
POLYTECHNIC OF TURIN

Master of Science in Computer Engineering

Master’s degree thesis

Design and implementation of
tools for automatic detection of
web page rendering problems

Advisor

Prof. Marco Mellia

Co-Advisor:

Dott. Ing. Martino Trevisan

Candidate

Michelangelo Sorice

Company tutor
Stefano Traverso, PhD
Ermes Cyber Security

Academic year 2018 – 2019

Summary

In the context of modern Internet, different actors can be identified. End users
access and enjoy contents published by websites, on their side websites need to
monetize their business and to do this they generally rely on advertisement. Nowa-
days advertising has become a smart and data-driven task, to increase adverts
effectiveness, specific ads are targeted to specific user according to their prefer-
ences. This is possible thanks to other actors called web trackers which, exploiting
constantly evolving techniques, are able to collect a wide range of user’s personal
data and exploit it to profile their tastes with threats for privacy and security.

Plenty of tools have been developed aimed to mitigate the threat represented by
trackers, yet the protection provided by these tools is in most of cases actuated by
blocking traffic towards and from tracking services which, in many cases, are also
content providers hosting web resources that are crucial for the correct rendering
of websites relying on them.

For this we need to refine tracker blocking tools in order to make them aware
of eventual problems they could cause to the rendered page. Understand-
ing when a page is not properly rendered is not a simple task: first we need to
identify which parts of pages that nowadays are full of advertising and noisy con-
tents, actually need to be preserved, in other words we have to identify sections
which contain core contents. Knowing that, we would be able to refine the rules
driving tracker blockers in order to preserve user privacy without compromising
page functionalities.

The aim of this research work has been developing a solution enabling
the automatic recognition of core sections of web pages thus allowing auto-
matic detection of eventual rendering problems. This problem has some points in
common with the web content extraction problem which has been subject of several
previous studies but, as far as we know, no one had targeted this specific aspect
yet.

The proposed solution is based on the assumption that core and func-
tional parts of the page tend to be less mutable with respect to less rele-
vant ones especially considering relatively close in time visits. From this starting
point, we developed a visual approach to the problem based on the comparison of
screenshots collected during multiple, close in time visits to the same page aimed

2

 Core Sections
 Detection

Layout
Detection

Custom Browsertime
instance

Raw Screenshots
WWW

Layout 3

Layout 2

Layout 1

Core Sections Map

Figure 1: Schema representing the system pipeline.

at discerning static (and thus more relevant) sections from more mutable ones. To
the limit of our knowledge this is an innovative approach even in the context of
web content extraction.

The developed system pipe, presented in Figure 1, has three stages: data col-
lection, layout detection and core sections detection. During the data col-
lection phase, we perform multiple visits to a certain website collecting captures
of the rendered pages within a limited amount of time. This operation is per-
formed using Browsertime 1 which is a flexible, open source tool able to instantiate
a web browser and perform automatic visits to a website collecting several types of
metrics, including page captures.

To evaluate the mutability of page contents it is crucial to compare captures
showing the same page layout, meaning the same spatial disposition and
shape of static and dynamic contents. Unfortunately, nowadays even simple
websites tend to render the same page with multiple layouts usually differing in
the amount, disposition and shape of dynamic contents. The second stage consists
in processing our screenshots by mean of an algorithm able to detect the different
page layouts being rendered by a website and group captures implementing the
same one.

The layout detection algorithm compares captures attempting to state if they
implement the same layout or not. Comparisons are performed splitting both cap-
tures into a grid of identical sub blocks, then we compare corresponding ones and
create a changesMap keeping track of which blocks differ among the considered
captures. This map is evaluated using three routines: the first one computes the
percentage of differing blocks, under a certain threshold we assert that captures
implement the same layout because of their strong similarity. The second one per-
forms the same kind of evaluation but limited to blocks laying within the core part
of the capture. We perform a crop, defined by the algorithm parameters, of the
central section of the capture: in the vast majority of websites this section con-
tains less mutable contents in which differences due to differing layouts are easier
to spot. Thanks to this second routine we are able to detect that captures in Fig-
ure 3.5 belong to the same template despite the noise produced by the differing

1For further details https://www.sitespeed.io/documentation/browsertime/

3

https://www.sitespeed.io/documentation/browsertime/

background banners, Figure 2b shows a visual representation of the changesMap
derived from captures comparison with differing blocks filled in black and the core
area highlighted in green. The third routine is based on a different intuition: in
most cases the difference among two layouts is the presence of an additional ele-
ment (usually a banner), the effect of this addition is always that of moving all the
static contents under the new banner, this change results in particular patterns on
the changesMap which can be exploited in the layout detection task. Thanks to
this qualitative rather than quantitative measure of layout similarity, we are able
to group captures even in extremely noisy pages as those showed in Figure 3 in
which almost all the page consists of dynamic and thus non relevant contents.

(a) Evaluated captures. (b) Derived changesMap.

Figure 2: Captures grouped thanks to core level similarity evaluation.

Figure 3: Captures grouped exploiting changesMap patterns evaluations.

Once we obtain a set of captures implementing the same layout, the core sections
detection algorithm compares them to identify the mutable parts of the page. The
comparison operations are similar to those performed for the layout detection stage
but we use a more fine grained grid. After performing a full mesh of comparisons
we obtain a set of changesMap, which are evaluated to take a final decision over the
nature (static or mutable) of each block. The final output is an accurate, punctual
map of core and mutable sections of the page.

The algorithms were tested using different datasets. For layout detection we
considered a set of ten websites differing for the complexity and the amount of
rendered layouts, one hundred captures were collected for each test case. For this
dataset we built the ground truth by hand, providing a file containing the optimal
grouping for each test case. For core sections detection instead we produced a
synthetic dataset: we implemented an angular application able of generating several

4

page layouts composed of dynamic sections (whose content could randomly change
at any visit) and static ones. Given a page configuration the page generator
produces also the corresponding optimal changesMap which is used as ground truth.
Five page layouts were defined inspired to common modern pages layouts, we built
our synthetic dataset by collecting one hundred captures for each of them.

The complexity of our one of a kind problem implied the need of designing
and implementing from scratches an innovative solution along with a whole testing
system and proper datasets, it required three months for the implementation. We
spent over 150 hours testing and refining the configuration parameters on
both algorithms using a low budget hardware configuration. For the layout
detection algorithm, we evaluated over 400 possible configurations, setting step
by step its 17 parameters in order to find the optimal trade off among accuracy
and time performances. The best performing configuration achieved the following
results: on average the 98.6% of captures is assigned to the correct layout and
the 95.1% of layouts is identified, in the 80% of test cases the algorithm
performed a perfect detection2. The average run of the algorithm on a set
of one hundred captures lasts 40.6 seconds. We obtained equally outstanding
performances in core sections detection achieving the 100% of accuracy in all
tests cases, we found that the same accuracy could be achieved limiting the amount
of captures evaluated for each test case down to a minimum set of 30 units being
able to perform a perfect core sections detection in 63.2 seconds.

During the research work, the tackled problem revealed its complexity due both
to the logical complexity of deciding when the functionality of a page is compro-
mised and to the inherent complexity and variety of modern websites. We were not
able to complete a system for the automatic refining of tracker blocking tools rules,
yet the developed solution provides a fast, accurate and above all general
purpose way to identify the actually relevant parts of a website, enabling
future studies to measure the effects on the rendering of these contents of tracker-
blocking tools. Moreover the visual approach adopted introduces an innovative
paradigm that, in future studies, could be further explored by content extraction
techniques. The developed system itself has margins for improvements: larger and
more complex datasets as well as more extensive tests could allow further refining
of parameters and prepare the system for use in the wild web.

2100% of captures correctly classified and all templates identified.

5

Contents

1 Introduction 7
1.1 The Internet Ecosystem . 7
1.2 Web Trackers and Web Tracking . 8

1.2.1 Tracking Techniques . 8
1.2.2 Privacy Threats . 9

1.3 Protecting from Web Tracker . 10
1.4 Motivations . 10

2 Related Work 12
2.1 Wrapper Based Approaches . 12
2.2 Methods Based on Templates . 14

2.2.1 Template extraction through hyperlink analysis 15
2.3 Methods Based on Blocks . 16

2.3.1 DOM based approaches . 17
2.3.2 Semantics based approaches 19
2.3.3 Vision based approaches . 20

2.4 Limitations of Known Approaches 21

3 Proposed Solution 23
3.1 Solution Overall Design . 23
3.2 Data Collection . 25

3.2.1 Docker . 25
3.2.2 Browsertime . 27

3.3 Page Layout Detection Algorithm 29
3.3.1 Algorithm workflow . 30
3.3.2 High level and core level similarity 36
3.3.3 Pattern search . 38
3.3.4 The low level banner problem 41

3.4 Core Sections Detection Algorithm 45

6

4 Data Collection and Tests Setup 48
4.1 Data Collection Setup . 48
4.2 Layout Detection Testbed . 51
4.3 Core Sections Detection Testbed . 53
4.4 Datasets . 57
4.5 Test suites . 58

4.5.1 Layout Detection test suite 59
4.5.2 Core Sections Detection test suite 60

4.6 Hardware configuration . 60

5 Results 61
5.1 Layout Detection parameters tuning 61
5.2 Core Sections Detection parameter tuning 70
5.3 Final results summary . 72

6 Conclusions and Future Work 75
6.1 Considerations on the tackled problem 75
6.2 Our solution and possible improvements 76
6.3 Future work . 76

A Tables of parameters 78
A.1 Layout Detection Parameters . 78
A.2 Core Sections Detection Parameters 80

Bibliography 81

7

Chapter 1

Introduction

Nowadays web surfing and online interactions represent a consistent part of our
daily activities. We are constantly connected, and we are constantly exchanging
data. Despite this deep interactions we are not completely conscious neither of the
real volume of data that we share nor of the nature of these informations. Being
our lives so strictly influenced by the Internet, awareness of how it works, that is
how data are exchanged and how they can be used to generate profit, is crucial
both for people and companies in order to not underestimate possible threats and
avoid the unwilling disclosure of sensitive informations to third parties.

1.1 The Internet Ecosystem
Within the modern web ecosystem we can identify four main kinds of actors. First
we have websites which in many cases offer and eventually produce contents. These
contents are, in the vast majority of cases, freely available to end users and that is
the reason of the great success of Internet. A relatively unlimited amount of news,
knowledge, entertainment and literally any kind of content which can be conveyed
through the Internet media is available for free 24/7.

Of course content producers and deliverer must have an economic return from
their work in order to build a sustainable business on it. Ever since the first years
of widespread adoption of Internet, the vast majority of services and websites on
it have based their business model on advertising, this is no wonder if we think
to the unique ability that the web has showed in permeating every aspect of our
lives, becoming the perfect field for advertising campaigns. We can define in Ads
Providers the second type actor of modern web.

In relatively recent years a new trend raised in the web advertising world based
on the consideration that for adverts to be effective, reaching an high number of
end users is not nearly as much effective as reaching those people who are more
likely to be interested in the sponsored product. Thousands of services are born on

8

1 – Introduction

the Internet that generate profits by collecting a wide variety of data and exploiting
them to create complete profiles of users in order to target them with customized
advertising contents, this phenomenon is known as Online Behavioural Advertising
[2] and these services are known as Web Trackers, the third type of actor of the
Internet ecosystem.

The last actor moving within this mutable world, are services able to exploit user
profile data collected by trackers to deliver the most effective ads to each user. This
services are know as Ad Exchange (AdX) and they implement a mechanism called
Real Time Bidding Advertising involving all the actors identified so far [1]. We can
illustrate this mechanism in a simplified way with an example: as soon as a user
attempts to navigate towards the website of a content publisher he is recognised
exploiting one of many techniques described below. Once he user is identified, it is
possible for the website to access its profile data which are forwarded towards an
AdX service, the ad exchange triggers an auction among the ads providers to gain
the possibility of publishing their ads on the page rendered to the user. Suppose
that this user is movie enthusiastic, the ads provider will be conscious about this
thanks to the user profile built by trackers thus movie sponsors will submit their
bids and attempt to gain a spot on the rendered page, the whole process including
identification, auction and rendering, lasts only 10 to 100 milliseconds.

1.2 Web Trackers and Web Tracking
When a user interacts with a web page it is observed both by “first parties" that
are the actual visited website and “third parties" which usually consist of hidden
services gathering informations for analytics, social integration widgets, advertising
and more. Third parties can reconstruct users’ browsing history exploiting several
techniques aimed to uniquely identify each user. In this section we analyse how
these services work and which threats can derive from this practice.

1.2.1 Tracking Techniques
As said all tracking techniques are based on mechanisms aimed to uniquely identify
users. The most common way to perform this task is by using Cookies. Cookies
are described in [3] as a mechanism to manage state over HTTP: being HTTP,
which is the transmission protocol which the great part of web communication is
based on, a stateless protocol and thus unable to distinguish requests coming from
different users, cookies were born as a mechanism to enable associating unique
identifiers to users in order to recognize their future interactions by requiring web
clients to present those identifiers at each request. As previously said, when users
interact with a website they get in contact with a certain number of "third parties",
usually these services host resources as HTML, images, JavaScript and CSS which

9

1 – Introduction

are crucial for page rendering, any time the user’s web client performs requests to
retrieve these resources they can set and read previously set cookies.

Among tracking techniques, those based on the storage of some kind of string
identifying users are known as Storage Based Techniques. Cookies go under this
category and tracking techniques based on them have been developed in several
different flavours. The major problem with cookie based techniques is that cookies
are not persistent: some kind of cookies, known as session cookies, are deleted as
soon as the browser is closed but even the so called persistent cookies have an
expiry date, moreover it is quite simple for end users to manage and delete cookies
on their web browsers.

During years trackers have found several ways to bypass this problem. Tracking
methodologies have been developed that persist cookies by exploiting different stor-
age locations, as Adobe’s Flash Player Local Shared Objects (in this case we talk
about Flash Cookies [4]) or web cache. By exploiting multiple storage locations
and tracking techniques at the same time, cookies persistence capabilities have been
dramatically increased up to the point of creating objects able to regenerate them-
selves that are extremely difficult to delete as demonstrated by projects like Samy
Kamkar’s "Evercookie" [5].

In addition to the cited ones, new methods of tracking are born that do not rely
on any kind of cookie. It has been proven that it is possible to uniquely identify
web clients by exploiting some browser features and plugins to create a fingerprint
of the particular system which is running the client [6]. This fingerprint is not
something users can easly delete as it is strictly related to the specific browser,
plugins, hardware configuration and operating system used. Several techniques can
be classified under this category which are based on a variety of mechanisms ranging
from browser benchmarking [7], to the analysis of the way in which different web
browsers render certain graphic elements based on <canvas> HTML tag [8].

1.2.2 Privacy Threats

Exploiting the described techniques, web trackers are able to associate a user to its
browsing history which is tightly linked to a whole set of personal informations. The
browser history can reveal our location, employment status, sexual and political
orientations, health condition, shopping habits and preferences. The amount of
collectable informations is not limited to the list of visited pages. Not only third
parties are usually aware of the first-party page url from which a certain user has
been redirected to them thanks to the HTTP referrer header, but they are also able
to know the title of the original first-party page if it embeds scripts from the third
party, in some case first parties voluntarily share even more informations.

Web tracking is not only a privacy threat: data collected with fingerprinting
techniques can also be used to infer detailed informations about the tracked device

10

1 – Introduction

hardware and software configuration. In case of single end users this can be consid-
ered a minor problem, but things are different for structured companies. Exploiting
device fingerprints attackers could detect the usage of obsolete hardware or software
versions and thus design specific attacks to target known vulnerabilities.

1.3 Protecting from Web Tracker
As described above, threats for users’ privacy but also for cyber security systems
coming from web tracking are real and constantly evolving. On the other hand
there is no explicit policy describing what a website is allowed and what it is not
allowed to track, as a consequence the web tracking phenomenon has often been
growing within a regulatory vacuum [9].

Governments and developers are getting more and more conscious about the
problem and working to find effective solutions. The recently approved General
Data Protection Regulation - GDPR [10], clarifies what makes for valid user con-
sent: consent must be freely given, users must be provided with specific and un-
ambiguous informations about what that consent is about and approval must be
indicated through an express affirmative act. Another effort in this direction is the
DNT - Do Not track header field, developed as an efficient way to express users
preferences regarding tracking in HTTP requests [11].

Although these attempts are necessary steps towards a solution, they are still
far from being able to solve the problem. It is still difficult to perform an effective
control over the correct and integral application of piece of legislation as the GDPR,
while studies have showed that systems like DNT headers are often ignored by
websites [12]. As a consequence many savvy users begun relying on client side
tools to tackle the tracking problem. These tools most commonly come in the
form of browser extensions, their working principle is simple despite the underlying
implementation may be not. The idea is that of defining a set of rules to distinguish
tracking and not tracking HTTP requests in order to block the latter while allowing
the first.

Several studies provided evidences that these tools significantly outperformed
other tracking protection methods such as the DNT header or the “Disable third
party cookies" option present in several browsers [13], [14], [15]. Some of these
tools also claim the ability of improving user quality of experience by reducing the
amount of resources retrieved at page load and thus providing a speed boost to
navigation [16].

1.4 Motivations
Despite ad-blocker and tracker-blocker tools resulted to be effective in countering
the tracking problem, their adoption and use is not completely free from side effects.

11

1 – Introduction

As said, services acting as trackers are usually hosts of resources which, in some
cases, are crucial for the first party page in order to be properly rendered and
correctly work, as a consequence blocking all requests towards this kind of services
can result in an unreadable or not properly working first party page.

The aim of this thesis is to examine a possible approach for the automatic and
context independent detection of core contents of web pages, that is the part of
the web page we do not want to be affected by tracker blocking tools in order to
identify broken pages when using these tools. This document is organized as follows:
chapter 2 goes through some related work in this field and discusses limitations of
known approaches and differences with respect to the proposed solution, chapter 3
is about the design process of the implemented system and describes in details how
it works and the reasons behind design choices, chapter 4 explains the test system
design, the dataset used and how test data were collected, chapter 5 presents the
results achieved by the implemented solution, finally chapter 6 evaluates critically
the obtained results and discusses possible improvements and further developments.

12

Chapter 2

Related Work

The task of identifying core contents in web pages has been the research topic of
several studies ever since the born of Internet. In fact solving this base problem
is crucial to target several higher level problems. We might want to extract core
page informations in order to provide input for the indexing of a search engine
or in order to identify duplicated contents among web pages. Another common
task is that of creating automatic tools for the adaptation of web pages rendering
on small screens without the need of implementing display specific versions of the
same page. Yet another application could be the evaluation of performances for
tracker blocking tools, in order to understand if their adoption prevents the normal
or anyway non functional rendering of the page. In general the tackled problem is
that of eliminating the noise given by ads and non meaningful contents of pages,
the approaches and techniques developed have undergone a long evolution process
which we can consider almost parallel to that of the Internet itself and especially
of web design.

2.1 Wrapper Based Approaches

During the first years of research the attempts to solve the problem used to rely on
the implementation of site specific and partially hand-crafted tools called wrappers
able of identifing data of interest and converting them into a more easily processable
format. Several approaches have been developed to address the issue of generating
accurate wrappers with small effort and in [17] a taxonomy of these methods is pro-
posed despite specific implementations often take advantage of multiple techniques
to accomplish their task.

Languages for Wrapper Development : one of the first attempts to address
wrapper generation was the development of specific languages to assist the

13

2 – Related Work

user in this task. An example of these intermediate mapping languages is We-
bOQL1 [18], which is based on a middleware architecture for mapping source
data in a common and more flexible data model. WebOQl exploits ordered arc-
labelled trees called hypertrees to represent data, hypertrees can have internal
or external arcs, the first used to represent structured objects the latter to de-
scribe references (usually hyperlinks) among objects. In this way it is possible
to create an alternative representation of a web page in the form of a graph
tree. Along with this data representation WebOQl defines a query language
designed for performing complex restructuring operations over hypertrees and
for hypertext navigation thus enabling restructuring page informations accord-
ing to processing needs.

HTML-aware Tools : in this group we have those tools relying on the inherent
HTML structure of pages in order to accomplish data extraction. These algo-
rithms usually generate a parsing tree mirroring the HTML hierarchy of the
page and then generate rules for the automatic or semi-automatic extraction of
data from this hierarchy. This is the approach adopted in the W4F, the World
Wide Web Wrapper Factory project [19]. W4F consists in a toolkit of different
instruments able to generate wrappers defined through a declarative specifica-
tion language. These wrappers have the capability of retrieving web contents,
performing a clean-up of the HTML, parsing it into an abstract tree on which
extraction rules are applied and finally mapping the extracted informations
within a data structure suitable for the application purposes. The HTML ex-
traction rules consist of declarative rules expressing a simple navigation along
the tree and selection of pieces of informations.

NLP-based Tools : under this category we find those tools exploiting basic natu-
ral language processing techniques such as filtering, part-of-speech tagging and
lexical semantic tagging in order to derive the relationships existing among
phrases in a document and thus easing the derivation of extraction rules. One
of the most known implementations of this paradigm is WHISK [20]. This
specific tool exploits supervised learning to induce data extraction rules given
a set of hand-tagged examples. Through the supervised learning process it
is possible to learn guidelines which can be implemented into regular expres-
sion based rules able to recognize the context and the delimiters that make a
certain phrase relevant for a certain domain.

Wrapper Induction Tools : are somehow similar to NLP-based solutions as
they are capable of generating delimiters-based extraction rules given a set of
training examples. The main difference is that delimiters are not identified ac-
cording to linguistic or semantic constraints but rather according to structure

1Web Object Query Language

14

2 – Related Work

and formatting features of web pages able to implicitly suggest the relevance
of the pieces of information they wrap. Tools belonging to this category are
in this sense more oriented to HTML pages content analysis with respect to
NLP-based solutions. A representative example of this approach is STALKER
[21].

Modelling-based Tools : this kind of tools take as input the high level structure
of any object of interest, then analyse the content of the page looking for
structures conforming to the targeted ones exploiting algorithms similar to
those used by Induction-based tools to locate content delimiters. The targeted
objects are user defined combinations of primitive data structures such as
tuples, lists, tables that allow a user to abstract from technical details of the
targeted patterns like HTML tags or formatting operators which are more
related to the low level implementation of the extraction problem. A well
known application exploiting this paradigm is DEByE[22].

Ontology-based Tools : the last presented family of tools relies directly on data
meaning rather than on their structure to perform data extraction. This ap-
proach exploits domain knowledge bases to support capabilities of semantic
search, moving the analysis to an higher abstraction level with respect to
plain keywords search. Given a specific domain it is possible to build an on-
tology, which is the set of concepts and relationships used to represent and
describe that domain. An ontology classifies the terms that can be used in
a particular context and characterizes possible relationships among them and
eventual constraints in their use. Ontologies are used in a wide variety of
fields, we bring an example related to the health care domain to clarify the
concept. Supposing we have ontologies describing medical domains such as
symptoms, diseases and treatments and pharmaceutical ontologies represen-
tiong informations about drugs, dosages and allergies, it is possible to combine
these ontologies with patient data enabling a series of intelligent applicationb
such as decision support tools for the selection of proper treatments [23]. In
the context of information retrieval ontologies can be used combined with both
keywords and semantic search techniques as presented in [24] to focus only on
the page content that is actually related to the specific site domain as inferred
by its ontology.

2.2 Methods Based on Templates
The main shortcoming with the automatically generated wrappers is given by their
strict relationship with the addressed site, they lack in flexibility and are difficult to
maintain as changes to page layout can require major modifications to the wrapper
structure. This was not such a major problem during the first years of research

15

2 – Related Work

in this field as pages were typically straight simple in layout and not evolving as
fast as they do today but soon it became clear that more general purpose solutions
were needed.

As Internet continued to grow and more and more websites appeared, a new
approach was identified for core content detection relying on a new trend of web
page design. Many web developers started exploiting templates to speed up the
design of their websites. A template consists in an HTML page where both format-
ting and visual components are already implemented and ready to be filled with
arbitrary contents. Pages implementing the same template share a common look
and feel and are under the control of a single authority (as could be the website
owner). Templates are useful in order to make the design process faster and allow
component reuse among similar pages. They are also good from the user point of
view as they make it easier to understand the browsing context thanks to a uniform
and intuitive design.

Relatively soon, problems related to massive template adoption (it has been
measured that a consistent part of all data present on the web is built exploiting
templates), became evident. First of all they affect performances of crawlers:
usually these piece of software exploit frequency and distribution of keywords and
hyperlinks in order to rank a page, templates in most cases contain a large number of
repeated hyperlinks and terms thus their large adoption might lead to inaccurate
results of crawlers and indexers. On the other hand in most cases templates do
not contain core pieces of the web page content, they instead implement page
navigation and advertising sections thus they are noise in the context of core content
extraction. From these considerations we can understand how templates detection
can be considered a key point in identifying meaningful pieces of information within
a page: once we get to know a template and we are able to assert with a certain
margin of accuracy that a page is implementing that template we can easily find
a way to extract core sections as we already know where to look for them. As a
consequence we can see template extraction as something that is strictly related
to content extraction, several approaches have been proposed to face this problem.
We present now an example of template extraction technique.

2.2.1 Template extraction through hyperlink analysis

We will analyze the algorithm for template extraction proposed in [25]. In this work
the approach is based on the analysis of the hyperlinks present on a web page. In
simple words the implemented solution iteratively explores the set of hyperlinks
contained in the tested page, let’s call it P; then it looks for a certain number of
pages which are mutually pairwise linked with P. The aim of this operation is to
identify pages pointed by the website main menu as there is an high probability
that those pages implement the same template. Once a set of pages S with these

16

2 – Related Work

characteristics is found, their DOM 2 is evaluated to derive the template structure.

Figure 2.1: Example of ETDM comparison among two DOM trees.

In particular a technique called ETDM (Equal top-down mapping), illustrated
in Figure 2.1, is used to evaluate corresponding equal nodes among the DOM trees
of two pages. At the beginning the template model T is assumed to coincide with
the DOM tree of the original page P, then the algorithm starts comparing T with
one page extracted from the set S using ETDM. The comparison produces a set
of DOM nodes which are identical among the evaluated pages, those nodes will
constitute the new template model. The template model is refined by mean of
subsequent iterations comparing the current model to new pages took from set
S up to a point in which the model becomes stable. Once we get to know the
DOM nodes belonging to the template we are able to assert that the core of the
information is stored within the other ones.

2.3 Methods Based on Blocks
Several experiments have revealed how template based techniques can be effective,
still there are many shortcomings related to them: first of all the main problem
with templates is that they can be used for information extraction from a single
specific kind of page, which does not necessarily mean that we are able to process
all pages of a website with a certain template. In fact in modern Internet it is
not unusual for the same website to implement multiple variations of the same
page with different layouts and this could mean that multiple templates need to

2DOM stands for Document Object Model, it is an API allowing to represent an HTML page
through a standard set of objects organized as a hierarchic tree. For a summary of current
standards and specifications see https://www.w3.org/standards/techs/dom.

17

https://www.w3.org/standards/techs/dom

2 – Related Work

be identified to extract data from a single website, moreover today part of page
contents and especially advertisements are generated at load time making template
detection even harder. Another important downside with templates is that often
the computational cost for the extraction of template models is quite high and it
makes not possible to perform real time extraction of contents on newly visited
pages.

Another family of data extraction techniques attempts to overcome the lack
of flexibility of wrapper based and template based methods to achieve a general
purpose solution to the extraction problem. These methods focus on splitting the
page into blocks (which can be identified and delimited in several different ways
) in a process that is called page segmentation and then apply some heuristic to
decide if the obtained blocks contain or not useful informations. We can split this
family of techniques in different subcategories.

2.3.1 DOM based approaches
In general this subgroup of techniques relies on hierarchical relationships among
HTML tags to identify the basic blocks of a page. Each algorithm has a specific
implementation of the segmentation mechanism but, in the vast majority of cases
for DOM based approaches, it exploits particular HTML tags in order to identify
blocks. In early days of Internet the most common way to organize the content of
a web page was the <table> tag which, as a consequence, was considered one of
the most effective block delimiters in many research works. With the development
of HTML5 many pages started using <div> tags as well to organize content, as a
consequence the segmentation task has been further complicated by the variety of
possible design choices.

After this first step, DOM based methods exploit characteristic features of the
extracted nodes in order to classify them as core or noisy contents. Several features
can be used, probably the most commonly adopted one is text density. In [27] the
authors start from an assumption:

In a typical web page, (i) the noise is usually highly formatted and con-
tain less text and brief sentences, whereas the core content is commonly
simply formatted and contains more text but (ii) far less hyperlinks
with respect to the noise.

Starting from this simple consideration the authors define their measure of text
density for a node as the ratio between the number of characters in the node subtree
and the number of tags in the same subtree. Content nodes will be the ones with
highest ratio according to i. In order to take into account also ii, another measure
is proposed called Composite Text Density which is computed considering also the
number of characters in the node’s subtree belonging to hyperlinks as well as the
number of hyperlink tags in the subtree. In this way blocks with high text density

18

2 – Related Work

but containing almost only hyperlinks as could be for example a list of links on the
side of a page, are not wrongly classified as core contents.

Figure 2.2: The examined DOM trees.

Figure 2.3: The resulting style tree.

Of course text density is not the only possible feature to be exploited and not
always the most effective one for classification, in some cases also non core content
of a page can contain high density text and a minimum number of hyperlinks. To
make an example we could think to an advertisement banner containing the whole
description of a rented house and a single link towards the related post on the house
rental company website.

In [28] authors start from a different assumption with respect to [27] getting to
a completely different approach to tackle the classification task. In particular they
assumed that noisy (that is non content) nodes in a web page usually share not
only the same content among all the pages of a website but also the same style
and presentation. To exploit this particular intuition they developed a new way
to look at a set of web pages by mean of Style Trees which are structures able to
summarize the common presentation styles in a set of pages. In Figure 2.2 we can
notice that in both pages at the second level of the DOM hierarchy there is the

19

2 – Related Work

same sequence of nodes with the same style properties. In Figure 2.3, which shows
the style tree representation deriving from the two pages, that specific sequence
is represented as a single style node, the number 2 is the information about how
many times that sequence appeared within the examined set of pages. Divergent
sequences or sequences whose nodes have divergent style properties are represented
by different style nodes as happens for the children node of the highlighted table
nodes in Figure 2.2. In this sense style nodes represent different layouts and pre-
sentations of the page and convey also the information about how many times that
particular combination of structure and style has been encountered. At this point
the importance of a node is computed by evaluating the style tree along with the
actual node content. The more regular and non mutable the content and style are
the higher the probability for that node of containing non relevant informations.

2.3.2 Semantics based approaches
Semantic based approaches perform page segmentation according to keywords and
text features of the node’s content rather than according to its HTML structure
and position in the DOM hierarchy. As reviewed in [29] there are several works
exploiting resources and techniques typical of the Semantic Web 3 world (such as
languages, ontologies and knowledge-bases) to improve information extraction sys-
tems performances and vice versa there are also researches that exploit information
extraction techniques in order to populate the Semantic Web.

An interesting example of this family of approaches is the one related to the
Artequakt Project [31]. In this work the authors propose a complete architecture
aimed to the collection from the web of data about artists, the creation, storage
and management of these informations within a knowledge base 4 and the automatic
generation of biographies of artists in which the collected data are organized and
presented in a narrative way. It is interesting to analyse their approach to the
information extraction problem as it is not strictly focused on the mere content
extraction rather on the identification of the entities related to their specific domain
and their relationships.

When a user queries for a certain type of biography on a certain artist, the

3Semantic Web is an extension, proposed by W3C the World Wide Web Consortium, of the
current paradigm of the web which is made of isolated documents connected by simple hyperlinks.
The new paradigm, which is implemented through a full stack of new technologies, enables a
web made of data connected by meaningful relationships, similarly to what happens in modern
databases. This change in perspective would open great possibilities in terms of automation and
intelligent applications on the web, see W3C definition at Semantic Web.

4A knowledge base KB is a particular kind of storage system that differs from common
databases. The informations stored in a knowledge bases represent the concepts and relation-
ships related to a certain domain in the form of classes, subclasses and instances of these classes
all linked by mutual relationships.

20

https://www.w3.org/standards/semanticweb/

2 – Related Work

system performs a web query on the web and explores the resulting websites. If a
trusted web resource is known related to the domain, the system looks for it as first
step and then uses data extracted from this resource to filter the other resulting
web resources according to similarity measures. To retrieve informations from a
website the Artequak system extracts all paragraphs from it, the text extraction
can be performed using one of the known techniques discussed as for example the
text density based approach. Then once the core content extraction step has been
performed an additional processing is conducted evaluating contents at semantic
level. First a parser is used to group grammatically related phrases thus a syntac-
tical analysis is performed. At this stage the semantic analysis starts: the semantic
components of the phrase are identified through text processing tools as GATE 5,
words are classified as subjects, verbs or objects and named entities are recognized
as persons, places and in general instances characterized by a proper name of some
conceptual class . At this stage the system exploits the knowledge base to discover
and extract relationships among concepts, the domain knowledge is crucial in this
stage as it suggests which entities could be linked. What is extracted is not simple
text but a structured knowledge related to the queried artist which allows us to
store in a machine friendly way that Rembrant which is an instance of the class
person is linked by a date of birth relationship (which is a relationship owned by
all instances of the class person) to the entity 1606 July 15th which, on the other
hand, is an instance of the class date. This kind of content is much more useful
and easy to process with respect to the mere text.

2.3.3 Vision based approaches
The last family of techniques we are going to analyse exploits the visual charac-
teristics of the rendered page in order to extract its content, these characteristics
include but are not limited to font type size and color, background and visual tags.
Combined with the information coming from the DOM hierarchy these data can
ease the process of segmentation as often the core contents of web pages are similar
in the way they are styled and presented. An immediate example could be font size
analysis, it is quite common for websites to use font sizes between 14 and 16 px for
main content as it is easily readable without taking too much space on the page.
Evaluating the presence of similar commonly adopted choices provides hints about
how to classify blocks. On the other hand the visual approach is very effective
for the segmentation task as usually different or unrelated information blocks in
a page are styled in different ways. Another important aspect is the tendency of
web interfaces to always present particular functionalities in certain, well known
to users, positions. In order to ease the navigation process many website adopt a

5See https://gate.ac.uk/

21

https://gate.ac.uk/

2 – Related Work

common spatial distribution of functionalities and, as it has been showed in [32],
users expect this distribution.

In [33] this kind of approach is applied specifically to the problem of page segmen-
tation, the developed algorithm is named VIPS - VIsion-based Page Segmentation.
It exploits at the same time visual and DOM characteristics to subdivide pages
into blocks. The implemented solution performs a top down analysis of the page
in a row of subsequent rounds. At each round the page is segmented into blocks
corresponding to DOM tree nodes, then for each of these blocks a score is computed
called DoC which stands for Degree of Coherence, this score is once again based
on DOM characteristics but above all on visual cues and represents a measure of
how much the content of the block is coherent with itself. This is an important
information as the more internally coherent a block is, the more likely it is for it
to be a semantically autonomous section of the page. According to the desired
granularity of the analysis a threshold is set to state the minimum DoC score for
a block to be considered independent, at each iterations all blocks not meeting the
requirement are added to a pool and are further analysed and split in subsequent
rounds.

To decide the SoC score of a node and in general to decide if it is necessary to
divide a block several aspects are considered, the most important cues exploited
can be classified into three categories:

Color cues - It is preferred to divide nodes whose children present a background
color differing from the one of their father.

Text cues - It is preferred to avoid dividing a node in case all of its children nodes
are text nodes, that is they contain only free text without any html tag. These
kind of nodes are assigned the maximum DoC score (10) in case the font size
is the same for all text nodes.

Size cues - A relative size measure is defined that evaluates how much a node is
big compared to the whole page or sub-page which it is part of. A threshold
is defined that varies for different html tags as of course a <table> node is
typically bigger than a <a> node. If the relative size of a node is under the
threshold for that type of tag, it is not divided. On the other hand if the sum
of the sizes of the children nodes of a block is greater than the size of the block
itself, it has to be divided.

2.4 Limitations of Known Approaches
As we can state from the number and the variety of the studies performed in this
field, a lot of work has been done to find an effective solution to the crucial task
of distinguishing noise from core content. As seen, the first attempts to solve the
problem were based on custom wrappers which were designed and implemented

22

2 – Related Work

with the help of semi-automatic tools, their main disadvantage was their low main-
tainability and flexibility. It was relatively complex to design such wrappers and
the wrapper generator itself were not able to stand against the rapid evolution of
modern web in which the technologies and standards of web design change at an
impressive peace. On the other hand methods based on templates were found to be
more general purpose as the practice of providing a general and reusable template
has become a milestone in modern websites design. Still this kind of approaches
needed to build some knowledge for each specific website before being able to parse
it, this meaning that no real time application were possible for new websites. More-
over modern websites often exploit multiple templates and it is also possible to have
multiple layouts for the same page.

Methods based on page segmentation into blocks have been proved to be effec-
tive and more generally applicable even in case of pages visited for the first time.
The approaches based on DOM tree analysis have achieved important results but
nowadays with the development of more and more complex frameworks able to
generate HTML contents at runtime the complexity of DOM structures is not lim-
ited to what a human developer can create and maintain and it becomes more and
more difficult to locate core contents among hundreds of nodes. Semantic based
approaches are very effective in locating contents but rely on knowledge bases that
are difficult to create and maintain, moreover they require natural language pro-
cessing techniques to evaluate page content before being able to classify it and this
usually is a time consuming task.

In this work we propose a solution that could be classified among the visual
approaches of the block based methods. The intent is not to extract the core content
but to visually locate the sections of the page that contain that informations in order
to automatically notice eventual problems in the page rendering. The developed
approach is general purpose, DOM independent and and achieved good results in
terms of accuracy and computation time.

23

Chapter 3

Proposed Solution

In this chapter we discuss in depth the different aspects of the developed solution.
First a comprehensive overview of the solution design is presented in section 3.1.
Then in section 3.2 the system exploited to interact and collect data from the
web is analysed. After that the two algorithms on which the solution is based are
introduced and discussed in terms of funding principles and actual implementation
respectively in section 3.3 and section 3.4. In order to ease the reading of this
chapter, in Appendix A we present two tables summarizing for both algorithms the
involved parameters, with their names and a brief description of their role.

3.1 Solution Overall Design
The whole system design started from a simple question: how is it possible to
understand that a page has not been properly rendered? To answer this question
we had to identify which was the main characteristics distinguishing a normal page
from a broken one. The answer was quite simple, a page is very unlikely to be
"broken" if its main content, its navigation bars and in general all the elements
of that page that are related to its meaning or to its functionalities are rendered
correctly; as a consequence we decided to focus on the characteristics of this kind
of elements.

The most important aspect with those components that provide functionalities
to the website is that they tend to maintain always the same in shape and style:
if the page is visited multiple times within a limited amount of time, it is possible
that multiple layouts (or templates) will be rendered thus obtaining different html
structure, nevertheless the main functional elements and the core content will al-
ways be rendered in the same way although they could change their position within
the page. On the other hand the advertising elements which usually constitute the
great majority of the non functional elements within the page are, for their inherent
nature, always changing both in shape and size (depending on the rendered layout

24

3 – Proposed Solution

 Core Sections
 Detection

Layout
Detection

Custom Browsertime
instance

Raw Screenshots
WWW

Layout 3

Layout 2

Layout 1

Core Sections Map

Figure 3.1: Schema representing the whole system pipeline

) and in their content as well.
Given these assumptions, our problem can be reduced to locate on the page the

elements which are not changing in form, shape and above all content. Starting
from the previous works we oriented towards a method based on blocks, this is a
natural consequence if we think that our task is actually that of locating blocks
of contents which are always equal to themselves across multiple visits. As seen
in section 2.3, block based techniques can be divided into three families: DOM
based, semantic based and visual based approaches. Of course it was not possible
to exploit a semantic approach in our case, being the objective not only to locate the
content of the page independently from the semantic contest, but also to identify all
its functional and thus non semantically meaningful elements (we can think to an
arrow shaped button for example). DOM based solutions have been evaluated to be
unfeasible as well, the complexity of DOM trees and the variety of possible solutions
in modern websites, makes it hard to identify a general reproducible solution. Thus
we decided to adopt a visual approach in which, given two captures from the same
page stating if a certain section of the page is equal in both images is as easy as
subtracting the two sub-images representing that specific section and evaluating in
the resulting image how many pixels were subtracted to 0.

In Figure 3.1 we can see a schema describing all steps of the designed pipeline.
The system consists of three main components which live independently from one
another and perform their specific tasks in an autonomous way.

The first component is the one in charge of collecting the input data from the
web. This component is wrapped in a docker instance and consists of a modified
instance of Browsertime. This component is able to instantiate a web browser
in order to visit and navigate websites, collecting several types of metrics as we
will further discuss in section 3.2. In our implementation Browsertime drives an
instance of the popular web browser Google Chrome 1 visiting a set of predefined

1https://www.google.com/chrome/

25

https://www.google.com/chrome/

3 – Proposed Solution

web pages and collecting, along with other metrics, a whole set of screenshots of
the rendered page.

Once we get to have a set of screenshot of a certain page we need a further
processing before being able of locating the core content sections. As already said
in the modern web it is not unusual to visit a web pages ten times getting rendered
six different layouts of the same identical page, this is mostly due to different
sizes and positions of the advertising contents. The Layout Detection Algorithm
presented in section 3.3 is able to identify the different layouts and cluster the set
of screenshots into groups sharing the same page structure.

At this point we simply select the most representative cluster, that is simply the
one having the greatest number of captures. The reason for selecting the biggest
cluster will be more clear after the introduction in section 3.4 of the section detection
algorithm, in simple words the precision of the static sections grows when the
number of analysed captures increases. The screenshots associated to the selected
cluster are processed by the Section Detection Algorithm detailed in section 3.4 in
order to locate the static and dynamic sections. The output of this process is a
image having the same dimensions with respect to the original screenshots. This
image shows the dynamic sections coloured in black and in white the static ones,
because of this characteristics it can actually be used as a mask to extract the core
sections from the original captures by performing a pixel to pixel product with the
original captures.

3.2 Data Collection
In this section we will further analyse the technologies and tools exploited during the
data collection phase. First we are going to introduce Docker and its capabilities,
then we are focusing on Browsertime, the reasons behind its adoption and the
modifications we had to perform to adapt it to our needs.

3.2.1 Docker
Docker is an open source platform 2 created with the aim of easing the develop-
ment, delivery and deployment of pieces of software. Modern application often
rely on a whole set of hardware and software dependencies and require several dif-
ferent configurations for each phase of their life cycle. Keeping everything on a
single machine can result in incompatibility problems among different components
and make it hard to migrate our application to a different environment for test-
ing or production. There are two approaches to solve this kind of problem: host
virtualization and software virtualization. The first approach exploits a low level

2See https://www.docker.com/why-docker

26

https://www.docker.com/why-docker

3 – Proposed Solution

component called hypervisor able to handle physical resources of the host machine
and to host virtual systems by duplicating the whole OS and virtualizing the hard-
ware resources. The second approach exploits directly the host operating system
by creating a new process which is assigned its own namespace, in this way it is
isolated from the rest of the system and can access operating system resources as-
sociated to this namespace whose implementation can differ from the one of host
machine. Docker exploits this principles in order to enable creating autonomous
environments called containers. The communication among the host machine and
the container is performed through a command line interface that interacts with a
rest API on which a container long-running process called daemon is listening.

The main advantage in using docker is that you can create a completely new
environment with specific versions of each component without affecting in any way
the host machine configuration. This also means that it is possible to move or du-
plicate that environment from one container to another without any compatibility
problem.

Docker containers are distributed in the form of images which can be seen as
read-only templates providing all the instructions needed in order to create a con-
tainer starting from the operating system setup and configuration, up to the in-
stallation of any application of interest and of its dependencies. Images can be
derived from other images adding slight modification to the system configuration
or installing new dependencies; this is possible because docker exploits a layered file
system called Union FS which is made of multiple read-only layers, thus extending
an existing image is as simple as adding an new layer to the stack. Images are
described through text files called Dockerfiles.

The docker image used for our data collection environment is derived from the
Browsertime Docker image 3 which has been slightly modified, we can see its dock-
erfile in listing 3.1. First a new version of chrome has been installed on the base
Browsertime image, the resulting image has become the basis for further modi-
fications (line 1). Then some source files of Browsertime have been substituted
to achieve custom behaviours (lines 6-9) as we will discuss in depth in the next
section. Finally a folder containing custom chrome profiles has been created in the
container file system (line 12-13).

1 FROM browsertimebase_chromev71:latest
2

3 WORKDIR /browsertime
4

5 # Overriding customized files of Browsertime src

3Dockerfile at https://github.com/sitespeedio/browsertime/blob/master/
Dockerfile

27

https://github.com/sitespeedio/browsertime/blob/master/Dockerfile
https://github.com/sitespeedio/browsertime/blob/master/Dockerfile

3 – Proposed Solution

6 COPY mods/lib/support/getViewPort.js
/usr/src/app/lib/support/getViewPort.js

7 COPY mods/lib/core/seleniumRunner.js
/usr/src/app/lib/core/seleniumRunner.js

8 COPY mods/lib/screenshot/defaults.js
/usr/src/app/lib/screenshot/defaults.js

9 COPY mods/lib/screenshot/index.js
/usr/src/app/lib/screenshot/index.js

10

11 # Adding chrome configuration files with custom profiles
12 RUN mkdir -p /tmp/rep
13 COPY /config/chrome-new/* /profiles

Listing 3.1: Dockerfile for custom Browsertime container.

3.2.2 Browsertime
Browsertime is part of a family of open source tools that goes under the name of
sitespeed.io 4, these tools are designed for monitoring and testing performances of
web pages by collecting several types of metrics. It enable to automate the process of
visiting and navigate web pages by exploiting the Selenium WebDriver. Selenium
5 is a tool for browser automation, that enables performing through code every
kind of interaction a user would normally be able to accomplish; its WebDriver is
designed to provide a common interface for driving browsers, it is supported by
Chrome and Firefox implementations allowing to drive these browser in a natively
way.

Browsertime has been selected among other similar tools because of several in-
teresting features:

Open source : being an open source project it is possible to access its source code
and modify it with ease.

Several metrics available : Browsertime is highly configurable and allows to
collect a wide range of metrics going from HAR 6 files to timing and visual
metrics for measuring page rending performances.

4See https://www.sitespeed.io/
5See https://www.seleniumhq.org/
6HAR stands for HTTP Archive, it is an evolving standard of an archival recording, in json

format, for HTTP transactions. Within an HAR file you can expect to find several metrics such
as the time to retrieve each object of the page, time required to fetch DNS informations for site,
time spent to establish a connection with the server etc. The current standard is available at
https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/HAR/Overview.html

28

https://www.sitespeed.io/
https://www.seleniumhq.org/
https://dvcs.w3.org/hg/webperf/raw-file/tip/specs/HAR/Overview.html

3 – Proposed Solution

Screenshots and video : Browsertime uses internally FFmpeg 7, a famous tool
for recording, converting and streaming audio and video, to enable the collec-
tion of screenshots and videos of the visited pages.

Native docker support : as we have already mentioned Browsertime is available
as a ready to use docker container, easy to run, modify and migrate.

Support to Web Page Replay Go : WprGo is a tool integrated in Browsertime
from version 3.0 enabling to record a certain visit to a web page and reproduce
that particular visit when desired. It acts as a sort of proxy that caches all the
webpage resources and records all the http requests becoming able to repeat
the exact original HTTP transaction. This feature is very useful for testing
as it allows to capture the particular page served by a website in a certain
moment and visit it in the same exact way multiple times.

Some slight modifications were required to the out-of-the-box version of Browser-
time to be adapted to our specific needs. First of all it was necessary to make the
visual rendering of our visits independent from the host machine running it, thus
the support scripts getViewport.js has been modified to return always the same
default viewport, the value returned by this script is provided as parameter when
instantiating the browser and affects the width and height of the browser win-
dow. Also the scripts for the screenshot capture at line 8 and 9 of listing 3.1 have
been modified to avoid the default resizing operations performed over the captured
images. The result of all these mods is a that Browsertime independently on the
hosting system returns screenshots of size 1920x1080px, this has been done in order
to provide a uniform set of inputs to the subsequent components of the pipe.

1 // [...] code checking for completion of page load
2 /*
3 Code simulating the implicit acceptance of cookie policies
4 Simply scrolls the page down and up again
5 */
6 delay(1000);
7 this.driver.executeScript(’window.scrollBy(0, 1000)’);
8 delay(3000);
9 this.driver.executeScript(’window.scrollTo(0,0)’);

10 delay(1000);
11 // [...] code in charge of taking the page captures

Listing 3.2: Modification to seleniumRunner.js.

Another problem faced during the data collection step was that of banners re-
quiring to enable cookies. The purpose of our work is to identify static (core)

7See https://www.ffmpeg.org/

29

https://www.ffmpeg.org/

3 – Proposed Solution

sections and dynamic ones, the latter are usually made of advertising. In the vast
majority of cases when visiting a website for the first time a banner pops up re-
questing to accept the cookie policy of the website, in order to render the page
normally and taking a meaningful screenshot of it, it was necessary to find a way of
providing consent to these requests. To accomplish this task a minor modification
of script seleniumRunner.js was required. This script is in charge of instantiating
the web browser, navigating to the target page and waiting until it is completely
loaded while collecting metrics on it. We modified it by inserting few lines of code
to be executed immediately after the page has been loaded and before capturing
the screenshot. In several websites scrolling the page is considered to be an implicit
acceptance of cookie policies thus the simple snippet showed in listing 3.2 made the
trick.

The final output of the data collection step is a sequence of screenshots of stan-
dard dimensions 1920x1080, which show multiple rendering of the same page col-
lected during different visits performed within a limited amount of time (in the
order of tens of minutes). A sample of the output of this first step is visible in
Figure 3.2.

Figure 3.2: Sample screenshots from visits to ilsole24ore.com

3.3 Page Layout Detection Algorithm
As it is evident by observing captures in Figure 3.2, when we visit multiple times
the same page we obtain different page layouts. Pages with differing layouts are
characterized by a different number of visible rendered elements as well as by a
different organization and shape of advertising contents. Despite of this the captures
obtained are still representing the same page, the main content does not change
among visits which are close enough in time and neither do the navigation elements,
the page logo and in general all the static elements of the page. Before being able of

30

3 – Proposed Solution

identifying and locating the static content we need a set of screenshots having the
same layout in which only the dynamic and advertising content changes while the
static contents remain in the same fixed position of the page. We need to identify
the possible layouts and group our captures according to them.

The task tackled is quite a peculiar one which, as far as we know, has never
been addressed in any previous research work. First we performed attempts to
readapt known clustering algorithms such as DBSCAN [34] to our problem. We
found that defining a good distance measure for two screenshots, stating their
probability of belonging to the same layout is an highly complex task not only
for the challenge of reducing an articulated problem to a single measure but also
in terms of computational time. For all these reasons we decided to develop a
completely new algorithm from scratches, which would have been targeted to our
specific problem and able to exploit the knowledge related to its specific domain.
The developed solution has achieved high levels of accuracy and good performances
in terms of computational time.

The algorithm has been implemented in Python 38, this choice was an almost
obliged one due to the great amount of libraries and utilities for image processing
available. Before getting into the details of the developed solution, we introduce
some terms that will be used in the algorithm description:

• layoutCluster : is the term that will be used to refer to a group of screenshot
with the same layout. Within the algorithm it is represented by a python
dictionary object with multiple properties as we will discuss later on. We will
refer to them also as clusters or templates or layouts.

• layoutsPool : is a dictionary object containing all the layoutClusters created
at a certain point of the algorithm execution.

• capturesPool : is a list keeping all the captures that have not been classified
at a given instant during the algorithm execution, to each capture some meta
data are associated which maintain eventual knowledge acquired about this
capture during previous iterations.

3.3.1 Algorithm workflow
The developed algorithm adopts an iterative approach, at each iteration it eval-
uates all the unassigned screenshots and attempts to assign them to one of the
layoutClusters discovered so far and maintained in the layoutsPool.

Before starting the first iteration a preliminary computation is performed on all
captures. Each screenshot is subdivided into sub-images representing a section of
the original image whose shape is defined by the algorithm parameters blockWidth

8See https://www.python.org/

31

https://www.python.org/

3 – Proposed Solution

and blockHeight. What we keep in the capturesPool is not the capture itself but
the array of the sub-images, that we will call blocks, derived from the splitting
operation on that capture. The dimensions of the block are important parameters
in the algorithm economy as they allow to define the granularity of the analysis,
in fact every time we will compare two captures we will actually compare the
corresponding blocks derived from the two images.

At the very beginning of the execution workflow all captures are contained within
the capturesPool while the layoutsPool is empty. After all captures have been
converted into arrays of blocks, we pick the first capture in the capturesPool and
create a layoutCluster object containing it as the only representative element, then
we add this object to the layoutsPool.

1 {
2 "tpl0": {
3 "captures": [capture1, capture2, ...],
4 "flagChanged": False,
5 "previousIterationLength": 0,
6 },
7 "tpl1": { ... }
8 }

Listing 3.3: Example of layoutPool object.

In listing 3.3 we can see how the layoutsPool is a simple map associating the lay-
out name to each layoutCluster object. A cluster object is itself a python map with
three named properties. The captures property is a list of the captures assigned
to the layoutCluster so far, captures are added to the end of this list as soon as
they are assigned to the cluster. The flagChanged property is a boolean stating if
this cluster has been modified (meaning that new captures have been added to it)
during the last iteration of the algorithm. Finally the previousIterationLength
property is a number keeping track of how many elements were stored in the cap-
tures list during the previous iteration thus, in case any element has been added
to the cluster in the last iteration, it can be used to identify the first new element
in the captures list. Clusters are given a name and added to the pool as soon as
they are created, after their insertion they cannot be removed but only modified
by adding new elements to the cluster.

Clusters can be created only in three different situations:
1. During the preparation step: as said, the first cluster is created immediately

after all captures have been converted to array of blocks using the first ele-
ment of the capturesPool which will become the first element in the cluster
captures property. Its flagChanged property is set to True and the previousIt-
erationLenght is set to 0.

2. When during the last iteration no cluster has been modified: in case no cluster

32

3 – Proposed Solution

was assigned new captures during a whole algorithm iteration a new cluster is
created by picking the first element of the current capturesPool, its properties
are set in the same way we do for the first cluster.

3. In case a screenshots is evaluated to be unmatchable with all the currently
known clusters in the layoutsPool (the mechanism to state this condition will
be discussed later on). The new cluster is created using the unmatchable
capture as first element and initialized in the same way we do for the first one.

After the preparation step the main loop of the algorithm can begin, its flow is
very straight forward and is summarized in listing 3.4. As said, we iterate until
there are no unassigned captures remaining, at the beginning of each iteration we
update the control properties (flagChanged and previousIterationLength) of each
layoutCluster object. Then we run the clustering routine which can modify the
layoutsPool by assigning captures to one of the already known layoutClusters or
even by creating new clusters. The return value of the routine is the new list of
unassigned captures. We get to know if some screens have actually been assigned by
simply comparing the length of the newCapturesPool with respect to the previous
iteration capturesPool. In case some screens have actually been assigned the cap-
turesPool is update, instead, if no progress has been done, we create a new cluster
in the way described at point 3 of cluster creation methods and update both the
layoutsPool and the capturesPool.

1 while(len(capturesPool) > 0) {
2 # Updates flagChanged and previousIterationLength
3 # for each layout by checking the length of their captures array.
4 Update(layoutsPool)
5

6 # Here the actual classification is performed
7 newCapturesPool = PerformClustering(capturesPool, layoutsPool)
8

9 If(len(newIngPool) < len(imgPool)):
10 # Some screen have been assigned
11 capturesPool = newCapturesPool;
12 continue;
13

14 else:
15 # No screen assigned, creating a new template
16 capturesPool = CreateNewTemplate(capturesPool, layoutsPool)
17 }

Listing 3.4: Main loop of the layout detection algorithm.

The main core of the algorithm is the clustering routine which is presented as
pseudocode in listing 3.5 and listing 3.6. It iterates over the pool of unassigned
captures and, for each of them, we iterate over the pool of known layouts (line 6

33

3 – Proposed Solution

in listing 3.5) attempting to associate them with one of the known templates in
the EvalCptAgainstLayout routine (line 16 in listing 3.5). In order to assign a
screenshot to a particular template we compare it with the representative elements
of that template. We compare the tested capture only one time with each repre-
sentative element of a layout being the result of this evaluation deterministic, the
comparison is performed during the subsequent iteration with respect to the one in
which the rep was added to the cluster. There are three possible outcomes when
we compare a capture with a rep from a certain layout:

• Compatible layouts: we find the capture to be compatible with the exam-
ined layoutCluster. We assign the capture to the layoutCluster and skip to
the next capture (line 31 in listing 3.5).

• Non compatible layouts: we find that in any case this capture can not
be assigned to this layout. We record this information in the capture object
metadata and skip to the next layoutCluster (line 34 in listing 3.5).

• No result: we are unable to state if the capture is compatible or not with the
layout. We go on and examine the next rep of the same layoutCluster.

1 newCptPool = []
2 while(len(cptPool) > 0) {
3 testImg = cptPool.pop()
4 imgMetaData = GetDataForImg(testImg)
5

6 for(layout in layoutPool) {
7 # Avoid processing incompatible templatess
8 if isNotCompatible(imgMetaData, layout):
9 continue

10

11 # Select only members added in previous iteration
12 newTemplateMembers = GetNewMembers(layout)
13 lytFound = False
14 noMatch = False
15

16 lytFound, noMatch = EvalCptAgainstLayout(testImg,layout)
17

18 if (lytFound):
19 AssignScreenToLayout(testImg, layout)
20 break
21 if (noMatch):
22 recordIncompatibility(imgMetaData, layout)
23 }
24

25 noMatchCount = CountIncompatibleLayouts(imgMetaData)
26 if (noMatchCount == len(layoutPool.keys())):

34

3 – Proposed Solution

27 CreateNewTemplateForImage(testImg, layoutPool)
28 else:
29 # Attempt to assign this image during next iterations
30 newCptPool.add(testImg)
31 }

Listing 3.5: Clustering routine pseudocode

Among what is stored within the capture objects metadata, the information
about the incompatibility of the screenshot with respect to a certain layout is very
important for two reasons: first, if we know that a capture will never be matchable
with a layout we avoid comparing it with the reps of that layout even if new elements
were added to that cluster during the last iteration (line 8 in listing 3.5). In second
instance after evaluating our capture against the reps of a layout we check if the
number of layoutClusters which are incompatible with it is equal to the number of
known clusters, in that case, according to point 2 of cluster creation methods, we
create a new template from that capture (line 25-27 in listing 3.5). In case after
the evaluation of our capture against all current reps of all current layouts neither
a compatible layout has been found nor an incompatibility with all of them has
been assessed the capture is added to the new pool of captures to be used during
the next iteration (line 30 in listing 3.5).

1 # Select only members added in previous iteration
2 newTemplateMembers = GetNewMembers(layout)
3 lytFound = False
4 noMatch = False
5 for(lytImg in newTemplateMembers) {
6 # Block to block subtraction
7 changesMap = ComputeChangedBlocks(testImg, lytImg)
8

9 lytFound, noMatch = Step0_HighLvlSimilarity(changesMap)
10 if (lytFound || noMatch) break
11

12 lytFound, noMatch = Step1_CoreLvlSimilarity(changesMap)
13 if (lytFound || noMatch) break
14

15 lytFound, noMatch = Step2_SearchPattern(changesMap)
16 if (lytFound || noMatch) break
17 }

Listing 3.6: Routine evaluating a capture against a layout

Now that we have a comprehensive idea of how the execution flow of the algo-
rithm works, we can examine in details how is implemented the evaluation process,
that is where decisions about the captures are taken. The evaluation steps are
summarized in listing 3.6. As said the idea is that of comparing a capture against

35

3 – Proposed Solution

each rep from a certain layout, looking for hints enabling us to assert whether the
capture should or should not be added to the same cluster of the tested rep. The
first step of this evaluation is the Perform Comparison routine that takes as input
the tested captures which, as said, have been previously converted into an array of
sub-images that we call blocks. The routine workflow is quite simple: first a pixel
by pixel subtraction is performed among the corresponding blocks of the two images
and the absolute value of the result is computed. Then we count how many pixels
of the resulting blocks are equal to zero, if the number of pixels whose value is not
equal to zero is greater than a certain threshold NN0 - Number of Non 0, which
is expressed as a percentage and thus is independent from the block dimensions,
we state that the block has changed, otherwise we assume that the sub-images
represented by those blocks are identical. The result of the comparison process is
an array of boolean values with as many elements as the blocks composing each of
the compared captures; this array can be used as a map telling us which sections
of the evaluated images differ and which not. This map, that we call changesMap,
becomes more and more accurate as we reduce the dimensions of our blocks but
the computation time required to produce it increases as well.

(a) Compared images

(b) Map of changed blocks.

Figure 3.3: Example of comparison among two images with the resulting map.

In Figure 3.3 we can see an example of comparison among two captures and the
resulting changesMap which is represented as an image obtained colouring in white
those blocks which were evaluated to be identical and in black the ones differing in
the two images. From this point on we will refer to the identical blocks as static

36

3 – Proposed Solution

blocks and to the differing ones as dynamic blocks. After we obtain this sort of
map of identical and differing blocks, it becomes the inpt for three routines that
perform the actual evaluation of the capture by exploiting this map to derive hints
suggesting whether the examined capture belongs to the same template of the rep
to which it has been compared. We will now discuss in depth how these routines
work.

3.3.2 High level and core level similarity
The first kind of hints we look for are related to similarity measures performed on
the compared captures. The basic idea behind the evaluation of these measures
can be expressed by two complementary considerations:

(i) Captures from different layouts are more likely to show an high per-
centage of differing blocks as, when the layout changes even the static
sections of the page are translated and thus are evaluated as dynamic
blocks.
(ii) Captures representative of the same layout have high probability of
showing low percentages of differing blocks as the static content of the
page will always be counted among static blocks.

Assumptions i and ii are the base principle of functioning of the high level sim-
ilarity routine (line 9 of listing 3.6). What we actually do is computing a measure
called Degree of High Level Similarity (DHLS) between the evaluated captures.
This measure, calculated exploiting the changesMap, is simply the percentage of
non differing blocks over the total. Once computed the DHLS value for the captures
we check it against some thresholds and we set the lytFound and noMatch flags to
be returned according to the outcome of this check:

• DHLS < minHighLvlSimilarityTh: the evaluated captures are so similar
that, according to i, they must be representative elements of the same layout.

• DHLS > maxHighLvlSimilarityTh: the evaluated captures are so much
different that, according to ii, they cannot be representative elements of the
same layout.

• minHighLvlSimilarityTh < DHLS < maxHighLvlSimilarityTh: we
are not able to state anything about this capture with respect to this template.

An example of images classified according to this principle is showed Figure 3.4
along with their changesMap. Unfortunately in many cases the high level similarity
routine is unable to take a decision about a capture. The reason is that given
the growing space advertising and dynamic contents have in modern web pages,

37

3 – Proposed Solution

Figure 3.4: Captures classified using High Level Similarity and the related
changesMap

often we can have pages rendering the same exact layout but differing in a great
number of blocks. In Figure 3.5a we can see two captures exemplifying this concept.
Both pictures implement the same page layout with a big advertising banner as
background and a smaller banners on both sides of the title. The background
banner takes a considerable amount of space, if we create a changesMap of these
two picture we will find that their DHLS value is in the range [0.4, 0.6], in other
words it is difficult to state anything about these captures as they are neither enough
similar nor enough different to provide useful hints; in this case the DHLS fails in
providing useful informations. This kind of situation is quite common in modern
websites but we can exploit the knowledge deriving from our domain of interest in
order to reduce the noise produced by these types of layouts. In particular, we can
increase the decision capabilities provided by i and ii considering that:

(iii) The central part of a web page is typically the one containing the
vast majority of static sections and thus is the place in which it is easier
to spot differences due to page layout.

The simple consideration in iii is the funding principle of our second classification
step: the core level similarity routine (line 12 of listing 3.6). This routine computes
a measure called Degree of Core Level Similarity (DCLS) that is in many ways
similar to the DHLS measure as it is computed again as the percentage of static
blocks of a changesMap. The difference is that rather than being computed on
the whole changesMap, it is calculated considering a limited section of it which
is delimited by a window positioned in such a way to select a portion of map
corresponding to the core sections (that are the central parts) of the the original
captures. Both the size and position of this window, which we will refer to as reduced
window, are algorithm parameters that have been derived from direct observation
of common practices in websites and then refined through accuracy tests.

In Figure 3.5a we can observe the effects of the background banner on the full
changesMap in which almost half of the blocks are evaluated as dynamic, in Fig-
ure 3.5b instead we present the same map observed through the reduced window
and the corresponding sections of the original captures that are actually involved in
computation. Thanks to the elimination of great part of the noise produced by the

38

3 – Proposed Solution

background banner we are able to classify these captures as representative elements
of the same layout.

(a) Full size captures and full changesMap

(b) Captures and changesMap of Figure 3.5a observed through the reduced window.

Figure 3.5: Captures classified exploiting Core Level Similarity

3.3.3 Pattern search
The approaches presented so far are very effective in many cases, in particular: the
high level similarity measure is effective on those pages in which the dynamic con-
tents counts for a limited percentage of the whole content rendered in the capture,
on the other hand the core level similarity can handle effectively even those pages
in which we have mainly dynamic contents by focusing on the core of the page.
Yet both methods are not reliable in those cases in which we have many dynamic
contents which are strictly interleaved with the static sections of the page occu-
pying even the core of the page. To overcome this problem a completely different
approach was needed. The search pattern routine (line 15 of listing 3.6) evaluates
once again the changesMap derived from the comparison of two captures but this
time we do not limit to the computation of the percentage of static and dynamic
blocks rather we look for some particular patterns within the map itself. As done
for high level and core level similarity routines, to enable this further step, we need
to extend our base of funding principles with a new consideration:

39

3 – Proposed Solution

(iv) In the vast majority of cases when a new dynamic content is added
to a certain layout A producing a new layout B, the effect of this addition
is to translate the whole content (both static and dynamic) laying in the
area under the newly added dynamic content.

This means that comparing two captures belonging to layout A and B we will
find that the new content itself and the whole area laying under it up to the bottom
of the page is evaluated as dynamic. It is possible to get a visual idea of what
stated in iv by looking at Figure 3.6 in which we can observe (highlighted in blue
) the effects on the changesMap of the a small green banner that differentiates the
layout in Figure 3.6a from the in Figure 3.6b.

(a) Layout A. (b) Layout B.

(c) Changes map.

Figure 3.6: Graphic evidence of consideration iv.

Starting from iv it is possible to define typical patterns in changesMaps that
only captures with the same layout can produce when compared. In particular if
analysing the changeMap column by column from top to bottom we find a number
of consecutive columns that end with a sequence of static blocks, we are sure that
in that specific area no banner has been inserted. Of course, as we can easily
observe in the red coloured area of the changesMap presented in Figure 3.6c, a set
of columns terminating with a sequence of static blocks can be due to a common
background or to sections of the page that are not interested by the translation, for
this reason we refine our pattern research by:

1. Focusing on the core of the page : exploiting a reduced window to anal-
yse our changes map we can once again reduce the noise due to the page
background.

40

3 – Proposed Solution

2. Targeting a more specific column pattern : we target a pattern including
a sequence of dynamic blocks, followed by a sequence of static blocks up to the
end of the page. This specific sequence provides a lot of informations, we get
to know that: the slice of the evaluated captures corresponding to this column
included both static and dynamic content, the dynamic content has changed
but the static part has not been translated. This suggests that the evaluated
area presents horizontal banners which are typical of the core sections of the
page.

3. Looking for relatively long sequence of consecutive columns match-
ing the pattern : this allows to be more confident that the evaluated area
contains actual static contents as for example text boxes which tend to be
larger with respect to vertical banners.

Following these principles the routine exploits once again the mechanism of the
reduced window to focus on the core section of the page. Once we apply the
window, we look at the resulting changesMap (which once again is an array of
boolean values) as if it was a two-dimensional matrix representing that selected
area, then we evaluate this matrix column by column from left to right and from top
to bottom looking for the Same Layout Pattern which is described in listing 3.3.3.

((D | S)* D{ncd,} S{ncs,} E){ncc,}

The searched pattern is written in the form of a regular expression in which:

• D, S - represent the occurrence within a column of a dynamic or static;
• E - represents the end of a column;
• ncd, ncs, ncc - are respectively the algorithm parameters Number of Consecu-

tive Dynamic, Number Of Consecutive Static, Number of Consecutive Columns;

In Figure 3.7 we see two captures classified through the search pattern routine.
The area highlighted with the red rectangle is the section of the changesMap match-
ing the Same Layout Pattern, the sequence of NCD dynamic and NCS static blocks
are respectively signaled by the red and blue curly brackets while the sequence of
NCC columns sis highlighted in green. We found the described method to be reli-
able and effective but, of course, errors are possible due to misjudged blocks or to
particularly complex and chaotic of layouts and banners, thus in order to make the
approach as robust as possible we assign a capture to a a certain cluster layout only
if we identify the searched pattern in multiple reps of that layout. We count how
many of the reps generate comparison with the searched pattern, this value is called
layoutConfidence and each unassigned capture keeps such a value for each known
layout. When the layoutConfidence with respect to a certain cluster exceeds a cer-
tain algorithm threshold called layoutConfidenceTh we assign the capture to that
layout. The layoutConfidenceTh is expressed both as a percentage of current layout

41

3 – Proposed Solution

reps (for clusters with few eleemnts) and as numeric value of required matching
reps (for bigger clusters), this duality is needed to allow assignments even to small
clusters with few representative elements and to speed up computation in case of
large layouts with tens of reps.

Figure 3.7: Captures classified using pattern search routine.

3.3.4 The low level banner problem
The search pattern routine can be considered the most crucial part of the algorithm
as it enables clustering our captures even in those cases in which they are full of
dynamic contents strictly interleaved with the static parts. As we previously said
it is based on the consideration expressed in iv in which a main assumption is
performed: we assume that if the blocks at the bottom of the capture are evaluated
as static, then the page content above those block has not been translated. Despite
in the vast majority of cases this assumption is valid, it is not always true that
what we see at the bottom of a rendered page moves when the static page content
is translated, or at least this is not true when evaluating captures from that page.
The reason for this is immediately clear looking at Figure 3.8 in which three captures
are showed that are all rendering the same main page layout, we can observe that
the first two also render a banner covering a good part of the main page lower
section. This kind of banners hides completely the informations that the search
pattern routine exploits to perform its task.

42

3 – Proposed Solution

Figure 3.8: Example of a web page which can render low level banners.

Being crucial for the developed approach to know where the visible bottom of the
page is located, the low level banners constitute a problems that we need to address
before even starting the layout detection task, we need to prepend to the layout
detection phase a preprocessing phase. In particular this phase is actuated imme-
diately after the captures have been converted into arrays of blocks. Examining
the problem we see that it can be split in three different sub-problems:

1. Evaluate if a low level banner exists : this means we need to understand
how many captures in our initial capturesPool are rendering a low level banner
and then we also have to decide if the number of captures involved is big enough
to take this aspect into account when performing the layout detection task.

2. Estimate the dimensions of this banner : we need a reliable estimation
of the eventual banner height and width in order to know which sections of
the original page it is covering.

3. Calibrate the algorithm to avoid the banner : this can be done by
simply rearranging the changesMap produced at line 7 of listing 3.6 using
a proper window depending on the banner dimensions, the window can be
defined in such a way to cut out from computation the section of the page
occupied by the low level banner.

Once again also in this case to address the problem is crucial to exploit the
knowledge related to the web domain in order to simplify our task. For this reason
we need once again to extend our base of considerations with:

(v) In the vast majority of cases, the low level banners tend to be as
wide as the whole page rendered.

Despite seeming trivial, the consideration in v allows deriving crucial hints in
this context: first of all, we know that being these banners as wide as the adopted
view port, the problem of estimating their size can be reduced to that of evaluating
their height. The second important hint is related to another particular type of
pattern that this types of banner can produce in the changesMap obtained com-
paring captures containing them. To get evidence of this new pattern we can take

43

3 – Proposed Solution

(a) Compared images

(b) Map of changed blocks.

Figure 3.9: Example of comparison among two captures showing low level
banners.

a look at Figure 3.9 in which the changesMap derived from the comparison of two
captures, implementing the same page layout and rendering low level banners is
presented. The presence of large, screen wide, banners produces a uniform area of
black coloured blocks in the bottom part of the changesMap, this area is placed
exactly in the same position occupied by the low banners of the compared captures.
The same uniform area is obtained any time we compare two captures rendering
different low level banners and also when comparing a "normal" capture with one
showing a low banner.

Given these evidences we have enough knowledge to drive the preprocessing
algorithm. We need to search for the pattern produced by the screen wide black
coloured area, by evaluating the height of this area we will be able to estimate
the height of the rendered banners.The algorithm developed for this task can be
summarized by the pseudocode in listing 3.7.

At the beginning of the computation a full mesh of comparisons is performed
among all the captures and the obtained changesMap are stored in a list. The
algorithm functioning principle is simple: we evaluate all the changesMap looking
for a pattern suggesting the existence of a low level banner and its eventual height
and take a decision exploiting a sort of voting system. The height of a banner is
always measured in terms of number of blocks, thus its possible values range from 0
to viewPortHeight / blockHeight, for each of these possible height values a counter

44

3 – Proposed Solution

is maintained in the bannerHeightVotes dictionary. As soon we identify a banner
and its possible height from a changesMap we increment a counter associated with
that particular value of height, we "vote" for that height. On the contrary if no
banner is found we do not increment any counter thus we do not "vote". The final
decision is taken counting how many votes have been collected, if the total number
of votes is greater than a certain threshold, we assume that a consistent part of our
captures shows a low level banner, and its height is estimated to be the most voted
value in bannerHeightVotes.

1 # Initializion steps
2 changesMapsList = GetFullComparisonMesh(capturesPool)
3 bannerHeightsVotes =
4 InitHeightsVotes(viewPortHeight, blockHeight)
5

6 for(changesMap in changesMapsList) {
7 potentialBannerHeight = 0
8

9 # List of map’s rows in bottom to top order
10 rowsList = ExtractMapRowsList(changesMap)
11

12 for(row in rowsList){
13 if (isRowDynamic(row))
14 potentialBannerHeight += 1
15 else
16 break
17 }
18

19 if (potentialBannerHeight > minBannerHeight)
20 # We increment a counter associated to the found height

value
21 addVote(bannerHeightsVotes, potentialBannerHeight)
22

23 }
24 # Taking a final decision on banner existence and its height
25 bannerFound, estimatedHeight =
26 evaluateVotes(bannerHeightsVotes, changesMapsList.len())

Listing 3.7: Low level banner identification algorithm pseudocode.

As said the pattern we look for in order to state the banner existence and its
height is a very simple one. First we evaluate each map row by row from bottom to
top, we compute for each row the percentage of dynamic blocks, if this percentage
is higher than a given threshold the row is evaluated to be dynamic. Setting the
value of this threshold we can decide the amount of dynamic blocks required to
a row to be evaluated as dynamic, of course for the algorithm to be effective we

45

3 – Proposed Solution

have to be quite restrictive (applying thresholds higher than 0.9) but on the other
hand we need to allow some static (white) blocks in dynamic rows to take into
account changesMap deriving from partially similar low level banners. For each
changesMap we count the amount of consecutive dynamic rows, this number is the
potentialBannerHeight, if this value is higher than the minBannerHeight parameter
we suppose that a low level banner has been identified in the capture and we add
a vote for the potentialBannerHeight found.

3.4 Core Sections Detection Algorithm
Once we get to group the captures within different layouts we select one of the
clusters to be exploited for the subsequent step: the core sections detection. The
algorithm has a quite simple workflow and is based on a single reasonable and
simple assumption:

(i) Given a set of captures showing the same template of a certain
web page, if the captures have been collected within a reasonably limited
amount of time, there is an high probability that comparing two of them
the only differences can be detected within those sections showing the
non relevant, dynamic content of the page.

(a) (b) (c)

(d) Changes map from a and b (on the left) and from a and c.

Figure 3.10: Differences in dynamic sections detected comparing different
captures.

Starting from i we develop an effective approach to detect dynamic and non
relevant page contents. The idea is simple: we compare our captures and identify

46

3 – Proposed Solution

the differing section, the system used for the comparisons is identical to the one
used in section 3.3 with the main modification being the size of blocks which is
reduced in order to obtain more fine grained maps describing dynamic and static
sections. Despite the relative simplicity of the task, it is important to keep in mind
that the assumption in i is valid as long as we take into account the term probability.
In fact due to partial similarities among advertising contents or to rendering lags in
in the static ones it is not always possible to correctly detect the dynamic sections
by comparing only few captures.

In Figure 3.10 we can see the results of the comparison among captures imple-
menting the same layout. Despite having the same page structure and thus being
the positioning of the dynamic content identical in all of them, there are still small
sections that the algorithm fails to identify properly. This problem has be addressed
in two different ways:

1. Refining the analysis granularity : that is reducing the size of the blocks
in which captures are split and that are the real objects compared. This allows
to limit dynamic sections detection failures to smaller areas with respect to
the big blocks used in Figure 3.10 (which are as big as the one used in the
layout detection phase). Moreover in this way we also can identify with
a greater resolution the perimeters of the areas of interest and notice even
small differences. On the other hand this means that slightly similar dynamic
contents will have more blocks classified as static contents.

2. Maximizing the evaluated comparisons : we need to perform a trade-
off between the computation time and the amount of comparison evaluated.
Examining a good number of captures is crucial to eliminate the noise caused
by the small variations visible in Figure 3.10. For this reason we select the
cluster with the greatest number of captures from the layout detection step.

The algorithm workflow can be described through the pseudocode presented in
listing 3.8. The idea is that of performing a full mesh of comparisons among the
captures, in other words each available captures is compared with all the other ones,
where the comparison operation is based on the corresponding blocks subtraction
and the non zero valued pixel counting operations already discussed in the layout
detection algorithm. Despite this similarity in this case the result of each compari-
son is not a changesMap but rather an array of integers, each integer corresponding
to the number of non zero valued pixels found for a certain block after the subtrac-
tion operation, these integers are called NN0counts and each comparison produces
an NN0count value for each block. After each comparison operation we update the
totalPerBlockNN0Counts (line 16 in listing 3.8) which is an object maintaining for
each block a unique list of NN0counts which represent the results obtained for that
specific block over the comparisons performed so far.

After all the full mesh of comparisons has been performed, we obtain for each
block an array of NN0counts. This array is processed in the evaluateResults routine

47

3 – Proposed Solution

which takes a final decision over each block nature and is thus able to produce a
changesMap collecting these decisions. Finally based on the changes map a visual
result similar to the ones observed so far is computed and stored. The decision is
taken keeping into account two thresholds:

NN0th : has the same nature and function of the threshold used in the comparison
operations of the layout detection phase. It is the maximum percentage on
non zero valued pixels allowed for a block to be considered a static one in the
context of a single comparison.

PDEth : is the Percentage of Dynamic Evaluations. We count down how many
times a block has been evaluated dynamic in the context of a single comparison
over the total number of comparison obtaining its blockPDE value, if this value
is greater than the PDEth than the block is definitively evaluated as a dynamic
one.

1 # Initializion steps
2 splitCapturesList =
3 SplitCaptures(capturesPool, blockHeight, blockWidth)
4

5 totalPerBlockNN0Counts =
6 InitNN0Counts(len(splitCapturesList[0]))
7

8 while(len(splitCapturesList) >= 1) {
9 # Get a new baseImg from list

10 baseImg = splitCapturesList.pop()
11

12 # Compare the base image with all the other captures
13 for(img in splitCapturesList) {
14 imgNN0Counts =
15 performComparison(baseImg, splitCapturesList)
16 updateResults(totalPerBlockNN0Counts, imgNN0Counts)
17 }
18 }
19

20 # Taking a final decision for each block
21 changesMap =
22 evaluateResults(totalPerBlockNN0Counts, NN0th, PDEth)
23 computeAndSaveVisualResult(changesMap)

Listing 3.8: Low level banner identification algorithm pseudocode.

The values of PDEth and NN0th are crucial for the algorithm effectiveness as
they are the delimiters distinguishing the noise due to rendering lags or to ad-
vertising similarities from the actual data, they have been refined through tens of

48

3 – Proposed Solution

experiments involving hundreds of captures within the local test environment that
we will further discuss in chapter 4.

49

Chapter 4

Data Collection and Tests
Setup

In this chapter the environments exploited in order to evaluate the effectiveness
and performances of the algorithms presented in chapter 3 is introduced. First
in section 4.1 we discuss the data collection phase and the shrewdness adopted in
order to obtain sets of screenshots which could actually be used for our purposes.
Then in section 4.2 we present the test environment created in order to evaluate
the performances of the layout detection algorithm. Following in section 4.3 we go
through the system developed in order to evaluate the section detection algorithm
and to refine its parameters. Finally in section 4.4 we provide a detailed description
of the two different dataset used for algorithm evaluation and in section 4.5 we
summarize the suite of tests performed.

4.1 Data Collection Setup
The main concern during the data collection phase has been that of producing
captures with some peculiar characteristics enabling their usage in the context of
the algorithm tuning and testing, the "good capture traits" could be summarized
by the following points:

1. Coherent with the page content : in simple words we want our captures to
show the actual aspect of the visited page without the noise due to rendering
lags or to page covering pop-ups and banners.

2. Varied in dynamic contents : for our approach to be effective we need the
dynamic contents to change as much as possible among different screenshots
of the same page in order to be able to detect these changes.

3. Stable in static contents : once again it is crucial for the developed solution
to avoid captures collections in which the static, core contents of the page

50

4 – Data Collection and Tests Setup

changes as this would invalidate a good part of the considerations which the
algorithms are base on.

All these points have been kept into account during the data collection phase. In
order to achieve page coherence the most important actions were the modifications
of the original Browsertime source code aimed to avoid the accept-cookie banners
as we have already discussed in subsection 3.2.2, moreover the delay introduced
between the page load event and the screenshot capture operation allows to reduce
the probability of visible rendering lags in the captures.

To achieve point two of our good capture characteristics instead, we needed
a mechanism able to influence the type of dynamic contents that we get to be
rendered at each visit. To obtain this kind of behaviour, the most effective approach
is that of exploiting the same trackers that we mentioned among the motivations
of our work. Resuming what we have already discussed in section 1.2, we know
that the contents rendered on the pages that we visit are strongly influenced by
our previous interactions and in particular by our browsing history. Starting from
this assumption we decided to create different chrome profiles targeted on specific
themes of interest. We exploited the resources of the SimilarWeb1 platform to
identify the most relevant websites in five main areas: Movies, FoodAndDrink,
Sport, HealthAndFitness and Shopping. We created a new chrome profile for each
of these areas of interests and used it to visit the top twenty most relevant websites
for that kind of contents according to SimilarWeb.

In this way, the profiles created have been made interact with a specific type
of contents and thus, because of (or thanks to) the tracking services active on
the visited websites, each of them has been profiled according to its interests. In
this way we know that, visiting one of the websites in our test cases using all the
targeted chrome profiles, we have a good probability of obtaining differentiated
dynamic contents addressed to interests in different domains.

Finally to achieve the stability of the static contents of point three of the good
capture characteristics, we simply had to minimize the delay among the first and
the last visit to the targeted website. In the vast majority of cases we found that
a delay in the order of minutes and even tens of minutes among visits does not
produce any difference in the static contents rendered. To achieve this magnitude
of delay we simply had to exploit multiprocessing in order to perform multiple
visits, using different chrome profiles at the same time and by mean of different
instances of Browsertime and then collect the obtained results in a single group of
captures.

1SimilarWeb is a web platform that focuses its core business in providing global and multi de-
vice insights related to the digital market, for further details visit https://www.similarweb.
com/corp/about/

51

https://www.similarweb.com/corp/about/
https://www.similarweb.com/corp/about/

4 – Data Collection and Tests Setup

1 #!/usr/bin/env bash
2 # Parameters <url> <perProfileVisits> <usrDataDir>
3 url=$1
4 perProfileVisits=$2
5 chromeProfileDir=$3
6 profileName=‘echo ${3} | cut -d’/’ -f3‘
7 domain=‘echo ${1} | cut -d ’/’ -f3 | cut -d ’.’ -f2‘
8

9 dockerOptions=(
10 # Amount of memory shared by container process
11 ’--shm-size=1g’
12 # Automatically clean up the container and remove
13 # the file system when the container exits
14 ’--rm’
15 # Limiting resource usage: RAM 8gb CPUS 2
16 ’--memory=8000m’
17 ’--cpus=2’
18)
19

20 browsertimeOptions=(
21 # Chrome is the default Browser
22 # We are only interested in screenshots
23 ’--screenshot’
24 # Disabling video stuff
25 ’--video=false’
26 ’--visualMetrics=false’
27 # Cross device cookies
28 ’--chrome.args=--password-store=basic’
29)
30

31 echo "Running instance for profile ${3} on ${domain}"
32

33 docker run "${dockerOptions[@]}" \
34 -v "$(pwd)"/results:/browsertime-results browsertimeCustomBase \
35 "${url}" -n $perProfileVisits\
36 "${browsertimeOptions[@]}" \
37 --resultDir="browsertime-results/${domain}_${profileName}"
38 --chrome.args=--user-data-dir=/profile/${3}

Listing 4.1: Data collection script.

The data collection script is showed in listing 4.1. The docker options are ex-
ploited to limit the amount of resources used by the container and to persist the
results through the mechanism of docker volumes (line 34). Among the Browser-
time options provided, the most important ones are the parameters to be passed
to the chrome instance (–chrome-args). The –user-data-dir argument specifies the
location in the container filesystem of the chrome profile to be used for a certain
set of visits while the –password-store=basic enables the docker chrome instance to
read the profile cookie data even if they were produced by another chrome instance

52

4 – Data Collection and Tests Setup

on another device as it forces the browser to store them in plain text.

4.2 Layout Detection Testbed

(a) corriere.it (b) hwupgrade.it (c) aranzulla.it

(d) ilfattoquotidiano.it (e) meteo.it (f) iltempo.it

(g) androidworld.it (h) virginradio.it (i) ilsole24ore.com

(j) repubblica.it (k) gazzetta.it

Figure 4.1: Websites for the layout detection testbed.

The first test environment we had to set up was the one related to the layout
detection task. We collected one hundred captures from each of the eleven websites
of our test base, exploiting the data collection tool and taking advantage of the
targeted chrome profiles and of multiprocessing to obtain sample presenting the
characteristics of good captures. In Figure 4.1 we can see the full set of websites
which provided the captures used in the layout detection tests.

53

4 – Data Collection and Tests Setup

Multiple guidelines have been kept into account in order to decide which websites
had to be used: the main aspect to keep into consideration has been the variety
of the test suite, variety was required both in page structure complexity and in
layout differentiation. To achieve this variety, we included both sites with a very
simple structure of the page as aranzulla.it (which, as we can observe in Fig-
ure 4.1, renders only a background and a side banner) and websites with multiple
advertising and complex structure as iltempo.it (which can also render a low
level banner). At the same time, the number of possible layouts rendered by each
websites mirrors the variety of a real web environment in which we find both very
simple sites as meteo.it which show less than three different layouts and more
complex ones as ilsole24ore.com which instead implement more than seven
possible page structures. These peculiarities lead to differences in terms of com-
plexity and time requirements of the layout detection task for each website. Once
we had collected our captures, we built the ground truth by simply grouping them
by layout and storing the optimal grouping within a json file.

Along with the ground truth provided by the classified captures, an effective
system to test and evaluate possible combinations of parameters was required.
Both the developed algorithms accept in input a json file containing the parameters
to be used for a specific algorithm run in the form of named properties. As we
can observe in Appendix A, the amount of possible parameters combinations is
significantly high for the layout detection algorithm. For this reason we defined
a script able to automatically generate the configuration files to be provided to
the algorithm, this script accepts in input a json file called testArguments which
contains a description of which parameters have to be tested and in which range
they must be varied. Given the testArguments file the script computes all possible
resulting combinations of parameters and generates the related configuration files.

1 {
2 "clusteringParams":{
3 "blockHasChangedThreshold": [0.4, 0.51, 0.1],
4 "highLevel_minDistance": [0.1, 0.251, 0.05],
5 "highLevel_maxDistance": [0.8, 0.91, 0.1],
6 "core_minDistance": 0.2,
7 "core_maxDistance": 0.8
8 }
9 }

Listing 4.2: Example of testArguments json file.

The testArguments file showed in listing 4.2 generates 16 named configuration
files. The varying arguments are expressed as triples in the form [minValue, max-
Value, step], instead the non varying ones are expressed as single values. In case
some algorithm parameters are not even mentioned within a testArguments file they
are set to default values.

Once we obtain the set of configuration files needed, we run another script which

54

aranzulla.it
iltempo.it
meteo.it
ilsole24ore.com

4 – Data Collection and Tests Setup

exploits multiprocessing to perform multiple runs of the algorithm with different
configurations over the whole set of captures of our testbed. The results of each
run are compared with the optimal layout grouping associated to each test case,
the outcomes of these comparisons are collected for each website and for each
named configuration. The evaluated metrics include measures of accuracy both in
terms of correctly detected layouts and of correctly assigned captures as well as
the computation time, moreover for each configuration the average accuracy and
computation time measures are computed. In listing 4.3 we can observe a json file
produced as output by a test run.

1 {
2 "summary": {
3 "cfg0": {
4 "avgCorrectlyClassifiedImgs": 0.984,
5 "avgCorrectlyClassifiedLyts": 0.937,
6 "avgElapsedTime": 97.604
7 },
8 "cfg1": { ... },
9 [...]

10 },
11 "cfg0": {
12 "meteo": {
13 "correctlyClassifiedImgs": 1.0,
14 "correctlyClassifiedLyts": 1.0,
15 "elapsedTime": 25.746
16 },
17 [...]
18 },
19 "cfg1": { ... },
20 [...]
21 }

Listing 4.3: Example of test run results.

4.3 Core Sections Detection Testbed
The second test environment we had to build was the one for the core sections
detection algorithm. The main problem with this specific test environment was
that of creating a ground truth for the subsequent testing. In fact what is needed
in order to evaluate the performances of the this particular algorithm is knowing
the exact position of the static contents within the page in order to be able of
distinguish which blocks (with the meaning of sub areas) of the tested captures
have to be evaluated as static and which ones instead have to be marked as dynamic.

The approach adopted to solve the problem was that of creating a local envi-
ronment able to simulate the rendering of a page in which the position and nature
(static or dynamic) of each section could be known a priori. This environment

55

4 – Data Collection and Tests Setup

has been developed in the form of a simple Angular 62 web application. This par-
ticular framework has been chosen because of its capability of enabling the fast
development and immediate testing of modular and extensible applications. The
developed solution has been called PageGenerator, it is capable of rendering pages
with an arbitrary structure described by mean of configuration files in json format.
In listing 4.4 we can observe a possible configuration file for the page generator.

1 envConfig:{
2 MAXBLOCK_PER_ROW: 192,
3 MAXBLOCK_PER_COLUMN: 108,
4 baseBlockWidthPx: 10,
5 baseBlockHeightPx: 10,
6 },
7 activeConfig: ’externalBands’,
8 externalBands: {
9 structure: [

10 {xSpan: [0, 192], ySpan: [0, 16]},
11 {xSpan: [0, 24], ySpan: [16, 42]},
12 {xSpan: [24, 168], ySpan: [16, 26], secType:’static-title’},
13 {xSpan: [168, 192], ySpan: [16, 42]},
14 {xSpan: [0, 24], ySpan: [42, 68]},
15 {xSpan:[24, 168], ySpan:[26, 32], secType:’static-sub-title’},
16 {
17 xSpan: [24, 168],ySpan: [32, 50],
18 blockType:’static-img’,
19 resourceReference: ’0.jpg’
20 },
21 {xSpan: [24, 168], ySpan: [50, 108], blockType:’static-text’}
22]
23 }

Listing 4.4: Page generator configuration file example.

The structure of the page is defined as a grid (a matrix) of blocks, the parameters
defining this grid are grouped in the envConfig property which defines the size in
pixels of each basic block of the grid and the maximum number of blocks per row
and per column (in this way the viewport of the browser window is defined as
well). We can maintain multiple configuration and change the actually rendered
page by simply modifying the activeConfig property. Each configuration includes a
structure property which is an array defining the different sections to be rendered
within the page. Sections have rectangular shape (as it is common in the vast
majority of web pages), each of them declares two mandatory properties: xSpan
and ySpan which are tuples describing the size and position of the section within
the grid by providing respectively the starting and ending column and row indexes

2Angular is modern framework based on TypeScript for the development of web applications.
See https://angular.io/.

56

https://angular.io/

4 – Data Collection and Tests Setup

of the blocks composing the section. According to these properties, each section
is rendered on the page with fixed height and width, moreover its position within
the page is fixed too. This behaviour is achieved by providing to each section,
which is rendered as an HTML <div> element with variable content, custom CSS3

properties computed at page load time according to the specific section structure.
We can explain the mechanism by mean of an example, we will examine the

second structure defined in the externalBands configuration (line 10 of listing 4.4
). The structure describes a section spanning horizontally from block 0 to block
24, this means that the corresponding <div> element will be (24 - 0)*baseBlock-
WidthPx wide, the section horizontal positioning is given by its leftmost block
index, in this case it is 0 thus the section is on the leftmost side of the page. In a
similar way, looking at the ySpan property we can derive that the section height is
equal to (42 - 16)*baseBlockHeightPx, the vertical positioning instead is given by
the topmost block index that is 16 thus the section will be placed at 16*baseBlock-
HeightPx pixels from the top of the page. Given the envConfig in listing 4.4, the
resulting CSS properties applied to the div generated for this section will be those
showed in listing 4.5.

1 {
2 width: 240px,
3 height: 260px,
4 position: absolute,
5 left: 0,
6 top: 160px
7 }

Listing 4.5: CSS properties computed for the second section of the externalBands
configuration of listing 4.4.

Beside its shape and position, each page structure can be characterized by a
secType property. Within the created environment, which is a simplification of the
real web, we have defined six different types of contents for a generic section:

dynamic : dynamic sections are used to simulate the advertising content of a
page, the corresponding <div> element will contain an advertising banner
that is randomly selected for each section of this type at page load from a
pool of one hundred advertising images. It is the default section type and is
assigned to all those section defined in a configuration but lacking a secType
property.

static-title : the corresponding <div> element will include an <h2> HTML tag
with a predefined title.

3CSS stands for Cascading Style Sheet, it is a language describing the style (mainly graphics
and animations) of an HTML document. See https://www.w3schools.com/css/.

57

https://www.w3schools.com/css/

4 – Data Collection and Tests Setup

static-sub-title : the corresponding <div> element will include an <h3 > HTML
tag with a predefined sub title.

static-img : the corresponding <div> element will include a static image speci-
fied by the resourceReference property.

static-text : the corresponding <div> element will include a <p> HTML tag
dynamically filled using a lorem ipsum 4 generator.

placeholder : all the grid blocks which are not part of the sections defined by
a configuration are rendered as placeholder which are simple empty <div>
elements with the exact dimensions of a grid block. This type of elements
allow to have a visual feedback of the grid when exploring the page using the
browser dev-tools.

As already said the configuration is processed at page load, and according to the
structure elements, different page sections are generated, shaped and positioned
through CSS properties. Moreover as we "build" the sections to be rendered, it is
maintained track of which blocks of the grid are occupied by which type of content,
this is done both in order to signal bad configurations containing overlapping section
but above all to produce for each configuration an array of boolean stating the
nature of each block of the rendered grid. This array is actually identical to a
changesMap and thus can be used as ground truth for the test cases produced
using the PageGenerator application.

(a) repubblicaLocal (b) externalBands (c) isaolatedBanners

(d) asymmetricBanners (e) mainlyDynamic

Figure 4.2: Pages generated for section detection testing.

4Lorem ipsum is a latin text often used as placeholder for text contents.

58

4 – Data Collection and Tests Setup

The test suite for the section detection algorithm has been built using the data
collection tool to visit on our local machine the pages produced by five different
configurations of the PageGenerator application (inspired to common page layouts
from the web) and by collecting the related changesMap to be used as ground
truth. In Figure 4.2 we can observe captures of the generated pages with their
configuration code name.

The testing routine is similar to the one used for the layout detection algorithm,
the first step is that of generating configuration files to feed the algorithm. In this
specific case the testing routine compares the changesMap produced by the page
generator with the one resulting from the algorithm run. The core section detection
problem as said is observed as a classification task in which an object (a block and
thus a sub section of the original capture) can be classified as static or dynamic,
thus we compute Accuracy, Precision, False Discovery Rate and True Positive Rate
which are typical measures for this kind of tasks.

4.4 Datasets
In this section we will provide a detailed description of the datasets used for testing
the algorithms.

The dataset used for the layout detection algorithm testing is made of captures
from ten real websites, as already said the number of layouts and thus the com-
plexity of the classification task varies consistently among websites. We will refer
to this dataset as ldWildDataset, it is detailed in Table 4.1 remarking for each
test case the corresponding website, the total amount of captures collected for that
site and the number of different layouts which can be identified.

The dataset used for the core sections detection algorithm testing instead is made
of captures obtained from different configurations of the Page Generator. We will
refer to this dataset as sdSynthDataset, it is detailed in Table 4.2 remarking the
total amount of captures for each test case and the percentage of dynamic blocks
over the total.

Codename Website # Captures # Layouts

androidWorld www.androidworld.it 100 7
meteo www.meteo.it 100 2
sole24ore www.ilsole24ore.com 100 9
repubblica www.repubblica.it 100 3
corriere www.corriere.it 100 10
hwUpgrade www.hwupgrade.it 100 3

59

www.androidworld.it
www.meteo.it
www.ilsole24ore.com
www.repubblica.it
www.corriere.it
www.hwupgrade.it

4 – Data Collection and Tests Setup

aranzulla www.aranzulla.it 100 3
virginRadio www.virginradio.it 100 3
gazzetta www.gazzetta.it 100 7
fattoQuotidiano www.ilfattoquotidiano.it 100 7

Table 4.1: Details of ldWildDataset.

Codename # Captures % Dynamic blocks

lolaRep 100 40.10
externalBands 100 36.11
isolatedBanners 100 25.31
mainlyDynamic 100 46.72
asymmetricBanners 100 42.04

Table 4.2: Details of sdSynthDataset.

4.5 Test suites
In this section we will provide an overview of the test suites for the developed al-
gorithms remarking for each test the involved parameters, the values they assume
and the amount of tested configurations. We will refer to the names of the param-
eters as described in Appendix A. In Table 4.3 we group the tests related to the
layout detection algorithm, while the test suite of the section detection algorithm is
described in Table 4.4. In both table we adopt the notation [startValue, finalValue,
step] to describe parameters ranging within a certain interval instead we will write
<val1, val2, val3, ..> to describe parameters assuming a set of values.

60

www.aranzulla.it
www.virginradio.it
www.gazzetta.it
www.ilfattoquotidiano.it

4 – Data Collection and Tests Setup

4.5.1 Layout Detection test suite

Test name Tested Params Range # Config.

t01blockSize blockWidth <5, 10, 15, 20, 30, 40> 6
blockHeight -5

t02nn0Th NN0Th [0.05, 0.35, 0.01] 30
t03hlMinDist highLvlMinDist [0.05, 0.33, 0.02] 15
t04hlMaxDist highLvlMaxDist [0.65, 0.93, 0.02] 15
t05crWdwWidth coreWindowXStart [20, 31, 1] 12 x 5

coreWindowXSpan [36, 52, 4]
t06crWdwHeight coreWindowYStart [0, 9, 1] 36 6

coreWindowYSpan [44, 54, 2]
t07clMinDist coreLvlMinDist [0.15, 0.43, 0.02] 15
t08clMaxDist coreLvlMaxDist [0.55, 0.83, 0.02] 15
t09ptrnConsec patternNCC [2, 20, 1] 19
t10ptrnShape patternNCD [0, 6, 2] 12 x 4

patternNCS [2, 14, 1]
t11ptrnConsShape patternNCC [6, 12, 1] 7 x 11

patternNCS [9, 19, 1]
t12srcWdwWidth srchWindowXStart [7, 11, 1] 5 x 8

srchWindowXSpan [10, 17, 1]
t13srcWdwHeight srchWindowYStart [0, 4, 1] 25 7

srchWindowYSpan [48, 54, 1]

Table 4.3: Test suite for the layout detection algorithm.

5We use squared blocks thus width and height assume always the same value.
6Manually provided configurations as not all values are legal for each algorithm configuration.
7Similar considerations with respect to t06crWdwHeight.

61

4 – Data Collection and Tests Setup

4.5.2 Core Sections Detection test suite

Test name Tested Params Range # Config.

sdt1nn0pde NN0Th [0.20, 0.84, 0.02] 33 x 4
PDE [0.6, 0.9, 0.1]

sdt1captureLimit limitCaptures [6, 100, 1] 95
sdt2captureLimitTime limitCaptures <50, 45, 40, 35,

30, 25, 20, 15, 10,
5>

10

Table 4.4: Test suite for the section detection algorithm.

4.6 Hardware configuration
Here we present a comprehensive description of the hardware used to run our test
suites.

DeviceClass Description
==

processor Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz
memory 32KiB L1 cache
memory 256KiB L2 cache
memory 3MiB L3 cache
memory 8GiB System Memory
memory 4GiB SODIMM DDR3 Synch. 1333 MHz (0,8 ns)
memory 4GiB SODIMM DDR3 Synch. 1333 MHz (0,8 ns)
display GF119M [GeForce 610M]
network Centrino Wireless-N 100
network AR8151 v2.0 Gigabit Ethernet
disk 500GB WDC WD5000LPLX-0

62

Chapter 5

Results

In this chapter we analyse the results of the testing sessions performed on the de-
veloped algorithms, we go through each test discussing the reasons behind each
evaluation and highlighting the single steps of the algorithm refining process. First
in section 5.1 we go through the parameter refining process of the layout detection
algorithm in which, given the amount of possible setups, a result driven approach
has been adopted meaning that each set of parameters has been approached as an in-
dependent sub problem. Then in section 5.2 we present the results obtained testing
the core sections detection algorithm in which, thanks to a minor amount of param-
eters to be kept into account, a more extensive testing approach has been adopted.
Finally in section 5.3 we provide a summary of the outstanding results achieved
both in terms of accuracy and time performances by the algorithms. During the
results presentation and the test explanation the reference of Appendix A could be
useful to help following the various step by allowing to rapidly and schematically
resume the various parameters names and their meaning, Table 4.3 and Table 4.4
instead can be exploited to associate the name of each test to its actual scope.

5.1 Layout Detection parameters tuning
The definition of the optimal configuration for the layout detection algorithm re-
quired a step by step analysis, the amount of parameters and thus of possible
configurations required multiple specific tests aimed at tuning single or couples
of parameters. Each test result has been analysed considering the necessity of a
trade-off among computation time and accuracy in layout detection.

The first high level parameters to be set were those related to the most basic
unit of information analysed by our system, the sub blocks in which each capture
is divided. We decided to use squared blocks in order to approximate a punctual
analysis of captures. Taking a decision about the dimensions of these squares
required performances and accuracy evaluations: using large blocks allows to reduce

63

5 – Results

the computation time as we need to process grids with less elements, on the other
hand increasing block dimensions means coarser grained analysis and thus higher
probability of errors.

5 10 15 20 25 30 35 40
Block size in px

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

(a) Average percentage of correctly assigned captures.

5 10 15 20 25 30 35 40
Block size in px

50

100

150

200

250

300

350

400

450

Co
m

pu
ta

tio
n

tim
e

(b) Average time elapsed for classification.

Figure 5.1: Performance metrics for different block sizes.

In Figure 5.1 we can observe the results of the t01blockSize test described in
Table 4.3, in particular in Figure 5.1a the trend of the accuracy metric (measured
as the average percentage of captures assigned to the correct layout in our test
cases) when varying the block dimensions is showed. As we can notice accuracy
decreases for very small block sizes (under 10px), this is due to the nature of
the searchPattern routine which looks for uniform and large patterns of static and
dynamic blocks, using small blocks we increase the sensitivity of our analysis and
thus we are more sensitive to the noise produced by small similarities among banners
or page rendering lags, for this reason it is harder to detect the searched pattern.
On the other hand accuracy performances are also negatively affected by too large
blocks which make the analysis too coarse to allow detection of small banners and
minor differences among captures. The best result in terms of accuracy is obtained
for squared blocks of side 20px.

As expected the average computation time instead decreases constantly as we
increase block dimensions although the gains become of the order of seconds for
sizes greater than 20px and even of tens of seconds for blocks of side greater than
30px. Given these results the block side dimensions has been set to 20px for all the
subsequent tests.

The second logical step has been that of refining the NN0th threshold, a crucial
parameter that is used to discriminate equal and differing sub areas of examined
captures. Once again the value of this threshold is a measure of how sensitive we
are in detecting changes among two blocks. In Figure 5.2a we can observe the
results of t02nn0Th test from Table 4.3. It is remarkable to notice how gradually
increasing this threshold we can produce a decreasing trend of the accuracy metric.

64

5 – Results

0.05 0.10 0.15 0.20 0.25 0.30 0.35
NN0 threshold

0.945

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

Ac
cu

ra
cy

(a) Average percentage of correctly assigned captures.

0.05 0.10 0.15 0.20 0.25 0.30 0.35
NN0 threshold

50

60

70

80

90

100

110

120

Co
m

pu
ta

tio
n

tim
e

(b) Average time elapsed for classification.

Figure 5.2: Performance metrics for different NN0th values.

Increasing the NN0th value means accepting to recognize as not changing (static)
sections blocks that differ for a growing amount of pixels, this implies an higher
probability of errors. On the other hand being slightly less strict allows avoid
detecting non relevant differences among blocks due to small rendering lags and
this means improving time performances of the classification task as showed in
Figure 5.2b.

At this stage we have an optimal value for the block size and the nn0Th, we
start focusing on tuning the parameters of the classification routines. As previously
said, the highLvlSimilarity routine relies on two parameters whose role is summa-
rized in Appendix A: highLvlMinDist has been evaluated in t03hlMinDist, while
highLvlMaxDist has been tested in t04hlMaxDist.

0.05 0.10 0.15 0.20 0.25 0.30
highLvlMinDist

0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

(a) Average percentage of correctly assigned captures.

0.05 0.10 0.15 0.20 0.25 0.30
highLvlMinDist

30

40

50

60

70

80

90

100

Co
m

pu
ta

tio
na

l t
im

e

(b) Average time elapsed for classification.

Figure 5.3: Performance metrics for different highLvlMinDist values.

The results of t03hlMinDist are presented in Figure 5.3. The resulting trend is

65

5 – Results

quite evident, setting too high values for this threshold causes losses in accuracy, it
is important to keep this threshold as strict as possible, in fact observing the whole
capture it is not unusual to come across tricky captures belonging to different
layouts but showing a not so high value for the high level distance measure, this
could the case of two layouts implementing a background banner and two captures
belonging to different layouts showing the same exact background. Of course the
computation time decreases if we accept to be less strict on this parameter as we
are less strict in assigning captures to a layout and as a consequence we perform
less comparisons.

0.65 0.70 0.75 0.80 0.85 0.90
highLvlMaxDist

0.9675

0.9700

0.9725

0.9750

0.9775

0.9800

0.9825

Ac
cu

ra
cy

(a) Average percentage of correctly assigned captures.

0.65 0.70 0.75 0.80 0.85 0.90
highLvlMaxDist

85

90

95

100

Co
m

pu
ta

tio
na

l t
im

e

(b) Average time elapsed for classification.

Figure 5.4: Performance metrics for different highLvlMaxDist values.

The results of t04hlMaxDist showed in Figure 5.4 can be commented with simi-
lar considerations. The accuracy decreases as we start considering as incompatible
captures differing in less than 75% of blocks and this can generate errors for pages
with mainly dynamic contents. Of course the computation time increases reduc-
ing the threshold as we tend to split into multiple groups captures from a single
layout, more layouts of course means more comparisons needed and thus longer
computation before understanding that a certain capture belongs to a new layout.

By setting up the highLvlMaxDist we define the algorithm behaviour up to the
High Level Similarity routine thus we are ready to evaluate the parameters related
to the Core Level Similarity routine. The first values to be set are the ones defining
to the shape and position of the CoreWindow, this is logically the first thing to do
as the performances of coreLvlMinDist and coreLvlMaxDist thresholds are strictly
dependent on the used window. Given the shape and position of the core window,
we identify a particular area of the analysed captures which, on average, will show
across the majority of websites a certain composition in terms of percentage of
static and dynamic blocks, the value of thresholds used in this phase has to be set
according to the composition of the selected window.

66

5 – Results

We decided to split the analysis in two parts, setting horizontal position (the col-
umn index of the leftmost blocks of the window) and width in test t05crWdwWidth
and taking care of vertical position (the row index of the topmost blocks of the win-
dow) and height in t06crWdwHeight.

20 22 24 26 28 30
Window starting column

0.955

0.960

0.965

0.970

0.975

0.980

0.985

Ac
cu

ra
cy

Width: 36
Width: 40
Width: 44
Width: 48
Width: 52

(a) Average percentage of correctly assigned captures.

20 22 24 26 28 30
Window starting column

80

90

100

110

120

130

Co
m

pu
ta

tio
n

tim
e

Width: 36
Width: 40
Width: 44
Width: 48
Width: 52

(b) Average time elapsed for classification.

Figure 5.5: Performance metrics for different coreWindow widths and horizontal
positioning.

Observing the results of t05crWdwWidth in Figure 5.5 we can notice that, as
expected, performances in terms of accuracy drop if we depart too much from
the horizontal center of the capture. Despite this consideration we found that for
changesMap containing 96 blocks per row the best performing configuration is not
exactly at the center of the viewport but is slightly shifted to the left having a
a width of 44 blocks and 23 as starting column index. This can be explained if
we think that the aim of the core window is to focus on sections containing as
much static (core) contents as possible in order to ease the discrimination among
layouts by focusing on less variable elements: many websites implement a column
containing feeds and small banners on the right side of the core content section
thus it is not surprising that the best configuration partially cuts off such kind
of elements to focus on those sections that usually tend to contain more relevant
informations.

In Figure 5.6 we present the results of t06crWdwHeight. The most remarkable
thing to notice is that the starting row index seems to have no effect on accu-
racy which instead is influenced only by the window height. The best performing
combination was the one presenting a 46 blocks high window starting at row 3 of
the changesMap that is 60 pixels under the top of the capture for our parameters
settings. Moreover this height value excludes the bottommost section of the page
which often can contain partially visible banners and contents that are difficult to
analyse.

Once positioned and shaped the coreWindow we are able to set meaningful

67

5 – Results

0 2 4 6 8 10
Window starting row

0.980

0.981

0.982

0.983

0.984

0.985

0.986
Ac

cu
ra

cy

Height: 44
Height: 46
Height: 48
Height: 50
Height: 52
Height: 54

(a) Average percentage of correctly assigned captures.

0 2 4 6 8 10
Window starting row

80

90

100

110

120

130

Co
m

pu
ta

tio
n

tim
e

Height: 44
Height: 46
Height: 48
Height: 50
Height: 52
Height: 54

(b) Average time elapsed for classification.

Figure 5.6: Performance metrics for different coreWindow heights and vertical
positioning.

thresholds for the Core Level Similarity routine. In t07clMinDist and t08clMaxDist
we tested multiple possible values of coreLvlMinDist and coreLvlMaxDist, tests
results are presented respectively in Figure 5.7 and Figure 5.8.

0.15 0.20 0.25 0.30 0.35 0.40 0.45
coreLvlMinDist

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

(a) Average percentage of correctly assigned captures.

0.15 0.20 0.25 0.30 0.35 0.40 0.45
coreLvlMinDist

60

70

80

90

100

110

120

130

Co
m

pu
ta

tio
n

tim
e

(b) Average time elapsed for classification.

Figure 5.7: Performance metrics for different coreLvlMinDist parameter values.

Similarly to what we have observed for highLvlMinDist, increasing the value
of the coreLvlMinDist makes the algorithm less strict in assigning a capture to a
template for Core Level Similarity thus it is easier to commit errors and accuracy
decreases, on the other hand we obtain a boost in computation time because we
perform less comparisons. Regarding the coreLvlMaxDist parameter, decreasing its
value our algorithm is more likely to declare captures layout incompatible for Core
Level Non Similarity this meaning incrementing the probability of errors when
observing captures with rich dynamic contents in core if we set it to excessively

68

5 – Results

low values. By the way declaring incompatibility among layouts is very effective in
speeding up computation as we are faster in discovering new layouts skipping useless
comparisons among incompatible captures, setting wisely the coreLvlMaxDist we
achieved great gains in terms of computation cost of the algorithm as we can observe
in Figure 5.8b. The coreLvlMaxDist has been set to 0.55 in order to maximize
accuracy still obtaining a great improvement in computation cost with respect to
previous configurations (gain is in the order of tens of seconds with respect to the
previous test results showed in Figure 5.7b).

0.4 0.5 0.6 0.7 0.8
coreLvlMaxDist

0.94

0.95

0.96

0.97

0.98

Ac
cu

ra
cy

(a) Average percentage of correctly assigned captures.

0.4 0.5 0.6 0.7 0.8
coreLvlMaxDist

40

60

80

100

120

Co
m

pu
ta

tio
n

tim
e

(b) Average time elapsed for classification.

Figure 5.8: Performance metrics for different coreLvlMaxDist parameter values.

Identifying the best configuration for the Search Pattern Routine parameters re-
quired some trial and error. The effectiveness of a certain searchWindow is strictly
related to the shape of the pattern we look for which is defined by patternNCC,
patternNCS and patternNCD; in this case it is also true the opposite statement:
a particular pattern shape is convenient only for certain searchWindow configura-
tions.

As first approach, we decided to keep the default values for all other parameters
and look for an optimal value of patternNCC in t09ptrnConsec. The results can be
evaluated in Figure 5.9. The patternNCC defines the width of the area in which
we look for the sub-pattern of listing 3.3.3 thus of course it has to be set to a
value smaller with respect to the average width of the core static content section
of the average website, on the other hand it has to be enough large to avoid the
possibility of grouping together captures showing the same side banner but differing
in the main content layout.

After this first attempt, without setting the optimal value found for patternNCC
in t10ptrnShape we evaluated combinations of patternNCS and patternNCD which
define the shape of the sub-pattern we look for. The results presented in Figure 5.10
showed how the influence of patternNCD is minimum in terms of accuracy. For this
reason we decided to set a default value for patternNCD and evaluate combinations

69

5 – Results

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Consecutive sub patterns:

0.960

0.965

0.970

0.975

0.980

0.985

Ac
cu

ra
cy

(a) Average percentage of correctly assigned captures.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Consecutive sub patterns:

45

50

55

60

65

Co
m

pu
ta

tio
n

tim
e

(b) Average time elapsed for classification.

Figure 5.9: Performance metrics for different values of patternNCC.

of patternNCC and patternNCS in t11ptrnConsShape whose results are presented
in Figure 5.11. The test results in terms of accuracy highlighted once again how
crucial the patternNCC parameter is. We decided to define the final pattern shape
setting the parameters to the best performing configuration of t11ptrnConsShape
with patternNCC equal to 7, patternNCS equal to 10 and patternNCD equal to the
default value of 2.

2 4 6 8 10 12 14
Consecutive static blocks:

0.90

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

Consecutive dynamic blocks: 0
Consecutive dynamic blocks: 2
Consecutive dynamic blocks: 4
Consecutive dynamic blocks: 6

(a) Average percentage of correctly assigned captures.

2 4 6 8 10 12 14
Consecutive static blocks:

30

35

40

45

50

55

60

Co
m

pu
ta

tio
n

tim
e

Consecutive dynamic blocks: 0
Consecutive dynamic blocks: 2
Consecutive dynamic blocks: 4
Consecutive dynamic blocks: 6

(b) Average time elapsed for classification.

Figure 5.10: Performance metrics for different combinations of patternNCD and
patternNCS.

To complete the configuration of the layout detection algorithm we ran tests
t12srcWdwWidth and t13srcWdwHeight to define the final position and shape of the
searchWindow. The results of these final tests are showed respectively in Figure 5.12
and Figure 5.13. Regarding width and horizontal positioning we can notice in

70

5 – Results

10 12 14 16 18
Consecutive static blocks:

0.976

0.978

0.980

0.982

0.984

0.986

Ac
cu

ra
cy

Consecutive sub patterns: 6
Consecutive sub patterns: 7
Consecutive sub patterns: 8
Consecutive sub patterns: 9
Consecutive sub patterns: 10
Consecutive sub patterns: 11
Consecutive sub patterns: 12

(a) Average percentage of correctly assigned captures.

10 12 14 16 18
Consecutive static blocks:

50

52

54

56

58

60

62

64

Co
m

pp
ut

at
io

n
tim

e

Consecutive sub patterns: 6
Consecutive sub patterns: 7
Consecutive sub patterns: 8
Consecutive sub patterns: 9
Consecutive sub patterns: 10
Consecutive sub patterns: 11
Consecutive sub patterns: 12

(b) Average time elapsed for classification.

Figure 5.11: Performance metrics for different combinations of patternNCC and
patternNCS.

Figure 5.12a that moving windows of different width from left to right (increasing
the window starting column index) produces accuracy fluctuations that are very
similar for different window width, this indicates that there is a core central part
that is crucial for the correct classification through the Search Pattern Routine,
the trend of the computation time instead results quite odd although ranging in a
small window of values.

20 22 24 26 28 30 32 34
Window starting column

0.955

0.960

0.965

0.970

0.975

0.980

0.985

Ac
cu

ra
cy

Width: 36
Width: 40
Width: 44
Width: 48
Width: 52

(a) Average percentage of correctly assigned captures.

20 22 24 26 28 30 32 34
Window starting column

45

50

55

60

65

Co
m

pu
ta

tio
n

tim
e

Width: 36
Width: 40
Width: 44
Width: 48
Width: 52

(b) Average time elapsed for classification.

Figure 5.12: Performance metrics for different searchWindow widths and
horizontal positioning.

The accuracy trend for test t13srcWdwHeight instead, shows how crucial it is to
keep the search window height as similar as possible to the viewport height: reduc-
ing the search window height value produces more misclassified captures regardless

71

5 – Results

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Window starting row

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

Ac
cu

ra
cy

Height: 48
Height: 49
Height: 50
Height: 51
Height: 52
Height: 53
Height: 54

(a) Average percentage of correctly assigned captures.

20 22 24 26 28 30 32 34
Window starting column

45

50

55

60

65

Co
m

pu
ta

tio
n

tim
e

Width: 36
Width: 40
Width: 44
Width: 48
Width: 52

(b) Average time elapsed for classification.

Figure 5.13: Performance metrics for different searchWindow heights and vertical
positioning.

the starting window row. This is not a surprise if we think to the nature of the
Search Pattern Routine which exploits the informations deriving from layout mod-
ifications that move vertically the content of the page and thus requires as much
informations as possible along the y axis.

5.2 Core Sections Detection parameter tuning
The core section detection algorithm requires less configuration parameters with
respect to the layout detection system thus we were able to perform more extensive
tests and evaluate a greater percentage of all possible configurations. The decision
about the block side followed similar considerations with respect to what we said
for the corresponding parameter of the layout detection algorithm. We decided
to sacrifice a bit of computation time to obtain a more fine grained changesMap
describing core sections in a more punctual way, we set the block side to 10 px. The
most important parameters of the algorithm are NN0Th and PDETh on which we
rely in order to take a final decision regarding each block. In sdt1nn0pde they were
extensively tested and we can observe the outcome of these tests in Figure 5.14.
We can notice that the more stable combination was the one with PDETh equal
to 0.6 as it achieved the 100% of accuracy for a wide range of NN0Th values, we
selected the central value of this range as the optimal parameter value.

In terms of computation time the section detection algorithm is deterministic,
the computation cost decreases as we decrease the amount of examined captures.
For this reason we decided to evaluate the performances in terms of accuracy with
respect to the number of captures analysed in order to know if there was margin to
limit the amount of captures evaluated keeping high levels of accuracy. The results

72

5 – Results

0.2 0.3 0.4 0.5 0.6 0.7 0.8
nn0 threshold

0.975

0.980

0.985

0.990

0.995

1.000

Ac
cu

ra
cy

pde: 0.6
pde: 0.7
pde: 0.8
pde: 0.9

Figure 5.14: Performance metrics for different combinations of NN0Th and
PDETh.

of test sdt1captureLimit presented in Figure 5.15 showed that, despite of course
this kind of tests is influenced by the synthetic nature of the dataset, a set of 30 or
more captures is enough to achieve the maximum possible accuracy.

20 40 60 80 100
Evaluated captures

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

Ac
cu

ra
cy

Figure 5.15: Performance metrics for different values of the limitCaptures
parameter.

73

5 – Results

Finally in test sdt2captureLimitTime we examined the variations in terms of
computation time (which as said is deterministic) when varying the amount of
captures evaluated. The test has provided differentiated metrics for the capture
analysis phase in which comparisons among captures are performed and of the
final decision phase in which we take a decision regarding each block based on the
analysis results and the provided thresholds and we produce the changeMap. The
results are presented in Figure 5.16.

10 20 30 40 50
Captures evaluated

0

25

50

75

100

125

150

175

Co
m

pu
ta

tio
n

tim
e

(a) Average time for capture analysis.

10 20 30 40 50
Captures evaluated

0

1

2

3

4

5

6

7

8

Co
m

pu
ta

tio
n

tim
e

(b) Average time for changesMap definition.

Figure 5.16: Computation cost for different phases of the core sections detection
algorithm when varyin the amount of captures evaluated.

5.3 Final results summary
In this section we present the optimal configurations defined through over 150 hours
of testing on the hardware described in section 4.6 for the layout detection and core
sections detection algorithms. Along with the optimal configurations the related
performance metrics for single thread runs over the same hardware configuration
are presented.

Parameter name Tested in Optimal Value

blockWidth t01blockSize 20 px
blockHeight t01blockSize 20 px
NN0Th t02nn0Th 0.133
highLvlMinDist t03hlMinDist 0.15
highLvlMaxDist t04hlMaxDist 0.83

74

5 – Results

coreWindowXStart t05crWdwWidth 23
coreWindowXSpan t05crWdwWidth 44
coreWindowYStart t06crWdwHeight 3
coreWindowYSpan t06crWdwHeight 46
coreLvlMinDist t07clMinDist 0.19
coreLvlMaxDist t08clMaxDist 0.55
patternNCC t09ptrnConsec,

t11ptrnConsShape
7

patternNCD t10ptrnShape 2
patternNCS t10ptrnShape,

t11ptrnConsShape
10

srchWindowXStart t12srcWdwWidth 30
srchWindowXSpan t12srcWdwWidth 44
srchWindowYStart t13srcWdwHeight 0
srchWindowYSpan t13srcWdwHeight 53

Table 5.1: Best performing configuration for layout section detection algorithm.

The optimal configuration for the layout detection algorithm is summarized in
Table 5.1. With this configuration, the test suite detailed in Table 4.3 and the
dataset described in Table 4.1 the layout detection algorithm achieved the results
in Table 5.2.

Metric Average value Best result Worst result

Correctly Classified Captures 98.6% 100% 91.9%
Correctly Classified Layouts 95.1% 100% 71.4%
Elapsed Time 40.6 s 10.4 s 133.0 s
Perfect tests cases 1 8/10 - -

Table 5.2: Layout section detection algorithm performances for the optimal
configuration.

1Presenting 100% of captures correctly classified and 100% of layouts detected.
75

5 – Results

For the core section detection algorithm we identified the optimal parameters
summarized in Table 5.3. The blockHeight and blockWidth have been set to 10
px without extensive tests according to the desired granularity of the analysis.
The presented configuration achieved the 100% of accuracy on the dataset detailed
in Table 4.2. According to the results of sdt2captureLimitTime showed in Fig-
ure 5.16, the computation time for a set of 30 captures which has been identified in
sdt1captureLimit as the optimal value for the capture set size, is of 59.74 seconds
for captures analysis and 3.42 seconds for taking the final decision over each block
and produce the output changesMap.

Parameter name Tested in Optimal Value

blockWidth - 2 10 px
blockHeight - 10 px
NN0Th sdt1nn0pde 0.65
PDETh sdt1nn0pde 0.6
limitCaptures sdt1captureLimit 30

Table 5.3: Best performing configuration for core sections detection algorithm.

2Provided apriori.

76

Chapter 6

Conclusions and Future
Work

In the following we present some final considerations about this research work: first
we discuss the tackled problem, its complexity and the progresses made towards its
solution, then we further discuss the proposed solution, its advantages and possible
limitations and the achieved performances. Finally we present possible directions
of future works on this subject.

6.1 Considerations on the tackled problem

The aim of this research work was that of creating a tool able to identify with a
general and content independent approach eventual "breaks" in web pages rendering
when tracker-blocking tools are used. To the best of our knowledge, this specific
task had never been addressed by any previous work; it has revealed several critical
points: the complexity of deciding what does it mean for a web page top be broken,
the variety of layouts showing different contents that the same web page can render
and of course the difficult in finding a general purpose solution able to deal with
the variety and mutability of the modern Internet.

The problem has not been fully solved but we were able to identify an effective
approach to tackle this new genre of tasks and used this approach to address sub
tasks of the main problem. We defined a visual approach based on the observation
of the non broken version of the page in order to evaluate by comparison eventual
rendering problems on that page. In particular we found a way to automatically
collect captures of non broken web pages and visually identify their core contents,
this enables understanding which elements must necessarily be properly rendered
in order to characterize a page as not broken.

77

6 – Conclusions and Future Work

6.2 Our solution and possible improvements
Solving this sub problem required a system able to automatically collect captures
with specific standardized characteristics of each web page, two algorithms able
to group those captures according to the specific page layout they render and to
visually identify the core content sections of the page by comparing captures ren-
dering the same page layout. The advantage of the developed solution consists in
being completely independent from the inner structure of the page, all the analysis
is focused on the visual informations rendered when we visit the page which have
always the same format and thus are easier to process in an organic way. This
approach revealed to be fast and accurate in the vast majority of cases.

The algorithm for the detection and classification of captures layouts has achieved
outstanding performances being able to properly identify the layouts rendered in
100 captures of the same web page with an average accuracy of 98.6% and an average
computation time of 40.6 seconds on the limited hardware described in section 4.6.
On the same hardware configuration, the algorithm for the core sections detection
has reached the 100% of accuracy on all test cases with a computation time of 63.12
seconds for sets of 30 captures.

Our system has thus reached great results in terms of accuracy and time per-
formances but there is still margin for further improvements and refining. First
of all both the algorithms will require further and more extensive test: due to the
limited amount of time available for this thesis work it was not possible to build
large datasets to test the algorithms on a realistic sample of the variety of websites
that it is possible to encounter in the modern Internet. It is crucial to extend the
dataset described in Table 4.1 and provide for each test case and each layout the
ground truth related to the core sections to be used in core sections detection tests,
in fact the synthetic dataset exploited for the core sections detection algorithm
testing and described in Table 4.2 can be considered only an approximation of real
world cases.

The algorithmic part of the developed system has margin for improvements
too, the nature of the captures comparison operation on which both algorithms
are based suggests that performances could benefit, in terms of computation time,
from a larger exploitation of parallelization in many subtasks.

6.3 Future work
The way paved by our visual approach, suggests which are the next steps that
could be addressed by future works on this subject. In particular the visual map of
the core sections of a web page produced as final output by the developed system
can be used to locate and isolate within a page specific sections containing the
most relevant page informations. To perform assertions about the health state of a
page visited using tracker-blocking tools, future works could focus on locating this

78

6 – Conclusions and Future Work

particular pieces of informations inside the evaluated pages by using image pattern
recognition techniques.

To enable this kind of analysis, future studies will also also have to focus on
identifying which visual transformation the core sections can undergo when tracker-
blocking tools are activated.

Finally a system able to run autonomously the whole pipe of required operations
will have to be designed, in such a way that it could respect all the requirements
in terms of computation capabilities needed to operate on large sets of constantly
changing and evolving web pages.

79

Appendix A

Tables of parameters

Here we present two section summarizing the various parameters of the developed
algorithms, in order to ease the association of their name to their meaning and
their role.

A.1 Layout Detection Parameters
In Table A.1 we summarize the parameters exploited by the layout detection rou-
tines.

Parameter name Meaning and role

blockWidth Width of the basic blocks in which we subdivide the cap-
tures to be analysed.

blockHeight Height of the basic blocks in which we subdivide the cap-
tures to be analysed.

NN0Th Number of Non Zero valued pixels: given a block derived
from the subtraction of corresponding blocks of two cap-
ture, if the percentage of non zero valued pixels in it is
higher than this threshold, we state that the block is a dy-
namic one this meaning that the two captures differ in that
specific sub area.

highLvlMinDist Maximum percentage of blocks differing among two cap-
tures in order to be assigned to the same layout for High
Level Similarity.

highLvlMaxDist Maximum percentage of blocks differing among two cap-
tures before declaring their layouts incompatible for High
Level non Similarity.

80

A – Tables of parameters

coreLvlMinDist Maximum percentage of blocks differing among two cap-
tures’ core areas, as defined by the coreWindow, in order
to be assigned to the same layout for Core Level Similarity..

coreLvlMaxDist Maximum percentage of blocks differing among two cap-
tures’ core areas, as defined by the coreWindow, before
declaring their layouts incompatible for Core Level non
Similarity.

coreWindow Parameter defining the size and shape of the window used
to evaluate Core Level Similarity. It includes four sub
parameters: coreWindowXStart, coreWindowYStart
define the position of the first block included in the win-
dow; coreWindowXSpan, coreWindowYSpan define
window width and height.

patternNCD Number of Consecutive Dynamic blocks, parameter of the
Same Layout Pattern presented in listing 3.3.3.

patternNCS Number of Consecutive Static blocks, parameter of the
Same Layout Pattern presented in listing 3.3.3.

patternNCC Number of Consecutive Columns, parameter of the Same
Layout Pattern presented in listing 3.3.3.

patternSrchWindow Parameter defining the size and shape of the window in
which we search the Same Layout Pattern. It includes four
sub parameters: srchWindowXStart, srchWindowYS-
tart define the position of the first block included in the
window; srchWindowXSpan, srchWindowYSpan de-
fine window width and height.

Table A.1: Configuration parameters of layout detection algorithm.

81

A – Tables of parameters

A.2 Core Sections Detection Parameters
In Table A.2 we summarize the parameters exploited by the section detection al-
gorithm.

Parameter name Meaning and role

blockWidth Width of the basic blocks in which we subdivide the cap-
tures to be analysed.

blockHeight Height of the basic blocks in which we subdivide the cap-
tures to be analysed.

NN0Th Number of Non Zero valued pixels: given a block derived
from the subtraction of corresponding blocks of two cap-
ture, if the percentage of non zero valued pixels in it is
higher than this threshold, the block is evaluated as dy-
namic in the context of that captures comparison.

PDETh Percentage of Dynamic Evaluations: given the results of a
set of comparisons each one providing a partial evaluation
about the block nature, if a block is evaluated to be dy-
namic in a percentage of comparisons greater than pdeTh,
than it is definitively evaluated as dynamic.

limitCaptures Parameter limiting the number of captures involved in com-
parisons operations.

Table A.2: Configuration parameters of section detection algorithm.

82

Bibliography

[1] Y. Yuan, F. Wang, J. Li, R. Qin “A survey on real time bidding advertising”,
Proceedings of 2014 IEEE International Conference on Service Operations and
Logistics, and Informatics, 2014, DOI 10.1109/SOLI.2014.6960761

[2] S. C. Boerman, S. Kruikemeier, F. J. Zuiderveen Borgesius, “Online Be-
havioural Advertising: A Literature Review and Research Agenda”, in Journal
of Advertising, 2017, DOI 10.1080/00913367.2017.1339368

[3] A. Barth, U.C. Berkeley, “HTTP State Management Mechanism”, Internet
Engineering Task Force, in RFC-6265, April 2010,

[4] A. Soltani, S. Canty, Q. Mayo, L. Thomas, C. J. Hoofnagle “Flash Cookies
and Privacy”, in Summer Undergraduate Program in Engineering Research at
Berkeley (SUPERB), Berkley (USA), 2009

[5] S. Kamkar, Evercookie, https://samy.pl/evercookie/
[6] P. Eckersley, “How Unique Is Your Browser?”, in Proceedings of the 10th

Privacy Enhancing Technologies Symposium (PETS), 2010
[7] K. Mowery, D. Bogenreif, S. Yilek, H. Shacham, “Fingerprinting information in

JavaScript implementations”, in Proceedings of W2SP 2011, IEEE Computer
Society, May 2011

[8] K. Mowery, H. Shacham, “Pixel perfect: Fingerprinting canvas in HTML5”,
in Proceedings of W2SP 2012, M. Fredrikson, IEEE Computer Society, May
2012

[9] J. R. Mayer, J. C. Mitchell, “Third-Party Web Tracking: Policy and Tech-
nology”, in 2012 IEEE Symposium on Security and Privacy, May 2012, DOI
10.1109/SP.2012.47

[10] “Regulation (EU) 2016/679 of the European Parliament and of the Coun-
cil of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and re-
pealing Directive 95/46/EC (General Data Protection Regulation)”, in Official
Journal of the European Union, May 2016, http://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC

[11] “Tracking Preference Expression (DNT)”, in W3C Working Group Note, Jan-
uary 2019, https://www.w3.org/TR/tracking-dnt/

[12] R. Balebako, P. Leon, R. Shay, B. Ur, Y. Wang L. Cranor, “Measuring the

83

https://doi.org/10.1109/SOLI.2014.6960761
https://doi.org/10.1080/00913367.2017.1339368
https://samy.pl/evercookie/
https://doi.org/10.1109/SP.2012.47
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2016:119:TOC
https://www.w3.org/TR/tracking-dnt/

Bibliography

effectiveness of privacy tools for limiting behavioral advertising” in W2SP,
2012.

[13] J.Mayer, “Fourthparty web measurement platform”, 2015, http://
fourthparty.info/

[14] D. Reisman, S. Englehardt, C. Eubank, P. Zimmerman, A. Narayanan, “Cook-
ies that give you away: Evaluating the surveillance implications of web track-
ing”, in WWW, 2014

[15] G. Merzdovnik et al., “Block Me If You Can: A Large-Scale Study of Tracker-
Blocking Tools”, in 2017 IEEE European Symposium on Security and Privacy,
Paris, 2017, DOI 10.1109/EuroSP.2017.26

[16] S. Traverso, M. Trevisan, l. Giannantoni, M. Mellia, H. Metwalley, “Bench-
mark and comparison of tracker-blockers: Should you trust them?”, in 2017
Network Traffic Measurement and Analysis Conference (TMA), June 2017,
DOI 10.23919/TMA.2017.8002898

[17] Alberto H. F. Laender, Berthier A. Ribeiro-Neto, Altigran S. da Silva, Juliana
S. Teixeira, “A Brief Survey of Web Data Extraction Tools”, in SIGMOD Rec.
31, June 2002, DOI 10.1145/565117.565137

[18] G.O. Arocena, A.O, Mendelzon, “WebOQL: Restructuring doc-
uments, databases and Webs”, in Proc. ICDE 98., 1998, DOI
10.1109/ICDE.1998.655754

[19] A. Sahuguet, F. Azavant, “Building intelligent web applications using
lightweight wrappers”, in Data Knowledge Engineering 36, March 2001, DOI
10.1016/S0169-023X(00)00051-3

[20] Soderland, Stephen. “ Learning Information Extraction Rules for Semi-
Structured and Free Text”, in Machine Learning 34, 1999, DOI
10.1023/A:1007562322031

[21] I. Muslea, S. Minton, C. A. Knoblock, “Hierarchical Wrapper Induction for
Semistructured Information Sources”, in Autonomous Agents and Multi-Agent
Systems, March 2001, DOI 10.1023/A:1010022931168

[22] A. Laender, B. Ribeiro-neto, S. Altigran, “DEByE - Data extraction by
example”, in Data Knowledge Engineering 40, 2002, DOI 10.1016/S0169-
023X(01)00047-7

[23] “Ontologies”, in W3C Standards, Semantic Web, https://www.w3.org/
standards/semanticweb/ontology

[24] M. Fernandez, I. Cantador, V. Lopez, D. Vallet, P. Castells, E. Motta, “Se-
mantically enhanced Information Retrieval: an ontology-based approach”,
in Web Semantics: Science, Services and Agents on the World Wide Web
9, 2011, http://www.websemanticsjournal.org/index.php/ps/
article/view/242

[25] J. Alarte, D. Insa, J. Silva, S. Tamarit, “Web Template Extraction Based on
Hyperlink Analysis”, in EPTCS 173, 2015, DOI 10.4204/EPTCS.173.2

[26] Z. Bar-Yossef, S. Rajagopalan, “Template Detection via Data Mining and Its

84

http://fourthparty.info/
http://fourthparty.info/
https://doi.org/10.1109/EuroSP.2017.26
https://doi.org/10.23919/TMA.2017.8002898
https://doi.org/10.1145/565117.565137
https://doi.org/10.1109/ICDE.1998.655754
https://doi.org/10.1016/S0169-023X(00)00051-3
https://doi.org/10.1023/A:1007562322031
https://doi.org/10.1023/A:1010022931168
https://doi.org/10.1016/S0169-023X(01)00047-7
https://doi.org/10.1016/S0169-023X(01)00047-7
https://www.w3.org/standards/semanticweb/ontology
https://www.w3.org/standards/semanticweb/ontology
http://www.websemanticsjournal.org/index.php/ps/article/view/242
http://www.websemanticsjournal.org/index.php/ps/article/view/242
https://doi.org/10.4204/EPTCS.173.2

Bibliography

Applications”, in 11th International Conference on World Wide Web, Hon-
olulu, Hawaii, USA 2002, DOI 10.1145/511446.511522

[27] F. Sun, D. Song, L. Liao, “DOM Based Content Extraction via Text Density”,
in 34th International ACM SIGIR Conference on Research and Development
in Information Retrieval, Beijing, China, 2011, DOI 10.1145/2009916.2009952

[28] L. Yi, B. Liu, X. Li, “Eliminating Noisy Information in Web Pages for
Data Mining”, in 9th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, Washington, D.C., USA, August 2003, DOI
10.1145/956750.956785

[29] L. J. Martinez-Rodriguez, A. Hogan, I. Lopez-Arevalo, Ivan “Information ex-
traction meets the Semantic Web: A survey”, in Semantic Web journal, Octo-
ber 2018, DOI 10.3233/SW-180333

[30] “The Semantic Web Made Easy”, in Semantic Web journal, October 2018, DOI
10.3233/SW-180333

[31] H. Alani, D. E. Millard, M. J. Weal, W. Hall, P. H. Lewis, N. R. Shadbolt,
“Automatic ontology-based knowledge extraction from Web documents”, in
IEEE Intelligent Systems 18, January 2003, DOI 10.1109/MIS.2003.1179189

[32] M. Bernard, “Criteria for optimal web design (designing for usability)”, 2003
[33] C. Deng, Y. Shipeng, W. Ji-Rong, M. Wei-Ying, “VIPS: a Vision-based Page

Segmentation Algorithm”, 2003
[34] M. Ester, H. P. Kriegel, J. Sander, X. Xu, “A Density-based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise”, in Proceedings
of the Second International Conference on Knowledge Discovery and Data
Mining, Portland, Oregon, 1996 http://dl.acm.org/citation.cfm?
id=3001460.3001507

85

https://doi.org/10.1145/511446.511522
https://doi.org/10.1145/2009916.2009952
https://doi.org/10.1145/956750.956785
https://doi.org/10.3233/SW-180333
https://doi.org/10.3233/SW-180333
https://doi.org/10.1109/MIS.2003.1179189
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=3001460.3001507

	Introduction
	The Internet Ecosystem
	Web Trackers and Web Tracking
	Tracking Techniques
	Privacy Threats

	Protecting from Web Tracker
	Motivations

	Related Work
	Wrapper Based Approaches
	Methods Based on Templates
	Template extraction through hyperlink analysis

	Methods Based on Blocks
	DOM based approaches
	Semantics based approaches
	Vision based approaches

	Limitations of Known Approaches

	Proposed Solution
	Solution Overall Design
	Data Collection
	Docker
	Browsertime

	Page Layout Detection Algorithm
	Algorithm workflow
	High level and core level similarity
	Pattern search
	The low level banner problem

	Core Sections Detection Algorithm

	Data Collection and Tests Setup
	Data Collection Setup
	Layout Detection Testbed
	Core Sections Detection Testbed
	Datasets
	Test suites
	Layout Detection test suite
	Core Sections Detection test suite

	Hardware configuration

	Results
	Layout Detection parameters tuning
	Core Sections Detection parameter tuning
	Final results summary

	Conclusions and Future Work
	Considerations on the tackled problem
	Our solution and possible improvements
	Future work

	Tables of parameters
	Layout Detection Parameters
	Core Sections Detection Parameters

	Bibliography

