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Chapter 1

Introduction

The goal of this thesis is to design and test a blockchain network for storage,
verification, and analysis of Cooperative Awareness Messages generated by
motor vehicles. Cooperative Awareness Message(CAM) is a message format
defined in [1] which is a part of the Intelligent Transport System [2]. Each
vehicle broadcasts periodically a CAM message for all vehicles to see and
collect, and each vehicle uploads it’s own and received CAMs to the net-
work. The network is a collection of eNodeB stations and we propose for the
network to be implemented with the blockchain technology. The uses of such
network are many: determining the guilty party in case of a crash, insurance
analysis, traffic analysis, etc. Vehicles can insert false information into their
CAMs(either maliciously or erroneously). To accommodate this possibility
the network will provide a way to verify the correctness of a CAM. This is
done through position verification algorithms, which compare the properties
of cars that received the CAM with the values found inside the CAM and
checks if they are physically plausible.
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Chapter 2

Description of Cooperative Basic
Service within the Intelligent
Transport Systems Architecture

2.1 Introduction
Intelligent Transport Systems (ITS) are systems which provide informa-
tion and communication mechanisms that actors involved in transport(cars,
trucks, buses, trains, etc.) can use to safely and efficiently use the transporta-
tion infrastructure. Cooperative Basic Service (CA basic service) is one of
the foundational services of ITS whose goal is to provide cooperative aware-
ness. Cooperative awareness(CA) in this context means that road users and
roadside infrastructure are informed about each other’s position, dynamics,
and attributes [1]. Road users can be cars, trucks, buses, and even pedestri-
ans; essentially anyone who uses the roads. Road infrastructure are the non
moving members involved in transportations, such as: traffic lights, signs,
barriers, gates, etc. [1] Cooperative awareness is the foundation for many
road safety and traffic efficiency applications, such as: ADD EXAMPLES.
CA is achieved through a regular exchange of information between road users
and roadside infrastructure. Road users are also called vehicles. This regular
exchange can happen between:

1. Vehicles to Vehicles (V2V messages)

2. Vehicles to Infrastructure (V2I messages)

3. Infrastructure to Vehicles (I2V messages)

The information exchange happens through a wireless network named V2X
network [1].
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The information to be exchanged is packed in periodically transmitted Co-
operative Awareness Messages(CAMs). The generations, management, and
processing of CAMs is the job of the CA basic service. The CA basic ser-
vice is a mandatory facility layer for all kinds of ITS-Stations(ITS-S), which
take part in the road traffic [1]. The focus of this chapter is on the CAM
specification for vehicle ITS-S which participate in the V2X network.

2.2 Services Provided by CA basic service
Ca basic service is a facilities layer withing the ITS architecture whose pur-
pose is to operate the CAM protocol. It provides two services: sending CAMs
and receiving CAMs. To disseminate CAMs CA basic service uses entities of
the ITS networking & transport layer.

2.2.1 Sending CAMs

The sending of a CAM includes the generation and transmission of the CAM.
The generation is performed by the originating ITS-S, after which the CAM
is given to the ITS networking & transport layer for dissemination. The dis-
semination of CAMs may depend on the applied communication system. In
our context we will consider the ITS-G5A network[EN 302 663], where CAMs
are disseminated from the originating ITS-S to all ITS-S in the direct com-
munication range. The range can be manipulated by the originating ITS-S
through transmission power modifications. CAMs are generated periodically
with a frequency controlled by the CA basic service in the originating ITS-S.
To generation frequency depends on the ITS-S status, e.g. sudden change of
speed and/or position, as well as on the congestion of the channel.

2.2.2 Receiving CAMs

Upon receiving a CAM, the CA basic service makes the content of the CAM
available to the ITS applications and/or to other facilities withing the receiv-
ing ITS-S.

2.3 CAM Dissemination

2.3.1 CAM dissemination requirements

Point-to-multipoint communication is used for transmitting CAMs. The
CAM is transmitted only from the originating ITS-S in a single hop to the
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receiving ITS-S that is in direct communication range from the originating
ITS-S. A received CAM cannot be forwarded to other ITS-Ss.

2.3.2 CA basic service activation and termination

As long as the CA basic service is active, the CAM generation is triggered and
managed. The activation of the service varies for different types of ITS-S. For
vehicle ITS-S, the CA basic service is activated with the ITS-S activation.
The CA basic service is terminated when ITS-S is deactivated.

2.3.3 CAM generation frequency

Cam generation frequency defines the interval between two consecutive CAM
generations. The frequency is defined and managed by the CA basic service.
The limits of the generation frequency depend on the type of ITS-S. For
vehicle ITS-S:

• Minimum time between two consecutive CAM generations is 100ms.
This corresponds to a generation frequency of 10 Hz.

• Maximum time between two consecutive CAM generations is 1000ms.
This corresponds to a generation frequency of 1 Hz.

The actual generation frequency depends on the dynamics of the originating
ITS-S and congestion of the communication channel, but it’s always between
the defined limits.
For road side units(RSUs) ITS-S the frequency is defined in such a way, that
at least one CAM is transmitted while a vehicle is in the communication zone
of the RSU ITS-S. The time interval is always greater or equal to 1000ms(1
Hz). The probability for the reception of a CAM from an RSU by a passing
vehicle depends on the generation frequency of the CAM and the time the
vehicle is within the communication range, which depends on the vehicle
speed and the RSU transmission power.

2.3.4 CAM time requirements

The time when the data reported in the CAM is taken is crucial for the ap-
plicability of that data in the receiving ITS-Ss. For this purposes, each CAM
is timestamped. Of course, we expect a reasonable time synchronization be-
tween the different ITS-Ss.
The time required for CAM generation is guaranteed to be less than 50ms.
This time refers to the time difference between time at which CAM generation
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is triggered and the time at which the CAM is delivered to the networking
& transport layer For the CAM timestamp, the following requirements are
satisfied:

• For the vehicle ITS-S, the timestamp corresponds to the time instant at
which the position of the ITS-S reported in the CAM was determined

• For the RSU ITS-S, the timestamp is the time of generation

• The difference between CAM generation time and the time stamp is
guaranteed to be less than 32767ms.

2.3.5 Security Constraints

The security mechanism for ITS allow authentication of messages trans-
ferred between ITS-Ss with certificates. A certificate specifies the permis-
sions and privileges of the certificate owner to send certain types of messages
and optionally privileges for specific data elements within these messages.
FIX!!!!!The format for security envelope is defined in [TS 103 097]
Inside the certificate the permissions and privileges are indicated by a pair of
identifiers, ITS-AID and SSP. The ITS-Application Identifier(ITS-AID)(specified
in TR 102 965) indicates the overall type of permissions granted: e.g. indi-
cates that the owner is allowed to send CAMs. The Service Specific Permis-
sion(SSP) is a field that indicates special permissions withing the permissions
indicated by the ITS-AID: e.g. indicates that the owner is allowed to send
CAMs for a specific vehicle type.
An incoming signed CAM is accepted by the receiver if the certificate is valid
and the CAM is consistent with the ITS-AID and SSP in its certificate.

2.4 CAM Format Specification

2.4.1 General structure of a CAM

A CAM is composed of one common ITS PDU header and multiple contain-
ers. The ITS PDU header contains information of the protocol version, the
message type, and the ITS-S ID of the originating ITS-S. For vehicle ITS-Ss,
a CAM includes:

• One basic container: contains essential information, such as the type
of ITS-S

• One high frequency container: contains dynamic information of the
originating ITS-S, such as speed, heading, acceleration
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• May include one low frequency container: contains static and not highly
dynamic information of the originating ITS-S, such as vehicle lights

• May include one or more special containers: contains information spe-
cific to the vehicle role of the originating vehicle ITS-S

All CAMs generated by a RSU ITS-S include a basic container and op-
tionally more containers.

Each container is composed from a set of mandatory and a set of optional
fields. The full specification can be found at [ETSI EN 302 637-2].
Since the format contains many mandatory fields, in the context of this thesis
we will use and define a sub format containing only a subset of the fields.
The fields that will be used are the following

• VehicleId: this field is the ITS-S ID field taken from the ITS PDU
header. It is randomly generated and changes periodically for privacy
reasons.

• Timestamp: field representing the instant when the CAM information
was calculated

• Position: longitude and latitude of the vehicle

• Heading: expressed in degrees

• Speed

• Acceleration

2.4.2 Reports

The information required to perform position verification of CAM messages:

1. the CAM message itself

2. the reception information from other vehicles that received the CAM.
Reception information contains physical characteristics of the receiving
vehicles: time of reception, position, speed, etc.

A vehicle needs, in addition to the generated CAMs, to upload the recep-
tion information for every received CAM. In the context of this thesis a data
structure called CAM Report is defined to allow uploading all the necessary
information. Whenever a vehicle generates a CAM message it also gener-
ates a CAM Report. A CAM Report contains the generated CAM and the
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reception information for all CAMs the vehicle received since the last CAM
Report. Furthermore, each CAM Report contains cryptographic information
that links it to the previous report making the reports tamper-proof.

CAM Report Format Specification

ReportId

A string that uniquely identifies the report derived
from the generated CAM. It is obtained from the

concatenation of the vehicle ID and the timestamp of
the generated CAM.

GeneratedCam The CAM message generated by the reports’ owner.
GeneratedCamHash

ListReceivedCams A list containing reception information for each
received CAM since the last report.

PreviousReportId The id of the previous report generated by this report’s
owner.

PreviousReportHash The hash of the previous report generated by this
report’s owner.

In the ListReceivedCams each member consists of:

ReceivedCamId The ID of the received CAM
ReceivedCamHash The hash of the received CAM

ReceptionInfo Physical characteristics of the report owner in the time
instant when the CAM was received

Each ReceptionInfo consists of the following fields:

ReceptionTimestamp The time instant in which the report owner has
received the CAM

ReceptionLatitude The latitude of the receiver in the time instant
specified by ReceptionTimestamp

ReceptionLongitude The longitude of the receiver in the time instant
specified by ReceptionTimestamp

ReceptionSpeed The speed of the receiver in the time instant specified
by ReceptionTimestamp

ReceptionAcceleration The acceleration of the receiver in the time instant
specified by ReceptionTimestamp

ReceptionHeading
The heading of the receiver in the time instant

specified by ReceptionTimestamp. Represent with
respect to the North.
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Tamper-Proof properties of CAM Reports

In the structure of the CAM Reports there are two pieces of information
present that provide the tamper-proof properties:

1. Hash of the previous CAM report generated by the same vehicle

2. A hash of each received CAM in the List of Received Cams

Hash of the previous CAM report generated by the same vehicle
This property borrows it’s idea from the blockchain itself. Where as each
report is cryptographically linked with the previously generated reports. This
following figure illustrates the property:

Figure 2.1: First three reports generated by a car with the id Car0

The first generated report by a car is called Genesis Report. Since
there is no reports generated before, it’s previous report hash and previous
report id are set to null. After that each new report contains a hash of the
previous one.
This property has two effects on the security of the reports:

1. It is more difficult for a vehicle to pretend to be another vehicle since
it needs to have the last generated report of the original vehicle

2. It is more difficult for a vehicle to change the report after it has already
been generated. Changing a report would imply that a vehicle needs to
change all the reports that are generated after the report in question in
order to match the hashes. This can easily be identified by a presence
of a "fork" in the vehicle blockchain.

A hash of each received CAM
Whenever a car is generating a report it contains a list of the CAMs received
since the last generated report. Instead of saving the whole received CAM a
vehicle stores a hash of the received CAM.
This introduces the following security properties:
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• The car doesn’t store the whole received CAM. That it means it can’t
arbitrarily modify specific values. The only possible attack is to modify
the hash, but that would not make the original CAM invalid since the
hashes are checked before the position verification.

• It makes modifying a CAM inside a report after the report has been
uploaded even more difficult. Changing the CAM inside a report would
lead to the CAM hash being different than the values stored by other
vehicles which received the CAM. This can be easily identified by com-
paring the hashes.

Tamper Proof Summary Illustration

2.4.3 Position Verification Algorithm

The position verification algorithm implemented in this thesis can be ex-
plained as following: To verify a given CAM, we take all the reports contain-
ing this CAM and extract the related reception information. For each report
we take the reception information and information reported in the CAM and
perform the verification. The verification means, for example checking if the
receiver was in the transmission range of the sender, etc. The verification
process return eithers valid or invalid. Each CAM will be associated with
two fields: ValidVotes and InvalidVotes, which show how many other vehicles
have declared this CAM as valid or invalid, respectively. How many votes
needed, and how much the difference between ValidVotes and InvalidVotes
to consider a CAM valid depends on the client’s use case.
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Chapter 3

Fabric

3.1 Introduction
Hyperledger fabric is an open source, private, and permissioned distributed
ledger technology platform established under the Linux Foundation [3]. Like
other blockchain technologies, it has a ledger, uses smart contracts, and is
a system by which participants manage their transactions. It provides some
differentiating capabilities with respect to other blockchain technologies.
Fabric emphasizes modularity by providing following modular components:

• A pluggable ordering service that allow defining different consensus
protocols based on the user’s requirements

• A pluggable Membership Service Provider to allow associating entities
in the network with cryptographic identities

• A pluggable Endorsement and Validation Policy to allow to define dif-
ferent policies independently for each application

• A pluggable State Database that allows to use different DMBS models
for efficiently accessing the blockchain data.

Fabric is a permissioned network where all the participants are known to
each other. Therefore the network can operate on the partial trust that
exists between the participants, such as a legal agreement or framework for
handling disputes.
For this reason Fabric can leverage consensus protocols that do not require
native cryptocurrency for providing incentives. The absence of cryptographic
mining operations means that the platform can be deployed with roughly the
same operational cost as any other distributed system.
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3.2 Channels
Channels are used to provide private ledgers between a subset of participants
in the blockchain network. Channels provide an efficient sharing of infras-
tructure while maintaining data and communications privacy. Each channel
represents a logical blockchain network, i.e. each channel has its own ledger.
Only the participants that are members of the channel can modify (according
to established policies) and access the ledger. This is an especially important
property if we want to transact with some participants without the knowledge
of others in the network(such as offering a special price to the competitor).

3.3 Nodes
In hyperledger fabric two node types are used to construct and operate a
blockchain:

1. Peers

2. Orderers

3.4 Peers
Peers are the fundamental building blocks of a Hyperledger Fabric Network.
Peers hosts ledgers and smart contracts. All the interaction with the ledgers
must be done through peers.
A peer contains a copy of the ledger for each channel that it belongs to,
meaning that a peer can host multiple ledgers.
If a client wishes to perform a transaction, the client needs to interact with
a peer by invoking the smart contract previously installed on the peer.

3.5 Distributed Ledger
A ledger records all the transactions executed in the channel.

3.5.1 Assets

In Fabric all transactions modify properties of objects called Assets.
Each asset consists of three parts:

1. A unique identifier: Key
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2. A Value: modeled either in binary or JSON encoding

3. Version: a counter which is incremented each time the asset is updated

3.5.2 Ledger Structure

In Fabric, the ledger consists of two related parts [4]5:

1. The World State: holds latest value for all defined assets

2. The Blockchain: contains all transactions executed on the channel

Figure 3.1: Two parts of the ledger

World State

World state stores for each asset:

• The key of the asset

• Current version of the asset

• Current value of the asset

World state is implemented as a database. This is logical since database
solutions provide efficient methods of querying data.
The world state is very practical because the majority of transaction deal
with the current value of the asset. If there was no world state, whenever a
transaction would need to read a value of an asset, it would have to traverse
the blockchain to retrieve the value.
As seen in the figure 3.1 the world state is derived from the blockchain. This
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means that the world state can always be rebuilt from the blockchain. This
is useful in cases such as if a peer fails abnormally, the world state can be
re-generated from the blockchain on peer restart. The world state is not
necessary for the fabric network to be functional; it just allows practical
efficiency by acting as an asset cache.

World State Database Options

As we have already said, fabric supports two option for the database imple-
mentation: LevelDB(default) and CouchDB.
Both of the options support core operations such as getting and setting a
key(asset), and querying based on keys. Keys can be queried by range and
composite keys are supported.
CouchDB is an appropriate choice when ledger states are structured as JSON
documents because CouchDB enables rich queries for JSON documents. This
means that we can query based on the JSON field values in the asset.
To run queries based on JSON fields we need to define indexes. An index sim-
ply constructs an efficient data structure for searching based on the specified
fields.

The Blockchain

Whereas the world state contains the current state for all assets, the blockchain
contains all the state changes(CRUD operations) for all assets. It is a his-
torical record of how all the assets have arrived to their current state.
The blockchain is made from a sequence of interconnected blocks. Each block
contains a sequence of transactions, where each transaction represent a query
or update to the world state.
Each block’s header contains a hash of block’s transactions. Additionally
each block’s contains a hash from the prior block’s header. In this way, all
the blocks and all the transactions withing the blocks are sequenced and
cryptographically linked together.
Unlinke the world state, the blockchain is always implemented as a file in-
stead of a database. This is reasonable since the blockchain is biased toward
a very small set of operations. Appending to the end of the blockchain is
the primary operation, and query is an infrequent operation(because in most
cases the current asset value is used, which is stored in the world state).
The following picture illustrates the blockchain structure:
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Figure 3.2: Blockchain Structure

We see that the first block in the blockchain is the so called Genesis
block. The most important part is the links, that is the headers containing
the hash of the previous block’s header.

Blocks

In the figure 3.2 we see that a block in the blockchain consists of three parts,
namely:

1. Block header: the section used for block identification, and to provide
cryptographic linking between the blocks. These fields are used to
ensure the immutability of the blockchain.
Block header consists of:

• Block Number: An integer starting at 0 (the genesis block), and
increased by 1 fore very new block appended to the blockchain.

• Block Hash: The hash of the block data(transactions in the
current block)

• Previous Block Hash: A copy of the hash from the previous
block

2. Block data: Contains a list of transactions arranged in order. The
order is determined by the ordering service when it creates the block.
The transaction format is explained in the next section.

3. Block metadata: Contains the time when the block was written, as
well as the certificate, public key and signature of the block writer.
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The block committer(every peer in the channel) adds a valid/invalid
indicator for every transaction. This indicator is not included in the
block hash since the hash is calculated when the block is created.

Transactions

A transaction captures changes to the world states.
A transaction consists of the following parts:

1. Header: Contains metadata about the transaction, such as the infor-
mation about the chaincode which was invoked by the transaction.

2. Signature: Contains a cryptographic signature by the client applica-
tion which invoked the transaction. This is used to ensure that there
was no tampering with the transaction

3. Proposal: Contains the set of input parameters to the chaincode. The
input parameters are provided by the client application.

4. Response: The output of the smart contract execution. Contains the
Read Write set(RW-set) which captures the before and after value of
the world state through:

• Read Set: keys and versions for all assets that were read during
the smart contract execution

• Write Set: keys and new values for all assets which were updated
during the smart contract execution

If the transaction is deemed valid, the write set will be applied to
update the world state.

5. Endorsements: A list of signed transaction responses. This list needs
to contains the signatures of all organizations required by the chaincode
endorsement policy.

3.6 Smart Contracts and Chaincodes
A Smart Contract defines the executable business logic that generates new
transaction that are added to the ledger. Smart contracts define the rules
between different organizations. Applications invoke smart contracts to gen-
erate transactions that are recorded on the ledger.
A smart contract is defined within a chaincode. Multiple smart contracts
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can be defined within the same chaincode. When a chaincode is deployed,
all smart contracts within it are made available to applications.
Smart contracts typically perform CRUD operations on the world state, but
can also query the blockchain.
Chaincodes can be implemented in multiple standard programming languages
such as: Java, NodeJS, Go. To prevent infinite execution the fabric network
has a parameter limiting the execution duration of a chaincode.
Smart contracts are hosted and executed on the peers of the network.

Endorsement

Every chaincode has an endorsement policy defines for it. The endorsement
policy applies to all smart contracts withing the chaincode.
An endorsement policy specifies which organizations must sign a transaction
generated by a smart contract withing the chaincode. If the endorsement
policy is satisfied the transaction is considered valid, otherwise it is invalid.
Only valid transactions update the world state, whereas both valid and
invalid transactions are recorded on the ledger.

Transaction Validation Process

When a smart contract execution is invoked on the peer, a set of input pa-
rameters is provided. This set of input parameters is called Transaction
Proposal. The peer then uses the transaction proposal and executes the
smart contract requested by the client. The output of this execution is called
the Transaction Response. The transaction response contains a read-
write set specifying which data has been read during the execution, and
which new data should be written to the ledger if the transaction is deemed
valid. Note that the world state is not yet modified. It can only be modified
after the transaction is validated.
The client which requested the invocation of the smart contract receives the
transaction response signed by the peer that executed it. It’s the client’s
job to collect the other required signatures specified by the chaincode en-
dorsement policy. After the signatures have been collected the transaction is
distributed to all peers in the channel.
The distributed transaction is validated in two steps by each peer in the
network:

1. First, the transaction signatures are checked to see if they satisfy the
chaincode endorsement policy.

2. Secondly, the read set of the transaction is compared with the current
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value of the world state. This is a check to ensure that no interme-
diate update has happened to the values used in the execution of the
transaction.

If a transaction passes both checks it is declared valid, otherwise it is invalid.

3.7 Orderers
Orderers are nodes that collect transactions executed by peers and order
them into blocks. These blocks are distributed to all the peers in the channel.
Orderers do not maintain a copy of the ledger and do interact directly with
the ledger.

3.8 Permissioned and Private
Fabric is a permissioned platform, meaning that each participants of the net-
work has a verifiable identity, i.e. there is no anonymous members.
Fabric is a private platform, meaning that only the participants of the blockchain
network, more specifically of the channel[ref] can access the network.

3.8.1 Identity

Any entity that hosts or interacts with a hyperledger fabric blockchain net-
work must have a valid digital identity. A digital identity is encapsulated in
a X.509 certificate.
In fabric there are some additional attributes on top of the digital identity.
The union of the digital identity and these additional attributes is called a
Principal. Additional attributes can contain a wide range of properties,
such as: actors’ role, actors’ organization unit, etc.
In general a principal determines all of actors’ permissions over resources and
access to information in the blockchain network.
For an identity to be valid it must come from a trusted authority. In
Fabric, the component which is used to verify identities and govern the
rules regarding identity verification is called the Membership Service
Provider(MSP). The default MSP implementation in Fabric uses X.509
certificates as identities, adopting a traditional Public Key Infrastructure
(PKI) hierarchical model.
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3.8.2 Membership Service Provider

Membership Service Provider(MSP) is a component of the fabric that turns
verifiable identities into members of the blockchain network. Each organiza-
tion participating in the fabric network is mapped to a unique MSP.

Membership

MSP’s job is to identify which Root CAs and Intermediate CAs are trusted
for each organization. This can be done in two ways:

1. Listing the identities of the members of an organization

2. Identifying which CAs are authorized to issue identities for the organi-
zation’s members

In most cases a combination of both options is implemented.
An MSP can identify specific roles that an actor can play in both the scope
of the organization the MSP represents(admins, members,...) and the scope
of the network and channel(channel admins, writers, readers).
The MSP configuration is propagated through all the channels where the
members of the organization that the MSP is representing are participating.
This MSP configuration is called the channel MSP. On top of this, each
actor maintains a local MSP in order to authenticate member messages
outside the context of the channel and to define the permissions over partic-
ular components.
MSPs can also be used for the identification of a list of revoked identities.

Local and Channel MSPs

Local MSPs are defined for every node(peers and orderers) and user(client,
admin,...). On nodes the local MSPs defines the permissions for that node.
For example, on a peer node it may define who is the administrator for this
peer. On users the local MSPs allows the user to authenticate himself as a
member of the a channel or as the owner of a specific role in the system(e.g.
organization admin).
Every node and user must have a local MSP defined.
Local MSPs are defined on the file system of the node or the user to which
they apply. Therefore logically and physically, there is only one local MSP
per node or user.

Channel MSPs define administrative and participatory rights at the chan-
nel level. Every organization that participates in a channel must have an
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MSP defined for the channel. All peers and orderers in the channel share
the same view of the channel MSP, and are able to authenticate the channel
participants.
Channel MSP is logically defined in the channel configuration. However a
copy of the channel MSP is physically maintained on the file system of every
node in the channel and kept synchronized via consensus.
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Chapter 4

Architecture

4.1 Physical architecture
The physical architecture is made from two components: Vehicles and Base
Stations

4.1.1 Vehicles

Vehicles are data providers for the blockchain. Each vehicle sends its’ data
using the internet. Therefore, each vehicle must have an USIM with an
enabled internet connection. The format used when uploading data is the
CAM Report format specified in section 2.4.2.
A vehicle performs the following functions:

1. Generate and disseminate its’ own CAM periodically.

2. Receive the CAMs from nearby vehicles and collect them into Cam
Reports.

3. Upload the Cam Reports to the blockchain network, through base sta-
tions, using the internet connection.

4. Store a cryptographically linked list of all its’ reports.

The generation, dissemination and reception of CAMs is provided by CA
basic service as described in chapter 2. The uploading of reports is done
through the USIM internet connection.

Vehicles do not host the blockchain network for the following reasons:
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1. Resource requirements: each member of the blockchain needs to store
a complete replica of the ledger. This puts an ever growing strain on
resource requirements for each vehicle since a ledger is an append-only
structure.

2. Number of vehicles: storing the ledger on a large number of vehicles
implies that a transaction may take a long time since all of the vehicles
have to update their ledger

3. Trust: A vehicle cannot be considered as a trusted node

Vehicles also do not upload their CAM Reports directly to the blockchain
network for the following reason:

1. Transaction frequency: a vehicle generates a CAM Report every time
it generates a CAM. The CAM generation frequency is between 1Hz
and 10Hz. Taking into the account the number of vehicles, the number
of transactions would be enormous.

2. Authentication: To issue transactions each vehicle needs to posses a
valid certificate and the certificate has to be verified for each transac-
tions. This creates an enormous computational overhead.

If the vehicle is in a zone where internet connection is impossible, the reports
are stored locally and uploaded as soon as the connection is restored.

4.1.2 Base Stations

Base Stations represent blockchain hosts and blockchain access points.

A base stations performs the following functions:

1. Authenticating vehicles which send the CAM Reports

2. Receiving CAM Reports from vehicles

3. Storing the CAM Reports into the blockchain

4. Hosting and maintaining the blockchain network

5. Providing an access point for authorized clients to read the contents of
the distributed ledger

In the proposed architecture Base Stations will be eNodeBs of mobile oper-
ators.
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E-UTRAN Node B

E-UTRAN Node B, also known as eNodeB is the element of the LTE net-
work. It is the hardware that is connected to the mobile phone network
and communicates directly through the wireless with user equipment(mobile
phones, laptops with a mobile broadband adapter,...).

Mobile network operators form a conglomerate by sharing their eNodeBs
and constructing the blockchain network. ENodeBs can authenticate vehi-
cles since each vehicle sends data using through an USIM provided by the
mobile network operators.

4.1.3 Putting it together

The physical architecture is illustrated by the following picture:

Figure 4.1: Physical Architecture
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4.2 Blockchain network architecture
The goal of this section is to understand the hyperledger blockchain network
architecture and main operating principles. A way to do this is to go through
an example of building a network from the ground up and explaining each
step along the way. In our case we have multiple organizations(mobile net-
work providers) that will form a blockchain network which will allow storage
of CAMs and any relevant information.

The network

The network will be built by two organizations:

1. Organization M1, whose elements will have blue color

2. Organization M2, whose elements will have red color

Creating the network

First we create the basis for the network:

To start our network N, we need the ordering service(O1). For now we
can consider the ordering service as a network access point. The ordering
service contains the network configuration(NC) which defines a set of policies.
These policies determine who has administrative power over the network.
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Since for now only organization M1 is involved in the network, only it has
the administrative power. The network configuration policies can change as
we will see.

Different components of the network will use certificates to identify them-
selves as being part of an organization. Usually each organization has it’s
own certificate authority which issues the certificates for the member of the
organization. Note how CA1 in the picture, the certificate authority for
organization M1, is not a part of the network.

Adding an organization

Now an administrator from organization M1 modifies the network configu-
ration to give administrative powers also to the organization M2.

Now both organizations have equal rights over the network. Even though
orderer node O1 is running on M1’s infrastructure, the organizations share
equal rights over it. Usually orderer service consists of multiple orderer nodes
from different organizations. In this example we will just have one orderer
node to avoid making a mess on the diagram. We can see that also CA2 has
been added so that the users from organization M2 can be identified.

Creating a consortium

A consortium defines the set of organizations in the network who want to
conduct with each other.
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In the diagram we can see an addition of a new consortium, X1, made up
of the two organizations. Consortium definition is saved in the network con-
figuration NC. In general in the network we would have many organizations
and any organization who has administrative rights over the network could
define consortia. A consortium can contain any number of organizations from
the network.

Creating a channel

For the members of a consortium to be able to communicate to each other
they need to create a channel.
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The channel represent a private communication mechanism for the mem-
ber of the consortium which created it. Any organization which is not part of
the consortium can’t see or participate in the channel. Each channel has it’s
own private ledger. We can see that channel is controlled by a different set
of policies which are stored in the channel configuration CC1. These policies
determines the rights of the organizations over the channel. Channels are a
powerful tool because they allow organizations to both share the infrastruc-
ture and keep it private at the same time. We can see that the channel C1 is
connected to the orderer service, but to nothing else. For now, the channel
represents the potential for conducting business between the organizations
in the consortium. In the next sections we will add actors that will realize
this potential.

Peers

Now each organizations can add peers, which are nodes that host the ledger.
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In the diagram we see that we have added a peer P1 belonging to the
organization M1, and it’s hosting the ledger L1(the ledger of the channel
C1). Each peer connected to a channel hosts a physical copy of the ledger,
but the ledger is logically hosted on the channel.

Once a peer is started it can join a channel through an orderer. When
the orderer receives the join request, it uses the channel configuration to
determine P1’s permissions on the channel. For example, if the peer can
write information on the ledger.

Clients and Smart Contracts

So far we have built a network that can host the blockchain, but we still
don’t have a way to interact with it. For this we need smart contracts and
client applications.
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In the diagram we see a smart contract S1 hosted on the peer P1. Smart
contracts, or chaincodes in hyperledger fabric terminology, are written in a
programming language(Go, Java, NodeJS) and represent the only way to
access/modify the ledger. They essentially represent the business logic.

For a chaincode to be invokable(runnable) it has to be installed and in-
stantiated. When a chaincode is installed on a peer, it means that the peer
is able to run the chaincode, and it can see the implementation logic of the
chaincode. When a chaincode is instantiated on a channel, it means that
all members of the channel will know about the existence of the chaincode,
that is any member of the network will be able to see the chaincode interface
but not the implementation logic. Only the peers where the chaincode is
installed will be able to see the implementation logic. When a chaincode
is instantiated, the endorsement policy is provided and saved in the chan-
nel configuration. Endorsement policy specifies which organizations must
approve the transaction before it’s accepted and saved to the ledger.

We can see outside the network the addition of a client application A1.
This client belongs to the organization M1, therefore it has a certificate
issued by CA1 and all the transactions it wants to do must be signed. To
interact the client has to join the channel C1 since it is the only mechanism
of communication in the network.

The invocation of a chaincode usually goes as:
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1. Client sends a transaction proposal to peers belonging to organizations
specified by the chaincode endorsement policy

2. The transaction proposal is used as input for the chaincode, then the
chaincode is run to generate a transaction response, and the peer where
it is run signs it to create a endorsed transaction response, which is
returned by the peer to the client application.

3. Then these endorsed transaction responses are packaged together with
the transaction proposal to form a fully endorsed transaction, which is
distributed to the whole network.

Complete network

Since the consortium is made from two organizations we can assume that
also the organization M2 will interact with the network.

In the diagram we see that the organization M2 has added two peers:
P2 and P3. P2 has the chaincode S1 installed on it while P3 doesn’t. P3
still knows the existence of the chaincode and it’s interface. Note that when
chaincode is installed on P2 there is no need to instantiate it, since it’s
already instantiated on the channel by P1. This shows that we can view
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smart contracts the same way as the ledger, physically hosted on peers but
logically on the channel. M2 has also added it’s own client application A2 to
be able to interact with the blockchain network.

Transactions

Execute-Order-Validate

One of unique capabilities of hyperledger fabric is the execute-order-validate
architecture for transactions. This architecture is the key behind fabrics
flexibility, scalability and performance. The architecture specifies that the
transaction flow is divided in three steps:

1. execute a transaction and check its correctness, thereby endorsing it.

2. order transactions via a consensus protocol

3. validate transactions against the relevant endorsement policy(based on
the chaincode executed) before committing them to the ledger

In fabric, an endorsement policy specifies which peer nodes, and how many of
them, need to vouch for the correct execution of a smart contract. This means
that only a subset of peers needs to execute the chaincode invoked by the
transaction. This allow for parallel execution and scalability of the system.
The first step also eliminates non-determinism meaning that unlike other
blockchain platforms chaincodes can be written in standard programming
languages.

Peer Types

Based on the execute-order-validate architecture we can divide peers in two
types:

1. Endorsing Peers: Every peer that has a smart contract installed can be
an endorsing peer. But to be an endorsing peer, the smart contract on
the peer must be invoked by a client application to generate a signed
transaction response.

2. Committing Peers: Every peer node in a channel is committing peer.
It receives a block of generated transactions, which are validated before
being committed to peer’s copy of the ledger as an append operation.
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Orderer

Other than being the management point for the network, the ordering ser-
vice has another important function: distribution of transactions. It collects
endorsed transactions from client applications, orders them into transaction
blocks, which are then distributed to every peer node in the channel. At
each committing peer, transactions are recorded, whether valid or invalid,
and their local copy of the ledger is updated.

Transaction Flow

Transaction flow always starts in the same way. A client, with an appropriate
and valid certificate, connects to a peer. After that, the client is able to
invoke chaincodes on the peer. The invocation happens when the client
sends the invocation proposal containing the name of the chaincode and
input parameters. From here the transaction flow depends on the type of
transactions. Transactions can be divided in two types, based on if they
update the ledger or if they simply read from the ledger.

Query Transactions

These are transactions that only read data from the ledger. Since each peer
contains an identical copy of the ledger, the chaincode invoked by the trans-
action is only executed on the peer where it is invoked. There is no need for
any consensus protocol since the ledger is not modified. After the execution
of the chaincode, the peer returns the proposal response, that contains the
result(s) of the query, to the client application.

Update Transactions

The transactions that update the ledger can’t be executed only on one peer.
Consensus protocol must be respected, and transactions must be ordered and
packaged into blocks before being committed to the blockchain.
The update transactions start in the same way except now when the peer
responds to the client, the proposal response will contain a proposed update,
i.e. the update that peer would apply if other peers have already agreed to
it.
After receiving the proposal response containing the proposed update, client’s
job is to deliver the proposed update as a transaction to all peers in the net-
work. To accomplish this, the client will send the proposed update to the
orderer. The orderer will take the proposed update, package it in the transac-
tion format, order and collect transactions into blocks. When an orderer has
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a block ready, he sends it to all the peers in the network, who then validate
each transaction in the block and update their respectful ledgers. Since this
collection and ordering may take some time(few seconds) the application is
notified asynchronously when the ledger is updated.

4.3 Mapping the physical actors to blockchain
network roles

4.3.1 Clients

From the blockchain architecture we see that clients are the ones who invoke
transactions. We define two types of clients:

1. Clients that invoke transactions to upload new reports into the blockchain

2. Clients that invoke transactions to read CAM information stored in the
blockchain

Base stations represent the first type. After receiving the reports they use an
installed client application to send the reports by invoking the corresponding
transaction in a peer. Every base station acts as a client and therefore has
a valid certificate that allows both querying and modifying the blockchain
data.
The second type of clients can be represented by authorized parties interested
in querying the information stored on the blockchain. Some example of such
parties are: Insurance companies, Police department, Traffic analysts. As
with any client application to invoke transaction they need to posses a valid
certificate. For these parties the privileges corresponding to their certificates
should allow only querying the data, i.e. not modifying.

4.3.2 Peers

Committing Peers

Committing Peer is every peer that maintains a copy of the distributed ledger.
Therefore every Base Stations will act as a committing peer.

Endorsing Peers

Endorsing peers are peers who execute the invoked transactions. Not all base
stations need to be endorsing peers. Higher the number of endorsing peers,
higher the possible level of parallelism.
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4.3.3 Orderers

We can consider the ordering service as a cluster of ordering nodes. The
type of nodes depends on the ordering algorithm used: Kafka or Solo. In the
context of this thesis we will consider ordering nodes as an already provided
cluster.

4.3.4 Many roles of base stations

We see that a base station can play up to three roles: Clients, Committing
Peers, and Endorsing Peers. It is important to state that even though all
the roles are implemented in the same physical location they are logically
completely separated. For example if a client is interacting with the peer in
the same base stations, it still needs a valid certificate for the interaction.

4.4 Load Balancing
In most cases whenever the client inside a base station needs to upload the
report, it would invoke the transaction on the peer in the same base station.
This makes sense since this is where the latency is lowest(same physical
location)
By the specification vehicles send CAM Reports to the physically closest base
stations. In a dense traffic area this could mean most of the reports being
received by a single base station resulting in a processing delay. In such cases
the client can choose to invoke the transaction on a peer in a different base
station(belonging to the same channel). This introduces some latency but
provides load balancing on the clients’ base station. A protocol for finding
the least loaded base station would need to be implemented. The ordering
service could be modified as the central point of this protocol so that client’s
can get the least loaded base station by communicating with the ordering
service.

4.5 Geographical Sharding
In hyperledger fabric each peer must maintain a full copy of the ledger.
There is no possibility of data sharding. This means that if this architecture
would be installed throughout a country, each peer would have to maintain
the complete ledger for all reports generated in the whole country. This is
clearly infeasible.
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To solve this issue we can (mis)use the concept of channels. To recall, in
fabric channels are used for private communication in a blockchain network.
Each channel has it’s own ledger and is only accessible to the members of
that channel.
Based on distribution of base stations we can divide them into geographical
areas of some size. Each geographical area will maintain it’s own channel
and ledger. The base stations on the border between areas will belong to all
neighboring channels. PICTURE Problem could be no connectivity, in this
case the reports should be sent to the base station closest to the generated
CAM inside the report.

4.6 Application Architecture
Looking at the specification of the use case we see that the amount of data to
generate and analyze is enormous. Therefore the design of the architecture
should be done with great care and taking into account many factors to avoid
unnecessary data and to minimize data duplication. Some factors to take into
account is how the blockchain is structured and the append-only property of
the blockchain, transaction format, the required querying possibilities, design
of assets, etc.

4.6.1 Requirements

The developed application should allow storage of CAMs, verification of
CAMs, and be as flexible as possible with it’s querying capabilities. Some
query examples would be:

• Retrieve a CAM and check if the CAM is valid

• Retrieve all CAMs of a vehicle in a certain time interval

• Retrieve all vehicles which have went over a speed limit in a certain
time interval

• and many more

4.6.2 Input for the application

As we have seen the stations send reports to our application for storage. The
report structure is again reported here for clarity purposes:
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ReportId

A string that uniquely identifies the report derived
from the generated CAM. It is obtained from the

concatenation of the vehicle ID and the timestamp of
the generated CAM.

GeneratedCam The CAM message generated by the reports’ owner.
GeneratedCamHash

ListReceivedCams A list containing reception information for each
received CAM since the last report.

PreviousReportId The id of the previous report generated by this report’s
owner.

PreviousReportHash The hash of the previous report generated by this
report’s owner.

In the ListReceivedCams each member consists of:

ReceivedCamId The ID of the received CAM
ReceivedCamHash The hash of the received CAM

ReceptionInfo Physical characteristics of the report owner in the time
instant when the CAM was received

4.6.3 Initial design

We see that our application should store the data found in the reports, essen-
tially the CAMs and the reception information needed for the verification of
CAMs. From the description of hyperledger we see that data interaction hap-
pens through a key value store(KVS) database. For now let us concentrate
on the requirement that we want to be able to retrieve a CAM efficiently
and check if it’s valid. Since we cannot know which reports contain reception
information for a CAM, i.e. we don’t know which cars received the CAM, we
should store a CAM and it’s reception information together. We can start
by storing each CAM with the information needed for it’s verification under
the same key. Since CAMs don’t have IDs we can define it as the ID of a
vehicle concatenated with timestamp of the CAM. So an example of our key
value pair in the database will be:
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Now if the application needs to retrieve the CAM, it simply accesses it
using the CAM_ID and selects the CAM field. If it needs to verify it, it
has all the information in the reception information fields. The verification
is done using a position verification algorithm.

4.6.4 Problems with the initial design

The initial design allows us to satisfy our requirement, but is very memory
inefficient. To understand why we should examine the ledger in more detail.
As previously explained, the blockchain is a collection of cryptographically
connected blocks. Each block contains the data and metadata to guarantee
immutability, but the actual content of a block is simply a set of transactions.
Transactions record modifications performed to the defined assets. They
record it using the format of a Read Write set(RW-set).

Read Write Set

Before explaining the semantics of the RW-set, it should me mentioned that
each asset next to a key has also a version. Each modification of an asset
increments the version. This is used to check that during the transaction
endorsement process no other transaction has already modified the value.

Each transaction contains a RW-set. The read set is made of a list of unique
keys and their committed version that the transactions reads. The write set
contains a list of unique keys(these can overlap with the keys present in the
read set) and their new values that the transaction writes. A delete marker
is set(instead of the new value) if the update performed is to delete the key.
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An example of a read-write set: ADD ILLUSTRATION
In the validation phase, a transaction is considered valid if the version of
each key present in the read set of the transaction matches the version in the
world state.

Memory utilized by the initial design

Due to the nature of transactions and read-write sets, append structures are
very inefficient. To understand let’s run through an example for one specific
CAM.
To start we receive a report containing the CAM as the generated CAM
and information about other received CAMs. In our example we are only
interested in the generated CAM. So after our application is done processing
the report, our key value pair would be:

And in the blockchain the RW-set of the corresponding transaction would
be:

ReadSet : {}
WriteSet : { Key = CAM_ID, Value = CAM; }

Now we receive another report and in the processing of it we realize that
the report has received our CAM so we decide to save the related reception
information. So now our asset looks like:

And the new transaction will have the RW-set:
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ReadSet : {Key = CAM_ID, Version = 1}
WriteSet : { Key = CAM_ID, Value = (CAM, rInfCar1); }

Since we are adding the reception information we need to first read the value,
then add rInfCar1 to the value, and after write the whole value back.

Another report containing rInf about our CAM arrives. We perform ev-
erything as in the previous step. So our asset becomes:

And the new transaction has the RW-set:

ReadSet : {Key = CAM_ID, Version = 2}
WriteSet : { Key = CAM_ID, Value = (CAM, rInfCar1, rInfCar2); }

Again we have to read the value, append our new information, and then
rewrite the value in the blockchain.

Now for all the cars that received our CAM, reports arrive containing the
reception information we need for CAM verification. And all of them follow
the pattern described in the last two steps of the example. For the follow-
ing calculation lets define Nr as the number of reports that arrived whose
information we need to save for our CAM.

Let’s see how much memory has our key value pair occupied on the ledger.
First in the world state we have the CAM and Nr reception informations from
different reports, therefore :

MemoryWorldState = sizeof(CAM) + Nr ∗ sizeof(recInf)

This size is necessary since we need the value stored in world state database
for efficient querying.
Then in the blockchain we have the value written for each transaction.
Since there was the initial transaction(T0) for writing the CAM and Nr

transactions(T1, ..., TNr) for each report containing the CAM. Therefore:
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MemoryBlockchain = sizeof(T0) +
PNr

i=1 sizeof(Ti)

Since the values are much larger than the keys, in the computations we will
concentrate on the values found in transaction write-sets. Since the complete
value has to be overwritten each time, we have:

sizeof(T0) = sizeof(CAM)
sizeof(Ti) = sizeof(CAM) +

Pi
j=1 sizeof(recInf)

This size is due to the fact that each transaction is recorded in the blockchain
with it’s read-write set and we can’t go back and deletes part of it because
the blockchain is immutable. So our initial structure consisting of one CAM
and Nr recInf will occupy:

MemoryWorldState = sizeof(CAM) + Nr ∗ sizeof(recInf)

MemoryBlockchain =
sizeof(CAM) ∗ (Nr + 1) + Nr ∗ (Nr − 1) ∗ sizeof(recInf)/2

TotalMemory = MemoryWorldState + MemoryBlockchain =
(Nr + 2) ∗ sizeof(CAM) + sizeof(recInf) ∗Nr ∗ (Nr/2 + 1/2)

It is worth mentioning that in this subsection when processing a report we
have only shown one CAM in the RW-set. In reality there will be as many
CAMs processed in one transactions as there are in the report. The goal was
to show for just one of them, how inefficient the design is.

4.6.5 Improving the design

We see that whenever we receive new reception information, to save it we
have to overwrite the CAM. This can be easily fixed by defining a key that
stores only the CAM and the key that stores all the reception information.
Therefore our structure would be made from two assets:

This already decreases the CAM part of the size from (Nr + 2) to 2
because it’s only written in the initial transaction(on the blockchain) and in
the database copy. Since CAM contains more information than rInfos this is
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already a substantial increase at the cost of one extra key.
The issue that remains is the quadratic growth of values modeled by append
structures. In our case the size of Nr rInfos will grow as O(N2

r ). There are
different ways to mitigate this:

1. Define a new asset for each reception information. The pros
of this model is that it avoid append like structures and allows for
maximum parallelism. The cons is that it requires an additional trans-
action to perform the verification, i.e we can’t validate CAMs partially
whenever a reception information about a CAM is received.

2. Create an off blockchain database on each peer where the reception
information are stored and when enough of them is collected or some
time has passed write them all in one go. This is beyond the scope of
the thesis since it involves modifying the hyperledger fabric itself and
guaranteeing synchronization between the off blockchain databases.

3. Implementing an incremental verification algorithmSince the
rInfos are used to verify the truthfulness of a CAM, if the position
verification algorithm can be performed incrementally and results ag-
gregated, we could compute a part of it each time a new rInfo arrives
and keep only the last rInfo stored as the value.

Examining The Incremental Verification Algorithm

Initially the third option was chosen for the implementation in this thesis
since the position verification algorithm can be performed incrementally. But
during the testing a large number of invalid transaction was noticed with
parallel transactions. When processing the report the chaincode has to check
for each reception information if the relative CAM has already been stored
in the blockchain. But it is possible(even likely) that there is a pending
transaction that still hasn’t been committed to the blockchain containing
the CAM in question. This means that execution will proceed normally
but when the transaction has to be verified there will be a read set version
inconsistency and the transaction would be declared valid. This problem is
illustrated by the following example: HDAUASIBHDHOAIDKBASDISD

Reception Information Asset

Therefore the chosen implementation is to create a new asset for each recep-
tion information.
First a unique key should be defined for each reception information: since
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each CAM can be received at most once by each vehicle, a unique key can
be obtained by creating a composite key which combines the CAM_ID and
theReceiver Vehicle ID :

Figure 4.2: Reception Information Asset with a unique composite key con-
sisting of the ID of the CAM to which the information refers and the ID of
the vehicle that provided the information

In fabric the composite keys allow providing wildcards for the second key
parameter. This means that to obtain all the reception information for a
given CAM is simply requesting all the assets given that the first part of the
composite key is equal to the CAM_ID.
With this architecture we do not perform any reads in the database while
processing a report therefore it doesn’t matter if the CAM or the reception
information arrive first.

Validity Asset

So far we have defined assets for storing the CAMs and the relative reception
information in a memory efficient way.
The last information that needs to be provided is the validity of a CAM.
In order to avoid duplicating the CAM in the blockchain we will define a
new type of asset which will store the current validity value for a given
CAM. Therefore for each CAM we will have the following asset:

Figure 4.3: Validity Asset representing the results of the position verification
algorithm for a given CAM. The key is a concatenation of the CAM_ID and
the string "VALID"
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4.6.6 Memory utilized by the improved design

We can see that we have removed all append structures from the asset designs,
now let’s reiterate the example using the redefined assets and recalculate the
complexity.
Again at the start we have the storage of CAM:

And in the blockchain the RW-set of the corresponding transaction would
be:

ReadSet : {}
WriteSet : { Key = CAM_ID, Value = CAM; }

After that we receive a report containing reception information about our
CAM. The application processes it and immediately computes the vote of
the vehicle that sent the report with regards on the validity of the CAM.
Let’s assume the vote was valid. The data stored in the world state is:

And in the blockchain the RW-set of the corresponding transaction would
be:

ReadSet : {}
WriteSet : { Key = CAM_ID_RINFO, Value = (rInfo_Car1,

validVotes=1, invalidVotes = 0); }
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As before another report arrives containing new reception information.
We perform the same actions as in the last step and let’s assume the that
this one says that our CAM is invalid, so the asset will become:

And in the blockchain the RW-set of the corresponding transaction would
be:

ReadSet : { Key = CAM_ID_RINFO, Version = 1}
WriteSet : { Key = CAM_ID_RINFO, Value = (rInfo_Car2,

validVotes=1, invalidVotes = 1); }

Now many more reports will arrive containing rInfo about our CAM, and
for each them we will perform the same step as previous, modifying the valid
and invalid votes accordingly.
Calculating the memory occupied for a general case of having Nr reports
containing recInfo about our CAM. The votes are simply integers.

MemoryWorldState = sizeof(CAM) + sizeof(recInfo) + 2 ∗ sizeof(int)

Then in the blockchain we have the value written for each transaction.
Since there was the initial transaction(T0) for writing the CAM and Nr

transactions(T1, ..., TNr) for each report containing the CAM. Therefore:

MemoryBlockchain = sizeof(T0) +
PNr

i=1 sizeof(Ti)

With the size of transactions being:

sizeof(T0) = sizeof(CAM)
sizeof(Ti) = sizeof(recInfo) + 2 ∗ sizeof(int)

So the total memory occupied will be:

TotalMemory = MemoryWorldState + MemoryBlockchain =
sizeof(CAM) + sizeof(recInfo) + 2 ∗ sizeof(int) + sizeof(CAM) +PNr

i=1(sizeof(recInfo) + 2 ∗ sizeof(int)) =
2 ∗ sizeof(CAM) + (2Nr + 2) ∗ sizeof(int) + (Nr + 1) ∗ sizeof(recInfo)
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Which is an enormous improvement comparing to the initial design. The
price we pay is that if we wan’t to find out which Cars have reported the
CAM we would have to query the blockchain. But our goal is mainly oriented
to check if CAM is valid or not, which can be done more efficiently with this
structure.

4.6.7 When To Validate

As stated before to guarantee transaction validity while allowing for par-
allelism in the network we should avoid reading any information from the
blockchain when processing a new report. This means that it’s impossible
to program the validation to be performed automatically during the CAM
Reports storage.
Since there is also a time limit on smart contract execution it is impossible
to have a periodic process in the blockchain that validates the cams.
The option that remains is that the base station which uploads the CAMs
also requests the validation of the CAMs. Therefore the validation will be
performed in the following steps:

1. A stations collects reports from vehicles passing by.

2. Station invokes the smart contract to upload the reports to the blockchain.
Station keeps the IDs of all reports(same as the generated CAM in the
report) that were uploaded in this batch.

3. Station waits some time for the reports to be processed and stored in
the blockchain.

4. Station invokes the smart contract to validate all the cams that were
sent in this batch.

The amount of time the station has to wait can be determined from the
experimental data which will be explored later in the thesis.
Furthermore, considering that the use case of thesis doesn’t require validation
as soon as possible it makes practical sense to perform validation of uploaded
CAMs when the station is idle.

Multiple Validations

Since validation is performed per request, there exists a possibility that ad-
ditional reception information arrives after the validation is performed.
To accommodate for this, whenever a validity asset is queried additional
information is returned specifying if new reception information has arrived
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since the last validation performed on the CAM. In this way the client can
decide if it is satisfied with the current validity results, or it wants to invoke
a new transaction that adds the results from the new reception information.

Deleting Reception Information

Whenever a validation is performed the position verification results for all
reception information is stored in the validity asset. Since all assets are
immutably written in the blockchain it is reasonable to delete all the reception
information for which the position verification results were calculated from
the state database. Note that all the reception information that was deleted
can still be retrieved by traversing the blockchain.

4.6.8 Providing flexible querying capabilities

So far our improved design allows us to query and verify CAMs while storing
them in an efficient manner. But it doesn’t allow us much querying flexibility,
i.e. we can only query based on the CAM_ID or CAM_ID_RINFO. To see
how we can add this flexibility to our application, let’s choose one more
requirement: on top of retrieving CAMs and their validity status we would
like to be able to retrieve all CAMs of a certain vehicle in a certain
time interval.

4.6.9 Choice of the database

As explained before, we would like to avoid append-like structures due to
their quadratic growth rate of memory needed. To remember, hyperledger
fabric supports two world state database implementations: LevelDB and
CouchDB.

LevelDB

In LevelDB, data can only be queried using asset keys. This implies that
if we want to retrieve all CAMs of a vehicle in a certain time interval we
have to define a key foe every possible time range of interest. But since
we are defining a range, the value of the key will be a list of CAMs which
is an append structure. The overhead can be reduced by controlling the
granularity of a range. It still means size growth of

O(N2)
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, but the N can be limited for each interval: worst case is

1/CAMgenerationFrequencyMax ∗ lengthOfInterval

. The overhead is still very large, but relatively controlled. Another caveat
is that if we implement such structures, on top of the overhead, we have
only solved the current requirement. For implementing another requirement,
especially ones based on ranges, such as querying vehicles based on speed in
an interval, we would have to create new append structures. This follows
for any type of new requirement because we have to bring the querying data
from the CAM(our value) inside our key.

CouchDB

CouchDB supports all querying based on keys as LevelDB, but on top of that
it allows to execute rich queries for JSON data. This means that if we store
our data as JSON documents, we can query data based on the JSON field
values, which for us means that we can query based on some CAM properties
instead of only based on keys. Practically it means instead of creating new
keys and values in the world state for each requirement needed, we can create
efficient lookup structures in the CouchDB, and specify which structure to
use when querying.
To allow efficient querying we have to define indexes by specifying which
fields we will use for querying. After the index has been defined, we can
query the database by specifying our query and which index to use.
In our example we define an index based on the VehicleId and Timestamp.
After that we query our database with a query to select all CAMs whose
V ehicleId = V0, T imestamp > T0, T imestamp < T1 and declaring to use
index VehicleId_Timestamp.
CouchDB uses MapReduce paradigm for constructing indexes, and indexes
are stored in shallow B-tree meaning querying requires in the worst case
O(log(N)) complexity; in most cases it will be faster since the trees remain
shallow even with a large number of keys.
We see that by using CouchDB there is no need to define new Key-Value
assets, instead the querying flexibility is integrated in the database configu-
ration. That avoids dealing with append structures and allows adding new
requirements by simply defining new indexes.
The only downside of using CouchDB is that unlike LevelDB it runs in a
separate container which means that every operation on the database must
go through a REST API which implies that the absolute number of transac-
tions per second will be lower that when using LevelDB.
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In this thesis the CouchDB will be the database of choice for it’s flexibility
capabilities and avoidance of huge memory overhead.

4.7 Putting It All Together
The goal of this section is to summarize the ideas explored in this chapter
and show how the three main operations: Storing, Validating, and Querying
of CAMs and related information is performed.

4.7.1 Asset Types

4.7.2 Storage Operation

The storage of CAMs in the blockchain proceeds in following steps:

1. A station collects reports from passing by vehicles and collects them
into a batch.

2. When enough reports is collected or a time limit is reached the station
passes the batch of reports to the blockchain client. The blockchain
client is located in the same station.

3. The client invokes smart contract for storing reports on the blockchain
peer with the input being the batch of reports. Unless a load balanc-
ing mechanism is implemented it invokes the transaction on the peer
located in the same station. The client also stores the CAM Ids for all
generated CAMs in the reports.

4. The peer executes smart contract for storing reports. Providing that
the transaction reaches consensus and is valid after some time the re-
sults of the transaction are committed on the distributed ledger.

The assets that are stored in the blockchain for each report in the batch are
the following:

1. The generated CAM in the report

2. An asset for each reception information in the report

The figure FIGUREREFERENCE represents the storage operation and the
assets stored in the blockchain graphically. In the example the batch consists
of three reports uploaded by three different cars:
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Figure 4.4: Three reports in the batch. Each report contains reception in-
formation about the other two.

Figure 4.5: Upload Operation: In the ledger we only represent information
relating to the CAM generated by the first car. The ledger also stores the
second and third CAM and their reception information, but it’s not shown
here for clearness purposes.

4.7.3 Validate Operation

The validation of CAMs is intrinsically connected with the storage of reports
in the blockchain. Whenever a base station uploads a batch of reports for
storing, it will wait some time and invoke the validation transaction.
The validation of CAms proceeds in the following steps:

1. After the blockchain client performs the storage operation for the batch
of reports it waits until the results of the transaction are propagated
throughout the blockchain network.

2. Then the blockchain client reads the CAM IDs from the batch which
were stored in a temporary file before the storage operations.
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3. The blockchain client invokes the validate operation in the peer located
in the same base station. The input to the transaction is a list of CAM
IDs to be validated.

Starting from figure 4.4, the base station waits some time and performs
the validation. The operation is illustrated in the following picture:

Figure 4.6: Validate Operation: Again we are only representing the data in
the ledger for the CAM from CAR 1 for brevity purposes. The corresponding
data is present also for the CAR2 and CAR 3.
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Chapter 5

Developed Applications

5.1 Vehicular Mobility Simulator
Vehicular Mobility Simulator is a program that simulates traffic in a given
area. For certain time length it simulates the following:

• Movement of vehicles

• CAM generation, transmission and reception

• Report creation and transmission from vehicles to base stations

• Transmissions of reports from base stations to the blockchain

The developed simulator is based on the Random Waypoint Model. It is
developed in the Go programming language.

5.1.1 Random Waypoint Model

Random Waypoint Model is a random model for the movement of mo-
bile nodes, and how their location, velocity and acceleration change over
time[wikipedia].
The following steps describe the movement of each node during the simula-
tion in the RWM:

1. A node is given initial random location

2. The node pauses for a fixed time period

3. Then the node chooses a random destination, speed and acceleration.

4. The node moves with given speed and acceleration to its’ destination

5. When the node arrives to the destination, it restarts from the step 2.
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Differences from the Random Waypoint Model

In the developed simulator vehicles represent the nodes in RWM. The devel-
oped simulator has the following differences with respect to the RWM:

• Acceleration of all vehicles is set to 0

• Speed of all vehicles is equal and is a constant value

• The simulation area is a square area

• Vehicles do not pause before choosing a new destination

5.1.2 Simulator Description

5.1.3 Inputs of the simulator

At the start the developed application reads the simulator parameters from
a configuration file written in YAML. The parameters provided by the con-
figuration file are the following:

Area size The size of the square on which the simulation will be
run

Number Of Vehicles The number of vehicles that generate and receive
CAMs

Base Stations A list of base stations with their respective locations
Simulation Time Length of the simulation in seconds
CAM generation

frequency
The frequency in Hz at which all vehicles generate

CAMs
Cheating
Probability

Probability that the generated CAM will have
fabricated values

Station Generation
Frequency

The frequency in Hz at which stations sends a batch of
received CAM reports to the blockchain

Table 5.1: Vehicle Simulator Input parameters

5.1.4 Output of the simulator

To reduce the number of transaction, stations upload multiple CAM reports
at a time to the blockchain.
The output of the simulator is a trace file where each line of the file corre-
sponds to an event of the station sending a batch of reports to the blockchain.
Each line consists of three fields:
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1. A batch of reports to be sent by the station

2. ID of the station

3. Timestamp at which the station would send the batch to the blockchain.
It is expressed as the number of milliseconds that passed since the start
of simulation

5.1.5 Simulator Processing

The vehicle simulator execution happens in three main steps:

1. Simulator Initialization

2. The Simulation Loop

3. Dealing with the leftover output

Simulator Initialization

At the start the program read simulator parameters from the configuration
file. The parameters are specified in section 4.1.2. After that a collection of
Nv vehicle objects is created. At the start each vehicle is initialized with:

• Random starting location

• Random destination

• Random time of the first CAM generation.

The CAM generation frequency is fixed. It is provided by the config file.
As specified in the simulator vehicles do not pause before moving to a new
destination. Therefore to avoid having all vehicles generate CAMs and CAM
reports at the same time the first CAM generation happens at a random
time. This random time is different for each vehicle. It is smaller than
1/CAMgenerationFrequency to avoid excessive delays.
After vehicle collection creation, a collection of stations is initiated. Each
station has the location as specified in the config file.

The Simulation Loop

As specified in section 2.4 the timestamp of a CAM specifies the time passed
since January 1, 2004 in milliseconds.
The main simulation loop runs for the number of seconds as specified in the
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config file with an increment of 1 millisecond. A loop iteration is represented
by the following flowchart:

Leftover Output

Stations send a batch of reports to the blockchain periodically with a given
frequency, if any reports were received. Depending on the frequency and
the simulation length there is a chance that there will some CAM Reports
leftover in the station at the end of simulation. Therefore after the simulation
loop we write to our output file the last batch of reports for each station.
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5.2 Hyperledger Fabric Network Bootstrapper
Hyperledger Fabric Network Bootstrapper is a program written using Go
programming language and Bash scripting language. It reads a single config-
uration file written in YAML as input. After which it configures and starts
a hyperledger fabric network. Before explaining the developed tool we will
explain how a fabric network is created on a local machine.

5.2.1 Creating a Hyperledger Fabric Network

Running a fabric network is tightly linked with the docker technology. Each
node runs in its own separate docker container. This allows us to simulate a
physical fabric network on a single machine.

Prerequisites

Before running a Hyperledger Fabric network, the following prerequisites
must be installed on the machine:

• The latest version of CURL

• Docker version higher than 17.06.02-CE

• Docker-Compose version higher than 1.14.0

• GoLang version 1.11.x

• Node version 8.9.x

• Python version 2.7

Furthermore it requires setting up some environmental variables[ref.]

Installing Samples, Binaries and Docker Images

After the prerequisites are installed, the next three steps are the following:

1. Cloning the fabric-samples directory

2. Downloading fabric binaries

3. Download fabric images that will be loaded into docker containers

Hyperledger provides a bash script that performs all three steps automati-
cally.
The provided binaries are the following:
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• cryptogen: tool for generating cryptographic materials

• configtxgen: tool for creating the genesis block

• peer: set of commands to perform tasks related to a peer

• configtxlator: tool for translation of fabric data structures to JSON

• discover: tool intended for service discovery

• idemixgen: tool to create identity mixer based Membership Service
Providers

• orderer: tool to perform tasks related to a orderer

• fabric-ca-client: tool for operating the fabric certificate authority

The binaries in bold text are of interest for the bootstrapper.

Cryptogen Tool

Fabric is a permissioned system. Meaning that for any operation a valid
certificate is needed.
Cryptogen is a tool able to generate cryptographic materal necessary for op-
erating a fabric network. It is intended only for testing purposes. Cryptogen
takes as input a YAML file specifying all organizations, their nodes and users.
Usually this file is named crypto-config.yaml. The organizations are divided
in two types:

• Peer Organizations: organizations providing only peer nodes for the
network

• Orderer Organizations: organizations providing only orderer nodes for
the network

In reality an organization can provide both node types. They are separated
here to provide clearer understanding on how each type affects performance
in a test environment. In the input file the template for each organization is
the following:

Name The name of the organization
Domain The domain of the organization

Node Count Number of nodes in the organization. The type of
nodes depends on the type of organization

User Count the number of users other than the admin
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An example of an input file for a network of one peer organizations with two
peers, and one orderer organization with one orderer:

---
OrdererOrgs :
− Name: O r d e r e r

Domain: e x amp l e . com
Template:

Count: 1

PeerOrgs :
− Name: Org1

Domain: o r g 1 . e x amp l e . com
Template:

Count: 2
Users :

Count: 1
---

The output of the cryptogen tool consists of the following for each organiza-
tion:

• Private key and signing certificate of the organizations’ certificate au-
thority

• Private key and signing certificate for each node of the organization

• Private key and signing certificate of organizations’ administrator

• Private key and signing certificate for every user

The last three certificates are issued by the organizations’ CA.
Graphical representation of running a cryptogen tool with the input as spec-
ified above!ADD LABEL AND REF! is the following:
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ADD Description under the picture For the full description of the tool
reader is invited to visit [ref]

Configtxgen tool

Configtxgen tool is used for generation of channel configuration artifacts. In
the context of the thesis it is used to generate the following artifacts:

• Orderer genesis block

• Channel configuration transaction

• Anchor peer transactions - one for each peer organization. Anchor peers
are peers that can be used for cross-organizational communication.

The behaviour of configtxgen is controlled by a YAML file names "con-
figtx.yaml". The configtx.yaml is a complex file containing six main sec-
tions. The sections and a high level view of information contained in them
is provided below:

1. Organizations:

• Membership Service Provider (MSP) ID : since fabric transforms
identity providers to MSPs, this is the unique ID of the MSP for
each organization
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• The root certificate directory. In our case generated by the cryp-
toconfig tool[ref]. This allows to load the root certificate in the
orderer genesis block. Now orderers can verify the digital signa-
tures of a member of an organization.

• Policies at the organization level.

• For peer organizations also anchor peers are specified. Anchor
peers are peers used for cross-organizational gossip

2. Capabilities: Defines the versions of network components in order to
guarantee compatibility

3. Application: Defines the policies at the application level

4. Orderer:

• Orderer Type: Solo or Kafka

• Addresses of orderers

• Addresses of Kafka brokers if Kafka is the ordering service

• Policies at the orderer level

5. Blocks Configuration:

• BatchTimeout: The amount of time to wait wait before creating
a new block.

• MaxMessageCount: The maximum number of transactions inside
a single block.

• AbsoluteMaxBytes: The maximum size of a single block

• PreferredMaxBytes: The preferred block size

6. Channel: Defines policies at the channel level

7. Profiles: Different profiles encodings to use with the configtxgen tool.
Each profile represents a consortium of organizations and different pro-
files are used for different configuration purposes.

Peer Command

Peer command allows administrators to perform specific tasks related to a
peer [5].
Peer command has tho following five subcommands [5]:

• peer chaincode

61



• peer channel

• peer logging

• peer node

• peer version

Each of these subcommands has other subcommands. In the following the
commands(including relative subcommands) that are of interest for this the-
sis are reported. For full description of all possible commands provided by
Hyperledger Fabric binaries the reader is invited to visit the Commands Ref-
erence page [6] of the Hyperledger Fabric documentation.

Peer Channel Command

Peer Channel Command allows administrators to perform channel related
operations on a peer, such as creating a channel, joining a channel, or listing
all channel to which the peer belongs to [7].
In the context of the Network Bootstrapper two subcommands were used:

• peer channel create: used to create a channel

• peer channel join: used to join a peer to a channel

For discussion on how to use this commands appropriately and information
on other available commands the user is invited to visit [7]

Peer Chaincode Command

Peer Chaincode Command allows administrators to perform chaincode re-
lated operations on a peer, such as installing, instantiating, invoking a chain-
code [8]. In the context of the Network Bootstrapper four subcommands
were used:

• peer chaincode install: Allows to install a chaincode on a given peer

• peer chaincode instantiate: Allows to instantiate a chaincode on a
given channel. The instantiation should be performed only once.

• peer chaincode invoke: Allows to invoke a smart contract on a given
peer.

• peer chaincode invoke: Allows to query ledger data locally from a
given peer. This command doesn’t create a transaction.

For discussion on how to use this commands appropriately and information
on other available commands the user is invited to visit [8]
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Docker Compose

In order to simulate a multi node network on the virtual machine the Docker
Compose tool is used. Docker Compose is a tool for defining and running
multi-container Docker applications [9].
Docker Compose takes as an input a YAML file specifying containers which
to create. For each container we specify an image that will be loaded in the
container.
For Hyperledger Fabric the following containers need to be defined:

• A container for each peer in the network

• A container for each orderer in the network

• A container for CLI client to perform administrative task over the net-
work

• If the ordering service is Kafka a container is needed for each kafka
broker and for each kafka zookeeper node

• If the CouchDB is used as a state database a container is needed for each
instance of the database. Since each peer has its own state database
this is equal to the number of peers.

5.2.2 Network Bootstrapper

After understanding all the part required to create and operate a hyperledger
fabric network, this subsection explains how the Network Bootstrapper tool
operates.
The tool is programmed in the Go Programming Language [10] and Bash
Scripting Language [11]. It heavily uses Go Template Package [12] to imple-
ment data-driven templates for generating textual output.
The input of the tool is a configuration file written in YAML. The parameters
of the configuration file are specified in table 5.2:

63



Type of Ordering
Service Solo or Kafka.

Number of Orderers

An integer representing the
number of orderers in the

network. If Kafka is used also
the number of brokers and
zookeepers is specified.

Peer Organization

An array where each element
represents how many peers there

are in the organization
corresponding to the index of the

element.

Batch Timeout The amount of time to wait wait
before creating a new block.

MaxMessageCount The maximum number of
transactions inside a single block.

AbsoluteMaxBytes The maximum size of a single
block.

PreferredMaxBytes The preferred block size.

Channels

A map where the key is the
channel name and the value
contains the members of the

channel.

Table 5.2: Input Parameters For The Network Bootstrapper

The tool has access to 4 template files. After reading the input, the
configuration is used to create 4 output files based on the templates. The
output files are specified in table ??
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Chapter 6

Experiments

6.1 Set Up

6.1.1 Testing Environment

All experiments have been performed on a virtual machine with the following
specifications:

#CPU Cores 4
#Threads Per Core 1
CPU Operating

Frequency 2397.223 MHz

RAM Memory 16 GB
Secondary Memory 16 GB
Operating System Ubuntu 14.04 64-bit

Table 6.1: Virtual Machine Specifications

6.1.2 Traces Used In The Experiments

All the CAM report traces used in the experiments are generated by the
vehicle simulator described in section 5.1.
The input parameters of the vehicle simulator are specified in table 5.1.
All the traces share the same values for a part of the input parameters. The
values of the shared parameters are specified in table 6.2.
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Seed
Number

of
Vehicles

Simulation
Area Size

CAM
Trans-
mission
Range

Cam
Genera-
tion
Fre-

quency

Cheating
Probabil-

ity

666 20 1000 m 300 m 1 Hz 10 %

Table 6.2: Shared Simulator Input Parameters for All Traces

In table 6.3 a description of the traces is provided.

Trace ID Simulation
Time

Trace
Size(Rounded)

Number Of
Reports

Trace 1 11 s 200 kB 220
Trace 2 20 s 400 kB 400
Trace 3 28 s 600 kB 560
Trace 4 44 s 1 MB 880
Trace 5 85 s 2 MB 1700
Trace 6 210 s 5 MB 4200
Trace 7 430 s 10 MB 8600
Trace 8 840 s 20 MB 16800
Trace 9 4250 s 100 MB 85000

Table 6.3: Traces Description

The following vehicle simulator input parameters depend on the experi-
ment that is being executed:

• Number Of Stations: Since each stations represents a peer in the
blockchain network, the number of stations is equal to the number of
peers. The number of peers is specified at the start of each experiment.

• Minimum Reports Per Transaction: The default value for all ex-
periments is 20 reports uploaded per transaction. In the experiments
where this value is changed it will be specified at the start of the ex-
periment.

• Minimum CAMs Per Query or Validate: The default value for
all experiments is 20 CAMs queried or validated per transaction. In
the experiments where this value is changed it will be specified at the
start of each experiment.
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6.1.3 Additional Information

As already specified the number of stations in each experiment equals the
number of peers. In the experiments the reports generated are divided equally
among all stations, i.e. each stations receives the same number of reports to
upload to the blockchain.
In the experiment whenever a client is performing an operation, the operation
will be performed on the peer corresponding to the stations that received
the reports. For example if the station #1 wants to upload reports to the
blockchain the client will invoke the smart contract on peer #1.
This behavior mimics the design of the architecture since the client located
in the station will send it’s requests to the peer located in the same station.

6.2 Experiments Part 1
In the first part of experiments the network is benchmarked using the devel-
oped benchmarking tool specified in XXX.
These experiments are performed for two reasons:

1. To evaluate the performance of Hyperledger Fabric and developed ap-
plications

2. To compare the results with the results obtained in the previous thesis.
The previous results can be located in chapter 7 in XXX.

The results of the previous thesis are included in the plots to directly observe
the differences in the metrics.

6.2.1 Differences With Respect to The Previous Thesis

Number Of Reports

The size of traces is kept the same as in the previous thesis. Since the encod-
ing of reports differs between the two thesis, the total number of reports(and
CAMs) needed to achieve the same trace size is about two times higher in
the current thesis.

Endorsing Peers

In all experiments in the previous thesis, except the ones in a multi-processing
environment, all the operations are performed on the same peer. This means
even though different stations receives different reports, all the stations invoke
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the smart contract operations on the same peer.
In this thesis the station that receives reports will upload them to the peer
corresponding to that station.

6.2.2 Time to access the state database

Access to a value stored in the blockchain generally takes linear time with
respect to the size of the blockchain. To allow faster access, structures to
index the blockchain need to be created. In hyperledger fabric this is accom-
plished by introducing a database that keeps a copy of all values stored in the
blockchain. The database acts like a cache, where the last stored value for
each key is stored. This allows the speed of access to a value to be constant
in time, but introduces an additional copy of the last stored value.

Objective of the experiment

To verify that time to query a set of values does not depend on the size of the
blockchain. Additionaly to compare differences in the access speed between
two state database solution: CouchDB and LevelDB

Experiment Implementation

Upload three CAM reports traces of different sizes(1 MB, 10 MB, 100 MB) to
the blockchain. For each trace measure the time to retrieve all the uploaded
CAMs. The experiment is repeated 5 times for each state database.
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Experiment Configuration

Number of
Organizations 1

Number of Peers
per Organization 2

Total number of
Peers 2

CPU Peers 100%
CPU Orderers 100%

Number of Orderers 1
Ordering service Solo

State Database LevelDB and
CouchDB

Vehicle simulator
traces Traces 4, 8, 10

Table 6.4: Network Configuration

Experiment Results
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Figure 6.1: State Database Access Results
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Analysis and Comparison

Storage Time: As expected, the amount of time needed to store increases
linearly with the size of the trace to be stored.
In the previous thesis we see that the results have about two times smaller
slope than the new results. This can be explained because in the previous
thesis TLS communication was not enabled between the nodes of the network.
This means that in new experiments each transaction had to be signed and
verified which introduces additional latency.
Querying Time: As specified in the experiment description, access to a
key-value pair should be constant in time. This is verified by the experiment
because the query time increases linearly with the amount of data(keys) that
is queried.
Unlike with the storage time results, querying times are almost the same in
both theses. This is because the querying operation simply reads the values
from the state database in the peer on which the operation was requested.
It doesn’t involve any communication between nodes in the network, thus
avoids the extra TLS verification steps.

6.2.3 Time to access historical data of the blockchain

As seen in the previous experiment hyperledger fabric provides a database
to access the last value for a given key instantaneously. But to retrieve the
historical values for a given key, the blockchain needs to be traversed and the
values rebuilt.

Objective of the experiment

To verify that retrieving historical values for a given key linearly depends on
the size of the blockchain.

Experiment Implementation

Upload and overwrite a 1 MB raw trace 100 times into the blockchain. After
each overwrite, retrieve the historical values for a given key.

Experiment Configuration

The experiment configuration is the same as in the experiment 5.2 with only
the 1 MB trace (Trace 4) being used.
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Experiment Results
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Figure 6.2: Results for Accessing Historical Data

Analysis and Comparison

This is an unexpected result. Since a retrieving history for a key, retrieves
all the transactions that modified it, and all the previous values of the key
it should have to traverse the blockchain. But surprisingly it seems that the
time to retrieve it remains constant irregardless of the number of rewrites. It
seems that the peers maintain a cache of historical data that allows constant
retrieval. The experiment was retried with larger traces and more overwrites
but the results remain the same.
The results in the previous thesis show the expected linear behavior. The
experiment was retried by running on the old version of fabric(1.1.0) and
expected results were obtained. Therefore it seems that this is behavior has
changed with the new version of fabric. Currently no documentation on how
to disable this cache behavior is present.

6.3 Storage Overhead Experiments

6.3.1 Storage Overhead of the Blockchain With Respect
to Trace Size

The overhead introduced by the blockchain can be divided in two parts:

1. The overhead of the blocks, which consists of:

• The hash of the current block
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• The hash of the previous block in order to build the blockchain

• Block metadata: block number, signature and public key of the
block creator, time and date when the block was created, etc.

2. The overhead of transactions in the block. The transaction overhead
consists of:

• Transaction metadata: chaincode name, chaincode version, etc.

• Signature of the client that invoked the transaction

• Proposal: the input parameters provided by the invoking client

• Endorsement: a set of signatures from endorsing peers. In our
case from a single peer

Objective of the Experiment

To analyze the amount of overhead when storing data of different sizes in the
blockchain.

Experiment Implementation

Start multiple blockchain networks and upload a different amount of data
to each one. After the upload, overhead of blockchain structure is analyzed.
The overhead is computed as the percentage of increase with respect to the
trace size before the upload.
In this experiment we will upload the traces in the raw format. In other
words, for each transaction we store the the transaction reports at a randomly
generated key. This is done to allow us to calculate a realistic overhead since
if the reports were uploaded with processing there would be extra information
stored, such as an extra key for each received CAM.

Experiment Configuration

The network configuration is the same as in the table 5.1 with the following
differences:

• Only LevelDB is used. This is because the blocks are the same regard-
less of the state database.

• All of traces specified in [trace table] are used
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The configuration of the blocks has an effect on the overhead. In this ex-
periment we will keep the block configuration same for all traces, to fairly
evaluate the effect of trace size. In one of the following experiments, different
block configuration will be evaluated.

BatchTimeout 2
MaxMessageCount 10
AbsoluteMaxBytes 99 MB
PrefferedMaxBytes 512 kB

Table 6.5: Blocks Configuration

Experiment Results

Analysis and Comparison

6.3.2 Effect of Varying the Number of Transactions per
Block

Experiment Objective

As seen in the previous experiment there are two overheads: the overhead
of a block and the overhead of a transaction. Objective of this experiment
is to calculate the effect of block overheads by manipulating the number of
transactions stored in each block.

Experiment Implementation

Creating multiple blockchain network and uploading the same trace in the
raw format(without processing) to all of them. Each blockchain will have
a different MaxMessageCount parameter. To remind the MaxMessageCount
parameter controls the maximum number of transactions per block.

Experiment Configuration

The network configuration of the experiment is the same as in the table 5.1.
with the following differences:

• Since we are measure the number and size of the blocks only LevelDB
is used as the state database

• Only trace 4 (1 MB) is used.
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The blocks configuration is the following:

BatchTimeout 2
MaxMessageCount 1, 2, 5, 10, 15
AbsoluteMaxBytes 99 MB
PrefferedMaxBytes 512 kB

Table 6.6: Blocks Configuration

Experiment Results
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Figure 6.3: Results Of Varying The Number of Transactions per Block
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Analysis and Comparison

6.4 Scalability Experiments
One of the most important characteristics of hyperledger fabric is that a
chaincode invocation has to be executed only on the endorsing peers. This
allows for massive scalability and parallelism. In the context of the thesis
the endorsing policy requires only a single endorsing peer(station) which
means that increasing the number of peers should not affect the performance
in a meaningful manner. While increasing the parallelism will improve the
performance. In this section we will deal with scalability of the hyperledger
fabric.

6.4.1 Raw uploading with many peers in a single orga-
nization

Objective of experiments

To analyze performance metrics of storage without any processing with de-
pendence on the number of peers in the hyperledger fabric network.

Experiment Implementation

Starting multiple blockchain networks with different number of peers and
uploading a 10MB CAM reports trace to each network, without processing.
The following metrics are measured:

• Average CPU consumption

• RAM usage

• HDD usage

• Time required for the storage

The experiment is repeated five times.
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Experiment Configuration

Number of
Organizations 1

Number of Peers
per Organization 2,4,6,8,10,12,14,16

Total number of
Peers 2,4,6,8,10,12,14,16

CPU Peers 5%
CPU Orderers 100%

Number of Orderers 1
Ordering service Solo
State Database CouchDB
Vehicle simulator

traces Trace 7(10 MB)

Type of storage Raw

Table 6.7: Network Configuration

BatchTimeout 2
MaxMessageCount 10
AbsoluteMaxBytes 99 MB
PrefferedMaxBytes 512 kB

Table 6.8: Blocks Configuration
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Experiment results
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Figure 6.4: Raw Storage of Reports Results

Analysis and Comparison

Storage Time: The time to store raw reports initially increases linearly
with the number of peers. When the number of peers reaches 10 it starts to
stabilize around 200 s.
The same is behavior in results of the previous thesis. Although in this thesis
the absolute times are a bit lower. This is probably due to chaincode imple-
mentation differences.
CPU Utilization: The average CPU utilization increases linearly with num-
ber of peers. There are two reasons for this:
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1. Whenever the number of peers is increased, a part of the transactions
is executed on each peer.

2. Independently of who is the endorsing peer(peer that executed the
transaction) all the peers must commit the transaction.

The same behavior is observed in the results of the previous thesis. Although
the the slope is about two times higher in new results. The reason is the
following, in the other thesis when the number of peers is increased the
transaction are all executed on the same peer. Therefore the increase is only
due to the commitment of the transactions on other peers. While in this
thesis the set of transaction is divided on all peers which causes an additional
CPU utilization per peer.
RAMUtilization: The RAMUtilization increases linearly with the number
of peers.
The same linear behavior is observed in the results of the previous thesis.
There is a striking difference between the actual RAM usage: in this thesis
the amount of RAM used is about five times lower. This is an extremely
strange result. In the further experiments with multiple organizations, the
behavior will equalize. But when there is a single organization there is much
less main memory requirements. This result has been analyzed in detail and
repeated many times, but still no valid reason is found.
Storage Utilization: There is a linear dependency between number of peers
and secondary memory use. This makes sense since each peer stores a copy
of the ledger and the state database.
We see the same behavior in fig 7.7 in [Michele’s Thesis Reference].

6.4.2 Storage, Querying and Validation with many peers
in a single organization

Objective of the experiment

To analyze performance metrics of storage with processing, querying and
validation of CAM reports in dependence of the number of peers in the
network.

Experiment Implementation

Starting multiple hyperledger fabric networks with various number of peers.
For each network the following operations are performed:

• Uploading the trace with processing
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• Query all CAMs stored in the network

• Validate all CAMs stored in the network

For each operation we measure the same metrics as specified in experiment
5.3.1.
The experiment is repeated five times.

Experiment Configuration

The network configuration is the same as in table 5.1 with the following
differences:

• The CPU limit of each peer is increased to 10%

• Trace 4 (1 MB) is used

• Type of storage is with processing

The blocks configuration is the same as in table 5.2.

Storage Results

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

Number of Peers

T
im

e
(s

)

Time required for storage

(a) Upload Time

2 4 6 8 10 12 14 16
0

20

40

60

80

100

Number of Peers

C
P
U

u
ti

li
za

ti
on

(%
)

Average CPU utilization

(b) CPU Utilization

79



2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

800

Number of Peers

R
A

M
(M

B
)

RAM utilization

(a) RAM Utilization

2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

160

Number of Peers

S
to

ra
ge

(M
B

)

Storage Utilization

(b) Secondary Memory Utilization

Figure 6.6: Storage of Reports Results

Analysis

The behavior of storing CAM Reports with processing is relatively similar to
the storage without processing with the difference that the time requirement
and RAM utilization increase with a much smaller slope. This is probably
because the trace is 10 times smaller then in the raw storage experiment so
the overhead is not as pronounced.

Query Results
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Figure 6.7: Querying of all CAMs results

Analysis and Comparison

Querying Time: The time required for querying doesn’t increase substan-
tially with the number of peers. This is reasonable since the query operation
simply retrieves the value stored in the state database. There is no need for
peer to peer, or peer to orderer communication. There is a small increase
due to the fact that we are connecting to more peers, so there is a overhead
for establishing the connection.
This is different from the results seen in the previous thesis, where the time
growth is linear. In that experiment in all cases the data is fully queried from
one peer. The linear increase can be explained that since there are multiple
peers computing for the CPU time, the context switch reduce the CPU time
from the querying peer thus leading to a time increase. This also justifies the
results in the current thesis since the querying is done in part of each peer,
so the CPU time allocated to each peer is used on the querying operation.

CPU Utilization: The average CPU utilization increases linearly with num-
ber of peers. This is a normal result since each peer is allocated a portion of
the CPU time and even if no transaction were issued on the peer, it will still
perform operations internal to the fabric platform.
In the results of the previous thesis there is also a linear increase but with
a smaller slope. This makes sense if we divide the CPU utilization on the
idle part and the issued transaction part. In the other thesis all the peers
contribute to the "idle" part and only the querying peer contributes to the
issued transaction part, whereas in this thesis all peers contribute to both
parts it stands to expect a larger slope in the CPU utilization.
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RAM Utilization: The RAM behavior fluctuates around zero assuming
small values. This can be explained from the fact that querying operation
shouldn’t introduce any long term extra information in the main memory.
So measuring the difference before and after querying simply depends on the
current action of the peer, such as performing hyperledger fabric protocols.
Storage Utilization: There is no increase in storage since querying opera-
tion simply returns the values from the state database.
The same results for RAM and Storage Utilization can be seen in the results
of the previous thesis.

Validation Results
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Figure 6.8: Validation of all CAMs results
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Analysis and Comparison

Validation Time: As with querying, the validation operation increases very
slowly with the increase in peers. Again the increase is probably due to the
overhead of having to connect to multiple peers.
In the results of the previous thesis we see that the time increases at a much
faster pace. This is for the same reason as in the querying results: the vali-
dation is done fully on one peer and therefore the CPU utilization of other
peers does not contribute to the speed of validation. While in this thesis the
validation process is done in parts on all peers.
CPU Utilization:The CPU utilization grows linearly with the number of
peers. The increase is higher then with the querying operation because all
the peers must do the extra work of writing the blocks of committed trans-
action.
The same behavior is seen in the previous thesis results. RAM Utilization:
The RAM utilization seems to assume random values with respect with the
number of peers. In all of the five experiments no trends were visible. The
conclusion is that the validate operation doesn’t introduce a significant main
memory increase. In other words since the RAM is measure as the difference
in main memory before and after an operation, the values completely depend
on what action the peers are performing at the time of measurement: com-
mitting a block, performing keep alive checks, etc.
In the results of the previous thesis we see a similar but different behavior.
There the RAM usage seems to grow linearly in the start and drop due to
memory swapping with the high number of peers. The values are typically
very small, lower than 20 MB.
Storage Utilization: We have a linear increase in storage due to validation
values added to the blockchain and the validation transactions being written
to the blockchain.
In the previous results we have the same behavior but with higher amount of
data. This is because in the previous thesis the validation results are stored
with the same key as the CAM. This means that the CAM will be duplicated
in the blockchain.

6.4.3 Raw uploading with many organizations having
two peers per organization

Objective of experiments

To analyze performance metrics of storage without any processing with de-
pendence on the number of organizations in the hyperledger fabric network.
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The results are compared with the experiment 5.3.1 which contains equiva-
lent number of peers in a single organization.

Experiment Implementation

Starting multiple blockchain networks with different number of organization
and each having two peers. Measure the following metrics for the upload of
10 MB of data without processing:

• Average CPU consumption

• RAM usage

• HDD usage

• Time required for the storage

The experiment is repeated five times.

Experiment Configuration

Number of
Organizations 1, 2, 3, 4, 5, 6 ,7, 8

Number of Peers
per Organization 2

Total number of
Peers

2, 4, 6, 8, 10, 12, 14,
16

CPU Peers 5%
CPU Orderers 100%

Number of Orderers 1
Ordering service Solo
State Database CouchDB
Vehicle simulator

traces Trace 7(10 MB)

Type of storage Raw

Table 6.9: Network Configuration
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BatchTimeout 2
MaxMessageCount 10
AbsoluteMaxBytes 99 MB
PrefferedMaxBytes 512 kB

Table 6.10: Blocks Configuration

Experiment results

The experiments with 7 and 8 organizations could not be performed due to
limitations in the testing environment.
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Figure 6.9: Raw Storage of Reports Results
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Analysis and Comparison

Validation Time: The time behavior follows the same trend as the be-
havior of an equivalent number of peers in a single organization. While the
trend is the same there is an actual increase in time requirements. This is
probably because the communication between peers in different organization
is performed differently then communication of peers inside an organization.
In the results of the previous thesis we see a completely different behavior.
In this case the increase in the number of organizations keeps the storage
time at a constant. The author also finds this behavior strange.
From a speculative point of view, in the other thesis there could have been an
error in other organizations joining the channel. This would lead to only the
first organizations having the blockchain and thus keep the time constant.
But this possibility was probably explored by the author.
CPU Utilization: The average CPU utilization grows linearly with the
number if peers. The slope is slightly larger in the case of multiple organiza-
tions.
The same behavior can be seen in the previous results.
RAM Utilization: As stated in the experiment 5.2.1 this is one of the
stranger results in the experiments. As soon as the number of organizations
is increased the RAM requirements increase exponentially. This implies that
there is a lot of extra information that needs to be kept in peer’s main mem-
ory when dealing with multiple organizations.
In the results of the previous thesis we see almost the same rate of increase
with multiple organizations. But in that case the single organization require-
ments are more or less equivalent to the multiple organizations requirements.
Since any real implementation would have multiple organizations, the results
of this experiments should be taken as the resource requirements.
Storage Utilization: The increase in storage grows linearly with the num-
ber of peers. As expected, the storage consumption is equivalent as in the
case of a single organization.

6.4.4 Raw uploading with two organizations and many
peers per organization

Objective of experiments

To analyze performance metrics of storage without any processing in the
blockchain network consisting of two organizations and many peers per or-
ganization. These results can be considered as a middle ground between
experiments 5.3.1 and 5.3.3.
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Experiment Implementation

Starting multiple blockchain networks with two organizations and varying
the number of peers per organization. Measure the following metrics for the
upload of 10 MB of data without processing:

• Average CPU consumption

• RAM usage

• HDD usage

• Time required for the storage

The experiment is repeated five times.

Experiment Configuration

Number of
Organizations 2

Number of Peers
per Organization 1, 2, 3, 4, 5, 6, 7, 8

Total number of
Peers

2, 4, 6, 8, 10, 12, 14,
16

CPU Peers 5%
CPU Orderers 100%

Number of Orderers 1
Ordering service Solo
State Database CouchDB
Vehicle simulator

traces Trace 7(10 MB)

Type of storage Raw

Table 6.11: Network Configuration

BatchTimeout 2
MaxMessageCount 10
AbsoluteMaxBytes 99 MB
PrefferedMaxBytes 512 kB

Table 6.12: Blocks Configuration
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Experiment results
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Figure 6.10: Raw Storage of Reports Results

Analysis and Comparison

Validation Time: The time behavior follows the same trend as the behav-
ior of an equivalent number of peers in a single organization. The values are
a bit larger due to the overhead of dealing with two organizations.
CPU Utilization: The average CPU utilization grows linearly with the
number if peers with a slightly larger slope then the case of a single organi-
zation.
RAM Utilization: The RAM utilization grows linearly with a much higher
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slope then a single organization with an equivalent number of peers. It sits
somewhere between the usage with more organizations and a single organiza-
tion. This is also leads to believe that increasing the number of organizations
is more detrimental to the main memory usage then the number of peers.
Storage Utilization: The increase in storage grows linearly with the num-
ber of peers. As expected, the storage consumption is equivalent as in the
case of a single organization.
All of the similar results can be observed in the previous thesis.

6.4.5 Raw uploading with varying number of orderers

Objective of experiments

To analyze performance metrics of storage without any processing in the
blockchain network consisting of different number of kafka orderers. The
number of kafka zookeeper nodes and kafka brokers is chosen as the minimum
number necessary to guarantee fault tolerance.

Experiment Implementation

Starting multiple blockchain networks with a single organization containing
two peers. Each network contains a different number of orderers. Measuring
the following metrics for the upload of 10 MB of data without processing:

• Average CPU consumption

• RAM usage

• HDD usage

• Time required for the storage

The experiment is repeated five times.
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Experiment Configuration

Number of
Organizations 1

Number of Peers
per Organization 2

Total number of
Peers 2

CPU Peers 5%
CPU Orderers 5%

Number of Orderers 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12

Number of
Zookeeper Nodes 3

Number of Kafka
Brokers 4

Ordering service Kafka
State Database CouchDB
Vehicle simulator

traces Trace 7(10 MB)

Type of storage Raw

Table 6.13: Network Configuration

BatchTimeout 2
MaxMessageCount 10
AbsoluteMaxBytes 99 MB
PrefferedMaxBytes 512 kB

Table 6.14: Blocks Configuration
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Experiment results
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Figure 6.11: Raw Storage of Reports Results

Analysis and Comparison

Storage Time: The storage time remains constant with an increase in the
number of orderers. This is reasonable since the transaction processing is
performed on the peers.
The same results are observed in the previous thesis.
CPU Utilization: The CPU utilization grows linearly, but with a small
slope. This is because most of the heavy processing is in the transaction
execution which is performed by the endorsing peers.
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The same results are observed in the previous thesis.
RAM Utilization: The RAM utilization grows very slowly with the num-
ber of orderers.
Linear behavior is observed in the previous results. But the RAM utilization
is much higher in the other thesis. As in the case of the single organization
the reason behind this difference is unclear.
Storage Utilization: The increase in storage grows linearly with the num-
ber of orderers. This is to be expected, since each orderer stores a copy of
the blockchain.
The same behavior is observed in the previous thesis.

6.4.6 Querying and Validation with varying number of
orderers

Objective of the experiment

To analyze performance metrics of querying and validation of CAM reports
in dependence of the number of orderers in the network.

Experiment Implementation

Starting multiple hyperledger fabric networks with a single organization con-
taining two peers. Each network contains a different number of orderers. We
upload CAM reports with processing to all the networks. For each network
the following operations are performed:

• Query all CAMs stored in the network

• Validate all CAMs stored in the network

For each operation we measure the same metrics as specified in experiment
5.3.1.
The experiment is repeated five times.

Experiment Configuration

The network configuration is the same as in table 5.7 with the following
differences:

• Trace 4 (1 MB) is used

• Type of storage is with processing

The blocks configuration is the same as in table 5.8.

92



Query Results
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Figure 6.12: Query of all CAMs Results

Analysis

Query Time: Query time remains constant with respect to the number of
orderers.
In the previous thesis similar results are observed. The difference the time is
about 50% smaller in the other thesis. This is reasonable since even though
the traces are same in absolute size, since the size of the report is about two
times smaller in this thesis it implies that the number of CAMs to query is
two times higher.
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CPU Utilization: CPU Utilization retains more or less a constant value
with respect to the number of orderers.
Similar results is observed in the previous thesis.
RAM Utilization: The RAM behavior fluctuates around zero assuming
small values. This can be explained from the fact that query operation
shouldn’t introduce any long term extra information in the main memory.
So measuring the difference before and after validation simply depends on the
current action of the peer, such as performing hyperledger fabric protocols.
Similar results is observed in the previous thesis.
Storage Utilization: Query operations do not require any extra storage.

Validation Results
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Figure 6.13: Validation of all CAMs Results

Analysis

Validation Time: Validation time remains constant with the increase in
the number of peers.
A similar behavior is observed in the previous thesis. In that thesis the time
is about half of the results in the current thesis. Reason for this is twofold:

1. the amount of CAMs is doubled in the current thesis

2. The validation of this thesis also performs the deletion of reception
information so more time is needed

CPU Utilization: CPUS use increases very slowly with the number of
orderers. This makes sense since the heavy processing is performed on the
peers.
Similar result is observed in the previous thesis.
RAM Utilization: The RAM behavior fluctuates around zero assuming
small values. This can be explained from the fact that verification operation
shouldn’t introduce any long term extra information in the main memory. So
measuring the difference before and after validation simply depends on the
current action of the peer, such as performing hyperledger fabric protocols.
Similar result is observed in the previous thesis.
Storage Utilization: Storage grows linearly with the number of orderers.
This is because each orderer contains a copy of the blockchain and each
validate operation increases the blockchain size.
Similar result is observed in the previous thesis. In the other thesis the
storage used is much higher. This is because in the previous thesis validation
operation duplicates the CAM.
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6.4.7 Querying and Validation with respect to the trans-
action size

Objective of the experiment

To analyze performance metrics of storage with processing, querying and
validation of CAM reports in dependence of how many CAMs are stored,
queried and validated by each transaction.

Experiment Implementation

Starting multiple hyperledger fabric networks with a single organization con-
taining two peers. In each network operations are performed with transaction
of different sizes. The same 1 MB trace is used for all networks. For each
network the following operations are performed:

• Upload the trace with processing

• Query all CAMs stored in the network

• Validate all CAMs stored in the network

For querying and validate operations the following metrics are measured:

• Average CPU consumption

• RAM usage

• HDD usage

• Time required for the operation

• Number of new blocks created for the operation

• Total size of the new blocks

The experiment is repeated five times.
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Experiment Configuration

Number of
Organizations 1

Number of Peers
per Organization 2

Total number of
Peers 2

CPU Peers 5%
CPU Orderers 5%

Number of Orderers 1
Ordering service Solo
State Database CouchDB
Vehicle simulator

traces Trace 4 (1 MB)

Type of storage With Processing
CAMs validated or

queried per
transaction

1, 2, 5, 10, 20, 100,
200

Table 6.15: Network Configuration

BatchTimeout 2
MaxMessageCount 10
AbsoluteMaxBytes 99 MB
PrefferedMaxBytes 512 kB

Table 6.16: Blocks Configuration
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Query Results
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Figure 6.14: Querying of all CAMs results

Analysis

Time Results: The time required drops very fast when increasing the num-
ber of CAMs quried by a transaction. This is due to the decrease in the
number of transactions and corresponding overheads they introduce. The
overhead of a transaction is not negligible because it involves cryptographic
operations.
Similar results is observed in the previous thesis.
CPU Utilization: The CPU behavior remains constant with an increase
in number of CAMs per transaction. The expected behavior would be a
decreasing trend since there are less transactions to process. The reasoning
can be that the CPU is at its maximum limit in all cases and therefore only
reduces the time required.
In the previous thesis a decreasing trend is observed.
RAM Utilization: As the querying operation shouldn’t affect the RAM we
see that RAM behavior takes small values depending on the operations that
were being executed at the instant of measurement.
Similar results are observed in the previous thesis.
Storage Utilization: There is no storage utilization for querying opera-
tions.
In the previous thesis there is extra storage for querying operation. This,
most likely was a bug in the previous version of fabric.
Number and Size of Blocks: No new blocks were created during the
querying operation.
Same result is observed in the previous thesis.
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Validation Results
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Figure 6.15: Validation of all CAMs results

Analysis

Time Results: The time required drops very fast when increasing the num-
ber of CAMs quried by a transaction. This is due to the decrease in the
number of transactions and corresponding overheads they introduce. The
overhead of a transaction is not negligible because it involves cryptographic
operations.
Similar behavior is observed in the previous thesis. Although in their results
the time is about half of the time here. Again this is due to the number of
CAMs being two times higher in this thesis, and validation deleting reception
info.
CPU Utilization: The CPU behavior remains constant with an increase
in number of CAMs per transaction. The expected behavior would be a
decreasing trend since there are less transactions to process. The reasoning
can be that the CPU is at its maximum limit in all cases and therefore only
reduces the time required.
Similar result is observed in the previous thesis.
RAM Utilization: As the validation operation shouldn’t affect the RAM
we see that RAM behavior takes small values depending on the operations
that were being executed at the instant of measurement.
Similar behavior is observed in previous thesis.
Storage Utilization: Secondary memory requirements decrease with the
increase of the number of CAMs per transaction. This is because each trans-
action introduces an overhead in the blockchain: the signatures, read write
set, etc. Thus having less transaction leads to lower blockchain size. The
state database size remains the same regardless of the transaction size.
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In the previous thsis the same behavior is observed. In this case the ac-
tual amount of storage is larger which makes sense since the validation in the
other thesis doesn’t delete the reception information from the state database.
Number and Size of Blocks: Each block contains 10 transactions. Thus
by increasing the number of CAMs we decrease the number of total transac-
tion and the number of new blocks created.
In the previous thesis the same behavior is observed. As expected the num-
ber of blocks is higher in this thesis since the total number of CAMs is about
twice higher. The same goes for the blockchain size.

6.4.8 Storage, Querying, and Validation performance
with Concurrent Processes

As explained before, the possibility of parallelism is one of the main advan-
tages of hyperledger fabric with respect to other blockchain platforms. In
this experiment we will analyze the effect of parallelism by running the three
operations with different number of concurrent processes.

Objective of the experiment

To analyze performance metrics of storage with processing, querying and val-
idation of CAM reports in dependence of the number of concurrent processes
for each operation.

Experiment Implementation

Starting multiple hyperledger networks with six stations and six peers. Each
network will use a different number of processes for all operations. The
operations executed will be the following:

• Uploading the trace with processing

• Query all CAMs stored in the network

• Validate all CAMs stored in the network

For each operation we measure the following metrics:

• Average CPU consumption

• RAM usage

• HDD usage
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• Time required for the operation

• Number of new blocks created for the operation

• Total size of the new blocks

The experiment is repeated five times.

Experiment Configuration

Number of
Organizations 1

Number of Peers
per Organization 6

Total number of
Peers 6

CPU Peers 10%
CPU Orderers 100%

Number of Orderers 1
Ordering service Solo
State Database CouchDB
Vehicle simulator

traces Trace 4 (1 MB)

Type of storage With Processing
CAMs stored,

validated, or queried
per transaction

20

Table 6.17: Network Configuration

BatchTimeout 2
MaxMessageCount 10
AbsoluteMaxBytes 99 MB
PrefferedMaxBytes 512 kB

Table 6.18: Blocks Configuration
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Experiment results

Storage Results
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Figure 6.16: Storage of all CAM Reports With Processing Results

Analysis and Comparison

Time Results: As expected by increasing the number of parallel processes
the time drops linearly. This proves that only the endorsing peers(a single
peer in out case) need to execute the transaction.
Similar results are observed in previous thesis.
CPU Utilization: CPU Utilization remains constant with the increase of
the number of processes. This is because irregardless of the amount of pro-
cesses the number of transactions to execute remains the same.
Similar results are observed in the previous thesis.
RAM Utilization: RAM utilization remains more or less constant with the
increase in number of processes. The small fluctuations are probably due to
operations being executed at the time of the measurement.
In the previous we see that there is a small linear increase in RAM usage but
generally it doesn’t change a lot. The constant behavior is expected since the
RAM usage is not measured during the operation but after, and the network
is the same in all tests.
Storage Utilization: Storage needed remains the same since the number
of CAMs is the same.
In the previous thesis we have a linear increase in storage. This results is
strange since we are only increasing the number of processes, not the amount
of data stored.
Number and Size of Blocks: Number and size of the created blocks re-
mains the same with respect to the number of processes.
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Query Results
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Figure 6.17: Querying of All CAMs Results

Analysis and Comparison

Time Results: As expected by increasing the number of parallel processes
the querying time drops linearly.
In the previous thesis we have a strange result that the time increases with
the number of processes. As the author states this is most likely due to the
limitations in the number of cores of the testing machine. CPU Utiliza-
tion: CPU Utilization has small fluctuations but generally hovers around
the same value. This is because irregardless of the amount of processes the
number of transactions to execute remains the same.
In the previous thesis we have that the CPU increases with the number of
processes. This behavior could also be explained by the number of cores
available in the testing environment. RAM Utilization: The querying op-
eration shouldn’t affect the RAM. We see that RAM values seem random
because they only depend on the action that’s performed at the time of mea-
surement.
In the previous thesis we have a linear increase in the RAM usage with the
number of processes. This is a strange behavior since the RAM is measured
as the difference before and after the action is executed, therefore the number
of processes shouldn’t affect it. And in general query operations shouldn’t
introduce any long-term RAM usage. Storage Utilization: Querying op-
eration doesn’t use any storage.
Number and Size of Blocks: Querying operation doesn’t create any new
blocks.
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Validation Results
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Figure 6.18: Validation of All CAMs Results

Analysis and Comparison

Time Results: As expected by increasing the number of parallel processes
the validation time drops linearly. CouchDB requires more time then Lev-
elDB since it’s running in it’s own container and we need to use the REST
API.
CPU Utilization: CPU Utilization has small fluctuations but generally
hovers around the same value. This is because irregardless of the amount of
processes the number of transactions to execute remains the same.
RAM Utilization: The validation operation shouldn’t affect the RAM long
term. We see that RAM values seem random because they only depend on
the action that’s performed at the time of measurement.
Storage Utilization: For LevelDB the storage is independent of the number
of processes. For CouchDB the storage requirements drop when increasing
the number of processes. This behaviour seems strange but can be under-
stood by looking at the number of blocks created.
Number and Size of Blocks: The number of blocks for LevelDB remains
constant but for CouchDB decreases linearly. This can be understood if we
remember that a block can hold up to 10 transactions and the max interval
between block generation is 2 seconds. Since the validation takes longer with
CouchDB, the number of transaction that can be collected in each block is
smaller. By increasing the number of processes we allow a larger number of
transaction in each block for CouchDB. This result was verified by increas-
ing the batch timeout and seeing the same behavior between the two state
databases.
The results from the other thesis are available in [Michele’s Thesis Reference]
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fig 7.19. The differences for the Time, CPU and RAM can be explained in the
same way as for the querying operation. The difference in storage utilization
implies that probably the Batch Timeout parameter was set to longer than
2 seconds.

6.5 Throughput and Latency Experiments
In the previous experiments it was not possible to measure throughput and
latency. The reason is that a CLI client was used which only gets the noti-
fication when the data is processed by the endorsing peer. It does not know
when the CAMs are stored in the blockchain network. The previous experi-
ments were performed in order to compare performance with the [Michele’s
Reference] which had a slightly different architecture and used an older ver-
sion of fabric.

6.5.1 Fabric Node Client

Fabric supports a Node.js SDK for developing clients. The SDK provides a
multitude of options with respect to the bash CLI client.
The most important thing is that after invoking a transaction from the Node
client, a notification is sent from the peer to the client when the transaction
has been stored in the blockchain(therefore after the consensus protocol),
not when the peer executes the invoked chaincode. This allows us to measure
latency and throughput.

6.5.2 Hyperledger Caliper

Hyperledger caliper is a tool that allows to benchmark the performance and
resource consumption of the blockchain. It takes as an input a file describ-
ing the hyperledger network configuration and the file describing how the
benchmark should be run. The metrics measured are taken from [Metrics
Whitepaper Reference]; The parameters measured and their definitions are
the following:

Read Latency

Read Latency = Time when response is received− Submit time

Read Latency is the time between when the read request is submitted and
the time when the response is received.
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Read Throughput

Read Throughput = Total Read Operations/Total T ime in Seconds

Read Throughput is the number of read operations performed in a certain
time interval. It is measured in units of Read Per Seconds(RPS). This can be
an informative metric, but is not representative of blockchain performance
since most blockchains facilitate secondary data structures to allow for effi-
cient read and query operations.

Transaction Latency

Transaction Latency =
(Confirmation time @ Network Threshold)˘Submit T ime

Transaction Latency is the amount of time from when a transaction is sub-
mitted until it’s results are widely available in the network. This includes
the propagation time and the settling time due to consensus mechanism.
Network Threshold represent the percentage of the nodes in the network at
which the transaction results are available. In system that use the POW
scheme, the desired threshold is 90%. Whereas in non-probabilistic systems,
such as Hyperledger Fabric, the 100% metric is the only meaningful one.

Transaction Throughput

Transaction Throughput =
Total committed transactions/total time in seconds

@Entire Network

Transaction Throughput is the rate at which the valid transaction are com-
mitted by the system under testing in a defined time period. This is measure
not a single node, but at the entire network level. Invalid transactions do not
contribute to the results. The rate is expressed as the number of committed
transactions per second(TPS).

Report & CAM Throughput

In the context of the thesis, each transaction performs an operation on mul-
tiple CAMs. Therefore we define two derived metric:

Report Throughput =
Transaction Throughput ∗ #Reportsuploadedbyeachtransaction
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CAM Throughput =
Transaction Throughput ∗ #CAMsvalidatedorqueriedbyeachtransaction

6.5.3 State Database Experiments

As said before, CouchDB offers rich querying capabilities which allow multi-
tude use cases in the context of the thesis. The downside is the performance of
the blockchain decreases with respect to using LevelDB as the state database.
The reason for the performance decrease is that CouchDB runs in a separate
container and any CRUD operation must be sent using the CouchDB API
over an HTTPS connection.
This batch of experiments aims to determine the amount of performance
degradation by using CouchDB as a state database.

Experiments Configuration

Since we are interested in benchmarking the blockchain network, traces are
not specified. We simply increase the input rate until we obtain the maximum
output rate.

Number of
Organizations 2

Number of Peers
per Organization 2

Total number of
Peers 4

Number of Orderers 1
Ordering service Solo

State Database LevelDB and
CouchDB

#Reports Stored
per Transaction 20

#Reports Queried
per Transaction 20

#Reports Validated
per Transaction 20

Table 6.19: Network Configuration
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BatchTimeout 2
MaxMessageCount 10
AbsoluteMaxBytes 99 MB
PrefferedMaxBytes 512 kB

Table 6.20: Blocks Configuration

Results

Metric LevelDB CouchDB
Max Latency 3.20 s 13.5 s
Min Latency 0.87 s 0.73 s
Avg Latency 1.99 s 16.37 s
Throughput 17.5 tps 5.1 TPS

Report Throughput 350 rps 105 RPS

Table 6.21: Report Uploading Results

Storage Results: Concerning the uploading of CAMs, the LevelDB pro-
vides about 4 times better performance with respect to CouchDB. The biggest
different is in the latency where CouchDB peforms 8 times worse.

Metric LevelDB CouchDB
Max Latency 2.92 s 32.38 s
Min Latency 0.81 s 4.68 s
Avg Latency 2.04 s 23.48 s
Throughput 12.4 TPS 1.2 TPS

Cam Throughput 250 CPS 25 CPS

Table 6.22: Cam Validation Results

Validation Results: The biggest difference in performance is seen in
validation. LevelDB provides about 10 times better performance across all
metrics.
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Metric LevelDB CouchDB
Max Latency 3.74 s 7.96 s
Min Latency 0.68 s 3.30 s
Avg Latency 2.32 s 6.47 s
Throughput 31.4 TPS 14 TPS

Cam Throughput 625 CPS 280 CPS

Table 6.23: Cam Query Results

Querying Results: As expected the querying operation is the fastest
since there is no consensus protocol. Still LevelDB provides 2 times better
performance then CouchDB.

Results Analysis

Even though CouchDB provides a very flexible and rich querying system, the
performance degradation is pretty impactive. The worst performance is in
the Validation part, most likely because it requires retrieving keys based on
a partial composite key.
The performance could be affected due to running on a virtual machine and
most likely having the hard drive access as a bottleneck.
Still CouchDB provide a flexibility that makes the topic of this thesis useful
in a large number of scenarios.
Since fabric provides a pluggable world state database, the best option would
be to create a database that offers the flexibility of CouchDB but can be run
in the same container as the peer.
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Chapter 7

Conclusion
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