.1:

◦ Container (the grey box), it's the outside View, its height can't exceed100% of the window height

◦ Content (marked in blue) is the inner part, it can be higher than thewindow height, it's what's moving inside the container.
ScrollView’s style defines the outer container of the ScrollView, e.g its heightand relations to siblings elements while contentContainerStyle defines thestyle of the inner container of it, e.g items alignments, padding, etc.By default, ScrollView is laid out vertically. In order to scroll the contenthorizontally, the prop horizontal must set to true.

21

Illustration5.3.1: ScrollView parts

Politecnico di Torino TULA Ana Laura5.3.2 User Interface
• Button: A basic button component for handling touches that render accordingly on any platform. There are other components that allow a developer to customize “touchable” components.

5.3.3 List ViewsReact Native provides components for presenting lists of data, the most important isFlatList since it is used to show the user’s vineyards and the grid of pictures takenby a camera. There is also SectionList, a component with additional support forsections, it is used to display the Nodes and Cameras from a vineyard. Both of thesecomponents are performant. In detail:5.3.3.1FlatListThe Flatlist[54] component displays a scrolling list of changing, but similarlystructured, data. It works well for long lists of data, where the number of itemsmight change over time. Unlike the ScrollView, the it only renders elements that arecurrently showing on the screen, not all the elements at once. The componentrequires two props:
• data: source of information for the list. Array of data used to create the list,typically an array of objects.
• renderItem: takes one item from the source and returns a formattedcomponent to render. function that will take an individual element of the dataarray and render a component for it.Each item of the list must have a unique key, that allows the VirtualizedList (whichis what FlatList is built on) to track items and aids in the efficiency of the list. Theprop keyExtractor can be use to specify which piece of data should be used as thekey.Is fully cross-platform and provides:
• Optional horizontal mode.
• Configurable view-ability callbacks.
• Header support.
• Footer support.

22

Politecnico di Torino TULA Ana Laura
• Separator support.
• Pull to Refresh.
• Scroll loading.
• ScrollToIndex support.

5.3.3.2SectionListSectionList[55] is like FlatList but with additional support for sections. It requires arenderSectionHeader function prop for section headers and instead of the data prop,it define sections where each section:
• has its own data array
• can override the renderItem function with their own custom renderer

5.3.4 iOS/Android specificDatePickerAndroid: Opens the standard Android date picker dialog.The available keys for the options object are:
• date (Date object or timestamp in milliseconds): date to show by default
• minDate (Date or timestamp in milliseconds): minimum date that can beselected
• maxDate (Date object or timestamp in milliseconds): maximum date that canbe selected
• mode (enum('calendar', 'spinner', 'default')): to set the date-picker mode tocalendar/spinner/default

◦ 'calendar': Show a date picker in calendar mode.
◦ 'spinner': Show a date picker in spinner mode.
◦ 'default': Show a default native date picker(spinner/calendar) based onandroid versions.It provides the open() method, that returns a Promise which will be invoked anobject containing action, year, month (0-11), day if the user picked a date.

23

Politecnico di Torino TULA Ana LauraThis component is used to give the user the option to display the data of the sensoron that selected date.5.3.5 Others5.3.5.1AnimatedAnimation can be defined as manipulating images or objects to appear as moving.React Native provides the Animated library for creating animations, it allows todeclare a computation in JavaScript and compute it on the native thread and not onthe JavaScript thread, so if the JavaScript thread is blocked, the animation will stillrun.The steps are usually as follows:1) Create a new Animated instance and define the starting value or the startinglocation of the animation in reference to the exact X, Y coordinates on the screen.The X, Y coordinates always start at the top-left corner of the screen.2) Define the end value or ending location of the animation. Animated has built-intypes to use to get from the starting location or value to our ending location orvalue. Each animation type provides a particular animation curve that controls howthe values animate:
• Decay: starts with an initial velocity and gradually slows to a stop.
• Spring: provides a simple spring physics model.
• Timing: animates a value over time using easing functions.3) Define which element to animate. React Native provides four components. Thesecomponents do the binding of the animated values to the properties, and do targetednative updates to avoid the cost of the react render and reconciliation process onevery frame.
• Animated.Image
• Animated.ScrollView
• Animated.Text
• Animated.View

24

Politecnico di Torino TULA Ana LauraInterpolationInterpolate() is a method that is available to be called on any animated value, itinterpolates the value before updating the property, e.g. mapping 0–1 to 0–10. Allowsinput ranges to map to different output ranges.
Handling gestures and other eventsGestures, like panning or scrolling, and other events can map directly to animatedvalues using Animated.event(). The animated events help to extract the values fromcomplex event objects.5.3.6 StyleReact Native uses JavaScript objects for styling, where object keys are based on CSSproperties. Every component accepts a “style” prop where these are defined. Thestyle prop can take an array of styles.Additionally, React Native provides the StyleSheet functionally, which is the same ascreating the objects for style, but have an additional optimization: only sends IDsover the bridge.A component can specify the layout of its children using the Flexbox algorithm.Flexbox is designed to provide a consistent layout on different screen sizes.Flexbox works the same way in React Native as it does in CSS on the web, with afew exceptions. The defaults are different, with flexDirection defaulting to columninstead of row, and the flex parameter only supporting a single unit-less number.To achieve the desired layout, Flexbox offers three main properties:

25

Politecnico di Torino TULA Ana LauraProperty Values DescriptionflexDirection 'column', 'row' Used to specify if elements will be aligned vertically or horizontally.
justifyContent'center', 'flex-start', 'flex-end', 'space-around', 'space-between' Used to determine how should elements be distributed inside the container.
alignItems 'center', 'flex-start', 'flex-end','stretched' Used to determine how should elements be distributed inside the container along the secondary axis (opposite of flexDirection).

Table 5.3.1: Main properties of Flex
5.3.7 Direct ManipulationIt is sometimes necessary to make changes directly to a component without usingstate or props to trigger a re-render. setNativeProps is the React Native equivalentto setting properties directly on a DOM node.5.3.8 Installation5.3.8.1DependenciesDepending on the development OS and the target OS, the dependencies vary. Forexample, a Mac computer is required to build projects with native code for iOS. Inthis project the target OS is Android, so the requirements are:

• Node (8.3 or newer)
• Watchman (optional)
• The React Native Command Line Interface (React Native CLI)
• A JDK (JDK 8)
• Android Studio (or just the Command Line Tools)

26

Politecnico di Torino TULA Ana LauraNode comes with Node Packager Manager[56] (npm) which will be used to install notonly React Native, but all of the application’s dependencies. Instead of npm, yarncan also be used.The first requirement when developing Android applications is an up-to-date versionof JDK (Java SE Development Kit), at the moment JDK 8.Android Studio installs the latest Android SDK by default. Building a React Nativeapplication with native code, however, requires a specific Android SDK, at thebeginning of the project it was Android SDK Platform for API Level 23 (6.0Marshmallow). Additional Android SDKs can be installed through the SDKManager.

Additionally, the developer must install:
• Google APIs
• Intel x86 Atom_64 System ImageIt is important to set up the Android and Java environment variables. For thisproject, the versions of the dependencies installed are:
• Development OS: Linux Mint 19 Tara
• npm: 6.5.0
• Node: v8.11.3
• Yarn: 1.12.3
• Watchman: 4.9.0

27

Illustration 5.3.2: Android platforms installed

Politecnico di Torino TULA Ana Laura5.3.9 React Native CLI CommandsTo install the React Native CLI:

This will create a new folder in the current directory and create a React Nativeproject inside of it.

As the Illustration 5.3.3 shows, the Android and iOS folders contain Objective-C andJava code for iOS and Android native parts. The node_modules directory contains allinstalled npm packages. In the root folder there are various configuration files forBabel, Flow[57], Git[58], Watchman and Yarn[59]. There is also an index JavaScriptfile, called index.js, that serves as an entry point of the application.

28

Listing 5.3-2: Creation of a new React Native Projectreact-native init <project name>

Listing 5.3-1: React Native CLI installationnpm install -g react-native-cli

Illustration 5.3.3: Project structure

Politecnico di Torino TULA Ana LauraTo run and build the application, in the case of Android/iOS case:

The instructions build the native .app or .apk using the iOS or Android toolchains,starts the Metro Bundler, which minifies and serves the JSX and other assets such asimages over to the device. On Android, it starts the adb server to push the .apk withall the native libraries included onto the device (with USB debugging enabled).The react-native CLI will run the packager, which is in charge of bundling theJavaScript files and launch the emulator on the physical device.The packager need to be running at all times while developing, the code changes willbe reflected in the application by enabling hot reloading.Metro server is configured to start on port 8081 by default. Once the application islaunched in the simulator/device, a request is sent to the server for the bundle. Theserver then downloads all the required dependencies, bundles the JavaScript codeand sends it back to the application. After this step, the application start working.The development was done using a physical Android smartphone, running Android8.0.0. To verify if the device is connected the command in Listing 5.3-5 can be usedin the command line:

29

Listing 5.3-4: Launch the application in iOS device or emulatorreact-native run-ios
Listing 5.3-3: Launch the application in an Android device or emulatorreact-native run-android

Listing 5.3-5: Command to verify the connected smartphonesadb devices

Politecnico di Torino TULA Ana LauraTo run the application in a device, the developer must authorize the mobile deviceand enable USB debugging the following must be actions must be followed: “Settings> Developer Options > USB debugging”.5.3.10The CLIThe react-native-cli, installed by means of npm as a separate module, is a shell foraccessing the CLI embedded in the React Native of each project. The commands andtheir effects are dependent on the version of the module of react-native in thecontext of the project.Running react-native -help from inside a React Native project will list all of thecurrent commands, as shown in Illustration 5.3.4:

5.3.11DebuggingFrom the device’s developer menu, it is possible to tap on “Debug JS Remotely.”This will launch Google Chrome and run the JavaScript in the browser instead ofrunning it on the device. React Native will set up a Websocket connection betweenthe device and the browser that allows the developer to use Chrome’s developerconsole.5.3.12Linking librariesSome React Native modules include native code for Android and/or iOS in additionto JavaScript. There are some extra steps to connect it with the native parts of theapplication.
30

Illustration 5.3.4: Options for commands available in the current Project

Politecnico di Torino TULA Ana LauraIn the case of Android, if there is the need to use native code, there are two ways touse Java with the Android SDK in a React Native project:
• put the Java code directly into the existing app by adding Java classes toandroid/app/src/main/* folder and use them fromMainActivity/MainApplication.
• create an Android Library, which is the way any npm react-native packages(that go beyond JavaScript) work. The benefit is that it is reusable.So, to link a library first install the component, using npm like a normal module, andthen link it with the command listed in Listing 5.3-6:

It is an automatic way for installing native dependencies and to avoid manuallylinking all the dependencies in the project. It works for both Android and iOS.However, the linking process of the libraries can vary, so it is important to check theinstallation steps for each of them.

31

Listing 5.3-6: Linking a native libraryreact-native link <dependency-name>

Politecnico di Torino TULA Ana Laura6Data Visualization
6.1 Scalable Vector Graphics (SVG)SVG[60] is a language for describing 2D-graphics and graphical applications in XMLwhich is then rendered using the SVG viewer. Most modern browsers support SVGand can display them as an images just like a regular JPG.SVG drawings are created using a wide array of elements. For this project thefollowing elements are used:

• <svg>: is a container that defines a new coordinate system and the viewingarea where the SVG will be visible . It is used as the outermost element of anySVG document but it can also be used to embed a SVG fragment inside anySVG or HTML document.
• <g>: is a container used to group other SVG elements. Transformationsapplied to the <g> element are performed on all of its child elements, andany of its attributes are inherited by its child elements.
• <line>: basic shape used to create a line connecting two points.
• <text>: defines a graphics element consisting of text. It's possible to apply agradient, pattern, clipping path, mask, or filter to <text>, just like any otherSVG graphics element.
• <path>: generic element to define a shape. All the basic shapes can becreated with a path element.SVG support in React Native is via react-native-svg[61]. It provides SVG support toReact Native on iOS and Android, and a compatibility layer for the web. Thislibrary contain native code and must be linked as explained in Linking libraries andreading the instruction provided in the library’s instructions.The library svg-path-properties[62] is a pure Javascript library used to obtain thefunctions getPointAtLength(t) and getTotalLength() needed to do some calculationsfor plotting the chart.

32

Politecnico di Torino TULA Ana Laura6.2 D3.jsD3.js[63] is a JavaScript library that exploits all the benefits provided by the DOMto visualize data using HTML, CSS and SVG. D3 manages the complexities of webstandards and provides capabilities to browsers by combining powerful visualizationcomponents along with a data-driven approach. The library consists of many usefulfeatures including scaling, transformations, axes creation and many others. D3, in its 4th version, is presented as a collection of modules developers can useindependently, with minimal dependency between them, all neatly isolated in theirown repository. The following modules are used in this project.6.2.1 D3-scalesD3-scales[64] provides the encodings that map abstract data to visual representation.Every dataset has values within a domain and though the domains can varydrastically, one thing remains constant; the number of pixels available on the screen.These different domains needs to be mapped onto this output range. This is handledby D3-Scales property that maps the input domain to the output range. Once D3scale function is defined by providing it with input domain and output range ofpixels, the scale function can be called by passing the input value and it returns ascaled output value. D3 provides different types of scales such as linear, ordinal,logarithmic, square root. In the project, only the linear scale is used.6.2.2 D3-shapeD3-shape[65] provides graphical primitives for visualization, such as lines and areas.This module supply a variety of shape generators. As with other aspects of D3, theseshapes are driven by data: each shape generator exposes accessors that control howthe input data are mapped to a visual representation.6.2.3 D3-arrayD3-array[66] provides array manipulation, ordering, searching, summarizing, amongother things. Data in JavaScript is often represented by an iterable (such as anarray, set or generator), and so iterable manipulation is a common task whenanalyzing or visualizing data.

33

Politecnico di Torino TULA Ana Laura7Implementation
The development of the application was using an incremental approach, eachfunctionality was implemented and tested incrementally until the application coveredthe most important use cases.Two important matters are the Application State and the Application Navigation,those topics are described in the following chapters.Another topic is the interaction of the application with the server through its API,covered in Web Services.7.1 Actors of the system The iXemWine is a community formed by the a network of public sensors invineyards located in municipalities or farms distributed throughout Italy. Anyonecan register and have access to it.A user represents someone who can log into the iXemWine application. In additionto the basic information, has credentials that enables them to log in to the system.Each user has roles, assigned to them, that defines permissions to perform a group oftasks.An user administrator can perform additional actions, like adding a camera sensor toa vineyard.A vineyard is represented as an object with a unique identification and a name. Ithas information associated with it, like the its creation date and the city it is locatedin, in addition to the latitude and longitude.A vineyard can have nodes and cameras associated with it. A node has sensors, atype, a alias, creation date and other configuration parameters. Each node’s sensorhas a channel in which it handles the actual monitoring data.A user can own one, several or any vineyards, as shown in Illustration 7.2.1. Inaddition, a vineyard can be shared with other users. Both the shared and ownedvineyards must be displayed in the application. In the case of a vineyard that is notowned and nor shared with the user, then only a limited view of that vineyard isshown.

34

Politecnico di Torino TULA Ana Laura

7.2 FunctionalityThe main functionalities of the application are described in the Illustration 7.2.2 and then described in detail in the following sections.

7.2.1 AuthenticateThe first screen of the application is where the user enters its credentials to login tothe application. Once the user press the login button, it sends a HTTP POST35

Illustration 7.2.1: Representation of a user’s data

Illustration 7.2.2: Use Cases

Politecnico di Torino TULA Ana Laurarequest to the iXemWine backend Authentication Server with the credentials and asa response it sends the token that will be used by the user on all the subsequentrequests. There only complication when developing this screen was that when the user pressedto type the username and password, the virtual keyboard showed up and coveredtext inputs fields.For this reason, React Native provides the built-in KeyboardAvoidingViewcomponent but the documentation is vague, e.g., “Android and iOS both interactwith this prop differently. Android may behave better when given no behavior propat all, whereas iOS is the opposite” .[67]To avoid the use of a third-party libraries and also to have a cross-platform solution,an alternative solution was reached using:
• the Keyboard module to control keyboard events [68]. Keyboard is a built-inReact Native component that provide a couple of methods to listen for thevirtual keyboard showing and hiding.
• animations, specifically transform/translateY to move the elements of theview vertically when the virtual keyboard shows/hide.
• the Dimensions[69] built-in API to obtain the width and height of the screen
• the currently focused field (and thus its position on the screen) in order to calculate the value to translate vertically the elements.The result is the login screen, shown in Illustration 7.2.3:

36

Politecnico di Torino TULA Ana Laura

7.2.2 Visualize the list of VineyardsTo visualize the list of vineyards a user owns or has been shared with, a componentnamed List was created, it is based on the FlatList, built-in component previouslydiscussed. The List component displays a Row component for each item. A Row component hasa title, details and the function callback when an item is selected. When the userpresses on one of the items, it navigates to another screen that shows the detail ofthat vineyard.The list of vineyards a user owns and the ones shared with him are obtained once theuser successfully login to the application and redirected to the first screen, which isthe home. In the Illustration 7.2.4 the Home screen is shown, it displays a Panel componentthat shows the number of vineyard owned, the shared ones and the total number ofnodes of the user.
37

Illustration 7.2.3: LoginScreen: Authentication of the user

Politecnico di Torino TULA Ana Laura

The other place where the List component is shown is in the tab Shared(“Condivisi”) but, in this case it only displays the List component.7.2.3 Visualize the Nodes and Cameras inside a VineyardAs stated previously, a vineyard can have nodes and cameras and to show them, thebuilt-in SectionList component is used. The difference to FlatList is that it allows toseparate the data in sections. Each section has its data source, its render functionand a title.In this case, the Camera and Nodes are two sections, as shown in Illustration 7.2.5and the header of the screen is the vineyard’s name. When the user selects one ofthem it navigates to the specific node or camera.

38

Illustration 7.2.4: Visualization of the listof vineyards

Politecnico di Torino TULA Ana Laura

7.2.4 Visualize the Sensors data in ChartsSensors data are visualized by means of a line charts. The chart configurationdepends on the sensor’s type, because in most of the cases the chart can have morethan one data set to allow the user to contrast two physical quantities, liketemperature and the dew point[70], across time.There weren’t many alternatives, it was hard to find a suitable library that met thefunctional and design needs at the same time. Only one library met therequirements, victory-native[71] but unfortunately it had known performanceissue[72]. So, for this functionality there was a time overhead of learning andimplementing the chart from scratch.To build the chart, D3 was used. The first thing to do with the data set is to scale(using d3-scales) the x and y domain to the width and height of the chart, and thenused the curve function, from the d3-shape library, to have a linear curve for thepoints.The screen of the smartphones are small, so the proposed solution was to plot thechart without using the “traditional” scrolling, instead, a ScrollView component was
39

Illustration 7.2.5: Visualization of sensorsand cameras in a vineyard

Politecnico di Torino TULA Ana Lauraused on top of the chart so the user can slide a cursor over the line and to show asliding label that acts as a x-axis.To get the length of the line, the function getTotalLength of the svg-path-propertieslibrary was used. The ticks of the y-axis can be fixed and be passed as a prop or they can be variableand change according to the data set.The lines are plotted by means of the SVG path element, while the y-axis use thetext element for showing the tick value and the line element for plotting the dashedlines. To be able to slide throughout the chart line, the only consideration is that theScrollView’s width attribute needs to be greater than the width of the screen and atleast the size of the line length, since the “scrolling” is what enables to move fromone end of the line to the other.Another thing is listening to the onScroll event to get the scrolling value at anypoint, and with that value get the x and y coordinates (using svg-path-properties’sgetPointAtLength function), and move the cursor along the graph usingsetNativeProps in order to do it without triggering a new rendering.To allow the sliding movement of the label that shows the values at that specificpoint, an interpolation is performed where the input range is the selected line lengthand output range is the width of the screen (minus the label width). A TextInputcomponent is used to be able to update the label value using again thesetNativeProps method. To display the proper label value at a particular point thefunction scale.invert, from D3-scales, is used to revert from the y and x coordinatesvalues to the original values.To be able to plot the two data sets in the same chart, in the chart component’sstate is stored a selectedLine, which is the line selected at a particular moment.The chart component receives the mandatory dataset and the socondary one, theselection to where to place the cursor between them is performed by a boolean calledselectedMandatory. When that boolean prop is true, the mandatory lineLength isselected otherwise the secondary is. If there is no secondary provided, there can notbe any toggling.The chart component is encapsulated within a component called ChartWithLabelsthat add the Label functionality, showing a label for each data set, and the togglingbetween them represented as switching a radio button.40

Politecnico di Torino TULA Ana LauraOne more level of abstraction is created for each type of node, since each Node typehas different icons, colors and constants.The figure Illustration 7.2.6 and Illustration 7.2.7 shows an example of thisfunctionality where the node type is a Temperature-Humidity sensor, so there aretwo charts, one for the temperature versus the dew point and the other with just thehumidity:

Another type of sensor is the Two Layer Leaf Wetness sensor, that shows a top anda bottom humidity, but in this case to visualize the data only one chart is neededsince the two data set refer to the same scale, as the Illustration 7.2.8 below shows:

41

Illustration 7.2.6: Visualization of the temperature and the dew point of a Temperature-HumiditySensor
Illustration 7.2.7: Visualization of the humidity of a Temperature-HumiditySensor

Politecnico di Torino TULA Ana Laura

 In addition to the chart, at the top of the screen, there is a Panel that shows thelatest corresponding sensor’s value acquired.7.2.5 Visualize the pictures taken by a CameraThe pictures taken by the camera are shown in a grid, Illustration 7.2.9, sort ofGallery using a FlatList component that is set to render the pictures in columns.The backend returns an array of objects that contain the URL of the pictures takenby the particular camera on the date selected. The pictures shown at the start bydefault are the ones taken that particular day.The user can see the details of a picture by selecting it, which navigates to adifferent screen where the user can zoom-in and zoom-out the picture to see it indetail.

42

Illustration 7.2.8: Visualization of a Two Layer Leaf Wetness Sensor

Politecnico di Torino TULA Ana Laura

7.2.6 Search for vineyards in the CommunityThe search for vineyards is by means of a map, as shown in Illustration 7.2.10, thepositions of the vineyards are displayed as markers.The only reliable way to use maps in React Native applications is to install thethird-party react-native-maps[73] package.The MapView component from that package is the main tool used and provides adeclarative approach to control features on the map where they are specified aschildren of a MapView.Each vineyard is represented by means of a Marker that is rendered on top of themap. A callout is displayed with the vineyard’s basic information when the userpresses on the marker. Then, if the user press on the callout, the user is redirected toa screen, which shows information of the selected vineyard.To add the functionality of maps clustering the library react-native-maps-super-cluster[74] is used. It provides a ClusteredMapView component that receives thesame children as a MapView but add the extra functionality for cluster rendering.
43

Illustration 7.2.9: Photo grid visualization of the pictures taken by a camera

Politecnico di Torino TULA Ana Laura

7.2.7 Edit preferences ans see the profileThe user can visualize its profile and change some preferences of the application. Inthis case, the language. The available languages are english and italian. The libraryi18n-js[75] is used, a plain popular JavaScript library which supports features such asdate/time localization, number localization, locale fallback, etc.Internationalization (i18n for short) is the process of adapting an application to workwith different languages. The internationalization is done by having two files, en.jsonand it.json, containing strings in a flat JSON format. Both language files will containkey-value pairs with the same keys at any point in time containing the translationsof the headers, texts messages, errors, etc. The different screens will import thosestrings from one of these files depending on the current language selected. In order to configure some parameters, like the default language, the file i18n.js iscreated. Besides configuring i18n, it also exports a translate function and some otherutility functions, for example to get or set the language.To change the application’s language there is a button in the User screen that showsthe current language and when pressed it toggles the languages.
44

Illustration 7.2.10: Search and visualization of the vineyard's position

Politecnico di Torino TULA Ana LauraThe language, stored in the Redux store, is always in sync with the language in thei18n.js file, and when the user changes the language an action is dispatched whichchanges the language in both i18n module and Redux store. The navigator’s header text and bottom tab labels have to be re-rendered onlanguage change. The navigation library allows to pass props to the navigators, thisprops will be passed to each navigator instance and perform the re render when alanguage change occurs since it is connected to the Redux store.The Illustration 7.2.11 shows the user’s profile information and the functionality tochange the language.

More of Redux and navigation will be addressed on the following chapters.

45

Illustration 7.2.11: User's profile and language change screen

Politecnico di Torino TULA Ana Laura8Application Navigation
8.1 React NavigationReact Navigation[76] is used to move between screens in the application. It providesdifferent types of navigation patterns, like a “stack of screens” or “tabs”. It’s asolution backed by the React Native community[77] that works with the nativenavigation components of both Android and iOS.8.1.1 NavigatorA navigator is a component that implements a navigation pattern. Each navigatormust have one or more routes. Each route must have a name and a screencomponent. The screen component is a React component that is rendered when theroute is active. A screen can also be another navigator, since they are components, so they can benested. The result is that the application is a combination of these differentnavigators.There are three types of built-in navigators used in the project are:

• SwitchNavigator: Only show one screen at a time. When navigate, it resetscreen immediately without animation.
• StackNavigator: Contains screens as a stack. Each of the screens gets mountedonly when navigating to that particular screen and gets un-mounted onlywhen going back or manually reset the navigation state.
• TabNavigator: Contains tabs that the user can swipe. The tab screens getmounted all at once.8.1.2 Authentication flowMost applications require that a user authenticates in some way to have access todata associated with that user or other private content. Typically the flow looks likethis:

• The user opens the application.
46

Politecnico di Torino TULA Ana Laura
• The application loads some authentication state from persistent storage. The user ispresented with either the authentication screen or the main application, dependingon whether valid authentication state was loaded.
• When the user signs out, the authentication state is cleared and is sent back toauthentication screens.The purpose of SwitchNavigator is to only ever show one screen at a time. Bydefault, it does not handle back actions and it resets routes to their default statewhen the user switch away. This is the exact behavior wanted from theauthentication flow: when the users sign in, the state of the authentication flow isthrown away and unmount all of the screens, and the user press the hardware backbutton he can not go back to the authentication flow. To switch between routes in the SwitchNavigator, the navigate action can be used.The initial route name is set to be the screen that will fetch the user’s authenticationstate from the persistent storage.8.1.3 App containersContainers are responsible for managing the application’s state and linking the top-level navigator to the application environment. It must be created in the root of theapplication and use it to wrap the root navigator.The app container, is a higher-order-component that maintains the navigation stateof the application and handles interacting with the outside world to turn linkingevents into navigation actions and so on.8.1.4 Navigation PropThis prop will be passed into all screens, and it provides the following:

• dispatch(), will send an action up to the router
• state, is the current route for the screen
• getParam(), is a helper to access a parameter that may be on the route
• navigate(), used to navigate to another screen. It allows to pass parameters aswell.

47

Politecnico di Torino TULA Ana Laura8.1.5 Passing parameters to routesAfter creating a stack navigator with some routes, it is possible to navigate betweenthose routes and to pass data to routes when navigating to them. There are two pieces to this: 1.Pass parameters to a route by putting them in an object as a secondparameter to the navigation.navigate function:
2.Read the parameters in the screen component:

8.1.6 Handling stateScreenProps allows to provide any data to all the screens, in this case to pass statedata down to the screen components. This is done in the top level navigator, whichis also connected with Redux, so any changes in the state will cause a change ofprops pass to the screens as well. So, if a prop is passed to the navigation component, it's accessible via thescreenProps property and if a value is passed to the screen via navigator.navigate(),it's accessible by calling navigator.getParam().In this project, the only props that is passed is the Language since the UI (headerand tab labels) needs to be updated dynamically when the user changes thelanguage.8.1.7 Navigation lifecycleConsider a stack navigator with screens A and B. After navigating to A, itscomponentDidMount is called. When pushing B, its componentDidMount is alsocalled, but A remains mounted on the stack and its componentWillUnmount istherefore not called. When going back from B to A, componentWillUnmount of B is
48

Listing 8.1-1: Navigate to a another screen and pass parametersthis.props.navigation.navigate(‘RouteName’, {/*params go here*/})

Listing 8.1-2: Read a parameterthis.props.navigation.getParam(paramName, defaultValue)

Politecnico di Torino TULA Ana Lauracalled, but componentDidMount of A is not because A remained mounted the wholetime.When, in combination with other navigators, like in this project where there is a Tabnavigator with four tabs, where each tab is a Stack navigator. The initial screen isset to the HomeScreen and if the user navigate to a VineyardScreen. Then the useruse the tab bar to switch to the SharedScreens and navigate to a sharedVineyardScreen. After this sequence of operations is done, all 4 of the screens aremounted. If the user use the tab bar to switch back to the HomeStack, the user willbe presented with the screen he left on before switching tabs, so the navigation stateof the HomeStack has been preserved.8.1.8 Application navigation The application’s navigation is accomplished by nesting different types of navigators.As the Illustration 8.1.1 shows, the SwitchNavigator performs the authenticationflow.Once the user is logged in, a Bottom Tab Navigator show four the tabs available:Home, Shared, Community and User. Each of them is a Stack Navigator.Each tab being a navigator, allow the user to navigate to the different screens, forexample in the case of the first tab it starts with the list of vineyards, then to the listof nodes and cameras that are inside the vineyard and finally arriving to the theparticular sensor or camera and see the data displayed for a particular day.

49

Politecnico di Torino TULA Ana Laura

In the case of the Community tab, the navigation actions depend on the selectedvineyard. If the selected vineyard :
• is owned by the user, push a new screen to Home tab.
• is shared with the user, push a new screen to Shared tab.
• is one from the Community, then it navigates to another screen in the samestack allowing the user only a partial view of that vineyard.

50

Illustration 8.1.1: Application Navigation

Politecnico di Torino TULA Ana Laura9Application State
State is an important concept in any React application because it controls what theuser can see and interact with.Various pieces of state are persisted for different amounts of time and can becategorized into:

• Short: data that will change rapidly, for example the characters that a usertypes in an input text field. This type of data can be handled using thecomponent’s state.
• Medium: data that has to persist throughout the user navigation of theapplication, for example, the data returned from the server needs to be storedand will be used by the different screens. If that data is stored in some globallocation, it will be easier to access it. Such type of use cases fits Redux.
• Long: data that should be persisted when the user closes and re opens theapplication. This type of data should be stored somewhere else, for examplethe AsyncStorage provided by React Native.9.1 FluxIn order to scale complexity and control the data flow, Facebook created aninformation architecture called Flux[78]. Thought for React, it utilizes aunidirectional data flow, where:
• the views react to changes in some number of “stores”.
• the only thing that can update data in a store is a “dispatcher”
• the only way to trigger the dispatcher is by invoking “actions”
• actions are triggered from the views

51

Politecnico di Torino TULA Ana Laura

From the Flux documentation[link], Flux applications have three major parts: thedispatcher, the stores, and the views (React components). The store is an abstractconcept that holds application state. The actions are simple objects containing thenew data and an identifying type property.The dispatcher is the central hub that manages all data flow in a Flux application. Itis essentially a registry of callbacks into the stores and has no real intelligence of itsown — it is a simple mechanism for distributing the actions to the stores. Each storeregisters itself and provides a callback. When an action creator provides thedispatcher with a new action, all stores in the application receive the action via thecallbacks in the registry.When a user interacts with a React view, the view propagates an action through acentral dispatcher, to the various stores that hold the application's data and businesslogic, which updates all of the views that are affected.9.2 ReduxRedux[79] is a data management library inspired by Flux, the only difference is thatit only has a single source of truth for data. Presented as “a predictable statecontainer for JavaScript apps. It helps you write applications that behaveconsistently, run in different environments (client, server, and native), and are easyto test. On top of that, it provides a great developer experience.”[80]The classic MVC (model-view-controller) behavior, in large-scale applications, hasissues: the flow of data is bidirectional, which means that one change (a user input orAPI response) can affect the state of an application and many places in the UI andthat can be hard to maintain and debug. The ability to represent the entireapplication state in a single object simplifies the developer experience since itbecomes easier to think through the application flow, predict the outcome of newactions, and debug issues produced by any given action.52

Illustration 9.1.1: Flux achitecture

Politecnico di Torino TULA Ana LauraRedux flow is shown in Illustration 9.2.1 and has the following core concepts:
• State: The application’s state described as a plain object.
• Actions: Object that contains the information required to make a stateupdate, usually objects with a type key and a payload containing theinformation to be updated. The functions that create them are called actioncreators. Actions must be dispatched in order to affect the state.
• Reducer: function to tie state and actions together. The reducer takes theprevious state and the action, then it applies the update. It should be a purefunction, a function that doesn't alter input data, doesn't depend on externalstate and consistently provides the same output for the same input. So itresult is deterministic and determined exclusively by arguments and also itmust not have no side effects. It should be immutable, which means that italways return a new state object.
• Store: The store contains the global state for the entire application. It isresponsible for maintaining the state. The store exposes a getter viagetState(), can only be updated by using dispatch() and can add listeners thatget invoked when state changes.

9.2.1 Combining ReducersAs the application grows more complex, it is important to split the reducing functioninto separate functions, each managing independent parts of the state. ThecombineReducers()[81] helper function turns an object whose values are the differentreducing functions into a single reducing function to pass to the createStore[82]method. The resulting reducer calls every child reducer, and gathers their results into
53

Illustration 9.2.1: Redux flow

Politecnico di Torino TULA Ana Lauraa single state object. The state produced by combineReducers() namespaces thestates of each reducer under their keys as passed to combineReducers().9.2.2 React-reduxReact-redux[83] This library has the official React’s bindings for Redux. It lets Reactcomponents read data from a Redux store, and dispatch actions to the store toupdate data, it does that using the following:
• Connect(): Higher-order component that helps subscribe to any subset of thestore and bind the action creators. This function has two importantarguments:

◦ the mapStateToProps function: connects a part of the Redux state to theprops of a React component, so it will have access to the exact part of thestore it needs.
◦ mapDispatchToProps function: connects the actions to the props of aReact component, so the component will be able to dispatch actions.

• Provider: Gives children access to the Redux store. The Provider componentis used to wrap the top-level component of the application. This will ensurethat Redux store data is available to all the components.
9.2.3 Async RequestsA middleware is piece of code that sits between the actions and the reducers.Basically, takes the actions does something to it before passing it down to thereducer. This allows to extend Redux without having to touch the implementation. Any function with this prototype can be middleware:

9.2.4 Redux ThunkIn order use Redux’s synchronous action creators we defined earlier together withnetwork requests is to use the Redux Thunk middleware[84]. It comes in a separatepackage called redux-thunk[85]. By using this specific middleware, an action creator54

Listing 9.2-1: Function prototype for a middleware({getState, dispatch}) => next => action => void

Politecnico di Torino TULA Ana Lauracan return a function instead of an action object. This way, the action creatorbecomes a thunk.“A thunk is a function that wraps an expression to delay its evaluation” [86]When an action creator returns a function, that function will get executed by theRedux Thunk middleware. This function doesn't need to be pure; it is thus allowedto have side effects, including executing asynchronous API calls. The function canalso dispatch actions—like those synchronous actions we defined earlier.9.2.5 Persisting StateRedux-Persist[87] takes the Redux’s state object and saves it to persisted storage.Then, when the application launches it retrieves this persisted state and saves it backto Redux.The steps are as following according to the The Definitive Guide to Redux Persist[88]: when creating the Redux store, pass to the createStore function apersistReducer that wraps the application’s root reducer. Once the store is created,pass it to the persistStore function, which ensures the Redux state is saved topersisted storage whenever it changes. At last, wrap the root component withPersistGate which delays the rendering of the application’s UI until the persistedstate has been retrieved and saved to Redux.
9.2.6 Application StateIn the following Illustration 9.2.2, the state are represented by the rectangles andinside each of them there is the initial state objects. As explain in section 9.2.1, thestate is namespaced.The Cameras and Node are linked by the id stored inside each Vineyard.The vineyards, the nodes and cameras are stored inside an objects called myIdfollowing the guide “Designing a Normalized State” in Redux’s officialdocumentation[89]. This state structure is much flatter overall.

55

Politecnico di Torino TULA Ana Laura

In each part of the application that has to perform an asynchronous request in thestate there are three values fetching, loaded and error.The Illustration 9.2.3 shows the actions involved in each screen. Everything startswhen the user logs in, after that it is redirected to the home screen, where the actionFETCH_USER_REQUEST to get the user’s data is dispatched. When the user’s datais retrieved the reducers update the state and set the loaded flag to true to enableshowing the data in the component. The nodes and Cameras are fetched by using theactions FETCH_NODES_REQUEST and FETCH_CAMERAS_REQUEST. When auser access a Node or Camera, the reducers add it in the correspondent reducer’sstate and also update the Node or Camera in the Vineyards object. TheFETCH_NODE_DATA_REQUEST and FETCH_CAMERA_DATA_REQUEST fetchthe specific sensor data for a particular day.

56

Illustration 9.2.2: Application State

Politecnico di Torino TULA Ana Laura

57

Illustration 9.2.3: Actions and Screens

Politecnico di Torino TULA Ana Laura10Web Services
Any application that wants to rely on information not computed within itself needsto get it from somewhere and therefore, communicate with other resources using anAPI.The user’s information, its vineyards, the sensors and their data must be fetchedfrom the server by making network requests.The function to make request, fetch(), is polyfilled by React Native. That means thatit is not natively part of JavaScript, but it is implemented to match the usage of thebrowser’s fetch(). The function expects an URL and optionally some configuration.Fetch() returns a Promise, which is fulfilled with a Response object.In React Native project it is possible to use the proposed ES2017 async/await syntax[90]. Both Promises and Async/Await described briefly below.10.1.1Promises:

• Allows writing asynchronous, non-blocking code
• Allows chaining callbacks and/or error handlers

◦ .then() - executed after the previous Promise block returns
◦ .catch() - executed if the previous Promise block errors10.1.2Async/Await

• Allows writing asynchronous code as if it were synchronous
◦ Still non-blocking

• A function can be marked as async, and it will return a Promise
• Within an async function, it is possible to wait the value of another asyncfunction or Promise
• Use try/catch to handle errors

58

Politecnico di Torino TULA Ana Laura10.1.3JSON Web TokenA JSON Web Token (JWT) is a JSON object that is defined in RFC 7519[91] as a safe way to represent a set of information between two parties. The token is composed of a:
• Header: Contains information about how the JWT signature should be computed.
• Payload: Stores data inside the JWT referred to as the “claims” of the JWT.In this case, the authentication server creates a JWT with the userinformation stored inside of it, for example user’s ID. There can be manyclaims. There are several different standard claims for the JWT payload, suchas “iss” the issuer, “sub” the subject, and “exp” the expiration time. In thiscase, the “sub” claim stores the user ID needed to identity the user and fetchits data.
• Signature: The signature is computed using the following Listing 10-1:

Since JWT are only signed and encoded, not encrypted, JWT do not guarantee anysecurity for sensitive data.As shown the Illustration 10.1[92], the user first send its credentials using a POSTrequest, if they are correct, the server will provide the JWT. With the JWT, the usercan then safely communicate with the application by sending it with each request.

59

Listing 10-1: Pseudo code for calculating the signature
data = base64urlEncode(header) + “.” + base64urlEncode(payload)hashedData = hash(data, secret)signature = base64urlEncode(hashedData)

Politecnico di Torino TULA Ana Laura

The library used to decode the token is jwt-decode [93]. A small browser library that helps decoding JWTs token which are Base64Url encoded.10.1.4MomentThe Moment.js library[94] is used for managing dates in JavaScript.To get the current date and time:
And to parse a date, a moment object can be initialized with a date by passing it a string:
It accepts any string, parsed according to (in order):

• ISO 8601[95]
• The RFC 2822 Date Time format[96]
• the formats accepted by the Date object[97]60

Listing 10-2: Getting current date and timeconst date = moment()

Listing 10-3: Initialization with specific dateconst date = moment(string)

Illustration 10.1: Token-based Authentication

Politecnico di Torino TULA Ana Laura10.1.5Data TransformationsWhen asking for the sensors data, the time handling is important because. The whenasking for a node’s data it returns the stats, minimum, maximum and average valuesof the dataset, the values, the acquisition’s timestamp in UTC[98] time using ISO-8601 and the timezone. So, using the timezone provides the acquisition time must belocalized and for that is used moment-timezones[99], an add-on to the momentlibrary.

61

Politecnico di Torino TULA Ana Laura11 Deploy
Android requires that all applications are digitally signed with a certificate before they can be installed, so to distribute the Android application via Google Play store, it is necessary two steps[100]:

• Generate a signed release APK
• Package the JavaScript bundle11.1 Generating Signed APKGenerate a private signing key using keytool. This command prompts for passwordsfor the keystore and key and for the Distinguished Name fields for the key. It thengenerates the keystore as a file.The file must be placed under the android/app directory. Some gradle variables mustbe set along with editing the application’s gradle configuration to add the signingconfiguration.11.2 Generate the release APKSimply run the following in a terminal:

Gradle's assembleRelease will bundle all the JavaScript needed to run the applicationinto the APK. The generated APK can be found underandroid/app/build/outputs/apk/release.

62

Listing 11.2-1: Commands to generate the APK
$ cd android$./gradlew assembleRelease

Politecnico di Torino TULA Ana Laura12 Image Cloud StorageCamera sensors allows the remote monitoring of the crop to check their status, showthe growth of plant and store the history of it.The cameras, located in the vineyards, are capable of taking high-resolution photosat regular intervals that are then sent using a GSM connection.This second part of the thesis focus on adding the functionality of a image cloudstorage and for that three alternatives where taken into account[101] of where tostore the pictures.12.1 Own cloud infrastructure(In-house-servers)Benefits:
• Have physical control over the backup
• Keeps critical data in-house. No third party has access to the information
• No need to rely on an Internet connection for access to data
• Needed dedicated IT support.Drawbacks:
• Requires a capital investment in hardware and infrastructure
• No up-time or recovery time guarantees.12.2 Amazon cloud serviceBenefits
• Storage can be added as needed. Solutions are often on-demand.
• Backup and restore can be initiated from anywhere.
• A service like Amazon S3[102] is not expensive.Drawbacks
• Not owning the data.
• If the Internet goes down or the cloud provider’s is down, there is no way to access to any of the information.

63

Politecnico di Torino TULA Ana LauraBetween those options, the chosen one was Amazon Simple Storage Service, that willbe discuss in the following sections. Basically the backend acts as a liaison betweenthe users and cameras and the cloud, as depicted in Illustration 12.2.1:

12.3 Functionalities to provideThe Table 12.3.1 show what the backend provides:URL Endpoint Function HTTPMethod DataProvided Token’sscope check ValidateSignaturewith/camera Create a camera POST Alias, Vineyard ID, Latitude, Longitude ADMIN SECRET_HUMAN
/picture Create a picture POST The picture CAMERA SECRET_M2M/loginCamera Get a camera token POST API key, Camera ID - -
/camera? Get the GET USER SECRET_

64

Illustration 12.2.1: Camera backend architecture

Politecnico di Torino TULA Ana Lauravineyard=<vineyardID> list of cameras in a vineyard HUMAN
/picture?camera=<cameraID>&month=<month>&year=<year>&day=<day>

Get the pictures taken by a camera in a specific day.
GET USER SECRET_HUMAN

Table 12.3.1: Backend functionalities12.3.1AuthenticationThe authentication of the users is still be handled by the iXemWine backend, whichis the one in charge of giving the tokens to the users. Those tokens are generatedwith the constant SECRET_HUMAN.The Camera backend need to know the SECRET_HUMAN in order to decode andvalidate the token received. If the token is valid, the next step is to check the scopeof the user’s decoded identity. If the user scope is an ADMIN, and the data neededto create a Camera exists, the new camera will be created in the data base, assigningit a random public ID and a API key.Once the user ADMIN has created a Camera, it will provide the camera sensor withthe API key and the public ID. When the Camera wants to send a picture it needsto obtain a camera token first, it must provide those two values in the body, If theyare correct a token is returned for the camera.That token then can be used when sending a picture, it has to have the CAMERA scope. The Camera’s ID, extracted from the token when decoding, will be stored in the data base along with the generated ID, date and name of the picture.For the last two endpoints, any regular user can use, are the ones that will be used in the mobile application to:
• obtain the list of Cameras that are in a specific vineyard
• obtain a list of URLs of the pictures taken by a particular camera on a particular day. 65

Politecnico di Torino TULA Ana Laura12.4 FlaskThe web framework Flask[103] was chosen for this project because of its simplicityand some previous experience with the framework.Flask is a framework for developing web applications in Python. Its goal is to beminimal without compromising functionality. It is extensible and flexible, socomponents like database and form validation can be chosen by the developer. Theminimal nature of Flask makes it possible to write a web page in a very smallamount of code. The following program, see Listing 12.4-1, creates a web server thatserves a “Hello World!” page on the root.

The Flask framework is imported and a function is defined with the app.routedecorator which tells the framework where to serve the page. The function returnsthe string “Hello World!” which is shown on the web page. The following will present the Flask functionality that will be used in this part of theproject. RoutingThe app.route decorator is used to bind a function to a URL. The parameterprovided binds the function to the relative path. HTTP methodsAnother parameter for the app.route decorator is the methods allowed. Thisparameter enables other HTTP methods than the default GET. An example ofenabling the POST method can be seen on Listing 12.4-2:

66

Listing 12.4-1: Minimal Flask application
from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():
 return 'Hello, World!'

Politecnico di Torino TULA Ana Laura

Requests Interaction with the incoming request happens through the request object.This object contains all attributes of the request such as arguments from the querystring, form data from POST requests and uploaded files. Listing 12.4-3 shows a very simple use of the query string. The query string ’param1’is retrieved with the default value ’default’ and assigned to param, which is thenreturned to the user

The Response objectTo get hold of the response before sending it to the client the make_response()method is used. make_response() returns a response object and takes a parameter forsetting the status code, so creating the custom 404 handler just renders a templateand sets the error code to 404. For example, the Listing 12.4-4 shows a 401 responseto the client because the token was not present or can not be verified.

67

Listing 12.4-2: Example of GET and POST method

 @app.route ('/login', methods =['GET', 'POST'])
 def login ():
 if request.method == 'POST':
 perform_the_login()
 else :
 show_the_login_form()

Listing 12.4-3: Example of query string
 @app.route ('/query_param')
 def query_param():
 param = request.args.get('param1' , 'default')
 return param

Listing 12.4-4: make_response example
if not token:
 return make_response('Could not

verify', 401, {'WWW-Authenticate':
'Basic realm="Login required"'}

)

Politecnico di Torino TULA Ana Laura12.5 SQLAlchemySQL Alchemy[104] is a toolkit for operating on SQL databases directly from Python.Its goal is to provide efficient and high performing database access, adapted into asimple and Pythonic domain language. The URI of the database is provided to theconfig attribute of the flask application, and a database object is created. This objectcontains a Model class that can be used to declare the model. In the project, thereare two models is declared, Camera and Picture.The created database is shown in Illustration 12.5.1:

To populate the tables. When Cameras and Pictures are created, they are insertedinto the database. And then to retrieve them it is possible to query the tables.12.6 Amazon Simple Storage ServiceAmazon S3 is an acronym for Amazon Simple Storage Service. It’s a typical webservice that lets users store and retrieve data in an object store via an API reachableover HTTPS.The service offers unlimited storage space and stores the data in a highly availableand durable way. Any kind of data can be stored, such as images, documents, andbinaries, as long as the size of a single object doesn’t exceed 5 TB. The user pay for68

Illustration 12.5.1: Database for Cloud Image System

Politecnico di Torino TULA Ana Lauraevery GB stored in S3, and also incur in minor costs for every request andtransferred data.S3 uses buckets to group objects. A bucket is a container for objects with a globallyunique name, the bucket name chosen can not be the used by any other AWScustomer in any other region.The user can access S3 via HTTPS using the Management Console, AWS CommandLine Interface or depending the programming language the SDK, in this case Python(Boto3) to upload and download objects.12.7 AWS Command Line InterfaceThe AWS Command Line Interface[105] (AWS CLI) is a unified tool that providesan interface for interacting with all parts of AWS. After the installation, can installvia pip, run the command aws configure in the console and the CLI will prompt thenecessary steps in order to fill in a few items including the keys and the region.When finished, the credentials will be stored in the home directory .aws/credentials. 12.8 Boto3Given that the Camera backend uses Python, Boto3 is used to access the AWSfeatures.“Boto3 is the Amazon Web Services (AWS) SDK for Python. It enables Pythondevelopers to create, configure, and manage AWS services, such as EC2 and S3.Boto provides an easy to use, object-oriented API, as well as low-level access toAWS services”[106].Installation is done via pip[107]. To interact with Amazon S3 through Boto3, thecredentials must be set, as explained in the previous section using AWS CLI.Creating ClientsClient[108] provide a low-level interface to AWS whose methods map close to 1:1with service APIs. To construct a client to interact with S3, use the following Listing12.8-1:

69Listing 12.8-1: Create a client
import boto3# Create a low-level client with the service names3 = boto3.client('s3')

Politecnico di Torino TULA Ana LauraAfter importing the boto3 library and constructing a client to interact with S3, thefollowing two operations are needed: 12.8.1.1 Upload a FileTo upload a file to an S3 object, the function upload_file[109] is provided. Usage:
Parameters:

• Filename (str) -- The path to the file to upload.
• Bucket (str) -- The name of the bucket to upload to.
• Key (str) -- The name of the key to upload to.
• ExtraArgs (dict) -- Extra arguments that may be passed to the clientoperation.12.8.1.2 Generate a pre-signed URLA pre-signed S3 URLs provides a secure, temporary access to objects in a S3 bucket.It provide temporary read access to the pictures stored in the bucket. It is obtainedby means of the function generate_presigned_url[110]. The Listing 12.8-3 shows howto generate a pre-signed S3 URL that will allow the GetObject API call on theobject:

70

Listing 12.8-2: Upload a files3.upload_file(Filename, Bucket, Key, ExtraArgs)

Listing 12.8-3: Generate a presigned URL to return to theclient

url = s3.generate_presigned_url('get_object',Params = {'Bucket': 'bucket-name','Key': 'picture-name' },ExpiresIn = 3600)

Politecnico di Torino TULA Ana Laura12.9 Proposed Solution
The proposed solution is to add a Camera Service backend to the already existingiXemWine backend, where each maintain a separate environment, dependencies anddatabase.The environment for the Camera Service includes the tools discussed in this chapter:Flask, SQLAlchemy, AWS CLI and Boto3.The only thing they share is the secret keys in order to decode and verify the users.The iXemWine backend will still work as the default Authentication server for theclients.

71

Illustration 12.9.1: Proposed Solution for Cloud Image System

Politecnico di Torino TULA Ana Laura13Conclusion
The thesis engaged in creating a mobile application to allow the users to visualize thevineyard data in a meaningful way structuring the application using lists, seeingpositions in the map, their sensors data in charts and pictures.Firstly, the background for the project was examined, including importantJavaScript and React concepts. The new acquired knowledge of React Native for theproject was then described.The application was implemented with the aim of being reusable, in the sense that developing a version for iOS would not require having to do major changes.Regarding the second part, for the camera service some web concepts regardingFlask, SQLAlchemy and some Python were needed, because of the Boto3. The use ofAmazon Web Services required some time to learn.Overall it was a positive experience throughout the development of the application,it required a lot of new knowledge specially tools like Redux that have a learningcurve and added some complexity.
13.1 Future workIt was covered only that which was of relevant to the app originally set out to create.Of course there are features that can be added in the future, for example:

• Having an iOS version of the application
• Create a notification system and set up remote push notifications
• Allow to to change other user’s preference like theme

72

Politecnico di Torino TULA Ana Laura14References
[1] IoT Definition. https://en.wikipedia.org/wiki/Internet_of_things[2] WSN Definitions and its applications. https://www.elprocus.com/introduction-to-wireless-sensor-networks-types-and-applications/[3] iXemWine. https://ixem.wine/[4] React Native. https://facebook.github.io/react-native/[5] JavaScript. https://www.javascript.com/[6] iOS. Apple’s mobile operating system. https://developer.apple.com/ios/[7] Android. Google’s mobile operating system. https://www.android.com/[8] LPWAN Definition. https://en.wikipedia.org/wiki/LPWAN[9] TCP/IP Protocol Suite. https://en.wikipedia.org/wiki/Internet_protocol_suite[10] Python. https://www.python.org/[11] MQTT Protocol. http://mqtt.org/[12] Restful Software Architecture. https://en.wikipedia.org/wiki/Representational_state_transfer[13] API definition. https://en.wikipedia.org/wiki/Application_programming_interface[14] HTTP. https://www.w3.org/Protocols/HTTP/1.1/rfc2616bis/draft-lafon-rfc2616bis-03.html[15] Objective-C.https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html[16] Swift. https://docs.swift.org/[17] Java. https://www.java.com/[18] Kotlin. https://kotlinlang.org/

73

https://kotlinlang.org/
https://www.java.com/
https://docs.swift.org/swift-book/
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://www.w3.org/Protocols/HTTP/1.1/rfc2616bis/draft-lafon-rfc2616bis-03.html
https://www.w3.org/Protocols/HTTP/1.1/rfc2616bis/draft-lafon-rfc2616bis-03.html
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Representational_state_transfer
http://mqtt.org/
https://www.python.org/
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/LPWAN
https://www.android.com/
https://developer.apple.com/ios/
https://www.javascript.com/
https://facebook.github.io/react-native/
https://ixem.wine/
https://www.elprocus.com/introduction-to-wireless-sensor-networks-types-and-applications/
https://www.elprocus.com/introduction-to-wireless-sensor-networks-types-and-applications/
https://en.wikipedia.org/wiki/Internet_of_things

Politecnico di Torino TULA Ana Laura[19] PhoneGap. https://phonegap.com/[20] Apache Cordova. https://cordova.apache.org/[21] Ionic. https://ionicframework.com/[22] Google Chrome. https://www.google.com/chrome/[23] Node.js. https://nodejs.org/[24] V8 JavaScript Engine. https://v8.dev/[25] Mozilla Firefox. https://www.mozilla.org/en-US/firefox/[26] SpiderMonkey. https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey[27] Safari. https://www.apple.com/lae/safari/[28] JavaScriptCore. https://developer.apple.com/documentation/javascriptcore[29] Microsoft Edge. https://www.microsoft.com/en-us/windows/microsoft-edge[30] Internet Explorer. https://www.microsoft.com/en-us/download/internet-explorer.aspx[31] Chakra. https://github.com/Microsoft/ChakraCore[32] ECMAScript® 2015 Language Specification. https://www.ecma-international.org/ecma-262/6.0/[33] Kangax. https://kangax.github.io/[34] ES6 compatibility table. https://kangax.github.io/compat-table/es6/[35] Babel. https://babeljs.io/[36] React. https://reactjs.org/[37] JSX. https://reactjs.org/docs/introducing-jsx.html[38] SVG. https://www.w3.org/TR/SVG2/[39] Apache. https://httpd.apache.org/[40] PHP. https://php.net/[41] Metro. https://facebook.github.io/metro/
74

https://facebook.github.io/metro/
https://php.net/
https://httpd.apache.org/
https://www.w3.org/TR/SVG2/
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/
https://babeljs.io/
https://kangax.github.io/compat-table/es6/
https://kangax.github.io/
https://www.ecma-international.org/ecma-262/6.0/
https://www.ecma-international.org/ecma-262/6.0/
https://github.com/Microsoft/ChakraCore
https://www.microsoft.com/en-us/download/internet-explorer.aspx
https://www.microsoft.com/en-us/download/internet-explorer.aspx
https://www.microsoft.com/en-us/windows/microsoft-edge
https://www.microsoft.com/en-us/windows/microsoft-edge
https://developer.apple.com/documentation/javascriptcore
https://www.apple.com/lae/safari/
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey
https://www.mozilla.org/en-US/firefox/
https://v8.dev/
https://nodejs.org/
https://www.google.com/chrome/
https://ionicframework.com/
https://cordova.apache.org/
https://phonegap.com/

Politecnico di Torino TULA Ana Laura[42] WebSocket. https://developer.mozilla.org/en-US/docs/Web/API/WebSocket[43] jest-haste-map. https://github.com/facebook/jest/tree/master/packages/jest-haste-map[44] Jest. https://jestjs.io/[45] Watchman. https://facebook.github.io/watchman/[46] fs.watch. https://nodejs.org/docs/latest/api/fs.html[47] DOM. Document Object Model (DOM) Technical Reports. https://www.w3.org/DOM/DOMTR[48] Harvard University.(2018). Mobile App Development with React Native. Produced by Jordan Hayashi and David J. Malan. https://cs50.github.io/mobile/[49] React lifecycle methods diagram. http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/[50] Refs and the DOM. https://reactjs.org/docs/refs-and-the-dom.html[51] High Order Component. https://reactjs.org/docs/higher-order-components.html[52] Reconciliation. https://reactjs.org/docs/reconciliation.html[53] React Native: What it is and how it works. https://medium.com/we-talk-it/react-native-what-it-is-and-how-it-works-e2182d008f5e[54] FlatList. https://facebook.github.io/react-native/docs/flatlist.html[55] SectionList. https://facebook.github.io/react-native/docs/sectionlist.html[56] NPM. Node Packager Manager. https://www.npmjs.com/[57] Flow. https://flow.org/en/docs/react/[58] GIT. Open Source Distributed Version Control System. https://git-scm.com/[59] Yarn. Fast, reliable, and secure dependency management. https://yarnpkg.com/[60] SVG. https://www.w3.org/Graphics/SVG/
75

https://www.w3.org/Graphics/SVG/
https://yarnpkg.com/
https://git-scm.com/
https://git-scm.com/
https://flow.org/en/docs/react/
https://www.npmjs.com/
https://facebook.github.io/react-native/docs/sectionlist.html
https://facebook.github.io/react-native/docs/flatlist.html
https://medium.com/we-talk-it/react-native-what-it-is-and-how-it-works-e2182d008f5e
https://medium.com/we-talk-it/react-native-what-it-is-and-how-it-works-e2182d008f5e
https://reactjs.org/docs/reconciliation.html
https://reactjs.org/docs/higher-order-components.html
https://reactjs.org/docs/higher-order-components.html
https://reactjs.org/docs/refs-and-the-dom.html
http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
http://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
https://cs50.github.io/mobile/
https://www.w3.org/DOM/DOMTR
https://nodejs.org/docs/latest/api/fs.html
https://facebook.github.io/watchman/
https://jestjs.io/
https://github.com/facebook/jest/tree/master/packages/jest-haste-map
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

Politecnico di Torino TULA Ana Laura[61] React-Native-SVG. https://github.com/react-native-community/react-native-svg[62] Svg-path-properties. https://github.com/rveciana/svg-path-properties[63] D3. Data-Driven Document. https://d3js.org/[64] D3-scale. https://github.com/d3/d3-scale[65] D3-shape . https://github.com/d3/d3-shape[66] D3-array. https://github.com/d3/d3-array[67] KeyboardAvoidingView. https://facebook.github.io/react-native/docs/keyboardavoidingview#behavior[68] Keyboard events. https://facebook.github.io/react-native/docs/keyboard[69] Dimensions. https://facebook.github.io/react-native/docs/dimensions.html[70] Dew Point Concept. https://en.wikipedia.org/wiki/Dew_point[71] Victory Native. https://github.com/FormidableLabs/victory-native[72] Victory Native performance issue. https://github.com/FormidableLabs/victory-native/issues/369[73] React-native-maps. https://github.com/react-native-community/react-native-maps[74] React-native-maps-super-cluster. https://github.com/novalabio/react-native-maps-super-cluster[75] i18n Translations for Javascript. https://github.com/fnando/i18n-js[76] React Navigation. https://reactnavigation.org/[77] React-native-community. https://github.com/react-native-community[78] Flux, https://facebook.github.io/flux/[79] Redux, https://redux.js.org/[80] Redux, Getting Started with Redux, https://redux.js.org/introduction/getting-started[81] Combine Reducers. https://redux.js.org/api/combinereducers[82] Create Store. https://redux.js.org/api/createstore
76

https://redux.js.org/api/createstore
https://redux.js.org/api/combinereducers
https://redux.js.org/introduction/getting-started
https://redux.js.org/
https://facebook.github.io/flux/
https://github.com/react-native-community
https://reactnavigation.org/
https://github.com/fnando/i18n-js
https://github.com/novalabio/react-native-maps-super-cluster
https://github.com/novalabio/react-native-maps-super-cluster
https://github.com/react-native-community/react-native-maps
https://github.com/react-native-community/react-native-maps
https://github.com/FormidableLabs/victory-native/issues/369
https://github.com/FormidableLabs/victory-native
https://en.wikipedia.org/wiki/Dew_point
https://facebook.github.io/react-native/docs/dimensions.html
https://facebook.github.io/react-native/docs/keyboard
https://facebook.github.io/react-native/docs/keyboardavoidingview#behavior
https://github.com/d3/d3-array
https://github.com/d3/d3-shape
https://github.com/d3/d3-scale
https://d3js.org/
https://github.com/rveciana/svg-path-properties
https://github.com/react-native-community/react-native-svg
https://github.com/react-native-community/react-native-svg

Politecnico di Torino TULA Ana Laura[83] React-redux, Official React bindings for Redux. https://react-redux.js.org/[84] Redux Middleware, https://redux.js.org/advanced/middleware[85] Redux Thunk. https://github.com/reduxjs/redux-thunk[86] What is a thunk?. https://github.com/reduxjs/redux-thunk#whats-a-thunk[87] Redux-persist, https://github.com/rt2zz/redux-persist[88] The Definitive Guide to Redux Persist, https://blog.reactnativecoach.com/the-definitive-guide-to-redux-persist-84738167975[89] Normalizing State Shape. https://redux.js.org/recipes/structuring-reducers/normalizing-state-shape[90] React Native. Network: fetch and async/await. https://facebook.github.io/react-native/docs/network[91] JSON Web Tokens. https://jwt.io/[92] Image for token based authentication. https://stormpath.com/blog/token-authentication-scalable-user-mgmt[93] Jwt-decode library. https://github.com/auth0/jwt-decode[94] Moment.js Documentation. https://momentjs.com/docs/[95] ISO 8601. https://en.wikipedia.org/wiki/ISO_8601[96] RFC 2822 Date Time Format. https://tools.ietf.org/html/rfc2822#section-3.3[97] Date object. https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date[98] UTC. https://en.wikipedia.org/wiki/Coordinated_Universal_Time[99] Moment Timezone. https://momentjs.com/timezone/[100] Generating a signed APK. https://facebook.github.io/react-native/docs/signed-apk-android[101] Cloud vs In-house-servers. https://sysgen.ca/cloud-vs-in-house-servers/
77

https://sysgen.ca/cloud-vs-in-house-servers/
https://facebook.github.io/react-native/docs/signed-apk-android
https://momentjs.com/timezone/
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Date
https://tools.ietf.org/html/rfc2822#section-3.3
https://en.wikipedia.org/wiki/ISO_8601
https://momentjs.com/docs/
https://github.com/auth0/jwt-decode
https://stormpath.com/blog/token-authentication-scalable-user-mgmt
https://stormpath.com/blog/token-authentication-scalable-user-mgmt
https://jwt.io/
https://facebook.github.io/react-native/docs/network
https://redux.js.org/recipes/structuring-reducers/normalizing-state-shape
https://redux.js.org/recipes/structuring-reducers/normalizing-state-shape
https://blog.reactnativecoach.com/the-definitive-guide-to-redux-persist-84738167975
https://blog.reactnativecoach.com/the-definitive-guide-to-redux-persist-84738167975
https://github.com/rt2zz/redux-persist
https://github.com/reduxjs/redux-thunk#whats-a-thunk
https://github.com/reduxjs/redux-thunk#whats-a-thunk
https://github.com/reduxjs/redux-thunk
https://redux.js.org/advanced/middleware
https://react-redux.js.org/
https://react-redux.js.org/

Politecnico di Torino TULA Ana Laura[102] Amazon Simple Storage Service (Amazon S3). https://aws.amazon.com/s3/[103] Flask. http://flask.pocoo.org/[104] SQL Alchemy. https://www.sqlalchemy.org/[105] AWS-CLI. https://docs.aws.amazon.com/cli/index.html[106] Boto 3 documentation. https://boto3.amazonaws.com/v1/documentation/api/latest/index.html#[107] Pip. Package-management System. https://pypi.org/project/pip/[108] Boto3 S3 client. https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#id201[109] Boto3 upload_file function. https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.upload_file[110] Boto3 generate-presigned_url. https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.generate_presigned_url

78

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.generate_presigned_url
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.generate_presigned_url
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.upload_file
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.upload_file
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#id201
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#id201
https://pypi.org/project/pip/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.aws.amazon.com/cli/index.html
https://www.sqlalchemy.org/
http://flask.pocoo.org/
https://aws.amazon.com/s3/

	1 Introduction
	1.1 Introduction
	1.2 Thesis Goals
	1.3 General overview of the iXemWine Platform

	2 Cross-platform vs Native
	2.1 Native
	Benefits
	Drawbacks

	2.2 Cross-platform
	Drawbacks
	Benefits

	3 Javascript
	3.1 ECMAScript
	3.2 Transpilers
	3.3 Polyfill
	3.4 Modules
	3.5 Bundling
	3.6 Minification
	3.7 JavaScript environments
	3.7.1 Node

	3.8 Metro
	3.8.1 The Journey to a Bundle

	4 React
	4.1 The DOM
	4.2 React
	4.2.1 Component
	4.2.2 Component Lifecycle
	Mount
	Update
	Unmount

	4.2.3 Refs
	Creating Refs
	Accessing Refs

	4.2.4 Higher-Order Components
	4.2.5 Reconciliation

	5 React Native
	5.1 Internals
	5.1.1 Threading Model
	5.1.2 Bridge
	5.1.3 JavaScript Environment
	5.1.4 JavaScript Syntax Transformers and Pollyfills

	5.2 Differences with React Web
	5.3 Components and APIs
	5.3.1 Basic Components
	5.3.2 User Interface
	5.3.3 List Views
	5.3.3.1 FlatList
	5.3.3.2 SectionList

	5.3.4 iOS/Android specific
	5.3.5 Others
	5.3.5.1 Animated
	Interpolation
	Handling gestures and other events

	5.3.6 Style
	5.3.7 Direct Manipulation
	5.3.8 Installation
	5.3.8.1 Dependencies

	5.3.9 React Native CLI Commands
	5.3.10 The CLI
	5.3.11 Debugging
	5.3.12 Linking libraries

	6 Data Visualization
	6.1 Scalable Vector Graphics (SVG)
	6.2 D3.js
	6.2.1 D3-scales
	6.2.2 D3-shape
	6.2.3 D3-array

	7 Implementation
	7.1 Actors of the system
	7.2 Functionality
	7.2.1 Authenticate
	7.2.2 Visualize the list of Vineyards
	7.2.3 Visualize the Nodes and Cameras inside a Vineyard
	7.2.4 Visualize the Sensors data in Charts
	7.2.5 Visualize the pictures taken by a Camera
	7.2.6 Search for vineyards in the Community
	7.2.7 Edit preferences ans see the profile

	8 Application Navigation
	8.1 React Navigation
	8.1.1 Navigator
	8.1.2 Authentication flow
	8.1.3 App containers
	8.1.4 Navigation Prop
	8.1.5 Passing parameters to routes
	8.1.6 Handling state
	8.1.7 Navigation lifecycle
	8.1.8 Application navigation

	9 Application State
	9.1 Flux
	9.2 Redux
	9.2.1 Combining Reducers
	9.2.2 React-redux
	9.2.3 Async Requests
	9.2.4 Redux Thunk
	9.2.5 Persisting State
	9.2.6 Application State

	10 Web Services
	10.1.1 Promises:
	10.1.2 Async/Await
	10.1.3 JSON Web Token
	10.1.4 Moment
	10.1.5 Data Transformations

	11 Deploy
	11.1 Generating Signed APK
	11.2 Generate the release APK

	12 Image Cloud Storage
	12.1 Own cloud infrastructure(In-house-servers)
	12.2 Amazon cloud service
	12.3 Functionalities to provide
	12.3.1 Authentication

	12.4 Flask
	Routing
	HTTP methods
	The Response object

	12.5 SQLAlchemy
	12.6 Amazon Simple Storage Service
	12.7 AWS Command Line Interface
	12.8 Boto3
	Creating Clients
	12.8.1.1 Upload a File
	12.8.1.2 Generate a pre-signed URL

	12.9 Proposed Solution

	13 Conclusion
	13.1 Future work

	14 References

