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Sommario

Introduzione e obiettivi principali
Oggi diverse applicazioni di realtà aumentata (AR) e realtà virtuale (VR) sono dispo-
nibili nel mercato tecnologico. Esempi d’uso possono essere trovati non solo in campo
videoludico, come servizi di intrattenimento, ma anche in industrie manifatturiere. Uti-
lizzando il recente Gear VR [49], l’utente viene proiettato in un’altra dimensione, ovvero
la realtà virtuale, dove impersonifica e controlla un avatar in paesaggi e ambienti fanta-
scientifici. Oppure, gli X Glass prodotti da X (Google)[65] sono usati nelle industrie per
ottimizzare drasticamente i tempi durante i processi di produzione.
Quando si tratta di servizi AR/VR, questi necessitano sia dell’uso di elevata potenza

computazionale che di bassa latenza nelle trasmissione dei dati, in modo da ottenere una
fluida interazione uomo-macchina. Solitamente questi algoritmi vengono eseguiti su clu-
ster di grandi dimensioni in infrastrutture cloud e/o fanno uso di hardware dedicato così
da velocizzrae il processamento di grosse moli di dati. Tuttavia, con questa tecnica che fa
uso di equipment specifico, si ottiene un prodotto finale poco flessibile e a costi elevati.
In questo lavoro presentiamo NEAR[54, 55] (Network Edge AR/VR), una soluzione

che permette l’implementazione e l’utilizzo di servizi di intelligenza artificiale (AI) su di-
spositivi non-intelligenti (come videocamere IP, dispositivi mobili, e sistemi IoT) in ma-
niera flessibile, economica, personalizzabile e scalabile. NEAR fa uso del (i) paradigma
di edge-computing in modo da accelerare il processamento del servizio e garantire alta
scalabilità, e (ii) un framework NFV the mira ad ottenere flessibilità e facilità di perso-
nalizzazione. Poiché questi dispositivi dispongono di esigue capacità di batteria e memo-
ria nonchè bassa potenza computazionale, è necessario un terzo ente (proxy) in modo da
permettere un funzionamento ottimale e performante del servizio.

Design, implementazione e funzionamento di NEAR
Una tipica architettura che sfrutta le potenzialità di NEAR è composta da un proxy ser-
ver posizionato nell’ infrastruttura edge, un client (smartphone, pc portatile, ...) che ri-
chiede lo stream, e un server (videocamera IP, Raspberry Pi con Pi camera, webcam,
...) che effettua lo streaming del servizio multimediale. Il proxy server, oltre a ridirigere
i pacchetti tra client e server, ha il compito di eseguire il servizio AR/VR che è stato ri-
chiesto. I client hanno la possibilità di richiedere sia lo stream nativo che quello “aumen-
tato”: nel primo caso, si connettono direttamente al server; nel secondo caso, è necessario
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l’utilizzo del proxy server che interviene per inserire l’informazione virtuale/aumenta-
ta nello stream. In fig. 1, un client intende guardare un video in streaming con object
detection (OD) [20]. Il proxy server, avendo ricevuto la richiesta dal client, chiede il ser-
vizio “legacy” al server. A questo punto, il proxy server riceve il contenuto video come
un flusso continuo in tempo reale ed esegue il servizio di realtà aumentata (OD). Poiché
OD, come la maggior parte degli algoritmi di AI, processa flussi di immagini piuttosto
che l’intero stream video, viene attuato un meccanismo di estrazione e re-inserimento
di immagini dallo/nello stream attraverso il processo di “decoding” (per l’estrazione di
immagini) e di “encoding” (per l’inserimento dell’immagine aumentata). Infine, il client
riceve il video aumentato, inconsapevole dell’architettura sottostante lato proxy.

Figura 1: Design of NEAR

Server e client1 sono due macchine con le capacità di trasmettere contenuti audiovisivi
utilizzando la suite FFmpeg [21] (per il server) e ricevere il flusso multimediale tramite
SOCKS [27] (per il client). Il proxy server esegue due processi, ovvero ClickNF[34, 38]
che è stato scelto come framework NFV per costruire un ambiente flessibile e modula-
re, e la AR/VR task, incaricata dell’effettiva esecuzione dell’algoritmo di AI. La fig. 2
mostra, in verde, i nuovi elementi implementati appropriatamente interconnessi.
In un classico scenario di funzionamento, il client richiede tramite SOCKS 5 un flus-

so video HTTP a NEAR per mezzo di una connessione TCP con l’elemento SOCKS 5
Proxy. Dopodichè, NEAR apre a sua volta una connessione con il server che riceve e
processa il pacchetto HTTP GET di richiesta del flusso. Quando il flusso multimediale è
ricevuto da NEAR, questo viene trasmesso a Decoder, che fa uso delle librerie FFmpeg
per effettuarne la decodifica ed estrarne un immagine. L’elemento App Classifier è ne-
cessario per distinguere pacchetti di controllo di SOCKS diretti verso elementi a basso li-
vello (TCP Server) dai pacchetti di dati che devono raggiungere elementi applicativi (De-
coder). Dopo la decodifica, l’immagine in uscita viene trasmessa all’ AR/VR task (che
implementa OD) per mezzo di Unix Sockets. Per ragioni di scalabilità, la AR/VR task
utilizza due thread in modalità producer/consumer sincronizzati tramite costrutti di tipo

1Raspberry Pi con un modulo Pi Camera (server), e un pc portatile (client).

v



RAII. 2. Il producer ottiene immagini da unix socket e le inserisce in una coda thread-
safe. Il consumer preleva le immagini dalla coda, applica una versione personalizzata del-
l’Object Detection di TensorFlow e infine invia il frame aumentato a ClickNF, usando
unix socket. Come ultimo passo, dato un insieme di immagini come input, l’Encoder ne
esegue la codifica in modo da creare in video “aumentato” che è infine ricevuto dal client
attraverso TCP server.

Figura 2: NEAR: proxy implementation

Figura 3: FPS comparison

Risultati e conclusioni
Per dimostrare i benefici ottenuti in termini di prestazioni e qualità, abbiamo paragonato
(cf. fig. 3) il tasso di processamento delle immagini (FPS) a livello della AR/VR task
con l’implementazione di Object Detection in un singolo dispositivo (Raspberry Pi). 3

Secondo i risultati ottenuti, l’ultimo ottiene non più di 2 FPS a differenza di NEAR che
grazie anche ai benefici derivanti dall’utilizzo di una GPU di fascia alta, incrementa le
prestazioni secondo un fattore moltiplicativo 10x (usando 20 threads, in modalità CPU-
only) e 15x (6 threads, GPU-accelerated).
Nonostante possa ancora essere perfezionato in un futuro lavoro tramite l’implemen-

tazione del supporto al multi-stream con caching di contenuti, NEAR è una soluzione
valida e pratica che permette a dispositivi non intelligenti di eseguire servizi di realtà
aumentata/virtuale in modo trasparente4, flessibile e semplice.

2Resource acquisition is initialization (cf. Glossario).
3NEAR dispone di 40 cores e 64 GB RAM, mentre il Raspberry Pi sfrutta 4 cores e 1 GB RAM.
4Gli endpoint necessitano di zero (server) o poche (client) modifiche in termini di HW/SW.
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Summary

Introduction and main goals
Different Augmented Reality (AR) and Virtual Reality (VR) applications are nowadays
available in the market. Example of use cases can be found not only in videogames as
entertainment services, but also in manufacturing companies. The recent Gear VR[49]
projects the user in another dimension, namely the virtual reality where the latter im-
personates the avatar he is controlling, as if he was in the game. The hands-free X Glass,
developed by X (Google)[65] is used in manufacturing to dramatically improve produc-
tion, resulting in increasing the profit of the company adopting this solution.
When dealing with AR/VR services, those need both the use of huge processing power

and ultra-low latency data transmission, in order to achieve convenient human-machine
interactions. Usually those algorithms run on big clusters in the cloud and/or make use
of special hardware to speed-up processing of big data. However, the use of such a tech-
nique exploiting specialized equipment outputs a final product with elevated costs and
low flexibility.
In this work we present NEAR[54, 55] (Network Edge AR/VR), a solution that allows

the implementation and usage of smart services on non-intelligent devices (IP cameras,
mobile devices, IoT systems) in a flexible, cheap, customizable and scalable way. NEAR
makes use of the (i) edge computing paradigm in order to accelerate service processing,
and (ii) a NFV framework that addresses to achieve user-customization and flexibility.
Since those devices lack battery capacity, memory space and computing capabilities,
required to run Artificial Intelligence (AI) based algorithms, a third party (a proxy) is
needed in order to allow an optimal functioning of the service.

Design, implementation and functioning of NEAR
A typical environment exploiting NEAR’s potentialities is composed by a proxy server,
located at the edge infrastructure, a client (smartphone, laptop, ...) requesting the
stream, and a server (IP camera, Raspberry Pi with Pi camera, webcam, ...) streaming
the media. The proxy server, besides relaying packets between client and server, is in
charge to perform the chosen AR/VR task. Clients have the possibility to request the
native or augmented/virtual stream: in the first case, they directly connect to the server;
in the second scenario, a proxy server inserting augmented/virtual information is needed.
In fig. 4, a client wishes to play a streaming video content with object detection

(OD)[20]. The proxy server, having received the request from a client, asks the legacy
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service to the server. The proxy server receives the video content as a continuous live
stream and performs the requested AR task (OD). Since OD, alongside with most of
the other AI algorithms, works on images rather than the whole video, it is necessary to
perform frame extraction, thus a decoder module (to extract a frame) and an encoder (to
insert the augmented frame) are needed. At the end of the process, the client receives
the augmented video, unaware of the proxy underlying architecture.

Figure 4: Design of NEAR

Alongside the design, the project has included the implementation of such three enti-
ties. Server and client are two lightweight machines (a Raspberry Pi with a Pi Camera
module for the former, and a laptop for the second have been used) with the capabil-
ity to stream video content using FFmpeg[21] APIs (server) and retrieve that stream via
SOCKS[27] proxying (client).
The proxy server runs two processes, namely ClickNF5, used to build a modular and

flexible framework and the AR/VR task that is in charge to perform the AI algorithm.
Figure 5 shows in green the new implemented elements appropriately linked together.
In a typical scenario, the client requests an HTTP video stream through NEAR using

the SOCKS 5 protocol by establishing a TCP connection with SOCKS 5 Proxy. Af-
terwards, NEAR opens in turn a connection with the server, which processes the HTTP
GET stream request packet and starts content streaming. When the stream is received
by NEAR, it is first sent to Decoder, a stateful element that uses the FFmpeg APIs to
decode the stream and extract a frame. The App Classifier element is needed to dis-
tinguish SOCKS control packets directed to lower-layer elements (i.e., TCP Server) by
data packets that should reach application elements (i.e., Decoder). After decoding, the
output frames are transmitted towards the AR/VR Task (Object Detection, OD) via
Unix Sockets6. The AR/VR task uses, for better performances, a dual-thread produc-
er/consumer pattern with RAII APIs7. The producer retrieves frames from unix sockets

5ClickNF[34, 38] is the chosen NFV framework.
6Using the Click Socket element.
7Resource acquisition is initialization (cf. Glossary).
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and insert them into a thread-safe shared queue. The consumer retrieves frames from the
queue, it applies a customized implementation of TensorFlow’s Object Detection and it
finally sends the augmented frames to ClickNF, using unix sockets. As last step, given a
set of frames as input, the Encoder performs encoding to create the “augmented” video
stream that is finally received by the client through TCP Server.

Figure 5: NEAR: proxy implementation

Figure 6: FPS comparison

Results and conclusions
To demonstrate the benefits obtained in terms of performance and quality we compared
(cf. fig. 6) the frame processing rate (FPS) at the level of the AR/VR task with an on-
single-device object detection implemented using a Raspberry Pi8. The latter cannot
achieve more than 2 FPS, even with 4 threads. On the other hand, NEAR is able to
exploit GPU-support for maximizing performances which dramatically increase by a
factor of 10x (using 20 threads, in CPU-only mode) and 15x (using 6 threads, in GPU-
accelerated mode).
Although it can be still enhanced, as future works, by providing multi-stream support

and content caching, NEAR is a valid and practical solution that allows non-intelligent
systems (IP cameras, smartphones, microphones, IoT devices, ...) to perform AR/VR
services in a transparent9, flexible and lightweight way.

8NEAR’s proxy runs on a machine having 40 core and 64 GB RAM while the Raspberry Pi is
provided with 4 cores and 1 GB RAM.

9Endpoints need zero (server) or quasi-zero (client) SW/HW modifications. In fact, the latter has
to implement a SOCKS client only.

ix



Contents

Introduzione e obiettivi principali . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Design, implementazione e funzionamento di NEAR . . . . . . . . . . . . . . . . iv
Risultati e conclusioni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Introduction and main goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Design, implementation and functioning of NEAR . . . . . . . . . . . . . . . . . vii
Results and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables xiii

List of Figures xiv

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Main goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 States of the arts and related works . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Device enhancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Offloading computing capabilities . . . . . . . . . . . . . . . . . . . 3

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 7
2.1 Network Function Virtualization . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Augmented Reality and Virtual Reality . . . . . . . . . . . . . . . . . . . . 8
2.3 MEC - Multi-access Edge Computing . . . . . . . . . . . . . . . . . . . . . 9
2.4 Click . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Packet structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Mode of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 ClickNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.1 Example of a ClickNF application: SOCKS . . . . . . . . . . . . . 11

2.6 DPDK and RSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.1 DPDK Element in ClickNF . . . . . . . . . . . . . . . . . . . . . . 13

2.7 TensorFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7.1 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7.2 Computational Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7.3 Execution of subgraphs . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Training and Inference in Neural Networks . . . . . . . . . . . . . . . . . . 16

x



2.9 OpenCV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.9.1 RGB and YUV frame representations . . . . . . . . . . . . . . . . . 18

2.10 Audio and video codecs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.11 FFmpeg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.11.1 Usage of FFmpeg suite: ffmpeg, ffserver and ffplay . . . . . . . . . . 19
2.11.2 (De)Coding and (De)Muxing functioning . . . . . . . . . . . . . . . 20
2.11.3 Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Design 23
3.1 A real use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 On-device computing vs Multi-access Edge computing (MEC) . . . . . . . 24
3.4 High level design of NEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.2 Proxy server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.3 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 A way to decrease latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Implementation 29
4.1 Updating ClickNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Update to DPDK 18.05 . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Use of RSS Hash to speed-up processing . . . . . . . . . . . . . . . 29

4.2 The complete picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Streaming protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Proxy server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4.1 SOCKS 5 (Lite) Proxy . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.2 App Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.3 Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.4 SocketIn and SocketOut . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.5 AR/VR Task: Object Detection . . . . . . . . . . . . . . . . . . . . 41
4.4.6 Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.1 A note about SOCKS and transparency . . . . . . . . . . . . . . . 47

5 Results 49
5.1 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 RSS Hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 On-device vs Edge computing . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3.1 FPS comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Latency comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Conclusions 57

xi



A Algorithms 59
A.1 App Classifier algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.2 Decoder algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.3 Object Detection algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 61
A.4 Encoder algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 67

Glossary 69

xii



List of Tables

2.1 Classification of NFV frameworks . . . . . . . . . . . . . . . . . . . . . . . 8
4.1 Threshold values for a correct decoding functioning . . . . . . . . . . . . . 38
4.2 Decoder configuration parameters . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Encoder configuration parameters . . . . . . . . . . . . . . . . . . . . . . . 46
5.1 Testbed specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Latency comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xiii



List of Figures

1 Design of NEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
2 NEAR: proxy implementation . . . . . . . . . . . . . . . . . . . . . . . . . vi
3 FPS comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
4 Design of NEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
5 NEAR: proxy implementation . . . . . . . . . . . . . . . . . . . . . . . . . ix
6 FPS comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
2.1 Click’s Packet structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Comparison between ClickNF’s and traditional stacks . . . . . . . . . . . . 12
2.3 Simplified use of Socks4Proxy Element in ClickNF . . . . . . . . . . . . . . 12
2.4 Simplified examples of a Tensor . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 A Computational Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Distributed execution of subgraphs using a worker (left) or a master pro-

cess that spawns multiple workers (right) . . . . . . . . . . . . . . . . . . . 16
2.7 Training vs Inference in Deep Learning . . . . . . . . . . . . . . . . . . . . 17
2.8 Face Detection using OpenCV . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9 Basic usage of FFmpeg’s tools . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 High level design of NEAR . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Design of proxy server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 High-level implementation of NEAR . . . . . . . . . . . . . . . . . . . . . . 31
4.2 HTTP Streaming protocol. Client (right) requests a stream to Server (left) 33
4.3 Proxy implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Redis Throughput benchmark: Unix Sockets vs TCP localhost . . . . . . . 35
4.5 Socks 5 Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Socket server implementation comparison . . . . . . . . . . . . . . . . . . . 41
4.7 Snapshot of Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8 Implementation of the AR/VR task: Object Detection . . . . . . . . . . . 43
5.1 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Flow ID computation comparison . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 FPS comparison: NEAR vs Raspberry Pi . . . . . . . . . . . . . . . . . . . 52
5.4 Configurations for latency comparison . . . . . . . . . . . . . . . . . . . . . 54
5.5 Playout delay evolution (GPU-accel. mode) . . . . . . . . . . . . . . . . . 55

xiv



Chapter 1

Introduction

This chapter introduces my work performed at Nokia Bell Labs as Intern, providing a
description of the current solutions, the objectives and the main contributions of our
work. It explains what are the needs that led to the initialization of the project followed
by a high level structure of the thesis, that can be used to ease the reading of the work.

1.1 Context
Numerous Augmented Reality (AR) and Virtual Reality (VR) applications are nowa-
days available in the market. Example of use cases are very common in videogames.
Just think about the (already old) Kinect [60] developed by Microsoft or the more recent
Gear VR[49], the latest VR technology made in Samsung. Both deal with enhancing the
user experience, that is projected in another dimension, namely the virtual reality. In
this world a user impersonates the avatar he is controlling, as if he was in the game. As
last example, the X Glass1[65] aims to help everyday life. For instance, they can keep
names and information about people we meet, in order to avoid eventual future embar-
rassments. However, today they are mostly used by employees in manufacture compa-
nies: since they are hands-free, they can dramatically improve production, resulting in
increasing the profit of the company.
Anyway, in the majority of the cases, these deployments need both the use of huge

processing power (we are dealing with Machine Learning algorithms based on Neural
Networks) and low latency data transmission, in order to achieve real human-machine
interactions. Usually those algorithms run on big clusters in the cloud. For instance, the
Google Assistant [18] exploits Google’s Cloud[19] platform in order to perform CPU and
memory intensive jobs. Going beyond, AI-concerned devices are increasingly making use
of special hardware to speed-up processing of big data. Components going towards this
direction are Google’s TPUs[30] and Intel’s neural network processors[26].
Concerning AR/VR, we can still use special-purpose devices, built for a specific task,

like the ones previously mentioned. However, first they have elevated costs and second

1Previously known as Google Glass. Developed by X (Google).
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they are black boxes, namely, no flexibility nor customization is allowed. A second solu-
tion, presented in this work, is to use legacy devices (e.g., IP cameras, mobile devices, ...)
that allow user-customization and flexibility. Moving towards this direction, the price of
the device (and the service) dramatically decrease at the cost of slightly complicate the
architecture used to provide the AR/VR service. In fact, when dealing with the latter,
those lack battery capacity, memory space and computing capabilities, required to run
AI-based algorithms. Thus a third party (a proxy) is needed in order to allow the correct
functioning of the service.
In order to meet the aforementioned requirements, mainly low-latency and availability

of processing power, we need to transparently delegate computation to nearby vantage
points, installed by service providers, thus taking advantage of Edge Computing. In this
way, network operators open their infrastructure to third party developers allowing them
to implement services as AR/VR tasks that require, at the same time, quasi-zero-delay
and CPU power.
Together with Edge Computing, Network Function Virtualization (NFV) can be used

to achieve network flexibility, scalability and modularity. For instance, suppose a user
wants to connect to an IP camera installed in his house and be notified when there is
something suspicious. In such scenario, the network provider can dynamically allocate
the resources needed to perform AI-based algorithms in its network, removing setup
complexity at the front-end. In the end, the user will experience transparency (no need
for a custom setup) and flexibility (given by NFV), together with quality and perfor-
mance (thanks to Edge computing).

1.2 Main goals

To sum up, in this work we are going to combine the flexibility and modularity given by
NFV with the performance and low-latency support powered by the edge infrastructure
running Machine Learning algorithms. The objective is to allow lightweight IoT devices
or legacy customized equipment to perform the same tasks, but more efficiently and con-
veniently, that a commercialized special-purpose AR/VR system is able to do.
It would be preferable having a transparent architecture, where the two endpoints

(i.e., the media device acting as a server and the user as a client) are unaware of the
underlying architecture. Both should not have any idea about the framework is being
used for the content delivery. The media server, being a lightweight device (an IP cam-
era) cannot support changes neither in software nor hardware. It will be capable to pro-
vide the basic service it has been designed for. Moreover, when connecting to the media
server, the user must have the possibility to retrieve the media content as it is (legacy
service) or to ask to the edge infrastructure to perform the chosen AR/VR task (aug-
mented service).
Furthermore, since AR/VR applications usually run on mobile devices that have low

computation power and risible batteries that have short lifetime, the required software
needed to run those tasks must be as light as possible. In our case, edge computing
based infrastructures are used to achieve this goal.

2



1.3 – States of the arts and related works

1.3 States of the arts and related works

The design and development of techniques and functionalities that allow mobile devices
to exploit cutting-edge AI (Artificial Intelligence) technologies is a prolific area of study
that is attracting numerous contributors. Generally, we can distinguish works that (i)
enhance the device to accommodate AI-based functionalities, eventually using new hard-
ware technologies[26, 30] from others that (ii) offload computing capabilities to third
party entities (servers, proxies, GPUs, etc.).

1.3.1 Device enhancing

Belonging to the first group, CNNdroid[48] provides a GPU-accelerated library that al-
lows to run trained Convolutional Neural Networks (CNNs) on supported mobile devices.
As constraints, it currently supports Android smartphones and CNN models uniquely.
Glimpse[8] tries to bypass the design-related limitations that comes when using an on-

device approach. It performs AR acceleration by filtering and sending data to the edge,
to finally apply object detection[20]. Specifically, it sends compressed trigger to selected
packets, and caches detections results on the mobile device for future reuse. Although
increasing scalability, this technique is suitable for quasi-static videos, having consecutive
frames with slightly changes.
In both the described solutions, the device is aware of the task to perform and plays

the main role. Sometimes, however, a distributed architecture may be preferred, being
more scalable and fault-tolerant. The second group moves towards this direction.

1.3.2 Offloading computing capabilities

Gabriel [23] can be considered part of (ii). It suggests a system to support auditive-
oriented tasks, targeting smart-glasses. The latter would acquire and further offload
the video stream to a cloudlet, that is in charge of computing object detection and face
recognition. Finally, the result is retrieved by the smart-glass that through a TTS (Text-
To-Speech) component delivers the output, as an audio message, to the user.
However, despite the offloading to a cloud environment, Gabriel still suffers in terms

of flexibility and scalability, being its architecture based on a set of virtual machines per-
forming each one a single task (encoding, decoding, face recognition, etc.). This could
dramatically affect scalability during parallel processing of several media streams.
Another framework, EdgeEye[37], proposes to compute an on-the-fly transformation

of deep learning models to their edge computing framework. The client is constantly up-
dated by the edge server through a real-time technology, namely WebRTC[57]. To do
so, the user interacts with the application using a WebSocket API, describing the me-
dia transformation task he/she wishes to apply. In this scenario, the wide use of client-
specific APIs alongside software modifications at the endpoints, make this approach non-
transparent, thus rarely feasible in practice.
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1.4 Contributions
As main contribution related to the context presented in section 1.1, we designed and
developed NEAR (Network Edge AR/VR), an intelligent network architecture exploit-
ing a NFV framework for enabling non-intelligent devices to run the latest technologies
in AR and VR. NEAR has already raised interest in the research world. During its de-
velopment, it has been successfully presented in public [54] resulting in having a general
acceptance and interest by the audience. Moreover, our research article [55] has been
positively reviewed and will be presented in the short term.
Compared to the aforementioned solutions, NEAR provides AR/VR processing ac-

celeration through offloading computing costs to the edge gateway in a transparent and
flexible way. Transparent, because it requires zero (or quasi-zero) modifications to clients
requesting the service and media service providers, and flexible since it is implemented
on top of a NFV (Network Function Virtualization) framework. For instance, the latter
might be used to dynamically change the internal graph and thus the desired function
(from simple proxying, and/or transcoding, to providing the complete AR/VR service).
Due to its 3-tier design (Server - Proxy server - Client), NEAR aims to be mainly ex-

ploited when deploying AR rather than VR services. In fact, the latter usually need a
single device in order to actually achieve a virtual experience. However, we found some
valid use cases for VR too. For instance, considering a scenario were Kinect is used for
VR, NEAR can be exploited as a back-end framework deployed at the edge to provide
flexible VR services with quasi-zero latency.
NEAR uses some already existing modules from the NFV engine, and some new com-

ponents, namely network functions, that have been implemented for the purpose. Those
include an Encoder, a Decoder, a SOCKS proxy server, a Classifier and an AR
task. Those modules are a minimum set of requirements for NEAR, but a subset can be
used for deploying of other applications (and projects), being each module independent
from the others. For instance, a transcoding system can be set-up by using Encoder and
Decoder modules only.

1.5 Structure of the thesis
This document is organized in six chapters. Chapter 1 is this introduction which is
almost at the end. In chapter 2 a brief but useful description of architectures and frame-
works used in the project are given for a better understating of the work. Those in-
clude a NFV framework (ClickNF), a ML platform (TensorFlow) and other supporting
projects (DPDK, OpenCV, FFmpeg, ...). It follows chapter 3, that describes the design
of the project. Here we present a real use case giving an idea of the high-level architec-
ture of NEAR. Chapter 4, the most detailed chapter about the work performed during
this project, presents the actual technologies used, describing NEAR’s components. After
that, chapter 5 shows the testbed used for experiments and presents the results achieved,
giving pros and cons of using NEAR. Chapter 6, the sixth and last chapter, concludes
the work summarizing the main aspects of NEAR, defining the achieved goals and pre-
senting eventual future works.
Finally, at the end of the document, the reader can find a bibliography containing
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some references, a glossary with the main concepts that have been used throughout the
thesis and an appendix showing the algorithms of the new implemented components.
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Chapter 2

Background

For a better understanding of the thesis, this chapter provides a flavor about the area
the thesis project belongs to. Definitions and high-level descriptions are given, such as
main concepts, architecture and framework used.

2.1 Network Function Virtualization
Network Function Virtualization (NFV) [12] is an architecture that exploits IT Virtual-
ization to decouple network functions from proprietary hardware appliances so that they
can run in software.
Without NFV, functions like NAT, Proxy, Firewalls, IDS, DNS, and Load Balancers

were implemented on dedicated devices, one for each needed function. This resulted in
high costs, both for equipment purchasing and maintenance, since a dedicated hardware
for the specific network function was needed, low Time-To-Market, due to huge time
needed to deploy those functions, and low flexibility, since it was not easy to scale up
or down services running on a dedicated architecture.
NFV comes to the rescue to solve these limitations. It reduces CapEx and OpEx by

removing the need to buy special purpose hardware and support facilities and eliminates
wasteful over-provisioning by supporting pay-as-you-grow models. Moreover, since ser-
vices are deployed via software, it accelerates Time-To-Market, and delivers agility and
flexibility.
Today different NFV frameworks exist. A previous work [42] has compared several

NFV frameworks [2–4, 6, 24, 28, 31, 35, 36, 38, 40, 41, 51, 53, 66] considering three main
aspects: Virtualization (V) and orchestration of traditional services; Performance (P) of
critical network functions for zero-delay and high throughput tasks; Modularity (M) of
elementary network functions, that can be combined together to implement more com-
plex tasks. Table 2.1 shows a list of NFV frameworks with their features.
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NFV framework V P M
ClickOS x x
NetVM x x
SDNFV x x
IN-NET x x

Sandstorm / Namestorm x
Multistack x x
mTCP x

FastClick x x
NBA x x
CoMb x
xOMB x
Eden x

OpenBox x
PDP / CliMB x x

ClickNF x x

Table 2.1: Classification of NFV frameworks

2.2 Augmented Reality and Virtual Reality

Augmented Reality (AR)[58] and Virtual Reality(VR)[64] are maybe the most fascinat-
ing discussed topics in these days. The two terms define an architecture, a device, or
generally a system, that is able to enhance reality by adding information, delivering an
astonishing user experience.
However, AR and VR are usually - and wrongly - used interchangeably to refer to the

same concept. To be precise, VR is something more than AR. VR is able to project the
user in another place through visors or goggles blocking out the room, and puts user’s
presence elsewhere. On the other hand, AR takes our current reality and adds something
to it. It does not move us elsewhere. It “just” uses sophisticated Machine Learning (ML)
algorithms to add information to our world.
To make some example, wearing a Sony PlayStation VR [62] you can be equipped

with a sword and fight in an imaginary arena as you were a real swordsman. You can
also play tennis with your best friend, without the need to be both physically in the
same room, even if the system will project you in the same virtualized tennis court.
Pokemon Go [63] is a typical example of an AR application. The “AR” is the Poke-
mon environment, that is built on top of a real city map (like the one showed by Google
Maps). In fact, a common city map is replenished by pokemons that can be caught and
gyms where players can challenge themselves. All this happens when walking in the city
(the real one, where the player lives). Pokemon Go is very close to be classified as a VR
application, since what is missing is the complete projection of the user to the virtual
world, that can be done, with the current technologies, using a VR headset rather than a
smartphone.
To conclude, even if AR can be seen as a subset of VR, they require the same ad-

vanced technology and powerful architecture that must be able to run heavy algorithms
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and perform huge amount of computations on live streaming of data (e.g., video, audio).

2.3 MEC - Multi-access Edge Computing
Cloud computing [59] enables sharing rapidly provisioned services running on high per-
formance clusters. Going beyond, Multi-access Edge Computing (MEC) [13], previously
known as Mobile Edge Computing, is a computing and network architecture that offers
both application developers and service providers cloud computing services at the edge
of the network. MEC brings real-time, low-latency and high bandwidth access to highly-
constrained applications such as Internet-of-Things(IoT), augmented reality, video ana-
lytics, data caching, connected cars, location services and more.
Using this architecture, MEC allows operators to open their Radio Access Network

(RAN) to subsequently authorize third party developers to build their applications. The
latter can also exploit the Virtualized Network Functions offered by the infrastructure to
deliver flexibility, scalability and efficiency.
In this case, we talk about Virtualized Multi-access Edge Computing (vMEC) [43],

namely a software-based solution that can be deployed on commercial off-the-shelf
(COTS) machines, easily integrable with existing IT infrastructure. Using vMEC, data
is first processed by virtual functions, that provide flexibility and some fault-tolerance
mechanisms, since functions are software implemented. Moreover, data is consumed
where it has been generated, providing the required ultra-low latency.
Nowadays MEC (and vMEC) are used when deploying infrastructure for connected

cars. Those need quasi-zero latency when communicating between each other or with the
network infrastructure, in order to promptly brake during dangerous circumstances (e.g.,
a pedestrian crossing the road).

2.4 Click
A first application that moves towards NFV is Click [32, 33]. It defines a L2-L3 modular
platform for generalized and fast packet processing. In fact, functions such as L2/L3
forwarding, Checksum computation, are software implemented and they can be en-
abled/disabled using a configuration file.

2.4.1 Packet structure
Click’s Packet element represents network packets that are passed from Element to Ele-
ment using Element::push() and Element:pull() functions.
A Packet is composed by a data buffer and one or more annotations. The first is used

to store the actual packet wire data while the second stores extra packet-related informa-
tion.

Data buffer

The data buffer, shown in fig. 2.1, is represented as a flat array of bytes. The actual data
can use less space than the one allocated when using the Packet::make function, to
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create a Packet1. The unused space before data is called headroom, while trailing space is
called tailroom. Headroom, data and tailroom are accessible through pointers (buffer(),
data() and end_data() respectively) and sizes are given by their relative properties head-
room(), length() and tailroom().

Figure 2.1: Click’s Packet structure

Moreover, push() and put() methods are used to allocate extra space for headers and
trailers respectively. The counterpart methods are pull() and take().

Annotations

Annotations are metadata embedded in a packet for internal usage, such as forwarding
and routing. Packet::anno_size anno_size specifies, for each packet, the total
amount of available bytes that can be used for annotations. Elements agree to write and
read portions of the annotation area in order to communicate packet-related information.
Usually, to read and write packet annotations some macros, shared among different ele-
ments, are used.
As an example, some routing element such as RadixIPLookup set Packet::dst_ip-

_anno to indicate the target IP address for an ARP request. After that, this annotation
is read by ARPQuerier to query the next hop’s MAC.

2.4.2 Mode of operation
Packets in Click are exchanged between Elements through Ports whose type can be one
of the following.

• Push: Source element creates and sends a packet to the next element. At the end,
the packet arrives to the downstream destination element.

• Pull: The downstream destination element requests (pulls) a packet from the up-
stream one. If available, it returns the requested packet, otherwise null.

• Agnostic: The element will auto-configure that port using the same type of the
other port it is connected to.

In most of the scenarios the push mode is used, since it logically follows the path made
by a packet. However, in some circumstances, pull mode is needed. For instance, when

1Data buffer can be shared among different Packets. For a deep-copy Packet::clone method is
used.
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using a Queue element, a packet is inserted by a element using push but retrieved by
another one with pull.

2.5 ClickNF
Click is a powerful modular framework that can be used as a starting point to build a
NFV framework. In fact, it includes some limitations that make harder the development
of a generic application.
First, it does not provides native L4 implementation. In fact, the lack of a full L2-L7

modular stack limits its scope to L2-L3 network functions. Second, it only uses non-
blocking I/O forcing developers to use more complex asynchronous non-blocking I/O.
Third, Click applications must rely to the OS stack, which leads to severe I/O bottle-
necks due to I/O interrupts. Finally Click does not support hardware offloading and ef-
ficient timer management preventing it to scale at high-speed in particular scenarios. To
overcome those limitations, a more complete NFV framework, namely ClickNF [34, 38]2,
has been built on top of Click.
First of all, ClickNF enhances Click providing L4 modular support, including a TCP

implementation that supports options, congestion control, RTT estimation, and L7
building blocks for the development of network functions. Moreover, ClickNF allows the
use of blocking I/O, resulting in easing the development of some applications. It also of-
fers developers standard socket, zero-copy, and socket multiplexing APIs as well as basic
application layer building blocks. Finally, it improves scalability, thanks to the use of
Data Plane Development Kit (DPDK) and batch processing with additional support for
hardware acceleration, as well as an improved timer management system for Click.
Figure 2.2 visually shows the enhancements given by ClickNF, by comparing the latter

with other traditional setups. The use of user-level libraries can exploit DMA for faster
access from NIC and a modular L7 stack allows to build lightweight applications, dis-
carding useless modules.

2.5.1 Example of a ClickNF application: SOCKS
The SOCKS protocol enables clients and servers to communicate trough a proxy inde-
pendently by the upper-layer protocol used. Figure 2.3 illustrates a simplified Click con-
figuration and the resulting graph when using an application block (Socks4Proxy), with
some of ClickNF’s building blocks (TCPEpollServer and TCPEpollClient). During ini-
tialization, Socks4Proxy configures two bidirectional legs, towards TCPEpollServer and
TCPEpollClient respectively. After that, during data transmission, Socks4Proxy for-
wards packets received trough TCPEpollServer to TCPEchoClient and vice-versa.
The Click configuration file is composed by three parts. The first defines global pa-

rameters such as interfaces to use: in this case two, one to send/receive to/from client
and the other for the server. The second part defines and initializes the Elements to be
used. Input parameter, such as IP address and ports, can be given. The last section

2ClickNF stands for Click Network Function
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Figure 2.2: Comparison between ClickNF’s and traditional stacks

specifies the actual app wiring, using Click notation. In this example 4 links are nec-
essary, two between Socks4Proxy and TCPEpollServer and two between Socks4Proxy
and TCPEpollClient. For instance, the first link is simply instantiated with the row
tcp_proxy[0] -> [1]tcp_epolls, meaning that packets pushed by Socks4Proxy
pushed towards port 0 are forwarded to TCPEpollServer using port 1.

Figure 2.3: Simplified use of Socks4Proxy Element in ClickNF

2.6 DPDK and RSS

Data Plane Development Kit (DPDK) [15] is a set of libraries, running at user space,
used for fast packet forwarding. Without the use of DPDK, a Network Interface Card
(NIC) is normally associated to a kernel driver. In such a way, each incoming network
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packet from the NIC is first copied in a buffer at kernel space3, where header-formatting
and checksum validation are performed, after that it is copied to user space where it can
be used by an application. On the other hand, DPDK provides the so called “zero copy”
method. The packet is directly written in user space, bypassing the kernel, beneficing
both in terms of memory and time.
Generally, in most of operating systems (OS), I/O from/to peripherals is performed

using interrupts, resulting in high overhead when acquiring the ownership of bus for data
transfer. Interrupt mode is used for CPU cycles saving, since multiple I/Os are combined
in one interrupt. To overcome this drawback, DPDK provides a set of APIs, under the
name of Poll Mode Driver (PMD), used to speed-up NICs I/O. Using PMD, the OS will
constantly spin waiting for an I/O to be available. Specifically, PMD accesses the receive
and transmit descriptor queues directly without using any interrupt in order to quickly
receive, process and deliver packets in the user’s application. In this way, a user appli-
cation does not need to wait for an interrupt to occur and can process the I/O almost
instantly. Of course, this approach consumes much more CPU cycles since PMD continu-
ously checks if I/O data is available.
Another featured provided by DPDK is Receive Side Scaling (RSS) [39], a mechanism

to uniformly increase performance in a multi-CPU system. Modern NICs support multi-
ple receive and transmit descriptor queues, usually one for each CPU. If RSS is enabled,
a NIC can send the received packets to different queues in order to distribute processing
among CPUs, using a filter. The filter outputs a number, between one and the number
of available CPUs, that identifies the CPU the packet must be processed by. The filter is
usually implemented with a hash function that takes as input the 5-tuple (source IP,
destination IP, source port, destination port, L4 protocol type)
of a packet.

2.6.1 DPDK Element in ClickNF

In the ClickNF framework, a DPDK Element has been designed to exploit the afore-
mentioned advantages. The DPDK element continuously polls the NIC to fetch received
packets. Before transmitting the latter, it waits for a batch of 64 packets. In such a way,
Direct Memory Access (DMA) is used to directly copy batches of packets from the NIC
to user level memory, resulting in amortizing the Peripheral Component Interconnect Ex-
press (PCIe) bus overhead.
The Click packet data structure has been modified in order to use a DPDK memory

buffer (mbuf) to avoid additional memory allocation and copy operations. Each packet
has a fixed size of 8 KB and consists of four sections, namely, the mbuf structure itself,
packet annotations, headroom, and data. DPDK uses the mbuf for packet I/O whereas
ClickNF uses annotations to store metadata (e.g., header pointers) and the headroom
space to allow elements add headers.

3The same happens for outgoing network packets
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2.7 TensorFlow
Developed at Google Brain, TensorFlow [1] is an open source mathematical library used
for computation of large scale data such as Machine Learning (ML) applications (i.e.,
neural networks). It has been built to ease the process of acquiring data, training mod-
els, serving predictions and refining future results.
The library provides APIs for several languages such as Python, JavaScript, C/C++,

Java and Go. Google suggests to use the Python API (that exploits C/C++ libraries
underneath) since it is the easiest, most complete and documented one. However, in
the matter of this project, C/C++ API have been used for two main reasons. First, to
achieve better performance and flexibility (suggested by Google too). In fact, C/C++
TensorFlow libraries must be compiled from sources, enabling all the architectural opti-
mizations, in order to achieve better results. Second, because ClickNF is built with that
languages and a long term objective of the project could be to integrate TensorFlow in
our framework. The biggest benefit TensorFlow gives is abstraction. In fact, thanks to it,
developers can directly focus on the logic of the application, instead of dealing with the
nitty-gritty details such as choosing which ML algorithm to use.
When building a TensorFlow application, first a model is needed, both for training and

testing purposes. To run such a model, that will be exploited by the ML algorithm, a
Computational Graph must be built. The following sections give a brief introduction to
TensorFlow’s core components.

2.7.1 Tensors
In mathematical terms, a Tensor is a N-dimensional array containing homogeneous data
(i.e., only one data type is allowed). The following figure shows simple Tensors with dif-
ferent dimensions. A Tensor of dimension 6 is just a vector of 6 elements. A Tensor of
dimensions [6,4] is a matrix of 6 rows and 4 columns and so and so forth.
The most simple values wrapped by Tensors are variables and constants. Figure 2.4

shows three examples of Tensors4. The first wraps a string, the second a bi-dimensional
array of integers, namely a matrix, and the third a three-dimensional array of simple in-
tegers.

2.7.2 Computational Graphs
A Computational Graph (CG) is a set of Nodes and Edges. The graph cannot be cyclic,
thus convergence to a node is guaranteed. An example is shown in fig. 2.5.
Each node in the graph can be a Tensor or an operation, such as addition, subtrac-

tion, multiplication, etc. Whenever an operation ends, it results in the generation of a
new Tensor. The new Tensor is an update of the previous one that considers the opera-
tion performed. Operation nodes are first scheduled, and when all the dependencies are
satisfied, they run through a worker process. Nodes are linked through edges to indicate

4Images from [1, 45].
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Figure 2.4: Simplified examples of a Tensor

the flow of operations. Beyond those characteristics, a feasible CG have the following
features:

• Start and end nodes (like a and b in fig. 2.5) are always Tensors. In fact, an opera-
tion always needs at least one Tensor as input.

• When the CG is traversed in forward direction, the nodes encountered become a
dependency for next nodes (e.g. to solve the final node e, c and d must be first
computed).

• If the CG is traversed in reverse order, then the sub expressions formed can be
combined to form the final expression. In fact, the final expression e = c*d can be
written as e = (a+b) * (b+1).

• Nodes at the same level are independent each other. This means, for example, that
operational nodes c and d can be computed in parallel.

Finally, a CG can be split in subgraphs. Those graphs, if in the same level, are inde-
pendent and so can be run in parallel in different workers.

2.7.3 Execution of subgraphs
Thanks to the last property, parallel computing can be hugely exploited. In the previ-
ous example, operations c and d can be scheduled on two different CPUs, as shown in
fig. 2.6. On the left, a TensorFlow session creates a single worker that is responsible for
executing a subgraph, thus scheduling tasks on various devices. On the right, multiple
workers are instantiated. They can run on the same machine or on different machines
and each worker runs its own context. in the above figure, each worker runs on a differ-
ent machine and schedules operations on all available devices.
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Figure 2.5: A Computational Graph

Figure 2.6: Distributed execution of subgraphs using a worker (left) or a master process
that spawns multiple workers (right)

2.8 Training and Inference in Neural Networks
When talking about Artificial Intelligence (AI), we usually refer to the ability of ma-
chines to act based on a past experience. Obviously, machines cannot learn from noth-
ing, they need a trained model, namely examples, that can be used to learn basic con-
cepts, such as, what is a cat and what is a dog. After that, machines can infer (i.e., im-
ply something new) based on previous examples. Hence, as illustrated in fig. 2.7, Deep
Learning algorithms are split into two tasks: training and inference5.
In the first, enormous datasets containing labeled data. Besides data, metadata is used

as an hint to describe the related data given as input. AI tasks, due to their nature, usu-
ally run on Neural Networks (NN), a computational model inspired by the biology of
humans brain. Differently from a humans’ neurons that can connect to any other neuron
within a certain physical distance, artificial NN have separate layers, connections, and
directions of data propagation. When training a NN, training data is the input of the

5Image from [10].
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first layer of the network, and individual neurons assign weights to the input, indicating
how correct or incorrect it is, based on the task being performed. In the example of an
image representing a cat, the other layers consider selected features (type of nose, color,
...). After, each layer passes the image to the next, that will assign other weighs consid-
ering other specific characteristics of the input data. At the end, the final layer and the
final output determine the total of all those weighting. In the case the algorithm, reading
those weights, informs the NN the output is wrong (e.g., the image represents a dog), a
back-propagation mechanism takes place. The error is propagated throughout the previ-
ous layers, setting new weights for each node. This process is repeated until is found the
correct set of weights (in this example, representing a picture of a cat). At the end, the
training phase produces a trained model, that can be distributed to different machines.
During inference, the machine uses the previous trained model for serving predictions

about new unlabeled data. in this case, no back-propagation mechanism is performed.
Given the input image, weight are computed for each node at a layer, and forward prop-
agated to next layers, until the last one, where the final weighting is produced. The set
of final weights is read by the AI algorithm that, finally, is able to label the input data
(in our case, a cat).

Figure 2.7: Training vs Inference in Deep Learning

2.9 OpenCV
OpenCV (Open Source Computer Vision) [11, 14] is another library related to ML area.
It was developed by Intel with the intent of supporting real-time computer vision appli-
cations.
OpenCV is more than an Image Processing library. In fact, it is widely used with
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common Deep Learning frameworks such as TensorFlow, Torch [9, 44] and CAFFE
[29] in order to ease the development of applications and interactions between differ-
ent frameworks. For example, it is exploited to easily read/write images, detect faces
(cf. fig. 2.8)[61], shapes and simple objects, write dynamic text on a video, recognize
text, etc. Generally, OpenCV is a good interface to support the development of AR/VR
applications.
Last but not least, it is well documented and libraries are written in C++ for best

performance. Moreover, bindings in other languages (such as Python, Java and MAT-
LAB) are provided.

2.9.1 RGB and YUV frame representations

OpenCV provides support to the two most common frame representations, namely RGB
and YUV format. RGB consists in the straightforward representation of the three colors
red (R), green (G) and blue (B) with a given pixel size. For instance, RGB24, the most
common format, allows 8 bits for each color component, that is represented by a value of
0-255.
YUV color-spaces are based on luminance. Keeping into account human perception,

they allow to reduce bandwidth enabling compression artifacts to be more efficiently
masked by human perception than using a RGB representation. Y’ stands for the luma
component (the brightness) and U and V are the chrominance (color) components. Lu-
minance is denoted by Y and luma by Y’ (’ denote gamma compression) with luminance
meaning physical linear-space brightness, while luma is (nonlinear) perceptual bright-
ness.

Figure 2.8: Face Detection using OpenCV
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2.10 Audio and video codecs
Digital media including audio and/or video streams are packaged in a specific format
using a codec. Audio and video codecs are needed to ease the storage and sharing of me-
dia files. They allow to save space, and thus download time, with a factor that ranges
between three to five. Codecs can be either lossy or lossless. Lossy codecs shrink dramat-
ically the media content, resulting in a high compression factor. Common examples are
MP3, JPEG, WMA, MPEG. Loseless codecs lose zero information at the cost of a low
compression factor, resulting in an encoded video size comparable to the original one.
Most of the codec used for streaming are obviously lossy, since data must be sent over
the network for multiple clients and a high compression factor is needed. As an example,
modern codecs, such as H.265 [52], provide high compression factor without impacting
data, resulting in a negligible loss to human’s eyes.

2.11 FFmpeg
FFmpeg (Fast Forward mpeg) [21] is a software suite composed of libraries and tools for
managing video, audio and streams. It is also the core part of other well known multi-
media software such as VLC, iTunes and YouTube. FFmpeg is widely known because it
provides documented APIs (in C language) for building customized applications along
with different command line tools for multimedia support. The command line tools avail-
able in FFmpeg are the following.

• ffmpeg: It is an audio/video converter. It can also grab data from a live au-
dio/video source (e.g. a webcam).

• ffserver: It is a streaming server that attaches to a ffmpeg process. It forwards
ffmpeg’s output via HTTP after a GET or POST request is received by a client.

• ffplay: It is a multimedia reader that exploits FFmpeg libraries.

• ffprobe: This tool is used to gather data from multimedia streams and provide
information in a human-readable fashion.

2.11.1 Usage of FFmpeg suite: ffmpeg, ffserver and ffplay
Figure 2.9 illustrates a common FFmpeg architecture of an hypothetical media service
provider using the three main tools of the suite: ffmpeg, ffserver and ffplay. The first
runs at the input sources (a laptop with a webcam or a Raspberry Pi) and is able to pro-
vide both offline streaming and live streaming. The former delivers a media content al-
ready available in the file system, and no peripheral (camera) is needed for acquiring the
input media. The latter, on the contrary, needs an on-line input camera to acquire the
media source. The ffmpeg process is in charge of using the appropriate driver to correctly
acquire the input media, perform encoding and finally create a feed.
An ffserver session is binded to one or more ffmpeg processes, specifically, to one or

more feed(s). Its main role is to make available the input sources to different users (in a
LAN or throughout the Internet), eventually applying access control. The latter, based
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on a ffserver configuration file, can also perform transcoding, quality adjustments and
other media-related configurations. At the end of the process a stream (one for each
input feed) is produced.
Clients can retrieve the media content by means of a media player. External media

players (e.g., VLC [56]) can also be used providing that they support the streaming pro-
tocol and the codecs used by ffserver. Furthermore, to have access to the media, client
must belong to the Access Control List defined by ffserver.

Figure 2.9: Basic usage of FFmpeg’s tools

2.11.2 (De)Coding and (De)Muxing functioning
FFmpeg’s libraries include APIs to manage demuxing and decoding, encoding and mux-
ing of multimedia streams. Suppose we want to convert the format of a movie file (thus
containing both audio and video streams) from .mp4 to .mpg. Note that the two formats
need different containers (MP4 and MPEG), each one supporting different A/V codecs
(MPEG-1 and MPEG-1 Audio Layer 2 for the first, MPEG-4 Part 10 and AAC for the
second). The whole process can be summarized in four steps.
First, it is necessary to decouple audio and video streams from the container, and this

is done by the demuxing function. It takes as input a container (MPEG) including audio,
video and eventually subtitles, and outputs one stream for each type.
Second, the decode function is applied for each stream. FFmpeg’s APIs use two struc-

tures: AVPacket to store compressed (encoded) information and AVFrame for decoded
data. The decode function receives AVPacket(s)6 as input and produce an AVFrame.
Third, we need to re-compress the stream, thus the encode function is performed. It is

6Depending on the used codec, the decode function must be filled up with more than one packet
in order to get a frame. So, it must be called more than once.
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the counterpart of the decode function: it takes as input one or more AVFrame to pro-
duce an AVPacket. Those two last steps, namely decoding and encoding, are applied for
each media stream.
Finally, the output AVPacket(s) are given as input to the muxer. It is in charge to

build a new container (MPEG-4), prepending and appending specific headers and trailers
and filling it up with the new encoded streams.

2.11.3 Libraries
In order to better understand the potentialities provided by FFmpeg and ease the read-
ing of chapter 4, it is useful to give a description of the libraries included in the suite.

• libavcodec: it contains FFmpeg encoders and decoders for audio, video and subti-
tle streams.

• libavformat: it provides a framework for multiplexing and demultiplexing audio,
video and subtitle streams.

• libavfilter: it allows the video/audio to be modified or examined between the de-
coder and the encoder.

• libavdecice: it provides a generic framework for grabbing/writing from/to many
common multimedia input/output devices.

• libavutil: it contains random number generators, data structures, hash functions,
additional mathematics functions, cryptography and other multimedia related func-
tionality.

• libswscale: it is used for image scaling (e.g., changing the video size), colorspace
and pixel format conversion operations (e.g., convert an image from planar YUV420P
to RGB24).

• libswresample: it performs audio resampling (i.e., changing audio rate), rema-
trixing (i.e., changing from stereo to mono channel) and sample format conversion
operations (e.g., convert 16-bit signed samples to unsigned 8-bit).
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Chapter 3

Design

Section 1.1 quickly introduced the main obstacles and the requirements that a solution
to the aforementioned problem should satisfy. In this chapter, a use case followed by a
detailed description of the requirements are given. After that, the designed architecture
to meet the latter is presented.

3.1 A real use case

The main reason that brought us to initiate the development of this project is described
in the following real scenario. Consider a terrorist, a woman with a black hat, is escap-
ing the police in London. Two policemen are in the street to chase her, but roads are
crowded, so they need help. Luckily the city has hundreds thousands cameras installed
all over the roads and police can take advantage of them to get the woman. Of course,
it is almost an impossible task in a crowded city like London. For humans it would be
an hard task to find a woman with a black hat in the crowd, but for machines, trained
over millions of samples, this task requires just few milliseconds. Thus, the two police-
men would like to exploit an AI-based algorithm, like Object Detection (OD) [20] to ease
the detecting of a woman with a black hat. However, neither the IP camera (a server)
nor the smartphones the policemen are using (clients) can run OD, due to their low com-
putational power and/or lack of storage.
Thankfully, network infrastructure can help in this situation. A network resources

provider can instantaneously setup the resources and architecture needed for this sce-
nario in order to transparently provide the requested service. A server located in the
edge network (an edge gateway), near user’s network, benefits of high computational
power and thus fits the requirements to run OD. Thus, a policeman can retrieve the
video stream from the IP camera by means of an OD proxy. The video will be first re-
trieved by the edge gateway, that will be in charge to execute OD. After that, the “aug-
mented” video is received by the policeman that is able to identify the place where the
woman is. Notice that this operation requires little modification to the existing surveil-
lance system. Functioning of the IP camera will not be impacted at all, while clients
eventually need software updates to allow to interact with the proxy.
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3.2 Requirements
This section explicitly defines the requirements stemming from this use case and some
possible solutions to fulfill them.
First, AI-based algorithms require high computing power and a good amount of stor-

age requested by both the training and inferencing phases. In fact, the training phase
requires to store hundreds of millions of samples with people and objects. The resulting
model size, that usually directly affects accuracy, must also be stored and used at run-
time, during inference.
Low battery capacity on mobile devices are another constraint. It is easy to deduct

that AI algorithms consume CPU cycles and thus energy. Even considering that mobile
device is equipped with the most advanced CPU in the market for mobiles, running such
algorithms on it will cause such a battery drain that the device will run out of energy
after few time. One solution could be to install a battery with higher capacity but this
would affects size and weight and thus the convenience of the mobile.
When dealing with real-time applications, like OD, having low latency is strictly

needed and maybe the most important requirement to meet. Referring to the use case,
the policemen needs to detect and catch the woman now, not in an hour nor in some
minutes, thus the streaming video must reach policeman’s smartphone with a delay as
short as possible.
Optionally, but useful to have long life and widely used, the architecture must be

portable, scalable, flexible and transparent. Portability, because the implementation
must work independently on the endpoint devices and the AI algorithm to perform.
Scalable, because it must work independently from how many clients want to take advan-
tage of it. Flexibile, in order to re-configure and thus being available during disruptions,
to optimize traffic, or to efficiently satisfy users’ requests. Finally, a transparent system
would allow an easy set-up and service usage both client-side and server-side. In fact,
their implementations (i.e., software and hardware equipment) need quasi-zero or no
modifications.

3.3 On-device computing vs Multi-access Edge com-
puting (MEC)

There are two possible solutions that may fulfill the aforementioned requirements. First,
a centralized architecture including a special-purpose AR/VR device, with the suitable
but limited computing power, battery, storage, developed for a specific task. Second, a
distributed architecture, where computational power is offloaded from the device itself to
a server (Edge gateway) belonging to the ISP network.
As shown in the previous use case, the first solution is not feasible, since videocameras

in London are just IP cameras, and not special-purpose AR/VR devices. Even consider-
ing the feasibility of such solution (i.e., each IP camera is replaced by a AR/VR device)
brings some drawbacks. First, the AR/VR device itself has a not negligible cost, much
more than a simple IP camera, due to the specific design and use of recent technologies.
Second, such centralized design is not scalable and there is almost no flexibility, for two
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main reasons. First, performances of the device might linearly decrease with the num-
ber of clients remotely connected. Second, in case of network disruption, service avail-
ability is lost since network operators have no control on the framework that is device-
embedded. In other words, both the endpoints must worry about the maintenance and
setup of the service. However, using on-device computing has the benefit of achieving the
lowest latency as possible, since there is no data disclosure and computation is performed
locally.
The second solution, on the contrary, plans to disclose data to a third party in order

to perform computation. Thus, this solution comes with an added latency overhead that
was not present before. On the other hand, it is beneficial in terms of computational
power and storage availability, since the AR/VR task is performed at the edge where
computing and storage are not a problem.
Furthermore, thanks to modern NFV frameworks that enable programmable in-

network services running at the edge, portability, scalability and flexibility are easily
achieved. For instance, concerning the previous use case, consider the other police-
man also wants to connect to the IP camera to help his colleague to catch the woman.
Thanks to the use of NFV, it is possible to implement cross-layer optimizations (e.g.,
multi-client support with content caching). Thus, the video streaming is requested by
the Edge gateway just once and multiplexed to the clients connected.
To conclude, using MEC the resulting endpoint devices are simple, have low cost, and

are unaware of the underlying architecture. Moreover, MEC, compared to on-device
computing, can lower the cost of the provided services since the latter can be shared be-
tween all the customers. In these times where AR/VR are still not so widespread and
a migration from legacy to AR/VR devices is needed, using edge computing is a great
solution to speed-up the deployment and lower the costs of AR/VR services.

3.4 High level design of NEAR
The design of NEAR [54, 55] (Network Edge AR/VR1) takes into account MEC tech-
nology running AR/VR tasks exploiting a NFV framework. The combination of MEC
and NFV can be seen as the usage of a vMEC infrastructure, as previously described in
section 2.3. Thus, we consider a proxy server, located at the edge infrastructure, a client
requesting the stream, and a server streaming a media to the requesting client(s). The
proxy server, besides relaying packets between client and server, is in charge to perform
the chosen AR/VR task. Clients have the possibility to request the native or augmented
stream: in the first case, they will directly connect to the server; in the second scenario,
a proxy server inserting augmented information is needed. Figure 3.1 shows a high-level
design.
The functioning is straightforward.

1. The client selects a proxy server and a server to connect to, specifying the stream

1We have found potential use cases for AR, rather than VR. But this does not mean NEAR can-
not be exploited for VR tasks too. In fact, both AR and VR exploit ML techniques having same re-
quirements.
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Figure 3.1: High level design of NEAR

he wants to play and the AR/VR task to perform on it, Object Detection (OD) for
instance.

2. The proxy server sends a request to retrieve the stream to the server specified by
the client.

3. The server checks if the request is valid and eventually replies with the streaming
content.

4. The proxy server start receiving the streaming media. For each frame it receives,
Object Detection is performed and the augmented frame is put into a new stream.

5. The proxy server sends the new stream, including Object Detection, to the client.

The following sections extensively describe the three elements needed, including
their role and capabilities.

3.4.1 Server

The server must be able to continuously provide streaming content to clients. The latter
can be either a proxy or a client directly connected. For this reason, it is strongly re-
quired that the architecture is completely transparent to the server, namely, the server is
unaware about clients’ capabilities and if/when/where AI-based tasks are implemented.
The server, contrary to what one might expect, does not need high computing power

and elevated amount of storage, since those are offloaded to the proxy server. In order to
broadcast the streaming media (a video stream with or without audio) it must be con-
figured with a camera and a basic working network setup. A simple IP camera or a cus-
tom device including a camera, like a Raspberry PI, able to stream video content, can be
used to implement the server.
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3.4.2 Proxy server
The proxy server is the most complex and fully-equipped peer that is located at the
edge infrastructure, namely in a location close to the client. First, it needs high perfor-
mance hardware and good amount of storage in order to run AI-based algorithms. Sec-
ond, it must have the server-equivalent encoding/decoding capabilities such as to per-
form the AR/VR task. In fact, most of AI tasks (including Object Detection) work on
images rather than the whole video, so it is necessary to perform frame extraction. Thus,
the proxy server should be able to decode the stream received by the server, apply the
AR/VR task on the extracted frames and encode those to obtain the augmented stream
that is finally sent to the client. Figure 3.2 shows the design of the proxy server includ-
ing the subtasks to perform.

Figure 3.2: Design of proxy server

The proxy server can be implemented using a server machine, located near client’s and
server’s networks.

3.4.3 Client
The client does not need specific hardware for the purpose. It must be able to show the
retrieved streaming content (e.g., using a monitor or the smartphone’s display). So, it
just needs lightweight software to play the content and to easily connect to the proxy
server. The client can be identified as a smartphone or a laptop.

3.5 A way to decrease latency
The solution proposed and actually implemented includes a drawback concerning la-
tency that is increased when compared to an on-device computing design. Luckily, the
use of modern NICs enables exploiting of data plane libraries, such as DPDK, in order to
speed-up packet forwarding and therefore reduce latency. NFV frameworks with support
to DPDK, such as ClickNF, can be exploited to overcome this disadvantage.
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Chapter 4

Implementation

In this chapter we focus on the actual implementation of the design of NEAR proposed
in chapter 3. A top down approach has been used for a better understanding. Starting
with a global picture about NEAR’s implementation is shown, it follows a detailed de-
scription of each component.

4.1 Updating ClickNF
To have a stable environment and obtain familiarity with it, some aspects of ClickNF
have been initially improved. These included an update to the DPDK version and the
use of the RSS Hash, already provided by the NIC if using DPDK, to sort packets be-
tween CPUs.

4.1.1 Update to DPDK 18.05
ClickNF was initially developed with support to DPDK 17.10, released in October
2017. To have the most recent and supported version, ClickNF has been upgraded to
version 18.05, the latest available at the time of starting the project. A wide use of
pre-processor directives has been done to achieve backward compatibility with older
versions. The new version included some changes in the API. For instance, the ambigu-
ous rte_eth_dev_count() function used to iterate over ports has been replaced by
rte_eth_dev_count_avail() and rte_eth_dev_count_total() has been
built in order to get the total number of allocated ports (available and not).

4.1.2 Use of RSS Hash to speed-up processing
When DPDK is enabled, ClickNF computes an hash to assign the current packets flow
to the correct receive queue, in order to achieve scalability and high performance, as al-
ready described in section 2.6. The current hash function is simple since it requires few
elementary bitwise operations. However, it is computed every time a packet is received,
even if it belongs to an existing flow (i.e., a packet with the same hash output has been
previously processed).
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However, to enhance performance, another method to switch packets among the dif-
ferent receive queues has been implemented in this project. The method takes advantage
of the RSS Hash that is already computed by the NIC itself when receiving a packet. In-
deed, when using DPDK, the NIC is responsible to compute and subsequently store the
hashcode in the mbuf structure.
In this way, when receiving packets belonging to the same flow, there is no need to

re-compute the FlowID, namely the hashcode, since we just need to access the imple-
mented hash field in the mbuf. However it may happen that the hashcode is not found
in the mbuf (e.g., if a packet belonging to a new flow is received), thus the DPDK’s
rte_softrss_be function (i.e., the filter function used by DPDK for RSS) must be
performed.
In order to allow users to choose whenever using the legacy or the new optimized

method, we extended the DPDK configuration variable set including a new parameter,
namely ENABLE_RSS. It is a boolean parameter: if 0 (false) DPDK executes the legacy
method, otherwise (1, true) exploits the new implemented algorithm1.

4.2 The complete picture
Figure 4.1 shows the high-level implementation of NEAR. The Proxy Server, in the mid-
dle, is connected towards the Server through TCP Client module and towards the Client
through TCP Server.
Server and client, two lightweight machines, run FFmpeg and VLC Media Player re-

spectively. Proxy server, the most complex device among the three, exploits OpenCV
and TensorFlow’s API used for the AR/VR Task, while ClickNF utilize FFmpeg’s li-
braries for stream processing. Next sections give a more detailed description of each
component.
ClickNF has been chosen as a programmable framework since its ability to provide

high-performance implementations of virtual network functions, which helps, for in-
stance, to deliver video flows extracted from the network into existing AI software pack-
ages. ClickNF’s modular design allows to seamlessly reuse the majority of the network-
ing code, facilitating the rapid development of the required video processing functions.
The choice of TensorFlow[1] among other AI frameworks (including PyTorch[44],

Caffe[29] and Microsoft Cognitive Toolkit[50]) is mainly due the high support given by
the developer community in forums and Q&A sites. Moreover, TensorFlow is the frame-
work that better integrates with other computer-vision libraries, including OpenCV[11].

1For backward compatibility, 0 (false) is the default value
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Figure 4.1: High-level implementation of NEAR

4.3 Server
The server is the most lightweight device among the three. It is a Raspberry Pi [46] with
a Pi Camera module built on it running two FFmpeg processes, ffmpeg and ffserver. The
first is needed to bind the input source media to a feed. That feed is after read by a ff-
server process listening on the specified port. In this way, ffserver is ready to stream the
media, bound to the selected input source, to clients that request it. Commands and the
ffserver configuration file used are listed in listings 4.1 and 4.2.

Listing 4.1: ffmpeg command line. Input can be PI Camera or a file
1 # Input is PI Camera
2 sudo ffmpeg -ar -f video4linux2 -i /dev/video0 -an http://localhost

:8090/feed1.ffm
3

4 # Input is a media file
5 sudo ffmpeg -ar -i /path/to/file -an http://localhost:8090/feed1.ffm

As the reader can see, the media stream, processed by FFmpeg commands, can be ma-
nipulated, e.g., modifying video size, framerate and codec.

Listing 4.2: ffserver sample configuration file
1 HTTPPort 8090
2 HTTPBindAddress 0.0.0.0
3

4 <Feed feed1.ffm>
5 File /tmp/feed1.ffm
6 FileMaxSize 50M
7 </Feed>
8

9 <Stream video.mpg>
10 Feed feed1.ffm
11 Format mpeg
12 NoAudio
13 VideoCodec mpeg1video
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14 VideoSize 640x360
15 VideoFrameRate 30
16 AVOptionVideo flags +global_header
17 # Set qmin and qmax to tune video quality
18 AVOptionVideo qmin 2
19 AVOptionVideo qmax 5
20 PreRoll 5
21 StartSendOnKey
22 VideoBitRate 800
23 </Stream>

A basic ffserver configuration file is usually divided into three sections. The first one
defines global parameters used for networking, such as IP address and Port to use, maxi-
mum allowed bandwidth, max number of alive clients, etc. The second section, identified
by the <Feed> tag, specifies low-level configuration for the streaming media, including
filesystem location and size of the streaming buffer. A third section, identified by the
<Stream> configures a previously defined Feed with media-related parameters. Those
include audio and video codecs, optimization parameters and codec-specific flags.
Using the shown configuration file, ffserver instantiate an HTTP server, listening for

GET requests at port 8090. When a request is received, if there client has specified an
existing media in the URL, ffserver starts sending the streaming media (video.mpg), en-
capsulated over HTTP.
It should be noted that options qmin and qmax indicate the quality range used for en-

coding. We experienced very bad video quality with default settings (10 and 42 respec-
tively), hence we experimentally set the range to [2,5] resulting in a negligible quality
loss for human eye.

4.3.1 Streaming protocol
This section illustrates the streaming protocol chosen and its functioning. HTTP stream-
ing has been used, due to its simplicity and compatibility with most of clients2.
Figure 4.2 shows HTTP Streaming protocol between a client and a server. Of course,

when the Proxy server is used, the request is sent from Client to Proxy server and after
from Proxy server to Server.
When the TCP connection is established, client sends an HTTP GET Request spec-

ifying the URL of the media to retrieve (e.g., http://10.0.0.10:8090/video.mpg). Server
checks if that media is available and sends a 200 OK HTTP message including the be-
ginning of the stream3.
The HTTP Response header can contain useful information. For instance, Content-

Type field can be used to infer the codec used by FFmpeg. This is useful when another

2Other streaming protocols have been tested, including RTSP and RTMP, however HTTP
streaming was the only compatible with the set of chosen frameworks, namely FFmpeg, OpenCV and
VLC.

3Sometimes, depending on app/socket implementation, the first packet is just the HTTP Re-
sponse and data is sent starting from the 2nd packet.
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Figure 4.2: HTTP Streaming protocol. Client (right) requests a stream to Server (left)

application wants to re-encode the streaming media using the same codec.
The data field contains the actual media information encapsulated in the specific me-

dia container. Data can include part of, one or multiple encoded frame(s), depending on
the media size (e.g., resolution and/or quality). It has to be noted that following frames
are segmented and directly encapsulated over TCP.

4.4 Proxy server
Figure 4.3 illustrates the skeleton of the proxy server. The latter runs two processes,
the AR/VR Task (Object Detection) and ClickNF. The new elements implemented are
green-highlighted and these include SOCKS 5 Proxy, App Classifier, Decoder, Encoder
and Object Detection. Those elements are described in details in the following sections.
Object Detection has been implemented outside the ClickNF framework for two main

reasons. First, it is a complex task, that requires a wide set of libraries (OpenCV, Ten-
sorFlow, Threads, ...) that ClickNF does not need. Normally, to run a TensorFlow ap-
plication for inference, it is needed to compile using Bazel [17], a Google’s buildsystem.
Of course, this is a problem when dealing with other projects that are built using other
buildsystems (e.g., Autotools for ClikNF). As a workaround, we have built a shared Ten-
sorFlow library that can be easily distributed across multiple compatible platforms and
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Figure 4.3: Proxy implementation

installed through common buildsystems (Makefile, CMake, ...). This can ease, in a future
work, the migration process of AR/VR Task into ClickNF4.
The second reason is due to the Run-To-Completion scheduling model used by Click

(and ClickNF). In fact, the AR/VR Task could spend a lot of time to perform its job.
This would deny the scheduling of other tasks, which can result in poor performance or
in the worst case a framework deadlock.

4Not for nothing, Object Detection has been implemented using the C/C++ language, the same
used for ClickNF.
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Hence, to allow the two processes to communicate each other, a IPC communication
is needed. Since message granularity is at packet level (we receive TCP packets from
the streaming server) it would be convenient to use Inter-Process Communication (IPC)
mechanisms that can work using the same. Generally, the only solution is using network
sockets in localhost. However, a Unix environment offers also a high-performance type
of sockets, called Unix Domain Sockets. A result by Redis [47] displayed in Figure 4.4
shows that Unix Sockets can achieve around 50% more throughput than TCP Sockets in
localhost.

Figure 4.4: Redis Throughput benchmark: Unix Sockets vs TCP localhost

4.4.1 SOCKS 5 (Lite) Proxy
The use of VLC as a media player running on a client in order to read the stream-
ing video trough a proxy server required an implementation of SOCKS 5 proxy server.
SOCKS has been designed to allow incoming/outgoing traffic from/to a corporate LAN
trough a firewall, thus achieving the so called “Firewall traversal”. However, for the
aim of the project, SOCKS is exploited in order to have an easy way to retrieve a live
streaming media through a middleware, where ML algorithms can be performed, rather
than directly from a streaming device.
ClickNF’s set of Elements already includes a SOCKS 4 proxy server implementation

but the backward incompatibility of SOCKS 5 makes it unfeasible to use. SOCKS 5
[27] introduces new features (including UDP support and authentication) that makes it
harder to implement. Thus, for the purpose of the project, a simplified SOCKS 5 proxy
server compatible with a VLC client has been built.
The SOCKS 5 Proxy element (cf. fig. 4.3), working in push mode, has two input

port (from TCP Client and TCP server) and two output ports (towards TCP Client
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and App Classifier). This asymmetry comes from the reason that packets arriving from
Server must be switched to the correct element (Decoder or TCP Server depending if
they contain data). Hence, all packets retrieved by Server must first be classified (see
section 4.4.2). Figure 4.5 depicts the implemented SOCKS protocol.

Figure 4.5: Socks 5 Proxy

1. The client connects to the proxy server, and sends a version identifier/method selec-
tion message. It specifies the supported version followed by the number and the list
of supported methods for authentication.

2. The proxy server selects from one of the methods given in METHODS (NOAUTH
in this implementation), and sends a method selection message to announce version
and method chosen. Those first two messages, introduced in version 5, are used to
negotiate the features supported by client and proxy server.

3. The client sends a proxy request. The command (CMD) is CONNECT but can also
be BIND or UDP ASSOCIATE 5. In this implementation, ATYPE (Address Type)

5CONNECT is used when basic proxying is needed. BIND is used in protocols where the client
must accept connection from server. UDP ASSOCIATE purpose is to establish an association within
the UDP relay process to handle UDP datagrams.
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is “IPv4”, meaning the address specified in DST.ADDR is an IPv4 address in dot-
ted decimal notation. DST.ADDR and DST.PORT are respectively the address and
the port of the server to connect to.

4. The server answers with a proxy reply. Here, ATYP indicates that BND.ADDR is
an IPv4 address in network byte order 6.

Finally, after the handshake, data can be exchanged between client and server though
the proxy server.
Our SOCKS 5 implementation is compliant with L7 protocols. A Click annotation

(2.4.1) “SOCKS_APP_FLAG_ANNO” is used to label the packet as application-layer
data before being forwarded to the next element. It means that packet must be sent to
upper layers and not directly to the other endpoint (i.e., the client).

4.4.2 App Classifier
This simple element is needed to forward packets in the right way. It has one input
and two output ports, 0 and 1. When a packet comes in the input port, App Classifier
looks at packet’s annotations. If SOCKS_APP_FLAG_ANNO is present, meaning that
packet contains data to be processed by upper layers, the packet is forwarded to port
17, 0 otherwise. Moreover, if the incoming packet contains TCP_DEL_FLAG_ANNO,
because server requested to close connection, App Classifier forwards that packet to port
1. The algorithm is shown in appendix A.1.

4.4.3 Decoder
The Decoder element, configured to work in push mode, has one input and one output
port. It is a stateful component, meaning that its execution depends on the current state
of the element. The possible consecutive states are the following.

• HTTP_PARSE: It is the initial state. Decoder is waiting to receive the first
Click packet in order to send the HTTP header. During this state Decoder strips
out the HTTP header and makes it available for other elements (i.e., Encoder)
through shared data structures. At the end of this state, the HTTP header is in-
ternally store.

• INITIALIZE: Decoder is waiting to receive the first data packet. It is useful to
initialize FFmpeg’s libraries only once.

• DECODING: Used when decoding subsequent frames. It is the state where De-
coder spends most of its time, since following packets enter this state.

6According to RFC 1928, BND.ADDR and BND.PORT are the IP address and PORT used by
the proxy server to connect to the server. In this implementation IPv4 address 0.0.0.0 and port 0 are
used for convenience. Obviously, those values are different from the ones actually used. Nevertheless,
most of clients ignore those values.

7Defined to be the port to the upper layer element.
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• LAST: It is the final state. Decoder enters it when sending the last frame of a
stream.

The complete algorithm is shown in appendix A.2.

HTTP_PARSE

Initially, the first packet forwarded to the Decoder element should contain the whole
HTTP header, as described in section 4.3.1. Since the HTTP response may be split
in several packets, depending on its size, a buffered input has been implemented. This
means that Decoder is able to wait for a specific amount of packets in order to retrieve
the entire HTTP response, even if it is split up into more TCP packets. Moreover, De-
coder can manage the case one packet contains both HTTP response and Data that are
stored using different buffers. At the end of this phase, The HTTP response is stored in
an internal buffer, shared with and accessible by external elements (including Encoder),
and the state is set to INITIALIZE.

INITIALIZE

At this point, Decoder waits to receive a configured number of packets (N) before start-
ing to decode. Those packets are inserted into a PacketQueue structure and processed
when reaching the size of N. This workaround is needed to make the decoding function
properly work. In fact, we experienced an anomalous behavior due to FFmpeg APIs
when reading packets from memory in order to feed the decode function. In this sce-
nario, FFmpeg’s av_read_frame continuously 8 reads bytes from memory even when
no data is available, returning an error and forcing the decode function to be in an in-
consistent state. We noticed that reading from file is not a problem, since data is always
available.
Thus a way to solve such problem is to call the decode function when PacketQueue

contains sufficient packets. This threshold highly depends on the media. Parameters
needed to appropriately tune the threshold are above all video resolution and au-
dio/video codec. The higher is the video resolution, the higher must be the threshold
(QUEUE_SIZE). Table 4.1 shows a possible setup when using FLV and MPEG codecs.

Resolution 360p 720p 1080p
QUEUE_SIZE 64 128 256

Table 4.1: Threshold values for a correct decoding functioning

After that the threshold is reached, FFmpeg’s elements are properly initialized, if not
done yet. The FFmpeg function av_probe_input is internally exploited to guess the
input format (i.e, the codecs) of the stream. This run-time initialization allows to dy-
namically and automatically configure Decoder. In this case the appropriate codec to use
is automatically chosen after probing the first packet received.

8up to six times.
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DECODING

After initialization, Decoder enters the state DECODING. This is the where Decoder
spends most of its time, since following calls to Decoder enter directly this state. When
in DECODING state, if the aforementioned threshold has been reached, the decode func-
tion is actually performed, otherwise Decoder returns and waits for other packets. More-
over, in order to stabilize PacketQueue’s size, when decoding is finished, the decode func-
tion is called again if PacketQueue’s size still exceeds the threshold.
A callback function readPacket is used in order to read an encoded frame when

needed. The callback is registered using FFmpeg’s APIs and internally called by av_re-
ad_frame. The latter can run the callback multiple times depending on the amount of
packets needed to retrieve a frame. When readPacket is called, it continuously pops
packets from PacketQueue and stores them in a buffer shared with FFmpeg until the
total number of requested bytes is reached.
When packet(s) is (are) decoded, if a frame is released, it is first converted from

YUP420P to BGR24 9 and after sent to the next element, using port 0. The frame is
fragmented into more packets, since DPDK packets are limited by size. User can specify
that packet size in a Click configuration file.
Note that to let Encoder know video resolution, frame dimensions (width and height)

are sent using a packet with 4 bytes (2 for each dimension) before sending the first
packet (belonging to the first frame of the stream). Those dimensions are valid for the
whole frame set since images extracted from the same video have the same resolution.
Hence, that 4-bytes representing video resolution are sent just once initially, and must be
correctly read at receiving-side before reading the actual frame data.

LAST

Finally, if the streaming media is going to finish or user asked to terminate the session,
Decoder is notified with an empty packet containing the annotation TCP_DEL_FLA-
G_ANNO. Decoder enters the state LAST and flushes all queued packets. However,
Decoder cannot brutally close connection (i.e., send that annotation to TCP Server) be-
cause there could be still frame processing at Encoder or in the AR/VR Task that must
be sent before closing connection. To avoid that, Decoder registers the number of de-
coded frame so far and let later Encoder close connection using a mechanism that will be
described in section 4.4.6.

Configuration parameters

Table 4.2 defines the possible parameters that can be set-up with a Click configuration
file.

9BGR24 is easier to manage with OpenCV.
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Name Description Values Default
VERBOSE Print verbose output True, False False

PKT_MAX_SIZE Packets maximum size that Decoder
uses for fragmentation

> 0 1448

QUEUE_SIZE Threshold to use for PacketQueue > 0 64

Table 4.2: Decoder configuration parameters

4.4.4 SocketIn and SocketOut

The Click framework already provides a Socket element that can be configured to im-
plement stream, datagram or unix domain sockets. The desired mode of operation is
achieved by reading specific parameters from the Click configuration file. For instance,
given the configuration file in listing 4.3, Click setups a tcp client (S1) connecting to
server 10.0.0.1 trough port 80. In the same way (S2) is a tcp server listening at port 80
on all interfaces.
When using unix sockets, the communication channel is identified by a filesystem

path. In fact, the unix socket is a file buffer that is usually read/write by two different
processes. In this scenario, client (SocketOut) is configured to send received packets
to ./socketX, while server (SocketIn) waits for a connection from a client and reads
packets from ./socketY when available.

Listing 4.3: Click declaration for Socket elements
1 # TCP client
2 S1 = Socket::(CLIENT true, TCP, IP 10.0.0.1, PORTNUMBER 80);
3

4 # TCP server
5 S2 = Socket::(CLIENT false, TCP, IP 0.0.0.0, PORTNUMBER 80);
6

7 # UNIX client
8 SocketOut = Socket::(CLIENT true, UNIX, FILENAME ‘‘./socketX’’);
9

10 # UNIX server
11 SocketIn = Socket::(CLIENT false, UNIX, FILENAME ‘‘./socketY’’);

Concerning the server-side Socket implementation, it has been built to be portable and
modular. It means that Socket works for any client/server framework. However, hav-
ing such modularity and portability sometimes make even more harder the development
of upper-layer elements exploiting Socket. To be more clean, when building a common
stream-oriented client-server application, both the endpoints know the protocol and for-
mat they are using, that is, server knows exactly how and how much read. On the other
hand, when including a third party (Socket in our case), the latter does not know proto-
col and format used between the two endpoints (AR/VR Task and Encoder/Decoder).
For a better understanding, consider the scenario proposed in fig. 4.6 where a client

sends two frame via socket. The picture illustrates the implementation of two servers.
The first one (Server 1 ) is really straightforward, since it uses simple APIs to retrieve
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exactly a specified number of bytes (nread). On the other hand, Server 2 is composed
by two elements, Socket and a Encoder, and its implementation is much more complex.
Socket server reads from socket up to a fixed number of bytes (1448 by default) and di-
rectly sends to next element as much data as it can (can be less than 1448, depending on
kernel behavior). Next element (i.e., Encoder ) receives a packet, that is, part of a frame.
So, it must enqueue all the received packets in a buffer, in order to finally build a frame.
Moreover, it must consider the case the receive packet contains parts of different frames.
To deal with this problems, data buffering must be performed by upper-layer elements
exploiting Socket, as later described in section 4.4.6.

Figure 4.6: Socket server implementation comparison

4.4.5 AR/VR Task: Object Detection
Object Detection (OD) is the implemented AR/VR task10 that exploits TensorFlow’s li-
braries to detect multiple objects (such as keyboards, monitors, people, cats, dogs, etc...)
in the same image. Each object is identified using a label with a specific score. The lat-
ter, a decimal point number between 0 and 1, defines the accuracy (i.e., how sure is the
algorithm about the correct identification). A snapshot of an instance of OD is shown
in fig. 4.7, where different objects such as keyboards and monitors are detected accord-
ing to the aforementioned style. Appendix A.3 describes the high-level algorithm of the
implemented AR/VR task while next sections present a more detailed functioning.

Basic functioning and dual-thread approach

The AR/VR Task works outside ClickNF, thus, in a separate process. To make it work
together with ClickNF, an IPC mechanism (e.g., Unix Domain Sockets) is needed as pre-
viously described in section 4.4. Two unix sockets are used, one (SockIn for data input

10It is actually an AR task, due to the lack of interactivity from the user.
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Figure 4.7: Snapshot of Object Detection

and the other SockOut for data output11). The basic functioning of OD is straightfor-
ward. OD receives a frame trough SockIn from ClickNF, performs OD and sends back
the augmented frame to ClickNF.
However, in order to achieve better performance (i.e., shorten latency time) the actual

implementation is more detailed. Rather than working with a single frame at a time,
OD can retrieve frames while running TensorFlow and sending out frame. To achieve
such functionality, two threads working in a producer-consumer fashion way are used.
A thread (Receiving thread), working as the producer, continuously reads frames from
SockIn and inserts them into a queue shared with the other thread. The latter (AR
thread), whenever a frame is available in the queue, gets a frame from the queue, per-
forms Object Detection and sends the augmented frame through SockOut. See fig. 4.8 for
a better understanding.
Furthermore, in order to synchronize producer with consumer (i.e., informing con-

sumer that data is available), avoid race conditions and more generally make the shared
queue thread-safe, we used a condition variable working with a mutex (i.e., it means us-
ing a monitor [22]).
To avoid secondary race conditions we used some C++ advanced utilities for thread

safety exploiting a RAII 12 paradigm. In fact, the mutex is wrapped by a lock_guard
producer-side, and by a unique_lock consumer-side. The latter has the same behavior
of lock_guard13, with the exception that can release the lock before destruction. In our

11Note that naming is inverted compared to the one used in Click, since output for Click is input
for AR/VR Task and vice-versa.

12Resource Acquisition Is Initialization
13Lock and unlock happen respectively during construction and destruction of the object itself.
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Figure 4.8: Implementation of the AR/VR task: Object Detection

case, this is useful since we only need to make safety the popping from the queue, not
the whole TensorFlow’s Object Detection.
Finally, getFrameFromSocket() returns a null pointer if no frame is available.

This means client (ClickNF’s Socket element) has closed connection, namely the stream
is at the end. Thus, the Receiving thread inserts the null pointer in the queue and closes.
The AR thread, when retrieving the null pointer breaks its loop and terminates.

The core of Object Detection

To run the OD task an existing trained model has been used for the purpose. Thus, we
worked on the inference part of a Deep Neural Network algorithm rather than on train-
ing. The COCO-trained model ssd_mobilenet_v1_0.75_depth_coco [16], one
of the fastest having acceptable accuracy, has been chosen to allow the comparison of
NEAR with an on-device design, as later shown in section 5.3.1.
The actual TensorFlow’s Object Detection task is performed by the AR thread. First

of all, it initializes TensorFlow’s model and loads the dictionary of labels. Of course, the
dictionary must be consistent with (i.e., equal to) the one used for training. After that,
for each retrieved frame from the shared queue it, first the input tensors are extracted
from the frame and after that a TensorFlow session is launched with retrieved tensors as
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input.
To increase performances, the session internally exploits multi-threading using two

pools of threads, namely intra_op_parallelism_threads and inter_op_para-
llelism_threads, configurable by command line arguments. The first set is used
when the execution of an operation can be internally parallelized. The second set is used
when multiple nodes performs independent operations. By default, TensorFlow assigns to
the two pool a size equal to the number of total cores in the system, but we have experi-
enced better performance with other numbers, as later shown in section 5.3.1.
Moreover, note that it is not actually necessary to perform OD for each received

frame. In fact, the images we are considering have been extracted from a video thus
skipping the detection on some frames would have a negligible effect to the human eye.
Hence, the session actually runs once every N-times, where N is the step chosen by
the user. We call “skipped frames” those where OD is not applied. Anyway, in order
to avoid abnormal video artifacts, skipped frames are not completely ignored. In fact,
detection-related statistics of a frame where OD is actually applied are kept for the fol-
lowing N-1 (skipped) frames. This feature dramatically increases performance as shown
in section 5.3.2.
Finally, the session produces four output tensors, namely boxes, scores, classes and

num_detections. Boxes contains the coordinates of the two points (upper-left and
lower-right) that represent the rectangle surrounding the detected object. Scores rep-
resents the detection accuracy, as a decimal point number between 0 and 1. Classes
includes the ID of the identified item used as index to access the dictionary of labels.
num_detection is an integer specifying how many objects TensorFlow was able to detect
in the frame.

Drawing results

As last step, the algorithm draws the num_detection boxes, skipping detections with low
score, that is, under a threshold specified by command line arguments14. The drawing of
the results is made exploiting OpenCV’s utilities including cv::rectangle, to draw
the box given the boxes tensor, and cv::putText to write down label and accuracy,
given classes and scores output tensors.

CPU only and GPU-accelerated modes

OD has been designed to work in two modes: CPU-only and GPU-accelerated. Using the
former, OD exploits the two TensorFlow’s pools of threads as previously mentioned. The
latter goes beyond, by adding GPU support, resulting in dispatching computation among
both CPU (thus using TensorFlow’s threads allocated in the CPUs’ cores) and GPU.
This mode generally results in increased performance but may have counter-effects when
allocating a high-number of threads (cf. section 5.3.1).

14Default is 0.5.
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4.4.6 Encoder
The Encoder element is configured in push mode, with one input and one output port.
As already mentioned, Encoder must co-operate with Decoder, for instance, to synchro-
nize about the last frame decoded and to retrieve the HTTP header owned by Decoder.
Instead of using a communication channel, that would need one more port both in De-
coder and Encoder and a notification protocol, some Decoder ’s properties have been
made static and public, thus accessible from external components, like Encoder. The
complete algorithm is presented in appendix A.4.
The possible consecutive states of Encoder are the following.

• SEND_HTTP: It is the initial state. Encoder retrieves the HTTP Response
header stored in Decoder and forwards it to the next element.

• INITIALIZE: Encoder is receiving packets belonging to the first frame. At the
end of this state, FFmpeg’s structures are initialized.

• ENCODING: Encoder waits to receive a complete frame (using data buffering)
that is finally encoded using FFmpeg’s APIs. Following calls to Encoder enter this
state.

• LAST: It is the final state. Encoder understands the encoded frame is the last of
the stream and closes connection.

As previously mentioned, a counter-effect of using a Socket element is that the num-
ber of bytes read through socket are fixed and specified at configuration time. In fact,
it returns as much data as it can read, but the read is limited by a previously config-
ured buffer size15. However, a frame is usually bigger than 1448 bytes, moreover, it may
happen that Packets having length less than 1448 are received due to socket implementa-
tion. To deal with this inconvenience, data buffering is needed.
As basic functioning, Encoder copies the incoming packet in a buffer (frame buffer)

used by FFmpeg’s API to encode a frame. More specifically, based on the reading state
Encoder is, it must copy (part of) data from the buffer to its own variables. To clarify,
consider for example that Encoder receives a packet ‘p’ having 1448 bytes, where the
first 1024 are the last part of frame ‘n’ while the 24 bytes left belong to frame ‘n+1’. In
this case, Encoder is able to copy the first 1024 bytes to the buffer (that contains bytes
related to frame n) and the last 24 bytes to another temporary buffer. When packet
‘p+1’ is received by Encoder , the content of the temporary buffer is first copied to the
frame buffer, after ‘p+1’ content is copied.

SEND_HTTP

When Encoder ’s push method is called for the first time, being at SEND_HTTP state,
it retrieves the HTTP header accessing Decoder ’s class and pushes it to port 0. Thus, it
will be forwarded to the client, through TCP Server. Moreover, being the first packet, it
retrieves video’s width and height, that will be later used for encoding.

15In other words, it can read a certain number of bytes less or equal the buffer size specified during
configuration. Default is 1448.
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INITIALIZE and ENCODING

Received a complete frame, the encode function is called. If called for the first time (i.e.,
the first frame has been received), it initializes the needed FFmpeg objects and retrieves
the used codec from Decoder. After that, it performs FFmpeg’s encoding, and if a packet
is retrieved, it is properly written using av_write_frame and forwarded to the next
element. Specifically, Encoder uses a callback named writePacket, internally called
by av_write_frame, used to write in memory an encoded packet. Encoder has a ref-
erence to that area of memory and available packets are therefore forwarded to the next
element. Note that initialization must occur only once: following calls to Encoder enter
the state Encoding.

LAST

Encoder and Decoder keep their own frame counter16. When such frame counters
are equal Decoder ’s status is set to LAST, it means Encoder has receives the last
frame for that stream, thus connection must be closed. Hence, Encoder first sends
the last packet, using av_write_frame and finally writes the proper trailer, with
av_write_trailer including the TCP_DEL_FLAG_ANNO annotation to announce
to TCP Server to close connection.

Configuration parameters

Table 4.3 defines the possible parameters to use with Encoder in a Click configuration
file.

Name Description Values Default
VERBOSE Print verbose output True/1, False/0 False
CODEC Codec to use for encoding mpeg, flv, ... M 17

QMIN Lower bound for quality adjustmen-
t/sampling

> 1 10

QMAX Upper bound for quality adjust-
ment/sampling

> QMIN 42

PKT_MAX_SIZE Packets maximum size that En-
coder uses for fragmentation.

> 0 1448

Table 4.3: Encoder configuration parameters

4.5 Client
The client is a lightweight device that must be able to retrieve and display a stream-
ing media. To be compatible with the Proxy server, the media player must implement

16Decoder keeps how many frames has sent and Encoder how many received.
17Mandatory
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a SOCKS 4/5 client. VLC is a good, well-known and easy-to-use media player. The
choice of using such media player is due to the user-friendly configuration setup when
using SOCKS. Moreover, it provides both CLI, with the command cvlc, and GUI (us-
ing vlc).
For instance, to retrieve the a streaming media with Object Detection the client must

simply run the second command shown in listing 4.4.

Listing 4.4: VLC command line to play the streaming media
1 # connect to streaming server having IP 10.0.0.10, listening on port

8090 and streaming a MPEG1 video identified as video.mpg.
2 vlc http://10.0.0.10:8090/video.mpg
3

4 # same as before, but pass through a SOCKS proxy server having IP
address 10.0.0.100 listening on port 9000.

5 vlc --socks 10.0.0.100:9000 http://10.0.0.10:8090/video.mpg

Using the second command line, the proxy server, already configured to run Object
Detection, retrieves the native streaming media from the server and send the augmented
media to the client, as previously described in section 3.4. The output was shown in
fig. 4.7.

4.5.1 A note about SOCKS and transparency
NEAR’s implementation allows the use of AI-incompatible device in order to actually
deploy AR/VR services. This is done with without installing any additional software
server-side and with almost zero-impact on client. Those are the reasons why NEAR is
defined to be transparent.
To achieve a full-fledged transparency, meaning that no modifications are required

both client and server side, advanced network analysis techniques such as Deep Packet
Inspection [7] and classification might be exploited at the edge network.
On the other hand, we have chosen to use SOCKS since already implemented in

ClickNF18 and because it is highly-supported by most of media players. Nevertheless,
it has been ported to numerous hardware/software platforms.

18SOCKS v5 required light modifications compared to SOCKS v4.
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Chapter 5

Results

This chapter presents interesting results regarding different experiments. First, we argu-
ment the changes on performance when using the implemented RSS hash for optimized
dispatching of packets among different cores. The other two experiments show the ad-
vantages of using NEAR rather than an on-device approach.

5.1 Testbed
The framework used for implementation purposes presented in fig. 5.1 is composed by a
Raspberry Pi and two server machines, namely Freisa and Barolo, acting as proxy server
and client respectively. Note that the three devices are all located in the same LAN. In
this way, for testing purpose, client can directly connect to server without proxying. To
display the VLC media player output, Barolo is attached to a LCD screen. Finally, in
order to perform fast packet forwarding, Freisa’s interfaces eth1 and eth2 run DPDK
libraries.

Figure 5.1: Testbed
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5.1.1 Specifications
Table 5.1 shows the characteristics of the machines used in our testbed. Note that Freisa
and Barolo are two identical machines, with the difference that the former is equipped
with an NVIDIA GPU card and the latter has a LCD display attached. Both systems
are equipped with 2 CPUs, having 10 physical cores each one in HyperThreading mode,
resulting in a total of 40 cores (20 of them are virtual).
For multi-CPU systems (Freisa and Barolo), since each CPU is linked to its own

RAM, a Non-uniform memory access (NUMA) is used when a CPU needs to retrieve
data stored in the memory of other CPUs. Intel systems provides a point-to-point low-
latency interconnection, namely Intel® QuickPath Interconnect (QPI ) [25], for rapid
remote memory access from external CPUs.

Rasp. Pi Freisa Barolo
Role Server Proxy Server Client

CPU ARM Cortex-A53
4 cores @ 1.2 GHz

2x Intel Xeon R E5-2660 v3
40 cores @ 2.6 GHz

2x Intel Xeon R E5-2660 v3
40 cores @ 2.6 GHz

RAM 1 GB 64 GB 64 GB

Others Pi Camera HyperThreading, NUMA,
NVIDIA GeForce GTX 980

HyperThreading, NUMA,
LCD display

Table 5.1: Testbed specifications

5.2 RSS Hash
As discussed in section 4.1.2, a new method, namely RSS Hash, has been implemented in
order to optimize the dispatching of packets belonging to the same IP flow. Figure 5.2
illustrates the comparison between the legacy and the new proposed algorithm when
running an echo server-client experiment. In this experiment, we run an echo-server
ClickNF application using different number of CPUs, from 1 to 8, and we plot the num-
ber of messages per second1.
We did not experience substantially changes when using our algorithm. A possible rea-

son is that, when using RSS Mode, Although caching the hash computation in the mbuf,
the hash function used by DPDK, namely rte_softrss_be, is more onerous and com-
plex than the one used by Click, being a composition of XORs.

1The number of messages per second is given as statistics at the end of a ClickNF echo-client
application.
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Figure 5.2: Flow ID computation comparison

5.3 On-device vs Edge computing

In this section we compare a scenario where only a legacy device is used to implement an
AR/VR service with respect to the use of NEAR. As described in section 3.3, the expec-
tations are that NEAR better performs in terms of computational power, scalability and
flexibility at the cost of a slightly increased latency.

5.3.1 FPS comparison

As motivation for the initialization of this project, we wanted to highlight the quality
gain due to offloading computing power to the edge infrastructure. In this experiment,
quality is measured in terms of Frames Per Seconds (FPS).
Two different devices, namely Rasp. Pi and Freisa, used the same simplified Python

version of Object Detection. In this implementation, OD continuously extracts frames
from an input video, directly from local disk, and performs TensorFlow’s Object Detec-
tion on each one. For each iteration, a new frame is grabbed, OD is performed and boxes
and labels are being drawn. This process is repeated for each frame in the input video.
In this simplified implementation the augmented frame is simply discarded.
Note that we experienced similar results when comparing the simplified Python ver-

sion of OD with the one used by NEAR (that exploits TensorFlow’s C++ APIs). Thus,
we can consider the results in fig. 5.3 as being actually achieved when using NEAR.
For each frame i, two clocks are used to retrieve the exact current time. The first clock
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(t1 ) registers the time just after a complete frame is grabbed from video, while the sec-
ond one (t2 ) registers the time immediately after labels and boxes are drawn. The com-
plete formula to compute the instantaneous FPS (iFPS) is shown in eq. (5.1).

iFPS(i) = 1
clockt1(i)− clockt2(i) (5.1)

For the experiment, we used a sample video recorded with a smartphone displaying, in
one minute, office furnitures (monitors, chairs, desks, laptops, etc.). The video has been
recorded in Full-HD (1080p) at 30 FPS. Moreover, for comparison purpose, we converted
the input video to 360p at 30 FPS.
Figure 5.3 shows the results of the experiment. Each line is described by the mean

of the computed FPS(i) for each video source. During the experiment, we launched
OD using different number of threads to understand what are the optimal values for
intra_op_parallelism_threads and inter_op_parallelism_threads, the
two pools of threads previously described in section 4.4.5.
Finally, we enabled GPU-support for NEAR (both using C++ and Python Tensor-

Flow’s libraries). GPUs can be used besides CPUs to accelerate computing, improving
NEAR in terms of performance and scalability. Figure 5.3 shows a comparison between
the CPU-only and GPU-accelerated modes2.

Figure 5.3: FPS comparison: NEAR vs Raspberry Pi

2To be clear, in GPU-accelerated mode, both CPU (running the specified amount of threads) and
GPU are used.
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Considerations

At first glance, NEAR better performs than Rasp. Pi according to a 10x factor in CPU-
only mode and 15x in GPU-accelerated mode. Default values for both the pools of
threads are the number of logical cores available in the system, namely 4 for Rasp. Pi
and 40 for NEAR. However, NEAR-side, fig. 5.3 shows highest FPSs when using twenty
threads (in both pools). This can be explained if we consider that NEAR’s proxy server
runs on a NUMA system and, when using more than 20 threads, 2 CPUs are used. In
this way, the cache-coherence algorithm that takes place can lower the overall system
performance.
RaspberryPi-side, maybe due to the low number of cores the system is equipped, al-

though FPS are doubled when using 2 threads, they stay almost constant with the in-
creasing of the number of threads.
In GPU-accelerated mode, the FPS peak is shifted when using less threads. Specifi-

cally, the highest FPS are reached when using six threads, compared to the CPU-only
where they are achieved using twenty threads. In fact, GPU helps in terms of perfor-
mance up to a certain value of CPU threads, namely six. After that, FPS gradually de-
crease until performance are worse than using CPU-only mode. To understand this be-
haviour, we have first counted the number of operations assigned to CPU and GPU and
later noticed that when using less CPU threads, TensorFlow assigns more operations to
GPU rather than to CPU. Moreover, TensorFlow, when needed, copies data from CPU
to GPU to try to increase performance. However, when using a high number of threads,
the number of copies from CPU to GPU linearly increases, resulting in worsening perfor-
mance due to copy-overhead.

5.3.2 Latency comparison
If on one hand offloading computing capabilities to a third party dramatically increases
performances, on the other hand latency might be affected. In an on-device approach,
latency can be considered to be zero, since data is retrieved where it has been generated.
Instead, although taking advantage of (v)MEC to dramatically reduce latency overhead,
NEAR introduces non-zero delay since data must be sent trough network anyway.
To quantify such delay, we considered a scenario where a client retrieves an on-line3

streaming content from the Raspberry Pi. Client starts a vlc application to connect to
server at time t0. Server receives the request and starts content streaming. After ten sec-
onds, server stops media streaming and closes connection. Client receives the last packet
and automatically closes vlc at time t1. Hence, the computed playout time with proxy-
ing is Pp = t1 - t0. Moreover, we launched the same experiment without using proxy in
order to compute a direct playout time that we experienced being Pd = 10.19 seconds.
Thus, we subtracted the latter to the previously computed playout time with proxying
Pp to retrieve the playout delay D = Pp - Pd, shown in table 5.2.
To evaluate the overhead given by each NEAR component, we have considered three

different scenarios in which media streaming is achieved using either only a proxy server

3Differently from the previous scenario where media was read by file, in this experiment the Pi
Camera is used for on-line streaming.
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fig. 5.4a, or proxy including re-encoding fig. 5.4b or the complete implementation with
Object Detection fig. 5.4c, using different values of step (cf. section 4.4.5) in CPU-only
or GPU-accelerated mode.

(a) with Proxy (b) with re-encoding (c) with Object Detection

Figure 5.4: Configurations for latency comparison

Proxy Re-encoding Object Detection

0.0015 1.32
CPU-only GPU-accel.

Step=10 6.21 5.96
Step=1 21.1 18.6

Table 5.2: Latency comparison

Considerations

Considering the experiment previously described, table 5.2 shows the retrieved results in
terms of playout delay (D), in seconds. First, it is important to note that proxying adds
negligible delay, in the order of some milliseconds, compared to a end-to-end client-server
connection. Second, stream re-encoding slightly increases delay adding a little over one
second. This is still a good result if we consider a non-real time task.
However, the real bottleneck is given when performing Object Detection (OD). In

CPU mode, when using a step value of 10 (i.e., OD is run once out of ten frames) video
is still playable despite a delay of about 6 seconds. But, constantly applying Object De-
tection for each frame, meaning using a step equal to 1, does make streaming unplayable
with a dramatical increased delay up to 21 seconds4.
Furthermore, if on one hand setting a step value of 10 makes CPU and GPU modes

comparable, there is a visible difference when using a step value equal to 1 (i.e., OD

4The resulting steaming video is really unplayable since VLC media player skips frames that are
too late.
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is performed for each frame). This implies that GPU-accelerated mode gives substan-
tial improvements if OD is widely exploited, meaning with a low step value. Thus, the
fact that latency playout has comparable values with “high step” is reasonable since in
this scenario the overhead is due to the used framework5 rather than OD. To sum up,
GPU does not help since using the lowest step value is not feasible with the implemented
ClickNF framework.
This last result suggested to plot the evolution of the playout delay (D) when increas-

ing the number of step in GPU-accelerated mode. The graph, shown in fig. 5.5, is com-
posed by a first part where delay noticeably decreases until a step value of Sx = 4. After
that, increasing the number of steps does not imply a substantial drop of delay. This
means that Sx is a good trade-off value for achieving good performances and output
quality6.

Figure 5.5: Playout delay evolution (GPU-accel. mode)

5ClickNF, and its elements, mainly Encoder and Decoder.
6Output quality in terms of refreshing frame statistics with updated information (cf. sec-

tion 4.4.5).
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Chapter 6

Conclusions

This final chapter finalizes the thesis work, summarizing the goals achieved and present-
ing some possible future works. As main achievement, we designed and implemented a
fully-working prototype, namely NEAR, to be used for enabling legacy media devices,
such as IP cameras, IoT devices, speakers and microphones, to transparently perform
AR/VR tasks. NEAR consist on a proxy server running a NFV framework, namely
ClickNF, and an AR task, Object Detection. The first provides flexibility and scalability
to the whole architecture. For instance, NEAR is transparent to the endpoints (client
and server) since they do not need special setup or hardware components. Neverthe-
less, clients can still request the legacy service without passing through NEAR, directly
communicating with the legacy device.
To meet the ultra-low latency and high-computing power constraints required by those

services, NEAR must be deployed at the edge infrastructure, in a network located near
server and client, and should run on scalable machines (multi-core, multi-CPUs, ...) in
order to perform the AR/VR task with satisfying quality results. To meet those require-
ments vMEC technology has been used. Specifically, we implemented NEAR on top of
ClickNF, an existing NFV framework.
The well functioning of NEAR is also highlighted by the satisfying achieved results.

In terms of performance (i.e., media output quality), NEAR has shown to be up to fif-
teen times better than using an on-device approach. As regards to latency, already aware
to obtain by design slightly worse results compared to traditional implementations, and
despite the need to implement framework optimizations, NEAR actually well performed
also on this scenario resulting in adding an overhead of some unit of seconds in the worst
case.
Although most of time has been spent in the implementation part of the project,

NEAR is a prototype and there are still some useful features to add. First, NEAR has
been tested with legacy codecs as MPEG1 and FLV, running on not-streaming-oriented
protocols such as HTTP. This decision was necessary since, at the very beginning of the
project, those were the only compatible with the set of framework used namely FFmpeg,
Gstreamer (another set of media libraries) and OpenCV. In fact, we wanted to directly
exploit FFmpeg and GStreamer[5] to avoid to “manually” perform stream re-encoding.
However, due to unfeasibility of this approach, we had to change design keeping legacy
technologies for convenience. Thus, modern codecs having higher compression factor
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(such as H.265) can be tested and, eventually adapted to NEAR to work with.
Furthermore, NEAR currently supports playout of a streaming media from one server

to one client. It means that our prototype cannot manage a scenario where multiple
clients request one ore more streaming media to one or more servers. However, during
implementation this aspect has always been kept into account, in order to ease the devel-
opment of a multi-stream architecture in the future.
Finally, the ClickNF environment should be optimized, to allow speeding up perfor-

mances in GPU-accelerated mode, and better exploited, implementing cross-layer opti-
mizations. For instance, content caching with duplicate request suppression can be im-
plemented to lower data overhead when multiple clients request the same stream. More-
over, client could be slightly modified to run remote commands (e.g., using REST APIs)
that would allow to control (part of) the ClickNF graph at run-time. This would fur-
ther increase client-side flexibility, for instance, allowing client to dynamically choose
the AR/VR task to perform, or to setup media-related parameters (e.g., quality) at run-
time.
Despite NEAR can be still enhanced, it is a valid and practical solution that allows

common mobile and IoT devices (IP cameras, smartphones, microphones, speakers, ...)
to perform AR/VR asks in a transparent, flexible and lightweight way.
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Appendix A

Algorithms

A.1 App Classifier algorithm

Input: Packet p1
if p1 contains SOCKS_APP_FLAG_ANNO or p1 contains
TCP_DEL_FLAG_ANNO then

send p1 to port 1;
end
else

send p1 to port 0;
end

Algorithm 1: App Classifier algorithm
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A.2 Decoder algorithm

Input: Packet p
if D:status = HTTP_PARSE then

D:http_header ← GET_HTTP_HEADER(p);
D:status ← INITIALIZE;
D:fd ← GET_FILE_DESCRIPTOR(p);

end
else

if packet contains TCP_DEL_FLAG_ANNO then
while queue.size > 0 do

decode();
end
D:status ← LAST;
D:nframe ← lastframe;

end
else

put p in queue;
while queue.size > QUEUE_SIZE do

if D:status = INITIALIZE then
initialize Decoder ;
D:status ← DECODING;

end
decode();

end
end

end
Algorithm 2: Decoder algorithm
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A.3 – Object Detection algorithm

A.3 Object Detection algorithm

Input: String graphPath, String labelsPath, String sockIn, String sockOut, Int
nthreads, Int threshold, Int step

— Main thread —
Create socket bound to path sockIn;
Connect to sockOut;
foreach client do

Run Receiving thread;
Run AR thread;
Add Receiving thread to threadpool;
Add AR thread to threadpool;

end
foreach thread t in threadpool do

join t;
end

— Receiving thread —
while client is connected do

Read frame from sockIn;
lock_guard(mutex);
Push frame into queue;
condv.notify_one();

end

— AR thread —
Load graph from graphPath;
Load labels from labelsPath;
while true do

condv.wait(uniquelock(mutex), !queue.empty());
Pop frame from queue;
lock.unlock();
if frame is null then

break;
end
frame ← ObjectDetection(frame);
Send frame to sockOut;

end
Algorithm 3: Object Detection algorithm
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A.4 Encoder algorithm

Input: Packet p
if status = HTTP_SEND then

send D:http_header to port 0;
status ← INITIALIZE;

end
else

buffer[pos] = p.data;
pos ← pos + p.len;
if pos = size then

if status = INITIALIZE then
initialize Encoder ;
status ← ENCODING;

end
encode();
if D:status = LAST and D:nframe = lastframe then

send FIN;
end
pos ← 0;

end
end

Algorithm 4: Encoder algorithm
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Access Control List (ACL) is a list of permissions, linked to an object (file), that
specifies which users have access to that object. The access can be usually read,
write, or both.

Application Programming Interface (API) is a set of methods, protocols and li-
braries that makes it easier to develop a computer program by providing high-level
building blocks, which are then combined together to achieve the desired function.

Artificial Neural Networks (ANN) are inspired by the biological neural networks
with the function to learn tasks by considering real-life examples. An ANN is based
on a collection of connected nodes called artificial neurons. Each connection, like
the synapses in a biological brain, can transmit a signal from one artificial neuron
to another.

Artificial Intelligence (AI) is intelligence demonstrated by machines. It is seen as an
imitation of the human intelligence that learning from practice solves new and more
complex problems. It usually deals with analyzing big quantities of data in a small
amount of time.

Augmented Reality (AR) is a computer-generated interactive experience where com-
mon objects are displayed with additional useful information. Usually no specific
hardware is needed.

Capital Expenditure (CaPex) is the cost to develop or buy long terms assets for a
product or system.

Cloud Computing is a model for enabling convenient and on-demand services using
a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with mini-
mal management effort.

Codec is a software/hardware utility or file rapresentation used to compress (at source)
and decompress (at destination) media content in order to minimize system storage
and network bandwidth.

Direct Memory Access (DMA) is a mechenamism that allows compatible periph-
erals to directly access the internal memory to read/write blocks of data, instead
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of using traditionals CPU’s interrupts for each data request, resulting in an overall
increase of performances.

Internet of Things (IoT) is a set of network devices able to interact and exchange
data each others using the Internet. Common scenarios are vehicles and home ap-
pliences.

Machine Learning (ML) is an application of Artificial Intelligence (AI) that exploits
statistical models to provide systems the ability to automatically learn and improve
from experience without being explicitly programmed.

Multi-access Edge Computing (MEC) sometimes shortened “Edge Computing”, is
a network architecture framework that enables Cloud Computing facilities and an
IT services at the edge of a (cellular) network.

Network Function Virtualization (NFV) is a network framework concept that uses
the technologies of IT virtualization to softwarize hardware devices deploying net-
work functions in order to create building blocks that are usually connected to-
gether.

Non-Uniform Memory Access (NUMA) is a memory architecture defined for mul-
tiprocessor systems where memory access time depends on the logical position of
the processor. In NUMA architectures, a processor can access its own local memory
rapidly than shared memories (local to another processors).

Operating Expenditure (OpPex) is the cost needed to the managment of a product,
service or system.

Resource Acquisition Is Initialization (RAII) is a widely known paradigm used
in object-oriented programming. Objects exploiting RAII, have a constructor that
internaly allocates/acquires a resource that is, at the end, automatically deallocat-
ed/released in the destructor. It is used to prevent issues concerning memory leak-
age and race conditions.

Streaming media is a multimedia content received and played by an endpoint (client)
while being delivered by a provider (server). The term is in contrast with media
downloading, where the content is played by the user only after having received the
whole media file.

Transcoding is the process of converting the codec (and thus the format) of a media
content. The destination codec can also be the same (with eventual different media-
related options).

Virtual Reality (VR) like AR, is an interactive experience. The difference with AR is
that VR creates a full-fledged virtual envirorment where the user, impersonating an
avatar, can enjoy a dynamic experience (walking, shooting, playing tennis, ...).
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