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Abstract

Micromechanical cantilevers are widely used in frequency-shift-based

sensor of mass, force, and magnetic field. These devices are easily

miniaturized with MEMS technology process and allow for integra-

tion with CMOS compatible electronics. Up to now, we don’t have

a fully detailed explanation of their dynamics response at their mi-

cro and nano scale, especially in the nonlinearity regime. Study of

the dynamics response in micro and nano cantilevers grows rapidly,

to satisfy the demands of fundamental questions and practical needs.

Recently, direct observation of Fano resonances in coupled micro can-

tilevers arrays can greatly decrease the measuring time by paralleliz-

ing the measurements and the minimum detectable mass, thanks to

an average ten-fold increase in Q factor of Fano peaks respect to

Lorentzian ones. In this thesis, I demonstrate a method to study the

shifts of Fano peaks induced by intermodal coupling. To implement

this method, a signal generator is used to generate a group discrete

excitation signals uprising slightly from a frequency below the reso-

nance frequency to one up the resonance frequency. In the meanwhile,

a lock-in amplifier is used to sweep and record an appropriate range of

frequency in order to observe the shift of Fano resonance. A program

of Labview is performed, in which a structure controls the signal gen-

erator giving the discrete uprising voltage while the lock-in amplifier

sweeps and records. Shifts of Fano resonance become bigger as the



excitation signal increases because the changing stiffness of effective

structure which can be induced by displacement. The shifts of Fano

resonance are different when measuring between decreasing excita-

tion signals and increasing excitation signals, which is similar to the

Duffing phenomenon because of its bistability.
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Chapter 1

Introduction

1.1 Atomic Force Microscopy

A cantilever is a rigid structural element, such as a beam or plate, fixed only at

one end. Thanks to the discoveries of cantilevers with the dimension decreased

to micro and nano scale level, these cantilevers are used in many fields. All

these rapidly growing of discoveries results from the advent of AFM(atomic force

microscopy) in 1986. With the help of this technology, characteristic of micro and

nano cantilevers can be easily studied and become useful in realistic applications.

Atomic force microscopy is a type of scanning probe microscopy with a resolution

on the order of fractions of a nanometer, even more than 1000 times better than

the optical diffraction limit. By the movement of piezoelectric elements, the

surface information is gathered. The AFM consists of a cantilever with a sharp

probe at its end that is used to scan surfaces. A piezoelectric element is placed at

the other end to oscillate the cantilever at its eigenfrequency. A detector is used to

detect the deflection and motion of the cantilever. The cantilever is typically with

a tip radius curvature on the order of nanometers. When the tip is brought into a

surface, forces between the tip and the surface cause a deflection of the cantilever

1



1.1 Atomic Force Microscopy

according to Hooke’s law. As the cantilever is displaced via its interaction with

the surface, so too will the reflection of the laser beam be displaced on the surface

of the photo diode. In order to interact with the surface, depending on the nature

of the tip motion, the AFM can be operated at three modes.

1.1.1 Contact Mode

In this mode, the tip of the cantilever is swept across the surface of the sample with

contact. And the contours of the surface are measured either using the deflection

of the cantilever directly or, using the feedback signal from the cantilever that

is kept from the sample at a constant distance. Close to the surface, attractive

forces cause the tip of the cantilever to bend to the surface. Contact mode of

AFM is usually done at a depth where the overall force is repulsive.

1.1.2 Tapping Mode

In most of the conditions, preventing the tip of the cantilever from sticking to

the surface causing damage is a major problem to bypass. Nowadays, in tapping

mode, the cantilever is driven to oscillate up and down at or near its resonance

frequency. There is a small piezoelectric element in the cantilever holder to realize

the oscillation. The frequency and amplitude of the driving signal are kept con-

stant. If there is no drift or interaction with the surface, the cantilever oscillates

at a constant amplitude. When the tip of the cantilever comes close to the sur-

face of the sample, Van der Waals forces, dipole-dipole interactions, electrostatic

forces cause the amplitude of the cantilever oscillation to decrease usually. The

changed amplitude is used as the parameter to record the position of the tip of

the cantilever to the surface.

2



1.2 Micro and Nano cantilevers

1.1.3 Non-contact Mode

In this mode, the tip of the cantilever does not contact with the surface at all. The

cantilever oscillates at its resonant frequency and the amplitude of the oscillation

to the surface is typically a few nanometers down to a few picometers. The Van

der Waals forces, which are the strongest from 1nm to 10nm above the surface,

or any other long-range forces decrease the resonance frequency of the cantilever.

By adjusting the average tip-to-sample distance, a constant oscillation amplitude

of frequency is maintained. Measuring the tip-to-sample distance allows the AFM

to construct a topographic image of the sample surface.

1.2 Micro and Nano cantilevers

A cantilever is a type beam which is supported and constrained at only one end.

Based on this description, the Micro and Nano cantilevers are those decreased to

micro and nano scale. In 1994, Itoh et al. fabricated a microcantilever coated with

a thin layer of zinc-oxide with piezoelectric materials deposited. Then Cleveland

et al. discovered the change of the resonance frequency when there is mass loading

onto the microcantilever. Then Thundat et al. found bending of microcantilever

can also be a method to detect mass on microcantilever.

Microcantilevers are used in a variety of micro electromechanical systems

(MEMS) as micro transducers, sensors, switches, actuators, resonators, and probes.

Particularly, the understanding of linear and nonlinear dynamic response of these

micro-sized and nano-sized cantilevers is fundamental to many those applications.

One of the methods to measure the bending of cantilever is monitored by focus-

ing a laser beam at the tip of the cantilevers and recording the deflection of the

reflected laser beam on a PSD(position sensitive detector). There are two detec-

tion mechanisms of microcantilever. The first operating mechanism of cantilever

3



1.2 Micro and Nano cantilevers

is the so-called static mode. Cantilevers deformation can be induced by thermal

expansions, surface stress changes and so on.

Figure 1.1: Bending of the cantilever due to the generated surface stress by
absorption with stimuli in static mode [1]

Based on the features of static mode, for example thermal expansions, temper-

ature can be measured by a cantilever made by two layers of different materials is

sensible to temperature variations. The different thermal expansions of the two

layers cause a thermally induced stress and the cantilever will bend statically.

With careful calculations and calibrations, the temperature can be read out by

bending of a cantilever. That is called a temperature sensor.

Independently of thermal effects, molecular adsorption processes and facial

chemical reactions can cause a change in mechanical stress. A beam deflection can

also be revealed and associated with the beam interaction with external stimuli,

physical, mechanical, chemical, biological and so on. In this case, cantilevers

deformation is related to a gradient of mass absorption those external stimuli.

Despite the physical adsorption, inter facial chemical reactions may also affect

mechanical stresses in thin plates more directly. To serve as a sensor to detect

these stimuli, cantilevers can be coated with a sensing layer, whether this layer

can absorb molecular of the stimuli physically causing bending of the cantilever

by generating the surface stress or react with stimuli chemically. By coating such

layers with particular materials, the cantilever can be made into sensors to detect

different materials in gas or liquid.
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1.3 Fano resonance phenomenon

Another operating mechanism of cantilever is dynamic operation mode. In

this mode, the cantilevers keep vibrating in gas, in vacuum or in liquid. That can

be treated as damped mechanical oscillators.The motions of cantilever is affected

by the mass of cantilevers. A mass variation can be reflected on a changing reso-

nance frequency. By this resonance frequency shift-based approach, the amount

of mass adsorbed by the cantilever can be evaluated. Furthermore, the quantity

of chemical stimuli or biological stimulus can also be evaluated if one mass of

sample is measured.

Figure 1.2: Dynamic mode of a microcantilever [1]

1.3 Fano resonance phenomenon

Ugo Fano, an Italian-American physicist, first gave a theoretical explanation for

the asymmetric shape that is due to a interference of a continuum state and an

excitation of discrete state. The frequency of the resonant state must lie in the

frequency range of the continuum states for the effect to occur. Near the resonant

frequency, the background amplitude typically varies slowly with frequency while

the resonant amplitude changes both in magnitude and phase quickly. This non

symmetric variation creates the asymmetric shape.

Fano used a perturbation approach explain the appearance of asymmetric

resonances. As a result he obtained the formula for the shape of the resonance
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1.3 Fano resonance phenomenon

shape.

σ =
(ε+ q)2

ε2 + 1
(1.1)

Shape parameter q and reduced energy ε are defined by 2(E − EF )/τ , where

EF is resonance energy, when the discrete state energy is equal to the continuum

state energy, Ef = 0, that is E0, and τ is the width of the auto-ionized state.

This equation suggests that there are exactly maximum and minimum of results,

that is the maximum and minimum of the amplitude of the Fano resonance.

Figure 1.3: Fano resonance is consist of a continuum state and an excitation state
[2]

σmin = 0, at ε = −qσmax = 1 + q2, at ε =
1

q
(1.2)

Considering this parameter q, a ratio of transition probabilities to the mixed

state and to the continuum. For different q, the shapes are different.

6



1.3 Fano resonance phenomenon

Figure 1.4: For different q, the shapes of Fano resonance are different

Examples of Fano resonances can be found in atomic physics, nuclear physics,

condensed matter physics, circuits, microwave engineering, nonlinear optics, pho-

toelectronic, magnetic meta materials, and in mechanical waves. Thanks to the

first experimental evidence of Fano resonance purely in coupled micro and nano

mechanical cantilever arrays. [3]In our measurement, Fano resonance is used as a

tool or a symbol to study the non linearity in coupled micro and nano cantilevers.

Because all the resonance frequency of all cantilevers of a microcantilever array

can be found by measuring resonance frequency of only one cantilever and Fano

resonance of its corresponding coupled cantilevers.

7



1.3 Fano resonance phenomenon

Figure 1.5: Fano resonance in a microcantilever array [3]
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Chapter 2

Theory

2.1 Vibration of Cantilevers

Cantilevers are suspended structures, fixed at one, while the other end is free to

bend in Figure 2.1.

Figure 2.1: A schematic of a cantilever, where L,w, h represent the length, width,
and height [4]

This, the most common Micromechanical and nano mechanical structure, can

be modeled by Euler-Bernoulli beam theory. To study the bending behavior of

this structure, assuming that all beams are thin and long are applied, at least

lengths is 10 times greater than heights. According to Euler-Bernoulli beam

9



2.1 Vibration of Cantilevers

theory, assuming a linear elastic material and small deflection u(x,t) the equation

of motion of a thin beam is given by

ρA
∂2u(x, t)

∂t2
+ EIY

∂4u(x, t)

∂x4
= 0 (2.1)

Where ρ is the mass density, A is the cross sectional area, E is the Young’s

modulus and IY is the geometric moment of inertia. The solution to this differ-

ential equation can be separated into a position dependent and a time-dependent

term via a separation of variables.

u(x, t) =
n=1∑
∞

Un(x) cos(ωt) (2.2)

Where ω is the frequency of motion and n denotes the modal number. A general

solutions to the displacement function of the beam Un(x) can be described as

Un(x) = an cos βnx+ bn sin βnx+ cn cosh βnx+ dn sinh βnx (2.3)

Where βn is the wavenumber. The first two terms represent the standing waves

in the beam center, while the last two represent the influence of the clamping.

For a particular beam, the boundary conditions of a cantilever are described

by

Un(0) =
∂

∂x
Un(0) =

∂2

∂x2
Un(L) =

∂3

∂x3
Un(L) = 0 (2.4)

A system of linear equations of fourth order can be written as
1 0 1 0

0 1 0 1

− cos(βnL) − sin(βnL) cosh(βnL) sinh(βnL)

sin(βnL) − cos(βnL) sinh βnL cosh(βnL)




a

b

c

d

 =


0

0

0

0

 (2.5)
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2.1 Vibration of Cantilevers

A non-trivial solution exists for this homogeneous system if the determinant is

zero, that is

cos(βnL) cosh(βnL) + 1 = 0 (2.6)

Obviously, this equation has discrete solutions for specific wavenumber, which are

related to eigenfrequency of the cantilever. This equation can be solved numer-

ically for the lower order modes. Considering higher eigenvalues, this equation

can be simplified to

cos(βnL) ≈ 0 ∀n ≥ 3 (2.7)

and

βnL ≈ (2n− 1)π/2 (2.8)

In conclusion, the roots of this frequency equation of a cantilever beam are

λn = βnL = 1.8751, 4.6941, 7.8548, (2n− 1)π/2 (2.9)

And the eigenfrequency of a cantilever can write as

Ωn =
λ2
n

L2

√
EIy
ρA

(2.10)

Considering the first two boundary conditions of the mode shape function

Un(x), with the third boundary condition we obtain the ratio of the coefficients

an and bn

∂2

∂x2
Un(L) = 0 :

bn
an

= −cos(βnL) + cosh(βnL)

sin(βnL) + sinh(βnL)
(2.11)

A general solutions to the displacement function of the beam can be written in
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2.2 Coupling among Oscillators

the form

Un(x) = an[cos βnx− cosh βnx−
cos(βnL) + cosh(βnL)

sin βnL+ sinh(βnL)
](sin βnx− sinh βnx)

(2.12)

Figure 2.2: Four vibration modes of a cantilever [4]

First four modes of a cantilever are shown in Figure2.2. In particular mode,

some parts of the cantilever move to the longest distance comparing to static

mode, while some node remain static. The number of static nodes increases

along with numbers of modes.

2.2 Coupling among Oscillators

2.2.1 Damped Linear Resonator

A lumped model simplifies the description of the behavior of spatially distributed

physical systems into a topology consisting of discrete entities that approximate

the behavior of the distributed system under certain assumptions. It is useful in

electrical systems (including electronics), mechanical multi body systems, heat

12



2.2 Coupling among Oscillators

transfer, acoustics, etc. Mathematically speaking, the simplification reduces the

state space of the system to a finite dimension, and the partial differential equa-

tions (PDEs) of the continuous (infinite-dimensional) time and space model of the

physical system into ordinary differential equations (ODEs) with a finite number

of parameters. Vibration energy can transfer from kinetic to elastic elements such

as beams, strings and plates. These structures store potential energy in terms of

deformation energy. A general lumped model, consist of a spring, a mass, a force

and a damping factor in Figure 2.3 describes this periodic conversion of such en-

ergy transfer. The mechanical behavior of this modal is generally approximated

by a linear relation between the continuum stressσ and strainε

σ = Eε (2.13)

where E is the Young’s modulus.

Figure 2.3: A lumped mass-spring model [4]
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2.2 Coupling among Oscillators

When a resonator is driven in the linear regime, the dynamics can be simplified

by a one-dimensional resonator oscillator based on a linear zero mass spring.

Assuming a periodic driving force

F (t) = F0 cos(ωt) (2.14)

A second order differential equation of this model, a linear damping element, a

mass and a linear zero mass spring, is

mz̈ + cż + kz = F (t) (2.15)

Where m is the total mass, k is the spring constant, and c is the coefficient of

damping force.

Free Undamped Vibration

With none damping, the total energy of the system remains constant. During

oscillation the total energy is fully giving and returned between kinetic and po-

tential energy. The system turns totally into an oscillator with no driven force.

According to the method used to obtain this good approximation which is called

Rayleigh′s method, the maximal kinetic energy must be equal to the maximal

potential energy. That is

mz̈2 = kz2 (2.16)

From this equation, the eigenfrequency Ω of the undamped free mechanical

system can be denoted

Ω = ω =

√
k

m
(2.17)
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2.2 Coupling among Oscillators

Free damped Vibration

Unavoidably, there is damping factor in realistic environment. Without a driven

force, the equation of the lumped linear model reduces to

z̈ + 2ncż + Ωz = 0 (2.18)

where the coefficient of damping nc is defined

nc =
c

2m
(2.19)

Another parameter damping ratio is defined by

ζ =
nc
Ω

(2.20)

By applying Euler’s formula, and setting z = z0e
γt, the equation to describe the

free damped vibration can be rewrite as

z(t) = z0e
−Ωζt cos(Ω

√
1− ζ2t) (2.21)

Through the above equation, the free damped vibration has an exponentially

decaying oscillation with a frequency ωnature = Ω
√

1− ζ2, this frequency is called

natural frequency.

Driven damped Vibration

The most common way to actuate a mechanical cantilever is by shaking its base

by a piezoelectric element. To denote the equation of this vibration, first insert

z(t) = z0e
iωt into the original free damped vibration equation as a specific steady
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2.2 Coupling among Oscillators

solution. This specific solution takes the form

z(t) =
F0/m√

(Ω2 − ω2)2 + 4ζ2Ω2ω2
cos(ωt+ ϕ) (2.22)

Both the amplitude and phase response as a function of the relative frequency

ω/Ω can be denoted from the above equation. The amplitude is

|z0| =
F0/k√

(1− (ω
Ω

)2)2 + 4ζ2(ω
Ω

)2
(2.23)

While the phase is

arg(z0) = ϕ = arctan
2ζ(ω

Ω
)

(ω
Ω

)2 − 1
(2.24)

where F0/k represents the static deflection, then the dynamic amplification is

simply given by

δz0 =
1√

(1− (ω
Ω

)2)2 + 4ζ2(ω
Ω

)2
(2.25)

In the case just mentioned above, the relative amplitude and phase of the vibra-

tion actuated by a piezoelectric element can be described by

δz0 =
(ω

Ω
)2√

(1− (ω
Ω

)2)2 + 4ζ2(ω
Ω

)2
(2.26)

and the phase

arg(z0) = ϕ = arctan
2ζ(ω

Ω
)

1− (ω
Ω

)2
(2.27)
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2.2 Coupling among Oscillators

Figure 2.4: A lumped model of driven damped vibration. (a) driven by a force
and (b) driven by an external vibration (b) and (e) show the relative amplitude
response, (c) and (f) show the respective phase responses [4]

Driven damped vibration system is shown in the Figure 2.4 with two condi-

tions, driven by a force and by another vibration.

2.2.2 Quality Factor

In physics, quality factor is a dimensionless parameter that describes how sharp

the peak of the resonance. This parameter characterizes a resonator’s bandwidth

relative to its resonance frequency. High Q factor indicates a lower rate of energy

loss relative to the stored energy of the resonator, the oscillations die out more

slowly. The physical definition is the ratio between the energy stored and energy

lost during one cycle at resonance

Q = 2π
W

∆W
(2.28)
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2.2 Coupling among Oscillators

Where W is the total energy stored in the system and δW is the energy loss during

one cycle of oscillation. Instead of fitting with the oscillator model, the measured

resonance curves are fitted with a Lorentzian function. The extraction of Q is

then based on the −3dB bandwidth method. The − 3dB bandwidth method is

based on the definition of Q in electrical resonant circuit where quality factor is

given by

Q =
ωr

∆ω−3dB

=
1− 2ζ2

2ζ
(2.29)

Where ∆ω−3dB is the frequency difference between the two frequencies at which

the amplitude curve has the half maximum energy B
√

2(−3dB). For small damp-

ing, this definition of the quality factor is equal to the physical one. The quality

factor can now be found by measuring the amplitude response around the reso-

nance. The resonance frequency divided by the −3dB bandwidth is an approxi-

mation for Q small damping.

2.2.3 Linear Coupling

Strong Coupling

Particularly, ultra sensitive mass detection and identification can be realized by

arrays of coupled micro and nano cantilevers. Usually Lorentzian peaks are used

in single cantilever and strongly coupled micro and nano cantilever arrays.Besides

this, more and more various applications from dynamics of coupled micro and

nano cantilever arrays draw greater and greater attentions. Let’s consider a real

world coupled Micromechanical resonator pair.
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2.2 Coupling among Oscillators

Figure 2.5: Two linear coupled cantilevers [4]

Figure 2.6: A lumped model of two linear coupled cantilevers [4]

Two cantilevers are coupled via a shared overhang between the structures.

To calculate the eigenfrequency of the coupled resonators, the homogenous un-

damped system is described here.

Considering Newton’s second law yields the equation of motion

mz̈1 + kz1 + kc(z1 − z2) = 0 mz̈2 + kz2 − kc(z1 − z2) = 0 (2.30)

Plugging in the standard ersatz, which yields the Ωs linear system of equation−ω2m+ k + kc −kc
−kc −ω2m+ k + kc

A1

A2

 =

0

0

 (2.31)
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2.2 Coupling among Oscillators

Setting the determinant of the system is zero, we can find the non-trivial solutions

(−ω2 + k + kc)
2 − k2

c = 0 (2.32)

which yields two positive eigenfrequency

ω1 = Ωs =

√
k

m
ω2 = Ωa =

√
k + 2kc
m

(2.33)

Giving A1 = A2 for Ωs A1 = −A2 for Ωa For symmetric mode at

the eigenfrequency Ωsboth vibrational amplitudes of resonators are equal. The

normal mode eigenfrequency is equal to the one of a single uncoupled resonator.

Since both resonators are vibrating in the same phase, there is no displacement-

induced tension between resonators. When vibrating at the other eigenfrequency

Ωa the two vibrating resonators are moving in opposite direction and the cou-

pling spring causes displacement-induced tension, which increases the normal

mode eigenfrequency. Also, the response of a damped and driven system can be

calculated from the corresponding system of equations

mz̈1 +cż1 +kz1 +kc(z1−z2) = F0e
iωt mz̈2 +cż2 +kz2−kc(z1−z2) = 0 (2.34)

Weakly Coupling(Fano Resonance)

In our case, Fano resonance is found in weakly coupled cantilever arrays with a

dimension like micro or nano scale. A theoretical model based on weak elastic

and damped coupling is described. In our experimental set-up, the whole array

is sticked to the piezoactuator in a vacuum chamber. All the cantilevers in the

array are subjected to the same external excitation force. Each cantilever n (with

n=1,2) is modeled by a damped harmonic oscillator consisting of active mass mn,

structure dissipation cn and bending stiffness kn. However, in this description,
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2.2 Coupling among Oscillators

we only consider n = 1, 2. A weak coupling spring factor k12 is used so that the

two eigenfrequency modes were negligibly replaced from solutions of independent

oscillators and with a damping factor c12.

Figure 2.7: A lumped model of two weakly coupled cantilevers [3]

An external periodic driving force F ·eiωt is applied to the following equations.

ẍ1 + γ1ẋ1 + ω2
1x1 + υ12(x1 − x2) + γ12(ẋ1 − ẋ2) = F · eiωt (2.35)

ẍ2 + γ2ẋ2 + ω2
2x2 + υ21(x2 − x1) + γ21(ẋ2 − ẋ1) = F · eiωt (2.36)

where ωn =
√
kn/mn are the natural frequency of the single resonators, γn =

cn/mn are the frictional parameter and υ12 = υ21 = k12/mn and γ12 = γ21 =

c12/mn are the elastic and damping coupling between the cantilevers. The forced

response of a damped system has the same frequency as the excitation force, but

with different amplitudes and phases, the solutions of the system can be assumed

as

x1,2 = X1,2(ω)eiωt (2.37)
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2.2 Coupling among Oscillators

then the complex amplitude can be written as

a1(ω) =
(ω2

2 − ω2 + iγ2ω + 2υ12 + 2iγ12ω)

(ω2
1 − ω2 + iγ1ω)(ω

2
2 − ω2 + iγ2ω) + υ12(ω

2
1 − ω2 + iγ1ω) + υ12(ω

2
2 − ω2 + iγ2ω) + iγ12ω(ω

2
1 − ω2 + iγ1ω) + iγ12ω(ω

2
2 − ω2 + iγ2ω)

F

(2.38)

a2(ω) =
(ω2

1 − ω2 + iγ1ω + 2υ12 + 2iγ12ω)

(ω2
1 − ω2 + iγ1ω)(ω

2
2 − ω2 + iγ2ω) + υ12(ω

2
1 − ω2 + iγ1ω) + υ12(ω

2
2 − ω2 + iγ2ω) + iγ12ω(ω

2
1 − ω2 + iγ1ω) + iγ12ω(ω

2
2 − ω2 + iγ2ω)

F

(2.39)

The definition of the real amplitude of the cantilever is the modulus as following,

an(ω) = |an(ω)| eiϕn(ω) (2.40)

This numerical solutions for the two weakly coupled cantilevers obtained from

the equations are in good agreement with the experimental curves of a vibrating

array.

2.2.4 Non Linear Coupling

Non linear coupling oscillator can be separated into two types. In order to un-

derstand the two types of non linear coupling, we can simply solve the equations

which describes the motions.

Duffing oscillator

Duffing oscillator is one kind of damped and driven oscillators, whose dynamics

can be described by a non-linear second-order differential equation

ẍ+ δẋ+ αx+ βx3 = γ cos(ωt) (2.41)

Where δ controls the amount of damping, α controls the linear stiffness, β controls

the amount of nonlinear in the restoring force; if β = 0 , the Duffing equation

describes a damped and driven simple harmonic oscillator; For a linear oscillator
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2.2 Coupling among Oscillators

with β = 0 , the frequency response is also linear. γ is the amplitude of the

periodic driving force; if γ = 0, the system is without a driving force and ω

is the angular frequency of the periodic driving force. z is the amplitude of

response. This equation describes the motion of a damped oscillator with a

more complex potential than in simple harmonic motion. In physical terms, this

equation models a spring pendulum whose spring’s stiffness does not exactly obey

Hooke’ law. In another word, the duffing equation describes the oscillations of

a mass attached to a nonlinear spring and a linear damper. The restoring force

of the nonlinear spring is αx + βx3. When α > 0 and β > 0, the spring is

called a hardening spring. Conversely, for β < 0 , it is a softening spring. In a

word, for a non zero cubic coefficient, the frequency response becomes nonlinear.

With different parameters, the Duffing oscillator can show hardening , softening

or mixed hardening-softening frequency response.

Figure 2.8: Frequency response of duffing equation with different β [5]

For certain ranges of the parameters in the duffing equation, the frequency

response may no longer be a single-valued function of forcing frequency ω .

For a hardening spring oscillator, the frequency response overhangs to the high-

frequency side, and to the low-frequency side for the softening spring oscillator.

When the angular frequency ω is slowly increased(with other parameter fixed),

23



2.2 Coupling among Oscillators

the response amplitude z drops at A suddenly to B. Conversely, if the angular fre-

quency ω is slowly decreased, then at C the amplitude jumps up to D, thereafter

following the upper branch of the frequency response.

Figure 2.9: Jumps phenomenon [6]

The jumps A-B and C-D do not coincide, so the system shows hysteresis

depending on the frequency sweep direction.

Van der Pol oscillator

Van der Pol oscillator is non-conservative oscillator with nonlinear damping, in

which energy in added to and subtracted from the system in an autonomous

method, resulting in a periodic motion called a limit cycle. A second-order dif-

ferential equation describes its dynamics.

d2x

dt2
− µ(1− x2)

dx

dt
+ x = 0 (2.42)
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Where x is the position coordinate-which is a function of the time t, and µ is a

scalar parameter indicating the nonlinearity and the strength of the damping. For

the unforced Van der Pol Oscillator, when µ = 0 , there is no damping function,

the equation becomes
d2x

dt2
+ x = 0 (2.43)

This is a form of the simple harmonic oscillator and there is always conser-

vation of energy. When µ < 0 , the system becomes a simple vibration with

damping. When µ > 0 , the system will enter a limit cycle. Near the origin

x = dx/dt = 0, the system is unstable and far from the origin, the system is

damped.

For forced Van der Pol Oscillator, when a forced sinusoidal driving signal

A sin(ωt) is added to the unforced system, the equation to describe the system

becomes
d2x

dt2
− µ(1− x2)

dx

dt
+ x− A sin(ωt) = 0 (2.44)

Where A is the amplitude, or displacement, of the wave function and ω is its

angular velocity. The forced Van der Pol Oscillator shows deterministic chaotic

behavior.

2.2.5 Intermodal Coupling Nonlinearity

When only one of the vibrational modes is driven, a micro and nano mechanical

resonator is modeled as a SDOF(single degree of freedom) oscillator. When two or

more of these vibrational modes are excited, the single resonator system should

be modeled as MDOF(multi degree of freedom) oscillators coupled with each

other while the engaged modes are coupling among each others, this is called

intermodal coupling.

For now, there hasn’t a complete theoretical model to describe the dynamic
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2.2 Coupling among Oscillators

Figure 2.10: General description of the creation of Matheny et al [7]

of intermodal coupling. But many scientists published some paper to study this

dynamic.

Matheny et al(2013), created an experimental protocol to study the device

nonlinearities, especially NEMS. In their work, a doubly clamped beam was used

for the intra and intermodal nonlinearities, compared with predictions from Euler-

Bernoulli theory [7].

Measures using the procedure described in this article and calculations from

Euler-Bernoulli theory are in good agreement. They used intermodal coefficients

to predict the dynamics.

By the work of Atakan et al(2018), intermodal coupling was used as a probe

for detecting nano mechanical modes. To implement this method, they used a

probe mode as a excitation voltage and monitored by a phase-locked-loop, while

another auxiliary excitation signal scanned for other modes. When the auxiliary

excitation signal exciting the corresponding mode around its resonance frequency,

the displacement-induce tension caused a frequency shift in the probe mode.

They also used the location and width of these frequency shifts to determine the

frequency and quality factor of mechanical modes. Their work is quite indicating

for our measure [8].

Coupling between modes happens due to the increased tension along the beam
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2.2 Coupling among Oscillators

Figure 2.11: Block diagram of Atakan et al’s work, actuation and readout scheme
to pump and detect higher-order modes while simultaneously tracking a specific
resonance mode with PLL [8]

axis which changes the effective stiffness of the mechanical structure. In their ex-

periments, the frequency shift in the measured probe mode k due to the excitation

of a pump mode j can be calculated as

∆ω = ωk − ωk,initial = ωk,initialgkja
2
j (2.45)

where gkj is the coupling coefficient between modes j and k. As the oscillation

amplitude of mode aj starts from zero and increases, the frequency shift they

observed in the probe mode k can be related to the amplitude of the pump mode

j. In this way, they can indicate the location of the pump mode frequency by

the location of the frequency shift. Further more, the magnitude of the frequency

shift is used to indicate the square of amplitude. [8]

Our measurement is also to find fundamental behaviors of intermodal coupling

resonators. Nonlinear intermodal coupling can be easily triggered via displacement-

induce tension in the structure of beams, tubes and membranes. This nonlinear

intermodal coupling is similar to the hardening behaviors modeled by a Duffing

equation for a SDOF system. In this regime, the dynamic of the nonlinear is not
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fully studied and more fundamental research is needed.
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Chapter 3

Experimental Preparation

3.1 Fabrication

In our case, the Microcantilevers are fabricated from SOI substrate in Chilab lab-

oratory of the Polytechnic of Turin, which is located in Chivasso. The fabrication

is done by the following steps:

- SOI substrates replace conventional silicon substrate in semiconductor man-

ufacturing. The SOI technology refers to the use of a layered silicon insu-

lator silicon substrate in place of conventional silicon substrates in semi-

conductor manufacturing, especially microelectronics, to reduce parasitic

device capacitance, thereby improving performance. These substrates are

widely used, in particular into fabricating cantilevers, membranes and bridges.

- A polymeric protective coating is deposited on top of the SOI substrates.

On the back of SOI substrates, a photoresist is deposited where are and the

part to be removed exposed with UV light.

- By photolitographic step and BOE solution etching, the silicon oxide is

cleared away. The BOE(Buffered oxide etch) solution is a mixture of
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3.1 Fabrication

a buffering agent, such as ammonium fluoride(NH4F ) and hydrofluoric

acid(HF ).

- Then a KOH(Potassium hydroxide) solution is used to remove the silicon

bulk, creating cantilever area.

- Another photolitographic step is performed after cleaning the sample. The

part that are not covered by the photoresist is etched through RIE(Reactive-

ion etching) etching. This frees one side of the cantilever.

- With carefully calculation, BOE solution remove the sacrificial layer of sil-

icon dioxide.

Figure 3.1: Fabrication process of a microcantilever array
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3.2 Instrument Set-up

3.2 Instrument Set-up

In our measurement, the commercial machine used is called MSA-500 micro sys-

tem analyzer from a company Polytec. The MSA-500 micro system analyzer was

designed to combine several measurement techniques into a convenient “All-in-

One” solution for characterizing surface metrology and measuring in-plane and

out-of-plane motions. This instrument delivers increased measurement flexibility

and precision, adapting to the needs of today’s and tomorrow’s micro structures.

When incorporated in the MEMS design and test cycle, the Micro System Ana-

lyzer provides precise 3-D dynamic and static response data that increases device

performance while reducing development and manufacturing costs through en-

hanced and shortened design cycles, simplified trouble shooting and improved

yield.
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Figure 3.2: A commercial system called MAS-500

The laser-Doppler vibrometer is a precision optical transducer for determining

the vibration velocity and displacement at a measurement position. It works by

sensing the frequency shift of back scattered light from a moving surface. The

object scatters or reflects light from the laser beam and the Doppler frequency

shift is used to measure the component of velocity which lies along the axis of

the laser beam.
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Figure 3.3: Experimental set up of our measure

And there is a vacuum pump connecting to the MSA-500 system, which is

called Hicube. This machine provide a vacuum chamber in the MSA-500 system,

in which micro and nano cantilevers are oscillating. To implement our measure-

ment, a signal generator is used to export the excitation signal while the Zurich

instrument exporting a continuum voltage. Combination of the signals is used

to excite the piezoelectric element in the vacuum chamber in the MSA-500 sys-

tem to realize Fano resonance in the micro and nano cantilever array MC24. A

laser focuses on the tip of the microcantilever, the reflections of the laser from

the vibrating microcantilever are read into to a PSD, converting vibrations into

changing voltages. These voltages are sent to a lock-in amplifier that can ex-

tract a signal with a known carrier wave from an extremely noisy environment.

In our measurement, the Zurich Instrument(HF2Li) is the lock-in amplifier that

can transfer the signal into amplitudes and phases.A program is performed in

Labview control the signal generator and the Zurich Instrument. These saved

measure data are analyzed in an another commercial software which is called
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Origin 2018.

3.3 Labview Software

To implement the observation shifts of Fano, the Labview program should control

parameters of signal generator and Zurich Instrument HF2Li. Furthermore, the

signal generator outputs a group of discrete excitation signals, uprising with a

resolution one by one. During outputting the discrete excitation signal, the Zurich

Instrument should sweep a appropriate window of frequency to record the position

on which the laser is focused. Until the sweep measurement file is safely saved

automatically, the program of Labview starts a new excitation voltage from the

signal generator.
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“

Figure 3.4: Flow chart of the Labview program
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3.3 Labview Software

Thanks to the support driver from the signal generator and the user inter-

face of Zurich Instrument itself is graphical. Both devices provide an example

which are supportive in Labview. However, it is not a pure programming task.

Inter kennels of the examples are protected. No edit can be performed into the

example. Even algorithm is perfect, the two devices don’t work as the program

commands. Thanks to Zurich Instrument exporting a “finished” signal after the

sweep finishes. This ”finished” signal and “value(signaling)” of property node

from Labview are used to start saving measurement files and a new excitation

voltage from signal generator. By suitably activating and blocking property node

and the “finished” signal in a while loop with the signal generator. The program

is ready to measure.
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Chapter 4

Measures and Results

4.1 Description of Measure

To better exploit the Fano resonance in micro and nano cantilever arrays, this

measure is done by first picking a appropriate cantilever and exciting this can-

tilever by a group of discrete driven signal with a small resolution stepwise grow-

ing from a frequency below the resonance to one above. For every that discrete

driven signal, the Zurich Instrument is used to record the Fano resonance from

the cantilever weakly coupled to the first cantilever. After recording every Fano

resonances by each driven signal. A commercial data analysis software(Origin

2018) is used to analyze the differences among every Fano resonances. In Figure

4.1, to begin our measure, a laser is focusing on the tip of a cantilever showing on

the right of the figure. While on the left, with an appropriate excitation signal

to the piezoelectric element, the resonance frequency and the corresponding Fano

resonances from other cantilevers are shown on the figure. Among those Fano

resonances, I pick stable one with less interferences to do our measure on it.
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Figure 4.2: Steps of the measure method

Figure 4.1: The vibrometer help us to find the resonance and the corresponding
Fano resonances

A general method is described in Figure 4.2. After obtaining the resonance

frequency and the corresponding Fano resonances, in our measure, we focus the

laser on the tip of cantilever number 8 measuring Fano resonance coupled from

number 9 while resonances in different mode of cantilever number 9 are excited.

And in returns, by the study of Fano resonance, the parameters affecting

shifts of Fano resonances can be found. With these parameters, we can denote

all other cantilevers’ vibrating details by only measuring one cantilever and their

corresponding Fano resonances. As previously discussed in Chapter one, Fano

resonance can be different shapes with different parameter q. During the measure,

many shapes were observed and used to explore features.
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Figure 4.3: Different shapes of Fano resonance observed during measure

Coupling between modes happens due to the increased tension along the beam

axis which changes the effective stiffness of the mechanical structure. [8] By the

software I wrote, we can have more details of the results of changed effective

stiffness of the mechanical structure. This figure explains what we are going to

measure. First, we have a ”sweep frequency window” indicating the frequency

gap used by the Zurich Instrument to sweep. The ”excitation signal” shows us

the frequency of excitation voltages. This so-called waterfall figure can show

us the shift of Fano resonance when excitation signals pass over the resonance

frequencies of different modes. The micro cantilever we used is named as MC24-

8-F9. 24 means the number of the micro cantilever. 8 is the number of the

microcantilever(counting from the right to left) where the laser is focused on. F9

means the Fano resonance of number 9 microcantilever corresponding to number

8 microcantilever.
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Figure 4.4: A so-called waterfall method to show the measure

As in Figure 4.4, on the left, the excitation signals are indicated while on the

bottom, the appropriate range to obtain the Fano resonance is shown, and on

the right the amplitude of Fano resonances are shown. For each excitation signal,

there is a recorded Fano resonance, we can see clearly that the Fano resonance

shifts to the left which means the Fano resonance frequency decreases. In the

following Figure 4.5, the contour of the shifting Fano resonance peaks are plotted

in order to see how much the shift is.
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4.2 Results

Figure 4.5: Another method(contour color fill) to show the measure

4.2 Results

These results are organized by indicating parameters affecting shifts of Fano res-

onance.

Compare different voltages

Measure in second mode while excitation signal in first mode

Here we present Fano resonances in second mode while excitation signal in first

mode. Fano resonances are easy to observe in secone mode because more energy

will excite the microcantilever array when excited in first mode. As we can

observe in these figures, we can denote that the shifts become bigger along with

the increasing excitation voltages. Shifts of Fano resonances vary with different

measuring cantilevers. By comparing all the measures, we found the shifts of

the Fano resonance are always to the left. In another word, the frequency of
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Fano resonance decrease as the excitation signal increases. In the meanwhile, the

amplitude of the Fano resonance remains the same. In the following Figure 4.6,

from the contours lay on the left of the figure, we can denote that the bigger of the

excitation signal, the more that the Fano resonance shifts to the lower frequency.

The line on the right of each contour also shows the same behavior.
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Figure 4.6: MC24-8-F5: measure results shown by contour of the peaks of the
Fano resonance and shifts of the curve of the Fano resonance
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Then I did the same measure from other Fano resonances corresponding to

cantilever number 8 following the same method. Even other Fano resonances

corresponding to other cantilevers show the same behavior.

Figure 4.7: MC24-8-F7: different shifts of Fano resonance from microcantilever
number 7 on number 8 as the excitation signal increases
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Figure 4.8: MC24-8-F9: different shifts of Fano resonance from microcantilever
number 9 on number 8 as the excitation signal increases
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Figure 4.9: MC24-9-F8: different shifts of Fano resonance from microcantilever
number 8 on number 9 as the excitation signal increases
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Figure 4.10: MC24-10-F9: different shifts of Fano resonance from microcantilever
number 9 on number 10 as the excitation signal increases

Measure in third mode while excitation signal in first mode

To exploit more characteristics of Fano resonance in intermodal coupling. We

started a new measure of Fano resonance in the third mode while the excitation

signals are around the first mode.
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Figure 4.11: MC24-8-F9: different shifts of Fano resonance from microcantilever
number 9 on number 8 as the excitation signal increases
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Figure 4.12: MC24-9-F8: different shifts of Fano resonance from microcantilever
number 8 on number 9 as the excitation signal increases

By the results in Figure 4.11 and 4.12, we can denote that the Fano resonance

in the third mode has the same behavior with the Fano resonance in the second

mode, that is they shift to the lower frequency when the excitation signal becomes

bigger. However the shifts of Fano resonance in the third mode are much bigger

than the shifts in the second mode.
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Measure first mode while excitation signal in second mode

Then we do the measure in an opposite way. The Fano resonance in the first mode

is measured when excited in the second mode. This time the Fano resonance still

shifts to the lower frequency when the excitation signal becomes bigger, but in

the quite different way. That came to us with an idea that excitation signals in

different modes can stiffen or soften the effective structure which can be induced

by tension or displacement. This different shifting way of Fano resonance also

brought us the measure of Fano resonance with decreasing excitation signals and

increasing excitation signals in order to compare to the Duffing phenomenon in

the next section.
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Figure 4.13: MC24-8-F9: different shifts of Fano resonance from microcantilever
number 9 on number 8 as the excitation signal increases

By comparing different voltages, we can denote that shifts of Fano resonance is

relative to excitation voltages and effective structure of a microcantilever causing

displacement-induced tension. Since the maximum voltage the signal generator

can export is 10V, we cannot find any shift in third mode while excitation signal

in second mode, in second mode while excitation signals in third mode, in first

mode while excitation signals in third mode.
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4.2 Results

Compare different modes while excitation signal in the

same mode

In this subsection, we compare the results of measuring shifts of Fano resonance

in second mode and in the third mode while the excitation signals are in the same

first mode. We wanted to know exactly how much the shifts are between different

modes.

Figure 4.14: MC24-9-F8: different shifts of Fano resonance from microcantilever
number 8 on number 9 as the excitation signal increases in second mode
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4.2 Results

Figure 4.15: MC24-9-F8: different shifts of Fano resonance from microcantilever
number 8 on number 9 as the excitation signal increases in third mode

Fano resonance from another measure
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4.2 Results

Figure 4.16: MC24-8-F9: different shifts of Fano resonance from microcantilever
number 9 on number 8 as the excitation signal increases in second mode
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4.2 Results

Figure 4.17: MC24-8-F9: different shifts of Fano resonance from microcantilever
number 9 on number 8 as the excitation signal increases in third mode

From the Figure 4.14 and 4.15, 4.16 and 4.17, we can see that the shift of

Fano resonance in third mode is bigger than that in second mode with the same

excitation signals. In another word, shifts of Fano resonance in microcantilever

arrays are relative to mode numbers.
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4.3 Compare with Duffing phenomenon

excitation signal Fano resonance 1-2 Fano resonance 2-1 Fano resonance 3-1
100mV 0 0 0
500mV 0.0023% 0.0046% 0.0016%

1V 0.0068% 0.0155% 0.0353%
2.5V 0.0226% 0.0538% 0.0552%
5V 0.0293% 0.0715% 0.0741%

7.5V 0.0406% 0.0845% 0.1132%

Table 4.1: Shifts of the Fano resonance are shown by fshift/fFano resonance. 1-2
means: the Fano resonance is measured in the first mode while excitation signals
are around the second mode

It is clear to see in the Table 4.1 that the shifts of Fano resonance become

bigger when measured in higher mode.

Figure 4.18: Plot of the data in Table 4.1 showing shifts of Fano resonance
corresponding to excitation voltages. Fano resonance in first mode is on the left,
in second mode is in the middle and in third mode is on the right

Based Figure 4.18 , we can’t find a pattern whether the curve is linear or

parabolic.

4.3 Compare with Duffing phenomenon

As mentioned in the theory chapter, the shape of the resonance frequency will tilt

to right or left when increasing the excitation voltage. In second mode and third

mode, we observed the Duffing phenomenon. Since the curve of the tilted shape
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4.3 Compare with Duffing phenomenon

is not symmetric, it will show different shapes when sweep from right to left and

the opposite because of the ”jump” which is mentioned in theory chapter. So we

measured an appropriate Fano resonance with decreasing excitation signals and

increasing excitation signals in order to see if there is a difference between two

excitation method.

Figure 4.19: Duffing phenomenon of the resonance peak in first mode. The left
figure shows the sweep of the resonance is from left to right while the right figure
shows the result of bidirectional sweep

Figure 4.20: Duffing phenomenon of the resonance peak in second mode. The
left figure shows the sweep of the resonance is from left to right while the right
figure shows the result of bidirectional sweep
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4.3 Compare with Duffing phenomenon

Figure 4.21: Duffing phenomenon of the resonance peak in third mode. The left
figure shows the sweep of the resonance is from left to right while the right figure
shows the result of bidirectional sweep

As for shifts of Fano resonance, direct observations can provide the evidence

that shifts of Fano resonance have the similar phenomenon with the Duffing phe-

nomenon. For Fano resonance on one particular microcantilever, the excitation

signal exports in increasing and decreasing way. The shifts of both Fano reso-

nances should be different. And the results are shown in Figure 4.19, 4.20 and

4.21. In second mode and third mode, the increasing excitation signals soften

the effective structure which can be induced by tension or displacement in the

microcantilever array.
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4.3 Compare with Duffing phenomenon

Figure 4.22: Shift of Fano resonance with decreasing excitation signals(100mV)
on the left while increasing ones on the right

Figure 4.23: Shift of Fano resonance with decreasing excitation signals(500mV)
on the left while increasing ones on the right
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4.3 Compare with Duffing phenomenon

Figure 4.24: Shift of Fano resonance with decreasing excitation signals(1V) on
the left while increasing ones on the right

For the excitation signal below 1V, there is no obviously difference between

decreasing excitation signals and the increasing ones. But for the excitation signal

above 2.5V, the difference of the shifts between decreasing signals and increasing

signals is quite obvious.

Figure 4.25: Shift of Fano resonance with decreasing excitation signals(2.5V) on
the left while increasing ones on the right
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4.3 Compare with Duffing phenomenon

Figure 4.26: Shift of Fano resonance with decreasing excitation signals(5V) on
the left while increasing ones on the right

Figure 4.27: Shift of Fano resonance with decreasing excitation signals(7.5V) on
the left while increasing ones on the right

By plotting different shifts of Fano resonance excited by decreasing signals in

one graph, we can see clearly that the same Duffing phenomenon exists in Fano

resonance with in normal resonance.
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4.3 Compare with Duffing phenomenon

Figure 4.28: Shifts of Fano resonance excited by decreasing signals

Figure 4.29: Shifts of Fano resonance excited by increasing signals

And we plot both shifts of Fano resonance excited by decreasing signals and

increasing signals with the same excitation voltage. Then we can see the ”jumps”

phenomenon that happens in Fano resonance.
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4.3 Compare with Duffing phenomenon

Figure 4.30: Comparison between shifts of Fano resonance excited by decreasing
signals and increasing signals with the same excitation voltage

excitation signal decreasing excitation signals increasing excitation signals
100mV 0.0036% 0.0036%
500mV 0.0289% 0.0339%

1V 0.0314% 0.0364%
2.5V 0.0848% 0.1310%
5V 0.0899% 0.1436%

7.5V 0.1256% 0.1639%

Table 4.2: Shifts of the Fano resonance are shown by fshift/fFano resonance in
the table. There is a quite difference between decreasing excitation signals and
increasing excitation signals

These clear evidences in Table 4.2 can help us to denote the numerical de-

scription of the shift by studying the Duffing phenomenon.
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Chapter 5

Conclusions and Future works

5.1 Conclusions

In our measure, the Fano resonance is used as a tool to study the intermodal

coupling among cantilevers in a microcantilever array. The excitation signal can

stiffen or soften the effective structure of the microcantilever array which can be

induced by tension or displacement. That depends on which mode the excitation

signal is in. For our study, if the excitation signal is in second and third mode,

it softens the effective structure while the excitations signal is in first mode, it

stiffens the effective structure.

For weakly non linear coupled cantilevers in a microcantilever array, the Fano

resonance peak can be used as a new peak with respect to the Lorentzian peak to

detect mass. Using Fano resonance can greatly decrease the measuring time by

paralleling measurement and the detectable mass. To implement that, detailed

behaviors of Fano resonances in non linear coupled cantilevers is studied. As

the excitation signal increases, the Fano resonance shifts to a lower frequency.

And those shift behaviors are different between decreasing excitation signals and

increasing excitation signals the same with the Duffing phenomenon.
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5.2 Future works

5.2 Future works

There is a lot to do in the future. More and more measures should be done to

numerically draw an equation to describe the behavior of shift of Fano resonance

in weakly coupled cantilevers of a microcantilever array.

And during the measure, there is an interesting discovery. The Fano reso-

nances of number 9 and 11 corresponding to number 8 are near each other while

their resonance frequencies in the first mode are also enough near each other. So

when the excitation signal is in the first mode, the Fano resonance of number 11

shifts to the location of Fano resonance of number 9, and the two Fano resonances

merge together. That is interesting because that phenomenon shows us the Fano

resonances are not independent among each others. They can easily merge and

separate just like transferring waves in Figure 5.1.

Figure 5.1: Fano resonance on the right shifts to the location of Fano resonance
on the left

It is better to see the procedures of the merge in amplitude and phase in

Figure 5.2 and 5.3.

65



5.2 Future works

Figure 5.2: Merge of Fano resonances in amplitude

Figure 5.3: Merge of Fano resonances in phase

This is also worthy to study in the future to better understand the behavior

of Fano resonance in weakly coupled cantilevers in a microcantilever array.
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