
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

CAD Tools for Emerging
Nanotechnologies

Relatori:
Prof. Maurizio Zamboni
Prof. Mariagrazia Graziano
Prof. Fabrizio Riente

Candidato:
Francesco Russo

Aprile 2019

Summary

With the scaling of CMOS technology slowly coming to a halt due to quantum mechan-

ics effects progressively eroding its performance as transistor dimensions shrink, new

and experimental technologies for digital circuits are being explored and prototyped

with increased effort. Design tools for such technologies have been created for these

purposes and their development and refinement is now more critical than ever.

ToPoliNano, developed by the VLSI group of the Polytechnic University of Turin,

is one such tool, dedicated to the design and simulation of digital circuits built with

field-coupled Magnetic QCA1 technologies. A robust EDA tool by itself with an easy-

to-use GUI, it only missed, with regards to the more established professional software

available to circuit designers that work with CMOS technology, the flexibility of a dual

GUI/command-line offering.

The aim of this Master’s thesis consisted therefore of expanding the capabilities of

ToPoliNano by equipping it with a text-based workflow, allowing users to access the

program’s powerful features by means of text commands and automation scripts. In

order to bring the aforementioned text-based workflow to life, three software modules

have been developed in succession as part of the thesis, each complementing the others:

• a command-line interface (CLI) able to tokenize, parse and interpret a variety of

text commands mapped to the functionalities of ToPoliNano (for example: layout

generation, layout import/export, circuit simulation, etc.);

• a new general-purpose preprocessor capable of processing variables, loops and

conditional statements, which unlocks the possibility of writing complex scripts

that go beyond a simple list of commands;

• a console mode (loaded into terminal), referred to as no-GUI mode, which directly

interfaces the user with the CLI (and, by extension, to ToPoliNano) without the

need to load the GUI (which also allows the user to interact with the CLI but via

widgets included in the graphical interface).

1Quantum-dot Cellular Automata: https://www.ece.uic.edu/~vmetlush/2005-6.pdf

1

As the final part of the thesis, a comprehensive user manual was written - illustrating

the purpose of each supported text command, the structure of the command-line work-

flow and the advanced scripting features available to the user, including a collection of

example scripts - to help the user gain a complete, in-depth understanding of the new

instruments at their disposal for designing digital circuits.

2

Table of contents

1 Introduction 6

2 Command-line interface 9

2.1 Functional overview . 9

2.2 Designing the CLI . 13

2.2.1 Qt’s signal/slot system . 14

2.2.2 GUI elements . 18

2.2.3 Controller . 19

2.2.4 Back-end . 21

2.3 Testing the CLI . 29

2.3.1 Meaning of software testing . 29

2.3.2 Performed tests . 30

2.3.3 Final words on testing . 38

3 Script preprocessor 41

3.1 Functional overview . 41

3.2 Technical overview . 43

3.3 Designing the preprocessor . 44

3.3.1 namespace ScriptExt . 44

3.3.2 class Node . 45

3.3.3 class Symbol . 46

3.3.4 class SymbolManager . 46

3.3.5 class Toolkit . 47

3.3.6 class Tree . 47

3.3.7 Integration with the CLI . 53

3.4 Testing the preprocessor . 53

3.4.1 Testing class Node . 53

3.4.2 Testing class Symbol . 54

3.4.3 Testing class SymbolManager 54

3

3.4.4 Testing class Toolkit . 54

3.4.5 Testing class Tree . 55

4 No-gui mode 56

4.1 Functional overview . 56

4.2 Designing the no-GUI mode . 56

4.2.1 Replacing the GUI elements of the CLI 57

4.2.2 Adding support for terminal commands 57

A CLI user manual 60

A.1 Supported text commands . 60

A.1.1 "compile" keyword . 61

A.1.2 "layout" keyword . 62

A.1.3 "save" keyword . 63

A.1.4 "export" keyword . 63

A.1.5 "import" keyword . 64

A.1.6 "simulate" keyword . 64

A.1.7 "do" keyword . 65

A.1.8 "quit" keyword . 66

A.1.9 "clear" keyword . 66

A.2 Supported system commands . 66

A.3 Path types . 66

A.4 Program workflow . 67

A.5 Preprocessor features . 68

A.5.1 Variable definitions and usage 68

A.5.2 Conditions . 69

A.5.3 While loops . 69

A.5.4 For loops . 70

A.5.5 If constructs . 71

A.6 Writing scripts . 73

A.6.1 Script 1 - Plain list . 73

A.6.2 Script 2 - Plain list with a nested script 74

A.6.3 Script 3 - While loop . 75

4

A.6.4 Script 4 - For loop . 76

A.6.5 Script 5 - For loop with nested If construct 76

5

Chapter 1

Introduction

ToPoliNano is a powerful CAD tool developed for designing and simulating digital

circuits built with experimental nanomagnetic technologies based on magnetic QCA.

In field-coupled Magnetic QCA (also referred to as "MQCA") technologies “the base

cell is a single domain nanomagnet, with only two possible magnetizations which represent

the two logic values 0 and 1 ”1, replacing the CMOS representation of logic values with

voltage levels. Magnetic QCA is of great interest thanks to the substantial advantages

it carries over CMOS: “extreme low power consumption and intrinsic memory ability, i.e.

the possibility to implement circuits with mixed computational and memory abilities”2,;

moreover, MQCA-based circuits “can be realized with current technology, with high-end

electron beam lithography”3, which facilitates their manufacturing.

The design workflow for MQCA circuits is made up by a sequence of steps not

unlike those of traditional CMOS design procedures:

• circuit compilation, which consists of parsing the VHDL file and creating an

abstract, hierarchical tree of nodes from it, representing the HDL ciruit structure

itself;

• layout generation, which takes the aforementioned graph as input and produces

a working, physical layout of the circuit made of nanomagnets;

• circuit simulation, which - by means of a testbench provided by the user - stimu-

lates the circuit with test inputs, reads its outputs and displays them to the user

1M. Graziano, M. Vacca and M. Zamboni, "Magnetic QCA Design: Modeling, Simulation and
Circuits". Cellular Automata - Innovative Modelling for Science and Engineering (2011): p. 37. Avail-
able from: https://www.intechopen.com/books/cellular-automata-innovative-modelling-for-science-and-
engineering/magnetic-qca-design-modeling-simulation-and-circuits

2M. Graziano, M. Vacca and M. Zamboni, "Magnetic QCA Design: Modeling, Simulation and Cir-
cuits" (2011): p. 37

3M. Graziano, M. Vacca and M. Zamboni, "Magnetic QCA Design: Modeling, Simulation and Cir-
cuits" (2011): p. 42

6

for verification purposes.

Said workflow is illustrated in Figure 1.14.

Figure 1.1: Design workflow of ToPoliNano

ToPoliNano possesses additional, secondary functionalities that integrate the core

workflow: a successfully generated layout may be saved to file for later use, and it is

possible to import a pre-existing layout into the program.

The objective of this thesis has been to make ToPoliNano a more versatile EDA tool

by developing a suite of software modules that enable the user to harness the features of

ToPoliNano by means of text-based commands and, by extension, automation scripts,

thereby offering a powerful alternative to the pre-existing GUI workflow:

• a command-line interface or "CLI" (described in Chapter 2), which is tasked with

translating text commands into calls to the relevant functionalities of ToPoliNano

and with autonomously executing scripts;

• a general-purpose preprocessor (described in Chapter 3), whose role is to "pre-

digest" (i.e. pre-process) scripts by simplifying complex control flow statements

such as loops and if-constructs, with the end product being a streamlined script

with no such structures which can then be passed to the CLI for execution;

4S. Pennavaria, "Design and implementation of a graphic editor for nanotechnologies" (2015): p. 15

7

1 – Introduction

• a console mode or "no-GUI mode" (described in Chapter 4), which allows the

user to load ToPoliNano in a terminal window and to interact with it by means

of text commands and scripts without also loading its GUI.

In order to ensure that the CLI and preprocessor features are appropriately docu-

mented, well-understood by the user and correctly used, a user manual was also written

(it can be found in the Appendix): its contents include descriptions of all command

keywords and their options, preprocessor syntax for loops, variables and if-constructs

and example scripts to get the user started writing their own.

8

Chapter 2

Command-line interface

Most (if not all) present-day programs sport a graphical user interface (GUI), which

helps the user navigate software functionalities by means of mouse interaction. While

this approach is the easiest (especially to first-time users of a program) and the least

error-prone, it is also the slowest since today’s powerful hardware, capable of extremely

fast processing, has to wait for manual input by a human being every time a task has

been completed.

A much older means of machine-human communication is the command-line in-

terface (CLI). At first glance there is little difference between a GUI and a CLI in terms

of efficiency: a GUI lets the user control a program via mouse clicks, while a CLI

lets the user enter text commands. Where the CLI shines, though, is in the power

of automation it grants to the user. This power, harnessed via script files, allows a

human being to package a series of newline-separated commands into a text file and

feed it to the program, which then proceeds to unpack it and execute its contents in

order, relieving the user from the need of constant presence at the screen, a benefit

that becomes apparent as the automated tasks hit (and exceed) the double-digits.

For this reason, a CLI was developed for ToPoliNano to let the user take control of

it via text commands and automate tasks with ease by means of script files.

2.1 Functional overview

The CLI supports execution of all core functionalities of ToPoliNano via a number of

keywords, each with its own set of arguments (some of which introduced by a -[letter]/-

-[word] expression):

• compilation of a VHDL file is performed via the "compile" keyword, followed by

the file path (including the .vhd/.vhdl file extension);

9

2 – Command-line interface

• the layout of a compiled circuit is produced by entering the "layout" keyword,

with several arguments available that specify the fine details of the process (like

the sequence of optimization algorithms to apply, the maximum accepted fanout,

etc.);

• the simulation of a circuit layout is started via the "simulate" keyword, followed

by the path of a testbench file, and many arguments are offered to fine-tune

the time parameters (resolution, rise and fall times, clock cycle, etc.) and other

characteristics;

• a layout may be saved in .qll format via the "save" keyword, followed by the

desired file path;

• a screenshot of the layout can be exported by entering the "export" keyword, and

its format specified through a dedicated argument;

• a layout in .qll format is loadable into ToPoliNano by means of the "import"

keyword, followed by the path of the .qll file;

• a ToPoliNano script file (which is a simple text file ending in .do format) may be

fed to the program via the "do" keyword, followed by the file path;

• program closure is triggered via the "quit" keyword.

Additionally, if the user wants to clear the CLI of all printed log messages they may

enter a special keyword: "clear".

By convention, a "command" is formed by a keyword followed by any number of its

arguments (some of which may be mandatory, like for example the testbench argument

that follows the "simulate" keyword). A comprehensive representation of the naming

conventions adopted in this text in relation to the elements of a command can be found

in Figure 2.1.

The complete list of keywords with their respective arguments is made available

below:

• compile <top-level-filename.vhd>;

10

2.1 – Functional overview

Figure 2.1: Naming conventions used in this text for the elements of a CLI command

• layout

[options]:

i. -a, --algorithm (barycenter, kl, sa_exponential, sa_timberwolf);

ii. -d, --design-approach (flat, p_hiearchical, f_hierarchical);

iii. -l, --load;

iv. -g, --geometry (width=50, height=100,

horizontal_space=20, vertical_space=20);

v. -f, --fanout (integer=2);

vi. -v, --vertical-wire (integer=4);

vii. -m, --magnet-clockzone (integer=4);

viii. -s, --sa-embedded;

ix. -w, --domain-wall;

x. -t, --satimberwolf-parameters (low_temp=0.1,

high_temp=40000, first_alpha=0.8, second_alpha=0.95,

third_alpha=0.8, first_temp=1000, second_temp=10000,

n_iterations=20);

xi. -e, --saexponential-parameters (low_temp=0.1,

high_temp=10000, alpha=0.95, n_iterations=20);

11

2 – Command-line interface

xii. -o, --output <path/to/destination/filename.qll>;

• save <path/to/destination/filename.qll>;

• export

[options]:

i. -o, --output <path/to/destination=workspace/Results>;

ii. -n, --filename <filename=top-level-name>;

iii. -f, --format <svg, png, bmp, jpeg, pdf, ps>;

iv. -a, --area <scene, selected, view>;

• import <qll-full-path.qll>;

• quit;

• simulate <testbenchfile.vhd>

[options]:

i. -t, --time (int=1[unit=us]), unit can be ps, ns, µs, ms;

ii. -r, --resolution <1ps, 10ps, 100ps, 1ns, 10ns,

100ns, 1us, 10us, 100us, 1ms>;

iii. -c, --clock (int=3[unit=ns]), unit can be ps, ns, µs, ms;

iv. -u, --risetime (int=0[unit=ns]), unit can be ps, ns, µs, ms;

v. -d, --falltime (int=0[unit=ns]), unit can be ps, ns, µs, ms;

vi. -a, --algorithm (behavioral, single_domain);

vii. -f, --fault-analysis;

viii. -v, --max-variations (int x=3, int y=2);

ix. -i, --iterations (int=1000);

x. -o, --output (path/to/destination=workspace/Results).

The CLI accepts the following path types:

• just the filename (e.g. "circuit.vhd"), in which case ToPoliNano will look for the file

starting from the relevant workspace directory ("Input_Files" for VHDL entities,

"Testbenches" for VHDL testbenches, etc.);

• relative path (e.g. "project_3/circuit.vhd"), which prompts ToPoliNano to look for

the file in the same manner it does for the previous path type;

12

2.2 – Designing the CLI

• absolute path (e.g. "C:/Users/Alex/Project_Files/circuit.vhd" for Windows users,

"/home/user/Documents/Project_Files/circuit.vhd" for UNIX users).

Detailed help text describing usage of all keywords and arguments can be called

via the standalone "-h/--help" argument; alternatively, "[keyword] -h" or "[keyword] --

help" may be entered to only print help text for the chosen keyword and its related

arguments, as shown in Figure 2.2.

Lastly, like many others, the CLI of ToPoliNano supports command history of the

current session: pressing the "up" (↑) key will retrieve older commands while pressing

the "down" (↓) key will retrieve more recent ones, as illustrated by Figure 2.3. Command

history is wiped on program exit.

Figure 2.2: Command-specific help for "save"

2.2 Designing the CLI

In this section, the inner workings of the CLI are illustrated and some key design

choices are discussed.

The CLI was developed on top of the powerful Qt library, which already powers To-

PoliNano itself, and designed following the Model-View-Controller (MVC) architectural

pattern:

• the View consists of a single-line text editor where the user enters commands,

plus a pre-existing log box (already tasked with giving updates on the results of

13

2 – Command-line interface

Figure 2.3: Command history: a) initially blank editor; b) pressing "up" produces the most
recently entered command; c) the oldest entered command is reached; d) after reaching the
oldest command, the editor is blank again; pressing "down" will reverse the process.

operations) which warns the user about any errors caused by improper formatting

of the commands themselves;

• the Controller is a class that forwards user commands to the CLI back-end,

receives the information extracted by the latter and sends it to the "main" module

of ToPoliNano, which will start the appropriate operation;

• the Model, also referred to as "CLI back-end", is a class tasked with tokenizing,

parsing and interpreting a user command, i.e. extracting and classifying the

information it holds, which is then sent back to the Controller.

These three components are completely independent from one another, as the

MVC pattern requires; additionally, they are unaware of each other, thanks to their

communications occurring over Qt’s signal/slot system (briefly explained in Sub-section

2.2.1). These two characteristics ensure that the CLI components are as loosely coupled

as possible, for easier maintenance and upgrade of the source code.

The full capabilities of the CLI components extend beyond this brief introduction

and are illustrated in Sub-sections 2.2.2, 2.2.3 and 2.2.4.

2.2.1 Qt’s signal/slot system

The main reason for the existence of Qt’s signal/slot system is to enable communica-

tions between GUI widgets without resorting to callbacks; however, any class derived

14

2.2 – Designing the CLI

from QObject (Qt’s base class) may possess signals and slots of its own without hav-

ing to be a widget; this makes the signal/slot system a versatile tool that lends itself

to purposes other than what Qt originally planned for it, including achieving detailed

inter-class communications and very loose coupling at the same time.

Signals have the appearance of function declarations and are declared in a class

definition under the "signals" keyword, but do not have an implementation; a signal

can have any number of parameters (no parameters is also a possibility), ranging from

native types such as int and bool, to standard-library classes like string and vector

, to user-defined classes. Since a signal is not a function, it cannot simply be called;

instead, it can be "launched" (or "emitted", in Qt terms) by the class it belongs to by

putting the emit keyword before the call (made with the arguments that its function

signature requires). A more in-depth explanation of signal emission is given further

down this section.

Slots are member functions that are declared in a class definition under the "slots"

keyword; if called explicitly, they act like regular functions but, if a signal and a slot

have been previously "linked" via the QObject::connect() function, when the signal

is emitted the "connected" slot will be called as a consequence.

In order to be connected, a signal and a slot must have the same function signature,

i.e. the same number of parameters, with the same types (native or otherwise), in the

same order. In fact, when a signal is "emitted", it carries data within itself (made

up by the arguments it was emitted with), and the slot is called with that same data

as arguments, thereby achieving a data transmission between the class that owns the

signal and the class that owns the slot. An example of signal and slot declaration,

connection and interaction is provided in Listing 2.1.

1 class Sender : public QObject

2 {

3 Q_OBJECT

4 //...

5 signals:

6 exampleSignal(int value , bool flag);

7

8 public:

9 void sendSignal ()

10 {

15

2 – Command-line interface

11 emit exampleSignal (3, true);

12 return;

13 }

14 //...

15 }

16

17 class Receiver : public QObject

18 {

19 Q_OBJECT

20 //...

21 slots:

22 void exampleSlot(int value , bool flag)

23 {

24 // Process data ...

25 return;

26 }

27 //...

28 }

29

30 int main()

31 {

32 Sender s;

33 Receiver r;

34

35 QObject :: connect (&s, SIGNAL(exampleSignal(int ,bool)),

36 &r, SLOT(exampleSlot(int ,bool));

37 s.sendSignal (); // exampleSignal is emitted

38 // exampleSlot is called immediately after

39

40 return 0;

41 }

Listing 2.1: Example code written to illustrate signal and slot declaration, connection and

interaction.

If a signal and a slot forming a pair belong to two classes that live in the same

thread, their connection is called "direct", which means that when the signal is emitted,

execution immediately jumps to the slot as if it was explicitly called in place of the

emission, with no other instructions in-between. If, instead, the two classes live in

16

2.2 – Designing the CLI

two different threads A and B (managed via instances of the Qt class QThread), the

connection is called "queued"; in this case, when the signal is emitted from QThread A

it is wrapped by QThread B into an "event" (a Qt object used to represent a variety of

occurrences, including user interactions with the GUI) and put into the so-called "event

queue" of QThread B (each QThread has its own independent event queue); once older

events have been processed by QThread B, the event containing the emitted signal is

processed, triggering the execution of the corresponding slot. This entails that if signals

1, 2 and 3 are emitted one after the other from QThread A they will be stacked onto

the event queue of QThread B in that same order and will be processed by QThread B

(triggering, one after the other, the slots they are linked to) in said order, preserving

the intended sequence. A visual representation of the event queue is provided in Figure

2.4.

Figure 2.4: Three signals (1, 2, 3) are emitted from QThread A; they are wrapped into events
by thread B and put into its own event queue; they are then processed by QThread B in the
same order they were emitted, triggering the corresponding slots one after the other.

17

2 – Command-line interface

Qt’s built-in per-thread event queue is employed by the CLI, together with a sim-

ple semaphore, to put commands in a queue when ToPoliNano is busy performing a

computationally-intensive operation (like, for example, building the layout of a circuit

or performing a simulation) so that they can be executed correctly and in order by

ToPoliNano once the program is done with the current task, instead of being lost.

2.2.2 GUI elements

The text editor and the log box that allow interaction with the CLI (shown in Figure 2.5)

are similar to those commonly found in programs like Synopsys® Design Compiler®

and Mentor Graphics® Modelsim®.

Figure 2.5: Text editor and log box.

The user writes a command into the editor; then, pressing the Enter key clears the

editor itself and sends the command (via a signal) to the CLI controller for process-

ing. The entered command is also printed to the log box (a QTextEdit object) as a

timestamped message.

For the purpose of enabling the user to browse command history via the "up"

and "down" keys from within the editor, a LogLineEdit class (which constitutes the

single-line editor) was derived from Qt’s QLineEdit class in order to reimplement the

keyPressEvent() event-catcher function of the latter; the reimplemented version -

on either key press - sends a signal to the CLI controller (which keeps a record of all

commands entered by the user in the active session) detailing whether the requested

command is older ("up") or newer ("down") than the one currently in the editor (see

Figure 2.3 for a visual representation of the history mechanism).

18

2.2 – Designing the CLI

Log messages are also printed to the log box to update the user as ToPoliNano

executes the action related to an entered command.

Due to the editor and the log box being attributes of the same class (called LogPannel

), the special "clear" keyword is directly handled by said class (instead of by the CLI

back-end), which clears the log box.

2.2.3 Controller

The CLI controller acts as the mediator between the CLI back-end on one side and the

main functionalities of ToPoliNano plus the GUI elements of the CLI on the other. To

do so, it is equipped with a number of signals and slots that send and receive different

kinds of data to and from each side:

• a slot receives command-carrying signals coming from the GUI and forwards

them to the back-end;

• for each keyword except "do" (which does not involve any functionality of ToPoli-

Nano), a keyword-specific slot picks up the relevant data-carrying signal coming

from the back-end and forwards the data to ToPoliNano via a keyword-specific

signal;

• a slot receives log-message-carrying signals coming from the back-end and trans-

mits the messages to the GUI;

• a slot receives history-query signals coming from the GUI (the ones triggered by

"up" and "down" key presses) and transmits back to the GUI a command from

history via a signal.

Whenever the user enters a command, it is appended by the CLI controller to the

command history (a QVector<QString> called reqHistory). In order to make said

history browsable by the user, an iterator moves through the vector: every time the user

goes backward through history, the iterator is decreased by 1 and then the reqHistory

element at index value equal to the iterator is sent to the GUI, and viceversa it is

increased by 1 when the user goes forward through history.

A visual representation of the communications occurring within the CLI via signals

and slots is shown in Figure 2.6.

19

2
–
C
om
m
and-line

interface

Figure 2.6: Internal CLI communications via signals and slots.

20

2.2 – Designing the CLI

2.2.4 Back-end

The CLI back-end is the data-crunching part of the CLI, which performs the whole

sequence of operations needed to properly extract information from a text command:

• tokenization of the command (i.e. its splitting into sub-strings and reorganization

into an appropriate data structure);

• parsing of the tokens in order to recognize their roles (e.g. keyword, argument,

etc.);

• interpretation of the parsed tokens to check if the information they contain is

valid and to package it for transmission.

The back-end functionalities are implemented in a single class named CLIbackend.

Since the received command is formatted as a QString (Qt’s own string class),

its tokenization is trivial as the class features a handy .split() function which returns

its contents as a QStringList (i.e. a list of QString). Its elements are then moved

into a std::vector<std::string> for reasons that will be explained in the following

paragraph. Before moving on to the parsing stage, the back-end takes note of the first

element - the keyword ("compile", "save", etc.) - of the vector.

The parsing stage is performed by leveraging an open-source library called TCLAP1,

chosen for its ease of use and detailed documentation over Qt’s, QCommandLineParser

class, which is clunkier and more convoluted. The TCLAP library offers various "ar-

gument" classes, each representing a different kind of argument, for example flag-less

argument (UnlabeledValueArg), flagged argument (ValueArg) and true/false argu-

ment (SwitchArg) - collectively referred to as Arg classes in this text for the sake of

brevity - and a CmdLine class which performs the actual token parsing. TCLAP works

with the std::string class instead of the QString class, hence the aforementioned

conversion from QStringList to std::vector<std::string>.

At the beginning of the parsing stage a CmdLine object is armed with a specific

set of Arg objects, each representing one of the arguments that can follow the keyword

(which the back-end had taken note of for this purpose). After that, the token vector

(i.e. the std::vector<std::string>) created in the tokenization stage is fed to the

1http://tclap.sourceforge.net/

21

2 – Command-line interface

CmdLine object for parsing: each token is consequently identified and assigned to the

corresponding Arg object.

The third and last stage the back-end goes through is the interpretation stage, the

longest and most crucial. In the interpretation stage, the Arg objects the CmdLine

object was armed with are queried via their getValue() function; each Arg object

returns the value of its corresponding argument or a default value if that argument was

not explicitly mentioned by the user in the command.

Each retrieved value is then run through a series of checks to make sure it is

valid: for example the testbench argument for the "simulate" keyword must be a string

ending with ".vhd" or ".vhdl", the --design-approach argument for the "layout" keyword

can only have one of three values ("flat", "p_hiearchical", "f_hiearchical"), and so on. If

all values are confirmed to be valid, they are then transmitted to the CLI controller via

signal emission. An example of checks and signal emission performed by the back-end

is provided in Listing 2.2.

1 if (commandVal.compare("export") == 0)

2 {

3 // OUTPUT DIRECTORY

4 std:: string outputExportString = outputExportArg ->getValue ();

5 QString outputStr;

6 if (outputExportString.compare("default") == 0) // If the

user did not employ the "--output" option ...

7 outputStr = workPath + "/" + resultsPath + "/"; // ... Set

the default results directory as the output directory

8 else

9 {

10 outputStr = QString :: fromStdString(outputExportString);

11 validatePath(outputStr , false , workPath + "/" +

resultsPath + "/");

12 }

13

14 // FILENAME

15 std:: string exportFilenameString = exportFilenameArg ->

getValue ();

16 if (exportFilenameString.compare("") == 0) // If it is an

empty string ...

17 {

22

2.2 – Designing the CLI

18 usageAndErrorsGen ->interpreterError("filename cannot be

an empty string", commandArg ->shortID (),

exportFilenameArg ->shortID ());

19 return false; // Abort interpretation without executing

the request

20 }

21

22 // FORMAT

23 std:: string formatString = formatArg ->getValue ();

24 if ((formatString.compare("svg") != 0) &&

25 (formatString.compare("png") != 0) &&

26 (formatString.compare("bmp") != 0) &&

27 (formatString.compare("jpeg") != 0) &&

28 (formatString.compare("pdf") != 0) &&

29 (formatString.compare("ps") != 0))

30 {

31 usageAndErrorsGen ->interpreterError("invalid format",

commandArg ->shortID (), formatArg ->shortID ());

32 return false; // Abort interpretation without executing

the request

33 }

34

35 // AREA

36 std:: string area = areaArg ->getValue ();

37 if ((area.compare("scene") != 0) && (area.compare("selected"

) != 0) && (area.compare("view") != 0))

38 {

39 usageAndErrorsGen ->interpreterError("invalid area",

commandArg ->shortID (), areaArg ->shortID ());

40 return false; // Abort interpretation without executing

the request

41 }

42

43 emit SignalBackendExport(outputStr ,

44 QString :: fromStdString(exportFilenameString),

45 QString :: fromStdString(formatString),

46 QString :: fromStdString(area)); // Send the data to the

CLI controller

23

2 – Command-line interface

47 }

Listing 2.2: Correctness checks and signal emission for "export"-keyword commands

Error handling

The aforementioned sequence of operations is successfully completed only if the com-

mand contains no mistakes; conversely, if the command is in some way faulty, the CLI

will not transmit it on grounds of either a parsing error or an interpretation error.

A parsing error, like the name suggests, is triggered during the parsing stage if the

parser (the CmdLine object) is not able to correctly parse the command; it is caused by:

• an invalid keyword, for example "comppile" (which contains a typo) or "start"

(which is not among the accepted keywords);

• an invalid argument flag for the employed keyword, like in "export -x svg" ("ex-

port" does not contemplate a flagged argument with "-x" as flag);

• a flagged argument that is missing a value on its right, for example "layout --

fanout" (an integer must be specified as value after the flag), or that contains a

value of invalid type, like "layout --fanout three" (the argument value is a string,

while it should be an integer);

• an invalid true/false argument for the employed keyword, like in "layout --quick"

(no "--quick" true/false argument is available for "layout");

• the command being an empty string;

• a mandatory argument missing, like the VHDL circuit argument that follows the

"compile" keyword.

Each of these mistakes is described by an appropriate error message, like the one

in Figure 2.7, followed by a brief help text for the employed keyword.

An interpretation error, instead, is triggered during the interpretation stage. The

difference with regards to parser errors lies in the fact that the parser does not actually

know what the argument values should look like, apart from their type, therefore it will

24

2.2 – Designing the CLI

not object to incorrect values that still fit the data type. Thus, an interpretation error

is caused by:

• a file path not ending with the appropriate file extension (for example, the test-

bench argument for "simulate" must end either in .vhdl or in .vhd) or that is

too short (for example ".vhdl" by itself is not accepted because a filename must

contain at least one character apart from the file extension);

• an incomplete set of comma-separated integer values, like in "layout --geometry

60,120" which only contains 2 out of 4 required integer values;

• a string not coinciding with one of the accepted literals, for example in "layout

--algorithm kj" where "kj" is not one of the four accepted literals ("barycenter",

"kl", "sa_exponential", "sa_timberwolf").

Figure 2.7: Parser error caused by "--format" having no value to its right

When a parsing or interpreter error occurs, the command data is not transmitted

to the controller: instead, an error message is transmitted by the back-end to the

controller and by the controller to the log box, where it is printed, and ToPoliNano

remains in idle state. In case the faulty command was part of a script, the execution

of the script will be aborted, instead of skipping to the following one in the file; this is

done to prevent ToPoliNano from behaving unexpectedly.

Extending the functionalities of TCLAP

As mentioned before, TCLAP was chosen for its ease of use and detailed documen-

tation, but having been originally conceived as a basis for terminal applications it

25

2 – Command-line interface

came with a few limitations that had to be overcome in order to produce the desired

functionalities.

Firstly, when a parsing error occurs the CmdLine class relies, for error output,

on another TCLAP class called StdOutput. Such class is designed to print parsing

errors on std::cerr (the standard output stream for errors) and to print help text on

std::cout (the standard output stream). While this implementation is perfectly fine

for a terminal application, it is not if the CLI is being developed for use in a GUI-

based program, which does not rely on standard output streams for communication

with the user. Moreover, the output string is split into 75-character lines made of

whole words (i.e. not hyphened or broken) and is then printed one such line at a time;

again, this solution provides terminal-friendly output which however proves not only

unnecessary, but also inconvenient on GUI, especially considering that the program

window is resizable (thus the line length is variable) and that the QTextEdit class (the

log box) already wraps all text without breaking words - and does so in real-time when

the window is resized.

Secondly, since a typical terminal application has different functionalities and op-

tions assigned to distinct flags, the CmdLine class does not support "conditional" as-

signment of a functionality to a flag depending on whether a certain condition is met

or not; this entails that a flag could not lead to a different functionality depending on

the keyword that preceded it. Additionally, the class does not provide a way to "reset"

its argument list, making the workaround of simply "resetting and rearming" the parser

at every cycle unfeasible.

A few other limitations were also present but will not be discussed as they are trivial

compared to the ones mentioned above.

Fortunately, as the documentation of TCLAP reports2, if the developer wants differ-

ent output beahviour than the default one, the library supports subclassing StdOutput

and using the derived class as a replacement to it. This prompted the creation of a new

class, customOutput, derived from StdOutput, to reimplement much of the original

code devoted to producing output; additionally, as TCLAP is strictly a parsing library

it is not designed for interpretation and thus does not produce interpretation errors,

therefore CLIbackend, which performs interpretation, is also tasked with generating

interpretation errors.

2http://tclap.sourceforge.net/manual.html#CHANGE_OUTPUT

26

2.2 – Designing the CLI

Remembering that the back-end constitutes the "model" part of the MVC trifecta

(which entails that it must not update the GUI directly), in customOutput any parsing

errors or help text are not printed to standard output anymore; instead, they are saved

to a QString object called cliOutput that it shares with CLIbackend, as CLIbackend

itself saves any interpretation errors in it too. Since, in case a command is such

that it will trigger multiple parser and/or interpretation errors, the first one that the

back-end encounters will cause it to halt its operations, transmit an error message to

the controller, clear cliOutput and then wait for the next command to be received,

cliOtuput always contains at most one error message, guaranteeing that it will not

mistakenly retain older messages and consequently confuse the user with unrelated

warnings when printed to the log box.

To circumvent the lack of flexibility of CmdLine with regards to flags, CLIbackend

employs dynamic memory management (i.e. runtime creation and destruction of

objects): at the beginning of its operations when a command has just been received,

CLIbackend creates at run-time an empty CmdLine object, then it takes note of the

keyword (the first word in the command) and proceeds to arm the CmdLine object with

the appropriate set of Arg objects for that keyword, thus creating a tailor-made parser.

Once the interpretation stage is over, CLIbackend deletes at run-time the CmdLine

object.

Thus, at the end of the whole sequence, no trace is left of said object, and the

cycle can start over fresh: a new empty CmdLine object is created and then fitted to the

keyword of the current command, it parses the command itself and is then deleted once

interpretation is over. While this solution introduces a slight overhead with dynamic

memory allocation, it makes the CLI a weightless module in memory so long as it is

not working on a command (i.e. while it is idle).

The script-execution algorithm

Interpreting a command with a keyword linked to any functionality of ToPoliNano is

a relatively straightforward operation: the contents of the command are extracted,

classified and packaged for transmission back to ToPoliNano through the controller.

However, interpretation of a command requesting the execution of a script (i.e. "do

scriptname.do") is a different task, a "meta"-task of sorts, since a script file contains

27

2 – Command-line interface

a list of commands in a specific order, and can even include more script-execution

commands too (a situation which may be called "nested scripting"); this calls for a

dedicated algorithm capable not only of handling scripts, but also of supporting any

nesting depth. Such algorithm consists of two parts: depth-independent interpretation

of a script-execution command and a command-selection loop.

The interpretation stage of a script-execution command (apart from the correctness

checks) consists of a few key passages:

• the script file is opened and each line of text (which is a separate command) from

first to last is appended to a local-scoped command vector called scriptReqs

(where "reqs" stands for "requests");

• the order of scriptReqs is reversed (for reasons that will be explained later in

this section);

• the vector elements from first to last are appended to a global-scoped command

vector called scriptReqsMaster;

• a boolean variable called isScript is set to true to inform that a script-execution

command has been successfully interpreted.

If the script-execution command that was successfully interpreted is at "depth 0" (i.e.

it is manually entered by the user instead of being read from a script file), isScript

being set to true triggers entry into the command-selection loop. Such loop writes into

a local variable the last element from scriptReqsMaster (which is the first command

in the script file and thus the first intended to be handled), pops the element from the

vector (effectively deleting it from memory and decreasing the vector size by 1) and then

performs the regular tokenize-parse-interpret sequence to extract information from the

command and transmit it to the controller; the loop keeps iterating as long as the size

of scriptReqsMaster is bigger than zero, i.e. as long as there are commands - read

from script files - that haven’t been handled yet.

Independence of the interpretation stage from the depth at which a script-execution

command is located is given by the fact that, once the depth-0 script file has been

read, if another such command is encountered and consequently a script file is read,

its contents will be seamlessly appended to the global-scoped command vector, and

thus handled immediately after within the loop.

28

2.3 – Testing the CLI

The reversal of the order of scriptReqs is required to streamline updates to the

contents of scriptReqsMaster, both when adding and when removing elements:

• it makes the first command by order of appearance in the script the last element

by vector index, which makes its deletion (after being saved into a local vari-

able, as mentioned before) a straightforward operation via scriptReqsMaster.

pop_back();

• if a nested script file is read, the commands it contains are easily added to

scriptReqsMaster via appending.

An example of nested scripting reaching depth 1 is provided in Figure 2.8 for a more

immediate understanding of the algorithm.

2.3 Testing the CLI

2.3.1 Meaning of software testing

Integrated circuit design places great importance on testing a circuit by means of

instantiating it within a test environment called "testbench", then feeding it stimuli (i.e.

binary test signals) and recording the signals it outputs.

Testing is as important in software design as it is in hardware design, its purpose

being to ensure that software modules work as intended; software testing is performed

in a similar fashion to digital circuit testing: a software program (or a single class

of said program in the case of "unit testing", a specific type of software testing) is

instantiated within a test environment, which may or may not be a class of its own;

the test environment then proceeds to stimulate the software under test by calling its

functions with test arguments and checking their return values against the expected

ones. Each function-call/check pair constitutes a test: it is executed, the tester (often

the same developer that wrote the software under test) is notified of its success ("pass")

or failure ("fail") and then the test environment moves to the next test with no manual

input required of the tester.

29

2 – Command-line interface

2.3.2 Performed tests

As the CLI is an elaborate tool appointed with the role of controlling ToPoliNano,

testing it constitutes a necessary step to guarantee it correctly enforces the user’s com-

mands: to this aim the testing library provided by Qt, QtTest, was chosen to build test

environments and test cases, in virtue of its integration with Qt’s signal/slot system and

with Qt’s own types like QString.

Two different test environments in the form of classes were prepared to respectively

test the CLI as a whole - minus the GUI, since GUI testing requires simulating user

input like key presses and mouse clicks, which is tricky and produces brittle tests due to

minor GUI changes causing test failure even though the underlying functionality hasn’t

changed - and its CLIbackend class.

Both test environments belong to the so-called "white-box testing" category; "white-

box testing" is concerned with verifying the internal structure of a program rather than

simply examining its functionalities with no knowledge of the source code (a testing

category called "black-box testing"), and it does so by feeding to the software test inputs

engineered to exercise most (or all) of the different code execution paths available, in

order to thoroughly verify its behaviour.

Additionally, a data-driven testing approach was employed, which consists of having

the testing class read the test inputs and the expected outputs from file instead of hard-

coding them in the source code of the class. This approach has multiple benefits:

• it keeps the testing class source code flexible by moving test inputs and expected

outputs (the "variable" components of a test environment) away from the code

itself and into a text file, meaning that if the software under test is updated and

causes some tests to fail as a consequence it is very easy to fix obsolete inputs or

outputs, since it only requires a simple text editor;

• adding new test cases goes from altering the source code and re-compiling to

entering inputs and outputs in plain text into the text file.

Testing the CLI as a whole

Testing the CLI aimed at verifying that each keyword and its related arguments were

correctly identified, interpreted and packaged into a signal.

30

2.3 – Testing the CLI

For each keyword a test data file exists, whose contents are lines of text; each line is

a test case and comprises of test input (a command containing the keyword and some

of its arguments), expected output (the data extracted from the relevant signal emitted

by CLIcontroller) and a short description of the test case, isolated from each other

by a special character sequence (" ***** ") acting as separator. Figure 2.9 shows the

contents of a test data file.

The testing class, CLItest, separately tests the behaviour of the CLI in response to

commands based on each keyword (except for the "do" keyword, for reasons discussed

in Sub-section 2.3.3); in other words, testing is grouped by keyword.

For each keyword, the testing procedure is carried out by two functions called one

after the other. Function CLItest::test[keyword]_data() is called first, and it

performs the following operations:

• it opens the relevant test data file and reads the data line by line;

• for each line, it saves the test input as a QString object, while it splits the ex-

pected output into the values it is made of (for example, an "export" signal con-

tains 4 values: directory, filename, format, area); if the test input is purposefully

wrong, then the expected output is an error message rather than the contents of a

CLIcontroller signal and it is saved as a single QString object; the description

of the test case is also saved as a QString object;

• it builds a table by creating a column for test inputs and as many columns as

the values that make up the expected output, plus a column for expected error

messages, then filling rows with the data extracted by each line and labeling

every row with the description coming from the same line; each row therefore

constitutes a test case and has a number of fields consisting of test input, output

values and error message; if the input produces an error message, the output

value fields are filled with dummies, and viceversa if the input produces regular

output values then the error message field is left blank.

One of such functions is presented in Listing 2.3.

1 void CLItest :: testExport_data ()

2 {

3 // "export" REQUESTS

31

2 – Command-line interface

4 QVector <QString > exportReqs; // This vector will contain all

"export" requests extracted from a dedicated file

5 // "export" REPLIES

6 QVector <QString > exportReplies; // This vector will contain

all "export" replies extracted from a dedicated file

7 // "export" LABELS

8 QVector <QString > labelsVector; // This vector will contain

all "export" labels extracted from a dedicated file

9

10 QVector < QVector <QString >* > dataVector; // Vector containing

pointers to all vectors that will contain test data (test

stimuli , expected return values , etc.)

11 dataVector.append (& exportReqs);

12 dataVector.append (& exportReplies);

13 dataVector.append (& labelsVector);

14 retrieveTestData(dataVector , "unit -test -files/CLIcontroller/

testExport.txt"); // Fill the vectors with test data from

the file

15

16 // "export" DATAPIECES

17 QVector <QString > exportDirs; // This vector will contain all

"export" dirs extracted from "exportReplies" strings

18 QVector <QString > exportFilenames; // This vector will contain

all "export" filenames extracted from "exportReplies"

strings

19 QVector <QString > exportFormats; // This vector will contain

all "export" formats extracted from "exportReplies"

strings

20 QVector <QString > exportAreas; // This vector will contain all

"export" areas extracted from "exportReplies" strings

21 QVector <QString > expErrorMsg; // This vector will contain all

"export" expected error messages extracted from

"exportReplies" strings

22

23 // EXTRACT DATAPIECES FROM EACH "exportReplies" STRING

24 for(int c = 0; c < exportReplies.size(); c++)

25 {

32

2.3 – Testing the CLI

26 QString valueSet = exportReplies.at(c); // Read a line

from the file - each line is an expected set of values

(e.g. "workspace3/Results topLevel png view")

27 if(valueSet.contains("error", Qt:: CaseInsensitive)) // If

no signal will be called because a faulty request was

made ...

28 {

29 // ... Save the error message ...

30 expErrorMsg.append(valueSet);

31

32 // ... Then append dummy values for compliance with

the testing system

33 exportDirs.append("dummyDirectory");

34 exportFilenames.append("dummyFilename");

35 exportFormats.append("dummyFormat");

36 exportAreas.append("dummyArea");

37 }

38 else

39 {

40 QStringList valueList = valueSet.split(" ", QString ::

SkipEmptyParts);

41 exportDirs.append(valueList.at(0));

42 exportFilenames.append(valueList.at(1));

43 exportFormats.append(valueList.at(2));

44 exportAreas.append(valueList.at(3));

45 expErrorMsg.append(""); // No error is produced if

the request is not faulty

46 }

47 }

48

49 // CREATION OF TEST COLUMNS AND ROWS

50 if((exportReqs.size() != exportDirs.size()) ||

51 (exportReqs.size() != exportFilenames.size()) ||

52 (exportReqs.size() != exportFormats.size()) ||

53 (exportReqs.size() != exportAreas.size())) // If the

two files did not contain the expected amount of

replies ...

54 {

33

2 – Command-line interface

55 QString errorQString = "Error: request file and replies

file for 'export ' do not contain the same number of

lines";

56 std:: string errorStdString = errorQString.toStdString ();

57 const char *errorCString = errorStdString.c_str();

58 QSKIP(errorCString); // Print the error and skip

testing of the "export" functionality

59 }

60 else

61 {

62 QTest ::addColumn <QString >("export_req");

63 QTest ::addColumn <QString >("expected_directory");

64 QTest ::addColumn <QString >("expected_filename");

65 QTest ::addColumn <QString >("expected_format");

66 QTest ::addColumn <QString >("expected_area");

67 QTest ::addColumn <QString >("expected_errormsg");

68 for(int i = 0; i < exportReqs.size(); i++)

69 {

70 std:: string stdLabel = labelsVector.at(i).toStdString

();

71 const char* cLabel = stdLabel.c_str ();

72 QTest :: newRow(cLabel) << exportReqs.at(i)

73 << exportDirs.at(i)

74 << exportFilenames.at(i)

75 << exportFormats.at(i)

76 << exportAreas.at(i)

77 << expErrorMsg.at(i); // Create a row in the

testing table

78 }

79 }

80

81 return;

82 }

Listing 2.3: Function CLItest::testExport_data().

Function CLItest::test[keyword]() is called after its _data() counterpart,

once for every row in the table, and it performs the following operations:

• it instantiates two QSignalSpy objects; one will listen for the signal emitted by

34

2.3 – Testing the CLI

CLIcontroller that carries the actual otuput values (to be compared with the

expected output values), while the other one will listen for another signal emitted

by CLIcontroller that carries the error message; for any given test case, only

one of the two signals is emitted;

• it fetches the elements of a row via QFETCH macros;

• it stimulates the CLI by sending it a command (the test input);

• it listens for signals emitted by CLIcontroller; if the received signal is the

one carrying the actual output values (the data extracted from the test input by

the back-end), each of these values is compared with the corresponding expected

output value by means of a QCOMPARE macro, else if the received signal is the one

carrying an actual error message, said message is compared with the expected

one via the aforementioned QCOMPARE macro.

All comparisons performed with QCOMPAREmacros in a call to CLItest::test[keyword

]() must be successful; in other words, the actual output values (or the actual error

message, if the test case is designed to produce one) must follow the correct (the "ex-

pected") behaviour of the program. If they are, then the function will print to standard

output a "PASS" mark, followed by its own signature and by the label of the executed

test case (i.e. of the row); conversely, if at least one comparison is unsuccessful the func-

tion will print to standard output a "FAIL" mark, then signature and label and finally

a failure message notifying the tester of the unsuccessful comparison and showing the

actual and expected values which triggered the failure for not coinciding. One of the

CLItest::test[keyword]() functions is presented in Listing 2.4.

1 void CLItest :: testExport ()

2 {

3 QSignalSpy spyExport(controllerUnderTest , SIGNAL(

SignalFrontendExport(const QString , const QString , const

QString , const QString))); // Create a QSignalSpy that

follows "SignalFrontendExport(const QString)"

4 QSignalSpy spySignalToLog(controllerUnderTest , SIGNAL(

SignalSendBackendOutput(const QString , Logger :: LogLevel)))

; // Create a QSignalSpy that intercepts backend messages

directed to LogPannel

35

2 – Command-line interface

5

6 // FETCH THE TEST REPLIES

7 QFETCH(QString , export_req);

8 QFETCH(QString , expected_directory);

9 QFETCH(QString , expected_filename);

10 QFETCH(QString , expected_format);

11 QFETCH(QString , expected_area);

12 QFETCH(QString , expected_errormsg);

13

14 // STIMULATE THE UNIT UNDER TEST

15 controllerUnderTest ->SlotHandleRequest(export_req); // Handle

an "export" request extracted from a dedicated file

16

17 spyExport.wait (1000);

18 if(spyExport.count () == 1) // If the signal was called ,

analyze it

19 {

20 QList <QVariant > arguments = spyExport.takeFirst (); //

Take the arguments of the first emitted signal

21 QString dirArg = arguments.at(0).toString (); // Convert

the "directory" argument of "SignalFrontendExport ()"

back to QString

22 QString filenameArg = arguments.at(1).toString (); //

Convert the "filenames" argument of

"SignalFrontendExport ()" back to

QString

23 QString formatArg = arguments.at(2).toString (); //

Convert the "format" argument of "SignalFrontendExport

()" back to QString

24 QString areaArg = arguments.at(3).toString (); // Convert

the "area" argument of "SignalFrontendExport ()" back

to QString

25

26 QCOMPARE(dirArg , expected_directory);

27 QCOMPARE(filenameArg , expected_filename);

28 QCOMPARE(formatArg , expected_format);

29 QCOMPARE(areaArg , expected_area);

30 }

36

2.3 – Testing the CLI

31 else checkErrorMsg(spySignalToLog , expected_errormsg); //

Perform a QCOMPARE between the error message carried by

the signal and the expected error message

32

33 return;

34 }

Listing 2.4: Function CLItest::testExport().

Testing CLIbackend

While testing the CLI as a whole ensures that the program correctly responds to hu-

man interaction, testing individual classes (i.e. performing unit testing) provides more

in-depth insight on software behaviour and helps spot elusive bugs. In the case of

CLIbackend however, since the TCLAP::CmdLine class relies by design on the TCLAP

::StdOutput class to output parsing errors, it’s worth noting that the testing code for

CLIbackend does not strictly belong to the unit testing category.

The focus of the testing was the function CLIbackend::tokenizeAndParseCmd

() which, as the name implies, is responsible for the first two stages of extraction:

tokenization and parsing. This function returns a boolean value which is true if tok-

enization and parsing were successful, while it is false if either stage encountered an

issue. If the value is true, it triggers the last stage consisting of interpretation. As

mentioned in Subsection 2.2.4, the parser does not know what the argument values

should look like apart from their type, thus if some arguments have incorrect values

that still fit the data type the function CLIbackend::tokenizeAndParseCmd() returns

true. This behaviour is expected, as another function down the pipeline, responsible

for interpretation, raises an error later on.

The testing procedure is the same previously described in Sub-

section 2.3.2: carried out by two functions called one after the other,

CLIbackendTest::testTokenizeAndParseCmd_data() and CLIbackendTest

::testTokenizeAndParseCmd(), with CLIbackendTest being the testing class. A

few test cases are shown in Figure 2.10.

37

2 – Command-line interface

2.3.3 Final words on testing

The testing technique adopted to test the CLI is called "white-box testing": such tech-

nique provides an excellent way of easily exercising most execution paths in the pro-

gram code; however, an even more efficient approach would have been TDD, which

consists of writing enough testing code to make one test, then writing enough program

code to make the test pass, then starting a new cycle by expanding the testing code and

then the program code, and so on; for this reason, TDD was selected as the approach

of choice for developing the script preprocessor described in Chapter 3.

Additionally, this being a thesis work there were time constraints to observe that

limited the extent to which the CLI could be tested:

• as anticipated in Sub-section 2.3.2, commands based on the "do" keyword were

not tested; the reason for this lies in "do" being a "meta"-command of sorts, which

lets the user execute a sequence of commands saved on file simply by calling "do

file.do"; therefore, testing "do"-keyword commands means verifying that the CLI

handles the commands stored in a script file in the correct order; verifying this

requires that the testing class listens for and extracts data from several different

transmitted signals forwarded by the controller, a much more time-consuming

procedure to code when compared to the others;

• testing of CLIbackend was limited to two-thirds of its main functionalities, em-

bodied by its tokenizeAndParseCmd() function, rather than expanded to also

cover the interpretation function (interpretCmd()) and utility functions respon-

sible for "behind-the-scenes" work like instantiating the Arg objects.

38

2.3 – Testing the CLI

Figure 2.8: a) two script files are involved in this example: "script_0.do" and "script_1.do";
b) interpretation of "do script_0.do" yields 5 commands, saved into scriptReqs;
c) the order of scriptReqs is reversed;
d) the contents of scriptReqs are appended to scriptReqsMaster;
e) the loop is entered; the last element of scriptReqsMaster, "compile ...", is interpreted and
popped from scriptReqsMaster;
f) the last element of scriptReqsMaster, "layout ...", is interpreted and popped from
scriptReqsMaster;
g) the last element of scriptReqsMaster, "do script_1.do", is interpreted and popped from
scriptReqsMaster; it yields 2 commands, saved into scriptReqs;
h) the order of scriptReqs is reversed;
i) the contents of scriptReqs are appended to scriptReqsMaster;
j) the last element of scriptReqsMaster, "simulate ...", is interpreted and popped from
scriptReqsMaster;
k) the last element of scriptReqsMaster, "export ...", is interpreted and popped from
scriptReqsMaster;
l) the last element of scriptReqsMaster, "save ...", is interpreted and popped from
scriptReqsMaster;
m) the last element of scriptReqsMaster, "import ...", is interpreted and popped from
scriptReqsMaster, which is now an empty vector; the loop is exited.

39

2 – Command-line interface

Figure 2.9: Test data for the "compile" keyword; each line contains in order the test input, the
expected output and the test case description

Figure 2.10: Results of test cases from the CLIbackend testing procedure

40

Chapter 3

Script preprocessor

By itself, the CLI is able to understand a script file containing a plain list of commands.

While such a capability is enough to automate tasks, it does not lend itself to more

advanced scripting that may include conditional statements or token replacements.

In order to enable the user to write complex scripts that give more granular control

over the flow of execution, a new general-purpose preprocessor1 was developed for use

by the CLI.

3.1 Functional overview

The preprocessor makes available to the user some key features of scripting languages

(like TCL) with a simple syntax for easier writing:

• integer variables used in boolean conditions (>, >=, <, <=, ==) and embeddable in

filenames for later replacement with their value;

• conditional constructs: if, if/else, if/elif/else, if/elif/elif/.../else;

• loops: for, while.

Conditional constructs and loops are freely nestable to achieve the desired complexity.

When the CLI opens a script file, it hands the contents to the preprocessor as a

QStringList (i.e. a vector of QString); the preprocessor performs a variety of op-

erations on it (which are described in detail in Section 3.3) based on the constructs

employed within the script, while leaving the CLI commands untouched save for any

token replacements (keep in mind that a preprocessor often has no knowledge or inter-

est in the underlying language; the C preprocessor is an example of such behaviour).

The end result, returned as a QStringList, is a plain list of commands mirroring what

1https://en.wikipedia.org/wiki/General-purpose_macro_processor

41

3 – Script preprocessor

a live interpretation of the script - which evaluates conditions and executes branches

and loops - would look like; in other words, the preprocessor "pre-digests" the script,

producing in output a simple list compatible with the capabilities of the CLI, which

therefore needs no modifications to its own logic. Figure 3.1 shows the overall proce-

dure.

Figure 3.1: The CLI opens a script file and gives the contents to the preprocessor; the latter
returns the preprocessed list of commands; the CLI executes said list.

42

3.2 – Technical overview

3.2 Technical overview

Under the hood, the preprocessor performs three main operations:

• detection: it detects integer variable definitions (e.g. "var num = 0") and creates

symbols (i.e. tokens) from them, each with the name and value written in the

definition;

• tree creation: it scans the script contents (received from the CLI) and builds a

tree of nodes from them;

• tree traversal: it performs a depth-first, pre-order traversal2 of the tree, which

produces the simplified script file.

Any node in the tree represents one of the following:

• a list of related if/elif/else branches;

• a while loop;

• a for loop;

• an assignment to an integer variable (except for variable definitions);

• a CLI command

with the sole exception of the special root node, called "Head node", which the tree is

grown from.

As the contents are parsed and turned into nodes, if a newly created node A rep-

resents a list of conditional branches or a loop, the block of statements in its scope

is scanned first before moving on, and the resulting nodes are appended to the afore-

mentioned node A as "child nodes"; in other words, scoped blocks of statements are

recursively parsed, generating a chain of nodes with parent/child relationships.

The preprocessor is built as a hierarchy of classes, with the simpler ones employed

by the more complex ones; all of them are declared within a common namespace,

called ScriptExt (which stands for "Script Extender").

2https://en.wikipedia.org/wiki/Tree_traversal#Depth-first_search

43

3 – Script preprocessor

3.3 Designing the preprocessor

3.3.1 namespace ScriptExt

The namespace serves to gather all the classes that make up the preprocessor in order

to prevent name conflicts or ambiguities with other, unrelated classes. This is a nec-

essary precaution due to the complexity of the source code of ToPoliNano, and also

provides a clearer understanding of the composition of the preprocessor code itself.

The namespace also hosts a QStringList object called "collectiveLog" which, as the

name implies, collects all log messages generated by the various parts of the prepro-

cessor as it processes a script. Such log is not printed on-screen nor on console, acting

more as a diagnostic tool that collects information on the activities performed by the

preprocessor; the user is still able to freely consult the collectiveLog if they wish to do

so. The namespace is shown in Listing 3.1.

1 #ifndef SCRIPTEXT_NAMESPACE_H

2 #define SCRIPTEXT_NAMESPACE_H

3

4 #include <QString >

5 #include <QStringList >

6

7 namespace ScriptExt

8 {

9 class Node;

10 class Symbol;

11 class SymbolManager;

12 class Tree;

13 class Toolkit;

14

15 extern QStringList collectiveLog; // Global variable used as

log by all ScriptExt classes - definition is in

scriptext_namespace.cpp

16 inline static const QStringList& getCollectiveLog () { return

collectiveLog; }

17 inline static const QString getCollectiveLogAsString () {

return collectiveLog.join("\n"); }

18 };

19

44

3.3 – Designing the preprocessor

20 #endif // SCRIPTEXT_NAMESPACE_H

Listing 3.1: The ScriptExt namespace.

3.3.2 class Node

Class Node is the fundamental element of the tree built by the preprocessor. Each

Node object that is instantiated represents a different piece of content from the script.

As anticipated in Section 3.2, a node can be one of the following types: Command,

Assignment, While, For, If, Head (with the root node being the only "Head"-type node

in the tree). The type determines what data a node holds and how the node is traversed

by the preprocessor in the traversal stage. Apart from the type, each node possesses a

"node statement", a string that defines their purpose (e.g. a CLI command or a "while"

loop). Depending on the type, a node may also hold a "block", i.e. the statements

within its scope (for example, a "while" loop may contain a block consisting of three

CLI commands), in which case it also has child nodes. More specifically:

• a Command node only holds a statement, which in its case is a CLI command;

• an Assignment node, similarly, only holds a statement, which - as the name

"assignment" implies - is an assignment to a variable (e.g. [i] = [i] + 1);

• a While node holds a statement (e.g. "while [num] < 3"), a block (the scoped

statements) and the child nodes corresponding to the scoped statements in the

block;

• a For node has the same attributes of a While node, but the statement is different

as it holds information about the initial assignment to the loop variable, the

condition to evaluate at each iteration and the variable increment or decrement

at the end of each iteration (e.g. "for [k] = 0; [k] <= 4; [k] = [k] + 1");

• an If node possesses multiple statements, with the top-priority one being the

if-statement (e.g. "if [i] < 2") followed by any number of elif-statements (e.g. "elif

[i] >= 2 and [i] < 4") - which can be none - and, if present, an else-statement;

consequently, the node holds as many blocks as the aforementioned conditional

45

3 – Script preprocessor

statements, plus a block representing the else-scoped statements (if present), and

as many groups of child nodes as the blocks;

• a Head node possesses a placeholder statement and a block consisting of the

script contents, which are assigned to it by the Tree constructor when creating a

Tree object (which is described in Sub-section 3.3.6).

3.3.3 class Symbol

Class Symbol is the internal representation that the preprocessor employs for the inte-

ger variables defined by the user within a script. A Symbol has two attributes: a name

and an integer value; the latter can be incremented, decremented or set to an arbitrary

value.

3.3.4 class SymbolManager

Class SymbolManager is in charge of creating and managing Symbol objects, including

updating their values when required; additionally, it is tasked with replacing symbol

names (encapsulated in square brackets) occurring in strings with their current values;

in other words, it is tasked with assignment evaluation and token replacement. Exam-

ples for each of these two functionalities are illustrated in the following paragraphs.

Example of symbol replacement in a string

In this example, SymbolManager already holds a symbol with name "k" and value "0".

If the function SymbolManager::replaceSymbol() is called with string "compile

circuit[k].vhd" as argument, SymbolManager will detect the encapsulated symbol name

"[k]", search the list of existing symbols for one with name "k" and finally replace "[k]"

with its current value 0 within the string. Thus, the return value will be string "compile

circuit0.vhd".

Example of symbol assignment evaluation

In this example, SymbolManager already holds a symbol with name "num" and value

"2".

46

3.3 – Designing the preprocessor

If the function SymbolManager::symbolAssignment() is called with string "[num]

= [num] + 1" as argument:

• SymbolManager splits the string into left-hand-side substring (abbreviated to

"lhs") and right-hand-side substring (abbreviated to "rhs");

• in the rhs, SymbolManager detects the encapsulated symbol name "[num]", searches

the list of existing symbols for one with name "num" and finally replaces "[num]"

with its current value 2;

• the resulting rhs "2 + 1" is evaluated as an arithmetic operation, yielding the

integer value 3;

• in the lhs, SymbolManager detects the encapsulated symbol name "[num]", searches

the list of existing symbols for one with name "num" and sets its value to the in-

teger 3 obtained from the arithmetic operation.

As a result, symbol "num" is incremented by 1, from a value of 2 to a value of 3.

3.3.5 class Toolkit

Class Toolkit - as the name implies - has a number of functions that serve as "tools"

for the preprocessor to perform simple but key operations with: trimming leading and

trailing whitespace from a string (including tabs and newlines), checking if a string

starts or ends with the contents of another string (e.g. checking if it starts with "while"

or "for"), removing a certain amount of characters from the left side or right side of a

string, evaluating an inequation (e.g. "5 > 3", which resolves to true) and evaluating an

addition or subtraction (e.g. "4 - 1", the result of which is 3).

3.3.6 class Tree

Class Tree is tasked with executing the three stages of preprocessing described at the

beginning of Section 3.2: detection of variable definitions, tree creation, tree traversal.

47

3 – Script preprocessor

Detection of variable definitions

In the first stage, Tree scans the script contents looking for variable definitions, i.e.

lines with the structure "var [name] = [value]" (e.g. "var k = 0"); every such line prompts

Tree to invoke SymbolManager, which creates a Symbol object with the name and value

contained in the line and adds it to the list of existing symbols. Variable definitions

are found at the very beginning of the script, therefore once a line which is not a

definition is found Tree concludes the variable-detection stage and starts the next one:

tree creation.

Tree creation

As Section 3.2 briefly mentioned, tree creation consists of scanning the script contents

(except for the variable definitions, which are parsed in the previous stage) and making

nodes out of them.

The tree creation stage is handled by function Tree::bloom(), which takes a node

as argument (and refers to it as "parent"); in particular, the first call to bloom() has

the Head node as argument. The function checks whether "parent" is a node of type

Command or Assignment, in which case it returns immediately due to nodes of these

two types possessing no scoped block to parse. If "parent" is of neither type, it then

checks whether its type is While, If, For or Head. If the type is While, For or Head,

then bloom() fetches the scoped block from "parent" and scans it:

• if a CLI command is found, a Command node is created with the command as

"node statement";

• if an assignment to variable is found, an Assignment node is created with the

assignment as "node statement";

• if a while-statement is found then all lines between such while-statement and the

while-loop termination statement "endwhile", i.e. all scoped lines, are packaged

into a block; then a While node is created with the while-statement as "node

statement" and the block is assigned to it;

• if a for-statement is found then, just like for the While node, all lines between such

for-statement and the for-loop termination statement "endfor" are packaged into

48

3.3 – Designing the preprocessor

a block; then a For node is created with the for-statement as "node statement"

and the block is assigned to it;

• if an if-statement is found then all lines between such if-statement and the

if-construct termination statement "endif" are packaged into a block; then (if

present) all elif-statements within said block are appended to a list, and the block

itself is split into the if-scoped sub-block, the elif-scoped sub-block(s) (if present)

and the else-scoped sub-block (if present); finally, an If node is created with

the if-statement as "node statement" and both the list of elif-statements and the

sub-blocks obtained from the splitting of the initial block are assigned to it.

Whatever the type, once a node is created it is added as child node to "parent"; imme-

diately after that, bloom() is recursively called with the new node as argument (i.e. as

"parent"), thus going "one level deeper" into the script.

When the entirety of the script contents has been successfully scanned, the tree is

complete; thus the next (and last) stage may begin: tree traversal.

Figure 3.2: Naming conventions used for the attributes of class Node.

49

3 – Script preprocessor

Tree traversal

The tree built by bloom() is traversed by means of the Tree::traverse() function,

which - like bloom() - takes a node as argument (referred to as "parent" in this case

too) and is given the Head node when it is called for the first time.

Each node used as "parent" is traversed differently depending on their type:

• if "parent" is a Command node, its "node statement" is fetched, any symbols em-

bedded in it are replaced by means of SymbolManager::replaceSymbol() and

the resulting string is appended to a QStringList object called "traversalTrace",

which constitutes (once completed) the preprocessed plain list of commands;

• if "parent" is an Assignment node, its "node statement" is fed into

SymbolManager::symbolAssignment(), which evaluates the string and incre-

ments/decrements/changes the value of the symbol subjected to the assignment;

• if "parent" is a While node, its "node statement" is evaluated by Tree::

evaluateConditionalStatemt(), which extracts the condition(s) from the

statement itself (e.g. "[i] < 4 and [j] == 0" is taken from "while [i] < 4 and [j] == 0"),

evaluates it/them and returns the boolean result; if it is true, then traverse() is

recursively called with each of the child nodes of "parent" as arguments; once all

child nodes have been traversed, the "node statement" of "parent" is re-evaluated

and, if the result is true, the cycle starts over;

• if "parent" is a For node, the traversal procedure is similar to that of the While

node; however, since the "node statement" is made of three pieces - the initial

assignment, the condition and the variable increment or decrement - some key

differences are present:

– before the first evaluation of the condition by Tree::

evaluateConditionalStatemt(), the initial assignment is performed;

– every time all child nodes have been traversed, the variable incremen-

t/decrement is performed;

apart from said differences, the cycle is the same;

50

3.3 – Designing the preprocessor

• if "parent" is an If node, its "node statement" (the if-statement) is evaluated by

Tree::evaluateConditionalStatemt(); if the result is true, then traverse

() is recursively called with each of the child nodes related to the if-scoped

sub-block as argument; if, instead, the result is false, then the elif-statements

from the list (if present) are evaluated one after the other; as soon as one is

found to be true, traverse() is recursively called using as argument each of

the child nodes related to the sub-block of that elif-statement; if none of the

elif-statements evaluate to true or if no elif-statement is present at all, traverse

() is recursively called with each of the child nodes related to the else-scoped

sub-block (if present) as argument.

• if "parent" is the Head node, its traversal is almost the same as that of a While

node, with the key difference being that it only occurs once because there is no

"node statement" to evaluate.

Once the tree has been traversed in its entirety, the preprocessed script (saved as

"traversalTrace" within Tree) may be fetched via the Tree::getTraversalTrace()

function or via the Tree::getReverseTrace() function (which returns a reversed

version of "traversalTrace").

51

3
–
Script

preprocessor

Figure 3.3: The preprocessor builds a tree of nodes from a script, then traverses it following the conditions within the script itself.

52

3.4 – Testing the preprocessor

3.3.7 Integration with the CLI

The preprocessor encapsulates independent logic from the CLI, thus integrating the

former into the latter is a straightforward operation: in the script-execution algorithm

(illustrated in Sub-section 2.2.4) only one small alteration is made: once the script file is

opened and each line of text from first to last is appended to the local scriptReqs vec-

tor, scriptReqs is fed into a Tree object, which preprocesses it; after that, in place of

the reversed scriptReqs vector the reversed version of the preprocessed script (fetched

via Tree::getReverseTrace()) is appended to the global scriptReqsMaster vector.

The rest of the CLI algorithm is left intact.

3.4 Testing the preprocessor

Since the preprocessor had to be built from scratch and had to perform relatively

elaborate operations like token detection and replacement and execution of recursive

algorithms, Test-Driven Development (TDD) was chosen as the development technique

for this task. TDD consists of cycles, each of which starts by writing enough testing

code to make one test and is followed by writing enough program code to make that

test pass, then a new cycle is started.

As the preprocessor makes no use of Qt’s signal/slot system, a testing framework

different from QtTest could be employed: for its ease of use and macro-based approach,

the Catch2 framework3 was chosen.

3.4.1 Testing class Node

Class Node produces the building blocks of a tree, therefore testing focused on making

sure that the class constructors created Node objects correctly and that addition of child

nodes to nodes of each type worked as it should; If-type nodes, in particular, due to

their complexity (as they are used to represent entire if/elif/.../else constructs, if needed)

required special care during testing.

3https://github.com/catchorg/Catch2

53

3 – Script preprocessor

3.4.2 Testing class Symbol

Class Symbol has a very simple structure and its member functions are all inline;

tests were therefore comparably uncomplicated as they only had to verify that these

functions behaved properly.

3.4.3 Testing class SymbolManager

Testing of class SymbolManager focused on verifying that its management of Symbol

objects had no issues and that its functions, which have the key tasks of performing

token replacement (where the "tokens" are symbol names), evaluation of an assignment

and creation of a Symbol object from a definition string (e.g. "var count = 0") return

the expected results.

3.4.4 Testing class Toolkit

Class Toolkit handles many smaller tasks, each of which expects a large variety of

inputs (e.g. Toolkit::trim() may receive a string with leading tabs or whitespace or

even both, or a string with a trailing newline); testing, therefore, was concerned with

exhaustively covering such variety. An example of testing code related to this class is

shown in Listing 3.2.

1 SECTION("Trimming strings with leading and/or trailing

whitespace")

2 {

3 QString statement(" layout -f 3");

4

5 REQUIRE(Toolkit ::trim(statement).toStdString () == "layout -f

3");

6

7 statement = "simulate tb.vhd \n ";

8

9 REQUIRE(Toolkit ::trim(statement).toStdString () == "simulate

tb.vhd");

10

11 statement = " quit ";

12

54

3.4 – Testing the preprocessor

13 REQUIRE(Toolkit ::trim(statement).toStdString () == "quit");

14

15 statement = "\t\tcompile 01. vhd\n\t\t";

16

17 REQUIRE(Toolkit ::trim(statement).toStdString () == "compile

01.vhd");

18 }

Listing 3.2: Testing code for function Toolkit::trim().

3.4.5 Testing class Tree

Class Tree is by far the most complex of all the classes that together make

up the preprocessor, due to the algorithms employed by its functions Tree::

evaluateConditionalStatemt(), Tree::bloom() and Tree::traverse(). Exten-

sive testing was performed to ensure that:

• all kinds of conditional statements were evaluated without mistakes;

• scripts with increasing complexity, from plain lists of commands with neither

if/elif/else constructs nor loops to scripts with nested loops were correctly trans-

lated into trees;

• scripts with increasing complexity were traversed as expected, obeying conditions

and applying value changes to variables.

Due to the inherent intricacy of recursive algorithms, which makes it difficult to

track their progress and depth at any given time, several logging instructions were

placed within bloom() and traverse() which write messages containing diagnostic

information into collectiveLog (in the preprocessor namespace). This built-in debug-

ging feature allowed to verify, for each test script, not only that the results were as

expected but also that each and every step of execution of the recursive algorithms was

correct, by comparing the actual log messages written by bloom() and traverse()

into collectiveLog with the ones expected from a faultless execution.

55

Chapter 4

No-gui mode

With the addition of a preprocessor the CLI had become a powerful tool, but the

user was still forced to interact with it from the GUI of ToPoliNano. Such inflexibility

would partly defeat the purpose of offering control of the program via text commands,

therefore a new "no-GUI" mode was developed for ToPoliNano, in order to let the user

access the program directly via CLI without also having to load the GUI.

4.1 Functional overview

The no-GUI mode allows the user to launch from a terminal window ToPoliNano

without GUI in three different ways:

• interactive no-GUI mode, which loads ToPoliNano into the terminal window it is

launched from, where the user can write text commands for it to execute;

• interactive no-GUI mode with trailing command, which lets the user launch To-

PoliNano and have it automatically execute a text command;

• batch no-GUI mode, which loads ToPoliNano, makes it automatically execute a

script and then closes it once it is done.

The launch flags related to each flavour of no-GUI mode are shown in Figure 4.1.

4.2 Designing the no-GUI mode

In order to separate the logic for the no-GUI mode from the pre-existing logic in

charge of the GUI mode, a new class called MainCore was developed, designed to

mirror the class that takes care of the GUI mode, called MainWindow. Depending

56

4.2 – Designing the no-GUI mode

Figure 4.1: The various flavours of no-GUI mode and their related launch flags.

on which command-line flags ToPoliNano is launched with (if any), either of the two

aforementioned classes will be employed.

4.2.1 Replacing the GUI elements of the CLI

In no-GUI mode the GUI elements of the CLI (i.e. the single-line text editor and the log

box that displays output, both shown in Figure 2.5) are unavailable due to the GUI itself

not being used. The terminal, where ToPoliNano is loaded in no-GUI mode, provides

both a means for user input and a means for program output; however, dedicated code

had to be written in order to correctly wire ToPoliNano to the terminal:

• as the user will be writing commands from the terminal itself rather than from

GUI, a new MainCore::SlotQueryUser() function was created, tasked with

collecting user input and then forwarding it for interpretation;

• all program output has been routed through a new function, called MainCore::

SlotPrint(), which in turn outputs messages directly to terminal (after prepend-

ing the current date and time to them, in order to maintain consistency with the

timestamping performed by the GUI).

4.2.2 Adding support for terminal commands

Once ToPoliNano is loaded into the terminal, the latter becomes unable to recog-

nize traditional terminal commands like "cd", "ls" and "pwd" due to hosting another

57

4 – No-gui mode

program. These are valuable commands that enable the user to navigate files and di-

rectories without resorting to a GUI file explorer, therefore the no-GUI mode was given

the ability to execute them itself.

A dedicated class, SysCmdProcessor, takes care of handling terminal commands

by tapping into Qt’s QProcess class; encapsulating this logic into a class separate from

MainCore makes it possible to offer this helpful capability in GUI mode too, meaning

that the user is able to execute terminal commands not only in no-GUI mode, but also

from the GUI of ToPoliNano.

There is one major difference in how the output of terminal commands is handled,

depending on whether the user is interacting with the no-GUI mode or with the GUI:

in the first case, a terminal command is run by calling QProcess::execute(), a static

function which outputs to terminal by default; in the second case, instead, a dedicated

QProcess object is instantiated, it is given a terminal command to run and once it is

done its output is fetched, converted to QString and finally printed to the log box (the

QTextEdit object mentioned in Sub-section 2.2.2).

Figure 4.2 shows a call to terminal command "pwd" in both cases.

58

4.2 – Designing the no-GUI mode

Figure 4.2: Calling "pwd" from GUI and in no-GUI mode.

59

Appendix A

CLI user manual

In order to give the user all the necessary information to use the CLI to its fullest

potential and avoid making mistakes, a dedicated user manual was prepared. After

an introduction to the text commands supported by ToPoliNano via the CLI itself,

the user will learn about the program workflow and how to write scripts of increasing

complexity, from simple lists of commands to nested loops.

A.1 Supported text commands

Text commands in ToPoliNano follow the naming conventions shown in Figure A.1.

Figure A.1: Naming conventions used in this text for the elements of a CLI command

Nine keywords are supported:

60

A.1 – Supported text commands

• the "compile" keyword, followed by a file path (including the .vhd/.vhdl extension)

triggers compilation of the VHDL file;

• the "layout" keyword orders to produce the layout of a compiled circuit; several

arguments are at the user’s disposal to fine-tune the process (e.g. the maximum

fan-out, the design approach, etc.);

• the "simulate" keyword is used to initiate the simulation of a circuit layout via

a testbench file, and many arguments are offered to specify the time parameters

(duration, rise and fall times, clock cycle, etc.) and other details;

• the "save" keyword, followed by the desired file path, allows the user to save a

layout in .qll format;

• the "export" keyword exports a screenshot of a layout; the output format may be

specified with a dedicated argument;

• the "import" keyword, followed by the path of a .qll file, loads that layout into

ToPoliNano;

• the "do" keyword, followed by the path of a script (which is actually a simple text

file with .do extension), triggers the execution of that script;

• the "quit" keyword closes the program;

• the "clear" keyword clears the screen from all log messages.

Each keyword is discussed in more detail in its respective Sub-section.

A.1.1 "compile" keyword

The "compile" keyword starts the compilation of a VHDL file containing a circuit.

This keyword only has one, flag-less, mandatory argument: the path of the VHDL

circuit that the user wants to compile, including the .vhd/.vhdl extension.

61

A – CLI user manual

A.1.2 "layout" keyword

The "layout" keyword begins the layout generation process: the most recently compiled

VHDL circuit is analyzed and a physical layout of said circuit is built by ToPoliNano.

This keyword has a plethora of arguments (most of which are flagged, three of which

are true/false arguments) that give the user fine control over the process:

• "-a/--algorithm", which tells ToPoliNano which optimization algorithm(s) to apply

during the process (by default, no such algorithm is applied); the user may employ

either a single algorithm or a sequence of (comma-separated) algorithms (e.g.

"kl,barycenter");

• "-d/--design-approach", which - as the name implies - specifies the design ap-

proach taken by ToPoliNano; the available approaches are "flat" - i.e. the circuit

uses no sub-modules -, "p_hierarchical" and "f_hierarchical" (the default) - i.e. the

circuit uses sub-modules;

• "-l/--load", a true/false argument which - if specified by the user - tells ToPoliNano

(in case it was ordered to employ a hierarchical design approach) to look for sub-

modules within its own component library;

• "-g/--geometry", which specifies the magnet geometry (width, height, horizon-

tal spacing, vertical spacing); this argument consists of four comma-separated

numbers (the default is 50,100,20,20);

• "-f/--fanout", which defines the maximum allowed gate fan-out (default value is

2);

• "-v/--vertical-wire", which dictates the maximum allowed number of magnets for

vertical interconnections (default value is 4);

• "-m/--magnet-clockzone", which specifies the maximum amount of magnets al-

lowed in a clock zone (default value is 4);

• "-s/--sa-embedded", which orders ToPoliNano to employ an embedded version of

the simulated annealing algorithm;

62

A.1 – Supported text commands

• "-w/--domain-wall", which tells ToPoliNano to use domain walls for vertical in-

terconnections;

• "-t/--satimberwolf-parameters", which specifies the values of the key param-

eters (low temperature, high temperature, first alpha coefficient, second al-

pha coefficient, third alpha coefficient, first temperature, second tempera-

ture, number of iterations) used by the TimberWolf simulated-annealing algo-

rithm; this argument consists of eight comma-separated numbers (the default is

0.1,40000,0.8,0.95,0.8,1000,10000,20);

• "-e/--saexponential-parameters", which specifies the values of the key parameters

(low temperature, high temperature, alpha coefficient, number of iterations) used

by the Exponential simulated-annealing algorithm; this argument consists of four

comma-separated numbers (the default is 0.1,10000,0.95,20);

• "-o/--output", which specifies the path of an output file where ToPoliNano will

save the layout once it’s been successfully generated (by default, no output path

is specified and thus no file is created); the path may or may not include the .qll

extension (in the latter case, ToPoliNano will append it automatically).

A.1.3 "save" keyword

The "save" keyword allows the user to save the most recent layout generated by ToPo-

liNano to file; the output file is in .qll format.

This keyword only has one, flag-less, mandatory argument: the path of the output

file to be created, with or without the .qll extension (in the latter case, ToPoliNano will

append it automatically).

A.1.4 "export" keyword

The "export" keyword allows the user to export a screenshot of the most recent layout

generated by ToPoliNano.

This keyword has the following arguments (all flagged):

• "-o/--output", which specifies the output directory (default value is "workspace/Re-

sults", with "workspace" being the default ToPoliNano workspace folder);

63

A – CLI user manual

• "-n/--filename", which determines the output filename (default value is "top-level-

name");

• "-f/--format", which dictates the file format; available formats are svg (the default),

png, bmp, jpeg, pdf, ps;

• "-a/--area", which specifies the portion of layout to export between the scene (the

default), the selected portion of the layout and the current view.

A.1.5 "import" keyword

The "import" keyword allows the user to load a pre-existing layout from a layout file

with .qll format.

This keyword only has one, flag-less, mandatory argument: the path of the file to

load the layout from.

A.1.6 "simulate" keyword

The "simulate" keyword starts the simulation of the most recently generated circuit

layout via a VHDL testbench provided by the user.

This keyword has a flag-less argument, which is mandatory and must come imme-

diately after "simulate", consisting of the path to the VHDL testbench file that the user

wants to employ in the simulation (including the .vhd/.vhdl extension).

Apart from the flag-less one, many more arguments are available (most of which

are flagged, one of which is a true/false argument) that allow the user to tweak the

simulation details:

• "-t/--time", which defines the duration of the simulation; the user may specify

both a number and a time unit (e.g. 20ns) or just a number (e.g. 40), in which

case the default time unit (µs) will be used (if the user does not explicitly state

a simulation time, ToPoliNano will use the default duration of 1µs); the available

time units are ps, ns, µs and ms;

• "-r/--resolution", which specifies the time step (i.e. the resolution) of the simula-

tion; the available resolutions are 1ps, 10ps, 100ps (the default), 1ns, 10ns, 100ns,

1µs, 10µs, 100µs, 1ms;

64

A.1 – Supported text commands

• "-c/--clock", which dictates the duration of the three-phase clock cycle; as with

the "-t/--time" argument, the user may write both a number and a time unit or

just a number, in which case the default time unit (ns) will be used (if the user

does not explicitly state a clock period, ToPoliNano will use the default period of

3ns); the available time units are ps, ns, µs and ms;

• "-u/--risetime", which defines the clock rise-time; the user may employ both a

number and a time unit or just a number, in which case the default time unit (ns)

will be used (if the user does not explicitly state a rise-time, ToPoliNano will use

the default duration of 0ns); the available time units are ps, ns, µs and ms;

• "-d/--falltime", which defines the clock fall-time; the user may write both a num-

ber and a time unit or just a number, in which case the default time unit (ns) will

be used (if the user does not explicitly state a fall-time, ToPoliNano will use the

default duration of 0ns); the available time units are ps, ns, µs and ms;

• "-a/--algorithm", which tells ToPoliNano what simulation algorithm to utilise; the

available algorithms are "behavioral" (the default) and "single_domain";

• "-f/--fault-analysis", a true/false argument which - if specified by the user - en-

ables fault analysis;

• "-v/--max-variations", which defines the maximum variations (on the X and Y

axes) in magnet placement; this argument consists of two comma-separated num-

bers (the default is 3,2);

• "-i/--iterations", which defines how many simulation iterations to perform;

• "-o/--output", which specifies the path of an output file where ToPoliNano will

save the simulation results once the simulation is complete (by default, no output

path is specified).

A.1.7 "do" keyword

The "do" keyword tells ToPoliNano to open a script file and execute its contents.

This keyword only has one, flag-less, mandatory argument: the path of the script

file (including the .do extension).

65

A – CLI user manual

A.1.8 "quit" keyword

The "quit" keyword prompts ToPoliNano to close; any activities started before enter-

ing this keyword that are still being performed by the program (like, for example, a

simulation) will be safely completed before ToPoliNano shuts down.

This keyword has no arguments.

A.1.9 "clear" keyword

The "clear" keyword clears the output of all messages printed by ToPoliNano, leaving

it blank.

This keyword has no arguments.

A.2 Supported system commands

The CLI supports execution of all system commands, both on Windows and on Lin-

ux/UNIX; the user may seamlessly execute commands such as "cd", "pwd", "del"/"rm",

"dir"/"ls" and many more both from GUI and from no-GUI mode; the user can there-

fore harness system commands to navigate and manage files without the need for an

external file explorer.

A.3 Path types

A CLI command may employ any of the following three types of file path:

• absolute/full path (e.g. "C:\workspace\newTestbench.vhd"), which is a complete

path that starts from the root directory;

• relative path within ToPoliNano’s workspace (e.g. "circuit3.vhd"), i.e. a relative

path using a predefined sub-folder in ToPoliNano’s workspace folder as the parent

directory (e.g. the "Input_Files" sub-folder is used when a relative path is found in

a "compile" command, the "Testbenches" sub-folder is used when a relative path

is found in a "simulate" command, etc.);

66

A.4 – Program workflow

• relative path within the current directory of the CLI - or of the terminal, in

no-GUI mode - (e.g. "./layoutFile.qll"), which is a relative path using the current

directory of the CLI or terminal (referenced with "./") as the parent directory.

A.4 Program workflow

After ToPoliNano has been opened, not all commands can be executed right away: the

program has a specific workflow that the user must be aware of in order to correctly

make use of ToPoliNano’s functionalities.

The first step in the workflow is the compilation of a VHDL circuit; this is achieved

by means of a "compile" command. The most recently compiled circuit is referred to

as "the current compiled circuit" in the paragraphs to follow.

The second step in the workflow consists of generating a layout from the current

compiled circuit; a "layout" command serves this purpose. The most recently generated

layout is referred to as "the current layout" from here on.

Once a layout has been generated, the user may either save to file a screenshot of

the layout (obtained via an "export" command) or save to file the layout itself in .qll

format (by using a "save" command). Since simulations are run on layouts, they can

only be performed if a layout is created beforehand.

The last step in the workflow is the simulation of the current layout, which is started

with a "simulate" command.

If, after any step, the user issues a new "compile" command referencing a different

VHDL file (which overwrites the current compiled circuit), the current layout will be

discarded (therefore ToPoliNano will not be able to perform simulations as long as

a new layout is not generated). Similarly, if a new "layout" command with different

argument values is entered, the resulting layout will overwrite the current layout; the

same occurs for "simulate" commands.

If the user imports a pre-existing layout by means of an "import" command, such

layout becomes the current layout and simulations may be run on it.

The "do", "quit" and "clear" commands have no restrictions: they may be used at

any time.

67

A – CLI user manual

A.5 Preprocessor features

Before entering the topic of writing scripts, it is beneficial to explore the scripting

features that the preprocessor (described in Chapter 3) makes available to the user.

A.5.1 Variable definitions and usage

The feature that underpins the other, more complex ones is the ability to define vari-

ables and use them in the script. A variable definition is composed of the following

four elements (in the sequence shown):

• the "var" keyword, which notifies the preprocessor that the line contains a variable

definition;

• the variable name, which identifies the variable itself;

• the equals sign "=", which represents a value assignment;

• the integer value that is to be assigned to the variable.

Examples of variable definition are "var i = 0", "var num = 3", "var k = 12". Variable

names cannot contain numbers, meaning that a variable cannot have a name like

"num1", for example.

Variables are defined at the very top of a script; once the preprocessor reaches a

line that does not start with "var", it will not accept any more definitions.

Beyond the definitions, in a script the preprocessor recognizes a variable only if

its name is enclosed in square brackets; this means that a variable may be employed

in conditions (described in Sub-section A.5.2) and filenames by enclosing its name in

square brackets (e.g. "[i]", "[num]", etc.).

A variable can be given a new value at any time; taking the "i" variable from the

previous example, if - at the end of a While loop (illustrated in Sub-section A.5.3) - the

user wants to increase its value by 1, this is accomplished by means of an assignment,

in this case "[i] = [i] + 1". An assignment is made of three parts:

• the variable receiving the assignment (left-hand side), enclosed in square brackets

to notify the preprocessor that the line contains an assignment;

68

A.5 – Preprocessor features

• the equals sign "=", which represents a value assignment;

• the value being assigned (right-hand side), which can be a number, a variable

or an arithmetic addition/subtraction; if the addition/subtraction contains an

enclosed variable, the latter is replaced with its current value before evaluating

the expression itself.

In the previous example, if [i] has a current value of 3, the expression "[i] + 1" becomes

"3 + 1", which is equal to 4, therefore the resulting assignment will be "[i] = 4".

A.5.2 Conditions

A condition is an inequality containing (at least) one variable, which evaluates to true

or to false. The supported relational operators are bigger-than (">"), bigger-than-or-

equal-to (">="), equal-to ("=="), less-than ("<"), less-than-or-equal-to ("<=").

An example of condition involving one variable is "[i] > 3", which evaluates to true

if the variable "i" has a current value bigger than 3, or to false if its current value is less

than or equal to 3. An example of condition involving two variables is "[i] <= [j]", which

evaluates to true if the current value of "i" is less than or equal to the current value of

"j", or otherwise to false.

Two or more conditions may be combined via the logical operators "and" and

"or" to form a single, larger condition; for example, the conditions shown in the two

previous examples may be joined together, leading to "[i] > 3 and [i] <= [j]"; the resulting

condition is true only if both its sub-conditions are true.

A.5.3 While loops

A While loop consists of three parts:

• the while-statement (e.g. "while [i] < 4"), which holds the condition;

• the block of statements scoped to the loop, which must include an assignment to

the variable utilised in the condition (or else the While loop becomes an infinite

loop);

• the "endwhile", i.e. the while-loop termination statement.

69

A – CLI user manual

An example While loop is shown in Listing A.1.

1 while [i] < 4

2 compile file_[i]_top.vhdl

3 layout -o output[i].qll

4 [i] = [i] + 1

5 endwhile

Listing A.1: While loop.

Indentation of scoped statements (either via tabs or via whitespace) is suggested for

improved readability but it’s not mandatory.

A.5.4 For loops

Just like the While loop presented in Sub-section A.5.3, the For loop is made up by

three parts:

• the for-statement (e.g. "for [i] = 0; [i] < 4; [i] = [i] + 1"), which itself consists of

three elements, namely - from left to right - the initial assignment ("[i] = 0"), the

condition ("[i] < 4") and the end-of-iteration assignment ("[i] = [i] + 1");

• the block of statements scoped to the loop;

• the "endfor", i.e. the for-loop termination statement.

It is worth mentioning that the initial assignment contained in the for-statement re-

places whatever value was held by the variable.

Listing A.2 illustrates an example of For loop.

1 for [i] = 0; [i] < 4; [i] = [i] + 1

2 compile file_[i]_top.vhdl

3 layout

4 save layout_[i]

5 endfor

Listing A.2: For loop.

70

A.5 – Preprocessor features

As for While loops, indentation of scoped statements is suggested but not obliga-

tory.

A.5.5 If constructs

In contrast to While and For loops, If constructs are more complex structures and can

vastly differ in composition from each other. The only part that is common to all If

constructs is the If section, consisting of:

• the if-statement (e.g. "if [i] == 1"), which contains the condition;

• the block of statements scoped to the if-statement (also referred to as "if-block");

• the "endif", i.e. the If construct termination statement.

The shortest possible If construct consists of just the If section. An If construct may

be extended beyond that by adding:

• one or more Else-if (abbreviated as "Elif") sections, each constituted by an elif-

statement (e.g. "elif [i] == 2") which contains a condition and by a block of

statements scoped to it;

• an Else section, comprising of an else-statement ("else", with no conditions) and

a block of statements scoped to it.

Elif sections and the Else section are not mutually exclusive, meaning that the user

is given great freedom of choice when building an If construct: if, if-else, if-elif, if-elif-

elif-..., if-elif-else, if-elif-elif-...-else are all valid If constructs. Many examples showing

the variety of If constructs that the user may enjoy are shown in Listing A.3.

1 if [i] == 0

2 save output_[i]

3 endif

4

5 // //////////////////////

6

7 if [i] == 0

71

A – CLI user manual

8 save output_[i]

9 else

10 export

11 endif

12

13 // //////////////////////

14

15 if [i] == 0

16 save output_[i]

17 elif [i] == 1

18 simulate -o results.txt

19 endif

20

21 // //////////////////////

22

23 if [i] == 0

24 save output_[i]

25 elif [i] == 1

26 simulate -o results.txt

27 elif [i] == 2

28 export

29 endif

30

31 // //////////////////////

32

33 if [i] == 0

34 save output_[i]

35 elif [i] == 1

36 simulate -o results.txt

37 else

38 quit

39 endif

40

72

A.6 – Writing scripts

41 // //////////////////////

42

43 if [i] == 0

44 save output_[i]

45 elif [i] == 1

46 simulate -o results.txt

47 elif [i] == 2

48 export

49 else

50 quit

51 endif

Listing A.3: If constructs.

Indentation of scoped statements is here too only suggested.

A.6 Writing scripts

With Sections A.4 and A.5 serving as guidelines, it is easy to automate the workflow by

means of scripts. This Section illustrates how to write scripts of increasing complexity,

starting from the simplest ones.

Be aware that comments are not supported inside scripts.

A.6.1 Script 1 - Plain list

Script 1 exemplifies the simplest kind of script that ToPoliNano can execute: a plain list

of commands.

1 compile circuit.vhd

2 layout -a kl,barycenter -f 3

3 save layoutFile.qll

4 simulate -t 10us -o simResults.txt

5 quit

Listing A.4: Script 1.

73

A – CLI user manual

As shown in Listing A.4, Script 1 automates the typical workflow of ToPoliNano,

executing one after the other the compilation, layout and simulation steps, together

with saving to file the layout itself and quitting the program at the end.

A.6.2 Script 2 - Plain list with a nested script

Script 2 is similar to Script 1 but it makes use of the nested scripting capabilities of the

CLI by employing a "do" command which calls another script file.

1 compile circuit.vhd

2 layout -d flat

3 do otherscript.do

4 simulate -t 100ns

5 quit

Listing A.5: Script 2.

1 save output.qll

2 export --format png

Listing A.6: otherscript.do, used by Script 2.

The contents of Script 2 are equivalent to those of the comparison script shown in

Listing A.7.

1 compile circuit.vhd

2 layout -d flat

3 save output.qll

4 export --format png

5 simulate -t 100ns

6 quit

Listing A.7: Comparison script, equivalent to Script 2.

74

A.6 – Writing scripts

A.6.3 Script 3 - While loop

Script 3 introduces a modicum of complexity: a While loop (described in Sub-section

A.5.3) iterating over a series of commands.

1 var i = 0

2

3 while [i] < 3

4 compile circ_[i].vhd

5 layout

6 save layoutFile_[i].qll

7 [i] = [i] + 1

8 endwhile

9 quit

Listing A.8: Script 3.

The contents of Script 3 are equivalent to those of the comparison script shown in

Listing A.9.

1 compile circ_0.vhd

2 layout

3 save layoutFile_0.qll

4 compile circ_1.vhd

5 layout

6 save layoutFile_1.qll

7 compile circ_2.vhd

8 layout

9 save layoutFile_2.qll

10 quit

Listing A.9: Comparison script, equivalent to Script 3.

75

A – CLI user manual

A.6.4 Script 4 - For loop

Script 4 employs a slightly more complicated loop: the For loop (illustrated in Sub-

section A.5.4).

1 var i = 0

2

3 for [i] = 0; [i] < 3; [i] = [i] + 1

4 compile circ_[i].vhd

5 layout

6 export -n screenshot[i] --format jpeg

7 endfor

Listing A.10: Script 4.

A.6.5 Script 5 - For loop with nested If construct

Script 5 is more complex than the previous ones: it makes use of a For loop which in

turn contains an If construct.

1 var i = 0

2

3 compile circuit.vhd

4 for [i] = 0; [i] < 3; [i] = [i] + 1

5 if [i] < 2

6 layout -d flat

7 simulate tb[i].vhd -r 10ps -o res[i].txt

8 else

9 layout -l

10 simulate tb[i].vhd -r 1ps -o res[i].txt

11 endif

12 export -n screen_[i] -f png

13 endfor

Listing A.11: Script 5.

76

A.6 – Writing scripts

List of figures

1.1 ToPoliNano workflow . 7

2.1 CLI naming conventions . 11

2.2 Command-specific help . 13

2.3 Command history . 14

2.4 Qt event queue . 17

2.5 CLI GUI elements . 18

2.6 CLI controller signals and slots . 20

2.7 Parser error . 25

2.8 Script-execution algorithm . 39

2.9 Test data . 40

2.10 CLIbackend test cases . 40

3.1 Example of preprocessed script . 42

3.2 Node naming conventions . 49

3.3 Example of tree from script . 52

4.1 No-GUI mode flags . 57

4.2 Calling a terminal command . 59

A.1 CLI naming conventions . 60

77

	Introduction
	Command-line interface
	Functional overview
	Designing the CLI
	Qt's signal/slot system
	GUI elements
	Controller
	Back-end

	Testing the CLI
	Meaning of software testing
	Performed tests
	Final words on testing

	Script preprocessor
	Functional overview
	Technical overview
	Designing the preprocessor
	namespace ScriptExt
	class Node
	class Symbol
	class SymbolManager
	class Toolkit
	class Tree
	Integration with the CLI

	Testing the preprocessor
	Testing class Node
	Testing class Symbol
	Testing class SymbolManager
	Testing class Toolkit
	Testing class Tree

	No-gui mode
	Functional overview
	Designing the no-GUI mode
	Replacing the GUI elements of the CLI
	Adding support for terminal commands

	CLI user manual
	Supported text commands
	"compile" keyword
	"layout" keyword
	"save" keyword
	"export" keyword
	"import" keyword
	"simulate" keyword
	"do" keyword
	"quit" keyword
	"clear" keyword

	Supported system commands
	Path types
	Program workflow
	Preprocessor features
	Variable definitions and usage
	Conditions
	While loops
	For loops
	If constructs

	Writing scripts
	Script 1 - Plain list
	Script 2 - Plain list with a nested script
	Script 3 - While loop
	Script 4 - For loop
	Script 5 - For loop with nested If construct

