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1. Introduction 

1.1 Abstract 
An automated driving system is a combination of various components that are capable to 
perceive, make decisions and operate an automobile: everything is done by electronics and 
machinery, the human driver leaves all the responsibilities to the system. 
This system introduces automation into road traffic and includes handling of the vehicle, 
destination and awareness of surroundings. 
 
The focus of this thesis is to implement a dynamic motion planning algorithm in order to 
control continuously a vehicle from a start to a goal position avoiding collisions with known 
obstacles, both static and dynamic (people on the streets, other cars, bikes and so on). 
As the title explains, the first goal is to predict the trajectory of other road users so that the 
second goal can be achieved: the vehicle is able to evaluate a plan to reach a goal. 
This plan takes into consideration the actual position of the obstacles and their future 
positions in order to understand if a certain path could lead to collision before even starting 
the movement, and so generating the best trajectory that ensures safety, comfort and 
efficiency. 
 
The software has been developed in ROS (Robot Operating System) which allows access to 
the largest ecosystem and community currently existing in the field of robotics. 
 
 
 

1.2 Overview 
This work is based on the thesis of two students. They studied a way to build a platform for 
research studies or for other students’ thesis. This platform makes it easier to implement new 
ideas for autonomous driving, having the possibility to access car data recorded from a 
customized BMW 5 Series vehicle. 
 
When the work for this thesis starts, a static motion planner is already implemented. It takes 
as input the goal that has to be reached and evaluates a path using as information only static 
obstacles. Once the path is evaluated, it does not change until the vehicle reaches the goal. 
This basically means that, if there are moving obstacles, their current position could change 
in such a way that the original path could lead to a crash.  
 
 
The practical problems to be solved are: 
● create a costmap that can handle dynamic objects: a costmap is a 2D grid that highlights 

obstacles. In the current implementation, only static obstacles and the temporary 
position of dynamic ones are mapped. The improved costmap will be then sent to the 
motion planning node that will understand how the vehicle should move; 

● predict future trajectory of other road users and include it in the costmap; 
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● handle collisions: the ego-vehicle will have to stop or at least to slow down if it 
recognizes that the trajectory of another road user can be safety critical for its 
movement; then it will have to recompute the path to reach the destination. 

 
 
A block diagram that explains the decision process that the ego-vehicle has to take is shown 
in Fig. 1: 
 

 
Fig. 1: decision process the ego-vehicle has to take 

 
● The inputs of the process come from the sensors; their task is to accumulate as much 

information as possible on the surrounding environment. Then the information from 
sensors has to be mapped inside the costmap: cells corresponding to obstacles, both 
static and dynamic, have to be marked as not-traversable.  

 
Due to the fact that the costmap is, as a matter of fact, a map of the environment divided 
in cells which have a cost information, the not-traversability can be done setting a high 
cost for a group of cells. 
○ The cost is a value that goes from 0 to 255; the software that handles the costmap 

is anyway capable of representing only three levels of cost. Specifically, each cell in 
this structure can be either free, occupied, or unknown. When a cell is recognized 
as occupied, a “lethal obstacle” cost is assigned to it and inflation can be performed. 

○ Inflation is the process of propagating cost values out from occupied cells that 
decrease with distance out to a user-specified inflation radius. 

○ The group of cells has to represent the actual obstacle that is in the surroundings 
of the ego-vehicle. The sensors are capable to evaluate width and length of the 
obstacles, then the costmap is capable to compute the cells that have to be taken 
into consideration for those specific dimensions. 

 
● A trajectory prediction algorithm has to forecast the future positions that the moving 

objects are about to take. This information has also to be mapped inside the costmap. 
The prediction is done using a Kalman filter and applying a specific motion model.  
 
○ The motion model has the objective to model the system of the actual moving 

obstacle. 
Numerous motion models (with different degrees of complexity) exist.  
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Linear motion models assume a constant velocity (CV) or a constant acceleration 
(CA). Their linearity of the state transition allows a good propagation of the state 
probability distribution.  
Despite of these properties, however, these models can prove to not handle all the 
possible profiles of motion, in some cases also having a significant error when used 
within the Kalman filter to predict future positions of objects.  
 
Another model then has been identified: it is not a classical model but it seemed 
really promising. The constant jerk (CJ) model (the jerk is the derivative of the 
acceleration) can show to have the best performances among the considered 
models, and, once applied within the Kalman filter, it can prove to well predict the 
trajectories of the obstacles.  

 
○ The result of these predictions has to be that, in addition to information from the 

sensors, every obstacle in the surroundings of the ego-vehicle has also its predicted 
path. For each object this information can be displayed on the costmap marking as 
occupied also the cells corresponding to the future positions of obstacles.  
To have then a better visualization of the actual path that has been predicted, the 
cells can be joined to form a polygonal chain. 

 
● After all possible information is obtained, a motion planning algorithm can safely 

evaluate a route from the start to the goal and compute speed commands for the vehicle 
depending on the chosen path. This path constitutes the output of the decision process.  

 
○ A few algorithms are studied that have to take into account the dynamic constraints 

to which a car is subjected and its non-holonomicity1 property. To be noticed that 
implementing only this last property is an error because it happens that the 
algorithm works but only for differential-drive robots with turning radius2 equal to 0. 
Basically it becomes suitable for robots that are capable to rotate on themselves, so 
not for cars. 

 
This constitutes a great limitation because it happens that when a destination is 
chosen such that the yaw angle of this one is perfectly perpendicular to the actual 
one the ego-vehicle has, the car can result to be stuck and no movement can be 
produced, even if the goal could be simply reached performing a few maneuvers. 
 
This leads to the implementation of an algorithm that can take into account the 
possible turning radius of a vehicle. In this way, what it is desired to have is an 
accurate motion model of the car and, as output, the right planned path that has to 
be followed.  

 

                                                
1 A robot is holonomic when the number of controllable degrees of freedom is equal to the total 
degrees of freedom. If not, it is non-holonomic. 
2 The turning radius of a vehicle is the radius of the smallest circular turn that the vehicle is capable 
of making, shown in Fig. 2.  
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Fig. 2: visualization of a possible turning radius of a vehicle 

 
 

 
○ Since dynamic obstacles have to be handled, the implemented motion planner has 

to be a dynamic one: this means that it has to be capable to re-evaluate the best 
path to reach the goal depending if new information happens to be on the map. In 
fact, if a moving object appears in the surroundings of the ego-vehicle, or a 
previously recognized one moves away from the previous position, it has to be 
evaluated if this will have an impact on the actual path the ego-vehicle is taking. If 
so, a new one has to be found. 

 
The expected result is thus that the vehicle is capable to evaluate a safe path to be taken 
and to react if a new information about an obstacle arrives: it has to be capable to slow down 
or to stop the motion and re-evaluate the best path if necessary. 
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1.3 Objective Software 
This work would not have been possible without the help of our company Objective Software 
Italia SRL, proud part of Luxoft: this is a global consulting partner that offers end-to-end 
digital solutions to solve clients’ complex business challenges. It boasts expertise in 
automotive, financial services, healthcare, life sciences, telecommunications, and other 
industries.  
With headquarters in Zug, Switzerland and 42 global locations, it operates in 21 countries 
across five continents, providing clients with robust global delivery platform.  
  
They gave us the opportunity to work on the platform and to collaborate with very smart 
people that helped and taught us. 

 
 
 

 
Fig. 3 
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2. Description of the platform 

2.1 ROS Robot Operating System 
The platform is based on ROS, Robot Operating System: this is a collection of software 
frameworks designed for robot software development [1]. ROS is not an operating system, 
anyway it provides services designed for a heterogeneous computer cluster such as 
hardware abstraction, low-level device control, implementation of commonly used 
functionalities, message-passing between processes, and package management.  
Despite the importance of reactivity and low latency in robot control, ROS, itself, is not a real-
time OS (RTOS), thus leading to the creation of ROS 2.0. 

 
Fig. 4 

 
 
● In ROS a wide range of different programming languages can be used, like C++, Python, 

Java and others. 
● ROS is not an integrated development environment: it can be used with most popular 

IDEs but also with a text editor and the command line, without any IDE. 
 
ROS has two levels of concepts: the Filesystem level and the Computation Graph level.  
 
The Filesystem level is composed of: 
● Packages: Packages are useful units that organize software in ROS and constitute the 

most atomic item that can be built and released in ROS. A package may contain ROS 
runtime processes (nodes), a ROS-dependent library, datasets, configuration files, or 
anything else that is usefully organized together.  

● Package Manifests: Manifests (package.xml) provide metadata about a package, 
including its name, version, description, license information, dependencies, and other 
meta information like exported packages.  

● Repositories: A collection of packages that have a common VCS3 system. Packages 
which share a VCS share the same version and can be released together. Repositories 
can also contain only one package. 

● Message (msg) types: descriptions that define the data structures for messages sent in 
ROS. 

● Service (srv) types: descriptions that define the request and response data structures 
for services in ROS. 

 

                                                
3 Version control system is the system managing changes to documents, computer programs, large 
web sites, and other collections of information. 
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The Computation Graph level is the layer that takes care of ROS processes and how they 
cooperate with each-other to evaluate data:  
 
● Nodes: Nodes are processes that perform computation. ROS is built to be modular at a 

fine-grained scale; a robot control system usually comprises many nodes. 
● Master: The ROS Master provides name registration and lookup to the rest of the 

Computation Graph. Without the Master, nodes would not be able to find each other, 
exchange messages, or invoke services. 

● Messages: Nodes communicate with each other by passing messages. A message is 
simply a data structure, comprising typed fields.  

● Topics: Messages are sent with a transport system with publish/subscribe semantic. 
One node publishes a message into a given topic. Another node that is interested in the 
content of that message subscribes to the topic and stays there waiting for messages to 
be published. There may be multiple concurrent publishers and subscribers for a single 
topic, and a single node may publish and/or subscribe to multiple topics. In general, 
publishers and subscribers do not know about the existence of each other. In this way 
the production of information is decoupled from its consumption.  

● Services: The publish/subscribe model is very useful when a communication many-to-
many is required; it is not suited anyway for request/reply communication that is one-to-
one. This is done via services, which are defined by a pair of message structures: one 
for the request and one for the reply. A providing node offers a service under a name 
and a client uses the service by sending the request message and awaiting the reply.  

● Bags: Bags are collections of messages from ROS topics that can be saved and re-
played, very useful when testing algorithms.  

 
Within this architecture it is possible to do decoupled operations since every element has a 
name. Nodes, topics, services, all have names, thus making possible to have a distributed 
system without any handling complexity. 
The relations between these entities is shown in Fig. 5. 
 

 
Fig. 5 
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2.2 Odometry 
The car is equipped with proprioceptive sensors needed for odometry. 
 
Proprioceptive sensors are largely used in robotics to measure the internal state of the robot, 
namely: the position and the joint speed, and the torque at the joint [2].  
Odometry is the use of this internal state to measure the changes in position over time, 
taking into account that measuring time is easy using the internal clock of the embedded 
computer.  
Odometry is a form of localization: it is used in robotics by some legged or wheeled robots to 
estimate their position relative to a starting location, the robot must determine its position in 
the environment. In odometry position is determined by measuring the change from the 
robot’s known initial position, while localization refers to the determination of the position of a 
robot relative to the known positions of other objects such as landmarks or beacons. 
 
A disadvantage of odometry is that the measurements are indirect, relating the power of the 
motors or the motion of the wheels to changes in the robot’s position. This can lead to 
significant errors since the relation between motor speed and wheel rotation can be very 
nonlinear and vary with time. Furthermore, wheels can slip and skid so there may be errors 
in relating the motion of the wheels to the motion of the robot. 
 
Here there are some of the most useful computation that can be done using proprioceptive 
sensors: 
● distance from speed and time: when a relation between motor power and velocity v has 

been determined, the robot can compute the distance moved by s = vt. If it starts at 
position (0, 0) and moves straight along the x-axis, then after t seconds its new position 
is (vt, 0). 

 
● odometry with turns: suppose that the robot turns slightly left because the right wheel 

moves faster than the left wheel.  
In Fig. 6, the blue dot is the left wheel, the red dot is the right wheel, and the black dot is 
the center of the robot which is halfway between the wheels. The baseline b is the 
distance between the wheels, and dl,dr,dc represent the distances moved by the two 
wheels and the center when the robot turns.  
dl and dr can be measured computing the number of rotations counted by the wheel 
encoders4. 
 
 
If the radius of a wheel is R and the rotational speeds of the left and right wheels are 
𝜔  , 𝜔 revolutions per second, respectively, then after t seconds the wheel has moved: 

 
𝑑 = 2𝜋𝑅𝜔𝑡  𝑖 = 𝑙, 𝑟  

 
The task is to determine the new pose of the robot after the wheels have moved these 
distances but it can be done using a geometrical approach. 

                                                
4  Position sensors that provide an electrical signal proportional to the displacement (linear or angular) 
of a mechanical member with respect to a reference position. There are two main types of encoders: 
absolute and incremental.  
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Fig. 6: model of a car that is turning 

 
 

 
To compensate for the errors introduced by odometry and to construct a map of the 
surrounding environment, heteroceptive sensors are used that are able to measure the 
position of the robot with respect to the external environment. 
The most commonly used ones are: the force sensors, the tactile sensors, the proximity 
sensors and the vision sensors. Their use plays a central role for the control of the interaction 
with the environment, for the avoidance of obstacles, for the location of mobile robots and for 
navigation in unknown environments. 
 
 
 
 

2.3 Ibeo sensors 
The platform for which the work of this thesis is developed is equipped with laser scanners 
and cameras as heteroceptive sensors.  
The laser scanners are tools that can measure at very high speed the position of hundreds of 
thousands of points, which define the surface of the surrounding objects. The result of this 
relief is a very dense set of points that is called a "point cloud". 
 
There are several parameters useful for defining and evaluating the characteristics of a laser 
scanner instrumentation: 
● range: maximum distance that the scanner can measure; 
● speed: number of points acquired in every second; 
● accuracy: degree of conformity of a quantity measured with respect to the real value; 
● precision: ability of the instrument to return the same value in subsequent 

measurements; 
● laser class: this is the danger of the laser beam emitted by the instrument; it goes from 

class I (completely harmless) to class IV (very dangerous). 
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The sensors used are LIDAR (Light Detection and Ranging) Ibeo sensors that are based on 
the Time of Flight method: in TOF laser scanners, the point cloud is generated by calculating 
the time taken by the laser beam to travel the distance from the emitter to the affected 
subject and vice versa, knowing that the speed of propagation of the laser beam is equal to 
that of the light .  
Knowing the vertical and horizontal angle of the beam emission, it can be defined the 
coordinates of the measured point. These laser scanners are characterized by the ability to 
detect very distant data, even reaching objects at a radius of 6 km from the sensor. Anyhow 
LIDAR sensors in the automotive industry can reliably detect objects within ranges of up to 
300 meters. 
 
LIDAR sensors have a high angular resolution and a wide field of view which is invaluable for 
precise and reliable mid-range detection. Hence, the scanned data can be recorded and with 
the help of software tools, they can be used to create a model of the vehicle’s surroundings. 
This model includes the position and velocity of other road users as well as information on 
the road infrastructure. Tracking algorithms, implemented on the platform, are then able to 
determine the shape, the yaw rate, heading direction, classification of objects (bikes, cars, 
people on the streets..) and many other attributes. 
LIDAR sensors are able to detect free spaces in their entire field of view [3] and, as an active 
system, they are independent from any light conditions: in this way, they can be used at any 
time of the day.  
 
 

 
Fig. 7: Example of Ibeo sensor scanning result 
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2.4 Object detection 
The objects the sensors recognize are point clouds so without information about the real 
shape of the objects or their classification. This is a post-process done using tracking 
algorithms. 
The first step to analyze objects is clustering: clustering is the grouping of a set of objects in 
a way that elements in the same group (called a cluster) are more similar (in some sense) to 
each other than to elements in other groups (clusters).  

Cluster analysis as such is not an automatic task, but an iterative process of knowledge 
discovery or interactive multi-objective optimization that involves trial and failure. It is often 
necessary to modify data pre-processing and model parameters until the result achieves the 
desired properties. 
The basic Euclidean clustering algorithm is used that, as the name suggest, is done taking 
into account the Euclidean distance from the center point of all clusters. A point is considered 
part of a certain cluster if the distance to its center point is the lowest with respect to the 
other clusters. 
 
The algorithm executes this process: 
1. Create an empty queue Q of points 
2. For each point in the original point cloud, add the point to the queue Q and: 

(a) Extract a point P from the Q. Add it to cluster Ci 
(b) Add all the points within a certain radius from P to the queue Q 
(c) Go to 2a until the Q is empty. When empty, cluster Ci is completed 

3. Repeat for each remaining point in the original point cloud 
 
Euclidean clustering is performed at every LIDAR scan. Anyway, given two point clouds A 
and B and the two set of clusters CA and CB, it is not directly possible to define a 
correspondence between clusters of CA and CB. 
Comparing the distance between the centroids of the clusters may not be enough (think 
about two cars moving close to each other). Also, sometime it is useful to know not only the 
position but also the velocity of a certain cluster of objects. The way to have this is to apply a 
Kalman filter to each cluster. 
 
Each cluster will have its own state (position and velocity) and the information is updated with 
the output of every scan. When a new set of cluster is generated, the problem of assignment 
arises: first step is to compare each cluster to each previously tracked cluster for position and 
velocity compatibility. This comparison may result in a match or a rejection. In case of match, 
the state of the Kalman filter is updated with the new measurements. 
This gives knowledge of the speed and direction of other cars relatively to the ego-vehicle. 
 
Classification is performed in a probabilistic way, using the Hungarian Algorithm. By defining 
a matrix of matching likelihood, the Hungarian Algorithm chooses the most probable 
classifications. A bounding box around the cluster is generated, and that is used for 
estimating the full space occupied by the vehicle, with some extra margin.  
Thanks to the Kalman filter, it is possible to know the relative speed of each detected box [4]. 
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Fig. 8: Kalman Filter tracking. 

After clustering is performed (a and b), instances of the filter are initialized (c). 
State is then updated based on the data of new point clusters (d). 

 

 

2.5 Navigation 

2.5.1 Costmap 
In the actual implementation, the platform doesn’t let the vehicle move freely.  
Collisions with objects are effectively considered, even if only static ones: it can be said that 
a static motion planner is implemented based on a 2D occupancy map, or costmap.  
2D because, in the automotive case, vehicles move mostly horizontally and height is not 
usually a problem. The map assigns a value proportional to the ’traversability’ of each cell. 
Such value is used for soft-constraints or favour some trajectory against others.  
 
Since the platform is ROS based, the costmap_2d package is used [5]. This package 
provides a configurable structure that maintains information about where the robot should 
navigate in the form of an occupancy grid. 
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The costmap uses sensor data and information from the static map to store and update 
information about obstacles in the world through the costmap_2d::Costmap2DROS object.  
 
Usually, in order to use a class or a function in another class it is necessary to include the 
header file. Here instead the pluginlib package of ROS can be used: it provides an 
alternative method that allows referencing a class/function without including the header file. 
Using pluginlib, the costmap package does not know the layer classes but at runtime it can 
use function from each of these classes: pluginlib exports some features from layer classes 
and makes these visible to the costmap. 
 
The costmap automatically subscribes to sensors topics over ROS and updates itself 
accordingly. Each sensor data is used to either mark (insert obstacle information into the 
costmap), clear (remove obstacle information from the costmap), or both.  
A marking operation is an operation that increases the cost of a cell.  
A clearing operation consists of ray-tracing through a grid, from the origin of the sensor 
outwards, and decreasing the cost of the cells no more recognized as occupied.  
 
While each cell in the costmap can have one of 255 different cost values, only three levels 
can be represented. Specifically, each cell in this structure can be either free, occupied, or 
unknown: 
● Columns that have a certain number of occupied cells are assigned a 

costmap_2d::LETHAL_OBSTACLE cost;  
● Columns that have a certain number of unknown cells are assigned a 

costmap_2d::NO_INFORMATION cost; 
● Other columns are assigned a costmap_2d::FREE_SPACE cost.  

 
The costmap changes at the rate specified by the update_frequency parameter. Each cycle, 
sensor data comes in, marking and clearing operations are performed and cost values are 
assigned as described above. 
 
Sensor data has to be inserted into the costmap and to do so the Costmap2DROS object 
makes extensive use of tf. tf is a package that lets the user keep track of multiple coordinate 
frames over time. tf maintains the relationship between coordinate frames in a tree structure 
and keeps track of all these frames over time, letting the user transform points, vectors, etc 
between any two coordinate frames at any desired point in time.  
A robotic system typically has many 3D coordinate frames that change over time, such as a 
world frame, base frame, gripper frame, head frame, etc., as shown in Fig. 9.  
tf assumes that all transforms between the coordinate frames specified by the global_frame 
parameter, the robot_base_frame parameter, and sensor sources are connected and up-to-
date [6].  
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Fig. 9: a representation of a tree of reference frames 

 
 
 
 
The costmap is a powerful method with which the bounding boxes representing the road 
users, generated by the detection pipeline described in the previous paragraph, can be 
marked as non-traversable. This is the first step to let the ego-vehicle recognize obstacles.  
 
 
 
 
 

2.5.2 A* 
A* (A star) path planning algorithm is already implemented on the platform, provided by 
Autoware for navigation.  
A* is an informed search algorithm, or a best-first search: it is formulated in terms of 
weighted graphs in a way that it considers to have the starting position as a node of the 
graph; from there it has to find a path to a defined goal, always a node, having the smallest 
cost (least distance travelled, shortest time, etc.). At the beginning it initializes a tree of paths 
from the start node to the destination, then extends the tree until the termination criterion is 
satisfied. 
More information about the algorithm is given later in this document. 
 
The bearing of the vehicle during traversal is not considered in the simple A* but the 
algorithm implemented in Autoware can be seen as three dimensional: each cell is identified 
by a (x, y, θ) tuple. This way, the generated path has also a yaw variable associated to each 
position. The heuristic algorithm is also slightly modified in order to take into account reverse 
and turns [4]. 
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The actual implementation only evaluates the path, to be undertaken, once at the beginning 
of the evaluation of the path. Simulations have shown that, if a moving obstacle happens to 
be in the middle of the path, the ego-vehicle does nothing to avoid it, as can be seen in Fig. 
10. 
 
This is the main reason that led to the definition of this thesis. 
 
 

 
Fig. 10: the blue rectangle is the moving obstacle. It happens to be in the middle of the path 

that the ego-vehicle is supposed to follow. A crash will occur. 
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3. State of the art 

3.1 Levels of autonomous driving systems 
There are five different levels of automation for what regards autonomous driving systems: 

0) No automation 
The driver controls the vehicle without any help from the system, it does not interfere. 

1) Driver assistance 
The driver is in control of the vehicle, but the system can modify the speed and steering 
direction of the vehicle. BMW Personal CoPilot driver assistance systems are an example of 
this, with the help also of the Active Cruise Control with Stop&Go function, which 
independently adjusts the distance to the car in front of you. Then there is the Collision and 
Pedestrian Warning with City Brake Activation, which automatically brakes to prevent 
collisions. 

2) Partial automation 
The driver must be able to control the vehicle if corrections are needed, but he is no longer in 
control of the speed and steering of the vehicle. This is actually done by BMW remote-
controlled parking function that is capable to pull the cars into tight spots without a driver, by 
Tesla´s autopilot feature and by the DISTRONIC PLUS system created by Mercedes-Benz. 

 

Fig. 11: Mercedes Benz - Distronic Plus 

 

3) Conditional automation 
The system is completely capable to control vehicle speed and steering and to monitor the 
environment, but the driver must be able to take over control within a few seconds for 
exceptions on the road, such as at construction sites. 
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4) High automation 
The system is in complete control of the vehicle and human presence is no longer needed 
even if a human driver can still request control, and the car still has a cockpit. Basically the 
car can handle the majority of driving situations independently, also highly complex urban 
driving situations like the sudden appearance of construction sites. 
 
The driver must anyway remain capable to drive and to take control if needed. The driver 
could have the chance to sleep temporarily but, if a warning alarm is ignored, the car has to 
enter a safety condition, for example by pulling over.  
An example of a system that falls into this category is the Google car, Fig. 12. 

 

Fig. 12: Google car 
 

5) Full automation 
The system is in complete control of the vehicle and human presence is no longer needed. 
Drivers do not have to be fit to drive and don’t even need to have a license. The car performs 
all driving tasks – there isn’t even a cockpit. Everyone in the car is a passenger. At this level, 
a high attention on safety has to be put and also, within populated areas, speed has not to 
reach high values. Currently, there are no driving systems at this level. [7]  
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3.2 Motion planning 
In this environment, the dynamic motion planning assumes a really important role. Its main 
goal is to produce a continuous motion that connects a start configuration and a goal 
configuration while avoiding collisions with known obstacles, both static and dynamic (people 
on the streets, other cars, bikes and so on), and so generating the best trajectory that 
ensures safety, comfort and efficiency.  

 
Examples of decisions that has to be made are avoiding walls and not falling down stairs. A 
motion planning algorithm would produce the speed and turning commands that have to be 
sent to the robot's wheels. 
 
The set including position and orientation of the robot according to a fixed coordinate system 
is termed the configuration vector. Consequently, the set of all the configurations of the 
vehicle constitute the configuration space. 
 
A complete motion planner is such that, in finite time, puts as output a solution or at least 
reports that there is none. The performance of a complete planner is assessed by its 
computational complexity. 
Resolution completeness establishes that the planner is guaranteed to find a path if the 
resolution of an underlying grid is fine enough. As resolution it has to be considered the 
length of one side of a grid cell: the greatest the resolution, the higher the computational 
complexity. 
Probabilistic completeness establishes that the more the algorithm runs the more the 
probability that the planner fails to find a path, if one exists, asymptotically approaches zero. 
The computational complexity depends on the rate of convergence. 
Incomplete planners do not always produce a feasible path when one exists. Sometimes 
incomplete planners do work well in practice. 
 
Here there are a few important motion planning algorithms. 
 
 

3.2.1 Dynamic window approach 
The dynamic window approach is an online collision avoidance strategy for mobile robots. 
It derives directly from the dynamics of the robot and deals with the constraints imposed by 
limited velocities and accelerations of the robot. 
It consists of two main phases, the first consists in generating a valid search space, and 
the second one in selecting an optimal solution in the search space.  
 
The dynamic window is a portion of the path on which to concentrate the major effort in 
optimization: the goal of optimization is to select a heading and velocity that brings the robot 
to the destination, avoiding obstacles along the way. 
 
The search space is constructed from the set of velocities which produce a safe trajectory 
(that allow the robot to stop before colliding), taken from the set of velocities the robot can 
achieve in the next time slice due to its dynamics ('dynamic window').  
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The optimal velocity is selected to maximize the robots clearance, which is the distance 
from obstacles, maximize the velocity and obtain the heading closest to the goal.  
 
These are the steps that the algorithm does: 
1. First, the desired velocity to the goal can be calculated based on the ego-vehicle current 

position, and the destination. (e.g. go fast if the goal is far away, slow if it is close). 
2. Select the allowable velocities (linear 'v', and angular '𝜔') given the vehicles dynamics, 

e.g. allowable v ranges between: [𝑣 − 𝑎𝑡, 𝑣 + 𝑎𝑡], likewise for angular velocity. 
3. Search through all the allowable velocities. 
4. For each velocity, determine if a collision would be possible to happen along the 

trajectory computing distances from obstacles. 
5. Determine if the distance to the closest obstacle is within the robots braking distance. If 

the robot will not be able to stop in time, disregard this proposed robot velocity. 
6. If the velocity is 'admissible', the values required for the objective function can be now 

calculated. In the case of this thesis, the robots heading and clearance. 
7. Calculate the 'cost' for the proposed velocity. If the cost is better than anything else so 

far, set this as best option. 
8. Finally, set the robots desired trajectory to the best proposed velocity. 

 
A pseudo-code of these steps is listed in Fig. 13. 
 

 
Fig. 13 

 
 

The search space of the possible velocities is reduced in three steps: 
● Circular trajectories: The dynamic window approach considers only circular trajectories 

(curvatures) uniquely determined by pairs (v,𝜔) of translational and rotational velocities. 
This results in a two-dimensional velocity search space. 
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● Admissible velocities: A pair (v,𝜔) is considered admissible, if the robot is able to stop 
before it reaches the closest obstacle on the corresponding curvature. The restriction to 
admissible velocities ensures that only safe trajectories are considered.  

● Dynamic window: The dynamic window restricts the admissible velocities to those that 
can be reached within a short time interval given the limited accelerations of the robot. 

 
The objective function, the navigation function, that has to be maximized, is: 
 

𝐺(𝑣, 𝜔)  =  𝜎 (𝛼 ∙ ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝜔) + 𝛽 ∙ 𝑑𝑖𝑠𝑡(𝑣, 𝜔) + 𝛾 ∙ 𝑣𝑒𝑙(𝑣, 𝜔)) 
 
● ℎ𝑒𝑎𝑑𝑖𝑛𝑔(𝑣, 𝜔): Target heading is a measure of progress towards the goal location. It is 

maximal if the robot moves directly towards the target. 
● 𝑑𝑖𝑠𝑡(𝑣, 𝜔): Clearance, it is the distance to the closest obstacle on the trajectory. The 

smaller the distance to an obstacle the higher is the robot’s desire to move around it. 
● 𝑣𝑒𝑙(𝑣, 𝜔): Velocity, it is the forward velocity of the robot and supports fast movements. 

 
The function 𝜎smoothes the weighted sum of the three components and results in more side 
clearance from obstacles. [8] 
 
As a result, the possible sets of velocities are: 
● 𝑉ௗ : the set of the velocities for the dynamic window, which contains only the velocities 

that can be reached within the next time interval 
● 𝑉 : the set of velocities (𝑣, 𝜔) which allow the car to stop without colliding with an 

obstacle, so depending on the accelerations for braking, the admissible velocities  
● 𝑉௦ : the space of all possible velocities 
● 𝑉 = 𝑉௦ ∩ 𝑉 ∩ 𝑉ௗ : resulting search space for the velocities 

 
There is however a problem with DWA, as shown in Fig. 14: sometimes the robot, or the car 
in this case, does not slow down in time and the result is that it is really difficult to enter a 
passage. A solution could be to use the 5-D planning that plans in the full <

𝑥, 𝑦, 𝜃, 𝑣, 𝜔 >configuration space using A* and considers the robot's kinematic constraints [9]. 
The search space though is too large to be explored in real-time so a solution could be to 
restrict the full search space to ”channels" with subgoals to be reached, as shown in Fig. 15. 
 

 
Fig. 14 
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Fig. 15 

 
 
 

3.2.2 Nearness Diagram Navigation 
The Nearness Diagrams (ND) are the visual tools used to analyze the relations between the 
robot, the obstacle distribution, and the goal location. [10] 
 
The PND (ND from the central Point) represents the nearness of the obstacles from the robot 
center and the RND (ND from the Robot bounds) represents the nearness of the obstacles 
from the robot boundary. The algorithm identifies gaps first; then, from these gaps, regions 
are obtained. Finally, one region is selected, the free walking area. 
 
 
 
1. Gaps: can be identified in the obstacle distribution as discontinuities in the PND.  

A discontinuity exists between two adjacent sectors ( i, j)  if  |  𝑃𝑁𝐷  −  𝑃𝑁𝐷  |  > 2 R,  
where R is the radius of the robot. The only interest is in the robot diameter (2 R) 
because that is the gap in which the robot fits.  
For a discontinuity between two sectors ( i, j), if, for instance, 𝑃𝑁𝐷 > 𝑃𝑁𝐷, it can be 
differed between a rising discontinuity from j to i and a descending discontinuity from i to 
j. 

2. Regions: Two contiguous gaps form a region. Regions are valleys in the PND.  
Let S = {0, …, n-1} be the set of all sectors. A valley is a nonempty set of sectors of S,  
V = {l,...,r}, that satisfies the following conditions: 
(a) There are no discontinuities between adjacent sectors of V (i.e., there are no 
discontinuities within the valley) 
(b) There are two discontinuities in the extreme sectors of V (l and r) 
(c) At least one of the previous discontinuities is a rising discontinuity from l or from r 
where the rising discontinuities identify potential gaps to drive the robot within the region. 



26 

Fig. 16 shows the four regions (REGION 1, REGION 2, REGION 3 and  FREE 
WALKING AREA) identified as valleys in the PND. These valleys do not have inside 
discontinuities [condition (a)], and they have a discontinuity in both extremes [condition 
(b)]. Furthermore, each valley has at least one rising discontinuity [condition (c)]. 

 
3. Free walking area: The region that has no discontinuities, so identifiable as “navigable”, 

closest to the goal, and so that has to be taken. The process of selecting the free 
walking area is the following: first all valleys are identified; then the valley with the rising 
discontinuity closest to 𝑠 is selected; next, it is checked whether the candidate region 
is “navigable” and if so it is selected as free walking area; if it is not “navigable”, another 
valley is selected and the process is repeated until a “navigable” region is found, or no 
region exists. 

 
It is still needed to differ between a wide free walking area and a narrow one. If its 
angular width is greater than a given quantity is wide, if not, it is narrow. Then, since the 
number of sectors of a valley is the angular width of the region, a valley is wide if the 

number of sectors is greater than 𝑠௫ =  


ସ
 and narrow otherwise where 𝑛 is the total 

number of sectors. 

 
Fig. 16 

 
 
 
 
A set of situations can be addressed. Each situation can be reached using criteria. 
Criterion 1: Safety criterion: it is checked whether there are obstacles that exceed a security 
nearness in the RND (Low Safety), or not (High Safety). In Low Safety, the first two situations 
are obtained by applying the next criterion. 
Criterion 2: Dangerous obstacle distribution criterion. 



27 

● Low Safety 1 (LS1): The robot is in LS1 when the RND sectors that exceed the security 
nearness are only on one side of the rising discontinuity (closest to the goal sector) of 
the selected valley.  

● Low Safety 2 (LS2): The robot is in LS2 when the RND sectors that exceed the security 
nearness are on both sides of the rising discontinuity (closest to the goal sector) of the 
selected valley.  

There are three situations in High Safety. The first one is obtained by applying the following 
criterion. 
Criterion 3: Goal within the free walking area criterion. 
● High Safety Goal in Region (HSGR): The robot is in HSGR if the goal sector belongs 

to the selected valley.  
If not, the last situations are obtained by applying the next criterion. 
Criterion 4: Free walking area width criterion. 
● High Safety Wide Region (HSWR): The robot is in HSWR when the selected valley is 

wide. 
● High Safety Narrow Region (HSNR): The robot is in HSNR when the selected valley is 

narrow.  
 
Next, a few other steps have to be done to evaluate the actions associated with each 
situation. The objective is to find simple control laws that produce the desired navigation 
behavior in each situation. Each action computes a motion command, divided in translational 
and rotational velocity. 

 
 

3.2.3 Virtual Force Field (VFF) 
The Virtual Force Field (VFF) method is an obstacle avoidance method, real time, for fast-
running vehicles. [11] 
 
A. The VFF method is based on a 2D Cartesian histogram grid C for obstacle 

representation. Each cell (i,j) in the histogram grid holds a certainty value,𝑐, that 
represents the confidence of the algorithm in the existence of an obstacle at that 
location. The histogram grid is built and updated in a way such that it is incremented 
only one cell for each range reading. This results in a histogramic probability distribution, 
in which high certainty values are obtained in cells close to the actual location of the 
obstacle. 

B. There is a window of cells always centered around the vehicle, defining a square region 
of C. This region is called the "active region" (denoted as C*), and cells that 
momentarily belong to the active region are called "active cells" (denoted as 𝑐* ).  

 
Each active cell exerts a virtual repulsive force 𝐹toward the robot. The magnitude of this 
force is proportional to the certainty value 𝑐* and inversely proportional to 𝑑 ௫, where d is 
the distance between the cell and the center of the vehicle, and x is a positive real number. 
At each iteration, all virtual repulsive forces are summed up to form the resultant repulsive 
force 𝐹.  
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Simultaneously, a virtual attractive force 𝐹௧ of constant magnitude is applied to the vehicle, 
"pulling" it toward the target. The summation of 𝐹 and 𝐹௧ yields the resulting force vector R 
as can be seen in Fig. 17.  
 
 
The computational heart of the VFF algorithm is thus consisting in computation and 
summation of force vectors. This method is real-time because each reading from sensor is 
recorded and added to the histogram grid as soon as it is received; each one takes to the 
computation of the vector R immediately as they become available.  
In practice, sensor data influence steering control thus resulting in fast reflexive behavior 
imperative at high speeds. 

 
Fig. 17 

 
 

 
Anyway this algorithm has some problems:  
● sometimes the robot does not pass through a doorway, because the repulsive forces 

from both sides of the doorway result in a force that pushes the robot away 
● the robot’s momentary position is mapped in the histogram grid; when the robot moves, 

drastic changes in the resultant R may be encountered 
● when travelling in narrow corridors two situations may occur: 

○ the robot travels along the centerline between the walls: the motion is stable 
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○ the robot travels slightly toward one side of the centerline: a strong repulsive force 
arises from a wall pushing the robot across the centerline, then the same happens 
with the other wall; the motion is unstable. 

 
 

 

3.2.4 Vector-Field-Histogram 
Starting from the shortcomings of the VFF method, Vector-Field-Histogram arises, taking 
care of the most problematic key point: whenever the resultant force 𝐹 has to be computed, 
a bunch of data is reduced in only two information, direction and magnitude of 𝐹. An 
excessive data reduction occurs. Consequently, detailed information about the local obstacle 
distribution is lost. 
 
The VFH method employs a two-stage data reduction technique, rather than the single-step 
technique used by the VFF method [11]. Thus, three levels of data representation exist: 
● The highest level holds the detailed description of the robot's environment. In this level, 

the two-dimensional Cartesian histogram grid C is continuously updated in real-time with 
range data sampled by the on-board range sensors. This process is identical to the one 
described for the VFF method. 

● At the intermediate level, a one-dimensional polar histogram H is constructed around the 
robot's momentary location. A transformation maps the active region C* onto H.  

● The lowest level of data representation is the output of the VFH algorithm: it defines the 
reference values for the drive and steer controllers of the vehicle. 

 
The algorithm selects the most suitable sector from among all polar histogram sectors with a 
low polar obstacle density, and the steering of the robot is aligned with that direction.  
 
Usually there are two or more candidate valleys (areas of safe travel for the vehicle) and the 
VFH algorithm selects the one that most closely matches the direction to the target 𝑘௧ . 
Once a valley is selected, it is further necessary to choose a suitable sector within that valley.  
At first, the algorithm measures the size of the selected valley. Here, two types of valleys are 
distinguished, namely, wide and narrow ones. The sector that is nearest to 𝑘௧is denoted 
𝑘 and represents the near border of the valley. The far border is denoted as 𝑘. The desired 

steering direction q is then defined as 𝑞 =  
ା

ଶ
, both for wide and narrow valleys, so to 

maintain a course centered between obstacles. 
 
The robot's ability to pass through narrow passages and doorways results directly from this, 
from the ability to identify a narrow valley and to choose a centered path through that valley. 
The VFF method lacks this property. 
 
Also this method achieves the elimination of the fluctuations in the steering control: with 
the averaging effect of the polar histogram, 𝑘 and 𝑘 (and consequently q) vary only mildly 
between sampling intervals. Thus, the VFH method does not require a low-pass filter in the 
steering control loop and is therefore able to react much faster to unexpected obstacles.  
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The robot's maximum speed 𝑉௫ can be set at the beginning of a run. The robot tries to 
maintain this speed during the run unless forced by the VFH algorithm to a lower 
instantaneous speed 𝑉, which is determined in each sampling interval. 
The smoothed polar obstacle density in the current direction of travel is computed. If it is 
greater than 0 it indicates that an obstacle lies ahead of the robot. Large values of density 
mean that a large obstacle lies ahead or an obstacle is very close to the robot. Either case is 
likely to require a drastic change in direction, and a reduction in speed is necessary to allow 
the steering wheels to turn into the new direction. 
 
 
 

3.2.5 Timed Elastic Band 
For simple Elastic Band algorithm, the path to be followed is treated as an elastic band that is 
able to change its shape. Forces acting on the elastic band are computed by taking the 
gradient of the potential energy at discrete path points [12].  
 
The repulsive forces on the elastic band are produced by obstacles in the vicinity of the path. 
In total, three types of forces are acting on the elastic band, as shown in Fig. 18.   
The internal force 𝑓௧has to model the spring force; the external force 𝑓௫௧is due to obstacles. 
Also, to constrain the motion along the elastic band, a constraint force 𝑓௦௧is introduced 
with a direction tangential to the elastic band.  
The path is represented by particles that are subjected to the total force:  
 

𝑓௧௧ = 𝑓௧ + 𝑓௫௧ + 𝑓௦௧. 
 

 

 
Fig. 18: Representation of an elastic band as a series of particles with springs in between. 
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This algorithm has been adapted to work with car-like robots and its name has become 
Timed Elastic Band (TEB) because time becomes part of the objective function. 
To be noticed that as “configuration” of the car it is intended s = [ 𝑥, 𝑦, 𝛽 ] where x,y are the 
2D coordinates of the car on a map of the environment and 𝛽represents the yaw angle of the 
car, angle with respect to the z-axis. 

 
The overall objective of the TEB algorithm is to steer the car-like robot from a start 𝑠௦ to a 
desired goal configuration 𝑠 in minimum time [13].  
The underlying optimization problem has as result a vector composed of the discretized 
sequence of n robot configurations ( 𝑠 )ୀଵ,ଶ,...,where k stand for discretized instants of 
time.  
The TEB approach incorporates temporal information directly into the optimization problem 
and thus accounts for the minimization of transition time under kinodynamic constraints. Let 
(𝛥𝑇 )ୀଵ,ଶ,...,ିଵ denote a sequence of strictly positive time intervals 𝛥𝑇∈R+. 
Each𝛥𝑇describes the time required to transit from 𝑠to𝑠ାଵ.  
The TEB optimization problem is formulated as a nonlinear program (NLP): 
 

min ∑ 𝛥𝑇
ଶିଵ

ୀଵ  
 

and it is subject to the following constraints: 
● 𝑠ଵ = 𝑠௦ and 𝑠 = 𝑠 
● 0 ≤ 𝛥𝑇 ≤ 𝛥𝑇௫ 
● ℎ(𝑠ାଵ, 𝑠) = 0 : constraint that has to satisfy the kinematics equation of the car 
● 𝑟(𝑠ାଵ, 𝑠) ≥ 0 : constraint that impose a minimum turning radius 
● Constraints to limit velocity and acceleration: 

𝜈(𝑠ାଵ, 𝑠 , 𝛥𝑇) = [𝑣௫  − |𝑣|, 𝜔௫  − |𝜔|]  ≥ 0  
𝛼(𝑠ାଶ, 𝑠ାଵ, 𝑠 , 𝛥𝑇ାଵ, 𝛥𝑇)  =  𝑎௫  − |𝑎|  ≥ 0 

Special cases occur at k=1 and k=n−1 for which 𝜈ଵand𝜈ିଵare substituted by the desired 
start and final velocities (𝑣௦, 𝜔௦) and (𝑣 , 𝜔) respectively. 

● Constraint to optimize clearance from obstacles: the distance between configuration 𝑠 
and the obstacle perimeter is quantified in a continuous metric space, e.g. the Euclidean 
metric. Let 𝛿(𝑠, 𝑂)describe the minimal Euclidean distance between obstacle O and 
pose 𝑠. A minimum separation 𝛿 between all obstacles and configuration 𝑠 is 
defined by the inequality constraint: 

𝑜(𝑠) =  [𝛿(𝑠, 𝑂ଵ), 𝛿(𝑠, 𝑂ଶ), . . . , 𝛿(𝑠, 𝑂ோ)]  − [𝛿, 𝛿, . . . , 𝛿]  ≥ 0 
with R equal to the number of obstacles in the surroundings. 

 
 
Solving nonlinear programs with hard constraints is computationally expensive. Therefore, 
the exact nonlinear program (NLP) is transformed into an approximate nonlinear squared 
optimization problem in which constraints are incorporated into the objective function as 
additional penalty terms with weights for each term. 
In theory, the solution of this last problem coincides with the actual minimizer of the nonlinear 
program (NLP) in case all weights tend towards infinity. Unfortunately, large weights 
introduce ill-conditioning of the problem such that the underlying solver does not converge 
properly due to inadequate step sizes. The TEB approach abandons the true minimizer in 
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favor of a suboptimal but computationally more efficiently obtainable solution with user 
defined weights.  
Further experiments reveals that unit weights of 1 provide a reasonable point of departure, 
except for the weight associated with the non-holonomic kinematics which is a few orders of 
magnitude larger (≈1000).  
 
The TEB approach defines a predictive control strategy in order to account for disturbances, 
map and model uncertainties and dynamic environments that guides the robot from its 
current pose towards a goal pose 𝑠: to achieve this, problem (NLP) is solved repeatedly at a 
rate faster than the robot control cycle rate.  
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3.3 Path planning 
The algorithms described before are examples of a grid-based approach to motion planning, 
that overlay a grid on configuration space, and assume each configuration is identified with a 
grid point. At each grid point, the robot is allowed to move to adjacent grid points as long as 
the line between them is completely contained within the free space Cfree (tested with 
collision detection). This discretizes the set of actions, and search algorithms (or pathfinding 
algorithms) are used to find a path from the start to the goal. 
  
Pathfinding or pathing is an exploring algorithm that has as purpose to find the shortest 
route between two points, and in the meanwhile applying also other optimization criteria 
(cheapest path, fastest path, etc). 
At its core, a pathfinding method is an exploring method in the sense that it searches a graph 
by starting at one vertex and exploring adjacent nodes until the destination node is reached.  
 
The major part of the pathfinding algorithms address the problem by exhausting all 
possibilities in the graph. These algorithms run in 𝑂(|𝑉| + |𝐸|), or linear time, where V is the 
number of vertices, configurations the vehicle can assume, and E is the number of edges 
between vertices. 
The more complicated problem is finding the optimal path. The exhaustive approach in this 
case is known as the Bellman–Ford algorithm, which yields a time complexity of 𝑂(|𝑉| ∙ |𝐸|), 
or quadratic time.  
It is not necessary though to examine all possible paths to find the optimal one. Algorithms 
such as A* and Dijkstra's algorithm strategically eliminate paths, either through heuristics or 
through dynamic programming. By eliminating impossible paths, these algorithms can 
achieve time complexities as low as 𝑂(|𝐸| ∙  𝑙𝑜𝑔(|𝑉|)). 
 
Here there are a few important pathfinding algorithms. 
 
 

3.3.1 A* 
A* is an informed search algorithm, or a best-first search: it is formulated in terms of 
weighted graphs in a way that it considers to have the starting position as a node of the 
graph, from there it has to find a path to a defined goal, always a node, having the smallest 
cost (least distance travelled, shortest time, etc.). At the beginning it initializes a tree of paths 
from the start node to the destination, then extends the tree until the termination criterion is 
satisfied, Fig. 19. 
At each iteration of its main loop, A* needs to determine which of its paths to extend. 
It does so based on the cost of the path and an estimate of the cost required to extend the 
path all the way to the goal. Specifically, A* selects the path that minimizes: 
 

𝑓(𝑛)  =  𝑔(𝑛) + ℎ(𝑛) 
 
where n is the last node on the path, 𝑔(𝑛) is the cost of the path from the start node to n, and 
ℎ(𝑛) is a heuristic function that estimates the cost of the cheapest path from n to the goal. 
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Fig. 19 

 
 
 

A* uses a priority queue to select which node to expand that has the minimum cost. At each 
step, the node with the lowest f(x) value is removed from the queue, the f and g values of its 
neighbors are updated accordingly, and these neighbors are added to the queue. 
The algorithm continues until a goal node has a lower f value than any node in the queue (or 
until the queue is empty). The f value of the goal is then the cost of the shortest path, since h 
at the goal is zero in an admissible heuristic5. 
The algorithm described so far gives as output only the length of the shortest path. To find 
the actual sequence of steps, the algorithm can be easily modified so that each node on the 
path keeps track of its predecessor. 

 

3.3.2 D* (Dynamic A*) 
This algorithm, when it observes new map information (such as previously unknown 
obstacles), adds the information to its map and, if necessary, replans a new shortest path 
from its current coordinates to the given goal coordinates; the process continues until the 
goal is reached or it is determined that it is not reachable. 
The basic operation of D* is outlined below. D* maintains a list of nodes to be evaluated, 
known as the "OPEN list". 
Nodes are marked as having one of several states: 
 
● NEW, meaning it has never been placed on the OPEN list 
● OPEN, meaning it is currently on the OPEN list 
● CLOSED, meaning it is no longer on the OPEN list 
● RAISE, indicating its cost is higher than the last time it was on the OPEN list 
● LOWER, indicating its cost is lower than the last time it was on the OPEN list 

                                                
5 A heuristic function is said to be admissible if it never overestimates the cost of reaching the goal, 
i.e. the cost it estimates to reach the goal is not higher than the lowest possible cost from the current 
point in the path. 
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The algorithm works by iteratively selecting a node from the OPEN list and evaluating it and 
then it propagates the node's changes to all of the neighboring nodes placing them on the 
OPEN list. This propagation process is termed "expansion".  
A* follows the path from start to finish; D* instead begins by searching backwards from the 
goal node. Backpointers are introduced to make each node knowing which is the next one 
that leads to the target. When the start node is the next node to be expanded, the algorithm 
is done, and the path to the goal can be found by simply following the backpointers. 
 
When an obstruction is detected along the intended path, all the points that are affected are 
marked as RAISED and again placed on the OPEN list. Then the RAISE state is propagated 
to all of the nodes' descendants, forming a wave. When a RAISED node can be reduced, its 
backpointer is updated, and passes the LOWER state to its neighbors. These waves of 
RAISE and LOWER states are the heart of D*. 
The algorithm works only on the points which are affected by change of cost. 
 
This algorithm has been used for Mars Rover prototypes and tactical mobile robot prototypes 
for urban reconnaissance. 
 
 

3.3.3 RRT (Rapidly-exploring random tree) 
RRT  constructs  a  tree using  random  sampling  in  search space. The  tree  starts  from an  
initial configuration, 𝑧௧, and expands to find a path towards a goal state say 𝑧. The  tree  
gradually expands as the iteration continue, see Fig. 20.  
During each iteration, a random state 𝑧ௗ is selected from configuration space Z and, if it 
lies in a free obstacle area, a nearest node 𝑧௦௧ is searched in tree according to a defined 
metric ρ. If 𝑧ௗis accessible to 𝑧௦௧, then the tree is expanded by connecting 𝑧ௗ and 
𝑧௦௧. Otherwise, it returns a new node 𝑧௪ by using a steering function, thus expands 
tree by connecting 𝑧௪ with 𝑧௦௧. 
 
When an initial path is found, the process does not stop until a certain amount of time expires 
or a certain number of executions has been reached. 
While RRTs are sometimes able to solve very hard problems quickly, their main drawback is 
that no guarantees are made on solution quality and, in practice, their solutions are often 
poor. 
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Fig. 20: the red dot is an obstacle, such also the colored rectangles; in green the path that 

has been evaluated to reach the destination on the right. 
 
 
 
 
 

3.3.4 RTR* (Real time R*) 
A planning problem P is defined as a tuple {𝑆, 𝑠௦௧௧, 𝐺, 𝐴, 𝛼, 𝑂, 𝐷} where 
● S is the set of states, where a state is the tuple < 𝑥, 𝑦, 𝜃, 𝑣, 𝑡 > corresponding to location, 

heading, speed, and the current time 
● 𝑠௦௧௧ is the starting state 
● G is  the  set  of  goal  states,  where  each  state g is underspecified as < 𝑥, 𝑦, 𝜃, 𝑣 > 

because it is unknown when the robot will be able to arrive there 
● A is the set of motion primitives available to the robot, that is a set of primitive actions 

that can be applied in a certain state.  
● The  function 𝛼 is a primitive action that makes possible to pass from a state to another 

and has a duration of 𝑡 
● O is the set of static obstacles whose locations are known and do not change 
● D is the set of dynamic obstacles. This set can change as the robot acquires more 

observations of an obstacle. 
 
When expanding a node s, the R* algorithm selects a random set of k states that are within 
some distance 𝛥 of s. These states will form a sparse graph 𝛤 that is searched for a solution. 
The edges computed between nodes in 𝛤 represent actual paths in the underlying state 
space. If the algorithm does not find a solution within a given node expansion limit, it gives 
up, labelling the node as AVOID, and allowing R* to focus the search elsewhere. R* will only 
return to these hard to solve subproblems if there are no non-AVOID labelled nodes left.  
R* solves the planning problem by carrying out searches that are much smaller than the 
original problem, and easier to solve.  Note that R* finds complete paths to the goal on every 
search, and the time that this takes is not bounded [14]. 
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To make it real time: 
● RTR* terminates when the expansion limit has been reached, not when the goal is 

reached, this because it isn’t sufficient to just reach the goal state. In domains with 
moving obstacles, it may be necessary to move off the goal state at some future time to 
get out of the way of an obstacle. 

● In R*, if a node is labelled as AVOID, it is inserted back onto the open list. If the node is 
ever popped off of the open list again, another attempt is made at computing the path, 
this time with no node expansion limit. In RTR*, each time a search fails due to the 
expansion limit, the limit is doubled for that node the next time it is removed from the 
open list. Since the expansion limit for computing the path to a node is doubled each 
time, the total amount of extra searching that may need to be done is bounded by a 
constant factor in the worst case. 

● RTR* has in memory information about the nodes in the sparse graph that are on the 
best path found. This allows the search to seed the sparse graph 𝛤 with nodes that 
appeared promising on the previous iteration, a kind of path reuse.  All other nodes in 𝛤 
not on the most promising path are discarded. If the costs of the graph have not 
changed much, then these nodes will most likely still be favorable and will be used by 
RTR*. If costs have changed, then RTR* recomputes a better path, possibly not even 
using the cached sparse nodes. 

● One of the key insights of the R* algorithm is that dividing the original problem up into 
many smaller subproblems makes it generally easier to solve than solving the original. 
To make these problems easier, the goal condition can be relaxed to allow states within 
a certain radius of the actual goal state and with any heading and any speed to be 
considered a goal.  

 
 
 

3.3.5 PLRTA* (Partitioned Learning Real-time A*) 
PLRTA* partitions g and h values into static and dynamic portions. The static portion refers to 
only those things that are not time dependent. The dynamic portion refers to only those 
things that are dependent on time, such as the locations of the dynamic obstacles. 
 
For each  search  node  encountered,  the  static costs (𝑔௦), dynamic costs (𝑔ௗ), static cost-
to-go (ℎ௦) and dynamic cost-to-go (ℎௗ) can be tracked. 
The evaluation function is now: 

𝑓(𝑛) = 𝑔௦(𝑛) + 𝑔ௗ(𝑛) + ℎ௦(𝑛) + ℎௗ(𝑛). 
 
Partitioned Learning Real-time A* (PLRTA*) performs a limited lookahead A* search forward 
from the agent. In backtracking algorithms, lookahead is the generic term for a 
subprocedure that attempts to foresee the effects of choosing a node with respect to another. 
It then selects the minimum f node in the open list and labels it 𝑔. The planning iteration 
ends by taking the first action along the path from 𝑠௦௧௧ to 𝑔. The algorithm goes on taking 
actions between nodes until the goal is reached.  
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Heuristic learning can be divided into separate steps for ℎ௦ and ℎௗ. The main difference 
between the two learning steps is in the setup phase. The ℎ௦ of all nodes in the closed list 
can be set to ∞. ℎ௦ is then computed from the ℎ௦ of a successor state and the static cost 𝑔௦ 
incurred by moving from its state to its successor.  
 
For what regards the dynamic cost, it can be set ℎௗ= 0.   While this is very weak, it can be 
improved drastically during the search. Because dynamic and static costs are considered 
separately, ℎௗ values can be learnt through 𝑔ௗ costs. These ℎௗ values of a state can 
frequently change with respect to time, depending  on  the  movements  of  dynamic  
obstacles  and  their  predicted  future  locations.  
 
The learning step of PLRTA* will always only raise the heuristic estimate of a state.  
However, there must be a way to lower a high cached heuristic value if the dynamic obstacle 
that caused the high value moves away. To accomplish this, the cached dynamic heuristic 
values of all states can decay over time linearly. This allows the algorithm to “unlearn” 
dynamic heuristic values that turned out to be overestimates, in fact after a while the value of 
the dynamic cost is back to zero and it is removed from the cache [14].  
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3.4 Costmap 
There are a few other approaches to motion planning but it has been decided to use the grid-
based one to have the chance of using a costmap.  
A costmap is a grid in which every cell gets assigned value (cost) depending on the fact that 
an obstacle is present or not, so giving the chance of determining distance to objects. 
 
Note: In Fig. 21, the red cells represent obstacles in the costmap, the blue cells represent 
obstacles within a certain radius from the robot, and the red polygon represents the footprint 
of the robot. For the robot to avoid collision, the footprint should never intersect a red cell and 
the center point of the robot should never cross a blue cell. 
 
 

 
Fig. 21 

 
 

The blue cells are the result of the inflation. Inflation is the process of propagating cost 
values out from occupied cells that decrease with distance out to a user-specified inflation 
radius [15].  
For this purpose, 5 specific cost values can be defined as they relate to a robot. 
● "Lethal" cost means that there is an actual obstacle in a cell. 
● "Inscribed" cost means that a cell is less than the robot's inscribed radius away from an 

actual obstacle. A crash will verify if the robot center passes in a cell that is at or above 
the inscribed cost. 

● "Possibly circumscribed" cost is similar to "inscribed", but using the robot's 
circumscribed radius as cutoff distance. Thus, if the robot center lies in a cell at or above 
this value, then it depends on the orientation of the robot whether it collides with an 
obstacle or not. 
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● "Freespace" cost is assumed to be zero, and it means that there is nothing that should 
keep the robot from going there. 

● "Unknown" cost means there is no information about a given cell.  
● All other costs are assigned a value between "Freespace" and "Possibly circumscribed" 

depending on their distance from a "Lethal" cell and the decay function provided by the 
user. 
 

Better explanation is provided in Fig. 22. 
 

 
Fig. 22 

 
 

To sum up, then, why the costmap has been used: 
● path planning algorithms are the basis for motion planners because they evaluate a path 

that the vehicle should follow;  
● to evaluate this path the costmap is useful because it takes into consideration the 

obstacles surrounding the vehicle, so the planner knows which configurations are not in 
the free space 𝐶; 

● once a path, is defined the motion planner can make a decision about the speed that 
has to be pursued by the vehicle, taking into account that a certain maximum speed 
should not be exceeded.   
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3.5 Trajectory prediction 
The Motion Planning algorithms are commonly based on A* path planning algorithm. This 
one works in an environment in which no dynamic obstacles are present. This means that, in 
a real environment, which also includes dynamic obstacles, the path that it evaluates should 
not be undertaken.  
 
To take that into consideration, it has been decided to mark new information in the costmap 
consisting in the trajectory that the obstacles are about to take. In this way a possible 
crash can be predicted and a different route can be defined. 
 
Vehicle tracking is one of the most important data fusion tasks for Intelligent Transportation 
Systems (ITS). Especially for advanced driver assistance systems such as Collision 
Avoidance, Adaptive Cruise Control (ACC), Stop-and-Go-Assistant, a reliable estimation of 
other vehicles’ positions is one of the most critical requirements. 
 
 

3.5.1 Motion models 
In order to increase the stability and accuracy of the estimation, the vehicles are mostly 
assumed to comply with certain motion models which describe their dynamic behavior. 
From the data fusion point of view, the task is to estimate the parameters of the model – 
taking into account all available observations.  
 
A few motion models exist that have different levels of complexity. Linear motion models 
assume a constant velocity (CV) or a constant acceleration (CA). Their linearity of the state 
transition allows a good propagation of the state probability distribution.  
On the other hand, these models assume straight motions and are thus not able to take 
rotations (especially the yaw rate) into account.  
Curvilinear models can be further divided by the state variables which are assumed to be 
constant. The simplest model of this level is the Constant Turn Rate and Velocity (CTRV) 
model. By defining the derivative of the velocity as the constant variable, the Constant Turn 
Rate and Acceleration (CTRA) model can be derived. 
 
Both CTRV and CTRA assume that there is no correlation between the velocity v and the 
yaw rate ω. As a consequence, disturbed yaw rate measurements can change the yaw angle 
of the vehicle even if it is not moving. In order to avoid this problem, the correlation between 
v and ω can be modelled by using the steering angle 𝛷6 as constant variable and derive the 
yaw rate from v and 𝛷. The resulting model is called Constant Steering Angle and 
Velocity(CSAV). Again, the velocity can be assumed to change linearly, which leads to the 
Constant Curvature and Acceleration(CCA) model. 
 
 
 
 
 

                                                
6 This angle is defined between the axis of motion and the direction of the front wheels. 



42 

The connections between all models described so far are illustrated in Fig. 23: 
 

 
Fig. 23 

 
 
From a geometrical point of view, nearly all curvilinear models are assuming that the vehicle 
is moving on a circular trajectory (either with a constant velocity or acceleration).  
 
 

3.5.1.1 CV (Constant Velocity) 
State space of CV model: 

 
 

It is a linear motion model: 

 
 

It can be rewritten as the state transition function vector: 

 
 
 

3.5.1.2 CA (Constant Acceleration) 
The state space is: 

 
 

It is a linear motion model; the linear state transition is as before, taking into considerations 
also the acceleration. 
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3.5.1.3 CTRV (Constant Turn Rate and Velocity) 
The state space: 

 
 

can be transformed by the non-linear state transition: 

 
 

3.5.1.4 CTRA (Constant Turn Rate and Acceleration) 
The state space of this models expands the last one by 𝑎:  

 
 

The state transition equation for this model is: 

 
 

with 𝛥𝑥(𝑇) and 𝛥𝑦(𝑇) that are functions of all the other states. 
 

3.5.1.5 Comparison between the models 
As it is, applications of these models in literature show that the sophisticated models CTRV 
and CTRA provide a better performance than the simple CV model in almost every case. 
Furthermore, the incorporation of the acceleration additionally improves the overall tracking 
performance.  
The CV and CTRV models have been compared using scenes with a high curvature only. 
The CV model generates large position errors due to high curvature, whereas the CTRV 
model is able to provide a better estimation. 
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In high acceleration situations, the CTRA model performs much better than the CTRV model 
[16]. 
 
 
 

3.5.2 Filtering algorithms 
These models apply to specific filtering algorithms. 

3.5.2.1 Kalman filter 
The algorithm is composed of two steps: 
● the prediction step: the Kalman filter estimates the current state variables with some 

uncertainty; it makes use of the system’s dynamic model, known control inputs and 
measurements from sensors 

● the stabilization phase: once the outcome of the next measurement is obtained (result 
that has to be corrupted with some error, including random noise) the estimates are 
updated using a weighted average, with more weight being given to estimates with 
higher certainty; higher certainty means smaller uncertainty, and these are the values 
that are considered “trusted” more. Weights are evaluated from the covariance, a 
measure of the estimated uncertainty of the prediction of the system's state.  

 
This process is repeated at every time step, with the new estimate and its covariance 
informing the prediction used in the following iteration. This means that the Kalman filter 
works recursively and requires only the last "best guess", rather than the entire history, of a 
system's state to calculate a new state. 
 
Using a Kalman filter does not assume that the errors are Gaussian. However, if all noise is 
Gaussian, the Kalman filter minimizes the mean square error of the estimated parameters. 
 
The Kalman filter maintains and updates at every cycle the estimates of the state: 
𝑥ො(𝑘|𝑘)- estimate of x(k) given measurements at time k, k-1, … 
𝑥ො(𝑘 + 1|𝑘)- estimate of x(k+1) given measurements at time k, k-1,... 
 
and the error covariance matrix of the state estimate: 
𝑃(𝑘|𝑘)- covariance matrix of x(k) given measurements at time k, k-1, … 
𝑃(𝑘 + 1|𝑘)- covariance matrix of x(k+1) given measurements at time k,k-1,... 
 

3.5.2.2 Extended Kalman Filter 
The extended Kalman filter (EKF) is the nonlinear version of the Kalman filter which 
linearizes about an estimate of the current mean and covariance. The state transition and 
observation models need not be linear functions of the state but may instead be nonlinear 
functions. 
 
Unlike its linear counterpart, the extended Kalman filter in general is not an optimal estimator 
(of course it is optimal if the measurement and the state transition model are both linear, as 
in that case the extended Kalman filter is identical to the regular one). In addition, if the initial 
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estimate of the state is wrong, or if the process is modelled incorrectly, the filter may quickly 
diverge.  
Another problem with the extended Kalman filter is that the estimated covariance matrix 
tends to underestimate the true covariance matrix and therefore risks becoming inconsistent 
in the statistical sense without the addition of "stabilizing noise". 
 
Having stated this, the extended Kalman filter can give reasonable performance, and is 
arguably the de facto standard in navigation systems and GPS. 
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4. Thesis contribution 

4.1 Costmap  
The costmap_2d package of ROS has been used and integrated. 
  
The implementation of this thesis shows the vehicle moving through the map using two types 
of navigation: global and local. 

● The global navigation is used to create paths for a goal in the map or a far-off distance. 
At this purpose, a global costmap is used, this is an entire map of the environment 
created during the movement of the car 

● The local navigation is used to create paths in the nearby distances and avoid obstacles. 
At this purpose, a local costmap is used for the local navigation, it considers only a little 
window with the car at its center which draws only the obstacles that pass through that. 

 
In both cases, global or local, the costmap is divided in layers. 
Each layer is instantiated in the Costmap2DROS using pluginlib and is added to the 
LayeredCostmap [5]. In general there are: 

● Static Map Layer: represents a largely unchanging portion of the costmap, like those 
generated by SLAM. 

● Obstacle Map Layer: tracks the obstacles as read by the sensor data. 
● Inflation Layer: is an optimization that adds new values around lethal obstacles (i.e. 

inflates the obstacles) in order to make the costmap represent the configuration space of 
the robot. 

● Other Layers: can be implemented and used in the costmap via pluginlib.  

The structure of the layers is described in Fig. 24. 

 

The first approach to safe motion planning is to extend the obstacle layer.  

The actual implementation of this layer only takes into account the actual position of the 
obstacles: everything is seen as static, also moving objects are drawn in the costmap in the 
actual position they have in the moment data is acquired by the sensors. 

This behaviour can cause the ego-vehicle to recognize the presence of another one only 
when they are approaching each other, leaving not so much time to react.  

The solution to this is to plot on the costmap also the trajectory of the obstacles, so that the 
motion planner can take into account also future positions of objects while building the path 
to the goal and in this way predict a crash and have time to find an alternative route solution. 
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Fig. 24: all the layers that compose the costmap; the master will be a composition of the 
underlying layers 

 

 

 

4.1.1 First step: costmap only with actual position of objects 
The first step was to make the already existing layer work, so to plot the actual position of the 
cars that the Ibeo sensors have discovered.  

This was possible because the object detection from Ibeo sensors publishes in a topic the 
information about the position of the center of gravity of the PointClouds it recognizes.  

In Fig. 25, that is an rviz capture (rviz is the tool that is used to plot the costmap), it can be 
seen: 

● colored dots, that are the points that reflect the laser ray sent by the sensor 
● colored rectangles, that are the result of the object detection the platform does to 

classify the objects and compute their width and length 
● black rectangles, that are the result of marking that cells to LETHAL in the costmap, so 

the result of the obstacle layer 
● at the center, the footprint of the ego-vehicle. 
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Fig. 25 

 
 

 

4.1.2 How to recognize not moving objects? 
The next step was to evaluate the trajectory and to plot it. 

To begin in an easy way, it is decided to start from plotting a segment in the direction of 
motion of the obstacle, following an initial assumption that the vehicles are all going straight 
forward. This is not so easy as could seem because Ibeo only had the information about the 
relative velocity of the obstacles with respect to the ego-vehicle.  

This means that if a car is not moving, it can be seen as moving in the opposite direction with 
respect to the one of the vehicle, and this is a problem for the next steps. 

In this situation, geometry and the tf package of ROS come to help.  

The goal is to understand if a vehicle is not moving, so if its position in the reference frame of 
the Earth is always the same.  
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Fig. 26 

 

In Fig. 26, if A is the ego-vehicle and B is the obstacle, let’s say that 𝑟is the position of the 
obstacle and 𝑟is the position of the ego-vehicle with respect to a fixed reference frame, the 
Earth. The ibeo sensors only gives the relative position 𝑟 | of the obstacle B with respect to 
A. If the goal is the position of the obstacle with respect to the fixed frame the steps are : 

𝑟 |  = 𝑟 − 𝑟 
 
so  

𝑟 = 𝑟 |  + 𝑟 . 
 
If the resulting position 𝑟 results to be always the same (not exactly the same because of 
the sensor errors, but very near to the same position) it can be recognized that the object is 
standing still and so that it will not be a danger for the movement of the ego-vehicle. 
 
Evaluating 𝑟 is what tf can help to do. There are two reference frames, the one that runs 
with the vehicle, and the Earth-one. For what regards the first one, the origin of the frame is 
simply the center of gravity of the ego-vehicle. For what regards the second one, the origin is 
the pose the vehicle has at the beginning, when the simulation starts. Then 𝑟is computed 
depending on how far the ego-vehicle travels from that point on.  
The position 𝑟 |  is given by the ibeo sensors and it is referred to the car reference frame. 
Then tf is capable to convert it in the fixed-one (𝑟). 
 
But the car has also an orientation with respect to the z-axis. This orientation is different if 
considered in the car reference frame or in the fixed reference frame so it is needed also to 
convert this one. It has been necessary to express the orientation angle, that basically is a 
yaw angle, as a quaternion7 so to use the set of functions provided by the package 
tf2/LinearMath/Quaternion.  
This package includes a series of functions to do the change of representation from Roll-
Pitch-Yaw angles to quaternions and vice versa.  

                                                
7 In mathematics, the quaternions are a number system that extends the complex numbers.  
q = a +b i + c j + d k, where a, b, c, d, are real numbers, and i, j, k, are symbols that can be 
interpreted as unit-vectors pointing along the three spatial axes.  

 x 

y 
rA 

rB 

rB| A 
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It is considered only a yaw angle because in this simple implementation only movements 
around the z-axis are considered, so the ego-vehicle is moving in a flat environment. A future 
work could be to introduce movements around axis x and y. 
 
The result is that it is possible to evaluate if an obstacle is moving or not but still considering 
that all obstacles are moving straight is very weak.  
So it is time to improve the algorithm. 
 
 
 

4.1.3 Second step: costmap with trajectory prediction of objects 
The next chapter will discuss about all the trajectory prediction algorithms that have been 
studied and furthermore the results of the best one with the motion planning algorithm. 
What can be said here are the steps that has been done to mark the trajectory on the 
costmap, so it can be supposed that the trajectory has been already evaluated at this point. 
 
 

4.1.3.1 Only the points of the predicted trajectory  
The first approach is to take all the points that are predicted by the algorithm and then set on 
the costmap a higher cost for these ones.  
Basically what can be seen is that some points in the costmap are highlighted but there is no 
connection between them, see Fig. 27. 
 
This is acceptable when the moving obstacle has an almost constant speed, in fact all the 
points are aligned properly but, when the moving obstacle has a little bit of acceleration, the 
dots start to be very far from each other so much that they seem like stand-alone fixed 
obstacles. This is not acceptable because the ego-vehicle thinks that it has the right to pass 
in the middle of the points, thus leading to crashes.  
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Fig. 27 
 
 
 

4.1.3.2 Connecting points 
Another solution that is preferable is to draw lines between points so as to obtain a 
polygonal chain8 at the end.  
To do so, a tracing line algorithm is used taking as model the one implemented in the 
package costmap_2d.  
 
 

4.1.3.2.1 Breshenham’s algorithm 
Consider a line with initial point (𝑥ଵ , 𝑦ଵ) and terminal point (𝑥ଶ , 𝑦ଶ) in device space.  
If 𝛥𝑥 = 𝑥ଶ − 𝑥ଵand 𝛥𝑦 = 𝑦ଶ  − 𝑦ଵ, the driving axis (DA) is the x-axis if  |𝛥𝑥|  ≥  |𝛥𝑦|, and the 
y-axis if |𝛥𝑦|  ≥ |𝛥𝑥|.  

                                                
8 In geometry, a polygonal chain is a connected series of line segments. It is a curve consisting in a 
sequence of points and the line segments between them. 
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The DA is used as the “axis of control” for the algorithm and is the axis of maximum 
movement. While the algorithm goes on, the coordinate corresponding to the DA is 
incremented more than the other one, usually denoted the passive axis or PA, that is only 
incremented as needed. 
 
As an example, it can be considered the case in which the objective is to draw a line from 
(0,0) to (5,3) in device space, Fig. 28. 

 
Fig. 28 

 
 
Breshenham’s algorithm begins with the point (0,0) and “illuminates” that pixel.  
The x coordinate is incremented by 1. 
Rather than keeping track of the y coordinate (which increases by 𝑚 =

௱௬

௱௫
, each time the x 

increases by one), the algorithm keeps an error bound 𝜀 at each stage, which represents the 
distance between where the line has exited the pixel and the top edge of that pixel (see Fig. 
28). 𝜀 is first set to 𝑚 − 1 , and is incremented by𝑚 each time the x coordinate is 
incremented by one.  
If 𝜀 becomes greater than zero, it means that the line has moved upwards one pixel, and that 
the y coordinate must be incremented and the error must be readjusted to represent the 
distance from the top of the new pixel – which is done by subtracting 1 from 𝜀. 
All the steps are described in Fig. 29. 
 
 
Till this moment, it has been considered that ∆x and ∆y are positive. If this is not the case, 
the algorithm is essentially the same except for the following: 
● 𝜀 is calculated using  |  

௱௬

௱௫
 |  

● x and y are decremented (instead of incremented) by one if the sign of 𝛥𝑥 or 𝛥𝑦is less 
than zero, respectively. 
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(x,y) 𝜀 description 

(0,0) 
 
(1,0) 

-0.4 
0.2 

pixel(0,0) 
increment 𝜀 by 0.6 
increment x  by 1 

(1,0) 
 
(1,1) 
 
 
(2,1) 

0.2 
 
 
-0.8 
-0.2 

pixel(1,0) 
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   increment     y   by 1 
   decrement   𝜀  by 1 
increment       𝜀  by 0.6 
increment       x  by 1 

(2,1) 
 
(3,1) 

-0.2 
0.4 

pixel(2,1) 
increment 𝜀 by 0.6 
increment x by 1 

(3,1) 
 
(3,2) 
 
 
(4,2) 

0.4 
 
 
-0.6 
0.0 

pixel(3,1) 
since 𝜀 is positive:  
   increment     y   by 1 
   decrement   𝜀   by 1 
increment       𝜀   by 0.6 
increment       x   by 1 

(4,2) 0.0 pixel(4,2) 

Fig. 29 
 
 
 
Breshenham’s Algorithm, as discussed above, works with a floating point arithmetic. 𝜀 is 
initialized to: 

𝜀 =
𝛥𝑦

𝛥𝑥
− 1 

and is incremented by 
𝛥௬

௱௫
at each step.  

Since both ∆y and ∆x are integer quantities, it can be converted to an all integer format by 
multiplying the operations through by ∆x.  
The following integer quantity will be considered:  

𝜀 = 𝛥𝑥 ⋅ 𝜀 = 𝛥𝑦 − 𝛥𝑥 
and it will be incremented by ∆y at each step, and decremented by ∆x when it becomes 
positive. 
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The steps for the integer version of the algorithm, considering the same example than 
before, are described in Fig. 30 and the pseudo-code is the following [17]: 
 
Let 𝛥𝑥 = 𝑥ଶ − 𝑥ଵ 
Let 𝛥𝑦 = 𝑦ଶ − 𝑦ଵ 
Let 𝑗 = 𝑦ଵ 
Let 𝜀 = 𝛥𝑦 − 𝛥𝑥 
 
for 𝑖 = 𝑥ଵ to 𝑥ଶ − 1 
illuminate ( 𝑖, 𝑗) 
if ( 𝜀  ≥  0) 
  𝑗+= 1 
  𝜀 −= 𝛥𝑥 
end if 

𝑖+= 1 
𝜀 += 𝛥𝑦 

next 𝑖 
finish 
 

 

(x,y) 𝜀 description 

(0,0) 
 
(1,0) 

-2 
1 

pixel(0,0) 
increment 𝜀 by  y 
increment x  by 1 

(1,0) 
 
(1,1) 
 
 
(2,1) 

1 
 
 
-4 
-1 

pixel(1,0) 
since 𝜀 is positive:  
   increment     y   by 1 
   decrement   𝜀  by  x 
increment       𝜀  by  y 
increment       x  by 1 

(2,1) 
 
(3,1) 

-1 
2 

pixel(2,1) 
increment 𝜀 by  y 
increment x by 1 

(3,1) 
 
(3,2) 
 
 
(4,2) 

2 
 
 
-3 
0 

pixel(3,1) 
since 𝜀 is positive:  
   increment     y   by 1 
   decrement   𝜀   by  x 
increment       𝜀   by  y 
increment       x   by 1 

(4,2) 0 pixel(4,2) 

Fig. 30 
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This last one is the algorithm implemented on the costmap as can be seen in Fig. 31. It 
produces a rasterization of the line going from one point to another. The result of all the lines 
is the polygonal chain. 
In this way the ego-vehicle can not think to have the right to pass in the middle of the 
trajectory as it considers it as an actual obstacle marked on the costmap, thus not 
traversable. 
 
 

 
Fig. 31 
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4.2 Trajectory prediction 
To test the Kalman filter it has been decided to build up some scenarios that should 
represent different profiles of motion that the obstacles can happen to follow. This has been 
done to evaluate the goodness of the forecast that the prediction algorithm provides. 
In MATLAB it has been defined an actual path that the obstacle is supposed to follow (built 
using equations of motion).  
This path is given to the Kalman as it was given by the sensors, so introducing a bounded 
error: Ibeo sensors have an accuracy of around 1.5 meters for the detection of an object so it 
has been decided to not go far from the reality. 
At every step the filter predicts 40 steps ahead. It is possible to compare the actual position 
that the obstacle is going to have at the 40௧ step (retrieved from the path that was built) and 
the prediction the filter does. It has been decided to set this difference as KPI (Key 
Performance Indicator).  
 

Id Name of the 
scenario 

Comments about the creation of 
the scenario 

Values for velocities and 
accelerations 

1 straight with constant 
speed 

Equations of motion with constant 
speed 

𝑣௫ = 30 𝑚/𝑠, 𝑣௬ = 0 𝑚/𝑠 
𝑎௫ = 0 𝑚/𝑠ଶ, 𝑎௬ = 0 𝑚/𝑠ଶ 

2 straight with constant 
acceleration 

Equations of motion with constant 
acceleration 

𝑣௫ = 3 𝑚/𝑠, 𝑣௬ = 0 𝑚/𝑠 
𝑎௫ = 1 𝑚/𝑠ଶ, 𝑎௬ = 0 𝑚/𝑠ଶ 

3 straight with constant 
deceleration 

Equations of motion with constant 
acceleration, but this time with a 
negative value 

𝑣௫ = 30 𝑚/𝑠, 𝑣௬ = 0 𝑚/𝑠 
𝑎௫ = −0.5 𝑚/𝑠ଶ, 𝑎௬ = 0 𝑚/𝑠ଶ 

4 straight with ramp 
acceleration 

Equations of motion with a uniformly 
varying acceleration 

𝑣௫ = 0 𝑚/𝑠, 𝑣௬ = 0 𝑚/𝑠 
𝑎௫ = 0 𝑚/𝑠ଶ, 𝑎௬ = 0 𝑚/𝑠ଶ 

𝑎௫ி = 2.5 𝑚/𝑠ଶ 

5 turning (as in road 
curve) 

Equations of motion with constant 
acceleration, negative for one axis 
and positive for the other one 

𝑣௫ = 30 𝑚/𝑠, 𝑣௬ = 0 𝑚/𝑠 
𝑎௫ =  −1 𝑚/𝑠ଶ, 𝑎௬ = 0.8 𝑚/𝑠ଶ 

6 circumference (as in 
roundabout) 

Sinusoidal profile both for x and y 
axes 
 

𝑣௫ெ௫ = 40 𝑚/𝑠, 𝑣௬ெ௫

= 40 𝑚/𝑠 
𝑎௫ெ௫ = 3 𝑚/𝑠ଶ, 𝑎௬ெ௫

= 3 𝑚/𝑠ଶ 

7 overtaking path Used a MATLAB function to have a 
smooth transition from 0 to 3 meters 

𝑣௫ = 25 𝑚/𝑠, 𝑣௬ = 1.5 𝑚/𝑠 
𝑎௫ = 0 𝑚/𝑠ଶ, 𝑎௬ = 0.8 𝑚/𝑠ଶ 

8 sinusoidal path Sinusoidal path only on the y axis 𝑣௫ = 25 𝑚/𝑠, 𝑣௬ெ௫ = 3 𝑚/𝑠 
𝑎௫ = 0 𝑚/𝑠ଶ, 𝑎௬ெ௫

= 0.45 𝑚/𝑠ଶ 
 
Only some motion models have been evaluated and their results have been compared. 
Future work could be to apply the Kalman filter to the others described in the State of the art.  
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4.2.1 Kalman filter: general aspects 
The Kalman filter used in this project is a 40-steps ahead predictor. 
 
Here are listed the matrices that are used: 
● the matrices for the system S (A,C) change with respect of the motion model 

implemented.  
𝑥 (𝑡 + 1) = 𝐴 ⋅ 𝑥(𝑡)  + 𝑣ଵ(𝑡) 

𝑦 (𝑡) = 𝐶 ⋅ 𝑥(𝑡) + 𝑣ଶ(𝑡) 
 
The A matrix is a simplification of the reality and represents the dynamics of the motion. 
The C matrix represents which kind of outputs the system is built to have.  
These matrices depend on the time between one measurement and the next one, that is 
𝑑𝑡 = 40𝑚𝑠.  

● the matrix P, the prediction error variance, is always initialized with relatively high values 
for the variance of each state; this to say that the initial values of the predicted 
trajectories are not well trusted 

● 𝑣ଶ(𝑡) is the measurement noise that is characterized by the variance matrix 𝑉ଶ: it 
represents how much the measurements are accurate: 

 

 
 
● 𝑣ଵ(𝑡) is the process noise that is characterized by the variance matrix 𝑉ଵ: it represents 

the idea/feature that the state of the system changes over time, but it is not known the 
exact detail of when/how those changes occur, and thus it is needed to model them as a 
random process. For what regards the matrix itself, the values of the last two positions of 
the diagonal are a little higher due to the fact that state variables concerning the jerk 
values are less trusted, given that it is the third derivative of the position, so a higher 
variance is supposed: 

 

 
 
In Fig. 32, a block diagram can be found. It is highlighted in red the part this thesis is 
interested in, the prediction. 
The initial condition for the algorithm is the first measurement the sensor gives.  
 
The error of the prediction has been evaluated in two different ways: 
● the distance between the actual position of the moving obstacle and the predicted one at 

the 40௧ step, both in  x and y direction (previously stated as the KPI) 
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● the mean squared error (MSE): measures the average of the squares of the errors, that 
is, the average squared difference between the estimated values and the actual ones. 
The MSE is a measure of the quality of an estimator: it is always non-negative, and 
values closer to zero are better.  
The formula is: 

𝑀𝑆𝐸 =
1

𝑁
𝛴(𝜀(𝑡))ଶ 

where N is the dimension of the vector 𝜀, that is the error in the prediction (along the x-
axis or the y-axis).  

 
Fig. 32 

 

4.2.2 CV (Constant Velocity) 
This model considers to have constant velocity. The matrices of the system are: 
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4.2.2.1 Straight with constant speed 
 
It can be seen in Fig. 33 that, at the beginning, the estimate of the 40௧step ahead is weak 
because the Kalman is still adjusting itself. After the transient, the prediction becomes more 
accurate and the error goes approximately to 0, it is bounded in a range of less than 10 cm.  
 
Over a simulated serie of 1000 measurements, the maximum error with the used initial 
conditions is 30 cm on x-axis and 90 cm on y-axis. 

 
Fig. 33 

 



60 

 
Fig. 34 

 
 

This scenario is well handled because the model is at constant speed and the obstacle is 
supposed to travel with a constant speed. In Fig. 34, it can be shown a simulation done in 
MATLAB of the path the obstacle is actually following: in red, the prediction the filter does, in 
blue the actual path. The predicted path follows well the actual one. 
 

4.2.2.2 Straight with constant acceleration 
 
It can be seen that the error goes very high because the model can not handle the  
acceleration of the moving obstacle. 
As can be seen in Fig. 35, the maximum error with the used initial conditions is 
approximately 60 meters on x-axis, even though it is very precise for the y-axis: this comes 
from the fact that the acceleration is considered only on the x-axis, on the y-axis the 
equations are the same as the previous case. 
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Fig. 35 

 
 
 
In Fig. 36 there is a simulation of the path the obstacle is actually following. It can be seen 
that the predicted path deviates from the actual one because the filter is not capable to follow 
it. The actual obstacle is always in an advanced position with respect to the predicted one, 
this due to the fact that a constant velocity model can not handle a motion profile with 
constant acceleration. 
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Fig. 36 

 

 
 

4.2.2.3 Straight with constant deceleration 
 
As expected, as this is the reciprocal of the acceleration case, the error goes very high for x-
axis, while on the y-axis after the transient it follows the path. 
As can be seen in Fig. 37, the maximum error with the used initial conditions is 
approximately 30 meters on x-axis, even though it is quite precise for the y-axis. 
This is due to the fact that the deceleration is considered only on x-axis. 
 
In Fig. 38, it can be seen that the predicted path deviates from the actual one. The actual 
obstacle is always in a backward position with respect to the predicted one, this due to the 
fact that a constant velocity model can not handle a motion profile with constant deceleration. 
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Fig. 37 

 
 

 
Fig. 38  
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4.2.2.4 Straight with ramp acceleration 
 
The error goes very high for x-axis, while on the y-axis it reaches almost 0. 
 
As can be seen in Fig. 39, the maximum error with the used initial conditions is 
approximately 100 meters on x-axis, even though it is quite precise for the y-axis, this due to 
the fact that the acceleration is considered only on the x-axis. 
 
 

 
Fig. 39 

 
 

 
In Fig. 40, the simulation shows that the predicted path deviates from the actual one. The 
actual obstacle is always in an advanced position with respect to the predicted one. This is 
almost as the case of the constant acceleration, the difference is that having a ramp 
acceleration makes it even more difficult for the constant velocity model to follow the actual 
trajectory.  
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Fig. 40 

 
 
 
 

4.2.2.5 Turning (as in road curve) 
 
The error goes very high both for x-axis and y-axis. 
As can be seen in Fig. 41, the maximum error with the used initial conditions is 
approximately 60 meters on x-axis and 50 meters for the y-axis. 
 
In Fig. 42, it can be seen that the predicted path deviates from the actual one effectively. The 
actual car is far away from the predicted path, this due to the fact that in the turning case 
both x and y axes have information about acceleration. 
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Fig. 41 

 
 

 
Fig. 42 
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4.2.2.6 Circumference (as in roundabout) 
 
With the circumference scenario it’s possible to see that the Constant Velocity model is really 
inappropriate to predict the trajectory of an obstacle. This case demonstrates that this 
particular modellization of the dynamics can’t follow an x and y acceleration which changes 
in time with a sinusoidal profile.  
Fig. 43 shows the error in x and y position of the 40௧ predicted points. It follows a sinusoidal 
path and reaches its maximum at around 90 meters far from the real position that the 
obstacle has occupied.  
This bad behavior is clearer in Fig. 44 where there is the actual trajectory of the car and the 
predicted path. The object starts at position of [500, 0] and never follows in a good manner 
the actual trajectory. 
 
 
 
 

 
Fig. 43 
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Fig. 44 

 
 

 

4.2.2.7 Overtaking path  
 
As before with the circumference scenario, here also it’s possible to see that the model is not 
usable to have a good prediction of the trajectory of an obstacle in special scenarios, but 
anyway of everyday life.  
This one takes into consideration a long overtaking, as often happens on the highway.  
 
As can be seen in Fig. 45, the error reaches its maximum at about 2.5 meters far from the 
real position.  
This bad behavior is clearer in Fig. 46 where there is the real trajectory of the car and the 
predicted path. As can be seen, on the x-axis the error is not so high, in fact the actual 
position at the 40௧step and the predicted one are aligned, but on the y axis it is as if the 
predicted path can not understand that overtaking must be undertaken. 
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Fig. 45 

 
 

 
Fig. 46 
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4.2.2.8 Sinusoidal path 
 
This particular path is a generalization of the previous one. It considers the scenario of a 
series of curves or an overtaking with a return to the carriageway. As can be seen in Fig. 47, 
the error reaches its maximum at about 18 meters far from the real position.  
 
In Fig. 48 there is the result of the simulation that has been made. As before, on the x axis 
the error is almost 0, actual and predicted position are aligned, but on the y-axis the error is 
very high. 
 
 
 
 
 

 
Fig. 47 
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Fig. 48 

 
 
 

4.2.2.9 MSE report 
 
Here are reported the MSE for each axis in all scenarios: 
 
 

Scenario 𝑴𝑺𝑬𝑿 𝑀𝑆𝐸 

Straight with constant speed 1.42 ⋅ 10ିଶ 0.11 

Straight with constant acceleration 1.93 ⋅ 10ଷ 4.11 ⋅ 10ିଷ 

Straight with constant deceleration 4.77 ⋅ 10ଶ 2.83 ⋅ 10ିଶ 

Straight with ramp acceleration 2.92 ⋅ 10ଷ 0.11 

Turning (as in road curve) 1.93 ⋅ 10ଷ 1.24 ⋅ 10ଷ 

Circumference (as in roundabout) 2.71 ⋅ 10ଷ 3.33 ⋅ 10ଷ 

Overtaking path 1.45 ⋅ 10ିଶ 0.81 

Sinusoidal path 1.74 ⋅ 10ିଶ 1.13 ⋅ 10ଶ 
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It is highlighted also by the MSE how the CV model only predicts well the path in the 
“Straight with constant speed” scenario. In all other cases the error reaches too high values, 
so the model has to be discarded. The most important problem is that the other scenarios 
are real life ones, it happens really frequently that an obstacle is undertaking a curve like in a 
“Turning” scenario, so another motion model has to be evaluated. 
 

 

 

4.2.3 CA (Constant Acceleration) 
This model considers to have a constant acceleration. The matrices of the system are: 
 

 
 

 
 

4.2.3.1 Straight with constant speed 
 
It can be seen from Fig. 49 that, at the beginning, the estimate of the 40௧step ahead is weak 
but after the transient, the prediction becomes more accurate and the error goes 
approximately to 0, it is bounded in a range of 10 cm.  
 
 
The maximum error with the used initial conditions was 50 cm on x-axis and 1.5 meter on y-
axis. 
These results are completely comparable with the one of the CV model because the speed 
of the obstacle is constant so the acceleration is 0 and the model can be described in the 
same way as the CV one.  
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Fig. 49 

 
 
 
 
In Fig. 50 there is a simulation of the path the obstacle is actually following. It can be seen 
that the predicted path follows well the actual one. 



74 

 
Fig. 50 

 
 

 
 

4.2.3.2 Straight with constant acceleration 
 
It can be seen in Fig. 51 that the error goes very high at the beginning but then it approaches 
the zero, in fact it is a constant acceleration model with a constant acceleration motion profile 
of the object.  
The maximum error with the used initial conditions is approximately 5 meters on x-axis and 
50 cm for the y-axis, but then both result to be bounded around 10 cm as before. The large 
error on the x axis can be explained with the fact that the acceleration is considered only on 
the x-axis. 
 
 
As can be seen in Fig. 52, the simulation that has been done in MATLAB shows that the 
prediction follows the actual path. 
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Fig. 51 

 
 

 
Fig. 52 
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4.2.3.3 Straight with constant deceleration 
 
As expected, as this is the reciprocal of the acceleration case, the error goes high at the 
beginning but then it stabilizes around 0. 
 
As can be seen in Fig. 53, the maximum error with the used initial conditions is 
approximately 2 meters on x-axis and 50 cm on y-axis. 
The errors with respect to the acceleration case result to be different due to the different 
values of acceleration and deceleration used for the two scenarios. 
The large error on the x-axis can be explained as deceleration is considered only on x-axis. 
 
 

 
Fig. 53 

 
 
 

As can be seen in Fig. 54, the simulation have as a result the same shown for the 
acceleration case, the predicted path can actually follow the actual one.  
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Fig. 54 

 
 
 
 

 

4.2.3.4 Straight with ramp acceleration 
In Fig. 55, it can be seen that the error goes very high for the x-axis, it reaches 6 meters of 
difference with respect to the actual position of the object, while on y-axis it is almost zero, 
this can be explained with the fact that the acceleration is only along x. 
The overall behavior is explained by the fact that the acceleration is not constant so the 
model is not very capable to predict the exact path. 
 
 
In Fig 56, it can be seen that in simulation the path is almost well followed on the y-axis but  
on the x-axis the actual obstacle happens to be in an advanced position with respect to the 
predicted one. It is not properly visible in the figure because on the x-axis there are values 
that change by units of 50 meters.   
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Fig. 55 

 
 

 
Fig. 56 
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4.2.3.5 Turning (as in road curve) 
As can be seen in Fig. 57, the error goes high at the beginning but after the transient it goes 
to 0 almost. The maximum error on the x-axis is around 4 meters, while on y-axis is around 
3.5 meters. At the end it results bounded around 10 cm. This good results comes from the 
fact that it has been set a constant acceleration during the turning phase. 
 
 

 
Fig. 57 

 
 
 
 
 
The error goes to 0, this has the result that in simulation, as can be seen in Fig. 58, the 
predicted path follows very well the actual one.  
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Fig. 58 

 
 

 
 

4.2.3.6 Circumference (as in roundabout) 
As can be seen in Fig. 59, this particular case has an error that has a sinusoidal profile that 
reaches its maximum at more than 30 meters of distance from the actual position, both for 
the x and y axes. This is due to the fact that a non-constant acceleration is present on both 
axes, in particular it has a sinusoidal profile. 
 
 
 
In Fig. 60, the simulation shows that the high values in the error reflect on the fact that the 
predicted path is not following the actual path, it is really far from what it should be. 
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Fig. 59 

 
 

 
Fig. 60 
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4.2.3.7 Overtaking path 
As can be seen in Fig. 61, the error is high at the beginning, it reaches around 50 cm for the 
x-axis and 2.5 meters for y-axis, but after a transient both reach values around the 0. 
This behavior can be explained by the fact that during an overtaking there is a phase of 
changing acceleration and then the acceleration become constant again so the model is 
capable to follow the path. 
 
 

 
Fig. 61 

 
 
 
In Fig. 62, it can be seen that during the changing acceleration phase, the predicted path is 
far away from the actual one. The x-axis coordinate is in general more precise than the y-
axis one. It is anyway a better result than the one of the CV model that is not even capable of 
understanding if a turn has to be undertaken.   
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Fig. 62 

 
 
 

4.2.3.8 Sinusoidal path 
As can be seen in Fig. 63, the error happens to be very high, 50 cm for the x-axis and around 
6 meters for the y-axis. This is due to the continuous change of acceleration during the path. 
 
 
 
As can be seen from the simulation in Fig. 64, the error makes the predicted path diverge 
from the actual one, especially in the moments of drastic acceleration change. In the figure in 
particular it can be seen a moment in which the obstacle decelerates but the filter is still 
maintaining the same information about the acceleration it had before. This leads the actual 
object to be in a backward position with respect to the predicted one. 
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Fig. 63 

 
 

 
Fig. 64  
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4.2.3.9 MSE report 
 
Here are reported the MSE for each axis in all scenarios: 
 
 

Scenario 𝑴𝑺𝑬𝑿 𝑀𝑆𝐸 

Straight with constant speed 2.69 ⋅ 10ିଶ 0.13 

Straight with constant acceleration 1.63 1.09 ⋅ 10ିଶ 

Straight with constant deceleration 0.29 2.88 ⋅ 10ିଶ 

Straight with ramp acceleration 2.09 ⋅ 10ଵ 0.13 

Turning (as in road curve) 1.37 0.99 

Circumference (as in roundabout) 4.32 ⋅ 10ଶ 2.87 ⋅ 10ଶ 

Overtaking path 1.96 ⋅ 10ିଶ 1.03 

Sinusoidal path 1.78 ⋅ 10ିଶ 0.92 ⋅ 10ଵ 

 
 
 
It is highlighted also by the MSE how the CA model is really accurate in predicting the 
trajectory of obstacles. The scenario in which it happens to be more imprecise is the 
“Circumference (as in roundabout)”. That is the one that most of all results in an incorrect 
prediction due to the fact that non-constant acceleration is present on both axes.  
What has been discovered from simulations anyway is that better performances are needed 
to have a good forecast, so another motion model is evaluated. 
 
 

 

4.2.4 CJ (Constant Jerk) 
This model considers to have a constant first derivative of the acceleration. It is not a 
standard motion model but it has been investigated and the results were really promising.  
 
 
The state vector is: 

 
 

where 𝑗௫ =
ௗೣ

ௗ௧
 and 𝑗௬ =

ௗ

ௗ௧
.  
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The matrices of the system are: 
 

 
 

 
 
 
 

 

4.2.4.1 Straight with constant speed 
 
As can be seen in Fig. 65, the error goes high at the beginning but after the transient it 
stabilizes until it is bounded around 50 cm for both x and y axes. 
The maximum difference between the predicted and the actual position reaches 4 meters for 
the x-axis and 2 meters for the y-axis. This result can be explained with the fact that the 
Kalman filter needs some time to adjust itself and to tune its parameters, but after the 
transient the error stabilizes around 0. 
 
From the simulation in Fig. 66 it can be seen that the path is followed correctly.  
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Fig. 65 

 
 

 
Fig. 66 
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4.2.4.2 Straight with constant acceleration 
 
As can be seen in Fig. 67, the error follows the same path than in the previous case, high at 
the beginning and then around 0. Maximum values for the error around 4 meters. 
The simulation gives the same result than before with the constant speed, meaning that a 
significant difference is not visually appreciable. 

 
Fig. 67 

 
 
 
 

4.2.4.3 Straight with constant deceleration 
 
As expected, since this is the reciprocal of the previous case the behavior is the same.  
Due to the fact that in this scenario the module of the deceleration is lower than the one of 
the acceleration, the values of the error change as shown in Fig. 68. The maximum value 
reaches 2.5 meters for the x-axis and 1.5 meters for the y-axis, but in the end both are 
bounded around 1 meter of difference between actual and predicted trajectory.  
 
Also from the simulation nothing evident has been seen, both the constant acceleration and 
the constant deceleration case behave like the scenario with constant speed. 
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Fig. 68 

 
 
 
 

4.2.4.4 Straight with ramp acceleration 
 
This case is the first one in which the effect of the jerk can be seen. In the previous cases, 
having a constant speed or acceleration means that the jerk is 0 so basically not so much 
difference can be noticed with the CA model. 
In this case it can be seen from Fig. 69 that the error is higher at the beginning but then it 
stabilizes around the 50 cm which is very good. This is the only model as far as of now that 
really predicts well the path, obviously after having the time to tune its parameters. This can 
be explained with the fact that a ramp acceleration has a constant jerk, so it is very well 
modelled with a constant jerk model. 
 
From the simulation it can be seen that basically no difference is there between the actual 
and the predicted positions, just like the previous cases.  
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Fig. 69 

 
 
 

 

4.2.4.5 Turning (as in road curve) 
 
This scenario is very difficult to be handled. Even with this model, that so far has been 
showing very good results, it can be seen from Fig. 70 that the error goes very high, it 
reaches 3.5 meters for the x-axis and 2.5 meters for the y-axis, but after the transient it stays 
around 50 cm for both axes. This is really not a bad result with respect to the previously used 
models, in fact this model is capable to well predict the trajectory of the obstacles like the 
simulation shows. 
In Fig. 71, it can be seen that the predicted path is following the actual one, they are 
coincident.   
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Fig. 70 

 

 
Fig. 71 
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4.2.4.6 Circumference (as in roundabout) 
 
This is another scenario that is pretty difficult to be followed. It can be seen from Fig. 72 
anyway that after a transient, in which the error reaches 5 meters of difference from the 
actual position in the x-axis, the error stabilizes around 2 meters. It is an optimal result with 
respect to the ones of the previous models that had a sinusoidal profile. 
 
As can be seen in Fig. 73, the actual path and the predicted one, along the way, have no 
relevant differences.  
 
 
 

 
Fig. 72 
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Fig. 73 

 
 

 
 

4.2.4.7 Overtaking path 
 
As can be seen in Fig. 74, after the transient, the error reaches 20-25 cm. During the 
transient the maximum error go to 1/1.5 meters for the x-axis and 4.5 meters for the y-axis.  
This is an unprecedented result, this model is capable of handling a changing acceleration: in 
the moment in which the obstacle is effectively doing the overtaking, instant in which the 
acceleration varies also not regularly, the error happens to be a little higher but then it 
stabilizes around 0. 
 
 
In Fig. 75, it can be seen from the simulation that the actual path and the predicted one, 
along the way, have no relevant differences. There are situations in which the actual object is 
in a backward position with respect to the predicted one but the difference decreases with 
time. 
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Fig. 74 

 
 

 
Fig. 75 
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4.2.4.8 Sinusoidal path 
 
As can be seen in Fig. 76, the error for the x-axis reaches a maximum of 1 meter while for 
the y-axis it reaches a maximum of 2 meters but then they both stabilize around 20/25 cm. 
This means that after the transient, the jerk model is capable of predict a sinusoidal path with 
very high precision. None of the previously analyzed models has been capable to do so and 
this is visible also from the simulation. 
 
As can be seen from Fig. 77, the predicted path never diverges from the actual path. Along 
the way it is always possible to follow and predict properly the actual trajectory the object is 
taking. 
 
 
 

 
Fig. 76 
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Fig. 77 

 
 
 

4.2.4.9 MSE report 
 
Here are reported the MSE for each axis in all scenarios: 
 
 

Scenario 𝑴𝑺𝑬𝑿 𝑀𝑆𝐸 

Straight with constant speed 0.37 0.37 

Straight with constant acceleration 0.65 0.13 

Straight with constant deceleration 0.32 0.18 

Straight with ramp acceleration 0.37 0.37 

Turning (as in road curve) 0.52 0.27 

Circumference (as in roundabout) 2.71 1.47 

Overtaking path 0.94 ⋅ 10ିଵ 1.29 

Sinusoidal path 0.64 ⋅ 10ିଵ 0.14 
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It is highlighted also by the MSE how the constant jerk model predicts well the path in all 
scenarios. The MSE is bounded for all of them.  
 
 
 

 

4.2.5 Chosen motion model 
After all the simulations done, it has been chosen the constant jerk model. It has the best 
performances for what regards all possible scenarios that has been studied, as can be 
shown by the simulations and by the MSE reports.  
The model has demonstrated to follow well profiles in which acceleration changes, both 
linearly and not and so it is well suited for everyday life scenarios. 
 
Here a table with all the scenarios and the information about if the related model has 
performances high enough to say if the actual path has been followed or not: 
● ✓  : means that the model can predict well the path defined in the scenario 
● ✗ : means that the model is not capable to predict well the actual path of the scenario 

 

Scenario CV model CA model  CJ model 

Straight with constant speed ✓  ✓  ✓   

Straight with constant acceleration ✗ ✓  ✓   

Straight with constant deceleration ✗ ✓  ✓  

Straight with ramp acceleration ✗ ✗ ✓  

Turning (as in road curve) ✗ ✓  ✓  

Circumference (as in roundabout) ✗ ✗ ✓  

Overtaking path ✗ ✗ ✓  

Sinusoidal path ✗ ✗ ✓  
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4.3 Pathfinding algorithm 
 
Before considering the local motion planning algorithm, it is important to evaluate which 
global planning algorithm has been used. The choice is the A* algorithm but it has been 
studied other algorithms that could give better performances. A possible future work could be 
to implement another one of them. 
 
A*, as expressed before, is formulated in terms of weighted graphs: starting from a specific 
starting node of a graph, it explores the tree of possible configurations thus leading to the 
choice of the shortest path to reach the destination. 
 
The A* algorithm works fine in static environment. In dynamic environment it does not 
because, once the car has decided for a path, it does not change its mind so, if an obstacle 
happens to be in the middle of the path, there would be a crash.  
 
A solution to this has been to call A* every few milliseconds to re-calculate the path every 
time. This can solve the collision avoidance problem but still it is computationally heavy 
because every time the algorithm has to forget about what it decided before and, considering 
all the new information from the obstacles, evaluate another path. This basically means to 
erase all previous knowledge to obtain a new one. 
 
What could be done instead could be to use a motion planner based on A* that is capable to 
update the path to reach the goal only when it is necessary, as when a new obstacle 
happens to be on the map or a previously recognized one is moving towards the ego-vehicle.  
 
To be noticed that it is not used the A* algorithm that the platform already had. It was 
implemented in a way such that it considered already the non-holonomicity of the car. 
In this thesis the non-holonomicity of the vehicle has been handled by the motion planner 
algorithm. 
 
  

 

4.4 Motion planning 
To do motion planning, that also provides collision avoidance, a few approaches could be 
considered. Not all of them have been used but this could be a possible future work. 
The work of this thesis has been to implement the DWA algorithm. Anyway, it has been 
discovered in simulation that the algorithm does not work in specific scenarios, that still are 
very important for a real car in a real environment: it has been discovered in fact that the 
algorithm is suitable for vehicles with turning radius equal to 0, thus not representing the car 
model: in fact the car is not supposed to turn on itself. It has been decided so to evaluate 
also the performance of another algorithm, the TEB motion planner. 
 
The dwa_local_planner package in ROS provides a controller that drives a mobile base in 
the plane. Using a map, the planner creates a kinematic trajectory for the robot to get from a 
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start to a goal location. Along the way, the planner creates, at least locally around the robot, 
a value function, represented as a grid map. This value function encodes the costs of 
traversing through the grid cells. The controller's job is to use this value function to determine 
dx, dy, d𝜃 velocities to send to the robot [18]. 
 
 
The basic idea of the DWA algorithm implemented in this package is as follows: 
1. Discretely sample in the robot's control space (dx,dy,d𝜃) 
2. For each sampled velocity, perform forward simulation from the robot's current state to 

predict what would happen if the sampled velocity were applied for some (short) period 
of time. 

3. Evaluate (score) each trajectory resulting from the forward simulation, using a metric 
that incorporates characteristics such as: proximity to obstacles, proximity to the goal, 
proximity to the global path, and speed. Discard illegal trajectories (those that collide 
with obstacles). 

4. Pick the highest-scoring trajectory and send the associated velocity to the mobile base. 
5. Rinse and repeat. 

 
 
On the other side, the teb_local_planner package implements an online optimal local 
trajectory planner for navigation and control of mobile robots as a plugin for the ROS 
navigation package. The initial trajectory generated by a global planner is optimized during 
runtime minimizing the trajectory execution time (time-optimal objective), separation from 
obstacles and compliance with kinodynamic constraints such as satisfying maximum 
velocities and accelerations. 
The optimal trajectory is efficiently obtained by solving a multi-objective optimization problem 
and letting the user decide the weights of the different constraints the car should follow [19]. 
 
 

4.4.1 Simulation with DWA: no obstacles 
Dwa algorithm has been applied in simulation, using an environment built by the developers 
of the platform this work starts from. Better details in section 4.4.4. 
The first implementation sees the car going on its own, without both static and dynamic 
obstacles. In Fig. 78, it can be seen a snapshot of the ego-vehicle inside the simulator. 
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Fig. 78: this is what can be seen in the simulator: the colored rectangle is the ego-vehicle; it 

moves inside a grid that represents the free space that surrounds the car. 
 
 
 

What has been shown by the simulation is a car that evaluates the best path, the shortest to 
reach the destination, and then follows it.  
 
For what regards the global path, it follows the one that has been decided from the beginning 
due to the fact that no obstacles are present so there is nothing that can hinder the path. It 
evaluates the path for a moving dot so no maneuvers are taken into account. 
 
The local path tends to adjust itself, due also to the fact that the car is non-holonomic so no 
velocity along the y-axis is considerable. In this situations the local path follows a different 
trajectory with respect to the global path as can be shown in Fig. 79. The local path is 
composed of a bundle of lines because at each step a new local path is computed depending 
on the actual position of the ego-vehicle.  
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Fig. 79: The ego-vehicle is represented by the blue polygon visible on the right. The purple 

line is the global path and the green lines the local path. As the goal is on the opposite 
direction on motion of the ego-vehicle, it has to find a way to reach it. Since it is not a simple 
moving dot but it has dynamic constraints, the local path consists in a curve that tries to put 

the ego-vehicle on the global path.  
 
 
 

One thing that can be noticed is that sometimes the car is moving around the goal trying to 
reach exactly the position, sometimes turning unnecessarily. This is easily solved by 
softening the constraints on the destination, ie by saying that even being in the proximity of 
the goal could be considered good.  
 
 
 

 

4.4.2 Simulation with DWA: static obstacles 
Avoiding static obstacles is what the developers of the platform already achieved but they 
used only a path planning algorithm; in this thesis it has been introduced also a motion 
planning so the goal here is to understand if everything works fine as before.  
 
In general, the dwa algorithm has shown to well evaluate a path to reach the destination. 
For what regards the global path no relevant difference can be found with the work 
previously developed on the platform: this is a consequence of the fact that the global path 
algorithm is founded on A*. If nothing dynamically happens to be in the middle of the path of 
the ego-vehicle, the global path follows the one that has been decided from the beginning.  
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The local path tends to adjust itself, due also to the fact that dynamic constraints have been 
introduced, just like the no obstacle scenario. 
 
When the dynamic constraints are no longer a problem for the motion, what can be seen is 
that local and global path overlaps, as it is shown in Fig. 80. Also the local path is composed 
no more of a bundle of lines but of a single green line because the direction of motion has 
become stable. 

 
Fig. 80: the blue polygon represents the ego-vehicle. Local path (green line) and global path 

(purple line) almost overlap.  
 
 
 
 
To test the effective capabilities of the ego-vehicle to avoid static obstacles, a scenario has 
been built consisting in a set of rectangles, representing for example buildings or parked 
cars, put in a way that the car is forced to follow a sinusoidal profile of motion between them.  
As can be seen from Fig. 81, the global path happens to be very next to the obstacles, this is 
due to the fact that the A* algorithm has to consider the shortest possible path to reach the 
goal and it has no information about the dimensions of the car.  
The local path also is very interesting because it can be noticed that is composed of a tree of 
choices that represent all the local trajectories. As the car is following a curve, the local 
direction of motion changes moment by moment. 
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Fig. 81 

 
 
 
Anyway a particular scenario has got the highest attention: if a goal is chosen such that it has 
a yaw angle perfectly perpendicular to the orientation of the footprint of the ego-vehicle, the 
car results to be stuck:  
● if the maximum value for the velocity on y-axis is different from 0, the dwa continues to 

give commands for a speed along that axis but the car is subject to non-holonomicity 
constraints so a movement with only a component on y-axis is not acceptable. To solve 
this, it has been chosen to set the maximum acceptable velocity along the y-axis to 0.  

● If it is 0, the result is that anyway the car is stuck because the dwa evaluates as best 
path the one that considers only a turn around the z-axis: that also for car-like robots is 
not possible because the turning radius is not 0.  

 
With this particular scenario it has been discovered that the dwa algorithm is capable to 
handle non-holonomic robots but only the ones with turning radius equal to 0, for example 
two-wheeled robots. Car-like robots have information for turning that are not handled. 
In Fig. 82 it is shown the stuck car. 
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Fig. 82: the pink square is the obstacle. The light blue and red areas that are around the 

obstacle are the result of the inflation. The blue polygon is the ego-vehicle.  
 
 
 

It can be noticed that the car could reach any other configuration if only it was capable to 
understand how to do the necessary maneuvers. 
This has led to the implementation of another motion planner, the TEB local planner. 
 
 

 

4.4.3 Simulation with TEB: static obstacles 
The first problem that has been faced in the implementation of this algorithm is that if a goal 
is chosen a little bit far away from the actual position of the ego-vehicle, it starts to follow the 
path towards it but at a certain point it fails and no valid path and speed commands are 
produced. This has been explained with the fact that the algorithm is computationally heavy 
and the high resolution of the costmap does not help. At a certain point the algorithm results 
to be infeasible and no solution is provided. 
The solution has been to reduce the resolution, thus increasing the size of a cell in the 
costmap, to lighten up the algorithm: the resulting behavior has been as expected, the ego-
vehicle is capable to take long paths to the destinations. 
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The algorithm for the global planner is not changed, it is always based on A*: in effect, the 
teb is a local planner and so its performances can only be seen there. 
 
For the local plan, the general behavior is the same as seen with the dwa, with the difference 
that, with the teb, the car is doing maneuvers: after setting the same situation that caused the 
stuck car problem with the dwa, the result is that the car is now capable to do all the 
movements needed (that is a little movement backward and then forward to the destination).   
 
Having understood that in a static situation the vehicle is behaving well, it is time to take into 
account also dynamic obstacles. 
 
 
 

4.4.4 Rust environment upgrade for simulation 
The environment built for the simulation has been developed in Rust: Rust is a multi-
paradigm systems programming language focused on safety, especially safe concurrency. It 
is syntactically similar to C++, but is designed to provide better memory safety while 
maintaining high performance. Rust’s rich type system and ownership model guarantee also 
thread-safety — and enable developers to eliminate many classes of bugs at compile-time.  
 
The environment already consisted in a grid map on which the ego-vehicle and randomly 
generated obstacles can run, as can be seen in Fig. 83.  
What has been done is that a scenario has been built inside this environment. A crossroad 
has been sketched and put as base of the grid map, then cars are automatically generated 
as traversing the crossroad, as shown in Fig. 84. 
 
When the simulation starts, so do cars too: this is however problematic because after a while 
the vehicles will no longer be in the field of action the ego-vehicle is interested in. 
So an upgrade has been implemented: whenever a specific button of the keyboard is 
pressed a car is generated: this car goes back and forth passing every time for the 
crossroad. Then to simulate a busy road, it has been established that, by pressing another 
button, another machine is generated that moves anyway back and forth but in a manner 
opposite to the previously generated one as can be seen in Fig. 85. 
 
Within this scenario the TEB motion planning algorithm has been studied with and without 
the trajectory prediction of road users to evaluate performances. 
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Fig. 83: the pink car is the ego-vehicle. The others are randomly generated. 

 
 

 
Fig. 84: Scenario built for the simulation of dynamic obstacles 
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Fig. 85: Scenario built to simulate a continuously busy road: the yellow and the blue car go 

back and forth. The small dots represent the path the car have to follow, the bigger dot is the 
temporary destination. This last one will change any time the vehicles reach it. 
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4.4.5 Simulation with TEB: dynamic obstacles, no trajectory prediction 
The local planner establishes a trajectory and speed commands within a square of the 
costmap defined effectively “local costmap”.  
The ego-vehicle has information about other road users very far away from it, due to the fact 
that it is equipped with Ibeo sensors, so it could be decided to set this local costmap to cover 
a great area that surrounds the vehicle: in this way every car that appears is mapped. 
However the main drawbacks are the following: 
● the algorithm becomes computationally heavy and at some point the motion planner 

becomes infeasible and do not produce valid paths and speed commands 
● a lot of information regarding cars far away, that will not interfere with the movement of 

the ego-vehicle, have to be discarded, have not to be considered for the movement, thus 
leading to the collection of a lot of data that are not used 

● sometimes the ego vehicle recognizes that another car is going to pass over the path 
that it has to follow, so the effect is that it produces a change of the planned path; the 
problem is that it happens that the actually recognized car is really far away and it will 
transit on the planned path but then it will go away, thus not being a problem for the ego-
vehicle. In the meanwhile anyway the ego-vehicle has already changed the path, then it 
will have to change again when the obstacle will move away. With multiple obstacles 
also, what can be observed is the ego-vehicle that continuously changes the path, thus 
producing a very slow movement with frequent stops and re-evaluations of the path. 

 
On the other hand having a very small local map has shown to be very dangerous: the ego 
vehicle adjusts its speed commands only in the local area, as said before, so if nothing 
appears on the local map it evaluates that the maximum speed can be reached; whenever 
an obstacle is mapped in the local area is already too late and the speed command passes 
directly to 0: the result is that the car suddenly stops, thus there is not so much consideration 
for safety and comfort. To be noticed that this reasoning applies both for applications without 
trajectory prediction both for applications with it. 
 
It has been evaluated a middle way that can be considered good with the limited speed of 
the ego-vehicle and that can work in basic scenarios. Anyway a possible future work could 
be to evaluate a changing costmap, with dimensions that dynamically change with the speed 
of the ego-vehicle: in fact, it the car is going slowly, it is not necessary to have information so 
much far away because a sudden stop will not cause problems. On the contrary, if the car is 
going fast, a sudden stop will cause a lot of issues also for the possible passengers, so a 
greater area would be preferable. 
Once taken that into consideration, in this particular test suite, the goal is to have a look at 
the performances of the algorithm without the trajectory prediction of the other road users. 
What can be noticed is that the ego-vehicle recognizes new obstacles when it is really in the 
proximity of these ones, if not right in front of them. 
 
 
 
What can be seen in Fig. 86 is effectively a situation in which a crash verifies: 
● the red line is the global path that leads to the target destination 
● the blue square represents the ego-vehicle 
● the black square is an obstacle, another car, passing in the environment 
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The ego-vehicle does not care about the presence of the other car because it is not yet upon 
the global path nor upon the local path. It decides then to continue its movement and to 
traverse the path of its obstacle.  
The result is that the obstacle sees its way interrupted but it is too late to react. Then, the 
crash. 
 

 
Fig. 86 

 
 

4.4.6 Simulation with TEB: dynamic obstacles, trajectory prediction 
In this scenario the trajectory prediction comes in the game. 
What can be seen is that if the ego-vehicle comes in the proximity of another vehicle it is 
capable of re-arrange another trajectory without crashing.  
The trajectory passes upon the global path so the ego-vehicle has the time to foresee the 
future possible crash and to evaluate another way in order to avoid it.  
 
The decision process of the reaction is the following: 
● Fig.87: The first thing the vehicle does is to stop or in any way to reduce the speed; the 

re-evaluation of the path begins; 
● Fig. 88: If in the meanwhile the obstacle has gone away, the ego-vehicle chooses the old 

computed path if it is still the best one; if not, another one is selected. 
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Fig. 87: the green line is the predicted path of the obstacle 

 
 
 

 

 
Fig. 88 
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Something has been noticed anyway: it happens that the ego-vehicle re-computes too many 
times the path to reach the destination: it happens, for example, that very fast cars pass 
upon the path but in a moment they are already far away. The algorithm recalculates the 
path, even if it is not necessary anymore. This causes frequent re-calculations and, due to 
the fact that a single evaluation is heavy on its own, big problems for the feasibility of the 
algorithm. In effect what has been seen is that it fails to produce a path and the vehicle is 
seen following random behaviors.  
To solve this, it has been decided to decrease the controller frequency that is the rate in Hz 
at which to run the control loop of the global plan and send velocity commands to the base.  
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5. Conclusions 
The focus of this thesis has been to implement a dynamic motion planning algorithm for an 
automated driving system in order to control continuously a vehicle from a start to a goal 
position avoiding collisions with known obstacles, both static and dynamic (people on the 
streets, other cars, bikes and so on). 
 
The key points of this thesis have been the following:  
● The inputs of the process come from the sensors; their task is to collect as much 

information as possible on the surrounding environment. Then the information from 
sensors is mapped inside a costmap. Cells corresponding to obstacles, both static and 
dynamic, are marked as not-traversable.  

 
Due to the fact that the costmap is a map of the environment divided in cells which have 
a cost information, the not-traversability can be done setting a high cost for a group of 
cells. 
○ The software can handle three levels of cost: each cell can be either free, occupied, 

or unknown. When a cell is recognized as occupied, a “lethal obstacle” cost is 
assigned to it. 

○ The group of cells represents the actual obstacle that is in the surroundings of the 
ego-vehicle. The sensors are capable to evaluate width and length of the obstacles, 
then the costmap is capable to compute the cells that have to be taken into 
consideration for those specific dimensions. 

 
● A trajectory prediction algorithm forecasts the future positions that the moving objects 

are about to take. This information is also mapped inside the costmap. The prediction is 
done using a Kalman filter and applying a specific motion model.  
 
○ The motion model effectively models the system of the actual moving obstacle. 

Linear motion models have been chosen that assume a constant velocity (CV) or a 
constant acceleration (CA). Their major advantage is the linearity of the state 
transition equation which allows an optimal propagation of the state probability 
distribution.  
Despite of these properties, however, these models have proven to not handle all 
the possible profiles of motion, in some cases also having a significant error when 
used within the Kalman filter to predict future positions of objects.  
Another model then has been identified: the constant jerk (CJ) model (the jerk is the 
derivative of the acceleration) has shown to have the best performances among the 
considered models, and, once applied within the Kalman filter, it has proven to well 
predict the trajectories of the obstacles.  

 
○ The result of these predictions is that, in addition to information from the sensors, 

every obstacle in the surroundings of the ego-vehicle has also its predicted path. 
For each object this information is displayed on the costmap marking as occupied 
also the cells corresponding to the future positions of obstacle.  
To have then a better visualization of the actual path that has been predicted, the 
cells are joined to form a polygonal chain. 
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● The motion planning algorithm can safely evaluate a route from the start to the goal and 
compute speed commands for the vehicle depending on the chosen path.  
 
○ A few algorithms have been implemented: the first one, the dynamic window 

approach, has shown not to handle all the constraints and limitations to which a car 
is subjected; the solution to this has been to evaluate another motion planner, the 
timed elastic band, designed for differential-drive robots with turning radius different 
from 0. Basically it is suited for robots that are not capable to rotate on themselves, 
just like cars. 

○ Since dynamic obstacles have to be handled, the implemented motion planner is a 
dynamic one: this means that it is capable to re-evaluate the best path to reach the 
goal depending if new information happens to be on the map. In fact, if a moving 
object appears in the surroundings of the ego-vehicle, or a previously recognized 
one moves away from the previous position, it is evaluated if this can have an 
impact on the actual path the ego-vehicle is taking. If so, a new one is found. 

 
The result of this work is thus that: 
● the vehicle is capable to evaluate a safe path to be taken 
● the vehicle is capable to react if a new information about an obstacle arrives: what 

happens is that it is actually capable to slow down or to stop the motion and re-evaluate 
the best path if it recognizes that the previously chosen one has a safety critical issue. 
Besides, if the moving object moves away and it is no more an obstacle for the ego-
vehicle, it is capable to take the previously evaluated best path, if it is still the preferred 
one.    
 

This last point constitutes the major achievement: the union of a trajectory prediction 
algorithm and a dynamic motion planner gives the possibility to start to talk about 
"autonomous vehicle". 
 
As a matter of fact this implementation has some limitations that will be discussed later in 
paragraph 5.1.  
They could be anyway topics from which thesis of other students can start or topics that can 
be better explored also by the authors of this thesis to upgrade knowledge and 
implementation. 
 
 

5.1 Future work 
The work for this thesis has gone through some choices that determined the achieved 
performances. However, improvements could be made that can constitute subject of future 
works. 
The ego-vehicle is considered moving only around the z-axis, so only a yaw angle is 
defined. This is due to the fact that, in general implementations of motion planning 
algorithms, the vehicles are considered to move simply in a flat environment.  
This reflects in the fact that the state vectors of the Kalman filter have less parameters to 
take into account and the equations of the system, represented by the moving obstacle, are 
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easier to be solved. A future work could be to introduce movements around axes x and y, so 
to take into account also roll and pitch angles. 
 
Only some motion models have been considered for the Kalman filter and their results have 
been compared. They have been chosen for the low levels of complexity, due to the fact that 
they are linear motion models. The main drawback is that these models assume straight 
motions and are thus not able to take rotations (especially the yaw rate) into account. Future 
work could be to apply the Kalman filter to curvilinear models which have a second level of 
complexity that can be defined by taking rotations around the z-axis into account.  
 
The global planner that has been implemented is based on the A* path planning algorithm. 
A* is formulated in terms of weighted graphs and it is an exploring algorithm, in the sense 
that it searches in the space of configurations for the best path to the destination. 
The A* algorithm works fine in static environment. In dynamic environment it does not 
because, once the car has decided for a path, it does not change its mind so, if an obstacle 
happens to be in the middle of the path, there would be a crash.  
In the State of the art section, other algorithms have been described that could give better 
performances as they take into account dynamic obstacles. A possible future work could be 
to implement another one of them. 
 
In robotic motion planning, the dynamic window approach and the timed elastic band are 
two very important collision avoidance algorithms for mobile robots. The dynamic window 
approach is derived directly from the dynamics of the robot, and is especially designed to 
deal with the constraints imposed by limited velocities and accelerations of the robot. The 
timed elastic band has as goal to minimize the time to reach the goal taking into account the 
dynamic constraints of a car. Anyway there are other motion planning algorithms that have 
been described in the State of the art that can also have good performances. It could be 
interesting to implement one of them in the future. 
Also another possible upgrade could be to have them work in an environment with a local 
costmap that has dynamically changing dimensions: width and length can change with the 
speed of the ego-vehicle thus producing a greater area to be aware of whenever the speed is 
high, a small area whenever the speed is low.  
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