
POLITECNICO DI TORINO

Master Degree in
Computer Science - Software Engineering

Master Degree’s Thesis

Solving the maximum common

subgraph problem on many-cores

architectures

A massively parallel implementation

of the McSplit algorithm

Supervisor
Dr. Stefano Quer

Associate Professor

Candidate
Gabriele Mosca

Matr. 243909

A.A. 2018/2019

Abstract

The Maximum Common Subgraph (MCS) Problem is a well known
problem in literature. It has been proved to be an NP-hard problem,
then it is often considered as not worthy to search for an exact solu-
tion due to its high complexity. Luckily, the advent of newest com-
puting technologies and processors, several algorithms have been
developed to e�ciently solve very complex problems. Given their
still high time consumption, this thesis discusses the possibility to
produce a GPU implementation under the CUDA environment of
one of the most e�cient strategies currently known, namely the Mc-
Split algorithm Despite we �nd that such implementation it is indeed
possible, experimental results showed that, considering the actual
state of the CUDA APIs, it may be at least questionable to use this
version against a standard CPU-only multi-thread implementation.

i

Acknowledgement

The path to reach the end of this thesis has been very long and troubled.
I would like to thank all the people that supported me and helped me over

past months to complete my work.
Thanks to my supervisor Stefano Quer, for his experience, that provided rel-

evant advice and interesting perspectives.
Thanks to Ciaran McCreesh and James Trimble, from Glasgow University:

without their work, all my thesis would not have been possible.
Thanks to my sister Francesca, who actively helped me at every stage of my

work, listening to my problems, proposing solutions and for being one of the few
people that actually have read and helped to correct most of my thesis.

Thanks to Antonio, who often listened to me and helped me in understanding
the more complex implementation aspects of the algorithms and alongside whom
I frequently found myself �ghting against the evil Nvidia APIs.

A special thanks to Costanza, who has never stopped supporting me over the
past months, even in the days when things went wrong, successfully striving to
revive my bad mood.

And �nally, last but not least, also thanks to my mom, Laura, and all my
other relatives who, despite not having any computer skills, have always shown
an interest in my work and gave me their support to get to the end of my thesis.

ii

Contents

1 Introduction 1

1.1 Formal de�nitions and notation 2

2 The maximum common subgraph problem 7

2.1 Applications . 8
2.2 Known approaches . 9

3 The algorithm 11

3.1 The McSplit algorithm . 12

4 The McSplit Algorithm implementation 21

4.1 Sequential execution . 24
4.2 Parallel execution . 27

5 The CUDA API 40

5.1 Hardware description . 42
5.2 Memory . 46
5.3 Serial and parallel code . 48
5.4 Programming with CUDA . 51

6 A McSplit CUDA implementation 60

6.1 First implementation: naive labels re-computation 62
6.2 New bidomains stack . 65
6.3 Launching the new version in CUDA

environment . 71

iii

CONTENTS iv

7 Results 74

7.1 Analysis of the results . 76
7.2 CUDA best practice violation . 81

8 Conclusions 84

Appendices

A V3: sequential iterative code 88

B V5: CUDA implementation 97

C Graph class 114

Bibliography 119

List of Figures

1.1 Examples of graphs. 2

3.1 Example graphs G and H . 12
3.2 Example of di�erent maximum common subgraph solutions. . . 13
3.3 The labelling applied in �rst three recursion of the algorithm. . 13
3.4 With graph G on the left and H on the right, the �gure repre-

sents an in-depth focus on label-splitting during a hypothetical
execution of the algorithm. 18

4.1 The function solve is splitted. 28
4.2 Detail of positions ordering when inserting a new node in the

queue. 31

5.1 CPU architecture overview, compared with GPU 41
5.2 Fermi hardware micro-architecture scheme. 43
5.3 Fermi Streaming Multiprocessor. 44

6.1 Stack and current solution during naive labelling approach . . . 63
6.2 Example of the possible state of bidomains stack and current so-

lution matrices after three iterations of the algorithm 68
6.3 Example of the arrays containing thread arguments and the start

and end indices for each thread. 72

7.1 Cumulative number of instances (y axis) solved in under a certain
time (x axis). 77

7.2 Cumulative number of instances (y axis) solved in under a certain
time (x axis). 78

v

LIST OF FIGURES vi

7.3 Cumulative number of instances (y axis) solved in under a certain
time (x axis). 79

7.4 Cumulative number of instances (y axis) solved in under a certain
time (x axis). 80

7.5 A chart representing main stall reasons of the CUDA kernel func-
tion. 82

7.6 Extract from the pro�ling analysis executed by Nsight showing
principal divergent instruction in the code. 83

List of Tables

5.1 A list of the main CUDA features that came out with the progress
of compute capability versions. 45

5.2 Details of maximum thread numbers per block and per streaming
multi-processor, with the progress of compute capability levels. 54

vii

Chapter 1

Introduction

Graphs are an extremely general and powerful data structure. They can be used
to model, analyse and process a huge variety of natural phenomena and concepts
by providing natural machine-readable representations. For instance, graphs can
be used to represent chemical molecules, or road maps; in pattern recognition
and computer vision, they are used to represent the patterns to be identi�ed.

The aim of this thesis is to improve the implementation of the McSplit al-
gorithm, considered the state of art to solve with constraint programming the
Maximum Common Subgraph (MCS) problem, by using the powerful computa-
tional capabilities of modern graphic processors.

In the last twenty years, general purpose GPU computing has become more
and more prominent in the computer science landscape, because of the progres-
sive increase in power of the graphic units in consumer computers within the
augmented e�ciency and easiness to learn the APIs necessary to program such
graphic units. This leads researchers to investigate new possibilities for imple-
menting known algorithms in the GPU environment. Several di�erent choices
of developing platforms are possible when we approach to GPU computing.

Regarding the structure of this work, �rst we introduce some formal de�ni-
tions and notation useful to better understand the details of our research. Chap-
ter 2 is an overview on the Maximum Common Subgraph Problem (MCS) that
is the main subject of this thesis. Chapter 3 presents and deeply analyses the
McSplit algorithm, an e�cient algorithm to solve MCS published in 2017. Then
in Chapter 5 the Nvidia CUDA environment and its main APIs are introduced

1

CHAPTER 1. INTRODUCTION 2

and explained. This is a preparatory technical overview, useful to understand
the modi�cations on the McSplit algorithm (described in Chapter 6) in order to
make it executable on Nvidia GPUs. Then, in Chapter 7 we analyse experimen-
tal results, discussing the main issues which make this algorithm not suitable for
a parallel implementation. Finally in Chapter 8 we conclude suggesting some
possible di�erent approaches and modi�cations to our work that would allow to
achieve better results.

1.1 Formal de�nitions and notation

In this section we recall some basic de�nitions from the graph theory [Diestel
2018].

Traditionally, graphs are graphically represented by using dots or circles for
vertices and lines for edges as in Figure 1.1.

De�nition 1 A graph G is an ordered pair G = {VG ,EG} where VG is a set of

entities called vertex set, and EG is a set of two-elements subsets ofVG , called edges
set

E ⊆ {{u,v} : u,v ∈ V }. (1.1)

Two vertices v and w are called adjacent if the tuples 〈v,w〉 or 〈w,v〉 belong to

EG .

De�nition 2 A graphG is said undirected if, for any pair (v,w), vertex v is adja-

cent to vertex w if and only if vertex w is adjacent to vertex v. Otherwise the graph

is directed.

(a) Undirected
graph with 8
vertices and 15
edges.

(b) Induced sub-
graph of (a).

(c) Non induced
subgraph of (a).

(d) Non con-
nected subgraph
of (a).

Figure 1.1: Examples of graphs.

CHAPTER 1. INTRODUCTION 3

Except where otherwise stated, in this thesis, all graphs are considered undi-

rected.

De�nition 3 The order of a graphG is the cardinality ofVG and the size ofG the

cardinality of EG .

De�nition 4 The set of all vertices adjacent to a vertex v ∈ VG is called neigh-
bourhood of v , denoted N (G,v). We specify with N (G,v) the inverse neigh-
bourhood ofv , being the set of all vertices not adjacent tov , excludingv itself. The

cardinality of the neighbourhood of v denotes the degree of the vertex.

De�nition 5 When the edges set EG includes every possible unordered pair of ver-

tices inVG the graph is called complete. In such case the size of G isKn = n(n−1)/2,
where n is the order of G.

De�nition 6 Labels, weights or other data might be associated with vertices or

edges, in which case the graph is called labelled,

De�nition 7 A graph H is a subgraph of graph G if it is composed by a set

of vertices such that VH ⊆ VG . If H includes all the edges from G with both the

endpoints in VH , it is called an induced subgraph. Otherwise is called a non-
induced or partial subgraph.

De�nition 8 Two graphsG and H are isomorphic if it exists a bijective applica-
tion f : VG → VH between vertices from the two graphs, that preserves the relational

structure. Which means that any two vertices u and v inG are adjacent if and only

if f (u) and f (v) are adjacent in H .

De�nition 9 Given a graph G, a path is a sequence of distinct vertices, where

every consecutive pair is adjacent. We also allow the start and end vertices of a path

to be the same vertex, in which case we have a cycle. The distance between two

vertices is the length of a shortest path between them.

De�nition 10 A graph G is connected if there exists a path between every pair

of vertices. A connected graph with no cycles is called a tree.

CHAPTER 1. INTRODUCTION 4

An often used synonymous for vertex in graph theory literature is node .
However, in this thesis we will discuss about recursive algorithms that produce
a search tree. With the aim of avoiding possible confusions, we will always use
the term vertex to refer to elements in VG , and reserve the term node to vertices
of the solution search tree. In this thesis we will always consider only induced
subgraphs, and we will also usually require them to be connected.

1.1.1 Subgraph problems complexity

Since we are talking about computational problems, in order to understand why
we are interested to �nd e�cient and fast algorithm to solve them, it can be useful
to also brie�y introduce some notation about computational complexity theory.

De�nition 11 In computability theory and computational complexity theory, a

decision problem is a problem that can be posed as a yes-no question of the input

values. A decision problemwhich can be solved by an algorithm is called decidable.

The �eld of computational complexity categorises decidable decision problems
by how di�cult they are to solve. Di�cult, in this sense, is intended in terms of
the computational resources needed by the most e�cient known algorithm that
can solve a certain problem. The set of problems that are equally di�cult to solve
is called a complexity class.

Lot of complexity classes is de�ned, but, for what we concern, just four of
them are here introduced: P, NP, NP-complete and NP-hard classes.

De�nition 12 P (Polinomial time) is a fundamental complexity class. It contains

all decision problems that can be solved in polynomial by a deterministic Turing

machine.

This means that, given a problemp, and the size of its inputn, the time needed
to solve it, intended as the number of instructions that must be executed, is a
polynomial function of n.

De�nition 13 NP (Non-deterministic Polynomial time) is a fundamental com-

plexity class. It includes all decision problems solvable in polynomial time by a

non-deterministic Turing machine.

CHAPTER 1. INTRODUCTION 5

In computational complexity theory, some problems can be reduced into oth-
ers by means of some transformation to input data, or some change to the prob-
lem statement. This can often be useful to solve problems, for example, an ef-
�cient algorithm is known to solve a certain problem p, and none is known to
solve q, but some transformation to q is possible in order to reduce it to p. Then
it is possible to solve p with the e�cient algorithm and then transform back the
result to adapt it to problem q. Some example of this concept will be presented
in Section 2.2.

If a problem belongs to NP class and any other problem in NP can be somehow
reduced to it, then it’s called NP-complete.

De�nition 14 A problem p ∈ NP is called NP-complete if every other problem

in NP can be transformed (or reduced) into p in polynomial time.

It is possible to verify a NP-complete problem but is not possible to solve it in
polynomial time. For this reason, with problems of this class, we don’t usually
search an exact solution, because it would be too hard and time consuming to �nd
it. Instead, we rather use some heuristic approach in order to search a reasonably
good solution that approximate the optimal one following chosen criteria. Not
always this approach is possible as we will better explain later.

De�nition 15 A problem p is NP-hard when, for every problem q ∈ NP , there is

a polynomial-time reduction from L to H .

Alternatively, we can say that NP-hard problems are all the problems that
are at-least as di�cult as the most di�cult NP problems. This give also an alter-
native de�nition of NP-complete class, i.e. NP-complete problems are the set of
problems that belongs both to NP and NP-hard classes.

Back to our context, problems that involve to �nd subgraphs with certain
properties, often belongs to the NP-hard complexity class. This involves that
computational complexity is such that the time required to solve problems with
just one more vertex in input graphs can be exponentially higher.

The Maximum Common Subgraph problem, that we are going to introduce
in Chapter 2, belongs to NP-hard complexity class, and, such as every other NP-
hard problem, nowadays is still unknown an algorithm able to solve it in polyno-
mial time. Moreover, the MCS problem belongs also to those problem for which

CHAPTER 1. INTRODUCTION 6

has been proofed the hardness of approximation [Kann 1992], that means that,
unless is proven that P=NP, even the problem of its approximation still remain
a NP-hard problem. Thus it is not also possible to �nd an MCS approximation
in polynomial time, and research resources are only involved to search e�cient
algorithms to solve it exactly.

Algorithms we are going to illustrate are for this reason all supposed to calcu-
late an exact solution, and they are very resources intensive in terms of memory
and execution time.

Chapter 2

The maximum common subgraph

problem

The Maximum Common Subgraph (MSC) Problem has been widely discussed in
literature until now, in fact it was already well known in the seventies [Morpurgo
1971, Barrow and Burstall 1976, Bron and Kerbosch 1973, Cone, Venkataragha-
van, and McLa�erty 1977]. The problem has been de�ned in multiple ways, but
in general all its formulations can be redirected to two main ones:

i) Themaximum common induced subgraph of two graphs G and

H is a graph that is an induced subgraph of both G and H, and that has

as many vertices as possible;

ii) Given two graphs G and H, the maximum common edge sub-
graph or maximum common partial subgraph, is a graph with as

many edges as possible which is isomorphic to both a subgraph of G

and a subgraph of H;

In this thesis, we focus on the solutions to the type (i). Hence, for what we
concern, MCS problem consists into �nding for each graph the largest possible
subgraph such that the two identi�ed subgraphs are isomorphic. This problem
belongs to NP-hard complexity class. The decision version of the problem can
be expressed as follows:

i’) Given two graphs G and H and an integer value k , does it exist a

common subgraph to G and H with at least k vertices?

7

CHAPTER 2. THE MAXIMUM COMMON SUBGRAPH PROBLEM 8

In this formulation, that disregards whether k is the largest possible, the problem
has been proved to belong to NP-complete complexity class [Garey and Johnson
2002].

2.1 Applications

This problem has a vast amount of practical applications in real life, and is there-
fore very carefully considered by the scienti�c community. In many circum-
stances, it can be necessary to compare graphs in order to check similarity or
di�erences between the objects they model. Maximum common subgraph prob-
lems are one of the key steps in comparing graphs: to determine the di�erence
between two graphs, we �rst have to �nd what they have in common [Kriege
2015].

These problems have been inspired scholars in di�erent �elds, such as chemo-
informatics, and automatic circuit layouts. In the �rst one, the problem has
application in pharmacophores mapping [Brint and Willett 1987]: algorithms
have been developed in order to search maximal common substructure, for ex-
ample common pharmacophores, in chemical molecules. Pharmacophores are
the smallest structural element recognisable in a molecule, composed by func-
tional groups dislocated in space that can interact with speci�c receptors and
cause drugs’ biological responses. Pharmacophores can be modelled by graphs,
and, since they are present in several molecules, recognising them can be useful
to investigate and predict which are the reaction of a human organism in contact
with certain substances [Cao, Jiang, and Girke 2008].

Graph-based molecules can be compared also in chemical database manage-
ment: subgraph isomorphism algorithms are used in substructure searching and
recognition, where one wishes to identify all the molecules in a database that
contain a user-de�ned pattern, or to �nd the correct place to put a new molecule
based on similarities with near one. In this context, MCS algorithms provide an
e�ective way of identifying the structural features common to di�erent pairs of
molecules [Willett 1999, Raymond and Willett 2002a].

Another interesting �eld of application of algorithms solving MCS problems
is electronics. Always more often electronic circuits are assembled starting from
o�-the-shell spare components coming from the untrusted global market. The

CHAPTER 2. THE MAXIMUM COMMON SUBGRAPH PROBLEM 9

lack of trust in these components requires additional validation of the compo-
nents before use, to verify their functionalities and avoid hardware modi�ca-
tions and trojans that in some cases malicious producers add to their circuits [Li,
Wasson, and Seshia 2012]. In fact, it is possible to model behavioural patterns
of unknown circuits and known library components through graphs, and then
applying techniques and algorithm to match isomorphisms between maximal
subgraphs in order to reverse engineer the hardware layout.

2.2 Known approaches

The Maximum Common Subgraph problem has a long tradition in literature
starting from the seventies. Various algorithms have been developed about graph
and subgraphs isomorphism veri�cation and common isomorphic subgraph re-
search. In most of them we can identify two main approaches adopted in order
to solve the problem.

Constraint programming

The �rst approach consists into applying traditional constraint programming
based on backtracking, with branching and pruning strategies. In [Levi 1973],
based on [Morpurgo 1971], such an algorithm is described, which makes use of
the maximal compatibility classes to �nd the MCS; and in [Cone, Venkataragha-
van, and McLa�erty 1977] the use of this algorithm in comparing molecules has
been discussed. [McGregor 1982] introduced a MCS algorithm that uses a branch
and bound, and backtracking search. Each branch of the search tree corresponds
to the matching of two vertices, and a bounding function evaluates the num-
ber of vertices that still may be matched so that the current branch is pruned as
soon as this bound becomes lower than the size of the largest known common
subgraph. [Krissinel and Henrick 2004] re�ned McGregor approach with a more
e�cient research. This approach has been taken over by the McSplit algorithm
[McCreesh, Prosser, and Trimble 2017].

CHAPTER 2. THE MAXIMUM COMMON SUBGRAPH PROBLEM 10

Maximal clique

The main alternative approach for solving the maximum common subgraph prob-
lem is to reduce the problem to �nding a maximum clique (MC) in an association
graph [Levi 1973, Barrow and Burstall 1976, Koch 2001, Raymond and Willett
2002b]. A clique is nothing but any complete subgraph in a given graph.

The association graph of two given graphs G and H is an undirected graph
GOH with vertex set

VGOH = {(v,v
′) ∈ VG ×VH : (v,v) ∈ EG ⇔ (v′,v′) ∈ EH }.

Vertices in the association graph are namedmatching nodes, as each vertex (v,v′) ∈
V (GOH) denotes a match between the vertices v and v′ from the input graphs.
Thus, �nding a maximum order clique in the association graph ofG andH results
into �nding the maximum common subgraph between G and H .

As well as the MCS, the MC problem belongs to NP-hard complexity class;
however, combined with a modern maximum clique solver [San Segundo et al.
2013], this is nowadays the best approach for searching the maximum common
subgraph in certain instances of the problem, such as on labelled graphs [Mc-
Creesh, Ndiaye, et al. 2016].

[Shoukry and Aboutabl 1996] and [Schädler and Wysotzki 1999] also pro-
posed new approaches to solve the MPC problem based on neural networks, a
highly improving but very complex �eld of research in these years.

To conclude this overview on the known methods to tackle MCS problems,
[McCreesh, Prosser, and Trimble 2017] proposed a new approach that is con-
sistently over an order of magnitude faster than traditional constraint program-
ming. It exploits some invariant properties of the CP search tree in order to
reduce memory requirements and to allow stronger branching heuristics, which
are cheaper in terms of time consumption.

In this thesis, we discuss some further improvements to this last approach,
by implementing it in the CUDA environment.

Chapter 3

The algorithm

A new recursive, constraint programming (CP) algorithm to solve the Maximum
Common Subgraph problem has been developed in 2017 by researchers from
University of Glasgow. By exploiting some properties of the data structures used
during the recursion, it improves backtracking and pruning operations in order
to maintain the branching and �ltering bene�ts of CP; at the same time, it obtains
a consistent speed-up, compared to the state of art in constraint programming,
up to an order of magnitude for the exploration of the solution space [McCreesh,
Prosser, and Trimble 2017].

The new algorithm also allows to search for solutions over larger graphs,
due to a lower memory usage. However, the memory consumption needs to be
reduced even further in order to implement the algorithm in the CUDA environ-
ment (see Chapter 6).

McCreesh, Prosser, and Trimble 2017 extend their work and apply it also to
directed and/or labelled graphs. However, for the sake of simplicity and code
readability, in this thesis we will only consider undirected and unlabelled graphs
(cf. Section 1.1 for de�nitions). Similar adjustments as the ones performed by
the researchers from Glasgow can be applied to our work in order to provide
compatibility with labelled and directed graphs.

The algorithm has been calledMcSplit, a pun from the author’s name, C. Mc-
Creesh, the Maximum Common Subgraph problem (MCS), and one of the main
aspects of the algorithm, that consists into using label-classes to mark vertices
and to split them recursively to narrow the research until a solution is found.

11

CHAPTER 3. THE ALGORITHM 12

Figure 3.1: Example graphs G and H .

3.1 The McSplit algorithm

Let us consider two undirected and unlabelled graph G and H of order д and h

respectively. We search for a mapping M = {(v1,w1), ..., (vn,wn)} of |M | = m

vertex pairs, where vi ∈ VG and wi ∈ VH are distinct vertices from the input
graphs, such that vi and vj are adjacent inG if and only ifwi andwj are adjacent
in H .

Given the largest mapping, namely |M∗ | = max(m), the subgraph in G in-
duced by {v1, ...,vn} and the subgraph in H induced by {w1, ...,wn} are isomor-
phic by construction and correspond to the maximum common subgraph of G
and H .

The algorithm has a recursive structure based on a depth-�rst search. Starting
from � at each depth level, for each vertex vi ∈ G, �rst it tries all the matches
(vi ,wi)with all thewj ∈ H ; then it also computes the potential subgraphs leaving
the vertex vi unmatched.

Let us analyse a simple example: consider the graphs G and H in Figure 3.1.
They have a maximum common subgraph with four vertices; one of the possible
solutions is the mapping {(1,a), (2, f), (3,d), (5,b)}. So the subgraph ofG induced
by vertices 1, 2, 3, 5 is isomorphic to the subgraph ofH induced bya,b,d, f . Other
possible mappings are illustrated in Figure 3.2.

One of the core aspects of the algorithm is the labelling of vertices during
the progress of the search. Every time a new pair is added to the mapping, all
the other vertices are assigned with a new label that keeps track of whether they
are adjacent or not to every vertex already in the mapping. Back to the example,
the algorithm �rst arbitrary chooses vertex 1 from G, and tries to match it with
vertex a from H .

CHAPTER 3. THE ALGORITHM 13

Figure 3.2: Example of di�erent maximum common subgraph solutions.

(a) After mapping 1 to a

Mapping Labelling of G Labelling of H

{(1,a)} Vertex Label Vertex Label

2 0 b 1
3 0 c 1
4 1 d 0
5 1 e 1

f 0

(b) After mapping 2 to d

Mapping Labelling of G Labelling of H

{(1,a),(2,d)} Vertex Label Vertex Label

3 01 b 11
4 10 c 11
5 11 e 10

f 01

(c) After mapping 3 to f

Mapping Labelling of G Labelling of H

{(1,a),(2,d),(3,f)} Vertex Label Vertex Label

4 100 b 111
5 111 c 111

e 101

Figure 3.3: The labelling applied in �rst three recursion of the algorithm.

CHAPTER 3. THE ALGORITHM 14

Now each unmatched vertex in VG is labelled according to whether it is ad-
jacent to vertex 1, and each unmatched vertex in VH is labelled according to
whether it is adjacent to vertex a, as shown in Figure 3.3a. Adjacent vertices
have label 1; non-adjacent vertices have label 0.

For each next recursion, the same approach is followed: at every recursion,
the mapping M can be extended with a new pair (v,w) if and only if v and w

have the same label. This property of mapping equal-labelled vertices from the
two input graphs is the main core aspect of the algorithm.

The next step is to map another vertex of G with an unmatched vertex in H

that shares the same label. Supposing that the algorithm chooses the vertices
2 and d , the mapping now becomes M = {(1,a), (2,d)}. Now, a two-character
string is used to label unmatched vertices, such that the �rst character is the
label of the �rst step and the second is the new label that states whether the
vertex is adjacent or not to the newly mapped vertex. For example, vertex 3 is
labelled with 01 because it is not adjacent to vertex 1 but it is adjacent to vertex 2,
which are the vertices already in M (Figure 3.3b). Labels are given to unmapped
vertices in V (H) in a similar fashion, showing adjacency to matched vertices a
and d .

In the following steps the invariant method is maintained: only vertices that
share the same label can be mapped together and added to the mapping.

At each level it is possible to calculate an upper bound of the number of
possible pairs that we can add to the mapping before backtracking and trying
other mappings. For instance, in Figure 3.3c three di�erent labels are used: 100,
101, and 111. The �rst two appear both only in one graph: since it is not possible
to identify a matching element in the other graph, no new pairs formed with
those vertices can be added to the mapping in the future. Label 111, instead,
appears once inG and twice in H , so one new pair of vertices with this label can
be generated before backtracking.

Thus, the upper bound of the mapping size is the sum of the smallest number
of occurrences for each label that appears at least once in both graphs. A general

CHAPTER 3. THE ALGORITHM 15

formula for this is

bound = |M | +
∑
l∈L

min
(��{v ∈ VG : label(v) = l}

��,��{w ∈ VH : label(w) = l}
��) (3.1)

where L is the set of all labels used in both graphs.

3.1.1 The McSplit formalisation

TheMcSplitAlgorithm has been formalised as shown in Algorithm 1 and imple-
mented by colleagues from University of Glasgow, and published in McCreesh,
Prosser, and Trimble 2017.

The main features of the McSplit Algorithm are label-classes, i.e. groups of
vertices with the same label, and a recursive function (line 1), which has two
parameters: f uture , that contains the list of available label-classes; M , that is
the current mapping of vertices. A global structure, the incumbent , is updated
during the recursions with the best solution found at each time.

At each run of the function search, �rst the global incumbent is updated if
a greater mapping has been found so far; then the upper bound for the current
search branch is computed according to (3.1), and if the bound has been hit (i.e.
the bound is lower or equal to the size of actual incumbent , so any future search
cannot improve it), the branch is pruned and the function returns (lines 3 and 4).

Now the proper research begins. First, a label class is selected from f uture

according to some decided heuristic1, then a vertexv belonging to that label class
is selected from G and excluded from following searches.

An iteration is performed on all verticeswi ∈ H that belong to the same label
class. For each of them, we explore the consequences to add the pair (v,wi) to the
mapping. Another iteration is done on every label-classes in f uture: considering
(v,wi) as a new pair in the mapping, each label-class is now split in two new
classes, according to whether the vertices belonging to it are adjacent to v and
wi .

The �rst class (lines 10 to 13) contains vertices inG adjacent tov and vertices
in H adjacent to wi . This is added to f uture′ if both sets contain at least one

1—tuning—-

CHAPTER 3. THE ALGORITHM 16

Algorithm 1 The McSplit Algorithm
1: function Search(f uture,M)
2: if |M | > |incumbent | then incumbent ← M

3: bound ← |M | +
∑
〈G,H 〉∈ f uturemin(|G |, |H |)

4: if bound < |incumbent | then return

5: 〈G,H 〉 ← SelectLabelClass(f uture)
6: v← SelectVertex(G, 〈G,H 〉)

7: forw ∈ H do

8: f uture′←�
9: for 〈G′,H ′〉 ∈ f uture do

10: G′′← G‘ ∩ N (G,v) \ {v}
11: H ′′← H ′ ∩ N (H ,w) \ {w}
12: if G′′ , �andH ′′ , � then

13: f uture′← f uture′ ∪ {〈G′′,H ′′〉}

14: G′′← G′ ∩ N (G,v) \ {v}
15: H ′′← H ′ ∩ N (H ,w) \ {w}
16: if G′′ , �andH ′′ , � then

17: f uture′← f uture′ ∪ {〈G′′,H ′′〉}

18: Search(f uture′,M ∪ {(v,w)})

19: G ← G \ {v}
20: f uture ← f uture \ {〈G′,H 〉}
21: if G′ , � then f uture ← f uture ∪ {〈G′,H 〉}

22: Search(f uture,M)
23: return

24: function McSplit(G,H)
25: global incumbent ← �
26: Search({〈V (G),V (H)〉}),�
27: return incumbent

vertex. The same is repeated for non-adjacent vertices (lines 14 to 17).
A recursive call to search is performed with f uture′ and M ∪ {(v,wi)}, so

a new search is performed with one more pair in the mapping and new label-
classes that take into account this addition.

CHAPTER 3. THE ALGORITHM 17

After each possible pairing between v and the vertices in H with the same
label has been explored, a new recursion is performed considering solutions with
the vertex v unmatched. v is removed from G and if it was the last considered
vertex in its label-class, also the label-class is removed from f uture .

This formalisation could be hard to understand and to link to a practical ex-
ample. In Section 4.1 the C language implementation of this procedure is anal-
ysed, making easier for the reader to follow the execution of the algorithm step
by step.

3.1.2 The bidomains system

The data structure for representing label classes is the most important aspect of
the McSplit algorithm, the one that made us choose this algorithm to implement
it in the CUDA environment. In fact, the labelling system is quite memory ex-
pensive: for each vertex we should store and keep track, at each recursion, of a
string containing the label for that vertex. The larger the input graphs are, the
less sustainable this solution would become. The system of bidomains developed
by [McCreesh, Prosser, and Trimble 2017], based on the work of [Presa 2009] and
[Bron and Kerbosch 1973] allows to signi�cantly reduce the amount of memory
necessary to represent label classes.

Given the complexity of a bidomain, let us analyse step by step the nature of
the information that is necessary to store for the correct execution of the algo-
rithm.

A particularity of label-classes is that, with the progress of the recursions,
they remain self-contained, i.e. every time we split a label, we obtain two new
labels with an equal pre�x and just a 0 or 1 appended at the end. Thus, when
we later need to backtrack, we just remove the su�x and put again together the
vertices with same pre�x.

One of the common ways to represent graphs is through an array containing
their vertices, and a matrix describing the adjacencies between them. When the
vertices are labelled, and the set VG is modelled with an array l , we can adjust
the order of cells of l such that consecutive cells contain vertices belonging to
the same label-class. By doing so, we can think label-classes as portions of that
array.

CHAPTER 3. THE ALGORITHM 18

(a) New pair selected 〈0, 0〉

(b) New pair selected 〈2, 1〉

(c) New pair selected 〈4, 5〉

Figure 3.4: With graph G on the left and H on the right, the �gure represents
an in-depth focus on label-splitting during a hypothetical execution of the algo-
rithm.

In order to better explain how to work with label-classes in this way, let us
consider a simple example with imaginary graphsG andH , both with ten vertices
represented into two arrays, namely le f t and riдht (Figure 3.4).

Initially (Figure 3.4(a)), when no vertex has been selected yet, a single label-
class exists in the le f t and riдht arrays (represented in blue). Suppose that the
heuristic used to pick the vertices from the arrays to form new pairs is simply
to select the vertex with the lowest value in the leftmost label-class. So, the
�rst mapped pair 〈0, 0〉 is selected. In both arrays the vertex 0 is removed from
future searches by swapping it with the last element of the label-class; also, the
dimension of the label-class is decreased by one unit.

Now vertices in the blue label-class are rearranged according to their adja-
cency to vertex 0 (i.e., each adjacent vertex is moved before any non-adjacent
one), and the label-class is split. Two new label-classes are therefore generated
(green and red in Figure 3.4(b)).

CHAPTER 3. THE ALGORITHM 19

Following the same heuristic for the next step and focusing on the green label-
class, we select in each array the smallest vertex and we combine these in the sec-
ond pair: 〈2, 1〉. As before, the two vertices are moved to the end of the respective
label-classes, the vertices are rearranged and the new label-classes yellow and or-

ange are created.
Now, the vertices 4 and 5 are mapped together and form the next pair 〈4, 5〉.

They are moved to the end of the yellow label-class and this class is split into
light-blue and purple (Figure 3.4(c)). Suppose that in the riдht array no vertices
can be assigned to the light-blue label-class and only the purple one is generated.
Since no matching is possible in the light-blue label-class, the algorithm is forced
to stop and start backtracking, in order to analyse the consequences of choosing
di�erent pairs of vertices in the same label-classes and also to consider the other
label-classes, such as purple or orange ones.

Label-classes described as above can be e�ciently represented using the data
structure bidomain.

1 typedef struct bidomain{
2 int left_start , right_start;
3 int left_length , right_length;
4 bool is_adjacent;
5 } bidomain;

Source 3.1: Bidomain structure

A bidomain stores the �rst index of le f t and riдht (the arrays containing the
vertices of the two input graphs) where each single label-class begins and its
length. Bidomains store also an additional information, that is whether the rep-
resented vertices are adjacent to the last mapped pair of vertices in the solution.
Representing bidomains in this way, allows to discard the pre�x part of labels
and just store the �nal bit.

The bidomain b corresponding to the blue label-class in Figure 3.4 is b =

[0, 0, 10, 10, 0], where each component is respectively as follows:

• b[0] = 0 is the start index of the blue class on the left array.

• b[1] = 0 is the start index of the blue class on the right array.

• b[2] = 10 is the length of the blue class on the left array.

• b[3] = 10 is the length of the blue class on the right array.

CHAPTER 3. THE ALGORITHM 20

• b[4] = 0 considered as a boolean value (0 = false, 1 = true), this value
has the same role of bit "0" and "1" we appended to labels in the example
represented in Figure 3.3.

Following the same logic, the green bidomain isд = [0, 0, 5, 6, 1], the red bidomain
is r = [5, 6, 4, 3, 0], the yellow one is y = [0, 0, 3, 2, 1] and so on.

Chapter 4

TheMcSplit Algorithm

implementation

More than one implementation of the McSplit algorithm are provided by [Mc-
Creesh, Prosser, and Trimble 2017]. The �rst version, [Trimble 2017a], is a com-
plete sequential version in C language, with several parameters and �ne technical
code used to properly handle di�erent use cases for the algorithm; the second,
[Trimble 2017b], is a simpli�ed C language version of the �rst one, with less
parameters, cleaner structure and static memory allocation, so that it’s easier
to start from here to explain the code. Actually, this version can also be more
helpful than the formal pseudo-code (Alg. 1) to understand the main logic of the
algorithm.

Finally, the last relevant version, [Trimble 2017c] (discussed in [McCreesh
2017] and [Ho�mann et al. 2018]), is a CPU parallel multi-thread version, written
in C++ language. This version achieves very good performances, compared to
sequential version, by means of a multi-threading structure that is quite complex,
but it is not compatible with the execution in CUDA environment. A large part
of our initial work was dedicated to understand this version and to look for an
alternative multi-thread implementation with good performances, that would be
suitable for a GPU porting.

Also a sequential version of the code is provided in C++ language in [Trimble
2017d], using almost the same logic of the C language version, but its syntax
come from the C++14 standard, and it is often not trivial to understand. Given

21

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 22

our goal to write a plain C code we will omit to discuss this version.
For sake of readability, personal taste, and some small di�erences in notation

for data structures and functions, we decided to write two new version of the
code provided by authors, one sequential and one parallel, without altering their
original logical structure or content, but using the same notation and C program-
ming language for both the version. Our sequential version is almost identical
to [Trimble 2017b], just little adjustments has been done to notation in order to
improve readability and coherence with all other code versions. C language has
been chosen because of Nvidia CUDA APIs are supposed to be used in C/C++
environment, and they make use of C-like syntax.

In the following highlights from each version will be provided.

Data structures

First of all we need to introduce the main data structures that will appear in the
code. They will remain almost the same in both sequential and parallel imple-
mentation. Five C-language structures are presented in Source 4.1 and 4.2, we
will refer to them using their re-de�ned short names.

Input graphs are modelled by graph_t in a quite common way (code 4.1):
an unsigned value n is the degree of the graph; a two-dimensional unsigned
char matrix describes adjacencies between vertices (if v=3 is adjacent to w=5 in
the matrix m there will be a "1" in cell m[3][5], a "2" is put on the diagonal for
each vertex on which a loop is present); optionally each vertex can be associated
with a label, stored exactly in the array label. For e�ciency reasons, vertices of
graphs are sorted based on their degree in decreasing order, such as lower values
in the vertices array correspond to vertices with higher degree.
6 typedef struct graph_s {
7 unsigned int n;
8 unsigned char adjmat[MAX_N][MAX_N];
9 unsigned int label[MAX_N];

10 } graph_t;

Source 4.1: The graph_t structure: MAX_N is the maximum graph size supported,
arbitrarily set, for the �rst versions, to 4096 vertices. Given the problem
complexity, the value is fairly large enough.

From here on, we will often refer to graphsG andH , specially when treated as
functions parameters, as g0 and g1, or left graph and right graph. Hence, during

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 23

the execution of the algorithm, two more unsigned integer arrays are de�ned
outside this structure to describe vertices of the input graphs. Such arrays are
initialised with increasing integer values from 0 to n−1, so that each value in the
array represents a vertex of the input graph. These two arrays are called left

and right, respectively representing sets VG and VH .
What we want to retrieve, at the end of the algorithm, is a mapping between

subsets of vertices of graph G and graph H . Thus, in code 4.2, �rst we de�ne
pair_t (line 1), which represent a mapping between a vertexv ∈ VG and a vertex
w ∈ VH . The two integer values v and w are values selected from left and right

arrays. Now we can de�ne a mapping_t (line 5) as a dynamic array of pair_t

with allocated cells and actually used cells counters, respectively size and len.
1 typedef struct vtx_pair_s {
2 int v, w;
3 } pair_t;
4

5 typedef struct vtx_pair_list_s {
6 pair_t *vals;
7 unsigned len , size;
8 } mapping_t;
9

10 typedef struct bidomain_s {
11 int l, r, left_len , right_len;
12 bool is_adjacent;
13 } bidomain_t;
14

15 typedef struct bidomain_list_s {
16 bidomain_t *vals;
17 unsigned len , size;
18 } bidomain_list_t;

Source 4.2: Main data structures

Label classes, such they are described in Section 3.1.2, are also de�ned: in-
side bidomain_t structure (line 10) there is a bunch of integer parameters, their
meaning is the same as described at the very end of Chapter 3: l is the initial
index on left array where the label class begins, same for r on the right array;
left_len and right_len are the respective lengths in terms of array’s cells of
label classes on the left and right arrays (i.e., any vertex into the left array
from cell left[l] to cell left[l+left_len-1] belongs to the same label class,
same reasoning for right array). Last parameter present in the structure is the
boolean �ag is_adjacent, with the same purpose of "0" and "1" used in label

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 24

classes such as they were presented in Figure 3.3.
Similarly to vertices mapping, we need to de�ne lists of bidomains too. For

this reason bidomain_list_t is also de�ned, in the same way of mapping_t

(line 15). Given this brief highlight on data structures necessary to understand
the code, we can now go deeper and analyse the core sections of sequential and
parallel source code.

4.1 Sequential execution

The structure of the sequential code is quite simple. It is composed by just two
main functions, one for the initialisation of necessary data structure, and one
that is the proper recursive solver of the problem. In the following a code extract
of the recursive function, namely solve, is presented, for a complete overview
of the this sequential version of the code, refer to the original author’s code, cf.
[Trimble 2017a] or [Trimble 2017b].

solve function’s parameters

The parameters of the recursive function are many, and most of them are passed
by reference in order to keep them modi�ed during the exploration of the re-
cursion tree and exploit recursion properties. The two input graphs g0 and g1

are passed �rst, and to follow the vertices mappings storing the best solution
found so far (the incumbent) and the currently considered solution (current so-
lution); the parameter domains contains the list of all label classes selectable for
the current recursion level, in form of bidomains, it is the corresponding vari-
able of parameter future described in the pseudo-code of the McSplit Algorithm
(Alg 1); �nally arrays left and right are passed, they store a permutation of
the indices of g0 and g1, that depends on the recursion level and label classes, as
illustrated in section 3.1.2.

solve function’s body

The �rst operation performed by the function is to check if a better solution
than the one currently stored into incumbent has been found. If the check is
successful, such solution is stored into incumbent. Then, similarly to most of

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 25

recursive functions, solve proceeds with some checks intended to detect the
moment in which the recursion has to stop. The upper bound of the current
branch (i.e. the maximum number of pairs that is still possible to create given the
current bidomains list) is computed by applying the (3.1) formula. If the bound,
added to the current solution length, is not su�cient to overcome the incumbent
length, it means that any additional calculation is useless, the branch is pruned
and the function returns.

Then a heuristic method is applied to select a bidomain from the list (line 35),
if none is found it means that the branch has been completely explored and,
again, the function returns. Such heuristic consists into selecting the domain
with the lowest max between the left and right length, i.e. the one in which the
highest number between left_len and right_len, is the lowest. In case of tie,
the class containing the higher degree vertices is selected 1.

26 void solve(graph_t *g0, graph_t *g1, mapping_t *incumbent ,
27 mapping_t *current , bidomain_list_t *domains ,
28 int*left , int*right){
29

30 if (incumbent ->len < current ->len)
31 set_incumbent(current , incumbent);
32 if (current ->len + calc_bound(domains) <= incumbent ->len)
33 return;
34

35 int bd_idx = select_bidomain(domains , left , current ->len ,
arguments.connected);

36 if(bd_idx == -1)
37 return;
38 bidomain_t *bd = &domains ->vals[bd_idx];
39

40 int v = find_min_value(left , bd->l, bd->left_len);
41 remove_vtx_from_left_domain(left , &domains ->vals[bd_idx],v);
42

43 int w = -1;
44 bd->right_len --;
45

46 for(int i = 0; i < bd->right_len +1; i++){
47 int idx = index_of_next_smallest(right , bd->r,

bd->right_len + 1, w);
48

49 w = right[bd->r + idx];
50 right[bd->r + idx] = right[bd->r + bd->right_len];
51 right[bd->r + bd->right_len] = w;

1Remember: vertices are sorted, so lower value in the array means higher degrees

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 26

52

53 bidomain_list_t *new_domains = filter_domains(domains ,
left , right , g0, g1, v, w);

54

55 current ->vals[current ->len++] = (pair_t){.v=v, .w=w};
56 solve(g0,g1, incumbent , current , new_domains , left ,

right);
57 current ->len --;
58 }
59 bd->right_len ++;
60 if (bd->left_len == 0) remove_bidomain(domains , bd_idx);
61 solve(g0, g1, incumbent , current , domains , left , right);
62 }

Source 4.3: function solve sequential implementation

As we already outlined in Section 3.1.1, the way we choose vertices from
g0 and g1 is di�erent. In line 40 and 41 a vertex from left array is picked and
removed from his bidomain. The one with lowest value among the vertices in the
selected bidomain is chosen. It is the vertex with the highest degree between the
ones still present in the bidomain, and for this reason with the highest probability
to allow more mappings in future recursions. The removal is simply performed
by swapping the vertex with the one at the end of the bidomain, then reducing
bidomain size, as illustrated in Figure 3.4.

Since we still not have picked any vertex from the right side of the selected
bidomain, we initialise wwith value -1, then we reduce the size of right domain by
one (lines 43 and 44). We have to choose every possible vertices from the right
bidomain, pair them with v and recur with increased solution, this operation
simpli�es the removal and insertion into right domain of w from time to time.

Now, from line 46 to 58, we iterate on vertices belonging to the right side of
the selected bidomain (i.e. vertices of g1 that can be matched with the selected
v). The strategy is again to chose them following their degree order, selecting
�rst vertices with lowest value and highest degree. Since they are not naturally
ordered in the array, because their order may change between iteration due to
recursions, every time we pass the last selected value of w to the function in order
to pick the correct following one (line 47).

Once w is moved out of the right bidomain (lines 49-51), a new set of label
classes is created, considering the just created pair 〈v,w〉. With this new set of
bidomains, and after having added the new pair to the current solution (line 55), a

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 27

recursive call to solve is performed (line 56. filter_domains takes in input the
old domains, the new pair, the input graphs (necessary to access their adjacency
matrices) and the current state of left and right arrays. The function splits in
a half every old label class depending on whenever vertices are adjacent or not to
pair 〈v,w〉, and creates a new list of bidomains in which only ones with at least
one vertex in both graphs are inserted. After recursion, pair 〈v,w〉 is removed
from the solution.

When the consequences of pairing vertex v with every vertices in right side
of bidomain has been explored with the recursions cycle, we have to consider
the hypothesis in which vertex v is not present in the �nal solution. So right
bidomain size is increased again (line 59, and another recursion is performed
without modifying the bidomains, or the solution, but just removing vertex v

from the left domain, such previously done in line 41.
Eventually, if the left part of the currently selected bidomain has been emp-

tied, the latter is removed from the bidomains list so that next recursions will
select a new one (line 60).

4.2 Parallel execution

The hardest issue encountered while attempting to e�ciently parallelise the MCS
problem with multi-thread solutions, is to correctly balance the workload be-
tween threads.

The basic scheme of the recursive function in the here presented multi-threaded
version of the code is more or less the same of the sequential one. In source code
listings of this section, some parts that are similar to sequential version have
been omitted in order to allow an easier comprehension of the altered structure.
As for previous version, for a more complete version of the code, refer to the
original author’s code, cf. [Trimble 2017c].

Before focusing on analysing code, it is appropriate to introduce some high
level main aspects of this parallel implementation, then we will go step by step
to lower technical details explaining some code highlights.

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 28

High level overview

The multi-thread solution of this version consists into delegating part of the
solve function and its deeper recursion levels to a bunch of helper threads. They
cooperate with the main thread to compute in parallel di�erent iteration of the
main for cycle of the function solve (described in Source 4.3, lines 46-58). Thus,
a pool of threads is set up and kept running for the whole execution of the al-
gorithm. Such pool owns a priority queue in which threads can put tasks they
want to be helped to execute.

To better understand what a task is in our context, suppose that the for loop
is moved out from the solve function, and put into two di�erent functions.

Figure 4.1: The function solve is splitted.

These two functions, namely main_function and helper_function, are de-
signed such that they are independent and can be assigned to di�erent threads
to be solved in parallel.

Often, in the following, we will refer to threads executing main_function

as main threads and threads executing helper_function as helper threads, but
this names must not be confused with the actual �rst thread instantiated by the
operative system and threads belonging to the thread-pool. We almost never use
the term main thread with this acceptation in this chapter.

Indeed, in di�erent phases of the algorithm, any thread can act asmain thread
and execute the main_function of a particular branch of the recursion tree. At
the same time every other thread except for that one, will be considered helper

threads.
In order to achieve independence between main_function and helper_-

function, solve function performs a copy of his relevant data structures before

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 29

return, and then passes the original data to the main_function that executes its
for loop. The copies of the data structures are put together with a pointer to the
helper_function inside a separate structure, forming a task.

The task is then put into a queue, and helper threads can pick it and cooperate
with the main thread by executing the same for loop than the main thread, but
in the helper_function, with the copied data structures.

In fact, though the two functions are independent from the point of view of
data, they are actually linked by two atomic variables. The �rst one is used as a
shared index in the for loop: main and helper threads can execute the same cycle,
but distributing iterations without both executing the same ones. The second
atomic variable is the size of the current incumbent, that is shared among each
thread to increase the e�ciency of the research.

Suppose, for example, that a threadm executes the solve function: after the
preliminary operations, similar to the ones illustrated in Source 4.3 (lines 30-44),
it creates an atomic variable shared_i, then it copies all the its relevant variables
and creates a task containing such copies and a pointer to helper_function.

Thread m put the task into the thread-pool queue and starts executing the
main_function. In a main thread, going from solve to main_function, is al-
most equivalent to continue the normal �ow of the sequential version of the
solve function (the one in Source 4.3). Suppose then, that thread-pool contains
an idle thread h: it is now woke up and it picks the task from the queue and starts
executing the helper_function with the copies of the data that main thread
gave to it.

Remember that, for larger graphs, in the �rst few depth level of the recursion,
each iteration of the for loop is very time consuming, because recursive calls to
solve function are equivalent to solve the MCS problem on a graph with one less
vertex than the original one. At the same time, the deeper you go in the recursion
tree, the shorter become each branch, both because the available mappings are
less, and it is easier for a branch to hit its upper bound and being pruned by the
algorithm.

At such depth level it is not worth to create at each recursion copies of the
data structures to apply the logic we described above, it would take more time
to create them than to continue execute sequentially the branch until the end.
For this reason, in order to not waste CPU-time copying data, and overload the

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 30

task queue in the thread-pool with too short tasks, causing massive slowdowns
of the algorithm, a parameter SPLIT_LEVEL is set and tuned (a common value
is in range 4-8). This parameter indicate the maximum depth in the recursion
tree above which the solve function stops splitting itself and delegate iterations
to other threads, but continues sequentially until the end of its current branch.

To achieve a higher level of parallelism, more than one helper thread can pick
the same task and cooperate to solve it, also in di�erent times. If at a certain time
a thread completes its task, it returns to the queue in order to pick a new one,
that may be already being executed by some other thread. Since they would use
always the same shared atomic index, this fact would not be an issue.

The task objects are put in the queue following the order given by their po-
sition in the recursion three: a task generated at depth 1 will be put in the queue
before a task generated at depth 3; in the same way, a task generate at depth 1 in
the second iteration of the for loop will be put after a task generated at depth 1
in the �rst iteration.

In fact, besides the task, each node of the queue contains also an object posi-
tion, that contains the depth d in which the task has been created, and, for each
level from 0 to d, the iteration index of the for loop in previous recursions that led
to that task: it is a kind of route in the recursion tree that identi�es the position
in the tree of the current task.

In Figure 4.2, a new task is being added to the queue. Its position is 〈2, [3, 1]〉,
it means that the task has been generated at depth 2 of the recursion, at level
1 the undertook iteration of the for loop was the third one, and at level 2, the
�rst one. It is put in the correct position in the queue, after 〈2, [2, 2]〉 and be-
fore 〈2, [3, 4]〉, �rst considering depth and then values of previous for iteration
indices in lexicographic order.

Above we said that the thread running the solve function create a copy of
its relevant data structures before adding a task to the queue. This operation
is done to guarantee data independence between threads. But, since more than
one helper thread can pick the same task from the queue and execute it, they
would not be independent by each other. Thus, a new copy of the copy of the
data structures is performed at the beginning of the helper_function. In this
way each thread can work on his own data, sharing with the other only the index
shared_i and the incumbent size, and if no helper thread select the task from

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 31

Figure 4.2: Detail of positions ordering when inserting a new node in the queue.

the queue, no other useless copies are created.
In the following we will better analyse how this task system has been imple-

mented by [McCreesh, Prosser, and Trimble 2017]. Though the original code was
in C++ language, with very di�erent and advanced notation to handle threads
and synchronisation, the logic of the task system has been consistently trans-
posed in C language.

Data structures

The threadpool_t structure de�nition has been reported in Source 4.4. It in-
cludes data necessary to operate with threads: �rst the number of threads present
int the pool (usually set to the number of physical or logical threads that can ac-
tually run in parallel on the processor); this number is also the size of the arrays
of threads and the array of threads parameters (lines 3-4); by means of a mu-
tex and a condition variable (lines 7-8)2, the threadpool_t manage a queue of
tasks that threads can pick and execute every time they become in idle state. An
atomic boolean �ag finish (line 10) is set to true when the algorithm terminate,
and it is necessary to kill the threads belonging to the thread-pool and terminate
the program.

1 typedef struct threadpool_s{
2 unsigned int n_threads;

2mutex and condition variables are from the POSIX standard. If necessary, a very good ex-
planation of POSIX synchronisation objecs can be founs in [Kerrisk 2010, Chapter 30]

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 32

3 pthread_t *threads;
4 struct params_s ** params;
5

6 node_t *queue;
7 pthread_mutex_t general_mtx;
8 pthread_cond_t cv;
9

10 atomic_bool finish;
11 } threadpool_t;

Source 4.4: Threadpool de�nition

Tasks, in this technical context, are de�ned in Source 4.5 (line 8) and con-
sist in a pointer to the helper_function, and structure wrapping all necessary
parameters for its execution, similar to parameters described for the solve func-
tion in Section 4.1. So once instantiated, threads repeatedly pick a task from the
queue and execute the function pointed by func with its associated parameters
pointed by args.
1 typedef void (* func_t)(args_t* d);
2

3 typedef struct position_s{
4 int vals[SPLIT_LEVEL +1];
5 int depth;
6 }position_t;
7

8 typedef struct task_s{
9 func_t func;

10 int pending;
11 args_t* args;
12 }task_t;
13

14 typedef struct node_s{
15 task_t *task;
16 position_t pos;
17 struct node_s *next;
18 }node_t;

Source 4.5: Threadpool de�nition

Since each task can be assigned to more than one thread, task_t also includes
an integer counter pending, that keep track of how many threads are working
on each single task. When a main thread add a task to the queue, it initialises
the counter to 0. Each thread that start executing it, increment the counter and
decrements it back when they �nish. When the main thread exits from the exe-
cution of the main_function it wait until also any involved helper thread exits

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 33

from the respective helper function, then it remove the task from the queue.
The queue, de�ned in Source 4.5 (line 14), is structured as a linked list of

node_t structures, each one containing a task, its position in the recursion tree,
as we illustrated above, and the pointer to next node. The linked list structure
is the preferred one for the queue, since we need to e�ciently perform ordered
insertion.

As we said, arguments passed to the helper_function (Source 4.6), are quite
similar to ones of the sequential solve function. In addition, we also have an ar-
ray of mapping_t storing separately the incumbents for each thread (line 17),
this allows to reduce the need to synchronise them every time we update the in-
cumbent using mutual accesses. Since it is a lot simpler to perform mutual access
on a single, integer variable, an atomic unsigned value global_incumbent is de-
�ned: it is shared by every thread, and it is useful to keep threads synchronised
at least on the size of the current best mapping found.

12 typedef struct args_s{
13 int depth;
14 graph_t *g0;
15 graph_t *g1;
16

17 mapping_t ** per_thread_incumbents;
18 mapping_t *current;
19 bidomain_list_t *domains;
20 int *left , *right;
21

22 atomic_uint *global_incumbent;
23

24 position_t pos;
25 threadpool_t *pool;
26 int thread_idx;
27

28 atomic_uint *shared_i;
29 int i_end;
30 int bd_idx;
31 bidomain_t *bd;
32 int next_i;
33 }args_t;

Source 4.6: Threadpool de�nition

In line 24 we �nd the position of the current task, useful to determine the position
to be passed to next recursions. In lines (25-26) data about thread pool and the
index of the thread that is executing is stored, the latter just for debugging pur-

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 34

poses. Remaining arguments are variables useful for the continuation of the code
�ow from solve function to main_function or helper_function. In order to
not weight down the notation, only one wrapper structure has been de�ned for
both main_function and helper_function, thus not every arguments is useful
for both of them. Anyway their purpose is trivial or it will be explained directly
analysing the code in next subsubsections.

Core functions

As we said previously, recursion logic, bidomains system and graphs data struc-
tures are the same as the sequential version, thus, the aim of this paragraph is
only to illustrate the functioning of the thread-pool and the related queue of
tasks, that actually are the core aspects of this parallel implementation. Lot of
the code is similar to Source 4.3, thus some parts of the source code extracts, that
we will present here, will be reduced or replaced by comments. First of all a short
highlight of the helper_function is presented in Source 4.7.

1 void helper_function(args_t *args){
2 int next_i = atomic_fetch_add(args ->shared_i , 1);
3 // create a new copy of the copy of relevant data structures.
4 for (int i = 0 ; i < args ->i_end; i++) {
5 if(i != args ->i_end - 1){
6 // select a vertex w and make a new pair
7 // ...
8 if (i == next_i) {
9 next_i = atomic_fetch_add(args ->shared_i , 1);

10 if (args ->depth > SPLIT_LEVEL) {
11 solve_nopar(/*...*/); // continue

sequentially until the end of the branch
12 } else {
13 position_t new_pos = args ->pos;
14 new_pos.depth = args ->depth;
15 new_pos.vals[new_pos.depth] = i + 1;
16 solve(args ->depth + 1, new_pos , args ->pool);
17 }
18 }
19 } else {
20 // vertex v is left unmatched
21 // ...
22 if (i == next_i) {
23 if (args ->depth > SPLIT_LEVEL) {
24 solve_nopar(/*...*/); // continue

sequentially until the end of the branch
25 } else {

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 35

26 position_t new_pos = args ->pos;
27 new_pos.depth = args ->depth;
28 new_pos.vals[new_pos.depth] = i + 1;
29 solve(args ->depth + 1, new_pos , args ->pool);
30 }
31 }
32 }
33 }
34 }

Source 4.7: The cyclic function executed by every thread in the thread pool.

An important di�erence between Source 4.7 and the sequential version of
solve that is worth noting, is the structure of the for loop: here we extended
the loop by one iteration, such that it also includes the recursion in which vertex v
is left unmatched in the solution. This modi�cation is helpful for the distribution
of recursion between threads.

Proceeding with order, in line 2 the shared index is immediately read and
incremented, so that the running thread reserves for itself at least one iteration
of the loop. Then the copy of the copy of data structure passed by argument is
performed, and the loop begins. New pairs are created for each iteration, with
vertex w being swapped each time with the one at the end of the right bidomain,
such that permutations of vertices in right array is maintained the same as in
the sequential version. Though here recursions, that explore consequences of
adding each pair to the mapping, are performed only in the iteration identi�ed
by the shared index. Same rule is applied for the last iteration in which vertex v

is left unmatched.
Recursions, for levels deeper than SPLIT_LEVEL are not performed through

solve function, but through solve_nopar, that nothing is but the standard se-
quential version of the solve function, and thus not illustrated here.

The main_function is not reported here, because it is almost identical in
the structure as the helper_function. The main di�erence is that the latter
creates new copies of the data structures before executing the for loop, while
the main_function does not.

34 void solve (int depth , position_t position , threadpool_t *pool ,
...){

35 /**
36 * Same recursion stop controls and bidomain operations
37 * as the sequential solve function
38 */

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 36

39 atomic_uint *shared_i = malloc(sizeof *shared_i);
40 atomic_store(shared_i , 0);
41 int next_i = atomic_fetch_add(shared_i , 1);
42 int i_end = bd->right_len + 1;
43 bd->right_len --;
44 args_t *main_args = wrap_args(depth , position , pool ,

shared_i , i_end , ...);
45 if (depth <= SPLIT_LEVEL){
46 args_t *helper_args = wrap_args(depth , position , pool ,

shared_i , i_end , ...);
47 run_in_threadpool(position , pool , main_function ,

helper_function , main_args , helper_args);
48 } else {
49 main_function(main_args);
50 }
51 }

Source 4.8: Modi�ed solve function for the parallel implementation.

As illustrated in Source 4.8, the new, parallel, solve function starts with more
or less the same code of the sequential version that is not entirely listed. Then,
before the point in which, in the sequential version, should begin the for loop,
the function initialises the shared atomic index shared_i and wrap the argu-
ments for the main_function. No copies are performed in this passage. Now, if
the recursion depth is higher than the SPLIT_LEVEL parameter, the function will
simply execute the main_function and continue sequentially until the end of
the branch (in these circumstances also main_function would execute solve_-
nopar instead of solve). Otherwise, if depth is lower than SPLIT_LEVEL, then
also arguments for the helper_function are wrapped into an args_t struc-
ture. Here a copy of data structures is stored and function run_in_threadpool

is called.
52 void run_in_threadpool(position_t pos , threadpool_t *pool ,

func_t main_function , func_t
helper_function , args_t *main_args ,
args_t *helper_args){

53 /* create a task for the helper function */
54 task_t *task = create_task(helper_args , helper_function);
55

56 pthread_mutex_lock (&pool ->general_mtx);
57 enqueue (&pool ->queue , pos , task);
58 pthread_cond_broadcast (&pool ->cv);
59 pthread_mutex_unlock (&pool ->general_mtx);
60

61 (* main_function)(main_args);

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 37

62

63 pthread_mutex_lock (&pool ->general_mtx);
64 while(task ->pending != 0) pthread_cond_wait (&pool ->cv,

&pool ->general_mtx);
65 dequeue (&pool ->queue , task);
66 pthread_mutex_unlock (&pool ->general_mtx);
67 }

Source 4.9: Function called to add tasks to the thread pool queue.

The function run_in_threadpool, in Source 4.9, �rst creates a new task_t con-
taining helper agruments and the pointer to helper_function. Then it acquires
a mutual exclusion lock on the queue and add to it the new task. Immediately
a signal is sent to every thread waiting on the condition variable of the thread
pool and the lock on the queue is released.

From this moment, every thread eventually in idle, will be woke up and can
start executing the helper_function included into the new task. Also the thread
executing run_in_threadpool starts executing main_function.

When main_function returns, it means that no other iteration of the for

loop has to be performed for the relative solve function. The thread acquires
again the lock on the queue, and remove the task from the queue, after waiting
for any helper thread still needing to complete its iteration.

A fundamental role in this system is of course played by the cyclic function
executed by each thread belonging to the thread pool. The integral code of the
function is reported in Source 4.10.

1 void* thread_func(void* params){
2 threadpool_t *pool = ((param_t *) params)->pool;
3 while(! atomic_load (&pool ->finish)){
4 pthread_mutex_lock (&pool ->general_mtx);
5 bool did_something = false;
6 for(node_t *node = pool ->queue; node!= NULL;

node=node ->next){
7 task_t *task = node ->task;
8 if(task!= NULL && task ->func!=NULL){
9 func_t f = task ->func;

10 task ->pending ++;
11 pthread_mutex_unlock (&pool ->general_mtx);
12

13 (*f)(task ->args);
14

15 pthread_mutex_lock (&pool ->general_mtx);
16 task ->func = NULL;
17 if(--task ->pending == 0)

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 38

18 pthread_cond_broadcast (&pool ->cv);
19 did_something = true;
20 break;
21 }
22 }
23 if ((! did_something) && (! atomic_load (&help_me ->finish)))
24 pthread_cond_wait (&help_me ->cv, &help_me ->general_mtx);
25 pthread_mutex_unlock (&help_me ->general_mtx);
26 }
27 }

Source 4.10: The cyclic function executed by every thread in the thread pool.

The function is structured as an endless while loop that is stopped only at
the end of the algorithm, after the �rst solve function has returned in the main

function of the program. At each repetition of the cycle, various execution �ow
can be executed by threads. Let us analyse them separately.

i) The task queue is empty: suppose to be at the beginning of the program,
when the thread pool is �rst initialised, but the algorithm still is not started, each
thread will start the cycle when the task queue is still empty. In this situation
each of them acquires the lock on the queue (not everyone at the same time, of
course), sets to false boolean �ag did_something that states if the thread has
actually executed some task in this cycle or not, and then tries to pick a task
from the queue. Since the latter is empty, the whole central for loop is skipped
without doing anything, and the thread blocks on the condition variable waiting
for someone to put a task in the queue and wake it up 3.

ii.a) The task queue contains tasks that no thread has still executed: when run_-

in_threadool function is executed for the �rst time, the the main thread add a
task to the queue and calls pthread_cond_broadcast. Each thread of the thread
pool that in that moment was waiting the condition variable (Source 4.10, line 24)
is released. The �rst thread that manage to acquire the lock proceeds now re-
peating the while cycle. It set to false the �ag did_something, and pick the task
from the queue. Supposing that it is a fresh new task, both its reference and the
reference to helper_function included in it should be not NULL. The check at
line 8 it crucial but will be clear after the explanation of the remaining of the
function.

3POSIX mutex and Condition variable objects are supposed to be well known. If necessary,
for a very good explanation of such arguments, see [Kerrisk 2010, Chapter 30]

CHAPTER 4. THE MCSPLIT ALGORITHM IMPLEMENTATION 39

The pending counter is increased (line 10) to inform the main thread that a
helper thread is going to execute the helper_function and the latter is executed
(line 13). In order to understand the reason for which the helper_function

pointer inside the task is set to NULL after the execution of the function, it is
important to recall that the the function basically consists into a for cycle that is
shared among threads. Thus, if the function returns for one thread, it means that
no more iteration have to be executed at all, and soon or later also every other
thread executing the same function will return, the exact time depends only on
how long they will it take to them to �nish their last iteration. For this reason
the actually executing task, should no longer be executed by any other thread.
But the only entity allowed to remove it from the queue is the one that put it
in the queue during the execution of run_in_threadool and this will happen
only after the last thread �nishes executing it, i.e. when the pending counter of
the task reaches 0. In fact, the next instruction in thread_func is to decrease
the pending counter and, if value 0 has been reached, to signal the condition
variable so that main thread can remove it from the queue. The did_something

is now set to true, the for loop is aborted and before waiting for other task to be
inserted in the queue, the while cycle is restarted trying to pick a new task from
the queue.

ii.b) The task queue also contains already executed tasks: the tasks queue is or-
dered by position_t, and thus tasks are executed and completed following the
order of the recursion. Any completed task that is still being executed by some
thread, will be at the beginning of the queue. With a NULL pointer instead of the
helper_function pointer, such tasks will be simply skipped by any thread scan-
ning the queue searching for a task to execute. When a task with func pointer
not NULL is found, the execution continues as the point ii.a) illustrates. If no task
is found, the execution continues as in point i).

The thread pool structured in the way we just illustrated allows to obtain
a very good balance between the execution time of each thread: any time a
thread �nishes a branch, it can go through the tasks queue and start helping
other threads with their branches. At the end each thread will have had very
short idle time.

Chapter 5

The CUDA API

The Compute Uni�ed Device Architecture, usually shortened with the acronym
CUDA, is a parallel computing platform, developed by Nvidia Corporation since
early 2000s and �rst released in 2007. It provides application programming in-
terfaces (APIs) for general purpose programming on CUDA-enabled GPUs, i.e.
graphic cards produced by Nvidia and belonging to speci�c product lines.

CUDA allows programmers to exploit the di�erent parallel architecture of
graphic processing units for certain categories of programs that require massive
computing power.

Graphing computing usually involves large matrices modelling pixels on the
screen, on which lots of heavy mathematical calculations have to be quickly com-
puted in order to create new images that have to be shown on the screen with
fast refresh rates. This mechanism o�er o�ers high level of data-parallelism, be-
cause such mathematical operations can be done independently in parallel on
each pixel.

Driven by the pressing market demand for real-time, high-de�nition 3D graph-
ics, GPUs development has been aimed in past decades to increment perfor-
mances in this direction. In fact modern retail GPUs can reach tens or even
hundreds of teraFLOPS of computing power, that compared to CPUs, that are
usually still measured in gigaFLOPS, represent quite huge numbers. Compared
to CPU ones, more space on GPU chips is devoted to computing units than con-
trol units and caches, as illustrated in Figure 5.1.

Speci�c types of programs can perform particularly well on GPUs. The graphic

40

CHAPTER 5. THE CUDA API 41

(a) CPU (b) GPU

Figure 5.1: CPU architecture overview, compared with GPU

processors architecture is aimed to maximise e�ciency in high mathematical
data-parallel programs, i.e. programs that execute lots of mathematical instruc-
tions on large data sets.

With an accurate design aimed to maximise parallelism of instructions, the
performances obtained by running the code on a GPU instead of CPU are very
impressive. In the following there will be a brief description about main concepts
of the hardware architecture of Nvidia GPUs, among with some guidelines to
produce code that can accomplish the e�ciency and high parallelism standards
necessary to obtain good performances in GPU.

Writing software that is able to run well on a graphic cards is a matter of lower
level programming compared to modern programming on CPUs, that always
more often makes use of high level languages that hide most of the hardware in-
teraction to the programmer. Indeed, in traditional programming, programmers
can write code without care much about hardware structure of processors, both
because processors are a very heterogeneous family of devices with di�erent ar-
chitectures and it would be impossible to take into account of each di�erence in
the code, and compilers are increasingly e�cient at instruction translation and
rearranging making high quality executables able to perform well on lots of de-
vices. GPU programming is similar to programming for embedded devices: you
cannot rely only on compilers, you have to know very well the architecture on
which the code will run, arguments such registers management, code compact-
ness or memory saving cannot be ignored.

Programming tools and environments are still not well consolidated to help

CHAPTER 5. THE CUDA API 42

programmers with CUDA or other parallel computing platforms, thus technical
knowledge is needed before approaching to GPU programming. Most of archi-
tectural information included in this chapter come [Cook 2012] and [Sanders and
Kandrot 2010]. Any technical detail about APIs, such versions and speci�cations,
can be found and veri�ed at [Nvidia 2018b].

5.1 Hardware description

In past years CUDA micro-architectures evolved through several main versions,
usually named as famous historical personalities, important for the �eld of com-
puting technologies, such as Alan Turing, Nikola Tesla, Blaise Pascal and oth-
ers. Features implemented by various versions are called compute capabilities

or compute levels and evolved through di�erent versions from 1.0 of �rst Tesla
micro-architecture to 7.5 of the new Turing micro-architecture, being released at
the time of this writing. The most of the computing features encoded with such
version numbers depend on speci�c hardware units. Thus, compute levels are
�xed for each device: usually, to upgrade the CUDA compute capability of your
GPU, you cannot do anything but buy a more recent card. First versions 1.x still
was on an uneven development phase, and did not include basic operations such
as atomic operations on 32 bit integers in global or shared memory, or support
for double precision �oating-point operations (see Table 5.1), so we will not take
them into account.

From compute capability 2.0 and higher (i.e. the Fermi micro-architecture),
some important features have been consolidated. Successive versions just intro-
duced some advanced features about memory handling, textures or other graphic
tools, and increased e�ciency and computing power. A deeper resumee about
features included in each compute level is presented in Section 5.1.2. In any
case, the hardware basic scheme has remained more or less the same over the
year. Thus, in order to make a simpler description we will initially focus only on
Fermi micro-architecture, released in 2010.

CHAPTER 5. THE CUDA API 43

Figure 5.2: Fermi hardware micro-architecture scheme.

5.1.1 Nvidia GPU micro-architecture

As Figure 5.1 shows, the GPU hardware is radically di�erent from CPU one. More
closely, in Figure 5.2 is illustrated the general structure of one of the �rst Fermi
micro-architecture, released by Nvidia in 2010. This high level structure holds
also for graphics units produced by other manufacturers such AMD. It’s possible
to notice that a GPU basic scheme is something like an array of units called
streaming processors (SP), plus some other computing device on the borders. In
Nvidia devices, they are grouped in larger groups called streamingmulti-processor

(SM).
Each SM is composed by several Streaming Processor (also referred by Nvidia

as CUDA core), 8 for the �rst released Tesla G80 GPU, 32 or more in later ver-
sions. According to the micro-architecture design, in order to scale performances
is enough just adding more SMs, or more cores per single SM. The scaling po-
tentiality of the hardware is important because in past decades, when consumer
CPUs left the single-core architecture and started being composed by two or four
cores, programmers had to rewrite lot of software in order to exploit new multi-
thread features of processors. CUDA and other parallel platforms born already
with the concept of having lots of processing units available, and code is not

CHAPTER 5. THE CUDA API 44

Figure 5.3: Fermi Streaming Multiprocessor.

meant to be written depending on the actual number of cores available. Same
code should be suitable both for entry level cards, with few hundreds of cores,
and high levels GPUs, featured with up to some thousands of cores. This ap-
proach allows to take advantages of more next generations hardware without
underuse it and without the need of correcting code each time.

In Figure 5.3, a more precise representation of a Fermi streaming multi-processor
shows the presence of other modules such as two warp scheduler that, together
with dispatch units, are in charge to issue to cores the warps, that actually are
groups of threads and will be better discussed later. Then a load/store unit that
computes input and output memory addresses on behalf of each core, and SFUs,
speci�c chips that are decoupled by cores and are in charge to compute complex
operations such as sine, cosine and root square while cores execute other tasks.
One or more level of cache memory are present for each multi-processor.

5.1.2 CUDA Compute capabilities

Compute capability, also referred as compute level or SM version of a GPU is
expressed by a version number that represent the hardware features that such
device can support. It is composed by a major revision number X and a minor re-

vision number Y. Devices belonging to the same micro-architecture series, share
the same major number, while the minor numbers represent incremental im-

CHAPTER 5. THE CUDA API 45

Compute capabilityTechnical

speci�cations 1.0 1.1 1.2 1.3 2.x 3.0 3.2 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2 7.x
Integer atomic functions on
32-bit in global mem. No Yes

Integer atomic functions on
32-bit in shared mem No Yes

Integer atomic functions on
64-bit in global mem. No Yes

Double precision �oating-point
operations No Yes

Integer atomic functions on
64-bit in shared mem. No Yes

Atomic addition on 32-bit
�oating-point in global and
shared mem.

No Yes

3D grid of thread blocks No Yes
Dynamic parallelism No Yes
Atomic addition on 64-bit
�oating-point in global and
shared mem.

No Yes

Tensor core No Yes

Table 5.1: A list of the main CUDA features that came out with the progress of
compute capability versions.

provements and feature additions in the same micro-architecture.
Compute capability 1.x is from the �rst Tesla series (2006-10), 2.x for Fermi

(2010-12), 3.x for Kepler (2012-14). 4.x devices never came out on the market,
so from 3.x we go up to 5.x compute capability for Maxwell micro-architecture
(2014-16), 6.x for Pascal (2016-18) and, �nally, major revision number 7 came
out �rst on the professional series of GPUs for workstations, using Volta micro-
architecture (2017) and then with GPUs for the general market Turing in 2018.
At the time of this writing, the actual compute capability available on market is
7.5, for GPUs belonging to Nvidia GeForce RTX 20X0 series, Titan RTX and GTX
1660/1660Ti.

A huge number of techincal details varies depending on compute capabil-
ity of each device. Thus describing each of them would only result in a very
large meaningless table. In Table 5.1 some of the more relevant and high level
di�erences between each compute capability are reported, and other will be pre-
sented in the remaining of the chapter when analysing each di�erent aspect of
CUDA programming. For more precise information and a complete comparison
between compute capabilities, see [Nvidia 2018a].

Reading the table, it is easy to understand the reason we chose to start discus-
sion from compute capability 2.0 of the Fermi micro-architecture. In fact, several

CHAPTER 5. THE CUDA API 46

important operations, such 32-bit atomic operations or even simple �oating point
operations, still were not supported.

Only in much more recent micro-architecture Pascal, with compute capabil-
ities 6.x got enough harder resources to perform also up to 64-bit �oating point
operations in one single atomic operation in both global and shared memory. In
the following section, such memory types will be discussed.

5.2 Memory

Inside each streaming multi-processor there are several di�erent memory spaces:
we have global memory and local memory, shared memory, di�erent levels of
cache, texture and constant memory, and �nally, a large register �le.

Each of those types of memory has di�erent sizes, access policies and speed.
In the following a short presentation of main ones will be provided.

Global and local memory

Even if they are con�gured in the same computing system, CPUs and GPUs have
separate memory units and address spaces. Global memory resides into the main
memory of the GPU device and correspond to the CPUs main memory. It can be
accessed by any thread running on the GPU and also, with speci�c functions,
by the CPU. It is used as the main communication tool between CPU and GPU.
Usually, the CPU copies some data into the GPU’s global memory, then it starts a
task so that GPU can works on such data. Global memory is the slowest between
every di�erent types of memory on the GPU, but also the greatest: its size can
vary from one model to another, but for modern cards it is usually expressed in
terms of few gigabytes.

Local memory resides on the same device memory as the global one. An
amount of local memory is reserved on per-thread basis, so it can be accessed
only by the thread to which it has been assigned and can be used to store large
intermediate data during computing. The speed of local memory is the same
global memory one, but the size is signi�cantly smaller: 16KBytes for compute
capability 1.x and 2.x, and 512KBytes for higher levels.

CHAPTER 5. THE CUDA API 47

Constant and texture memory

Constant memory is a read only memory space, available from each running
thread on the GPU. It resides on the device memory, but has a separate cache
space directly on the chip, so also accesses to constant memory can be much
faster than global and local memories. It can be written only from the CPU using
speci�c functions provided by the CUDA API. The size of constant memory is
set to 64KBytes for each compute capability.

Similarly to constant memory, texture memory is a portion of the main device
memory, with a di�erent address space and optimised for storing and fetching
texture objects. It has a dedicated on-chip cache, so accesses to texture memory
are usually faster than local and global memory. Speci�c functions have been
designed by Nvidia to allow e�ciently fetching textures from this memory space.
Since it has been optimised for graphics purposed, we will not use the texture
memory in our work.

Constant memory, texture memory and global memory are the only types of
memory persisting between di�erent kernel calls, i.e. the functions that CPUs
can launch in the GPU environment (see Section 5.4).

Shared memory

A chunk of fast memory, namely shared memory, accessible only inside a Stream-
ing Multiprocessor and accessible by all threads belonging to the same block 1,
can be used to share data between threads, as a programmer-managed cache.
Shared memory reside directly on the chip, this is much faster than global and
local memory, but its size is strongly limited by engineering aspects. In fact,
shared memory available for each block of thread, is limited to 48KBytes for ev-
ery compute capability but 7.x, in which it can be con�gured by programmers
up to only 96KBytes.

Separate busses are present into each SM in order to independently access
to the other kinds of memory present on the chip: constant, texture and global
memory. Actually, the �rst two are just special views on a separate chunks of the
global memory, with special rights and access policies. The global memory has
more or less the same purpose of the CPU main memory, it usually is composed

1blocks of threads will be presented in Section ??

CHAPTER 5. THE CUDA API 48

by some blocks of GDDR memory that is a faster version than the memory used
for CPUs and can give a bandwidth up to 10 times faster than normal DDR2.

Registers �le

The register �le is a relatively large memory space that resides directly on the
chip, the closest possible to each processor. It stores registers that are used in
each thread. Di�erently to CPU threads, from compute capability 3.2, in the
GPU threads can have up to 255 registers. But the main di�erence between CPU
and GPU registers is not their number: the register �le in GPU contains separate
copies of registers for each thread. Thus, context switches3 are simply performed
by selecting which register must be mapped with the computing units, instead
of having to swap in and out from the main memory each time, as it happens in
CPUs, wasting several hundreds of clock cycles.

Moreover, GPUs use many threads to hide stall situations during memory
fetches and other blocking operations. Every time a thread needs to block wait-
ing that a variable is fetched from memory, or an arithmetic calculation is per-
formed, the scheduler perform a context switch and the processor continues
working executing another thread. Thus fast context switches are crucial for
GPUs.

5.3 Serial and parallel code

Generally speaking, every modern processor has more than one processing unit
inside (i.e. cores), so they can perform more operations at once. But in order to
actually exploit this feature it is necessary to write code that can be executed in
parallel. This is not always possible. In fact, algorithms can vary signi�cantly
in how, and how much, they can be parallelised. Some of them are completely
unable to execute in parallel. Such problems are composed by steps that require
as input data that depends on the output of a previous step, forcing the program

2GDDR and DDR stands for Graphic Double Data Rate and Double Data Rate respectively.
These memory technologies allows read/write operation on the memory on both the system
clock sides, up and down, leading to much faster memory accesses.

3context switches are the process of storing the state of threads, so that they can be restored
later. This allows multiple thread to share a single processing unit, and is an essential feature of
any parallel device

CHAPTER 5. THE CUDA API 49

to execute in a serial �ow. Indeed, one of the most di�cult aspect of parallel
programming is to be able, when possible, to think and write a problem in terms
of instructions that are as independent as possible one with each other.

Algorithm 2 Non parallelisable alg.
1: function Foo_1()
2: a← {1, 2, 3, 4, ...}
3: for i ∈ [1 − 9] do
4: a← a[i − 1] + i

return a;

Algorithm 3 Parallelisable alg.
1: function Foo_2()
2: a← {1, 2, 3, 4, ...}
3: for i ∈ [1 − 9] do
4: a← a[i] + 2

return a;

As a very easy example of this concept, the Algorithm 2 above is a non paral-
lelizable algorithm, in fact each iteration of the for loop depends on the previous
one in order to compute the new value. On the other hand, Algorithm 3 is a par-
allelizable algorithm because each step of the loop is independent from any other
step, so it is possible to execute all the iterations at once concurrently, of course,
as long as you have enough cores on which run the code. Anyway these con-
cept should be clear enough to programmers who already had some experience
in traditional multi-thread programming

5.3.1 From multi-core to many-cores

When we talk about many-core devices, such as GPU devices, we’re talking about
processors with a number of cores around hundreds or thousands, much more
than 4-8 cores inside modern average CPUs. The basic concept of parallel pro-
gramming is the idea of thread, that is a single �ow of serial execution of instruc-
tions through the program that runs on a processor core. Several threads that run
in simultaneously on more processing cores make up a parallel program. This
should be a familiar concept to any programmer that already had experiences
with traditional multi-core parallel programming on CPUs.

As we said CPUs are composed by a small number of powerful cores and,
unlike GPUs, follow the MIMD (Multiple Instruction - Multiple Data) scheduling
model, in which they can run multiple instructions at the same time on vari-
ous data instances. In order to do this, they instantiate many tasks and rapidly
switch between them. But CPUs have small quantities of registers per core, so

CHAPTER 5. THE CUDA API 50

they have to switch them in and out to main memory every time they change
the thread executing. This is a very time-consuming operation. For this reason
programmers, when designing software that runs on CPUs, rather think in terms
of a more coarse task parallelism, with only few threads instantiated that can ex-
ecute quite complex tasks, in order to exploit the presence of multiple processing
cores but minimising the overhead due to context switches.

In the GPU domain, we have to think the opposite, they are designed to exe-
cute a large number of simpler tasks. Moreover, they don’t have small quantities
of registers like CPUs, but as we said in Section 5.1.1 there is a relatively large
chunk of the fast shared memory called register �le in which more version of
registers used by each core can be stored at once. Thus in order to perform a
context switch is enough to put a register selector that switches between dif-
ferent registers version in the �le, without the need to actually switch in and
out registers from memory. This operation is orders of magnitude faster than
traditional CPUs context switches.

This is a very important feature to keep present while designing programs.
Both CPUs and GPUs have to handle stalls, generally caused by I/O operations
and memory fetches. When this happens in a CPU it solves this by context
switching to another thread, provided that there are enough pending task. As
the number of tasks increase, considering that scheduling policies of CPUs are
often based on equally dividing time between threads, the time overhead of con-
text switches compared to the actual execution time of the tasks leads e�ciency
to decrease quite rapidly.

Same behaviour is adopted by GPUs to handle stalls, but, due to quite simpler
nature of threads with respect to CPU ones, and the rapidity with which GPUs
can perform context switches, they need thousands of thread to e�ectively keep
the hardware busy and work e�ciently. Every time it encounters a memory
fetch or another blocking instruction, the GPU performs a context switch and
stay busy doing some other task. This operation is performed many more times
than in a CPU, and this is one of the key aspect that makes GPUs so powerful.

The task execution model of a GPU is a generalisation of SIMD, Single Pro-
gram - Multiple Data (SPMD). The main di�erence is that SPs are grouped into
blocks that execute the same program in a lock-step basis. This means that every
instruction in the program queue is fetched simultaneously to each SPs of each

CHAPTER 5. THE CUDA API 51

block that execute it on di�erent data. A traditional CPU would fetch di�er-
ent instruction �ows to each of its cores. This leads to a require a 1/N memory
bandwidth to fetch instructions from memory, where N is the number of SPs
belonging to the same block.

5.4 Programming with CUDA

CUDA issues threads on the hardware in large groups, following SPMD model.
In the CUDA context, the base unit of such groups, is composed by 32 threads,
namely a warp. A group of 16 threads is called half warp. GPU hardware includes
one or more warp dispatcher that is in charge to issue warps on Streaming Pro-
cessors, and actually it is not possible to run threads in di�erent numbers than
multiples of a warp. If you instantiate 50 threads, the GPU will still and issue
commands to two warps, 64 threads will be running and you will just waste 14
of them. In order to make easier to discuss how in practice CUDA works in terms
of thread numbers and arrangement, let us present a practical example.

1 void func(){
2 int i, *a, *b, *c;
3 for(i = 0; i < 2048; i++)
4 a[i] = b[i] * c[i]
5 return;
6 }

Source 5.1: The function performs the product between arrays b and c, storing
the result in a.

A serial execution of the function illustrated in Source 5.1, would sequentially
repeat 2048 times the multiplication between i-th cell of b and c, storing result in
i-th cell of a. Now we want to parallelise this piece of code in CUDA. Given that
each iteration of the loop is independent by any other, the loop execution can
be split and distributed to 2048 separate and parallel threads that perform only
one multiplication. This is what the informatics call an embarrassingly parallel

problem. In CUDA you can implement this by writing a kernel function, which is
a particular class of functions de�ned into CUDA C/C++ environment that can
be executed only on the GPU by bunch of threads.

CHAPTER 5. THE CUDA API 52

5.4.1 Kernel functions and thread grid

In order to de�ne jobs that we want to execute on the GPU, we must write a
kernel function. A call to a kernel function can occur in the CPU code when
needed, and it will instantiate a kernel on the GPU hardware.

Nvidia also de�ned CUDA streams, a sequences of tasks (i.e. kernels) that are
executed on the GPU in their issue order, in an asynchronous fashion, while CPU
continues its execution �ow. Kernels are always issued inside a stream, if none is
speci�ed, the default one will be used. Starting from version 7 of the CUDA API,
a default stream is created for each CPU thread when a GPU device is initialised
in the program. More streams can be created through cudaStreamCreate(...).
Issuing kernels into di�erent CUDA streams allows to execute them concurrently
on the GPU, and multiple kernels issued in di�erent streams may be also executed
out of order with respect to each other.

Kernel functions can be declared in the source more or less like normal C
functions, but with some limitations, as illustrated in Source 5.2: they must return
void, they can only access device memory and the keyword __global__ must
be placed before its declaration.

1 __global__ void kernel_func(const int *a,
2 const int *b,
3 const int *c){
4

5 const unsigned int idx = threadIdx.x + (blockIdx.x *
blockDim.x);

6 a[idx] = b[idx] * c[idx]
7 return;
8 }

Source 5.2: A kernel function declaration.

CUDA de�nes a particular extension to C language notation in order to in-
voke a kernel function inside the CPU code. After the name of the function, and
before specifying the function arguments, other parameters must be placed. The
notation is func_name<<< Dg, Db, Ns >>>(args).

Values Dg, Db and Ns are respectively two dim3 variables and an unsigned
integer. Starting from the last one, Ns, it is the identi�er of the stream in which
we want to issue the kernel. It is an optional parameter and, if not present, the
default stream will be automatically selected.

CHAPTER 5. THE CUDA API 53

The other two parameters allows us to specify each dimension of the grid of
threads that we want to create, i.e. how many threads will be issued, and how
they will be arranged in the GPU. In fact, dim3 type is based on uint3 type, in
which three di�erent unsigned integers values can be stored and accessed using
var.x, var.y and var.z notation.

More precisely, Dg indicates the dimension of the grid, expressed in terms of
the number of thread blocks for each Cartesian axe, and Db indicates the size of
each thread block in terms of number of threads for each Cartesian axe.

The grid organisation of threads is one of the most interesting characteristics
for the CUDA environment, and we are now going to explain it better.

Thread grids and thread blocks

When kernel functions are issued to the GPU, a grid of threads is created. A
thread grid is nothing but large group of threads that execute the same kernel
function. Its dimension is speci�ed by the programmer at the moment of calling
a kernel function through the �rst of the additional parameters introduced by
Nvidia to the C language extension. As illustrated in Table 5.1, since compute
capability 2.0 is it possible to create both 2D and 3D grids of threads.

Threads that runs in the same grid are additionally grouped in blocks in order
to simplify data mapping, scheduling e processing of tasks. The thread block is
an extremely important entity in the CUDA environment, since lots of di�erent
aspects are de�ned on a thread block basis, such as the shared memory described
in Section 5.2.

Various limitations are present on the number of thread we can put in a single
block and their disposition, depending on the device compute capability level, as
you can see in Table 5.2.

Considering, a device belonging to compute capability 5.0, any one of the
following limit must not be exceeded: no more than 1024 thread can be put in
a single block, no more than 32 block can be instantiated on a single streaming
multi-processor, and, generally, no more than 2048 thread can run on a SM. For
example, is possible to instantiate 8 blocks of 256 threads, 16 blocks of 128 threads
or 2 blocks of 1024 threads, but is not possible to instantiate only one block of
2048 thread, or 32 blocks of 512 threads or even 1024 blocks containing only two

CHAPTER 5. THE CUDA API 54

Features Compute capability (version)
2.x 3.x 5.x/6.x/7.x

Max num of threads per SM 1536 2048
Max num of threads per Block 1024

Max num of blocks per SM 8 16 32
Number of registers per SM 32K 64K-128K 64K

Max num of registers per thread 63 255

Table 5.2: Details of maximum thread numbers per block and per streaming
multi-processor, with the progress of compute capability levels.

threads each one.

Thread warps

In addition to size limitations we just discussed, an aspect that must be taken into
account, is that the basic unit of execution in the CUDA environment is the thread
warp. A warp is a group of 32 threads that are actually executed simultaneously
on the same streaming processor. It is not possible to execute less than a warp of
threads, thus if, for example, we have a job for only 20 threads, instructions will
be anyway dispatched to 32 threads, but 12 of them will be wasted. Programmers
have to consider in the code that not enough data may be present for each thread,
and perform proper checks in order to avoid con�icts or memory failures. For this
reason, where the data make it is possible, it is always suggested to instantiate
blocks composed by multiples of 32 threads, so that no thread is wasted.

Get the thread position at runtime

As we said every threads belonging to a kernel execute exactly the same code on
di�erent data, following the SPMD execution model. But, if the kernel function
code is the same for each thread, we need some parameter that can tell to each
thread what data it must select and work with. To solve this problem, in CUDA
threads are provided with positioning indices inside the grid in which they are
issued.

CHAPTER 5. THE CUDA API 55

Inside each block, threads are numbered following each Cartesian axe. In-
dices can be read by each thread by four dim3 variables de�ned in CUDA, called
threadIdx, blockIdx, blockDim and gridDim. The �rst one indicates the index
of the current thread inside its block, the second one indicates the index of the
block to which the current thread belongs with respect to the thread grid; the
third variable speci�es the size of each block and the last one describes the three
dimensions of the grid. In order to get univocal IDs for each thread, these two
values can be combined. Supposing to instantiate a kernel with only one thread
block, only threadIdx could be used, but this is not the general situation. The
examples in Source ?? shows two possible cases, one with one-dimensional grid,
and one with bi-dimensional grid.

1 __global__ void kernel_func_1(<params >, ...) {
2 /* the case of one -dimensional blocks */
3 int thread_idx = (blockIdx.x * blockDim.x) + threadIdx.x;
4 }
5

6 __global__ void kernel_func_2(<params >, ...) {
7 int idx = (blockIdx.x * (blockDim.x)) + threadIdx.x;
8 int idy = (blockIdx.y * blockDim.y) + threadIdx.y;
9 int thread_id = idx + idy * (blockDim.x) * (gridDim.x);

10 }

Source 5.3: Grids, blocks and threads indices.

In the �rst function, the univocal ID of the running thread is computed by taking
into account the index of the thread inside its block, and the x dimension of the
block. In the second function, both the x and the y dimensions of the block are
considered, as well as the x dimension of the grid;

Once each thread has computed its own univocal index, they can use it to
separately access to respective portion of data.

Passing parameters to kernel functions

Since the GPU and CPU make use of separate address spaces, it is forbidden to
dereference device’s pointers in the CPU, or the reverse: they can only commu-
nicate through speci�c functions via system buses that link CPU main memory
to device global memory.

Names of those functions are taken from the C-language semantics, by adding
pre�x cuda. So cudaMalloc allocates memory on the device global memory,

CHAPTER 5. THE CUDA API 56

cudaMemcpy copy memory from CPU main memory to device allocated global
memory and so on.

1 int a[2048] , b[2048] , c[2048];
2 // initialise a, b and c;
3 int *d_a , *d_b , d_c; // device pointers
4 cudaMalloc ((void **)&d_a , 2048 * sizeof *d_a);
5 cudaMalloc ((void **)&d_b , 2048 * sizeof *d_b);
6 cudaMalloc ((void **)&d_c , 2048 * sizeof *d_c);
7

8 cudaMemcpy(d_a , a, 2048 * sizeof *d_a , cudaMemcpyHostToDevice);
9 cudaMemcpy(d_b , b, 2048 * sizeof *d_b , cudaMemcpyHostToDevice);

10 cudaMemcpy(d_c , c, 2048 * sizeof *d_c , cudaMemcpyHostToDevice);
11

12 kernel_func <<< 8, 256 >>>(d_a , d_b , d_c);
13 // cudaDeviceSynchronize ();
14 cudaMemcpy(d_a , a, 2048 * sizeof *d_a , cudaMemcpyDeviceToHost);
15 cudaMemcpy(d_b , b, 2048 * sizeof *d_b , cudaMemcpyDeviceToHost);
16 cudaMemcpy(d_c , c, 2048 * sizeof *d_c , cudaMemcpyDeviceToHost);

Source 5.4: Sequence of functions needed to launch kernels with parameters.

Let us continue the example of Source 5.1 and 5.2: in Source 5.4, a and b

are the arrays we want to sum and c is the desired result array. As we said, we
cannot pass directly these arrays to the kernel, because they reside into the CPU
main memory. We �rst must allocate enough space for them into the GPU global
memory (lines 4-6), then we have to copy there the arrays. cudaMemcpy will store
in d_a, d_b and d_c the actual pointers to device global memory where arrays a,
b and c have been copied. Now we can pass these pointers to the kernel function.

In order to synchronise CPU and GPU so that the CPU waits until the GPU
�nishes the execution of the kernel, a speci�c function would be necessary, cu-
daDeviceSynchronize (line 13). However, an implicit synchronisation mecha-
nism is already included in cudaMemcpy, which wait that previously launched
jobs on the GPU are terminated before coping the memory. Thus, in our case,
explicit synchronisation is not needed. In lines 14-16, values of arrays d_a, d_b
and d_c are copied back into a, b and c, and now we can access the desired re-
sult. Note that same function cudaMemcpy is used to copy memory from and to
the device global memory, by using parameters cudaMemcpyHostToDevice and
cudaMemcpyDeviceToHost.

that we wan in order to pass parameters to the GPU you have to allocate new
memory on the device global memory through cudaMalloc ad copy there what

CHAPTER 5. THE CUDA API 57

you need through cudaMemcpy using the parameter cudaMemcpyHostToDevice.

5.4.2 Best practices

Just by following the programming guide, using the correct cuda functions in
the correct place, we should be able to obtain working CUDA code. We can
compile it using Nvidia nvcc compiler and then execute it. It can happen that
the impressive performances that we would expect to observe, actually turn out
to be rather disappointing. Of course causes of bad performances can be various,
such as errors in our program logic, or hardware optimisation issues and so on.

Anyway, there are two important rules of CUDA architecture that program-
mers must care about in order to obtain good performances for their code, i.e.
the necessity to maximise the memory access coalescence between threads, and,
at the same time, to minimise the branch divergence of the code.

We will see, in Chapter 7, that these two critical aspects are not trivially feasi-
ble for the McSplit algorithm, and this is the main reason why the performances
of the algorithm version that we are going to present in the next chapters are
not satisfying in the CUDA environment, and the implementation itself cannot
be considered a success.

Data locality and memory access coalescence

Fetching data from the global memory of the device is a very time-consuming
operation. When a thread needs to read a variable that resides in global or local
memory, it has to block for hundreds of clock cycles, waiting for data coming
from the memory. One of the strength points of GPUs is that they can perform
very fast context switches, and hide waiting phases by executing other threads.
This approach can lead to satisfying performances, of course provided that mem-
ory fetches are not too many.

Considering that all the threads execute the same code, if a variable is needed
from the local or global memory, hundreds or thousands of memory fetches at
the same time will be performed. Such situation actually would occur every
time threads access the global or local memory. This is one of the main reason
why CUDA threads are grouped into warps. In fact, the device coalesces global
memory loads and stores issued by threads of a warp into as few transactions as

CHAPTER 5. THE CUDA API 58

possible to minimise the number processors stall cycles.
Anyway, this approach is possible only if the needed data, for threads in the

same warp, are actually physically close also in the memory. Otherwise separate
fetches will be necessary for each thread asking for sparse data in the memory,
and performance will drop down signi�cantly.

Instruction parallelism and branch divergence

In parallel with memory access coalescence, another important feature that come
with warp grouping of thread, is a direct consequence of the fact threads execute
the same code with di�erent data. This system can perform pretty well, provided
that actually each thread needs to execute the same instruction on any circum-
stance. Obviously this is not always the case: sometimes, some instruction must
be executed or not depending on the data on which the thread is working, i.e.
the code can present branches.

Keeping valid the general rule that every threads execute the same instruc-
tions at each clock cycle, when branches occurs, and not every thread needs to
take the same branch, we obtain what we call a branch divergence. In such sit-
uation, executable code of the kernel function would include both the branches
one after the other, as it happens for CPU code. When the branch is executed, let
as assume the �rst half of the threads in the warp will execute the �rst branch,
and the remaining thread will simply stall. When the �rst branch is �nished, the
second half of the threads will execute the second branch, while the �rst one stall
and waits. Thus when branches are encountered in the code, we can assume that
both branches will be executed in sequence by some portion of the warps, wast-
ing computing time for the remaining part. The more branches are present in the
code, and the longer they are, and the more the performances will be a�ected by
branch divergence.

5.4.3 CUDA Dynamic Parallelism

CUDA Dynamic Parallelism was introduced in 2014 within compute capability
5.0 with retro-compatibility down to 3.5 devices. It o�ers the possibility to create,
execute and synchronise with new kernels directly from the the GPU, without
any participation from the CPU.

CHAPTER 5. THE CUDA API 59

This feature is useful, for example, when data with di�erent granularity are
distributed in the space, we can for example instantiate a main kernel with fewer
smaller blocks to cover the whole data space. Then we can make the threads
themselves to delegate eventual area of data space, where data are closer, to child
kernels composed by more threads, that process it and then return to the parent
thread.

Suppose, for instance, you have to analyse �uid dynamics data that represent
the output of hundreds of thermal sensors aimed to track warm oceanic currents.
It is not useful to �nely analyse data far from the current, while it can be interest-
ing to focus on the borders of the current. Well, in this case a kernel with coarse
block subdivision can be launched to analyse the whole data space, and then in
proximity to sensors that registered thermal variations, threads from the coarse
kernel can also instantiate kernel functions that analyse �ner data.

Of course it is also possible to create recursive kernel functions, so that the
same task may be applied with di�erent granularity to portions of data, but some
limitation are present.

Unfortunately, even in high level GPUs, where hardware resources are abun-
dant, if we consider them in per thread basis, they are absolutely not enough
to sustain a complete function call stack with a large number of entries, as it
happens in the CPU. On the contrary, in the CUDA environment, kernel recur-
sions are limited up to 24 levels of depth. If this number may seem too small,
remember that every threads running in the GPU is supposed to have a limited
number of registers and local memory. Those same resources should be also
shared with every child recursion starting from that thread. It is clear that in
most of cases, hardware resources would run out much before reaching 24 levels
of depth. Thus, even if CUDA dynamic parallelism can be very useful in lots of
application �elds, such as �uid dynamics analysis, actually it is not applicable in
order to implement properly recursive functions.

Chapter 6

AMcSplit CUDA implementation

We have discussed in Chapter 4 about currently available implementations of
the McSplit algorithm to solve the maximum common subgraph problem (MCS),
and we presented the CUDA environment in the previous chapter. Now we are
ready to continue the dissertation with some consideration about the available
implementations, ad by introducing our attempts to modify them in order to
make them suitable to run on Nvidia GPUs.

Several di�erent approaches has been tried, during our work, but not all of
them are relevant considering the �nal result. Thus, here we will present only
few di�erent implementations that are useful to retracing the path we followed
to produce our CUDA implementation.

Making a completely running version of the algorithm, exploiting every as-
pect of the CUDA environment in order to immediately have a well performing
code would have been very di�cult. Thus �rst we started by analysing in depth
the existing implementations, studying which element could be saved and which
other would have been incompatible with CUDA. Finally we created two new
CPU implementations, one sequential and one parallel, that actually emulates
the �nal implementation we produced for the CUDA environment.

Removing recursion

As we widely discussed in previous chapters, the McSplit algorithm is inherently
recursive, but even using Dynamic Parallelism, CUDA does not support more
than 24 in-depth recursions. The maximum recursion depth reached by the Mc-

60

CHAPTER 6. A MCSPLIT CUDA IMPLEMENTATION 61

Split algorithm is equal to the size of the �nal solution, and thus may vary from
one up to the degree of the smaller input graph. Supposing to leave the recursion
untouched, we could implement in CUDA an algorithm suitable for graphs with
at maximum 24 nodes. Of course this would be practically useless, given that
for graphs with such order, the CPU-only implementation still perform pretty
well even in a total-sequential �ow. For this reason, one of �rst step necessary
to adapt the algorithm to CUDA is to modify the execution structure in order to
formally remove recursion.

If you understood the structure of the solve function presented in Section 4.1,
you could imagine that removing recursion from there actually is not so simple.

In fact, a for loop is present, and new recursion calls are performed in each
iteration of the loop, plus one more call outside the loop. The �rst naive attempt
we made, was just to wrap all the solve function argument in a structure, and
then arrange it in a stack. With a while loop and such stack, recursion can be
obtained by imitating the actual behaviour of CPUs: each iteration of the while

loop correspond to an execution of the solve function, it pop a set of arguments
from the stack, and execute more or less the same code as solve function body.
Inside, at each iteration of the for loop, instead of a recursive call to solve a
new set of arguments is wrapped in a structure and pushed on the stack. The
following while iteration will pop it and execute with such arguments, and so
on. In order to maintain the same recursion order than the standard function,
�rst an attempt to leave vertex from the �rst graph unmatched is done, then the
for loop is executed backwards. Thus the arguments are pushed in the stack in
reverse order, and later popped in the same order than a standard recursion.

Reducing memory usage

This approach, besides it is not very sophisticated, still remains practically un-
feasible on GPUs. Unlike standard recursive �ow, here, at each level we put on
the stack every arguments for each virtual recursion of the for loop. This leads
in just few depth levels to have great amount of memory wasted storing argu-
ments for virtual recursions we will actually explore much later in the algorithm
execution. The scaling of this issue is exponential in the recursion depth, but
also unpredictable. Remember that per thread memory on GPU is quite limited.

CHAPTER 6. A MCSPLIT CUDA IMPLEMENTATION 62

Moreover, with the proceeding of the algorithm, arguments sets present on
the stack correspond to branches for which we can assume very varying depth,
because they are been created at di�erent depth levels. Trying to assign large por-
tion of the stack to the GPU in order solve in parallel each argument set would
not be a smart solution, because it would lead to an extremely unbalanced work-
load on each GPU thread. For this reason we had to �nd another approach able
to greatly decrease the algorithm memory usage, while maintaining the absence
of recursion.

6.1 First implementation: naive labels re-computation

A �rst naive attempt we did was to sacri�ce some algorithm smart computation
in order to simplify the code structure. This of course involves a huge drop of
performances considering a sequential execution, but we was hoping that more
parallelism would be achieved with this approach, actually balancing the sequen-
tial performance drop with large amount of possible parallel work.

Thus, in this version we got rid of bidomains data structures, together with
left and right arrays needed for their functioning.

Also the stack in which previously we put all the arguments necessary for
a standard solve function execution has been completely modi�ed. Now each
stack entry only consists into a pair of integers values. Such values correspond to
possible mappings, for each position in the solution, between vertices from the
�rst and second graph. The position in the solution is indicated by a variable that
is increased and decreased using special reserved entries in the stack: 〈0,−1〉 and
〈−1, 0〉. The �rst one is needed to move the computation on one position left in
the solution array, and the second one to move the computation on one position
right in the solution array.

For better understand this concept, a small practical example is presented in
Figure 6.1 with two hypothetical graphs of order 5. Suppose that at the beginning
of the algorithm, any combination of one vertex from the �rst graph and one from
the second graph is possible, the stack will contain each of those pairs, from 〈4, 4〉
down to 〈0, 0〉, in reverse order, so they are popped out from the stack in the
same order than the standard algorithm. Remember that any value in the stack
has e�ect only when it is popped out from the stack and not when it is pushed

CHAPTER 6. A MCSPLIT CUDA IMPLEMENTATION 63

Figure 6.1: Stack and current solution during naive labelling approach

in.
In the example in �gure, the initial possible values are marked in blue, and

pair 〈0, 0〉 has already been popped out and put in the solution array. Now, con-
sidering pairs already in the solution, a function computes label classes for each
remaining vertex from both the input graphs, and push in the stack all combina-
tions of pairs composed by vertices with matching labels (identi�ed in orange in
Figure 6.1).

Before and after pushing such pairs on the stack, the two reserved sequences
are pushed, so that 〈−1, 0〉 come before and 〈0,−1〉 at the end. In this way the
next pair that is popped out is 〈0,−1〉, the current solution position is increased
from 0 to 1, and the algorithm starts popping out orange pairs that are put in the
second position. For each of them, more vertices will be pushed in the stack for
the third position and so on. When every orange pair has been popped, 〈−1, 0〉
is extracted, and the solution position returns to 0, pair 〈0, 1〉 selected and the
algorithm continues until every blue pairs have been popped. Every time a better
solution is found, it is stored in the incumbent solution, similarly to the standard

CHAPTER 6. A MCSPLIT CUDA IMPLEMENTATION 64

algorithm.
As you may have noticed, the just described stack implementation is not re-

ally feasible. At the beginning of the algorithm any pair of vertices can be se-
lected to be the �rst one, thus the �rst entries of the stack are occupied by all the
possible combination of vertices from the two input graphs. The number of such
pairs is the product of the degrees of the two input graphs, so it quickly increases
with the increasing of the input graphs degree.

For each possible starting pair, the algorithm begins and perform its compu-
tations. Thus an easy optimisation would be to put the algorithm, inside two
nested for loops, that iterate on every nodes of the input graphs respectively,
and for each inner iteration only one of the possible starting pair is pushed in
the stack for the algorithm.

In such a way the resulting algorithm remains the same, but we don’t have
to store in the stack every combination of vertices since the beginning.

Downsides

A fundamental aspect for any branch and bound algorithm that attempts to solve
the maximum common subgraph problem, is that it must be able to e�ciently
prune the most of the branches in order to not waste computing resources on
paths that don’t lead to better solutions.

Unfortunately, this naive approach to labels re-computations, doesn’t allow
to e�ciently calculate a bound for each new branch. Indeed, every time a new
pair is selected and put in the solution, we have to compute the bound of the new
branch by going re-computing the label for each of other vertices, and counting
how many vertices with the same label there are in the two graphs, then sum
the minimum value for each label class, applying in practical the bound formula
(3.1).

Moreover, the necessity to store separately each vertex pair belonging to the
same label class, instead of grouping them into a bidomain that is able to con-
tain them all, leads to a quickly increasing stack size with the progress of the
algorithm, and this may fast become unfeasible.

The bound calculation operation, applied each time a new pair is popped
from the stack, together with the memory management aspects, leads to massive

CHAPTER 6. A MCSPLIT CUDA IMPLEMENTATION 65

slowdowns that actually goes against the purpose for which this approach has
been created, and make questionable its use in order to solve the problem in
reasonable time.

6.2 New bidomains stack

The next step of our work was to keep what of good there was in previous ver-
sion, i.e. the structural simplicity and the recursion simulation with a stack com-
posed by small entries and try to improve it by reinserting some advanced feature
from the standard algorithm, opportunely modi�ed for this purpose. The main
structure with a stack and a while loop has been maintained, but the internal
logic has been heavily modi�ed.

An important need that had to be satis�ed was being able to group again
vertices in label-classes, because storing all of them separately, at each research
level, were completely unfeasible. Another fundamental aspect of course was
to keep the algorithm iterative, because deep recursion is not feasible in CUDA
environment.

In order to solve this �rst two problem the stack has been redesigned to store
bidomains data, in an optimised form. New items are pushed in it every time a
new set of bidomains is created, but then they are popped out only after every
pairs of vertices contained in such bidomains has been selected and explored.

The stack has became a matrix with eight columns and variable number of
rows. Each column is one unsigned char size, so that each stack entry is eight
byte long, similarly to one described in the previous section, that contained two
integer values.

The purpose of this new algorithm is to emulate the most possible the be-
haviour of the standard McSplit algorithm, but at the same time to keep the
code the most possible compact and simple.

Current solution and incumbent structures has been replaced by unsigned

char matrices of two rows and variable columns. For sake of simplicity and code
readability, in our purposes we used over-allocated static matrices for bidomains
stack and solutions.

The use of unsigned char for values storing may seem a too narrow restric-
tion, but actually numbers that will be stored in such variables are at most as

CHAPTER 6. A MCSPLIT CUDA IMPLEMENTATION 66

large than the degree of the larger input graph, thus we can handle graphs with
up to 255 vertices (value 255 is reserved for the algorithm utility). Considering
the high complexity of the problem, and the large amount of time necessary to
solve it with graphs with just 50 nodes, we believe that unsigned char is by
far large enough to work with, at least in an academic context. Machines able to
deal with maximum common subgraph problem and graphs larger than 255 ver-
tices in reasonable time should be also provided with much more memory than
normal consumers personal computers, so the same algorithm could be adjusted
to work with unsigned integers too. Moreover, stack entries of eight bytes al-
low a better memory alignment of the stack that can lead to bene�ts in memory
performances and addresses calculation.

The set of the eight increasing integers numbers that are the indices of columns
of the stack has been rede�ned with letters for improved readability, so in all the
presented code, until the end of this chapter, the following de�nitions hold:

• #define 0 L

• #define 1 R

• #define 2 LL

• #define 3 RL

• #define 4 ADJ

• #define 5 P

• #define 6 W

• #define 7 IRL

where each value stands respectively for Left, Right, Left Length, Right Length,
Adjacent, Position, last W, Initial Right Length.

The �rst �ve values actually correspond to the ones included in the bido-

main_t data structure, described in Chapter 4, with the same meaning. L and R

are also used to identify the two rows in current solution and incumbent matri-
ces, such that the �rst row, containing vertices from the left graph has index L

CHAPTER 6. A MCSPLIT CUDA IMPLEMENTATION 67

and the second row, containing vertices from the right graph, has index R. You
can see Figure 6.2 to better understand how these data structures are formed.

The remaining three columns in the stack are used to store values that are
necessary to the execution of the algorithm. In fact, given that we cannot count
on recursion properties that restore values of certain variables when backtrack-
ing, we need to explicitly store some values from previous iterations in the stack
in order to restore them manually when needed.

The new algorithm working

The main logic of the new algorithm is pretty much similar to the standard al-
gorithm one: at each iteration of the main while cycle, we choose a vertex from
left bidomain and a vertex from right bidomain, then we put them in the solution
and we compute the new bidomains depending on the vertices we just chose.

If you remember, the practical selection of a vertex is performed by swapping
it with the one at the end of the bidomain and by decreasing bidomain size. When
removing vertices from the right bidomain, we also must be able to put them
back again, because they must be matched with every possible vertex from the
left bidomain. In the recursive algorithm, this is simply done exploiting recursion
properties. When backtracking to lower recursion levels, deeper bidomains, that
have been shortened removing vertices, are destroyed, the old ones has not been
touched by deeper recursions, and the algorithm can continue with consistent
data structures. Instead, due to the logic of the McSplit algorithm, for vertices
in the left bidomain the management is simpler, because once we have removed
them from the bidomain, we never need to restore them.

Now that recursion is removed, however, we have lost its automatic restoring

property: when we select a vertex from the right bidomain and we decrease its
size, the starting size must be stored somewhere in order to be able to restore it
when every right vertices has been matched with the selected left vertex. The
values of the last column of the stack have precisely this purpose, every time a
new bidomain is creates, is there stored the initial value of RL, for future utility.

In a similar way, after the recursive call placed inside the for cycle of the
standard recursive solve function returns, we continue the cycle as if nothing
happened, thus we know which right vertex we just selected and we can correctly

CHAPTER 6. A MCSPLIT CUDA IMPLEMENTATION 68

Figure 6.2: Example of the possible state of bidomains stack and current solution
matrices after three iterations of the algorithm

pick the next one for the next recursion.
Since we now don’t have such recursive call for each iteration, we designed

the second-last element in the stack for keeping track every time of which right
vertex has been just selected, in order to correctly pick the next one.

Finally, any bidomains set were valid only for the execution of a certain re-
cursion level: higher levels were handled with new bidomains created by fil-

ter_domains function, and lower levels were handled by old bidomains. Now all
bidomains coexist on the same stack, and we have to separate them depending
on the solution level for which they are valid. Thus we used the last free value
in the stack to store the position in the solution for which the bidomain is valid.
This value allows us to separate bidomains, and correctly calculate bounds and
selecting the best bidomain at each new iteration of the algorithm.

A practical example

In Figure 6.2 is presented the state of the stack as it would be at the end of the
same example we already followed in Figure 3.4, so we can now better understand
what we just illustrated in previous paragraphs. Same colour code has been used
to provide a readable parallelism between the two examples.

CHAPTER 6. A MCSPLIT CUDA IMPLEMENTATION 69

Initially, since both n0 and n1 are 10, the �rst bidomain pushed into the stack
should be [0, 0, 10, 10, 0, 0, 255, 10]. The �rst �ve numbers are the
same of the standard bidomain structure, then in P position there is 0, as the �rst
bidomain is valid for the �rst position of the solution, in position W there is 255,
meaning that no vertex has been selected from right bidomain yet, and �nally,
in position IRL the initial value of RL is stored, that is 10.

Since �rst few iterations of the algorithm have already been done in this
example, the �rst pair 〈0,0〉 for position 0 has already been formed, pairing 0

from left bidomain and 0 from right bidomain. Thus we can see that the blue

bidomain, has values [0,0,9,9,0] (both left and right length of the bidomain
were decreased when �rst values have been picked), with position 0, last vertex
chosen from right bidomain is 0 and the initial value of RL was 10.

When the algorithm will have explored every solution containing 〈0,0〉 and
thus it will have popped everything else from the stack and will be returned down
to �rst position, it will be able to correctly select the second lowest value after
0 from the right bidomain, that is 1 and create pair 〈0,1〉, from which continue
the execution.

From pair 〈0,0〉 and bidomain in position 0, two new bidomains are created
and pushed on the stack in position 1 and 2, following the same logic of the stan-
dard algorithm. As you can see, the red bidomain still has not been considered,
so the RL column and IRL column contain the same value.

Bidomain in position 2 is selected for position 1 of the solution, and pair 〈2,1〉
is added to the mapping. Four more bidomains with P=2 are obtained by splitting
the ones available with P=1 and considering the current solution [〈0,0〉, 〈2,1〉].
The last one in the stack is picked and pair 〈4,5〉 is put in the solution and so on
and so forth.

For each branch the bound upper bound is calculated in the same way of
previous versions, by applying the bound formula (3.1) reading backwards the
stack as long as bidomains with same P value than the last one are found. When
a branch hits the bound, backtrack is performed by removing the whole set of
bidomain with the same P from the last positions of the stack. The while cycle
restart and the same bidomain of the previous iteration is selected.

Every time we have to pick new values from the right bidomain, we use the
value stored in position W in order to select the correct subsequent vertex, instead

CHAPTER 6. A MCSPLIT CUDA IMPLEMENTATION 70

1 add_bidomain(domains , &bd_pos , 0, 0, n0, n1, 0, 0);
2 while (bd_pos > 0) {
3 bd = &domains[bd_pos - 1][L];
4 if (calc_bound (...) <= *inc_pos ||
5 (bd[LL] == 0 && bd[RL] == bd[IRL])) {
6 bd_pos --;
7 } else {
8 v = select_next_v(left , bd);
9 if ((bd[W] = select_next_w(right , bd)) != UCHAR_MAX) {

10 w = right[bd[R] + bd[W]];
11 //... swap w with vertex at the end of domain
12 bd[W] = w;
13

14 cur[bd[P]][L] = v;
15 cur[bd[P]][R] = w;
16 update_incumbent (...);
17 generate_next_domains (...);
18 }
19 }
20 }

Source 6.1: The core cycle of the new iterative version of McSplit algorithm.

the vertex of the left bidomain should remain the same of the last pair previously
created from the bidomain. In order to select again the one that previously we
moved out of the bidomain, the �rst vertex past the end of the left domain is
picked.

When every vertices of the right bidomain has been paired with the same
vertex from the left bidomain, and thus we need to pick a new vertex from left
bidomain and pair it again with every vertices of the right bidomain, we will be
in a situation in which the corresponding stack entry has LL , 0 and RL = 0.
We restore the initial value of RL reading it from IRL, select a new vertex from
left bidomain and normally continue the execution. In such a way, every time a
bidomain with RL == IRL is selected from the stack, the algorithm knows it has
to select a new vertex from the left bidomain and not to going to pick it from the
�rst position past the end od the domain.

Finally, when a bidomain is selected and LL = 0 and RL == IRL, this means
that every possible pair has already been explored, the bidomain is empty and
thus popped out from the stack.

Source 6.1 illustrates the core while cycle we just discussed. It has been de-

CHAPTER 6. A MCSPLIT CUDA IMPLEMENTATION 71

signed to be the most compact possible in the main structure and variables utili-
sation. Thus, for example column W of the stack is also used during the iteration
as a temporary variable where it is stored the index in the right array of the new
value that must be put in the solution pair. The full code of this new iterative
version is reported in Appendix A and C.

Bidomains selection

Following this approach, every time a bidomain has been completely explored,
we remove it from the stack and we pick the immediately following one, as in-
tended in the functioning of a stack data structure. Doing so, we lose one impor-
tant optimisation featured by the original McSplit algorithm.

Indeed, the algorithm just presented, without any modi�cations, performs
signi�cantly worse than the original on any instance with graphs larger than 15
nodes. This performance drop is in large part due to the lack of a proper heuristic
approach to choose which bidomain select each time, and just by picking the �rst
one on the stack. However it is pretty easy to implement function an equivalent
to select_bidomain from the original implementation. The new function just
goes backwards in the stack, considering the bidomains with the same P value
than the one on the top of the stack, and compute the best domains by applying
the same heuristic of select_bidomain. Then it exchange the best bidomain
found with the one in the top of the stack. After this operation the algorithm
continues normally.

6.3 Launching the new version in CUDA

environment

We just introduced a new iterative implementation of the McSplit main func-
tion that is provided with very compact code, much less memory usage than the
original implementation and no recursive calls in its body.

What we wanted to obtain from here was a function suitable to be executed in
a CUDA kernel function, in order to exploit huge parallel computing power of the
GPU to balance the sequential performance drop and eventually gain something
in terms of computing time. As we will explain in the next chapter, this did not

CHAPTER 6. A MCSPLIT CUDA IMPLEMENTATION 72

Figure 6.3: Example of the arrays containing thread arguments and the start and
end indices for each thread.

happen, but it is still interesting to analyse the results and take note of what it
still can be done in order to improve performances.

Given that a fundamental aspect of GPU computing is that many threads have
to compute something on multiple data instances, but the maximum common
subgraph problem does not start with such great amount of data, the idea here
is to allow the CPU to start the algorithm as a normal sequential execution, then
when a certain depth level has been reached1, for instance the �fth one, instead
of pushing new bidomains on the stack, it uses them to �ll a separate array of
bidomains.

When enough bidomains has been put in the separate array to ful�l the need
of large amount of data, the array is copied on the GPU and a kernel is launched
so that parallel threads can process lots of branches in parallel. Each GPU thread
must face with the whole bunch of bidomains coming from the same branch, in
order to correctly calculate bounds and next level domains. Thus a second data
structure is introduced storing the start indices in the arguments array for each
thread. This allows each GPU thread to pick the correct amount of bidomains
from the arguments list (of course it starts from the start index assigned to it and
it stops at the start index assigned to the following thread, or at the end of the
arguments), you can visualise this concept in Figure 6.3.

This approach has been �rst used to produce a CPU multi-thread version of
1since no recursion is present, but it is simulated, the term depth here is intended as a virtual

recursion depth

CHAPTER 6. A MCSPLIT CUDA IMPLEMENTATION 73

this code, that makes use of a smaller thread pool, compared with GPU threads
number, but replicates the same behaviour of using a main thread inserting at a
certain level bidomains in an array and then let the thread pool to continue the
algorithm in parallel on each of them.

As for the sequential implementation of this iterative approach, the full code
for the �nal GPU version of our algorithm is reported in Appendix B and C.

As we anticipated, unfortunately, counting on parallel computational resources
is not enough to overcome structural incompatibility of the McSplit algorithm
and, more generally, of the maximum common subgraph problem with the GPU
environment. We will better discuss main reasons of non optimal performances
of the CUDA implementation while analysing tests results, in the next Chapter.

Chapter 7

Results

We are going now to present some result from testing phase of our code ver-
sions, compared to original implementations produced by [McCreesh, Prosser,
and Trimble 2017]. As well as our colleagues from Glasgow did, we tested our
code using the ARG database of graphs provided by [Foggia, Sansone, and Vento
2001] and [De Santo et al. 2003] from Università degli Studi di Salerno.

Tests has been performed on a machine initially con�gured for private gam-
ing purposes, running Ubuntu 18.04 LTS, and provided with over-clocked Intel
i7 4790k (@4.4GHz) processor, 16GB (@2133MHz) of main memory, and over-
clocked Nvidia GTX 980 (@1300MHz) graphic card, with 4GB of dedicated fast
memory and 2048 CUDA cores belonging to Compute Level 5.2.

Datasets description

The ARG database is composed by several class of graphs, randomly gener-
ated according to six di�erent generation strategies with various parameters
settings. The result is a huge dataset of 168 di�erent types of graphs and a to-
tal of 166.000 di�erent graphs, for more information on the ARG database visit
https://mivia.unisa.it/datasets/graph-database/arg-database/.

For our purposes, we selected only a subsection of the dataset, containing
graphs pairs already already prepared to have maximum common subgraph of
a certain size. In particular we used mcs10, mcs30, mcs50, mcs70 and mcs90

categories, that mean graphs pairs with maximum common subgraphs corre-
sponding to 10, 30, 50, 70 and 90 percent of the original graphs size. For each of

74

CHAPTER 7. RESULTS 75

these categories several generation strategies are present, such as bound-valence
graphs (bvg) or graphs generated using 2D, 3D or 4D meshes with di�erent pa-
rameters. Starting from this subset of the ARG database we reduced again the
number of instances we tested by selecting only graphs pairs with less than 40
vertices. This choice was only aimed to execute tests and collect benchmark data
on di�erent execution of the tests, and we removed larger instances in order to
keep benchmark execution time low enough to not keep busy the machine for
more than half a day.

The resulting dataset we obtained is composed by 2750 graphs pairs, that is
small enough to make benchmarks feasible in few hours, various enough to test
the performances on di�erent graph types, easy and hard instances, and at the
same time large enough to have many instances of each type on which test the
implementations.

Summary of tested versions

Starting from the two main versions provided by the authors of the McSplit algo-
rithm, which have main version identi�er 0, �ve more code versions have been
tested. In this chapter we will refer to them as follows:

– Version 0.1: Original code, a CPU single-thread implementation written in
C++, developed by James Trimble;

– Version 0.2: Original code, a CPU multi-thread implementation written in
C++, developed by James Trimble;

– Version 1: Derived code, version strictly derived from some sequential C
implementation developed by James Trimble, with modi�cation aimed to
keep it more coherent with following versions;

– Version 2: Derived code, CPU multi-thread implementation based on ver-
sion 0.2, of which this is nothing but a translation in C language, with
coherent syntax;

– Version 3: New code, a CPU single-thread implementation that removes
recursion and decreases memory usage;

CHAPTER 7. RESULTS 76

– Version 4: New code, a CPU multi-thread implementation created as a tran-
sition from v3 to a proper CUDA implementation

– Version 5: New code, a CPU-GPU many-thread implementation, based on
v3 and v4;

All versions from 1 to 5 have been written in C language.
Note that the not every version presented here has been developed giving

much importance to performances, rather trying to explore the feasibility of new
approaches in developing a maximum common subgraph algorithm in CUDA
environment. For instance, as you will further see, version 4 is completely out of
scale in terms of performances, compared to any other version. This is because
it represent a link that explore the possibility to run the algorithm implemented
in version 3 on more thread that are completely independent one of each other
instead of cooperating. Indeed the same system is used on a wider scale in version
5, that still is not so much competitive, but signi�cantly better than version 4,
although they make use of the same approach.

Moreover, the original versions were tuned and optimised for several month,
during the drafting of a doctoral thesis, that implies much more resources and
time than what we had for our work.

7.1 Analysis of the results

In the following we will compare the performances of the di�erent code versions
we just reported above.

We will start with a bunch of separate plots in which only some version is
included, depending on some main features such as the �ow structure or the
programming language with which they are written. Doing so will allow us to
explore performances more closely on versions that are similar under certain
aspects, then we will compare them together in order to see advantages and
disadvantages of each version.

In Figure 7.1a and Figure 7.1b are illustrated the sequential and parallel ver-
sion of the original McSplit implementation, the starting point of our research,
written in C++ language and C language respectively.

CHAPTER 7. RESULTS 77

2750

 0

 500

 1000

 1500

 2000

 2500

10-� 10-� 10-� 10-� 100 101

N
�
�
�
�
�

s
	

�
�
�

R����� (s)

v0.1
v0.2

(a) Original C++ versions

2750

 0

 500

 1000

 1500

 2000

 2500

10-� 10-� 10-� 10-� 100 101

N
�
�
�
�
�

s
	

�
�
�

R����� (s)

v1
v2

(b) Original C versions

Figure 7.1: Cumulative number of instances (y axis) solved in under a certain
time (x axis).

Graphics are intended to be read as follow: given an execution time thresh-
old on the x axis, the relative y value indicates the number of problem instances
solved by the algorithm under such threshold. The abscissa axis has logarithmic
scale, while the ordinates axe is standard linear. For instance, reading the C++
graphic, we can read that the parallel version solved just over 2000 instances, out
of 2750, in less than 10−1 seconds. The sequential version took about four times
the time to solve the same number of instances. Note that a slower start is present
in multi-threaded versions, due to higher computing overhead for threads instan-
tiating, thus none of the multi-thread versions can be considered faster than any
sequential version to solve any small and easy instance.

Nevertheless, starting from runtimes around 10−3 − 10−2 seconds, parallels
version quickly recover the performance gap and actually start performing sig-
ni�cantly better for every remaining instances, with speedups up to almost an
order of magnitude.

In Figure 7.2a, there are illustrated the two new versions without recursion
that we introduced in the previous chapter. It is immediately clear that the se-
quential version (v3) performs more or less the same as the recursive corespon-
dents. On the contrary, the multi-thread iterative version (v4) is actually the
worst performing version of the group. This fact can be explained by remem-

CHAPTER 7. RESULTS 78

2750

 0

 500

 1000

 1500

 2000

 2500

10-� 10-� 10-� 10-� 100 101

N
�
�
�
�
�

s
	

�
�
�

R����� (s)

v3
v4

(a) New iterative versions

2750

 0

 500

 1000

 1500

 2000

 2500

10
-3

10
-2

10
-1

10
0

10
1

N
u
m
b
e
r
s
o
lv
e
d

Runtime (s)

v5

(b) CUDA version

Figure 7.2: Cumulative number of instances (y axis) solved in under a certain
time (x axis).

bering that such version was only developed to explore the possibility to imple-
ment the sequential algorithm in a multi-thread but non-collaborative way. Thus
threads in this implementation are independent, and performances can better
scale by increasing the number of threads, what is desirable attempting a CUDA
implementation.

In Figure 7.2b, the performances of the CUDA version of the iterative ap-
proach is plotted. You can see that this version is signi�cantly slower than any
other to start, this is obviously due to the high computing overhead necessary
to reset and initialise the CUDA environment. You can also clearly see that the
plot has a �at step in the bottom part. This phenomena is due to the fact that the
algorithm runs on the CPU up to the �fth depth level of the virtual research tree
and only after such level branches are delegated to GPU threads. In any instance
for which the solution turns out to be very small (i.e. a maximum common sub-
graph with up to 5 vertices), actually the GPU is never called into question, and
the computation is entirely done by the CPU. Such instances, in our database are
about 260, and they are the �rst growing part of the plot, up to the step. Then
when instances begin to have larger solutions, and thus also the GPU is used
to solve them, a gap is formed due to the need of copying data to and from the
GPU. For this reason instances that make use of the GPU can not run for less than

CHAPTER 7. RESULTS 79

about 20 milliseconds, and this determine the gap in the graphic. From there on,
performances increases much faster than any other version, actually going to al-
most equalise CPU parallel versions in number of timeout instances, even with
a much slower start.

2750

 0

 500

 1000

 1500

 2000

 2500

10-� 10-� 10-� 100 101

N
�
�
�
�
�

s
�
	

�
�

R����� (s)

v0.2
v2
v4

(a) Multi-thread summary

2750

 0

 500

 1000

 1500

 2000

 2500

10-� 10-� 10-� 100 101

N
�
�
�
�
�

s
�
	

�
�

R����� (s)

v0.1
v1
v3

(b) Sequential summary

Figure 7.3: Cumulative number of instances (y axis) solved in under a certain
time (x axis).

Back to results, in Figure 7.3a, is plotted a summary of the three CPU-only
multi-thread versions. Here can be better observed that the iterative multi-thread
version perform worse up to two orders of magnitude with respect to the original
parallel versions. Moreover, it is possible to notice that the parallel C++ version
performs generally better for instances of simpler and medium di�culty, while
going up to harder instances, performances of the two algorithms are more or
less the same, with almost negligible speedup for the C version.

A di�erent situation is shown in Figure 7.3b, where we can see that all the
three versions of the code performs more or less the same, with a gap of about
half an order of magnitude between the slowest and the fastest version. It is
interesting notice that for the sequential approach, the iterative approach is the
fastest one.

Finally, in Figure 7.4 is plotted a larger summary of every tested version to-
gether, where overall comparison is possible.

In this graphic you can see that the original parallel versions, both C and

CHAPTER 7. RESULTS 80

2750

 0

 500

 1000

 1500

 2000

 2500

10
-3

10
-2

10
-1

10
0

10
1

N
u
m
b
e
r
s
o
lv
e
d

Runtime (s)

v0.1

v0.2

v1

v2

v3

v4

v5

Figure 7.4: Cumulative number of instances (y axis) solved in under a certain
time (x axis).

C++ ones, still are the best performing implementations. It is worth noting that
the CUDA implementation, even if not competitive with the original parallel
implementations, still is preferable to the simpler original C sequential version
for every runtimes higher than one second. So for harder instances, CUDA can
be helpful. In addition to this consideration, it can be noted that the tangent
line to the curves in the timeout point, at 10 seconds, is almost horizontal for
the original parallel versions, while it is more inclined for the CUDA one. This
let us imagine that for even harder instances, or giving more time to solve each
instance the CUDA implementation could slightly recover the performance gap
between itself and the original parallel implementations. Anyway, looking at the
thread it is not reasonable to imagine that the CUDA version could become faster
than the original implementations for reasonably short runtimes (i.e. under 100
seconds).

Anyway, given that CUDA utilisation usually, for certain problem categories,

CHAPTER 7. RESULTS 81

can lead to speedups up to several order of magnitude, it is evident that for our
circumstances, the performances of our CUDA implementation de�nitely do not
meet our expectations and our hopes.

7.2 CUDA best practice violation

Now that we have analysed result and compared the main versions discussed in
this thesis, we are going to advance some hypothesis to explain the reason why
the current CUDA implementation of McSplit algorithm does not perform as we
hoped.

As we explained in Section 5.4.2, the two main aspect that in�uences the
performances of a CUDA kernel are the principle of data locality and the branch
divergence.

The �rst one needs to be maximised, so that when threads in the same warp
access to a variable in their local memory, each request can be grouped in one
single memory fetch of consecutive memory locations, and the the kernel takes
advantage in terms of memory bandwidth.

The second aspect, the branch divergence, needs to be minimised the most as
possible, since every time threads in the same warp hit a branch instruction and
they take di�erent routes, the whole warp execute both the routes sequentially,
with part of the treads stalling for the �rst route instructions and part of the
threads stalling for the second ones. In this way the di�erent branch paths are
not executed in parallel but sequentially, and their execution time is added up.

Moreover, if one or few threads take a signi�cantly longer route compared
to any other thread during the same kernel execution, it or they will necessarily
be waited by every other thread, that meanwhile is in a stall situation.

In Figure 7.5 we can see represented the reasons why threads of each kernel
launch end up in a stall situation. Three main reasons can be easily identi�ed:
synchronisation, memory dependency and execution dependency.

Starting from the main one, with 41% of stalls, it is due to synchronisation
issues. They happen when a thread warps are blocked on a __syncthreads in-
struction. In our code, at the end of each thread function, it is necessary to wait
that every thread has �nished their work, in order to retrieve to the CPU the
correct best solution found during the kernel execution. But as we said many

CHAPTER 7. RESULTS 82

Figure 7.5: A chart representing main stall reasons of the CUDA kernel function.

times, discussing about the maximum common subgraph problem, the McSplit
algorithm and its parallel implementations, the workload for each thread is in-
herently heavily unbalanced. Threads can compute branches of the research tree
with very di�erent depth one from each other, ending up with a situation in
which the majority of threads stalls at the end of the thread function waiting
that slower threads �nish their work.

The second main reason of stall is due to memory dependencies, i.e. when a
load or store operation needs to wait for free memory bandwidth. This situation
happens frequently in our code, where data locality principle is not possible, be-
cause each thread has a separate stack to simulate recursions, that is allocated
in the local memory of each thread. Thus, every time a location of the stack is
accessed, a memory fetch has to be performed, and such requests cannot be coa-
lesced within threads in the same warp, because each threads access to di�erent
cells of respective stack that are not close in memory.

The third signi�cant reason why threads stall is due to execution dependency,
i.e. when an instruction is stalled waiting for one or more arguments to be ready.
It could be avoided by increasing instruction-level parallelism, but of course it is
not so simple, because we also have to take into account how many registers are
reserved for each thread, and the maximum number of registers available for each

CHAPTER 7. RESULTS 83

Figure 7.6: Extract from the pro�ling analysis executed by Nsight showing prin-
cipal divergent instruction in the code.

block, that is an important limit for increasing threads number and instruction
parallelism.

In addition to the stalls chart, it is also interesting to observe that some branch
instructions in the kernel function show an high amount of divergence during
the execution. In Figure 7.6, are indicated the most divergent instruction inside
the body of the kernel function. Note that the worst one, at line 325 of the �le
(cf. Appendix B), correspond to the branch where we calculate the bound of the
current branch and eventually prune it. Taking a route rather than the other, is
signi�cantly di�erent, because in the �rst case, we execute the body of the while
loop of the kernel function and compute new solutions and new domains as it is
supposed to work the algorithm, in the other case, we prune the branch and skip
to the next while loop iteration. The other relevant branches that present high
divergence (around 20%), are again branches inside the main while loop of the
kernel function. This lead to overall high percentage of branch divergence in the
core of the kernel function, limiting a lot the maximum instruction throughput
reachable by the kernel.

Chapter 8

Conclusions

The main purpose of this thesis was to explore the possibility to implement very
complex subgraph algorithm in the CUDA environment. They are usually very
hard to solve, and lots of attempts with di�erent approaches have been done
trying to solve them e�ciently. The main issue we encountered is that often best
algorithms are based on complex data structures and recursion, both features that
doesn’t suit well with GPU computing.

Aware that this would not have been an easy job, we decided to continue to
analyse one of the most e�cient existing approach, i.e. the McSplit algorithm,
in order to adapt it to run in CUDA. Our goal was, to reach some interesting
speedup in the CUDA implementation of the algorithm, since when it is possible
and it is well applied, GPU computing can brings huge bene�ts on algorithms
execution time.

We tried several di�erent approaches to do so, we tried to re-implement the
the McSplit algorithm using new data structures, more suitable for CUDA envi-
ronment, and we explored di�erent multi-threading paradigms, exploiting prior-
ity queues, stacks, circular bu�ers and other tasks management systems trying to
�nd the best one to e�ciently handle job when hundreds or thousands of threads
are involved.

Unfortunately, as shown in the previous chapter, our results have clearly not
been satisfying as we hoped. We hit hard against the great complexity of solving
the maximum common subgraph problem on many-core architectures.

In fact we would have needed large amount of initial data to work with on

84

CHAPTER 8. CONCLUSIONS 85

the GPU, but initial data for our problem is nothing but a couple of graphs with
at most some dozens of vertices, not properly a large data-set.

We also have needed a simpler execution �ow, that included only some arith-
metical instruction on input data, and not a highly recursive algorithm with com-
plex data structure to be maintained.

But, of course, if we had have all above features naturally provided by the
problem, it would have been an embarrassingly parallel problem, and it would
not have been hard to be implemented in the CUDA environment and actually
not so interesting or innovative trying to do it.

Future work

Our work stops on this thesis and probably we will not continue to work on this
argument, in our opinion, not so much can be done further in order to improve
our code.

One of the �rst things that should done before trying to further develop our
implementation, that we did not for lack of time, would be to perform more
tests on the CUDA implementation, compared with the fastest CPU parallel one,
with larger graphs and longer timeout, at least a hundred or a thousand seconds,
that allows to add one or two quadrants on the right to the performances plots
that we illustrated in the previous chapter. Then it will be possible to better
analyse the behaviour of the implementations on hard instances, to see if some-
how CUDA implementation could become advantageous compared with the CPU
multi-thread version.

Given the main functioning of GPU computing, that uses SIMD paradigm,
it is very di�cult to adapt a inherently unbalanced recursive algorithm to such
paradigm. In fact, as we said, one of the main issue of the CUDA implementation,
and in our opinion the main reason why the code performs worse than what we
expected, is the high branch divergence due to unbalanced workload for each
GPU thread. This, in our opinion, is a main feature of the maximum common
subgraph problem, and of the McSplit algorithm.

Anyway, supposing to hide the ine�ciency due to branch divergence with a
higher number of threads, it would be interesting trying to develop a new solu-
tion based on asynchronous kernel functions and a multi-thread base program

CHAPTER 8. CONCLUSIONS 86

on the CPU. It would be possible to quickly produce a huge number of branch
data with CPU multi-threading, let us say, for example, at the eighth depth level
of the research tree. Then every time a large enough set of branch data is ready,
it could be copied on the GPU and the CPU immediately start to compute other
branches and spawn more kernels. In this way, more branches would be created,
copied on the GPU and computed, even if they would be pruned if the correct
best solution was been retrieved from the previous kernel, actually creating more
useless work for the GPU. But at the same time, we could keep both the CPU and
the GPU continuously busy computing branches of the research tree, updating
the best solution in an asynchronous fashion.

Appendices

87

Appendix A

V3: sequential iterative code

1 #include <argp.h>
2 #include <limits.h>
3 #include <locale.h>
4 #include <stdbool.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <time.h>
9

10 #include "graph.h"
11

12 #define L 0
13 #define R 1
14 #define LL 2
15 #define RL 3
16 #define ADJ 4
17 #define P 5
18 #define W 6
19 #define IRL 7
20

21 #define BDS 8
22

23 #define MIN(a, b) (a < b)? a : b
24

25 #define STACK_RESIZE 4
26

27 typedef struct stack {
28 unsigned pos , size;
29 int (*stack)[BDS];
30 }stack;
31

32 static struct argp_option options [] = {

88

APPENDIX A. V3: SEQUENTIAL ITERATIVE CODE 89

33 {"quiet", ’q’, 0, 0, "Quiet␣output"},
34 {"verbose", ’v’, 0, 0, "Verbose␣output"},
35 {"lad", ’l’, 0, 0, "Read␣LAD␣format"},
36 {"timeout", ’t’, "timeout", 0, "Set␣timeout␣of␣TIMEOUT␣

milliseconds"},
37 {"connected", ’c’, 0, 0, "Solve␣max␣common␣CONNECTED␣

subgraph␣problem"},
38 { 0 }
39 };
40

41 static char doc[] = "Find␣a␣maximum␣isomorphic␣graph";
42 static char args_doc [] = "FILENAME1␣FILENAME2";
43 static struct {
44 bool quiet;
45 bool verbose;
46 bool connected;
47 bool lad;
48 int timeout;
49 char *filename1;
50 char *filename2;
51 int arg_num;
52 } arguments;
53

54 void set_default_arguments () {
55 arguments.quiet = false;
56 arguments.verbose = false;
57 arguments.lad = false;
58 arguments.timeout = 0;
59 arguments.connected = false;
60 arguments.filename1 = NULL;
61 arguments.filename2 = NULL;
62 arguments.arg_num = 0;
63 }
64 static error_t parse_opt (int key , char *arg , struct argp_state

*state) {
65 switch (key) {
66 case ’l’:
67 arguments.lad = true;
68 break;
69 case ’q’:
70 arguments.quiet = true;
71 break;
72 case ’t’:
73 arguments.timeout = strtol(arg , NULL , 10);
74 break;
75 case ’v’:
76 arguments.verbose = true;
77 break;
78 case ’c’:

APPENDIX A. V3: SEQUENTIAL ITERATIVE CODE 90

79 arguments.connected = true;
80 break;
81 case ARGP_KEY_ARG:
82 if (arguments.arg_num == 0) {
83 arguments.filename1 = arg;
84 } else if (arguments.arg_num == 1) {
85 arguments.filename2 = arg;
86 } else {
87 argp_usage(state);
88 }
89 arguments.arg_num ++;
90 break;
91 case ARGP_KEY_END:
92 if (arguments.arg_num == 0)
93 argp_usage(state);
94 break;
95 default: return ARGP_ERR_UNKNOWN;
96 }
97 return 0;
98 }
99 static struct argp argp = { options , parse_opt , args_doc , doc };

100

101 uchar **adjmat0 , **adjmat1 , n0, n1;
102 uint max_dom = 0;
103 struct timespec start;
104

105 void uchar_swap(uchar *a, uchar *b){
106 uchar tmp = *a;
107 *a = *b;
108 *b = tmp;
109 }
110

111 bool check_sol(graph_t *g0, graph_t *g1 , uchar sol[][2], uint
sol_len) {

112 bool *used_left = (bool*) calloc(g0->n, sizeof *used_left);
113 bool *used_right = (bool*) calloc(g1->n, sizeof *used_right);
114 for (int i = 0; i < sol_len; i++) {
115 if (used_left[sol[i][L]]) {
116 printf("node␣%d␣of␣g0␣used␣twice\n",

used_left[sol[i][L]]);
117 return false;
118 }
119 if (used_right[sol[i][R]]) {
120 printf("node␣%d␣of␣g1␣used␣twice\n",

used_right[sol[i][L]]);
121 return false;
122 }
123 used_left[sol[i][L]] = true;
124 used_right[sol[i][R]] = true;

APPENDIX A. V3: SEQUENTIAL ITERATIVE CODE 91

125 if (g0->label[sol[i][L]] != g1->label[sol[i][R]]){
126 printf("g0:%d␣and␣g1:%d␣have␣different␣labels\n",

sol[i][L], sol[i][R]);
127 return false;
128 }
129 for (int j = i + 1; j < sol_len; j++) {
130 if (g0->adjmat[sol[i][L]][sol[j][L]] !=

g1->adjmat[sol[i][R]][sol[j][R]])
131 {
132 printf("g0(%d-%d)␣is␣different␣than␣

g1(%d-%d)\n",sol[i][L],sol[j][L],
sol[i][R], sol[j][R]);

133 return false;
134 }
135 }
136 }
137 return true;
138 }
139

140 void update_incumbent(uchar cur[][2], uchar inc[][2], uint
cur_pos , uint *inc_pos){

141 if(cur_pos > *inc_pos){
142 *inc_pos = cur_pos;
143 if(arguments.verbose) printf("New␣incumbent␣size:␣%d\n",

*inc_pos);
144

145 for(int i = 0; i < cur_pos; i++){
146 inc[i][L] = cur[i][L];
147 inc[i][R] = cur[i][R];
148 }
149 }
150 }
151

152 // BIDOMAINS FUNCTIONS
///

153 void add_bidomain(uchar domains [][BDS], uint *bd_pos , uchar
left_i , uchar right_i , uchar left_len ,
uchar right_len , uchar is_adjacent , uchar
cur_pos){

154 domains [* bd_pos][L] = left_i;
155 domains [* bd_pos][R] = right_i;
156 domains [* bd_pos][LL] = left_len;
157 domains [* bd_pos][RL] = right_len;
158 domains [* bd_pos][ADJ] = is_adjacent;
159 domains [* bd_pos][P] = cur_pos;
160 domains [* bd_pos][W] = UCHAR_MAX;
161 domains [* bd_pos][IRL] = right_len;
162 (* bd_pos)++;
163 if(* bd_pos > max_dom) max_dom = *bd_pos;

APPENDIX A. V3: SEQUENTIAL ITERATIVE CODE 92

164 }
165

166 uint calc_bound(uchar domains [][BDS], uint bd_pos , uint
cur_pos){

167 uint bound = 0;
168 for(int i = bd_pos -1; i >= 0 && domains[i][P] == cur_pos;

i--)
169 bound += MIN(domains[i][LL], domains[i][IRL]);
170 return bound;
171 }
172

173 uchar partition(uchar *arr , uchar start , uchar len , const uchar
*adjrow){

174 uchar i = 0;
175 for(uchar j = 0; j < len; j++){
176 if(adjrow[arr[start+j]]){
177 uchar_swap (&arr[start + i], &arr[start + j]);
178 i++;
179 }
180 }
181 return i;
182 }
183

184 void generate_next_domains(uchar domains [][BDS], uint *bd_pos ,
uint cur_pos , uchar *left , uchar *right ,
uchar v, uchar w, uint inc_pos){

185 int i;
186 uint bd_backup = *bd_pos;
187 uint bound = 0;
188 uchar *bd;
189 for(i = *bd_pos -1, bd = &domains[i][L]; i >= 0 && bd[P] ==

cur_pos -1; i--, bd = &domains[i][L]){
190

191 uchar l_len = partition(left , bd[L], bd[LL], adjmat0[v]);
192 uchar r_len = partition(right , bd[R], bd[RL], adjmat1[w]);
193

194 if(bd[LL] - l_len && bd[RL] - r_len){
195 add_bidomain(domains , bd_pos , bd[L] + l_len , bd[R] +

r_len , bd[LL] - l_len , bd[RL] - r_len ,
bd[ADJ], (uchar)(cur_pos));

196 bound += MIN(bd[LL] - l_len , bd[RL] - r_len);
197 }
198 if(l_len && r_len){
199 add_bidomain(domains , bd_pos , bd[L], bd[R], l_len , r_len ,

true , (uchar)(cur_pos));
200 bound += MIN(l_len , r_len);
201 }
202 }
203 if (cur_pos + bound <= inc_pos) *bd_pos = bd_backup;

APPENDIX A. V3: SEQUENTIAL ITERATIVE CODE 93

204 }
205

206 uchar select_next_v(uchar *left , uchar *bd){
207 uchar min = UCHAR_MAX , idx = UCHAR_MAX;
208 if(bd[RL] != bd[IRL])
209 return left[bd[L] + bd[LL]];
210 for (uchar i = 0; i < bd[LL]; i++)
211 if (left[bd[L] + i] < min) {
212 min = left[bd[L] + i];
213 idx = i;
214 }
215 uchar_swap (&left[bd[L] + idx], &left[bd[L] + bd[LL] - 1]);
216 bd[LL]--;
217 bd[RL]--;
218 return min;
219 }
220 uchar find_min_value(uchar *arr , uchar start_idx , uchar len){
221 uchar min_v = UCHAR_MAX;
222 for(int i = 0; i < len; i++){
223 if(arr[start_idx+i] < min_v)
224 min_v = arr[start_idx + i];
225 }
226 return min_v;
227 }
228

229 void select_bidomain(uchar domains [][BDS], uint bd_pos , uchar
*left , int current_matching_size , bool
connected){

230 int i;
231 uint min_size = UINT_MAX;
232 uint min_tie_breaker = UINT_MAX;
233 uint best = UINT_MAX;
234 uchar *bd;
235 for (i = bd_pos - 1, bd = &domains[i][L]; i >= 0 && bd[P] ==

current_matching_size; i--, bd =
&domains[i][L]) {

236 if (connected && current_matching_size >0 && !bd[ADJ])
continue;

237 int len = bd[LL] > bd[RL] ? bd[LL] : bd[RL];
238 if (len < min_size) {
239 min_size = len;
240 min_tie_breaker = find_min_value(left , bd[L], bd[LL]);
241 best = i;
242 } else if (len == min_size) {
243 int tie_breaker = find_min_value(left , bd[L], bd[LL]);
244 if (tie_breaker < min_tie_breaker) {
245 min_tie_breaker = tie_breaker;
246 best = i;
247 }

APPENDIX A. V3: SEQUENTIAL ITERATIVE CODE 94

248 }
249 }
250 if(best != UINT_MAX && best != bd_pos -1){
251 uchar tmp[BDS];
252 for(i = 0; i < BDS; i++) tmp[i] = domains[best][i];
253 for(i = 0; i < BDS; i++) domains[best][i] =

domains[bd_pos -1][i];
254 for(i = 0; i < BDS; i++) domains[bd_pos -1][i] = tmp[i];
255

256 }
257 }
258

259 double compute_elapsed_sec (){
260 struct timespec now;
261 double time_elapsed;
262

263 clock_gettime(CLOCK_MONOTONIC , &now);
264 time_elapsed = (now.tv_sec - start.tv_sec);
265 time_elapsed += (double)(now.tv_nsec - start.tv_nsec) /

1000000000.0;
266

267 return time_elapsed;
268 }
269

270 uchar select_next_w(uchar *right , uchar *bd) {
271 uchar min = UCHAR_MAX , idx = UCHAR_MAX;
272 for (uchar i = 0; i < bd[RL]+1; i++)
273 if ((right[bd[R] + i] > bd[W] || bd[W] == UCHAR_MAX)
274 && right[bd[R] + i] < min) {
275 min = right[bd[R] + i];
276 idx = i;
277 }
278 if(idx == UCHAR_MAX)
279 bd[RL]++;
280 return idx;
281 }
282

283 void mcs(uchar incumbent [][2], uint *inc_pos){
284

285 uint min = MIN(n0, n1);
286

287 uchar cur[min][2];
288 uchar domains[min*min][BDS];
289 uchar left[n0], right[n1];
290 uchar v, w, *bd;
291 uint bd_pos = 0;
292 for(uchar i = 0; i < n0; i++) left[i] = i;
293 for(uchar i = 0; i < n1; i++) right[i] = i;
294 add_bidomain(domains , &bd_pos , 0, 0, n0, n1, 0, 0);

APPENDIX A. V3: SEQUENTIAL ITERATIVE CODE 95

295

296 while (bd_pos > 0) {
297 if (arguments.timeout && compute_elapsed_sec () >

arguments.timeout) {
298 arguments.timeout = -1;
299 return;
300 }
301

302 bd = &domains[bd_pos - 1][L];
303 if (calc_bound(domains , bd_pos , bd[P]) + bd[P] <= *inc_pos

|| (bd[LL] == 0 && bd[RL] == bd[IRL])) {
304 bd_pos --;
305 } else {
306 select_bidomain(domains , bd_pos , left , domains[bd_pos -

1][P], arguments.connected);
307 v = select_next_v(left , bd);
308 if ((bd[W] = select_next_w(right , bd)) != UCHAR_MAX) {
309 w = right[bd[R] + bd[W]]; // swap the W after the

bottom of the current right domain
310 right[bd[R] + bd[W]] = right[bd[R] + bd[RL]];
311 right[bd[R] + bd[RL]] = w;
312 bd[W] = w; // store the W used for

this iteration
313 cur[bd[P]][L] = v;
314 cur[bd[P]][R] = w;
315 update_incumbent(cur , incumbent , bd[P] + (uchar) 1,

inc_pos);
316 generate_next_domains(domains , &bd_pos , bd[P] + 1,

left , right , v, w, *inc_pos);
317 }
318 }
319 }
320 }
321

322 int main(int argc , char** argv){
323 set_default_arguments ();
324 argp_parse (&argp , argc , argv , 0, 0, 0);
325 struct timespec finish;
326 double time_elapsed;
327

328

329 char format = arguments.lad ? ’L’ : ’B’;
330 graph_t *g0 = calloc(1, sizeof *g0);
331 readGraph(arguments.filename1 , g0, format);
332 graph_t *g1 = calloc(1, sizeof *g1);
333 readGraph(arguments.filename2 , g1, format);
334 g0 = sort_vertices_by_degree(g0, (graph_edge_count(g1) >

g1->n*(g1->n-1)/2));
335 g1 = sort_vertices_by_degree(g1, (graph_edge_count(g0) >

APPENDIX A. V3: SEQUENTIAL ITERATIVE CODE 96

g0->n*(g0->n-1)/2));
336

337 adjmat0 = g0->adjmat;
338 adjmat1 = g1->adjmat;
339

340 n0 = g0->n;
341 n1 = g1->n;
342 uint min_size = MIN(n0, n1);
343 uchar solution[min_size][2];
344

345 uint sol_len = 0;
346 clock_gettime(CLOCK_MONOTONIC , &start);
347 mcs(solution , &sol_len);
348 clock_gettime(CLOCK_MONOTONIC , &finish);
349

350

351

352

353 if (! check_sol(g0, g1, solution , sol_len)) {
354 fprintf(stderr , "***␣Error:␣Invalid␣solution\n");
355 }
356

357 if (arguments.timeout == -1){
358 printf("TIMEOUT\n");
359 }
360

361 printf("SOLUTION␣size:%d\nsol:␣", sol_len);
362 for(int i = 0; i < g0->n; i++)
363 for(int j = 0; j < sol_len; j++)
364 if(solution[j][L] == i)
365 printf("|%2d␣%2d|␣", solution[j][L], solution[j][R]);
366 printf("\n");
367

368 time_elapsed = (finish.tv_sec - start.tv_sec); // calculating
elapsed seconds

369 time_elapsed += (double)(finish.tv_nsec - start.tv_nsec) /
1000000000.0; // adding elapsed nanoseconds

370 printf(">>>␣%d␣-␣%015.10f", sol_len , time_elapsed);
371

372 free_graph(g0);
373 free_graph(g1);
374 return 0;
375 }

Appendix B

V5: CUDA implementation

1 #include <argp.h>
2 #include <limits.h>
3 #include <locale.h>
4 #include <stdbool.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <time.h>
9

10 #include "graph.h"
11

12 #define L 0
13 #define R 1
14 #define LL 2
15 #define RL 3
16 #define ADJ 4
17 #define P 5
18 #define W 6
19 #define IRL 7
20

21 #define BDS 8
22

23 #define START 0
24 #define END 1
25

26 #define MIN(a, b) (a < b)? a : b
27

28 #define N_BLOCKS 64
29 #define BLOCK_SIZE 512
30 #define MAX_GRAPH_SIZE 64
31 #define checkCudaErrors(value)

CheckCudaErrorAux(__FILE__ ,__LINE__ ,

97

APPENDIX B. V5: CUDA IMPLEMENTATION 98

#value , value)
32

33 typedef unsigned char uchar;
34 typedef unsigned int uint;
35

36 __constant__ uchar d_adjmat0[MAX_GRAPH_SIZE][MAX_GRAPH_SIZE];
37 __constant__ uchar d_adjmat1[MAX_GRAPH_SIZE][MAX_GRAPH_SIZE];
38 __constant__ uchar d_n0;
39 __constant__ uchar d_n1;
40

41 uchar adjmat0[MAX_GRAPH_SIZE][MAX_GRAPH_SIZE];
42 uchar adjmat1[MAX_GRAPH_SIZE][MAX_GRAPH_SIZE];
43 uchar n0;
44 uchar n1;
45

46 uint __gpu_level = 5;
47 struct timespec start;
48

49 static struct argp_option options [] = {
50 { "verbose", ’v’, 0, 0, "Verbose␣output" },
51 { "lad", ’l’, 0, 0, "Read␣LAD␣format"},
52 { "timeout", ’t’, "timeout", 0, "Set␣timeout␣of␣TIMEOUT␣

milliseconds"},
53 { "connected", ’c’, 0, 0, "Solve␣max␣common␣CONNECTED␣

subgraph␣problem" },
54 { 0 }
55 };
56

57 static char doc[] = "Find␣a␣maximum␣isomorphic␣graph";
58 static char args_doc [] = "FILENAME1␣FILENAME2";
59 static struct {
60 bool verbose;
61 bool lad;
62 bool connected;
63 int timeout;
64 char *filename1;
65 char *filename2;
66 int arg_num;
67 } arguments;
68 void set_default_arguments () {
69 arguments.verbose = false;
70 arguments.lad = false;
71 arguments.timeout = 0;
72 arguments.connected = false;
73 arguments.filename1 = NULL;
74 arguments.filename2 = NULL;
75 arguments.arg_num = 0;
76 }
77 static error_t parse_opt(int key , char *arg , struct argp_state

APPENDIX B. V5: CUDA IMPLEMENTATION 99

*state) {
78 switch (key) {
79 case ’v’:
80 arguments.verbose = true;
81 break;
82 case ’t’:
83 arguments.timeout = strtol(arg , NULL , 10);
84 break;
85 case ’l’:
86 arguments.lad = true;
87 break;
88 case ’c’:
89 arguments.connected = true;
90 break;
91 case ARGP_KEY_ARG:
92 if (arguments.arg_num == 0) {
93 arguments.filename1 = arg;
94 } else if (arguments.arg_num == 1) {
95 arguments.filename2 = arg;
96 } else {
97 argp_usage(state);
98 }
99 arguments.arg_num ++;

100 break;
101 case ARGP_KEY_END:
102 if (arguments.arg_num == 0)
103 argp_usage(state);
104 break;
105 default:
106 return ARGP_ERR_UNKNOWN;
107 }
108 return 0;
109 }
110

111 __host__ __device__
112 void uchar_swap(uchar *a, uchar *b){
113 uchar tmp = *a;
114 *a = *b;
115 *b = tmp;
116 }
117 __host__ __device__
118 uchar select_next_v(uchar *left , uchar *bd){
119 uchar min = UCHAR_MAX , idx = UCHAR_MAX;
120 if(bd[RL] != bd[IRL])
121 return left[bd[L] + bd[LL]];
122 for (uchar i = 0; i < bd[LL]; i++)
123 if (left[bd[L] + i] < min) {
124 min = left[bd[L] + i];
125 idx = i;

APPENDIX B. V5: CUDA IMPLEMENTATION 100

126 }
127 uchar_swap (&left[bd[L] + idx], &left[bd[L] + bd[LL] - 1]);
128 bd[LL]--;
129 bd[RL]--;
130 return min;
131 }
132

133

134 __host__ __device__
135 uchar select_next_w(uchar *right , uchar *bd) {
136 uchar min = UCHAR_MAX , idx = UCHAR_MAX;
137 for (uchar i = 0; i < bd[RL]+1; i++)
138 if ((right[bd[R] + i] > bd[W] || bd[W] == UCHAR_MAX)
139 && right[bd[R] + i] < min) {
140 min = right[bd[R] + i];
141 idx = i;
142 }
143 if(idx == UCHAR_MAX)
144 bd[RL]++;
145 return idx;
146 }
147

148 __host__ __device__ uchar index_of_next_smallest(const uchar
*arr ,

149 uchar start_idx , uchar len , uchar w) {
150 uchar idx = UCHAR_MAX;
151 uchar smallest = UCHAR_MAX;
152 for (uchar i = 0; i < len; i++) {
153 if ((arr[start_idx + i] > w || w == UCHAR_MAX)
154 && arr[start_idx + i] < smallest) {
155 smallest = arr[start_idx + i];
156 idx = i;
157 }
158 }
159 return idx;
160 }
161

162 __host__ __device__ uchar find_min_value(const uchar *arr ,
uchar start_idx ,

163 uchar len) {
164 uchar min_v = UCHAR_MAX;
165 for (int i = 0; i < len; i++) {
166 if (arr[start_idx + i] < min_v)
167 min_v = arr[start_idx + i];
168 }
169 return min_v;
170 }
171

172 __host__ __device__

APPENDIX B. V5: CUDA IMPLEMENTATION 101

173 void remove_from_domain(uchar *arr , const uchar *start_idx ,
uchar *len ,

174 uchar v) {
175 int i = 0;
176 for (i = 0; arr[* start_idx + i] != v; i++)
177 ;
178 uchar_swap (&arr[* start_idx + i], &arr[* start_idx + *len - 1]);
179 (*len)--;
180 }
181

182 __host__ __device__
183 void update_incumbent(uchar cur[][2], uchar inc[][2], uchar

cur_pos ,
184 uchar *inc_pos) {
185 if (cur_pos > *inc_pos) {
186 *inc_pos = cur_pos;
187 for (int i = 0; i < cur_pos; i++) {
188 inc[i][L] = cur[i][L];
189 inc[i][R] = cur[i][R];
190 }
191 }
192 }
193

194 // BIDOMAINS FUNCTIONS
///

195 __host__ __device__
196 void add_bidomain(uchar domains [][BDS], uint *bd_pos , uchar

left_i ,
197 uchar right_i , uchar left_len , uchar right_len , uchar

is_adjacent ,
198 uchar cur_pos) {
199 domains [* bd_pos][L] = left_i;
200 domains [* bd_pos][R] = right_i;
201 domains [* bd_pos][LL] = left_len;
202 domains [* bd_pos][RL] = right_len;
203 domains [* bd_pos][ADJ] = is_adjacent;
204 domains [* bd_pos][P] = cur_pos;
205 domains [* bd_pos][W] = UCHAR_MAX;
206 domains [* bd_pos][IRL] = right_len;
207

208 (* bd_pos)++;
209 }
210

211 __host__ __device__ uint calc_bound(uchar domains [][BDS], uint
bd_pos ,

212 uint cur_pos , uint *bd_n) {
213 uint bound = 0;
214 int i;
215 for (i = bd_pos - 1; i >= 0 && domains[i][P] == cur_pos; i--)

APPENDIX B. V5: CUDA IMPLEMENTATION 102

216 bound += MIN(domains[i][LL], domains[i][IRL]);
217 *bd_n = bd_pos - 1 - i;
218 return bound;
219 }
220

221 __host__ __device__ uchar partition(uchar *arr , uchar start ,
uchar len ,

222 const uchar *adjrow) {
223 uchar i = 0;
224 for (uchar j = 0; j < len; j++) {
225 if (adjrow[arr[start + j]]) {
226 uchar_swap (&arr[start + i], &arr[start + j]);
227 i++;
228 }
229 }
230 return i;
231 }
232

233 __host__ __device__
234 uchar find_min_value(uchar *arr , uchar start_idx , uchar len){
235 uchar min_v = UCHAR_MAX;
236 for(int i = 0; i < len; i++){
237 if(arr[start_idx+i] < min_v)
238 min_v = arr[start_idx + i];
239 }
240 return min_v;
241 }
242

243 __host__ __device__
244 void select_bidomain(uchar domains [][BDS], uint bd_pos , uchar

*left , int current_matching_size , bool
connected){

245 int i;
246 uint min_size = UINT_MAX;
247 uint min_tie_breaker = UINT_MAX;
248 uint best = UINT_MAX;
249 uchar *bd;
250 for (i = bd_pos - 1, bd = &domains[i][L]; i >= 0 && bd[P] ==

current_matching_size; i--, bd =
&domains[i][L]) {

251 if (connected && current_matching_size >0 && !bd[ADJ])
continue;

252 int len = bd[LL] > bd[RL] ? bd[LL] : bd[RL];
253 if (len < min_size) {
254 min_size = len;
255 min_tie_breaker = find_min_value(left , bd[L], bd[LL]);
256 best = i;
257 } else if (len == min_size) {
258 int tie_breaker = find_min_value(left , bd[L], bd[LL]);

APPENDIX B. V5: CUDA IMPLEMENTATION 103

259 if (tie_breaker < min_tie_breaker) {
260 min_tie_breaker = tie_breaker;
261 best = i;
262 }
263 }
264 }
265 if(best != UINT_MAX && best != bd_pos -1){
266 uchar tmp[BDS];
267 for(i = 0; i < BDS; i++) tmp[i] = domains[best][i];
268 for(i = 0; i < BDS; i++) domains[best][i] =

domains[bd_pos -1][i];
269 for(i = 0; i < BDS; i++) domains[bd_pos -1][i] = tmp[i];
270

271 }
272 }
273

274

275

276 __device__
277 void d_generate_next_domains(uchar domains [][BDS], uint

*bd_pos , uint cur_pos , uchar *left , uchar
*right , uchar v, uchar w, uint inc_pos) {

278 int i;
279 uint bd_backup = *bd_pos;
280 uint bound = 0;
281 uchar *bd;
282 for (i = *bd_pos - 1, bd = &domains[i][L]; i >= 0 && bd[P] ==

cur_pos - 1; i--, bd = &domains[i][L]) {
283

284 uchar l_len = partition(left , bd[L], bd[LL], d_adjmat0[v]);
285 uchar r_len = partition(right , bd[R], bd[RL], d_adjmat1[w]);
286

287 if (bd[LL] - l_len && bd[RL] - r_len) {
288 add_bidomain(domains , bd_pos , bd[L] + l_len , bd[R] +

r_len , bd[LL] - l_len , bd[RL] - r_len ,
bd[ADJ], (uchar) (cur_pos));

289 bound += MIN(bd[LL] - l_len , bd[RL] - r_len);
290 }
291 if (l_len && r_len) {
292 add_bidomain(domains , bd_pos , bd[L], bd[R], l_len , r_len ,

true , (uchar) (cur_pos));
293 bound += MIN(l_len , r_len);
294 }
295 }
296 if (cur_pos + bound <= inc_pos)
297 *bd_pos = bd_backup;
298 }
299

300 __global__

APPENDIX B. V5: CUDA IMPLEMENTATION 104

301 void d_mcs(uchar *args , uint n_threads , uchar a_size , uint
*args_i , uint actual_inc , uchar
*device_solutions , uint max_sol_size , uint
last_arg , bool verbose , bool connected) {

302 uint my_idx = (blockIdx.x * blockDim.x) + threadIdx.x;
303 uchar cur[MAX_GRAPH_SIZE][2], incumbent[MAX_GRAPH_SIZE][2],
304 domains[MAX_GRAPH_SIZE * 5][BDS], left[MAX_GRAPH_SIZE],
305 right[MAX_GRAPH_SIZE], v, w;
306 uint bd_pos = 0, bd_n = 0;
307 uchar inc_pos = 0;
308 __shared__ uint sh_inc;
309 sh_inc = actual_inc;
310 __syncthreads ();
311 if (my_idx < n_threads) {
312 for (int i = args_i[my_idx]; i < last_arg && (my_idx <

n_threads -1 && i < args_i[my_idx +1]);) {
313 add_bidomain(domains , &bd_pos , args[i++], args[i++],

args[i++], args[i++], args[i++],
args[i++]);

314 for (int p = 0; p < domains[bd_pos - 1][P]; p++)
315 cur[p][L] = args[i++];
316 for (int p = 0; p < domains[bd_pos - 1][P]; p++)
317 cur[p][R] = args[i++];
318 for (int l = 0; l < d_n0; l++)
319 left[l] = args[i++];
320 for (int r = 0; r < d_n1; r++)
321 right[r] = args[i++];
322 }
323 while (bd_pos > 0) {
324 uchar *bd = &domains[bd_pos - 1][L];
325 if (calc_bound(domains , bd_pos , bd[P], &bd_n) + bd[P] <=

sh_inc || (bd[LL] == 0 && bd[RL] ==
bd[IRL])) {

326 bd_pos --;
327 } else {
328 select_bidomain(domains , bd_pos , left , domains[bd_pos -

1][P], connected);
329 if (bd[RL] == bd[IRL]) {
330 v = find_min_value(left , bd[L], bd[LL]);
331 remove_from_domain(left , &bd[L], &bd[LL], v);
332 bd[RL]--;
333 } else v = left[bd[L] + bd[LL]];
334 if ((bd[W] = index_of_next_smallest(right , bd[R],

bd[RL] + (uchar) 1, bd[W])) == UCHAR_MAX) {
335 bd[RL]++;
336 } else {
337 w = right[bd[R] + bd[W]];
338 right[bd[R] + bd[W]] = right[bd[R] + bd[RL]];
339 right[bd[R] + bd[RL]] = w;

APPENDIX B. V5: CUDA IMPLEMENTATION 105

340 bd[W] = w;
341 cur[bd[P]][L] = v;
342 cur[bd[P]][R] = w;
343 update_incumbent(cur , incumbent , bd[P] + 1, &inc_pos);
344 atomicMax (&sh_inc , inc_pos);
345 d_generate_next_domains(domains , &bd_pos , bd[P] + 1,

left , right , v, w, inc_pos);
346 }
347 }
348 }
349 }
350 device_solutions[blockIdx.x* max_sol_size] = 0;
351

352 __syncthreads ();
353 if (atomicCAS (&sh_inc , inc_pos , 0) == inc_pos && inc_pos > 0)

{
354 if(verbose) printf("Th_%d␣found␣new␣solution␣of␣size␣%d\n",

my_idx , inc_pos);
355 bd_pos = 0;
356 device_solutions[blockIdx.x* max_sol_size + bd_pos ++] =

inc_pos;
357 for (int i = 0; i < inc_pos; i++)
358 device_solutions[blockIdx.x* max_sol_size + bd_pos ++] =

incumbent[i][L];
359 for (int i = 0; i < inc_pos; i++)
360 device_solutions[blockIdx.x* max_sol_size + bd_pos ++] =

incumbent[i][R];
361 }
362 }
363

364 double compute_elapsed_sec(struct timespec strt){
365 struct timespec now;
366 double time_elapsed;
367

368 clock_gettime(CLOCK_MONOTONIC , &now);
369 time_elapsed = (now.tv_sec - strt.tv_sec);
370 time_elapsed += (double)(now.tv_nsec - strt.tv_nsec) /

1000000000.0;
371

372 return time_elapsed;
373 }
374

375 static void CheckCudaErrorAux(const char *file , unsigned line ,
376 const char *statement , cudaError_t err) {
377 if (err == cudaSuccess)
378 return;
379 fprintf(stderr , "%s␣returned␣%s(%d)␣at␣%s:%d\n", statement ,
380 cudaGetErrorString(err), err , file , line);
381 exit (1);

APPENDIX B. V5: CUDA IMPLEMENTATION 106

382 }
383

384 void move_graphs_to_gpu(graph_t *g0, graph_t *g1) {
385 checkCudaErrors(cudaMemcpyToSymbol(d_n0 , &g0->n,

sizeof(uchar)));
386 checkCudaErrors(cudaMemcpyToSymbol(d_n1 , &g1->n,

sizeof(uchar)));
387

388 checkCudaErrors(cudaMemcpyToSymbol(d_adjmat0 , adjmat0 ,
MAX_GRAPH_SIZE*MAX_GRAPH_SIZE));

389 checkCudaErrors(cudaMemcpyToSymbol(d_adjmat1 , adjmat1 ,
MAX_GRAPH_SIZE*MAX_GRAPH_SIZE));

390 }
391

392

393 void h_generate_next_domains(uchar domains [][BDS], uint
*bd_pos , uint cur_pos ,

394 uchar *left , uchar *right , uchar v, uchar w, uint inc_pos) {
395 int i;
396 uint bd_backup = *bd_pos;
397 uint bound = 0;
398 uchar *bd;
399 for (i = *bd_pos - 1, bd = &domains[i][L]; i >= 0 && bd[P] ==

cur_pos - 1;
400 i--, bd = &domains[i][L]) {
401

402 uchar l_len = partition(left , bd[L], bd[LL], adjmat0[v]);
403 uchar r_len = partition(right , bd[R], bd[RL], adjmat1[w]);
404

405 if (bd[LL] - l_len && bd[RL] - r_len) {
406 add_bidomain(domains , bd_pos , bd[L] + l_len , bd[R] +

r_len ,
407 bd[LL] - l_len , bd[RL] - r_len , bd[ADJ], (uchar)

(cur_pos));
408 bound += MIN(bd[LL] - l_len , bd[RL] - r_len);
409 }
410 if (l_len && r_len) {
411 add_bidomain(domains , bd_pos , bd[L], bd[R], l_len , r_len ,

true ,
412 (uchar) (cur_pos));
413 bound += MIN(l_len , r_len);
414 }
415 }
416 if (cur_pos + bound <= inc_pos)
417 *bd_pos = bd_backup;
418 }
419

420

421 bool check_sol(graph_t *g0, graph_t *g1, uchar sol[][2], uint

APPENDIX B. V5: CUDA IMPLEMENTATION 107

sol_len) {
422 bool *used_left = (bool*) calloc(g0->n, sizeof *used_left);
423 bool *used_right = (bool*) calloc(g1->n, sizeof *used_right);
424 for (int i = 0; i < sol_len; i++) {
425 if (used_left[sol[i][L]]) {
426 printf("node␣%d␣of␣g0␣used␣twice\n",

used_left[sol[i][L]]);
427 return false;
428 }
429 if (used_right[sol[i][R]]) {
430 printf("node␣%d␣of␣g1␣used␣twice\n",

used_right[sol[i][L]]);
431 return false;
432 }
433 used_left[sol[i][L]] = true;
434 used_right[sol[i][R]] = true;
435 if (g0->label[sol[i][L]] != g1->label[sol[i][R]]) {
436 printf("g0:%d␣and␣g1:%d␣have␣different␣labels\n",

sol[i][L],
437 sol[i][R]);
438 return false;
439 }
440 for (int j = i + 1; j < sol_len; j++) {
441 if (g0->adjmat[sol[i][L]][sol[j][L]]
442 !=

g1->adjmat[sol[i][R]][sol[j][R]]) {
443 printf("g0(%d-%d)␣is␣different␣than␣g1(%d-%d)\n",

sol[i][L],
444 sol[j][L], sol[i][R], sol[j][R]);
445 return false;
446 }
447 }
448 }
449 return true;
450 }
451

452 static struct argp argp = { options , parse_opt , args_doc , doc };
453

454 void launch_kernel(uchar *args , uint n_threads , uchar a_size ,
uint sol_size , uint *args_i ,

455 uchar incumbent [][2], uchar *inc_pos , uint total_args_size ,
uint last_arg) {

456 uchar *device_args;
457 uchar *device_solutions;
458 uchar *host_solutions;
459 uint *device_args_i;
460 uint max_sol_size = 1 + 2 * (MIN(n0, n1));
461 struct timespec sleep;
462 sleep.tv_sec = 0;

APPENDIX B. V5: CUDA IMPLEMENTATION 108

463 sleep.tv_nsec = 2000;
464 cudaEvent_t stop;
465

466 host_solutions = (uchar*) malloc(N_BLOCKS * max_sol_size *
sizeof *host_solutions);

467

468 checkCudaErrors(cudaEventCreate (&stop));
469

470 checkCudaErrors(cudaMalloc (& device_args , total_args_size *
sizeof *device_args));

471 checkCudaErrors(cudaMalloc (& device_solutions , N_BLOCKS *
max_sol_size * sizeof *device_solutions));

472

473

474 checkCudaErrors(cudaMemcpy(device_args , args , total_args_size
* sizeof *device_args ,
cudaMemcpyHostToDevice));

475

476 checkCudaErrors(cudaMalloc (& device_args_i , N_BLOCKS *
BLOCK_SIZE * sizeof *device_args_i));

477 checkCudaErrors(cudaMemcpy(device_args_i , args_i , N_BLOCKS *
BLOCK_SIZE * sizeof *device_args_i ,
cudaMemcpyHostToDevice));

478

479 if(arguments.verbose) printf("Launching␣kernel ...\n");
480

481 d_mcs <<<N_BLOCKS , BLOCK_SIZE >>>(device_args , n_threads ,
a_size , device_args_i , *inc_pos ,
device_solutions , max_sol_size , last_arg ,
arguments.verbose , arguments.connected);

482

483 checkCudaErrors(cudaEventRecord(stop));
484

485 while(cudaEventQuery(stop) == cudaErrorNotReady){
486 nanosleep (&sleep , NULL);
487 if(arguments.timeout && compute_elapsed_sec(start) >

arguments.timeout){
488 checkCudaErrors(cudaDeviceReset ());
489 return;
490 }
491 }
492 if(arguments.verbose) printf("Kernel␣executed ...\n");
493

494 checkCudaErrors(cudaMemcpy(host_solutions , device_solutions ,
N_BLOCKS * max_sol_size * sizeof
*device_solutions ,
cudaMemcpyDeviceToHost));

495

496 checkCudaErrors(cudaFree(device_args));

APPENDIX B. V5: CUDA IMPLEMENTATION 109

497 checkCudaErrors(cudaFree(device_args_i));
498

499 for(int b = 0; b < N_BLOCKS; b++){
500 if(arguments.verbose)printf("args[%d]␣=␣%d\n",

b*max_sol_size ,
host_solutions[b*max_sol_size]);

501 if (* inc_pos < host_solutions[b*max_sol_size]) {
502 *inc_pos = host_solutions[b*max_sol_size];
503 for (int i = 1; i < *inc_pos + 1; i++) {
504 incumbent[i - 1][L] = host_solutions[b*max_sol_size +

i];
505 incumbent[i - 1][R] = host_solutions[b*max_sol_size +

*inc_pos + i];
506 if(arguments.verbose) printf("|%d␣%d|␣",

incumbent[i-1][L], incumbent[i-1][R]);
507 }
508 }if(arguments.verbose) printf("\n");
509 }
510 free(host_solutions);
511 }
512

513

514 void fill_args(uchar *args , uchar *args_i[], uchar *bd, uchar
*cur[], uchar *left , uchar *right , uint
*n_args , uint){

515

516 }
517

518 void *safe_realloc(void* old , uint new_size){
519 void *tmp = realloc(old , new_size);
520 if (tmp != NULL) return tmp;
521 else exit(-1);
522 }
523

524 void mcs(uchar incumbent [][2], uchar *inc_pos) {
525 uint bd_pos = 0, bd_n = 0;
526 uchar cur[MAX_GRAPH_SIZE][2], domains[MAX_GRAPH_SIZE *

5][BDS], left[n0],
527 right[n1], v, w;
528 for (uchar i = 0; i < n0; i++)
529 left[i] = i;
530 for (uchar i = 0; i < n1; i++)
531 right[i] = i;
532 add_bidomain(domains , &bd_pos , 0, 0, n0, n1, 0, 0);
533 // supposing an initial average of 2 domains for thread , it

will be reallocated if necessary
534 uint args_num = N_BLOCKS * BLOCK_SIZE * 2;
535 uint a_size = (BDS - 2 + 2 * __gpu_level + n0 + n1);
536 uint sol_size = 1 + 2*(MIN(n0, n1));

APPENDIX B. V5: CUDA IMPLEMENTATION 110

537 uint args_size = args_num * a_size;
538

539 uint args_i[N_BLOCKS * BLOCK_SIZE];
540 uchar *args = (uchar*) malloc(args_size * sizeof *args);
541 uint n_args = 0, n_threads = 0;
542

543 while (bd_pos > 0) {
544 if (arguments.timeout && compute_elapsed_sec(start) >

arguments.timeout) {
545 arguments.timeout = -1;
546 return;
547 }
548 uchar *bd = &domains[bd_pos - 1][L];
549

550 if (calc_bound(domains , bd_pos , bd[P], &bd_n) + bd[P] <=
*inc_pos || (bd[LL] == 0 && bd[RL] ==
bd[IRL])) {

551 bd_pos --;
552 continue;
553 }
554

555 if (bd[P] == __gpu_level) {
556 if (n_args + bd_n > args_num) {
557 args_num = n_args + bd_n;
558 args_size = args_num * a_size;
559 args = (uchar*) safe_realloc(args , args_size * sizeof

*args);
560 }
561

562 args_i[n_threads] = n_args * a_size;
563

564 for (uint b = 0; b < bd_n; b++, n_args++, bd_pos --) {
565 uint arg_i = n_args * a_size , i = 0;
566 for (i = 0; i < BDS - 2; i++, arg_i ++)
567 args[arg_i] = domains[bd_pos - 1][i];
568 for (i = 0; i < __gpu_level; i++, arg_i ++)
569 args[arg_i] = cur[i][L];
570 for (i = 0; i < __gpu_level; i++, arg_i ++)
571 args[arg_i] = cur[i][R];
572 for (i = 0; i < n0; i++, arg_i ++)
573 args[arg_i] = left[i];
574 for (i = 0; i < n0; i++, arg_i ++)
575 args[arg_i] = right[i];
576 }
577 n_threads ++;
578 if (n_threads == N_BLOCKS * BLOCK_SIZE) {
579 launch_kernel(args , n_threads , a_size , sol_size ,

args_i , incumbent , inc_pos , args_size ,
n_args*a_size);

APPENDIX B. V5: CUDA IMPLEMENTATION 111

580 n_threads = 0;
581 n_args = 0;
582 }
583 continue;
584 }
585

586 select_bidomain(domains , bd_pos , left , domains[bd_pos -
1][P], arguments.connected);

587 if (bd[RL] == bd[IRL]) {
588 v = find_min_value(left , bd[L], bd[LL]);
589 remove_from_domain(left , &bd[L], &bd[LL], v);
590 bd[RL]--;
591 } else v = left[bd[L] + bd[LL]];
592

593

594 if ((bd[W] = index_of_next_smallest(right , bd[R], bd[RL] +
(uchar) 1, bd[W])) == UCHAR_MAX) {

595 bd[RL]++;
596 } else {
597 w = right[bd[R] + bd[W]];
598 right[bd[R] + bd[W]] = right[bd[R] + bd[RL]];
599 right[bd[R] + bd[RL]] = w;
600

601 bd[W] = w;
602

603 cur[bd[P]][L] = v;
604 cur[bd[P]][R] = w;
605

606 update_incumbent(cur , incumbent , bd[P] + 1, inc_pos);
607 h_generate_next_domains(domains , &bd_pos , bd[P] + 1,

left , right , v,
608 w, *inc_pos);
609 }
610

611 }
612 if (n_threads > 0)
613 launch_kernel(args , n_threads , a_size , sol_size , args_i ,

incumbent , inc_pos , args_size ,
n_args*a_size);

614 }
615

616 int main(int argc , char** argv) {
617 set_default_arguments ();
618 argp_parse (&argp , argc , argv , 0, 0, 0);
619 struct timespec finish;
620 double time_elapsed;
621 char format = arguments.lad ? ’L’ : ’B’;
622 graph_t *g0 = (graph_t *) calloc(1, sizeof *g0);
623 readGraph(arguments.filename1 , g0, format);

APPENDIX B. V5: CUDA IMPLEMENTATION 112

624 graph_t *g1 = (graph_t *) calloc(1, sizeof *g1);
625 readGraph(arguments.filename2 , g1, format);
626 g0 = sort_vertices_by_degree(g0,
627 (graph_edge_count(g1) > g1->n * (g1->n - 1) / 2));
628 g1 = sort_vertices_by_degree(g1,
629 (graph_edge_count(g0) > g0->n * (g0->n - 1) / 2));
630 int min_size = MIN(g0->n, g1->n);
631 n0 = g0->n;
632 n1 = g1->n;
633

634 for (int i = 0; i < n0; i++)
635 for (int j = 0; j < n0; j++)
636 adjmat0[i][j] = g0->adjmat[i][j];
637

638 for (int i = 0; i < n1; i++)
639 for (int j = 0; j < n1; j++)
640 adjmat1[i][j] = g1->adjmat[i][j];
641

642 checkCudaErrors(cudaDeviceReset ());
643 move_graphs_to_gpu(g0, g1);
644

645 uchar solution[min_size][2];
646 uchar sol_len = 0;
647 clock_gettime(CLOCK_MONOTONIC , &start);
648 mcs(solution , &sol_len);
649 clock_gettime(CLOCK_MONOTONIC , &finish);
650

651 if(arguments.timeout == -1){
652 printf("TIMEOUT\n");
653 }
654

655 printf("SOLUTION␣size:%d\nsol:␣", sol_len);
656 //for (int i = 0; i < g0->n; i++)
657 for (int j = 0; j < sol_len; j++)
658 //if (solution[j][L] == i)
659 printf("|%2d␣%2d|␣", solution[j][L], solution[j][R]);
660 printf("\n");
661

662 if (! check_sol(g0, g1, solution , sol_len)) {
663 printf("***␣Error:␣Invalid␣solution\n");
664 }
665 time_elapsed = (finish.tv_sec - start.tv_sec); // calculating

elapsed seconds
666 time_elapsed += (double) (finish.tv_nsec - start.tv_nsec) /

1000000000.0; // adding elapsed nanoseconds
667 printf(">>>␣%d␣-␣%015.10f\n", sol_len , time_elapsed);
668

669 free_graph(g0);
670 free_graph(g1);

APPENDIX B. V5: CUDA IMPLEMENTATION 113

671 return 0;
672 }

Appendix C

Graph class

1

2 #ifndef GRAPH_H_
3 #define GRAPH_H_
4

5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <limits.h>
8 #include <stdbool.h>
9

10 #define INSERTION_SORT(type , arr , arr_len , swap_condition) do {
\

11 for (int i=1; i<arr_len; i++) {
\

12 for (int j=i; j>=1; j--) { \
13 if (swap_condition) { \
14 type tmp = arr[j-1]; \
15 arr[j-1] = arr[j]; \
16 arr[j] = tmp; \
17 } else { \
18 break; \
19 } \
20 } \
21 }

\
22 } while (0);
23

24 typedef unsigned long long ULL;
25

26 typedef struct graph_s {
27 int n;
28 unsigned char ** adjmat;
29 unsigned int *label;

114

APPENDIX C. GRAPH CLASS 115

30 unsigned int *degree;
31 }graph_t;
32

33 unsigned int* calculate_degrees(graph_t *g);
34

35 graph_t *induced_subgraph(graph_t *g, int *vv);
36

37 int graph_edge_count(graph_t *g);
38

39 // Precondition: *g is already zeroed out
40 void readGraph(char* filename , graph_t* g, char format);
41

42 // Precondition: *g is already zeroed out
43 void readBinaryGraph(char* filename , graph_t* g);
44

45 // Precondition: *g is already zeroed out
46 void readLadGraph(char* filename , graph_t* g);
47

48 void free_graph(graph_t *g);
49

50 graph_t *sort_vertices_by_degree(graph_t *g, bool ascending);
51 // ==
52

53 #include "graph.h"
54

55 static void fail(const char* msg) {
56 fprintf(stderr ,"%s\n", msg);
57 exit (1);
58 }
59

60 unsigned int* calculate_degrees(graph_t *g) {
61 short int size = g->n;
62 unsigned int *degree = calloc(size , sizeof *degree);
63 for (int v = 0; v < g->n; v++)
64 for (int w = 0; w < g->n; w++)
65 if (g->adjmat[v][w]) degree[v]++;
66 return degree;
67 }
68

69 void add_edge(graph_t *g, int v, int w) {
70 if (v != w) {
71 g->adjmat[v][w] = 1;
72 g->adjmat[w][v] = 1;
73 } else {
74 // To indicate that a vertex has a loop , we set its

label to 1
75 g->label[v] = 1;
76 }
77 }

APPENDIX C. GRAPH CLASS 116

78

79 unsigned int read_word(FILE *fp) {
80 unsigned char a[2];
81 if (fread(a, 1, 2, fp) != 2)
82 fail("Error␣reading␣file.\n");
83 return (unsigned int)a[0] | (((unsigned int)a[1]) << 8);
84 }
85

86 // Precondition: *g is already zeroed out
87 // returns max edge label
88 void readBinaryGraph(char* filename , graph_t* g) {
89 FILE* f;
90 int i;
91 if ((f=fopen(filename , "rb"))==NULL)
92 fail("Cannot␣open␣file");
93

94 unsigned int nvertices = read_word(f);
95 g->n = nvertices;
96 g->label = calloc(g->n, sizeof *g->label);
97 g->adjmat = calloc(g->n, sizeof *g->adjmat);
98 for(i = 0; i < g->n; i++)
99 g->adjmat[i] = calloc(g->n, sizeof *g->adjmat[i]);

100 printf("%d␣vertices\n", nvertices);
101

102 printf("paolo2");
103 for (int i=0; i<nvertices; i++) {
104 read_word(f); // ignore label
105 }
106

107 for (int i=0; i<nvertices; i++) {
108 int len = read_word(f);
109 for (int j=0; j<len; j++) {
110 int target = read_word(f);
111 read_word(f); // ignore label
112 add_edge(g, i, target);
113 }
114 }
115 g->degree = calculate_degrees(g);
116 fclose(f);
117 }
118

119 // Precondition: *g is already zeroed out
120 void readLadGraph(char* filename , graph_t* g) {
121 FILE* f;
122 int i;
123 if ((f=fopen(filename , "r"))==NULL){
124 free(g);
125 fail("Cannot␣open␣file");
126 }

APPENDIX C. GRAPH CLASS 117

127 int nvertices = 0, w;
128 if (fscanf(f, "%d", &nvertices) != 1)
129 fail("Number␣of␣vertices␣not␣read␣correctly .\n");
130 g->n = nvertices;
131 g->label = calloc(g->n, sizeof *g->label);
132 g->adjmat = calloc(g->n, sizeof *g->adjmat);
133 for(i = 0; i < g->n; i++)
134 g->adjmat[i] = calloc(g->n, sizeof *g->adjmat[i]);
135 for (int i=0; i<nvertices; i++) {
136 int edge_count;
137 if (fscanf(f, "%d", &edge_count) != 1)
138 fail("Number␣of␣edges␣not␣read␣correctly .\n");
139 for (int j=0; j<edge_count; j++) {
140 if (fscanf(f, "%d", &w) != 1)
141 fail("An␣edge␣was␣not␣read␣correctly .\n");
142 add_edge(g, i, w);
143 }
144 }
145 g->degree = calculate_degrees(g);
146 fclose(f);
147 }
148

149 void readGraph(char* filename , graph_t* g, char format) {
150 if (format ==’L’) readLadGraph(filename , g);
151 else if (format ==’B’) readBinaryGraph(filename , g);
152 else fail("Unknown␣graph␣format\n");
153 }
154

155 graph_t *induced_subgraph(graph_t *g, int *vv) {
156 graph_t * subg = calloc(1, sizeof *subg);
157 subg ->n = g->n;
158 subg ->label = calloc(g->n, sizeof *subg ->label);
159 subg ->adjmat = calloc(g->n, sizeof *subg ->adjmat);
160 for (int n = 0; n < g->n; n++) subg ->adjmat[n] = calloc(g->n,

sizeof *subg ->adjmat[n]);
161 for (int i = 0; i < subg ->n; i++)
162 for (int j=0; j < subg ->n; j++)
163 subg ->adjmat[i][j] = g->adjmat[vv[i]][vv[j]];
164 for (int i=0; i<subg ->n; i++)
165 subg ->label[i] = g->label[vv[i]];
166 subg ->degree = calculate_degrees(subg);
167 return subg;
168 }
169

170 int graph_edge_count(graph_t *g) {
171 int count = 0;
172 for (int i=0; i<g->n; i++)
173 count += g->degree[i];
174 return count;

APPENDIX C. GRAPH CLASS 118

175 }
176

177 void free_graph(graph_t *g){
178 for(int i = 0; i < g->n; i++)
179 free(g->adjmat[i]);
180 free(g->adjmat);
181 free(g->label);
182 free(g->degree);
183 free(g);
184 return;
185 }
186

187 graph_t *sort_vertices_by_degree(graph_t *g, bool ascending){
188 int *vv = malloc(g->n * sizeof *vv);
189 for (int i=0; i<g->n; i++) vv[i] = i;
190 if (ascending) {
191 INSERTION_SORT(int , vv, g->n, (g->degree[vv[j-1]] >

g->degree[vv[j]]))
192 } else {
193 INSERTION_SORT(int , vv, g->n, (g->degree[vv[j-1]] <

g->degree[vv[j]]))
194 }
195

196 graph_t *g_sorted = induced_subgraph(g, vv);
197 free(vv);
198 free_graph(g);
199 return g_sorted;
200 }
201

202

203

204

205

206 #endif /* GRAPH_H_ */

Bibliography

Barrow, Harry G. and Rod M. Burstall (1976). “Subgraph isomorphism, matching
relational structures and maximal cliques”. In: Inf. Process. Lett. 4.4, pp. 83–84.

Brint, Andrew T and Peter Willett (1987). “Algorithms for the identi�cation of
three-dimensional maximal common substructures”. In: Journal of Chemical

Information and Computer Sciences 27.4, pp. 152–158.
Bron, Coenraad and Joep Kerbosch (1973). “Finding all cliques of an undirected

graph (algorithm 457)”. In: Commun. ACM 16.9, pp. 575–576.
Cao, Yiqun, Tao Jiang, and Thomas Girke (2008). “A maximum common substructure-

based algorithm for searching and predicting drug-like compounds”. In: Bioin-
formatics 24.13, pp. i366–i374.

Cone, Michael M, Rengachari Venkataraghavan, and Fred W McLa�erty (1977).
“Computer-aided interpretation of mass spectra. 20. Molecular structure com-
parison program for the identi�cation of maximal common substructures”.
In: Journal of the American Chemical Society 99.23, pp. 7668–7671.

Cook, Shane (2012).CUDA programming: a developer’s guide to parallel computing

with GPUs. Newnes.
De Santo, M. et al. (2003). “A large database of graphs and its use for benchmark-

ing graph isomorphism algorithms”. In: Pattern Recogn. Lett. 24.8, pp. 1067–
1079. issn: 0167-8655. doi: 10.1016/S0167-8655(02)00253-2. url: http:
//dx.doi.org/10.1016/S0167-8655(02)00253-2.

Diestel, Reinhard (2018). Graph theory. Springer Publishing Company, Incorpo-
rated.

Foggia, P., C. Sansone, and M. Vento (2001). “A Database of Graphs for Isomor-
phism and Sub-Graph Isomorphism Benchmarking”. In: -, pp. 176–187.

Garey, Michael R and David S Johnson (2002).Computers and intractability. Vol. 29.
wh freeman New York.

119

BIBLIOGRAPHY 120

Ho�mann, Ruth et al. (2018). “Observations from Parallelising Three Maximum
Common (Connected) Subgraph Algorithms”. In: International Conference on
the Integration of Constraint Programming, Arti�cial Intelligence, and Opera-

tions Research. Springer, pp. 298–315.
Kann, Viggo (1992). “On the approximability of the maximum common subgraph

problem”. In: Annual Symposium on Theoretical Aspects of Computer Science.
Springer, pp. 375–388.

Kerrisk, Michael (2010). The Linux Programming Interface: A Linux and UNIX Sys-

tem Programming Handbook. 1st. San Francisco, CA, USA: No Starch Press.
isbn: 1593272200, 9781593272203.

Koch, Ina (2001). “Enumerating all connected maximal common subgraphs in
two graphs”. In: Theoretical Computer Science 250.1-2, pp. 1–30.

Kriege, Nils (2015). “Comparing graphs”. PhD thesis. Ph. D. thesis, Technische
Universität Dortmund.

Krissinel, Evgeny B and Kim Henrick (2004). “Common subgraph isomorphism
detection by backtracking search”. In: Software: Practice and Experience 34.6,
pp. 591–607.

Levi, Giorgio (1973). “A note on the derivation of maximal common subgraphs
of two directed or undirected graphs”. In: Calcolo 9.4, p. 341.

Li, Wenchao, Zach Wasson, and Sanjit A Seshia (2012). “Reverse engineering cir-
cuits using behavioral pattern mining”. In: Hardware-Oriented Security and

Trust (HOST), 2012 IEEE International Symposium on. IEEE, pp. 83–88.
McCreesh, Ciaran (2017). “Solving hard subgraph problems in parallel”. PhD the-

sis. University of Glasgow.
McCreesh, Ciaran, Samba Ndojh Ndiaye, et al. (2016). “Clique and constraint

models for maximum common (connected) subgraph problems”. In: Interna-
tional Conference on Principles and Practice of Constraint Programming. Springer,
pp. 350–368.

McCreesh, Ciaran, Patrick Prosser, and James Trimble (2017). “A partitioning
algorithm for maximum common subgraph problems”. In:

McGregor, James J (1982). “Backtrack search algorithms and the maximal com-
mon subgraph problem”. In: Software: Practice and Experience 12.1, pp. 23–
34.

BIBLIOGRAPHY 121

Morpurgo, R (1971). “Un metodo euristico per la veri�ca dell’isomor�smo di due
gra� semplici non orientati”. In: Calcolo 8.1, pp. 1–31.

Nvidia, CUDA (2018a). H.Compute Capabilities. https://docs.nvidia.com/
cuda/cuda-c-programming-guide/index.html\#compute-capabilities.

— (2018b). Programming guide.
Presa, José Luis López (2009). “E�cient algorithms for graph isomorphism test-

ing”. PhD thesis. Ph. D. dissertation, Licenciado en Informatica Madrid.
Raymond, John W and Peter Willett (2002a). “E�ectiveness of graph-based and

�ngerprint-based similarity measures for virtual screening of 2D chemical
structure databases”. In: Journal of computer-aidedmolecular design 16.1, pp. 59–
71.

— (2002b). “Maximum common subgraph isomorphism algorithms for the match-
ing of chemical structures”. In: Journal of computer-aided molecular design

16.7, pp. 521–533.
San Segundo, Pablo et al. (2013). “An improved bit parallel exact maximum clique

algorithm”. In: Optimization Letters 7.3, pp. 467–479.
Sanders, Jason and Edward Kandrot (2010). CUDA by example: an introduction to

general-purpose GPU programming. Addison-Wesley Professional.
Schädler, Kristina and Fritz Wysotzki (1999). “Comparing structures using a Hop�eld-

style neural network”. In: Applied Intelligence 11.1, pp. 15–30.
Shoukry, Amin and Mohamed Aboutabl (1996). “Neural network approach for

solving the maximal common subgraph problem”. In: IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics) 26.5, pp. 785–790.
Trimble, James (2017a).McSplit implementations. https://github.com/jamestrimble/

ijcai2017-partitioning-common-subgraph/tree/master/code/james-

c.
— (2017b). McSplit implementations. https://github.com/jamestrimble/

ijcai2017-partitioning-common-subgraph/tree/master/code/james-

c-simplified.
— (2017c).McSplit implementations. https://github.com/ciaranm/cpaior2018-

parallel-mcs-paper/tree/master/james-cpp-parallel.
— (2017d).McSplit implementations. https://github.com/ciaranm/cpaior2018-

parallel-mcs-paper/tree/master/james-cpp.

BIBLIOGRAPHY 122

Willett, Peter (1999). “Matching of chemical and biological structures using sub-
graph and maximal common subgraph isomorphism algorithms”. In: Rational
Drug Design. Springer, pp. 11–38.

