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Abstract

Micromechanical cantilevers are widely used in frequency-shift-based
sensor of mass, force, and magnetic field. These devices are easily
miniaturized with MEMS technology process and allow for integra-
tion with CMOS compatible electronics. Up to now, we don’t have
a fully detailed explanation of their dynamics response at their mi-
cro and nano scale, especially in the nonlinearity regime. Study of
the dynamics response in micro and nano cantilevers grows rapidly,
to satisfy the demands of fundamental questions and practical needs.
Recently, direct observation of Fano resonances in coupled micro can-
tilevers arrays can greatly decrease the measuring time by paralleliz-
ing the measurements and the minimum detectable mass, thanks to
an average ten-fold increase in Q factor of Fano peaks respect to
Lorentzian ones. In this thesis, [ demonstrate a method to study the
shifts of Fano peaks induced by intermodal coupling. To implement
this method, a signal generator is used to generate a group discrete
excitation signals uprising slightly from a frequency below the reso-
nance frequency to one up the resonance frequency. In the meanwhile,
a lock-in amplifier is used to sweep and record an appropriate range of
frequency in order to observe the shift of Fano resonance. A program
of Labview is performed, in which a structure controls the signal gen-
erator giving the discrete uprising voltage while the lock-in amplifier

sweeps and records. Shifts of Fano resonance become bigger as the



excitation signal increases because the changing stiffness of effective
structure which can be induced by displacement. The shifts of Fano
resonance are different when measuring between decreasing excita-
tion signals and increasing excitation signals, which is similar to the

Duffing phenomenon because of its bistability.
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Chapter 1

Introduction

1.1 Atomic Force Microscopy

A cantilever is a rigid structural element, such as a beam or plate, fixed only at
one end. Thanks to the discoveries of cantilevers with the dimension decreased
to micro and nano scale level, these cantilevers are used in many fields. All
these rapidly growing of discoveries results from the advent of AFM (atomic force
microscopy) in 1986. With the help of this technology, characteristic of micro and
nano cantilevers can be easily studied and become useful in realistic applications.
Atomic force microscopy is a type of scanning probe microscopy with a resolution
on the order of fractions of a nanometer, even more than 1000 times better than
the optical diffraction limit. By the movement of piezoelectric elements, the
surface information is gathered. The AFM consists of a cantilever with a sharp
probe at its end that is used to scan surfaces. A piezoelectric element is placed at
the other end to oscillate the cantilever at its eigenfrequency. A detector is used to
detect the deflection and motion of the cantilever. The cantilever is typically with
a tip radius curvature on the order of nanometers. When the tip is brought into a

surface, forces between the tip and the surface cause a deflection of the cantilever



1.1 Atomic Force Microscopy

according to Hooke’s law. As the cantilever is displaced via its interaction with
the surface, so too will the reflection of the laser beam be displaced on the surface
of the photo diode. In order to interact with the surface, depending on the nature

of the tip motion, the AFM can be operated at three modes.

1.1.1 Contact Mode

In this mode, the tip of the cantilever is swept across the surface of the sample with
contact. And the contours of the surface are measured either using the deflection
of the cantilever directly or, using the feedback signal from the cantilever that
is kept from the sample at a constant distance. Close to the surface, attractive
forces cause the tip of the cantilever to bend to the surface. Contact mode of

AFM is usually done at a depth where the overall force is repulsive.

1.1.2 Tapping Mode

In most of the conditions, preventing the tip of the cantilever from sticking to
the surface causing damage is a major problem to bypass. Nowadays, in tapping
mode, the cantilever is driven to oscillate up and down at or near its resonance
frequency. There is a small piezoelectric element in the cantilever holder to realize
the oscillation. The frequency and amplitude of the driving signal are kept con-
stant. If there is no drift or interaction with the surface, the cantilever oscillates
at a constant amplitude. When the tip of the cantilever comes close to the sur-
face of the sample, Van der Waals forces, dipole-dipole interactions, electrostatic
forces cause the amplitude of the cantilever oscillation to decrease usually. The
changed amplitude is used as the parameter to record the position of the tip of

the cantilever to the surface.



1.2 Micro and Nano cantilevers

1.1.3 Non-contact Mode

In this mode, the tip of the cantilever does not contact with the surface at all. The
cantilever oscillates at its resonant frequency and the amplitude of the oscillation
to the surface is typically a few nanometers down to a few picometers. The Van
der Waals forces, which are the strongest from Inm to 10nm above the surface,
or any other long-range forces decrease the resonance frequency of the cantilever.
By adjusting the average tip-to-sample distance, a constant oscillation amplitude
of frequency is maintained. Measuring the tip-to-sample distance allows the AFM

to construct a topographic image of the sample surface.

1.2 Micro and Nano cantilevers

A cantilever is a type beam which is supported and constrained at only one end.
Based on this description, the Micro and Nano cantilevers are those decreased to
micro and nano scale. In 1994, Itoh et al. fabricated a microcantilever coated with
a thin layer of zinc-oxide with piezoelectric materials deposited. Then Cleveland
et al. discovered the change of the resonance frequency when there is mass loading
onto the microcantilever. Then Thundat et al. found bending of microcantilever
can also be a method to detect mass on microcantilever.

Microcantilevers are used in a variety of micro electromechanical systems
(MEMS) as micro transducers, sensors, switches, actuators, resonators, and probes.
Particularly, the understanding of linear and nonlinear dynamic response of these
micro-sized and nano-sized cantilevers is fundamental to many those applications.
One of the methods to measure the bending of cantilever is monitored by focus-
ing a laser beam at the tip of the cantilevers and recording the deflection of the
reflected laser beam on a PSD(position sensitive detector). There are two detec-

tion mechanisms of microcantilever. The first operating mechanism of cantilever
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is the so-called static mode. Cantilevers deformation can be induced by thermal

expansions, surface stress changes and so on.

3 oligonucleotide & hybridization o

8

Figure 1.1: Bending of the cantilever due to the generated surface stress by
absorption with stimuli in static mode [1]

Based on the features of static mode, for example thermal expansions, temper-
ature can be measured by a cantilever made by two layers of different materials is
sensible to temperature variations. The different thermal expansions of the two
layers cause a thermally induced stress and the cantilever will bend statically.
With careful calculations and calibrations, the temperature can be read out by
bending of a cantilever. That is called a temperature sensor.

Independently of thermal effects, molecular adsorption processes and facial
chemical reactions can cause a change in mechanical stress. A beam deflection can
also be revealed and associated with the beam interaction with external stimuli,
physical, mechanical, chemical, biological and so on. In this case, cantilevers
deformation is related to a gradient of mass absorption those external stimuli.
Despite the physical adsorption, inter facial chemical reactions may also affect
mechanical stresses in thin plates more directly. To serve as a sensor to detect
these stimuli, cantilevers can be coated with a sensing layer, whether this layer
can absorb molecular of the stimuli physically causing bending of the cantilever
by generating the surface stress or react with stimuli chemically. By coating such
layers with particular materials, the cantilever can be made into sensors to detect

different materials in gas or liquid.



1.3 Fano resonance phenomenon

Another operating mechanism of cantilever is dynamic operation mode. In
this mode, the cantilevers keep vibrating in gas, in vacuum or in liquid. That can
be treated as damped mechanical oscillators. The motions of cantilever is affected
by the mass of cantilevers. A mass variation can be reflected on a changing reso-
nance frequency. By this resonance frequency shift-based approach, the amount
of mass adsorbed by the cantilever can be evaluated. Furthermore, the quantity
of chemical stimuli or biological stimulus can also be evaluated if one mass of

sample is measured.

Figure 1.2: Dynamic mode of a microcantilever [1]

1.3 Fano resonance phenomenon

Ugo Fano, an Italian-American physicist, first gave a theoretical explanation for
the asymmetric shape that is due to a interference of a continuum state and an
excitation of discrete state. The frequency of the resonant state must lie in the
frequency range of the continuum states for the effect to occur. Near the resonant
frequency, the background amplitude typically varies slowly with frequency while
the resonant amplitude changes both in magnitude and phase quickly. This non
symmetric variation creates the asymmetric shape.

Fano used a perturbation approach explain the appearance of asymmetric

resonances. As a result he obtained the formula for the shape of the resonance
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shape.

2
_ _(;J;qi (1.1)

Shape parameter q and reduced energy € are defined by 2(E — Er)/7, where
E'r is resonance energy, when the discrete state energy is equal to the continuum
state energy, Fy = 0, that is Fp, and 7 is the width of the auto-ionized state.

This equation suggests that there are exactly maximum and minimum of results,

that is the maximum and minimum of the amplitude of the Fano resonance.

Discrete state Mixing Continuum Fano resonance
| 2qe q)?
q T + 1 _ (e+9)
e +1 e +1 e2+1

Figure 1.3: Fano resonance is consist of a continuum state and an excitation state

2]

(1.2)

Omin =0, at €= —qOmas =1+¢*, at e=—
q
Considering this parameter ¢, a ratio of transition probabilities to the mixed

state and to the continuum. For different ¢, the shapes are different.
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------

Figure 1.4: For different q, the shapes of Fano resonance are different

Examples of Fano resonances can be found in atomic physics, nuclear physics,
condensed matter physics, circuits, microwave engineering, nonlinear optics, pho-
toelectronic, magnetic meta materials, and in mechanical waves. Thanks to the
first experimental evidence of Fano resonance purely in coupled micro and nano
mechanical cantilever arrays. [3]In our measurement, Fano resonance is used as a
tool or a symbol to study the non linearity in coupled micro and nano cantilevers.
Because all the resonance frequency of all cantilevers of a microcantilever array
can be found by measuring resonance frequency of only one cantilever and Fano

resonance of its corresponding coupled cantilevers.



1.3 Fano resonance phenomenon

Amplitude (pm)

180

120
60

Phase (°)

-60

-120

180 . .
152 153 154 155

Frequency (kHz)

Figure 1.5: Fano resonance in a microcantilever array [3]



Chapter 2

Theory

2.1 Vibration of Cantilevers

Cantilevers are suspended structures, fixed at one, while the other end is free to

bend in Figure 2.1.

z
|4y
X

Figure 2.1: A schematic of a cantilever, where L, w, h represent the length, width,
and height [4]

This, the most common Micromechanical and nano mechanical structure, can
be modeled by Euler-Bernoulli beam theory. To study the bending behavior of
this structure, assuming that all beams are thin and long are applied, at least

lengths is 10 times greater than heights. According to Euler-Bernoulli beam



2.1 Vibration of Cantilevers

theory, assuming a linear elastic material and small deflection u(,+) the equation
of motion of a thin beam is given by
D?u(x,t) Ou(x,t)

+ Ely

A
P ot? oxt

—0 (2.1)

Where p is the mass density, A is the cross sectional area, E is the Young’s
modulus and Iy is the geometric moment of inertia. The solution to this differ-
ential equation can be separated into a position dependent and a time-dependent

term via a separation of variables.

u(,t) = 3 Un(w) cos(wt) (2.2)

o0

Where w is the frequency of motion and n denotes the modal number. A general

solutions to the displacement function of the beam U, (x) can be described as

Un(z) = ay, cos Bz + b, sin 5,x + ¢, cosh B,z + d,, sinh B, x (2.3)

Where (3, is the wavenumber. The first two terms represent the standing waves
in the beam center, while the last two represent the influence of the clamping.
For a particular beam, the boundary conditions of a cantilever are described
by
0 0? 0?

Un(0) = 5-Un(0) = 55 Un(L) = 5

— Un(L) =0 (2.4)

A system of linear equations of fourth order can be written as

(2.5)
) cosh(f,L) sinh(f,

( (
_sin(ﬁnL) —cos(f,L) sinhp,L cosh(B,L)| \d

10



2.1 Vibration of Cantilevers

A non-trivial solution exists for this homogeneous system if the determinant is
zero, that is

cos(fnL)cosh(B,L)+1=10 (2.6)

Obviously, this equation has discrete solutions for specific wavenumber, which are
related to eigenfrequency of the cantilever. This equation can be solved numer-
ically for the lower order modes. Considering higher eigenvalues, this equation
can be simplified to

cos(fnL) = 0 Vn >3 (2.7)

and

B.L ~ (2n — 1)1/2 (2.8)

In conclusion, the roots of this frequency equation of a cantilever beam are
An = Bl = 1.8751,4.6941, 7.8548, (2n — 1)m/2 (2.9)

And the eigenfrequency of a cantilever can write as

2 EI,

Considering the first two boundary conditions of the mode shape function
Un(x), with the third boundary condition we obtain the ratio of the coefficients

a, and b,

0? by cos(B,L) + cosh(B,L)
gaz L) =0: a,  sin(B,L) + sinh(B,L) (211)

A general solutions to the displacement function of the beam can be written in

11



2.2 Coupling among Oscillators

the form

cos(5, L) + cosh(B,L)

Un(x) = aylcos B,x — cosh B,z — |(sin B,z — sinh 3,,x)

sin 8, L + sinh(5,,L)
(2.12)

1.0r n=1 10F n=2

05 osf LT
2: 0.0 0.0
S B

-05 -05

-1.0 -1.0

0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 04 06 0.8 1.0

10f n=3 10f noa
X o0 0.0 &
RIS Y] o8 \/

-1.0 “ 1 410

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x/L x/L

Figure 2.2: Four vibration modes of a cantilever [4]

First four modes of a cantilever are shown in Figure2.2. In particular mode,
some parts of the cantilever move to the longest distance comparing to static
mode, while some node remain static. The number of static nodes increases

along with numbers of modes.

2.2 Coupling among Oscillators

2.2.1 Damped Linear Resonator

A Tumped model simplifies the description of the behavior of spatially distributed
physical systems into a topology consisting of discrete entities that approximate
the behavior of the distributed system under certain assumptions. It is useful in

electrical systems (including electronics), mechanical multi body systems, heat

12



2.2 Coupling among Oscillators

transfer, acoustics, etc. Mathematically speaking, the simplification reduces the
state space of the system to a finite dimension, and the partial differential equa-
tions (PDESs) of the continuous (infinite-dimensional) time and space model of the
physical system into ordinary differential equations (ODEs) with a finite number
of parameters. Vibration energy can transfer from kinetic to elastic elements such
as beams, strings and plates. These structures store potential energy in terms of
deformation energy. A general lumped model, consist of a spring, a mass, a force
and a damping factor in Figure 2.3 describes this periodic conversion of such en-
ergy transfer. The mechanical behavior of this modal is generally approximated

by a linear relation between the continuum stresso and straine

o= Ee (2.13)

where E is the Young’s modulus.

Figure 2.3: A lumped mass-spring model [4]

13



2.2 Coupling among Oscillators

When a resonator is driven in the linear regime, the dynamics can be simplified
by a one-dimensional resonator oscillator based on a linear zero mass spring.

Assuming a periodic driving force
F(t) = Fycos(wt) (2.14)

A second order differential equation of this model, a linear damping element, a

mass and a linear zero mass spring, is
mz+ct+kz = F(t) (2.15)

Where m is the total mass, k is the spring constant, and c¢ is the coefficient of

damping force.

Free Undamped Vibration

With none damping, the total energy of the system remains constant. During
oscillation the total energy is fully giving and returned between kinetic and po-
tential energy. The system turns totally into an oscillator with no driven force.
According to the method used to obtain this good approximation which is called
Rayleigh's method, the maximal kinetic energy must be equal to the maximal

potential energy. That is

m3? = k2? (2.16)

From this equation, the eigenfrequency €2 of the undamped free mechanical

O =w= \/g (2.17)

system can be denoted

14



2.2 Coupling among Oscillators

Free damped Vibration

Unavoidably, there is damping factor in realistic environment. Without a driven

force, the equation of the lumped linear model reduces to
Z4+2n.24+Qz=0 (2.18)

where the coefficient of damping n.. is defined

C
L= 2.19
ne =g (2.19)

Another parameter damping ratio is defined by
(=— (2.20)

By applying Euler’s formula, and setting z = 2pe”!, the equation to describe the

free damped vibration can be rewrite as

2(t) = zoe % cos(Q/1 — (2t) (2.21)

Through the above equation, the free damped vibration has an exponentially
decaying oscillation with a frequency wyure = 24/1 — (2, this frequency is called

natural frequency.

Driven damped Vibration

The most common way to actuate a mechanical cantilever is by shaking its base
by a piezoelectric element. To denote the equation of this vibration, first insert

z(t) = zpe™* into the original free damped vibration equation as a specific steady

15



2.2 Coupling among Oscillators

solution. This specific solution takes the form

Fy/m
2(t) = N w20)2 Ve cos(wt + @)

(2.22)
Both the amplitude and phase response as a function of the relative frequency

w/§) can be denoted from the above equation. The amplitude is

o F()/k?
Y (e R T 22

While the phase is

2 (2

arg(zp) = ¢ = arctan # (2.24)

() -1
where Fy/k represents the static deflection, then the dynamic amplification is
simply given by
1
029 = (2.25)
V= (827 +4¢3(5)

In the case just mentioned above, the relative amplitude and phase of the vibra-

tion actuated by a piezoelectric element can be described by

(8)?
Szn = 2.26
o @ T (220
and the phase
arg(zg) = ¢ = arctan Lﬁuj)z (2.27)
1-(g)

16



2.2 Coupling among Oscillators

6z(w)

(1]

@(w)/m
@(w)/m

Figure 2.4: A lumped model of driven damped vibration. (a) driven by a force
and (b) driven by an external vibration (b) and (e) show the relative amplitude
response, (¢) and (f) show the respective phase responses [4]

Driven damped vibration system is shown in the Figure 2.4 with two condi-

tions, driven by a force and by another vibration.

2.2.2 Quality Factor

In physics, quality factor is a dimensionless parameter that describes how sharp
the peak of the resonance. This parameter characterizes a resonator’s bandwidth
relative to its resonance frequency. High Q factor indicates a lower rate of energy
loss relative to the stored energy of the resonator, the oscillations die out more

slowly. The physical definition is the ratio between the energy stored and energy

lost during one cycle at resonance

Q=2r—— (2.28)

17



2.2 Coupling among Oscillators

Where W is the total energy stored in the system and 6 is the energy loss during
one cycle of oscillation. Instead of fitting with the oscillator model, the measured
resonance curves are fitted with a Lorentzian function. The extraction of @ is
then based on the —3dB bandwidth method. The — 3dB bandwidth method is
based on the definition of @) in electrical resonant circuit where quality factor is

given by
w122
Aw_34p 2¢

Q (2.29)

Where Aw_34p is the frequency difference between the two frequencies at which
the amplitude curve has the half maximum energy Bv/2(—3dB). For small damp-
ing, this definition of the quality factor is equal to the physical one. The quality
factor can now be found by measuring the amplitude response around the reso-
nance. The resonance frequency divided by the —3dB bandwidth is an approxi-

mation for () small damping.

2.2.3 Linear Coupling
Strong Coupling

Particularly, ultra sensitive mass detection and identification can be realized by
arrays of coupled micro and nano cantilevers. Usually Lorentzian peaks are used
in single cantilever and strongly coupled micro and nano cantilever arrays.Besides
this, more and more various applications from dynamics of coupled micro and
nano cantilever arrays draw greater and greater attentions. Let’s consider a real

world coupled Micromechanical resonator pair.
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2.2 Coupling among Oscillators

symmetric mode antisymmetric mode

Figure 2.6: A lumped model of two linear coupled cantilevers [4]

Two cantilevers are coupled via a shared overhang between the structures.
To calculate the eigenfrequency of the coupled resonators, the homogenous un-
damped system is described here.

Considering Newton’s second law yields the equation of motion

mzZ + kzy + k(21 —29) =0 mZs + kzo — ke(21 — 29) =0 (2.30)

Plugging in the standard ersatz, which yields the €2, linear system of equation

—wm+k+k, —k, A 0
= (2.31)
—k’c —w2m + k + ]{c Ag 0
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2.2 Coupling among Oscillators

Setting the determinant of the system is zero, we can find the non-trivial solutions

(—w?+k+k) -k =0 (2.32)

which yields two positive eigenfrequency

k [k + 2k,
w1 = QS = E Wy = Qa = —:n (233)

Giving Ay = Ay for Ay = —Ay for €, For symmetric mode at

the eigenfrequency (2;both vibrational amplitudes of resonators are equal. The
normal mode eigenfrequency is equal to the one of a single uncoupled resonator.
Since both resonators are vibrating in the same phase, there is no displacement-
induced tension between resonators. When vibrating at the other eigenfrequency
), the two vibrating resonators are moving in opposite direction and the cou-
pling spring causes displacement-induced tension, which increases the normal
mode eigenfrequency. Also, the response of a damped and driven system can be

calculated from the corresponding system of equations

mz, +cz) + k2 + k(21 — 2) = Fye™ mzy+cio+kzo—keo(z1—22) =0 (2.34)

Weakly Coupling(Fano Resonance)

In our case, Fano resonance is found in weakly coupled cantilever arrays with a
dimension like micro or nano scale. A theoretical model based on weak elastic
and damped coupling is described. In our experimental set-up, the whole array
is sticked to the piezoactuator in a vacuum chamber. All the cantilevers in the
array are subjected to the same external excitation force. Each cantilever n (with
n=1,2) is modeled by a damped harmonic oscillator consisting of active mass m,,,

structure dissipation ¢, and bending stiffness k,. However, in this description,
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2.2 Coupling among Oscillators

we only consider n = 1,2. A weak coupling spring factor ki5 is used so that the
two eigenfrequency modes were negligibly replaced from solutions of independent

oscillators and with a damping factor c;s.

N

¢ )

Figure 2.7: A lumped model of two weakly coupled cantilevers [3]

An external periodic driving force F'-e™! is applied to the following equations.

LEnl + ’71.751 + wfa;l + ’U12<(E1 — 1’2) -+ ’)/12(.751 — .TQ) =FI. GMt (235)

tT“Q —+ 72117'2 + ngg —+ ’U21<$2 — $1) + ’)/21(.752 — .Tl) =F. €Mt (236)

where w,, = \/W are the natural frequency of the single resonators, v, =
Cn/my, are the frictional parameter and viy = vo; = kio/m, and y12 = Y91 =
c12/m,, are the elastic and damping coupling between the cantilevers. The forced
response of a damped system has the same frequency as the excitation force, but
with different amplitudes and phases, the solutions of the system can be assumed
as

215 = Xia(w)e™ (2.37)
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2.2 Coupling among Oscillators

then the complex amplitude can be written as

(w3 — w? +ivaw + 2012 + 2iv12w)

ay(w) = - - - - - - - -
(W} — w2 +imw) (WS — w? +iyaw) + vi2(Wf — w? +iv1w) + via(w] — w? +iv2w) + iview(w? — w2 4+ ivw) +iv12w(W3 — w? +ivaw)
(2.38)

(wf — w? +iyw + 2012 + 2iv12w)

az(w) = - -
(W} —w? +iw)(WE — w? +iyaw) + viz(w? — w? +iy1w) + via(w] — w? +iv2w) + ivi2w(w] — w2 4 ivw) +iv12w(W3 — w? +ivaw)
(2.39)

The definition of the real amplitude of the cantilever is the modulus as following,

(W) = |an(w)| ) (2.40)

This numerical solutions for the two weakly coupled cantilevers obtained from
the equations are in good agreement with the experimental curves of a vibrating

array.

2.2.4 Non Linear Coupling

Non linear coupling oscillator can be separated into two types. In order to un-
derstand the two types of non linear coupling, we can simply solve the equations
which describes the motions.

Duffing oscillator

Duffing oscillator is one kind of damped and driven oscillators, whose dynamics

can be described by a non-linear second-order differential equation
i+ 0% + ax + Ba® = v cos(wt) (2.41)

Where § controls the amount of damping, « controls the linear stiffness, 8 controls
the amount of nonlinear in the restoring force; if 5 = 0 , the Duffing equation

describes a damped and driven simple harmonic oscillator; For a linear oscillator
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2.2 Coupling among Oscillators

with 8 = 0 , the frequency response is also linear. ~ is the amplitude of the
periodic driving force; if v = 0, the system is without a driving force and w
is the angular frequency of the periodic driving force. z is the amplitude of
response. This equation describes the motion of a damped oscillator with a
more complex potential than in simple harmonic motion. In physical terms, this
equation models a spring pendulum whose spring’s stiffness does not exactly obey
Hooke’ law. In another word, the duffing equation describes the oscillations of
a mass attached to a nonlinear spring and a linear damper. The restoring force
of the nonlinear spring is ax + B23. When a« > 0 and [ > 0, the spring is
called a hardening spring. Conversely, for § < 0 , it is a softening spring. In a
word, for a non zero cubic coefficient, the frequency response becomes nonlinear.
With different parameters, the Duffing oscillator can show hardening , softening
or mixed hardening-softening frequency response.
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Figure 2.8: Frequency response of duffing equation with different g [5]

For certain ranges of the parameters in the duffing equation, the frequency
response may no longer be a single-valued function of forcing frequency w .
For a hardening spring oscillator, the frequency response overhangs to the high-
frequency side, and to the low-frequency side for the softening spring oscillator.

When the angular frequency w is slowly increased(with other parameter fixed),
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2.2 Coupling among Oscillators

the response amplitude z drops at A suddenly to B. Conversely, if the angular fre-
quency w is slowly decreased, then at C the amplitude jumps up to D, thereafter

following the upper branch of the frequency response.

8
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~ 4t //1 ] J
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I e B
1=~ \1\\‘
0 . ) ) k““~4—<—<—
0 0.5 1 1.5 2 2.5

Figure 2.9: Jumps phenomenon [6]

The jumps A-B and C-D do not coincide, so the system shows hysteresis
depending on the frequency sweep direction.
Van der Pol oscillator

Van der Pol oscillator is non-conservative oscillator with nonlinear damping, in
which energy in added to and subtracted from the system in an autonomous
method, resulting in a periodic motion called a limit cycle. A second-order dif-

ferential equation describes its dynamics.

— (1 -2 = (2.42)
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2.2 Coupling among Oscillators

Where x is the position coordinate-which is a function of the time ¢, and p is a
scalar parameter indicating the nonlinearity and the strength of the damping. For
the unforced Van der Pol Oscillator, when = 0 , there is no damping function,
the equation becomes

d?z

Tl +2=0 (2.43)

This is a form of the simple harmonic oscillator and there is always conser-
vation of energy. When p < 0 , the system becomes a simple vibration with
damping. When g > 0 , the system will enter a limit cycle. Near the origin
x = dx/dt = 0, the system is unstable and far from the origin, the system is
damped.

For forced Van der Pol Oscillator, when a forced sinusoidal driving signal
Asin(wt) is added to the unforced system, the equation to describe the system
becomes

d?z d_m

et . 2
@z M=)y

+x — Asin(wt) =0 (2.44)
Where A is the amplitude, or displacement, of the wave function and w is its
angular velocity. The forced Van der Pol Oscillator shows deterministic chaotic

behavior.

2.2.5 Intermodal Coupling Nonlinearity

When only one of the vibrational modes is driven, a micro and nano mechanical
resonator is modeled as a SDOF (single degree of freedom) oscillator. When two or
more of these vibrational modes are excited, the single resonator system should
be modeled as MDOF (multi degree of freedom) oscillators coupled with each
other while the engaged modes are coupling among each others, this is called
intermodal coupling.

For now, there hasn’t a complete theoretical model to describe the dynamic
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Figure 2.10: General description of the creation of Matheny et al [7]

of intermodal coupling. But many scientists published some paper to study this
dynamic.

Matheny et al(2013), created an experimental protocol to study the device
nonlinearities, especially NEMS. In their work, a doubly clamped beam was used
for the intra and intermodal nonlinearities, compared with predictions from Euler-
Bernoulli theory [7].

Measures using the procedure described in this article and calculations from
Euler-Bernoulli theory are in good agreement. They used intermodal coefficients
to predict the dynamics.

By the work of Atakan et al(2018), intermodal coupling was used as a probe
for detecting nano mechanical modes. To implement this method, they used a
probe mode as a excitation voltage and monitored by a phase-locked-loop, while
another auxiliary excitation signal scanned for other modes. When the auxiliary
excitation signal exciting the corresponding mode around its resonance frequency,
the displacement-induce tension caused a frequency shift in the probe mode.
They also used the location and width of these frequency shifts to determine the
frequency and quality factor of mechanical modes. Their work is quite indicating
for our measure [8].

Coupling between modes happens due to the increased tension along the beam
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Figure 2.11: Block diagram of Atakan et al’s work, actuation and readout scheme
to pump and detect higher-order modes while simultaneously tracking a specific
resonance mode with PLL [§]

axis which changes the effective stiffness of the mechanical structure. In their ex-
periments, the frequency shift in the measured probe mode k due to the excitation

of a pump mode j can be calculated as
Aw = Wy, — Wi, initial = Wk,initialgkja§ (2.45)

where gj; is the coupling coefficient between modes 7 and k. As the oscillation
amplitude of mode a; starts from zero and increases, the frequency shift they
observed in the probe mode k can be related to the amplitude of the pump mode
7. In this way, they can indicate the location of the pump mode frequency by
the location of the frequency shift. Further more, the magnitude of the frequency
shift is used to indicate the square of amplitude. [§]

Our measurement is also to find fundamental behaviors of intermodal coupling
resonators. Nonlinear intermodal coupling can be easily triggered via displacement-
induce tension in the structure of beams, tubes and membranes. This nonlinear
intermodal coupling is similar to the hardening behaviors modeled by a Duffing

equation for a SDOF system. In this regime, the dynamic of the nonlinear is not
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2.2 Coupling among Oscillators

fully studied and more fundamental research is needed.
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Chapter 3

Experimental Preparation

3.1 Fabrication

In our case, the Microcantilevers are fabricated from SOI substrate in Chilab lab-
oratory of the Polytechnic of Turin, which is located in Chivasso. The fabrication

is done by the following steps:

- SOI substrates replace conventional silicon substrate in semiconductor man-
ufacturing. The SOI technology refers to the use of a layered silicon insu-
lator silicon substrate in place of conventional silicon substrates in semi-
conductor manufacturing, especially microelectronics, to reduce parasitic
device capacitance, thereby improving performance. These substrates are

widely used, in particular into fabricating cantilevers, membranes and bridges.

- A polymeric protective coating is deposited on top of the SOI substrates.
On the back of SOI substrates, a photoresist is deposited where are and the
part to be removed exposed with UV light.

- By photolitographic step and BOE solution etching, the silicon oxide is

cleared away. The BOE(Buffered oxide etch) solution is a mixture of
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3.1 Fabrication

a buffering agent, such as ammonium fluoride(N H,F') and hydrofluoric

acid(HF).

- Then a KOH(Potassium hydroxide) solution is used to remove the silicon

bulk, creating cantilever area.

- Another photolitographic step is performed after cleaning the sample. The
part that are not covered by the photoresist is etched through RIE(Reactive-

ion etching) etching. This frees one side of the cantilever.

- With carefully calculation, BOE solution remove the sacrificial layer of sil-

icon dioxide.

Figure 3.1: Fabrication process of a microcantilever array

30



3.2 Instrument Set-up

3.2 Instrument Set-up

In our measurement, the commercial machine used is called MSA-500 micro sys-
tem analyzer from a company Polytec. The MSA-500 micro system analyzer was
designed to combine several measurement techniques into a convenient “All-in-
One” solution for characterizing surface metrology and measuring in-plane and
out-of-plane motions. This instrument delivers increased measurement flexibility
and precision, adapting to the needs of today’s and tomorrow’s micro structures.
When incorporated in the MEMS design and test cycle, the Micro System Ana-
lyzer provides precise 3-D dynamic and static response data that increases device
performance while reducing development and manufacturing costs through en-
hanced and shortened design cycles, simplified trouble shooting and improved

yield.
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3.2 Instrument Set-up

Figure 3.2: A commercial system called MAS-500

The laser-Doppler vibrometer is a precision optical transducer for determining
the vibration velocity and displacement at a measurement position. It works by
sensing the frequency shift of back scattered light from a moving surface. The
object scatters or reflects light from the laser beam and the Doppler frequency
shift is used to measure the component of velocity which lies along the axis of

the laser beam.
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3.2 Instrument Set-up

Figure 3.3: Experimental set up of our measure

And there is a vacuum pump connecting to the MSA-500 system, which is
called Hicube. This machine provide a vacuum chamber in the MSA-500 system,
in which micro and nano cantilevers are oscillating. To implement our measure-
ment, a signal generator is used to export the excitation signal while the Zurich
instrument exporting a continuum voltage. Combination of the signals is used
to excite the piezoelectric element in the vacuum chamber in the MSA-500 sys-
tem to realize Fano resonance in the micro and nano cantilever array MC24. A
laser focuses on the tip of the microcantilever, the reflections of the laser from
the vibrating microcantilever are read into to a PSD, converting vibrations into
changing voltages. These voltages are sent to a lock-in amplifier that can ex-
tract a signal with a known carrier wave from an extremely noisy environment.
In our measurement, the Zurich Instrument(HF2Li) is the lock-in amplifier that
can transfer the signal into amplitudes and phases.A program is performed in
Labview control the signal generator and the Zurich Instrument. These saved

measure data are analyzed in an another commercial software which is called
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3.3 Labview Software

Origin 2018.

3.3 Labview Software

To implement the observation shifts of Fano, the Labview program should control
parameters of signal generator and Zurich Instrument HF2Li. Furthermore, the
signal generator outputs a group of discrete excitation signals, uprising with a
resolution one by one. During outputting the discrete excitation signal, the Zurich
Instrument should sweep a appropriate window of frequency to record the position
on which the laser is focused. Until the sweep measurement file is safely saved
automatically, the program of Labview starts a new excitation voltage from the

signal generator.
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Figure 3.4: Flow chart of the Labview program
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3.3 Labview Software

Thanks to the support driver from the signal generator and the user inter-
face of Zurich Instrument itself is graphical. Both devices provide an example
which are supportive in Labview. However, it is not a pure programming task.
Inter kennels of the examples are protected. No edit can be performed into the
example. Even algorithm is perfect, the two devices don’t work as the program
commands. Thanks to Zurich Instrument exporting a “finished” signal after the
sweep finishes. This "finished” signal and “value(signaling)” of property node
from Labview are used to start saving measurement files and a new excitation
voltage from signal generator. By suitably activating and blocking property node
and the “finished” signal in a while loop with the signal generator. The program

is ready to measure.
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Chapter 4

Measures and Results

4.1 Description of Measure

To better exploit the Fano resonance in micro and nano cantilever arrays, this
measure is done by first picking a appropriate cantilever and exciting this can-
tilever by a group of discrete driven signal with a small resolution stepwise grow-
ing from a frequency below the resonance to one above. For every that discrete
driven signal, the Zurich Instrument is used to record the Fano resonance from
the cantilever weakly coupled to the first cantilever. After recording every Fano
resonances by each driven signal. A commercial data analysis software(Origin
2018) is used to analyze the differences among every Fano resonances. In Figure
4.1, to begin our measure, a laser is focusing on the tip of a cantilever showing on
the right of the figure. While on the left, with an appropriate excitation signal
to the piezoelectric element, the resonance frequency and the corresponding Fano
resonances from other cantilevers are shown on the figure. Among those Fano

resonances, I pick stable one with less interferences to do our measure on it.
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4.1 Description of Measure

measure Fano
resonance controlled
- by Labview over —>
signal generator and
the lock-in amplifier

put a microcantilever measure resonance
array in the chamber - and corresponding
and make the Fano resonance using
chamber into vacuum the vibrometer

analyze the data of
measure using a data
analysis and graphing
software

Figure 4.2: Steps of the measure method

Figure 4.1: The vibrometer help us to find the resonance and the corresponding
Fano resonances

A general method is described in Figure 4.2. After obtaining the resonance
frequency and the corresponding Fano resonances, in our measure, we focus the
laser on the tip of cantilever number 8 measuring Fano resonance coupled from
number 9 while resonances in different mode of cantilever number 9 are excited.

And in returns, by the study of Fano resonance, the parameters affecting
shifts of Fano resonances can be found. With these parameters, we can denote
all other cantilevers’ vibrating details by only measuring one cantilever and their
corresponding Fano resonances. As previously discussed in Chapter one, Fano
resonance can be different shapes with different parameter q. During the measure,

many shapes were observed and used to explore features.
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4.1 Description of Measure

|y
4/

~.

Figure 4.3: Different shapes of Fano resonance observed during measure

Coupling between modes happens due to the increased tension along the beam
axis which changes the effective stiffness of the mechanical structure. [8] By the
software I wrote, we can have more details of the results of changed effective
stiffness of the mechanical structure. This figure explains what we are going to
measure. First, we have a "sweep frequency window” indicating the frequency
gap used by the Zurich Instrument to sweep. The ”excitation signal” shows us
the frequency of excitation voltages. This so-called waterfall figure can show
us the shift of Fano resonance when excitation signals pass over the resonance
frequencies of different modes. The micro cantilever we used is named as MC24-
8-F9. 24 means the number of the micro cantilever. 8 is the number of the
microcantilever(counting from the right to left) where the laser is focused on. F9
means the Fano resonance of number 9 microcantilever corresponding to number

8 microcantilever.
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Figure 1: Waterfall method to show the result

Figure 4.4: A so-called waterfall method to show the measure

As in Figure 4.4, on the left, the excitation signals are indicated while on the
bottom, the appropriate range to obtain the Fano resonance is shown, and on
the right the amplitude of Fano resonances are shown. For each excitation signal,
there is a recorded Fano resonance, we can see clearly that the Fano resonance
shifts to the left which means the Fano resonance frequency decreases. In the

following Figure 4.5, the contour of the shifting Fano resonance peaks are plotted

in order to see how much the shift is.
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Figure 4.5: Another method(contour color fill) to show the measure

4.2 Results

These results are organized by indicating parameters affecting shifts of Fano res-

onance.

Compare different voltages
Measure in second mode while excitation signal in first mode

Here we present Fano resonances in second mode while excitation signal in first
mode. Fano resonances are easy to observe in secone mode because more energy
will excite the microcantilever array when excited in first mode. As we can
observe in these figures, we can denote that the shifts become bigger along with
the increasing excitation voltages. Shifts of Fano resonances vary with different
measuring cantilevers. By comparing all the measures, we found the shifts of

the Fano resonance are always to the left. In another word, the frequency of
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4.2 Results

Fano resonance decrease as the excitation signal increases. In the meanwhile, the
amplitude of the Fano resonance remains the same. In the following Figure 4.6,
from the contours lay on the left of the figure, we can denote that the bigger of the
excitation signal, the more that the Fano resonance shifts to the lower frequency.

The line on the right of each contour also shows the same behavior.
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4.2 Results
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Then I did the same measure from other Fano resonances corresponding to

cantilever number 8 following the same method. Even other Fano resonances

corresponding to other cantilevers show the same behavior.
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Figure 4.9: MC24-9-F8: different shifts of Fano resonance from microcantilever
number 8 on number 9 as the excitation signal increases

46



4.2 Results

excitation signal

100mv
44325
0006900
0.008478
0.008082
aaszo | aep
0005034
0.004728
o
44315 < o.04168
0003672
-0 00344;
44310 4 g géggga
0002853
0002670
ol
44305 - { 0002217
0.002081
aeies
44300 0001723
0.001617
0001518
0001426
a5 st
0001180
aeica
44290 " T v T
276500 276600 276700 276800 276900 277000
sweep frequency window
excitation signal
v
44325
007120
006855
008221
w20 e
005081
004749
004439
. 44315 o018
003625
%09
44310 - 353e;
768
2567
00za18
44305 . 260
. 001e75.
oo1es0
44300 - 017
001508
001409
s
442095+ %usw
001076
mEM
44290 T T T T
276500 276600 276700 276800 276900 277000
sweep frequency window
excitation signal
g 5v
44325 0007440
]
ol
8868058
44320 i
. bt
883338
et
443154 bt
®e 0003611
. i
443104 & §ﬁ§%§%
oy il
. 38816
44305 4 LW 80101
. bl
“ i
44300 4 N\ §3Et
7
FEBERL
44295 - SEER
SERER:
HEia
b2
44290 T T T T
276500 276600 276700 276800 276900 277000

sweep frequency window

excitation signal
44325

44320
443154
44310
44305
44300

44295 4

44200

276500

excitation signal
44325

276600

276700
sweep frequency window

T T
276800 276900 277000

44320 4

. 443154

44310 4

44305 4

44300

44295 4

44200

276500

excitation signal
44325

T
276600

T T v
276700 276800 276900
sweep frequency window

277000

443204 +
443154
44310 4
44305
44300 4

44295 +

44290

T T T T T
276400 276500 276600 276700 276800 276900 277000

sweep frequency window

500mv

N
o
<

e
e R

FreBcteRoRs

e

ARpARSs naares

éggg:ﬂ.uman..unn oooacoooscosmoono0s
2RRRRPRCENS:

7.5V

Figure 4.10: MC24-10-F9: different shifts of Fano resonance from microcantilever
number 9 on number 10 as the excitation signal increases

Measure in third mode while excitation signal in first mode

To exploit more characteristics of Fano resonance in intermodal coupling. We

started a new measure of Fano resonance in the third mode while the excitation

signals are around the first mode.
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Figure 4.12: M(C24-9-F8: different shifts of Fano resonance from microcantilever
number 8 on number 9 as the excitation signal increases

By the results in Figure 4.11 and 4.12, we can denote that the Fano resonance
in the third mode has the same behavior with the Fano resonance in the second
mode, that is they shift to the lower frequency when the excitation signal becomes
bigger. However the shifts of Fano resonance in the third mode are much bigger

than the shifts in the second mode.
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4.2 Results

Measure first mode while excitation signal in second mode

Then we do the measure in an opposite way. The Fano resonance in the first mode
is measured when excited in the second mode. This time the Fano resonance still
shifts to the lower frequency when the excitation signal becomes bigger, but in
the quite different way. That came to us with an idea that excitation signals in
different modes can stiffen or soften the effective structure which can be induced
by tension or displacement. This different shifting way of Fano resonance also
brought us the measure of Fano resonance with decreasing excitation signals and
increasing excitation signals in order to compare to the Duffing phenomenon in

the next section.
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Figure 4.13: MC24-8-F9: different shifts of Fano resonance from microcantilever
number 9 on number 8 as the excitation signal increases

By comparing different voltages, we can denote that shifts of Fano resonance is
relative to excitation voltages and effective structure of a microcantilever causing
displacement-induced tension. Since the maximum voltage the signal generator
can export is 10V, we cannot find any shift in third mode while excitation signal
in second mode, in second mode while excitation signals in third mode, in first

mode while excitation signals in third mode.
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4.2 Results

Compare different modes while excitation signal in the
same mode
In this subsection, we compare the results of measuring shifts of Fano resonance

in second mode and in the third mode while the excitation signals are in the same

first mode. We wanted to know exactly how much the shifts are between different
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Figure 4.14: M(C24-9-F8: different shifts of Fano resonance from microcantilever
number 8 on number 9 as the excitation signal increases in second mode
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Figure 4.15: M(C24-9-F8: different shifts of Fano resonance from microcantilever
number 8 on number 9 as the excitation signal increases in third mode

Fano resonance from another measure
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Figure 4.17: MC24-8-F9: different shifts of Fano resonance from microcantilever
number 9 on number 8 as the excitation signal increases in third mode
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From the Figure 4.14 and 4.15, 4.16 and 4.17, we can see that the shift of

Fano resonance in third mode is bigger than that in second mode with the same

excitation signals. In another word, shifts of Fano resonance in microcantilever

arrays are relative to mode numbers.
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4.3 Compare with Duffing phenomenon

excitation signal | Fano resonance 1-2 | Fano resonance 2-1 | Fano resonance 3-1
100mV 0 0 0
500mV 0.0023% 0.0046% 0.0016%
1V 0.0068% 0.0155% 0.0353%
2.5V 0.0226% 0.0538% 0.0552%
oV 0.0293% 0.0715% 0.0741%
7.5V 0.0406% 0.0845% 0.1132%

Table 4.1: Shifts of the Fano resonance are shown by fspift/ frano resonance- 1-2
means: the Fano resonance is measured in the first mode while excitation signals
are around the second mode

It is clear to see in the Table 4.1 that the shifts of Fano resonance become

bigger when measured in higher mode.

——first mode| ——second mode| ——third mode

o 1 2z 3 4« s & 1 8 © 1 2 3 & 5 & 71 8

Figure 4.18: Plot of the data in Table 4.1 showing shifts of Fano resonance
corresponding to excitation voltages. Fano resonance in first mode is on the left,
in second mode is in the middle and in third mode is on the right

Based Figure 4.18 , we can’t find a pattern whether the curve is linear or

parabolic.

4.3 Compare with Duffing phenomenon

As mentioned in the theory chapter, the shape of the resonance frequency will tilt
to right or left when increasing the excitation voltage. In second mode and third

mode, we observed the Duffing phenomenon. Since the curve of the tilted shape

o6



4.3 Compare with Duffing phenomenon

is not symmetric, it will show different shapes when sweep from right to left and
the opposite because of the ”jump” which is mentioned in theory chapter. So we
measured an appropriate Fano resonance with decreasing excitation signals and
increasing excitation signals in order to see if there is a difference between two

excitation method.

amplitude
amplitude

-0.05 T T T
43¢ 43950 44000 44050 44100 44150 44200 43900 43950 44000 44050 44100 44150 44200
sweep frequency window sweep frequency window

Figure 4.19: Duffing phenomenon of the resonance peak in first mode. The left
figure shows the sweep of the resonance is from left to right while the right figure
shows the result of bidirectional sweep
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Figure 4.20: Duffing phenomenon of the resonance peak in second mode. The
left figure shows the sweep of the resonance is from left to right while the right
figure shows the result of bidirectional sweep
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4.3 Compare with Duffing phenomenon
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Figure 4.21: Duffing phenomenon of the resonance peak in third mode. The left
figure shows the sweep of the resonance is from left to right while the right figure
shows the result of bidirectional sweep

As for shifts of Fano resonance, direct observations can provide the evidence
that shifts of Fano resonance have the similar phenomenon with the Duffing phe-
nomenon. For Fano resonance on one particular microcantilever, the excitation
signal exports in increasing and decreasing way. The shifts of both Fano reso-
nances should be different. And the results are shown in Figure 4.19, 4.20 and
4.21. In second mode and third mode, the increasing excitation signals soften
the effective structure which can be induced by tension or displacement in the

microcantilever array.
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Figure 4.22: Shift of Fano resonance with decreasing excitation signals(100mV)
on the left while increasing ones on the right
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Figure 4.23: Shift of Fano resonance with decreasing excitation signals(500mV)
on the left while increasing ones on the right
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Figure 4.24: Shift of Fano resonance with decreasing excitation signals(1V) on
the left while increasing ones on the right

For the excitation signal below 1V, there is no obviously difference between
decreasing excitation signals and the increasing ones. But for the excitation signal
above 2.5V, the difference of the shifts between decreasing signals and increasing

signals is quite obvious.

excitation signal 2.5V excitation signal 25v
009220 009720
Saazat ' )
44320 e 44320 ", Gese
007048 007269
a0 aoeart
. 005999 -
) 082781
%8108 HEE]
44310 4 ] 443104 pined
pae Lo
003903 003835
o o
003322
s 38
44300 - Goece 44300 4 HiEit
002680 002553
2540 002409
002407 002273
002281 002145
2162 002024
007049 01910
B s
44290 r r : 44200 . - .
276600 276800 277000 277200 276600 276800 277000 277200
sweep frequency window sweep frequency window

Figure 4.25: Shift of Fano resonance with decreasing excitation signals(2.5V) on
the left while increasing ones on the right
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Figure 4.26: Shift of Fano resonance with decreasing excitation signals(5V) on
the left while increasing ones on the right
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Figure 4.27: Shift of Fano resonance with decreasing excitation signals(7.5V) on
the left while increasing ones on the right

By plotting different shifts of Fano resonance excited by decreasing signals in
one graph, we can see clearly that the same Duffing phenomenon exists in Fano

resonance with in normal resonance.
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Figure 4.28: Shifts of Fano resonance excited by decreasing signals
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Figure 4.29: Shifts of Fano resonance excited by increasing signals

And we plot both shifts of Fano resonance excited by decreasing signals and
increasing signals with the same excitation voltage. Then we can see the ” jumps”

phenomenon that happens in Fano resonance.
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Figure 4.30: Comparison between shifts of Fano resonance excited by decreasing
signals and increasing signals with the same excitation voltage

excitation signal

decreasing excitation signals

increasing excitation signals

100mV

0.0036%

0.0036%

500mV

0.0289%

0.0339%

1V

0.0314%

0.0364%

2.5V

0.0848%

0.1310%

5V

0.0899%

0.1436%

7.5V

0.1256%

0.1639%

Table 4.2: Shifts of the Fano resonance are shown by fsnift/frano resonance i
the table. There is a quite difference between decreasing excitation signals and
increasing excitation signals

These clear evidences in Table 4.2 can help us to denote the numerical de-

scription of the shift by studying the Duffing phenomenon.
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Chapter 5

Conclusions and Future works

5.1 Conclusions

In our measure, the Fano resonance is used as a tool to study the intermodal
coupling among cantilevers in a microcantilever array. The excitation signal can
stiffen or soften the effective structure of the microcantilever array which can be
induced by tension or displacement. That depends on which mode the excitation
signal is in. For our study, if the excitation signal is in second and third mode,
it softens the effective structure while the excitations signal is in first mode, it
stiffens the effective structure.

For weakly non linear coupled cantilevers in a microcantilever array, the Fano
resonance peak can be used as a new peak with respect to the Lorentzian peak to
detect mass. Using Fano resonance can greatly decrease the measuring time by
paralleling measurement and the detectable mass. To implement that, detailed
behaviors of Fano resonances in non linear coupled cantilevers is studied. As
the excitation signal increases, the Fano resonance shifts to a lower frequency.
And those shift behaviors are different between decreasing excitation signals and

increasing excitation signals the same with the Duffing phenomenon.
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5.2 Future works

5.2 Future works

There is a lot to do in the future. More and more measures should be done to
numerically draw an equation to describe the behavior of shift of Fano resonance
in weakly coupled cantilevers of a microcantilever array.

And during the measure, there is an interesting discovery. The Fano reso-
nances of number 9 and 11 corresponding to number 8 are near each other while
their resonance frequencies in the first mode are also enough near each other. So
when the excitation signal is in the first mode, the Fano resonance of number 11
shifts to the location of Fano resonance of number 9, and the two Fano resonances
merge together. That is interesting because that phenomenon shows us the Fano
resonances are not independent among each others. They can easily merge and

separate just like transferring waves in Figure 5.1.
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Figure 5.1: Fano resonance on the right shifts to the location of Fano resonance
on the left

It is better to see the procedures of the merge in amplitude and phase in

Figure 5.2 and 5.3.
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Figure 5.2: Merge of Fano resonances in amplitude
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Figure 5.3: Merge of Fano resonances in phase

This is also worthy to study in the future to better understand the behavior

of Fano resonance in weakly coupled cantilevers in a microcantilever array.
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