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Abstract

The recent growth of the personal medical devices and the precision medicine markets
has renovated the interest in searching extremely low power signal acquisition solutions.
Biomedical applications, in fact, require battery-operated devices which, especially if
implanted in the patient, do not easily lend themselves to being recharged or replaced.

In the system-level design field, it is known that the performance gains achieved by a
certain solution are the largest the more abstract is the view on the system. That is why
the signal processing research community has spared no effort in finding alternative
sampling techniques which work at sub-Nyquist rates and still guarantee the correct
reconstruction of the original signal. Hardware architectures with these features are
called Analog-to-Information (A/I) Converters and are typically based on the theory of
Compressed Sensing (CS).

CS theory describes how a particular families of signals can be recovered from a
limited set of linear measurements, using a smaller number of samples than what would
be required by a Nyquist-rate approach. It potentially allows a signal acquisition rate
much lower than the Nyquist one, saving considerable energy and bandwidth. This is
indeed the defining feature of an Analog-to-Information converter.

In this thesis, a new A/I architecture is proposed. It is derived as an extension
of traditional charge-redistribution Successive Approximation Register (SAR) A/D
converters. By avoiding the introduction of additional power hungry, active elements,
it achieves a significant increase in efficiency with respect to other CS architectures
proposed in the literature.

The study of device non-idealities has lead to a robust topology, whose design consid-
ers as early as possible the actual limitations of the available technology. Several models
have been devised on the different circuital blocks, trying to make them as generally
applicable as possible. Algorithmic and circuital simulations have shown the ability
of the architecture to closely match ideal reconstruction performances, overcoming
the major drawbacks identified during the initial analysis phase, and achieving good
performance figures.
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Introduction

Signal acquisition is traditionally associated to the Shannon sampling theorem, which
defines a lower bound to the frequency at which signal samples are collected. Although
it is a general theory that only depends on the frequency spectrum of the signal of
interest, it results in a non-optimal bound for several signal families, requiring excessing
resources and resulting in unnecessarily high power consumption.

The theory of Compressed Sensing (CS) is an active research field in signal processing
which enables simultaneous sampling and compression of a broad family of signals.
Architectures employing this framework, thus working at a rate below the one defined
in Shannon’s theory, are called Analog-to-Information converters.

Since the work by Candès, Romberg and Tao, the engineering community has spared
no effort in the design of effective CS signal processing chains. Many solutions have
been proposed on CS theoretical aspects to make more efficient both the acquisition and
reconstruction more efficient, and results on CS-based sensing circuits/systems have
emerged, too.

Identifying discrete-time signals as vectors in x ∈ R
n, CS describes how the origi-

nal information vector x can be recovered from a limited set of linear measurements
y = Ax ∈ Rm, where the sensing matrix A ∈ Rm×n and m < n. The requirement
is for the signal to be sparse in a given basis, that is, to have only a few significantly
non-null coefficients in its representation. The number of measurements, smaller than
what required by a Nyquist-rate approach, potentially allows a signal acquisition rate
much lower than the Nyquist one, saving considerable energy and bandwidth.

In this thesis, a novel architecture is proposed. It relies on the capacitive array found
in traditional Successive Approximation Register (SAR) A/D converters. The advantage
is the possibility to perform all the operations of CS-based sensing (i.e., a single row-by-
column product of Ax and the digital conversion of the result) using the active elements
already present in the converter, with a significant increase in efficiency with respect to
other CS architectures proposed in the literature.

The underlying idea is to consider antipodal sensing matrices A ∈ {−1,+1}m×n only,
thus reducing the multiplications involved in the product Ax to trivial sign inversions.
Either x or −x is then sampled at different time instants on the capacitors of the SAR
array, and the sum is obtained by charge redistribution. The main issue is the limited
hold-time capabilities of the (small) capacitive cells, due to the leakage currents in
the pass transistors. Two approaches have been investigated to alleviate the problem:
modifying the sensing matrix A, making it block diagonal, and compensating the
information loss through a hardware feedback loop.
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Using a block diagonal sensing matrix, each row-by-column product involves only
a fraction of all the samples in a signal window. From a circuital point of view, the
advantage is twofold. Complexity of the array is reduced and the shorter acquisition
window relaxes the hold-time requirements. Since this might impair the reconstruction
quality, extensive software simulations have been performed to characterize the effect,
and to establish the proper range of block sizes that would result in good reconstruction
quality. Additionally, a low-power leakage compensation circuit, requiring a feedback
loop around every hold capacitor, has been introduced and studied both in the time-
domain and in terms of stability.

The thesis is divided in two parts. Part I is concerned with a system level description
of the mathematical theory underlying this work, as well as the description of the
proposed solution. Part II is entirely focused on the investigation of device non idealities
from a circuital point of view, leading to the definition of several design constraints.

In Chapter 1, the theory of sparse signal recovery and, by extension, Compressed
Sensing, is introduced. They are then applied to electrocardiogram (ECG) signals,
highlighting immediately the main limitations such signals pose on the acquisition
chain. The proposed A/I architecture is introduced in Chapter 2.

Part II starts with the analysis of the capacitive array employed in the proposed
architecture in Chapter 3, in particular with regards to the effects of parasitics. Chapter 4
is a brief review of the typical implementation of pass transistors in a switched-capacitor
circuit. In Chapter 5 the leakage compensator is introduced. Its time-domain description,
as well as the stability limits have been derived and its effect on the quality of the
reconstructed ECG signals is evaluated. Chapter 6 is concerned with the description
of the comparator and the derivation of the input-referred offset voltage. Finally, in
Chapter 7, the effect of layout strategies on the mismatch of identical integrated devices
is investigated through the use of a simplified statistical mismatch model.

Acknowledgements

Several people where involved, in a way or another, in the technical and personal
effort that this thesis has been. Though naming all of them would be impossible, the
contribution of some has to be recognized as being paramount in the achievement of a
(hopefully) successful outcome.

First of all the group of Prof. Setti, with Profs. Pareschi and Mangia on the first line
of attack against all possible setbacks and always present to direct the research effort
and change the course of action when appropriate. Then my colleagues and friends
(Andrea and Aldo, you belong here!), whose fruitful discussion have lead to interesting
implications. And finally my dear brother, always against my intuitive grasping of
concepts and lack of mathematical rigor, but always there when I needed to clarify my
mind when some subtle difficulty arised.

To all of you, thanks for being there in the moments of need and for stimulating me to

2



achieve higher goals!

3



Part I.

Analog-to-Information Conversion
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1. Compressed Sensing

Compressed Sensing (CS) is a signal processing technique able to reconstruct particular
signal families using far fewer measurements than what the Shannon sampling theorem
suggests. This chapter will delve into the mathematical theory of CS, explaining the
reasons of its effectiveness and discussing some theoretical bounds defining the limits
of applicability.

Rakeness-based CS is then introduced as a way to improve the performance of the
technique, evaluated in the case of electrocardiogram (ECG) signals. Finally, the use of
hardware-friendly sensing matrices will be analyzed in order to simplify the design of a
circuital implementation of a so called Analog to Information converter.

1.1. Why bother?

Whenever the need to acquire a continuous-time signal arises, Shannon sampling theo-
rem enters the discussion [1]. The theorem states that functions whose Fourier spectrum
is null above a certain frequency fmax, also known as the bandwidth or the Nyquist fre-
quency, can be described exactly from samples collected at least at twice that frequency.
As the operating speed of information-processing systems is increasingly higher, com-
plying with this bound becomes unfeasible because of technological limitations. At the
same time, the frequency domain is not necessarily the one that shows the most striking
features of a signal, since the true information rate might not be readily observable (a
fixed-frequency sine wave, does not provide new information over time, even if it is
varying continuously), leading to an unnecessarily high Nyquist bound. Weakening
such a constraint would lead to dramatic reduction of the resources employed.

The main advantage of the Nyquist-rate approach is that it is valid under general
conditions, i.e. for any signal having limited bandwidth. Therefore, once a system
has been designed to operate at a given sampling frequency, more often than not, it
can manage any signal whose Nyquist frequency is low enough. Furthermore, if the
sampling frequency fs is sufficiently larger than the Nyquist one (as a rule of thumb
fs > 10× fmax), a reasonable approximation of the original information can be recovered
by a simple linear interpolation.

In practice, any signal processing chain will be designed for a specific application.
The operating conditions, like the kind of signals involved, will therefore be known in
advance. Since some parameters already have to be matched to the specific properties
of the signals (e.g. the sampling frequency), one might ask if it couldn’t be possible
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1. Compressed Sensing

to further tune the system properties to take advantage of more prior information.
As an example, consider a pure sine wave at frequency f , Shannon theorem requires
a sampling frequency greater than 2 f to be able to recover the original information.
However, having prior knowledge of the fact that the signal is indeed a sinusoid, only
three measurements in total are sufficient to define its amplitude, frequency and initial
phase. Therefore including in the design of a signal processing chain information on the
properties of the signal family, the acquisition effort can be significantly reduced. What
Compressed Sensing achieves is to observe the signal in a different domain and, using a
property of the signal family called sparsity, work with far less scalars than what the
Nyquist constraint would require.

Compressed Sensing has been developed as an extension of the theories on the
recovery of sparse signals, with the distinction that CS processes the samples in a
domain where the signal is not sparse. Therefore we will first analyze the properties
and bounds involved in sparse signal recovery, later moving to the features of CS.

1.2. Sparse Signals Recovery

While we typically work on continuous-time signals, Compressed Sensing theory is
most simply understood in a discrete, finite-dimensional setting. In that context, signals
can be thought of as sequences of n Nyquist-rate samples, i.e. vectors in R

n. A basis
of such a space is the smallest set of vectors able to represent any other element by a
proper linear combination. Although the number of basis for a given space is unlimited,
each signal has a unique representation in any of them. If the matrix Φ ∈ R

n×n contains,
on its columns, the basis vectors, a generic element x of the space can be expressed as

x = Φξ. (1.1)

The vector ξ ∈ R
n is an equivalent way to look at the original vector. In geometrical

terms, the product in (1.1) is a change of coordinates. It preserves the informative
content, with the possibility to observe other features of the original vector.

The fundamental property required by the theory underlying Compressed Sensing is
sparsity of the signal. A vector in R

n is κ-sparse if the number of non-null coefficients is
κ ≪ n. In general, the linear combination of two κ-sparse vectors is at most 2κ-sparse,
since the non-null coefficients may occupy different positions. Knowing the sparsity
level of a vector, the quest is to reduce the number m of observations required to describe
it uniquely such that κ < m ≪ n, providing sufficient information to recover the original
data.

Consider ξ ∈ R
n as a κ-sparse sequence of length n. A measurement corresponds to the

linear combination of the n scalars in ξ, weighted by some ai coefficients, and resulting
in a single number

yj =
n

∑
i=1

aiξi j = 1, . . . , m.
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1. Compressed Sensing

In Nyquist-rate sampling, a measurement would correspond to a single sample, while
in this context it involves the processing of an entire window of length n. The evaluation
of m such measurements can be compactly written as

y = Aξ, (1.2)

where the ai coefficients are placed on the m rows of A ∈ R
m×n. The mapping described

by A is from the n-dimensional space to a lower dimensional one.
Recovering ξ from y is, in general, not possible since the dimensionality reduction

implies that multiple ξ map to a single y. Equivalently, this process corresponds to
solving an underdetermined system of equations which, according to Rouché-Capelli’s
theorem [2], has ∞n−p solutions, with p the rank of the matrix (the number of linearly
independent columns) and n − p being the number of free variables. Since p ≤ m, the
number of free variables is greater than or equal to n − m. In reality, by having prior
knowledge on the sparsity of ξ, uniqueness of the solution can in fact be guaranteed.

1.2.1. Uniqueness conditions

Intuitively, knowing that the ξ’s of interest are κ-sparse, any of them should be distin-
guishable from the others after the projection into the lower dimensional space. That is,
for any ξ1, ξ2, the difference ∆ξ = ξ1 − ξ2 observed in the target space has to be

∆y = A∆ξ ̸= 0.

The term ∆ξ is, in general, 2κ-sparse, and the non-null positions are unknown. Con-
sidering ∆y as the linear combination of columns of A, weighted by the coefficients in
∆ξ, we have to guarantee that any 2κ columns of A are linearly independent. This way,
there is no possibility of obtaining the null vector from the weighted sum of the matrix
columns and, as a result, any ξ is still distinguishable in the smaller, m-dimensional
space. Identifying uniquely the original ξ, starting from y, is then possible, with the
advantage of having to perform only m ≪ n observations.

This qualitative description can be formalized by introducing the concept of spark of
a matrix [3]. It is the maximum cardinality c such that any subset of c columns of A
contains only linearly independent elements Therefore, recovering uniquely a κ-sparse
vector ξ ∈ R

n from m linear observations (m < n) is possible if

κ = ∥ξ∥0 <
1

2
spark(A), (1.3)

where ∥ · ∥0 is the ℓ0 (pseudo)norm, equal to the number of non null coefficients in the
vector.

Under this uniqueness condition, the solution of (1.2) can be found through a mini-
mization process that looks for the sparsest ξ such that y = Aξ, i.e.:

argmin
ξ∈Rn

∥ξ∥0

s.t. y = Aξ. (1.4)
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1. Compressed Sensing

However, computing the spark requires a combinatorial search (NP-hard) over all
possible subsets to evaluate the independence of their elements. A more easily com-
putable index resulting in a uniqueness condition for the solution of (1.2) is based on
the concept of mutual coherence of the columns of A, defined as:

µ(A)
def
= max

i<j

⃓

⃓

⃓AT
i Aj

⃓

⃓

⃓

∥Ai∥∥Aj∥
,

where Ai represents the i-th column of matrix A. Mutual coherence is constrained in
the range 0 ≤ µ(A) ≤ 1. It is equivalent to the maximum cosine of the angle between
any two columns, corresponding to the smallest acute angle between them. A high
coherence is therefore equivalent to aligned vectors. From a different point of view,
considering the columns as random vectors, mutual coherence represents the maximum
correlation coefficient between the columns.

Since the mapping represented by A should store as much information as possible
with the lowest redundancy, we expect a low coherence to result in better performance.
Equivalently, the columns should be as orthogonal as possible or, looking at them as
random vectors, as uncorrelated as possible. Indeed the uniqueness condition in (1.3)
can be stated in terms of the mutual coherence index, becoming

∥ξ∥0 <
1

2

(︄

1 +
1

µ(A)

)︄

.

This theoretical bound, representing the range of sparsity for which a unique solution
can be found, is effectively increased by a lower coherence of A. However, since it can
be shown [3] that

spark(A) ≥ 1 +
1

µ(A)
,

the new bound is lower than the one based on the spark, thus it is applicable on a smaller
subset of vectors, which have to be even sparsest.

1.2.2. Numerically tractable recovery

Up to now we have used the sparsity level of the vectors, quantified by their ℓ0 norm,
to find the correct solution to the minimization problem. Such a computation requires,
however, a combinatorial search across all possible candidates and is not suitable for an
efficient numerical implementation. An important consequence implied by the mutual
coherence number is the equivalence of the result found by using the ℓ1 norm instead [3].
The ℓ1 norm corresponds to the summation of the absolute value of all vector coefficients
and it is the smallest-rank norm that is convex, therefore suitable for use in a numerical
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1. Compressed Sensing

implementation. The reconstruction in (1.4) then becomes:

argmin
ξ∈Rn

∥ξ∥1

s.t. y = Aξ, (1.5)

where the only change is the rank of the norm. In turn, this forces stricter conditions on
the sensing matrix A, which has to be generated with greater care.

Although this formulation leads to a (possibly) efficient numerical implementation,
empirical evidence shows that the sparsity range for which the unique solution can be
found is actually larger than what the mutual coherence implies. New indexes have
been proposed, the most popular one being the isometry constant, defined as the smallest
number such that, for all κ-sparse vectors ξ, the following property holds:

(1 − δκ)∥ξ∥2
2 ≤ ∥Aξ∥2

2 ≤ (1 + δκ)∥ξ∥2
2.

This condition is also referred to as the Restricted Isometry Property (RIP). It implies that
the projection into the m-dimensional space approximately preserves the norm of the
original vector.

Similarly to the reasoning on the meaning of the spark, the goal is to distinguish
any sparse ξ, therefore the distance ∆ξ should be preserved and the isometry constant
of interest is actually δ2κ. It can be shown that for δ2κ < 1, the ℓ0 minimization can
find the unique κ-sparse solution. The bound becomes δ2κ <

√
2 − 1 in the case of

the ℓ1 minimization, highlighting the fact that using a more convenient norm in the
optimization process requires a more careful design of the measurement operator A.

The three indexes introduced thus far can be linked. Indeed if δ2κ < 1, any subset of
2κ columns of A has linearly independent elements, therefore spark(A) > 2κ. Moreover,
the RIP of order κ is satisfied, with δκ ≤ (κ − 1)µ(A).

1.2.3. Sensing matrix design

The construction of the sensing operator A in order to achieve a small coherence or a
small isometry constant is of great concern. This would ensure a wide range of sparsity
in which a unique solution can be found. A deterministic process leading to matrices
with suitable properties would involve the solution of

argmin
A∈Rm×n

µ(A) or argmin
A∈Rm×n

δ2κ(A).

Both these problems do not lend themselves to an easy evaluation, being of combinatorial
nature. Indeed it can be shown that these properties hold with probability close to 1
for random matrices of size m × n [4]. In such matrices, each entry is a realization
of some random variable, with a chosen probability density function (e.g. Gaussian,
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1. Compressed Sensing

Uniform, Bernoulli). The simplest case is for the entries to be independent and identically
distributed (i.i.d.). Moreover, the number of measurements m cannot be too low. Indeed

m = O
(︃

κ ln
n

κ

)︃

,

where the proportionality depends on δκ. Still, since the lower bound on m could be
higher than what is actually required for correct reconstruction, the empirical study
of a reasonable range for m might be a suitable way to approach the problem at the
beginning.

An alternative way to look at the use of random variables is that this ensures a high
degree of spreading of the matrix columns in the signal space, with the further advantage
of being robust against the loss of part of the measurements.

1.2.4. Noisy measurements

All the previous theoretical guarantees have been obtained in the context of noiseless
measurements and exact κ-sparsity of the original vector. If any of these two conditions
is not met, we need to ensure that the tools developed so far can still provide the
expected results. Indeed, if the measurements vector is affected by a noise term η

y = Aξ + η,

the solution to the minimization problem is no more exact and (1.5) becomes

min
ξ∈Rn

∥ξ∥1

s.t. ∥y − Aξ∥2
2 ≤ ε

The solution ξ̂ has to result in a projection ŷ close to the measured one y, with its
uncertainty depending on the amount of noise ε(η). The same is true if the original
signal is not sparse but compressible, in which case most of its coefficients are small but
non-zero. Reconstruction based on sparsity won’t be able to result in the same exact
measurement acquired from the signal, but will be close enough.

Moreover, the uniqueness of the solution and the equivalence of the ℓ0 and ℓ1 min-
imization procedures no longer apply, but it can be shown that the RIP condition
guarantees robustness of the formulation against noise [3].

1.3. Enter Compressed Sensing

In the previous discussion, measurements were computed directly from sparse vectors.
In reality, sparsity is not necessarily observed in time domain, therefore if one wants
to apply the previous results, the observation have to be performed on x = Φξ, where
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1. Compressed Sensing

x ∈ R
n is a signal window containing n Nyquist-rate samples, Φ is the n × n sparsity

basis whose columns are the coordinate vectors of the space and ξ is κ-sparse. The
measurements vector y is obtained by applying a linear projection S ∈ R

m×n to the
vector x (containing the time-domain samples), such that

y = Sx = SΦξ.

It is the composition SΦ that has to satisfy the RIP of order 2κ. If the number of
observations m is sufficient, then a unique solution ξ can be found by the solving

argmin
ξ∈Rn

∥ξ∥1

s.t. ∥y − SΦξ∥2
2 ≤ ε

Then x can be recovered knowing Φ. The advantage introduced by Compressed Sensing
is the early reduction of the number of measurements to be acquired, thus avoiding the
need to collect every single sample. The Compression Ratio quantifies this gain, being
expressed as

CR
def
=

m

n
.

Since the conditions on A are actually posed on the product SΦ, but the matrix to
be designed is S, it is necessary to look into how the properties of S are carried over to
the compound operator. If Φ is orthonormal, then building S according to a Gaussian
distribution and satisfying the RIP will result in a product SΦ with the same properties
[3]. The same is true if the columns of S have low coherence to the columns of Φ. These
consideration can also be extended to sub-gaussian distributions [4].

1.3.1. Rakeness-based Compressed Sensing

Continuing along the path of specialization of the signal processing chain, a significant
improvement in reconstruction performance can be achieved by observing another
feature of the signal family. Intuitively, once the sparsity basis has been identified,
not necessarily the coefficients associated to each basis vector have the same average
length, i.e. energy. Equivalently, the signal instances in the n-dimensional space are
not uniformly spread, but concentrate along some of the directions. By focusing the
measurements on the more energetic directions, the average energy collected (raked)
by each measurement can be maximized, with a significant gain in the quality of the
reconstructed signal.

The quantity measuring the distribution of energy across the basis vectors is named
localization [5] and it represents, together with the sparsity level, an additional prior to
the reconstruction process. Its effect is observed on the correlation profile of the sensing
matrix rows:

CS =
1

2

(︃

Cx

tr(Cx)
− In

n

)︃

,
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1. Compressed Sensing

where In is the n × n identity matrix, tr(·) the trace operator and Cx = E[xxT] the
expected correlation profile of the signal. Cx can be evaluated either having a model
of the signal (and running some Monte Carlo simulations) or having acquired a large
dataset of signal waveforms.

This simple modification to the generation of the sensing matrix leads to dramatic
improvements in the reconstruction quality, therefore becoming essential to minimize
the necessary resources.

1.4. Sensing of ECG signals

The application of interest for this work is the acquisition of ECG signals. Applying CS
techniques to this kind of signals requires the determination of the right sparsity basis,
the optimal window length so that a sufficient level of sparsity is actually observed and
finally the spreading of energy across the basis vectors (localization). Such properties
cannot be evaluated analytically.

The most important feature we are looking for in a candidate basis is the sparse
representation of the signal. According to results published in [6], the Symmlet-6 basis
is a suitable candidate. Fig. 1.1 shows the shape of the mother wavelet and the two
lowest order siblings for such a basis [7]. It is clear why ECG-like signals can be sparsely
represented in terms of these functions because of their mutual resemblance.

❋✐❣✉r❡ ✶✳✶✳✿ Symmlet-6 basis functions. Mother wavelet (darkest) and first two siblings.

By considering each window of the signal as the realization of a random process, it
is clear that sparsity will be a random variable with some probability distribution. By
choosing a proper size for the signal window, the variance of such a variable can be
reduced, obtaining consistent quality on any window. Intuitively, if the window to be
processed is too small (less than a period of ECG), than the signature features of an
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ECG waveform are lost and the representation of some sequences (the most relevant
ones) might not be sparse anymore. A size of at least one ECG period is thus required.
Since sparsity is dependent on the time duration of the window (at least one period),
the number n of values processed by the CS acquisition has to be related to the sampling
frequency, i.e. the number of signal samples in a window of a specified duration. The
results in [8] show that n = 256 is a good compromise between complexity of the
reconstruction (which scales as n2), if the sampling frequency is at least 256 Hz.

The instances of ECG signals used in this work have been generated according to the
model defined in [9]. In Fig. 1.2 is depicted one ECG period against the reconstructed
waveforms obtained using standard and rakeness-based CS, with n = 256 and increasing
compression ratios.

❋✐❣✉r❡ ✶✳✷✳✿ Reconstructed ECG for different compression ratios, against the original waveform.
Comparison between standard CS (green) and rakeness-based CS (blue).

As CR is increased, the reconstructed waveforms are affected by an increasingly higher
level of noise. The ones obtained using rakeness-based CS still allow a clear distinction
of the main peak even at high compressions. In applications where it is only necessary

13



1. Compressed Sensing

to evaluate the cardiac frequency, this result might be sufficient.

1.5. Designing Efficient Sensing Matrices

An efficient sensing matrix is one that leads to a simple hardware realization of the
acquisition process. Since CS is more advantageous the closest it is applied to the
signal source, this means having to work in the analog domain. Therefore, having
floating-point matrix entries would require, apart from a way to generate said values,
the introduction of analog multipliers in the acquisition system, both power hungry and
limited bandwidth.

The use of antipodal and ternary matrices, instead would only require sign inversion
of the signal, being the values of Ai,j constrained to the set {−1, 0, 1}. We refer to [5] for
ways to generate antipodal sequences with a prescribed correlation profile. Here we
will only observe numerical results that take advantage of said simplification.

Other than limiting the set of coefficients to be used, a further improvement would be
to modify the structure of the sensing matrix in order to reuse the hardware resources.
Using block diagonal matrices (Fig. 1.3), each block would process independent parts of
a signal window. Therefore the same hardware could be shared among the blocks, being
them orthogonal in time. If the blocks have size mb × nb, the same resources are used
n/nb times. At the end of each block, the measurements are evaluated and the hardware
can start to process the following block of coefficients.

❋✐❣✉r❡ ✶✳✸✳✿ Full 8 × 16 random matrix (left) vs block diagonal antipodal matrix (right).

As the blocks are made smaller, the number of zeroes in the matrix increases, complexity
of the hardware is reduced, though at the cost of quality as shown in Fig. 1.4, where
the Reconstruction Signal-to-Noise Ratio (RSNR) quantifies the performance of the CS
reconstruction. It is defined as:

RSNR[dB] = 20 log10

(︄

∥x∥2

∥x̂ − x∥2

)︄

This parameter compares the energy of the original signal to that of the error with respect
to the reconstructed one. The plot shows the Average value of the RSNR (ARSNR)
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❋✐❣✉r❡ ✶✳✹✳✿ Performance of a CS-based signal processing chain in terms of ARSNR as a function
of CR. Synthetic ECG signal at approx 60 beats/s, sampled at 256 Hz and using
n = 256.

observed over 10000 Monte Carlo trials, where additive noise has been introduced to
model non-idealities, starting from an intrinsic SNR of 50 dB. As expected, a higher
nb results in a better quality of reconstruction, with the full matrix providing the best
possible outcome.

The choice of nb involves considerations of several parameters involved in the hard-
ware design. The choice of a proper value will therefore be delayed until the architecture
will be defined and some other phenomena observed.
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2. Charge Redistribution A/I Architecture

As shown in the previous chapter, Compressed Sensing specializes the sampling opera-
tion, matching it to the properties of the signals to be acquired. Here we will propose a
low-power analog implementation of the sensing process. It is based on a successive
approximation register (SAR) A/D architecture because of its already low energy con-
sumption and the relative ease in adapting it to the requirements dictated by CS. The
goal is to perform the matrix-vector product y = Sx in the analog domain, maximizing
the use of the passive structures already found in the A/D converter.

First, we will describe the behaviour of the SAR algorithm, followed by the analysis
of a switched-capacitors implementation. The modifications applied to the traditional
structure are then discussed, highlighting the need to take care of several nonidealities.

2.1. Where to Apply Compression

Compressed Sensing condenses all the meaningful information carried by a signal
in as few measurements as possible. However, it can be applied in different points
along the signal processing chain, each resulting in its own hardware requirements.
Fig. 2.1 shows the main blocks of a typical A/D signal processing chain, highlighting
the interfaces at which compression can be performed in order to obtain the desired
Analog-to-Information conversion.

The first possibility (Case A) is to work in the continuous-time analog domain. The
sensing operation is described by an operator Aj{x} performing a transformation on the
input. The most general case involves a modulating function continuous in amplitude,
thus requiring some kind of analog multiplier. However working in continuous time,
active circuits are required to realize Aj, leading to a significant increase in power
consumption. This “CS-first” signal processing chain becomes interesting at extremely
high frequencies, where even sampling the input at Nyquist-rate becomes difficult. In
that case the compression introduced by CS directly translates to a reduction of the
switches’ operating frequency.

If instead the input is sampled first (Case B), compression can still be applied in the
analog domain. Having discrete-time samples, the transformation becomes a modula-
tion of the input x by some coefficient vectors Aj. With the same considerations as in
Section 1.5, the modulating coefficients can be limited to being ±1, realizing the product
as a sign inversion. The sum of the partial terms Aj,kxk involved in the matrix-vector
product can be implemented, other than using a discrete time integrator, with an entirely
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x(t) A sampling B quantization C Q(y j)

Case A: x(t) A j{x}
sampling

Tw

quantization

Q(·)
Q(y j)y jy j(t)

Case B: x(t)
sampling

T
A j,·

quantization

Q(·)
Q(y j)x y j

Case C: x(t)
sampling

T

quantization

Q(·)
A j,· y j

x Q(x)

❋✐❣✉r❡ ✷✳✶✳✿ CS along the signal processing chain (reported with permission from [5])

passive solution, as shown in this work. The input switches still work at Nyquist-rate,
but A/D conversions are performed only at the end of an acquisition window and
extremely low power consumption can be achieved.

The final solution (Case C) involves a digital compression, with no modifications of
the ADC block, which generates digital values as usual.

We will focus our discussion on the second solution. Since the core of the architecture
is its A/D converter, we will start by describing the conversion algorithm of choice and
the traditional topology typically employed in that context.

2.2. Successive Approximation Conversion

The successive approximation algorithm allows the conversion of an analog value in
digital form by performing a sequence of comparisons of the input against an adaptive
reference [10]. The reference is updated across several cycles, until the required accuracy
is reached. If the steps’ height decreases as a power of two, a resolution of N bits is
achieved in N cycles. A high-level view of the circuit blocks involved in such a con-
version is depicted in Fig. 2.2a, with the time-domain behaviour of the most important
signals in Fig. 2.2b.

The input signal is sampled so that a constant value is used during the entire conver-
sion. The signal sample is compared against a time-variable reference voltage whose
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❋✐❣✉r❡ ✷✳✷✳✿ a) Elements of a SAR A/D architecture. b) Signal waveforms during conversion.

evolution depends on the sign of the previous comparison. If the reference voltage was
lower than the input sample, the reference is increased and viceversa.

The outcome of the comparison is stored in a digital register, starting from the Most
Significant Bit (MSB) at cycle 1 and moving towards the least significant ones as con-
version goes on. The register content is initially reset and represents, over time, the
always-improving approximation of the input signal, hence the name of Successive
Approximation Register (SAR) converter. The analog equivalent of the register content
becomes, through a D/A conversion, the comparator reference. Fig. 2.2b clearly shows
how the difference between the DAC voltage and the signal sample progressively de-
creases, beginning from the assertion of the Start-of-Conversion (SOC) signal. It is also
possible, as it happens in the figure, that the final error is not the minimum one (which
in the example is achieved at the cycle before the last), though it is guaranteed to be
below the quantization error by the end of the conversion.

The most critical element required by the A/D converter is actually the D/A con-
verter embedded in it. A popular solution in CMOS technology is to employ switched
capacitors, both because of the good technological properties of switches and capacitors
in CMOS processes and for the absence of static currents.

2.2.1. Scaled Capacitive DAC

In a low-power CMOS-based implementation, the D/A element is typically based on a
scaled capacitive array (Fig. 2.3). Apart from the advantage of being completely passive,
it allows the embedding of the sample and hold component with the adaptive reference
generation, both required by the SAR algorithm.

In its simplest form, the array is built as a ladder of capacitors, scaled according to
powers of two and sharing the top node. The voltage at this node is observed by the
comparator to generate the decision in the SAR algorithm. During the conversion each
capacitive element is driven, sequentially, to either the positive or negative voltage
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Cp Vcmpvtop

❋✐❣✉r❡ ✷✳✸✳✿ Embedded sampler and D/A converter using a scaled capacitive array. Parasitics
are greyed out.

reference, until all bits have been generated.
The sequence of operations starts with sampling. Two alternatives exist on how to

manage the array in this phase, namely top- and bottom-plate sampling. Only the
latter is applicable in the proposed solution because of the modifications required to
implement a CS-based acquisition. The most significant difference between the two
techniques concerns parasitics. In bottom-plate sampling they introduce a constant
attenuation that can be easily compensated for and does not affect the linearity of the
conversion.

The input signal is sampled in the array by holding the top plates at ground (SW0

closed) and driving simultaneously all the switches on the bottom plates to the input
(selectors in Fig. 2.3 on the rightmost position). The capacitance seen from the input
is that of the entire array (Fig. 2.4a). SW0 is then opened, isolating the top plates
(Fig. 2.4b) and all the capacitances are grounded. This stored charge makes the D/A
conversion signal dependent, as required by the SAR algorithm, but using a single
structure. Therefore only one comparator input is occupied and the other can be set to
a constant voltage, as shown in Fig. 2.3. The actual conversion starts after driving all
bottom plates to ground, with the top plates allowed to float.

4Cu4Cu8Cu8Cu8Cu

bNVre f

16Cu

Vin

16Cu

bNVre f bN−1Vre f

(a) (b) (c) (d)

vtop

Qs Qs Qs

❋✐❣✉r❡ ✷✳✹✳✿ Capacitive array during: a-b) sampling, c-d) conversion. The charge in the isolated
node remains constant across the operations.

Using the notation v[n]
de f
= v(ntclk), where n represents the conversion cycle and tclk the
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time required by each step, the initial array voltage can be expressed as

vtop[0] = −Vin

and the most significant bit bN , considering a bipolar representation where bi ∈ {−1,+1},
is obtained as

bN = sign
(︂

vtop[0]− Vcm

)︂

.

In the circuit in Fig. 2.3 Vcm corresponds to the ground potential. If vtop is lower than the
common mode level, bN = −1 and the array voltage has to be increased to get closer
to the common mode. The value of bN determines the connection of the MSB capacitor
to either V+

re f or V−
re f resulting in a new array voltage. This value can be derived by

considering the fixed charge stored on the top plates and the new connection of the
largest capacitor.

The array can be grouped into two elements, CMSB = 8Cu and Crem = 8Cu, such that
CMSB + Crem = Ctot = 16Cu (Fig. 2.4c). Forcing the conservation of charge, we obtain

−VinCtot =
(︂

vtop[1]− bNVre f

)︂

CMSB + Cremvtop[1]

and consequently

vtop[1] = −Vin + bN
CN

Ctot
Vre f = −Vin +

bN

2
Vre f .

Since the MSB capacitor represents half the total capacitance, the array voltage changes
by half the reference voltage.

For the second bit:

−VinCtot =
(︂

vtop[2]− bNVre f

)︂

CMSB +
(︂

vtop[2]− bN−1Vre f

)︂

CMSB−1 + Cremvtop[2].

Coherently with the fact that the (MSB-1) capacitor has one fourth of the array capaci-
tance, the voltage becomes

vtop[2] = −Vin +

(︃

bN

2
+

bN−1

4

)︃

Vre f .

As conversion proceeds, new bits are generated, each of them determining the position
of one selector. Since the capacitors have values that decrease as powers of two, every
new bit leads to an increasingly smaller variation of the array voltage. At the end of the
conversion

vtop[N] = −Vin +
bNCN + bN−1CN−1 + · · ·+ b0C0

Ctot
Vre f

= −Vin +

(︃

bN

2
+

bN−1

4
+ · · ·+ b0

2N+1

)︃

Vre f . (2.1)
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The fact that the number of terms in (2.1) is N + 1 whereas the capacitors are N stems
from the fact that the first bit is generated by grounding all the array elements, and
the remaining N by acting on the capacitors (the closure capacitance of value Cu is
excluded from the count since it is introduced only to have power-of-two coefficients
and is unused during conversion). The quantization error is therefore bounded by

|εq| <
1

2N+1
Vre f .

As N is increased, the error is reduced and the approximation improves. However, every
new bit introduces a capacitance equal to the one of the entire array, with an exponential
increase of both the area and the power consumption. The total capacitance is in fact

Ctot = 2NCu.

As a consequence, also the impedance of both the source and the switches has to be
extremely low to avoid slow transients.

2.2.2. Split Array and C-2C

The greatest concern as resolution is increased is matching of the capacitive elements,
since the operations of the DAC depend inescapably on exact ratios of capacitance. As
larger capacitors are added to introduce new bits, guaranteeing the accuracy of the
ratios becomes problematic. Therefore alternative topologies have to be considered to
increase the resolution. Two structures typically employed are the split array and the
C-2C sub-array (Fig. 2.5).

In the scaled capacitive array considered in the previous section, all the capacitors
shared the top node. If a series element (bridge) is introduced, the array is split. Between
the two top nodes now present, only one needs to be grounded during sampling and
subsequently observed by the comparator. In Fig. 2.5a it is the left node, since the closure
element Cu is on the right-hand side.

Looking from the comparator input, the capacitance on the other side of the bridge is
attenuated, acting as an equivalent smaller elements. However, the capacitances in the
secondary array have values already used in the main one. The range of capacitances is
thus limited and matching can be guaranteed more easily. Eventually the entire primary
array, having Np bits could be replicated, doubling the resolution while doubling the
area and total capacitance 2Np+1Cu + Cb. The same resolution increase, using exclusively
a scaled array, would require a capacitance 22Np Cu, the square of the original one.

The value of bridge capacitance making the secondary array look as an extension of
the scaled array is derived by considering that its total capacitance Csec = 2Ns Cu in series
with Cb has to equal Cu (to have a total capacitance, as seen from the input, expressed as
a power of two). Therefore

Cb =
2Ns

2Ns − 1
Cu.
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❋✐❣✉r❡ ✷✳✺✳✿ a) Split array with unequal sections b) Mixed-type array: scaled plus C-2C sections.
The comparator in both cases would be connected to the same node as leftmost
switch.

The values of bridge capacitance are not integer multiples of the Cu, requiring a careful
layout. The procedure could be repeated even more than once, adding several bridges.
However, having non-integer multiples of Cu and introducing at the same time many
isolated nodes reduces the achievable accuracy, making the structure extremely sensitive
to injected noise and parasitic loading, with detrimental effects on the conversion quality.

Notwithstanding this last consideration, the structure that minimizes the total capaci-
tance and that has been actually considered in the proposed solution is the mixed-type
array, employing a C-2C topology. It involves the cascade of several capacitive dividers,
with values 2Cu and Cu and loading the original scaled array. One cell per each new bit
is introduced, with a final closure capacitance equal to Cu. In Fig. 2.5b, two C-2C cells
are added to the original scaled array. The total capacitance expressed as a function of
the number of bits in the sub-array is:

CC2C = (3N + 1)Cu

This is lower than in a scaled implementation if N ≥ 4. Moreover, requiring only two
values of capacitance, high matching can be easily achieved.

The downside of this solution is the presence of the many isolated nodes. What
will be shown in Section 3.2 is that the amount of parasitics loading the internal nodes
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determines the maximum number of bits achievable with such a structure. This is the
main limitation preventing the realization of the entire array as a cascade of C-2C cells.

Evaluation of the array voltage in both the split and C-2C solutions, as already
done in (2.1) for the scaled topology, is slightly more complicated. However, using
superposition and considering the expression of a capacitive voltage divider under the
assumption of no net charge in the hidden isolated nodes, the result can be obtained.
Indeed the expressions in the case of the C-2C-based mixed-type array will be derived
in Section 3.1.1.

2.3. Capacitive Array for CS-based Acquisitions

The focus of this section is on the modifications to be applied to the mixed-type capacitive
array (Fig. 2.5b) in order to implement the linear projection y = Sx involved in a CS-
based acquisition. Component-wise, the product can be formulated as:

yj =
n

∑
k=1

Sj,kxk j = 1, . . . , m, (2.2)

where Sj,k is the element at the intersection of the j-th row and k-th column of the sensing
matrix, xk is a signal sample and yj is a measurement. Equation (2.2) requires m replicas
of a multiply-and-accumulate stage. The product between matrix elements and signal
samples can be trivially implemented only if the coefficients belong to {−1, 0, 1}. In a
differential implementation, in fact, multiplication by −1 only requires the inversion
of the signal polarity, easily manageable with four switches in total. The modulation
coefficients can be provided from an external source, can be generated in advance and
stored in an on-chip memory, or created using a pseudo-random generator followed
by a proper filter that shapes the correlation of the terms. Refer to [5] for how to obtain
sequences with specific second order statistics.

Concerning the summation of the modulated samples, one approach could be the
use of a switched-capacitor, discrete-time integrator, as already done in previous imple-
mentations like [11]. The major drawback is the power consumption of the operational
amplifier required by each integrator. Moreover, the voltage can saturate for some
sequences of input values and modulating coefficients, leading to a loss of information
on the measurements unless some ad-hoc technique is employed. Both these issues are
avoided by the use of a completely passive solution.

Consider what happens when n identical capacitors of value Cs, precharged at dif-
ferent voltages vk, are later connected in parallel. The voltage across all of them can be
expressed as:

v =
Qtot

Ctot
=

1

nCs

n

∑
k=1

Csvk =
1

n

n

∑
k=1

vk (2.3)
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We get the average of the initial voltages. Apart from the scaling factor 1/n, and if we
consider each vk as a modulated input Sj,kxk sample, this is exactly what (2.2) requires.
This behaviour can be obtained from the capacitive array if the capacitors do not sample
the input at the same time. The array has to be decomposed into elements of uniform
capacitance, each acquiring a modulated sample at different instants.

Starting from the original structure of the array, depicted in Fig. 2.6 (top), this means
that the total capacitance Ctot has to be decomposed into elements of value Ch = Ctot/n.
If n is a power of two, Ch is a multiple of the unitary capacitance. In general, having
Cu < Ch < Ctot, the MSB capacitors have to be decomposed into smaller elements, while
the LSB ones are driven together, sampling at the same instant and acting effectively as
a larger element. Fig. 2.6 shows exactly how the 4Cu element is split in half, while the
entire C-2C array, which from the perspective of the input behaves as a capacitance of
value Cu, is collected with the smallest scaled capacitor to form a sampling element of
value 2Cu.

Cu

2 × 2Cu

2Cu

V+
re f

V−
re f

Vin

CuCuCu

2Cu 2Cu

SW0

2Cu

V+
re f

V−
re f

Vin

2Cu 2Cu2Cu
SW0

Logic

Logic

❋✐❣✉r❡ ✷✳✻✳✿ A/I converter employing a mixed-type capacitive array during conversion (top)
and sampling (bottom).

The acquisition now lasts for an entire signal window, i.e. n samples are collected
at Nyquist rate. At each sampling instant, one capacitive hold element stores the
modulated signal. At the end of the window, the top plate is left floating (SW0 opened)
and the bottom plates are grounded (through the selectors). The array voltage observed
by the comparator becomes the average of the sampled values, as in (2.3). Conversion
then proceeds as usual, with the sub-elements belonging to a large capacitor driven
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together so that they behave as the original component. Apart from a modification in
the timing of the control signals, the only addition is new selection switches to each
capacitor to be decomposed (4Cu in the example). This is indeed why this solution looks
promising. There are no extra active elements affecting the overall power budget.

In the example shown in Fig. 2.6, the C-2C array has not been decomposed. It is
the preferred solution since this kind of structure has very sensitive internal nodes,
which are better left untouched. Only Ch ≥ Cu is then possible. Therefore the entire
array is always considered, as seen from the input, as a unique capacitance of value
Cu. If Ch = Cu the array is driven as an independent element. If instead Ch > Cu then
it is combined with some of the smallest scaled capacitances to form one entire hold
capacitor.

2.3.1. Acquisition with leaky elements

The converter in Fig. 2.6 implements one row of the sensing matrix, therefore, if the
matrix S ∈ R

m×n is full, m converters are required, each with the ability to decompose
its internal array into n elements. With a CR in the range [2 : 16] and n = 256, the
number of channels m will be comprised in [16 : 128].

A large n leads to the decomposition of the capacitors into extremely fine elements,
leading to particularly small values of the hold capacitance. At the same time, samples
have to be preserved until the end of an acquisition window, which for ECG-type signals
is around one second long. Since capacitors discharge over time because of leakage
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❋✐❣✉r❡ ✷✳✼✳✿ ARSNR after leakage

currents induced by the sorrounding elements, we expect that using a full matrix is
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unfeasible. This is indeed what the curves in Fig. 2.7 show: all the information is lost
before conversion and the result from reconstructing the original waveform is only noise
(ARSNR < 0).

The curves are obtained assuming the discharge of the hold capacitors by the reverse
saturation currents of the switches’ junctions. Using data from a commercial 180 nm
technology, the leakage current due to a set of minimum size switches has been estimated
to be 300 pA. As an example, starting from an initial voltage of 1.8 V a hold capacitor of
1 pF is completely discharged after 6 ms, much less than the length of an ECG window,
which spans around 1 s.

Using a block diagonal sensing matrix, the A/I converter works on nb < n samples.
Moreover, keeping a constant Ctot both to have the same power consumption and area
occupation of a single converter, each hold capacitor is now larger. The combination of a
shorter window and a larger capacitance leads, as shown by the lighter curves in Fig. 2.7
to a higher reconstruction quality. However we still have ARSNR < 0, i.e. mainly noise.

This result is the reason behind the introduction of a compensation loop around
every hold capacitor, so that the acquired samples can be preserved until the end of the
acquisition window, which, in any case, should not be excessively long.
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3. Limitations of the C-2C Array

As described in Chapter 2.3, the capacitive array is at the core of the proposed A/I
converter. It is used to collect and store several modulated samples of the input signal,
combine them and convert the result. All these operations rely on the redistribution of
the charge stored in the isolated nodes.

To increase the resolution of the conversion, we have shown that the most efficient
solution is to cascade a C-2C sub-array to the smallest scaled capacitor. This structure,
however, introduces secondary isolated nodes which are particularly sensitive to injected
noise and parasitic loading. Figure 3.1 shows a 3-bit C-2C structure loading a scaled
array, which has been compacted into one single capacitance Csc. In this section, the
smallest element of the scaled array is considered as part of the C-2C structure. Each
isolated node has been named as Ni and all the parasitics have been highlighted.

Ci,0Csc CcCi,2Ci,1

Cb,1 Cb,2

Cp,1 Cp,2

in0 in2in1

Cp,0

N0 N1 N2

❋✐❣✉r❡ ✸✳✶✳✿ Schematic of a 3-bit C-2C sub-array. The elements are (nominal value in parenthesis):
input capacitors Ci (Cu); bridge capacitors Cb (2Cu); parasitic capacitors Cp (0);
equivalent capacitance of the scaled array Csc (2Cu + 4Cu + · · · ); closure capacitance
Cc (Cu)

In order to evaluate the maximum depth of the C-2C structure, the effects of parasitics
and mismatch have been analyzed, obtaining a design constraint on the maximum
extension of the sub-array i.e. the number of bits.

3.1. Complete model

Since the SAR algorithm evolves according to the voltage of the main isolated node N0,
the effect of any non-ideality has to be observed from such node.

Consider each capacitor described by its nominal value plus an error term due to
imperfections. The error term is called ε for the input capacitors and εb for the bridge
capacitors. Furthermore the metal plates used to realize the devices couple to the external
environment, resulting in some parasitic loading of the inner nodes, here expressed
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3. Limitations of the C-2C Array

as a fraction α of the unit capacitance. The parameters involved in the analysis are
summarized below:

n : inputs of the C-2C array Csc = 2C + 4C + · · · (scaled capacitance)

i : section index, [0 : n − 1] Ci,i = Cu(1 + ε i)

Ni : isolated nodes Cc = Cu(1 + εn)

ini : input nodes Cb,i = 2Cu(1 + εb,i)

nsc : scaled (Csc) inputs Cp,i = αCu (3.1)

A note on the nsc parameter. It represents the number of scaled capacitors, if present,
starting from the term 2Cu (the Cu capacitor now is considered part of the C-2C sub-
array). If the C-2C structure works in isolation, then Csc and nsc are both zero. The
effects of a voltage applied to one input of the C-2C sub-array depends on the amount
of scaled capacitance loading node N0, thus the need to consider it.

As a voltage is applied to the input nodes, the variation observed at N0 depends on
the topological distance of the input from N0, coherently with the fact that each input
represents a different bit position. In the presence of non-idealities, the attenuation
will be affected by the errors of all the components in the array, each weighted by
some coefficient depending on the distance from the nodes. Only by deriving the exact
equations describing the structure each single effect can be quantified.

3.1.1. Nominal bit weights

The initial analysis will lead us to the nominal value of the attenuation Ri,0 from a
generic input ini to the main isolated node N0, so as to determine what the comparator
will observe when a voltage variation is applied at the input terminals. The attenuation
can be decomposed in two terms. The first considers the capacitive partition from ini to
Ni, the second from Ni to N0. This, in turn, is due to the cascade of attenuators from Ni

to Ni−1 to Ni−2 until N0. Therefore:

Ri,0
def
= Rini ,Ni

RNi ,Ni−1
RNi−1,Ni−2

· · · RN1,N0
. (3.2)

The attenuations between adjacent isolated nodes and from the input to its closest inner
node are shown in Table 3.1 and Table 3.2.
The symbol ⊕ describes the harmonic sum of the two operands, defined as:

x ⊕ y
def
=

1
1
x + 1

y

=
xy

x + y

and refers to the series connection of capacitors.
The overall attenuation Ri,0 defined in (3.2) is given by the product of all the rows

in Table 3.1 starting from the first, up to the one of RNi ,Ni−1
times the row of Rini ,Ni

in
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3. Limitations of the C-2C Array

❚❛❜❧❡ ✸✳✶✳✿ Attenuation felt by a voltage as it propagates from one isolated node to the next,
towards N0. Results shown for the first 3 nodes.

Attenuation Definition Result

RN1,N0
2C

2C+C+Csc

2
1+2nsc+1

RN2,N1
2C

2C+C+2C⊕(C+Csc)
2 1+2nsc+1

1+5·2nsc+1

RN3,N2
2C

2C+C+2C⊕(C+2C⊕(C+Csc)
2 1+5·2nsc+1

1+21·2nsc+1

❚❛❜❧❡ ✸✳✷✳✿ Attenuation felt by the input voltage, observed from the closest isolated node.
Results shown for the first 4 inputs.

Attenuation Definition Result

Rin0,N0

C
2C+Csc

1
2nsc+1

Rin1,N1

C
C+C+2C⊕(C+Csc)

1+2nsc+1

2nsc+3

Rin2,N2

C
C+C+2C⊕(C+2C⊕(C+Csc))

1+5·2nsc+1

2nsc+5

Rin3,N2

C

C+C+2C⊕
(︂

C+2C⊕(C+2C⊕(C+Csc))
)︂

1+21·2nsc+1

2nsc+7

Table 3.2. In the first table, the numerator of each row cancels the denominator of the
previous one, leaving as a result 2i divided by the last denominator. In turn, this term is
exactly equal to the numerator of the corresponding row in Table 3.2, leading to

Ri,0 =
2i

2nsc+2i
=

1

2nsc+i
(3.3)

This proves the fact that the weights of the C-2C inputs decrease as powers of two
(dependence on 1/2i), with the absolute attenuation depending on how big is the scaled
array. Including all the non-idealities would allow us to obtain the exact equations
describing the behaviour of the structure. Since this process is tedious and error prone,
an algorithmic solution has been preferred.

3.1.2. Algorithmic derivation of the complete model

To derive the array equations for an arbitrary number of inputs, the model depicted
in Figure 3.2 has been analyzed. It decomposes the equivalent capacitance seen from
one node into the left-hand component CL, the right-hand one CR, and the parasitic Cp,
input Ci and bridge Cb capacitances. These last three terms are represented with their
respective errors ε, εb and α (Cp by itself is an unwanted component, entirely).
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3. Limitations of the C-2C Array

Ci,i−1Csc Ci,i+1Ci,i

Cb,i Cb,i+1

Cp,i Cp,i+1

ini−1 ini+1ini

Cp,i−1

Ni−1 Ni Ni+1

CR,i+1CR,iCL,iCL,i−1

❋✐❣✉r❡ ✸✳✷✳✿ Capacitances in a generic section of a C-2C array

The equations describing one section are:

CLi
= (CLi−1

+ Cini−1
+ Cpi−1

)⊕ Cbi

CRi
= (CRi+1

+ Cini+1
+ Cpi+1

)⊕ Cbi+1

RNi ,N0
= RNi ,Ni−1

Cbi

Cbi
+ CLi−1

+ Cini−1
+ Cpi−1

Rini ,N0
= RNi ,N0

Cini

Cini
+ CLi

+ CRi
+ Cpi

The model is recursive, since the relationships at one node are defined on what happens
at the adjacent node, with the elementary conditions:

CL0
= Cs

CRn = Cc

The pseudocode describing how to evaluate every term is shown below. Any symbolic
manipulation library can be used to implement it (e.g. s②♠♣② for Python).

■♥✐t✐❛❧✐③❡ Cini
✱ Cbi

❛♥❞ Cpi
❛❝❝♦r❞✐♥❣ t♦ (3.1)

CL0
= Cs

CRn−1
= Cc

RN0,N0
= 1

❢♦r ✐ ❂ ♥✲✷✿✵

❝♦♠♣✉t❡ CRi

❢♦r ✐ ❂ ✶✿♥✲✶

❝♦♠♣✉t❡ CLi

❝♦♠♣✉t❡ RNi ,N0

❝♦♠♣✉t❡ Rini ,N0

❝❛♥❝❡❧ s❡❝♦♥❞ ♦r❞❡r t❡r♠s

The resulting attenuations will be expressed as a fraction whose numerator and denomi-
nator are first order approximations of the real ones. Assuming small errors (ε, εb and α),
as desirable, this is a reasonable approximation. Each component will thus be expressed
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3. Limitations of the C-2C Array

as the nominal value plus three error terms, the first due to mismatches (ε and εb), the
last to parasitics (α):

Ri,0 =
vN0

vini

≈ 1

2Ns+i

1 +
n

∑
j=0

(︂

kε
i,jε j + kεb

i,jεbj + kα
i,jαj

)︂

1 +
n

∑
j=0

(︂

hε
i,jε j + hεb

i,jεbj + hα
i,jαj

)︂

(3.4)

The coefficients ki,j and hi,j represent the weight by which every non-ideality in position
j in the array affects the result, when the input is applied at i. Since the error components
have different nature we will deal with them separately.

3.2. Effects of parasitics

The first order approximation of the attenuations from inputs ini to the main isolated
node N0, considering only the effects of parasitics and for a few sizes of the array are
shown in Table 3.3. X represents the total scaled capacitance, normalized with respect to
the unitary capacitance, i.e. X = Csc/Cu = 2nsc+1 − 2.

❚❛❜❧❡ ✸✳✸✳✿ First order approximations of the attenuations from input i to node N0 in the case of
(a) n = 2, (b) n = 3 and (c) n = 4

in Rini ,N0

0 4+α1
8+4X+4α0+3α1+Xα1

1 2
8+4X+4α0+3α1+Xα1

(a)

in Rini ,N0

0 16+4α1+5α2
32+16X+16α0+12α1+11α2+4Xα1+5Xα2

1 8+2α2
32+16X+16α0+12α1+11α2+4Xα1+5Xα2

2 4
32+16X+16α0+12α1+11α2+4Xα1+5Xα2

(b)

in Rini ,N0

0 64+16α1+20α2+21α3
128+64X+64α0+48α1+44α2+43α3+16Xα1+20Xα2+21Xα3

1 32+8α2+10α3
128+64X+64α0+48α1+44α2+43α3+16Xα1+20Xα2+21Xα3

2 16+4α3
128+64X+64α0+48α1+44α2+43α3+16Xα1+20Xα2+21Xα3

3 8
128+64X+64α0+48α1+44α2+43α3+16Xα1+20Xα2+21Xα3

(c)

Assuming αj = α for each j, the numerical coefficients can be collected and their
patterns exploited. The overall contribution can be expressed by a simple formula
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3. Limitations of the C-2C Array

dependent only on n and i, resulting in a description of the effects of parasitics for a
generic size of the array and from any input, just as desired. Expressing each fraction in
Table 3.3 as

Rini ,N0
=

Anom,i + αAα,i

Bnom,i + αBα,i + X(Cnom,i + αCα,i)
,

where A, B and C collect the numerical coefficients in the fraction, the relationships
among the numbers in the original expression have to be unveiled. The nominal terms
are equal to

Anom,i =
4n−1

2i

Bnom,i = 2 · 4n−1

Cnom,i = 4n−1

resulting in the nominal value of the attenuation already found in (3.3):

Rnom
ini ,N0

=
Anom,i

Bnom,i + X · Cnom,i
=

1

2 + X

1

2i
=

1

2nsc+1

1

2i
.

Concerning the coefficients of the error, we get:

Aα,i =
4n−2

2i

n−i−2

∑
j=0

1

4j
(n − i − j − 1) =

2i

9

[︄

1 + 4n−i

(︃

3

4
(n − i)− 1

)︃

]︄

Bα,i = −
n−1

∑
j=1

j4j−1 + n4n−1 =
1

9

[︄

(︃

3

2
n + 1

)︃

4n − 1

]︄

Cα,i =
n−1

∑
j=1

j4j−1 =
1

9

[︄

(︃

3

2
n − 1

)︃

4n + 1

]︄

(3.5)

Using Taylor’s expansion of Rini ,N0
:

Rini ,N0
≃ Rnom

ini ,N0

(︄

1 +
αAα,i

Anom,i

)︄(︄

1 − αBα,i

Bnom,i + XCnom,i
− αXCα,i

Bnom,i + XCnom,i

)︄

= Rnom
ini ,N0

(︄

1 +
αAα,i

Anom,i
− αBα,i

Bnom,i + XCnom,i
− αXCα,i

Bnom,i + XCnom,i

)︄

the coefficients at the numerator and denominator can be combined through their
relative value. Thus, substituting (3.5) and performing some simplifications considering,
reasonably, n ≥ 2 and n − i ≥ 2, we find:

RIi ,N0
=

1

2 + X

1

2i
− 1

2 + X

1

2i

α

3

(︃

i +
n

2X

)︃

(3.6)

=
1

2 + X

1

2i

(︄

1 − α

3

(︃

i +
n

2X

)︃

)︄

(3.7)
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3. Limitations of the C-2C Array

The last inequality (n − i ≥ 2), required to get a closed form solution, implies that
the approximation does not hold for the last input. This is sufficient for our purposes,
especially since the effects we want to observe and will actually determine the size of
the array refer to the most significant inputs.

It is worth to observe that the relative error (3.7) in a given structure (fixed n and
X) increases linearly with the input i. At the same time, since the nominal value of
the weight decreases exponentially, the absolute error decreases with the position of
the input. Therefore, a constraint can be defined on the absolute error of input i = 1,
comparing it against an LSB, in order to force the error induced by parasitics to be lower
than some threshold.

Consider the total number of bits of the converter:

nbit = nsc + n + 1 = log2(2 + X) + n,

one LSB is evaluated as

LSB =
1

2nbit
=

1

(2 + X)2n
. (3.8)

The quantity we are interested in is the maximum absolute error (rightmost addend
in (3.7)) normalized in terms of one LSB. This should be lower than some threshold,
expressed here as 1/2l just so that the final expression is clearer (e.g. for l = 2 the error
we tolerate is LSB/2l =LSB/4). Since the error decreases for i > 0, the maximum is
found for i = 1, therefore:

max

(︃

εabs

LSB

)︃

=
α

6
2n

(︃

1 +
n

2X

)︃

<
1

2l

Moving α on the other side of the inequality, we obtain a quantity εnorm that depends
only on the topology of the array (n and X), which has to be lower than a threshold
defined by the amount of parasitics α and a design parameter l:

εnorm =
2n

6

(︃

1 +
n

2X

)︃

<
1

α2l

The behaviour of εnorm is plotted in Fig. 3.3. In the case of large X (X > 5n) the second
term in the parenthesis can be neglected, obtaining a closed form expression for the
bound on n:

n < 2.585 − log2 α − l

For smaller X, the bound is lower, as shown in the figure. The intersection of said curves
with 1/(α2l) determines the feasible widths of the array. As an example, with α = 0.1
and l = 2 (maximum error of LSB/4), n should be between lower than 4, depending on
the amount of scaled capacitance.
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❋✐❣✉r❡ ✸✳✸✳✿ Maximum error due to the C-2C parasitics, normalized with respect to α and one
LSB. Curves are parameterized in terms of the size of the scaled array.

3.2.1. Nonlinearities

So far we have derived the error on each single bit realized by a C-2C structure affected
by parasitic loading at its inner isolated nodes. This information can be used to derive
the integral and differential nonlinearities, which describe how the real A/D conversion
performs with respect to an idealized one. The parameters are defined as follows [10]:

INL(x)
def
=

A(x)− x LSB

LSB
(3.9)

DNL(x)
def
=

A(x + 1)− A(x)

LSB
− 1 (3.10)

where x is the digital code being represented and A(x) the corresponding analog value.
Both parameters are normalized with respect to one ideal step (LSB). Let us first express
the INL as a function of the error associated to each bit. The term A(x) in (3.10) is
substituted with (3.7) and one LSB with (3.8), obtaining:

INL(x) =

n−1

∑
i=0

biRini ,N0
− x LSB

LSB
=

n−1

∑
i=0

biεpar,i

LSB

=
n−1

∑
i=0

α2n

3

bi

2i

(︃

i +
n

2X

)︃

≃
n−1

∑
i=0

α2n

3

ibi

2i
(3.11)
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where the the value (0 or 1) of the single bits bi, depends on x. The values of INL(x) for
different number of C-2C bits n and normalized with respect to α are plotted in Fig. 3.4.

Since (3.11) is a summation of nonnegative terms, the maximum value is reached for
sure on the last element, i.e. when bi = 1 in every position. In that case, x = 2n − 1 and
the sum becomes:

max
0≤x<2n

[︁

INL(x)
]︁

= INL(2n − 1) =
2α

3

(︁

2n − (n + 1)
)︁

.

This formula gives us the maximum INL as a function of the number of bits and the
amount of parasitics. It determines the effective number of bits of the converter, when
limited only by the parasitics.

0 8 16 24 32
0
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15
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Digital code x

IN
L
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α
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1
2
3
4
5

❋✐❣✉r❡ ✸✳✹✳✿ INL normalized with respect to α for several widths of the C-2C array.

Being always positive, the INL could be reduced by a proper characterization of the
converter, defining, as an example, the best-fit line minimizing the overall quadratic
error.

The DNL compares the local variation between consecutive steps to one LSB. It
can also be expressed as INL(x + 1)− INL(x), therefore looking at Fig. 3.4 we readily
observe that the DNL is maximum (in absolute value) in correspondence of the halfway
transition. This stems from the fact that the sequence goes from ’01. . . 1’ to ’10. . . 0’, the
former combines the error of all the bits other than the first, the latter only shows the
contribution of the first. Fig. 3.5 depicts the DNL corresponding to the curves in Fig. 3.4.
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❋✐❣✉r❡ ✸✳✺✳✿ DNL normalized with respect to α for several widths of the C-2C array.

The maximum DNL can be expressed as:

max
0≤x<2n

⃓

⃓DNL(x)
⃓

⃓ = DNL(2n−1 − 1) = −2α

3

(︁

2n − (n + 1)
)︁

If α is sufficiently large, the negative peaks might cross the DNL = −1 threshold that
results in a non-monotonic D/A characteristic.

3.3. Mismatch considerations

Mismatch errors on each capacitance can be considered as identically-distributed ran-
dom variables, with zero mean and equal variance. An intuitive understanding of what
happens in a C-2C array when the mismatch among the elements has unitary correlated
comes from the observation that if all capacitances grow by some factor, say 1 + k, than
the array should still behave as a C-2C, since C(1 + k) and 2C(1 + k) still have a ratio of
2. The entire structure is then insensitive to mismatch, which is unreasonable.

Further work is required to evaluate reasonable bounds on the unitary capacitance
given the statistics of the technological process.
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4. Switch configuration

In any sample and hold circuit, it is essential to limit the errors associated to the oper-
ations switches. In general, these can be minimized by using the smallest geometries
allowed by the technology. In the context of a CS-based acquisition, the problems are ac-
centuated by the fact that the array capacitor has to be divided in nb slices. Being smaller
than the entire array, each element is more sensitive to noise. Moreover, the modulated
samples have to be preserved for an entire window, therefore leakage currents are of
great concern.

4.1. Errors on commutations

The two errors typically associated to the commutations of the switches are charge
injection and clock feedthrough.

In order for a MOS transistor to change its conduction state, the channel has to be
created/destroyed, implying a transfer of charge with the surrounding elements. When
the transistor is driving a hold capacitor, the exchange leads to a voltage drop on the
capacitor whose amount depends on the charge and the size of the capacitor itself.
Since the charge stored inside the channel is a function of the local potential, modeling
the injection effect is challenging as it would require a pointwise, time-dependent
description of the channel potential as the gate voltage is modified [10].

If the transition of the gate voltage is fast enough, a reasonable approximation is to
consider the charge equally divided between source and drain (Figure 4.1).

Vg

Vin

Ch
Qch

2
Qch

2

Vin

vh

t

∆V

❋✐❣✉r❡ ✹✳✶✳✿ Charge injection and its effects on the sampled value

The voltage drop induced in the hold capacitor Ch is

∆V =
WLC′

ox

2Ch
|Vg,on − Vin|.
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4. Switch configuration

Here W and L are the transistor dimensions and C′
ox the oxide capacitance per unit area.

Being input dependent, it leads to a distortion of the reconstructed waveform.
Other than increasing the value of the hold capacitor and minimizing the channel

area, a couple of techniques can be employed to limit the errors. The first and most
effective one involves the use of dummy switches (Figure 4.2a). The dummy element is
driven in phase opposition with respect to the main switch, so that when the inversion
layer is removed from the main switch, the charge is absorbed entirely by the dummy.

The technique is very effective only if the clock transitions are fast enough, so that the
half-splitting approximation holds. Thus the dummy size has to be half that of the main
transistor. It is important to ensure that the injected charge is captured by the dummy
element, therefore a small delay in the driving signal of the dummy has to be introduced
so that the inversion layer in it is formed after the main switch is opened.
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❋✐❣✉r❡ ✹✳✷✳✿ (a-b) Charge injection compensation techniques: (a) dummy transistor and (b)
transmission gate. (c) T-switch configuration

A second solution is the use of a transmission gate (Figure 4.2b). This is typically
employed when the input signal varies in the entire supply range. Since transistor
of opposite polarity have inversion charges of opposite kind, when both of them are
turned off, they inject charges that mutually compensate. However the solution is not as
effective as the first one, since the channel charge depends on Vgs and the two transistors
are turned on by opposite voltages.

The other effect induced by commutations of the switches is due to the capacitive
coupling from the gate terminal to the hold capacitance. A capacitive partition takes
effect, so that a voltage variation is observed on the hold capacitor. Also in this case,
minimum size switches minimize the problem. The two techniques already seen, requir-
ing control voltages in phase opposition, also lead to a reduction of the feedthrough
effect. An additional capacitive coupling to be considered is from source to drain. Fast
transitions of the input may be felt by the hold capacitor even when the switches are
open. A structure that reduces the effect to a minimum is the so called T switch Fig. 4.2c.
In it, the pass transistors are doubled and the intermediate node, when both the switches
are open, is grounded. The low impedance of the node shields the hold capacitor from
the noise injected by the input signal.
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4. Switch configuration

4.2. Considerations on leakage currents

The mere presence of the switches leads to a continuous discharge of the capacitors be-
cause of subthreshold conduction as well as the reverse current through the source/drain
diffusions. Minimizing the junction area is the first step to reduce the loss. However,
the hold time in this CS-based applications is a significant fraction of one ECG period,
i.e. 1 s. In Section 2.3.1 we have already showed how reconstruction is impossible
operating on a time scale this large. As an additional remark, the solutions proposed
here to minimize the noise injected by the switches are detrimental from the point of
view of leakage, since the number of junctions seen by the hold capacitors increases.
The solution using the dummy element is the worse, with four junctions of the same
kind acting on the hold node.
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5. Compensator

Having established the origins of leakage (Section 2.3.1) and its effect on CS reconstruc-
tion (Section 4.2), it is clear that in order for the AIC to actually work, the architecture
has to perform some kind of compensation of the leakage currents. A few solutions
have been published in the literature e.g. [12, 13]. Among them, the one in [14] has
been chosen because it is robust, compact and power efficient. The topology is shown in
Figure 5.1.

hold cell replica cell

IL IL

kChChR R

iinj iinj

vdi f f

vh

❋✐❣✉r❡ ✺✳✶✳✿ Topology of the compensator. The left branch is the original hold cell, the other is
the scaled-down replica

A hold cell is modeled as a capacitor Ch in parallel to the equivalent off resistance
of the switches R and a source of leakage IL. A downscaled replica kCh of the hold
cell Ch is characterized by a smaller value of capacitance, being k < 1, and identical
leakage currents and off resistance, since switches should be identical and placed in
close proximity on the silicon die. Having equal currents in unequal capacitances, the
voltage rate of change will be higher in the scaled replica. Starting from the same initial
voltage, i.e. the one sampled from the input, a difference will grow across the cells.

This difference is converted by two identical transconductors and injected equally
back in the cells, reducing the rate of change. Intuitively (neglecting the effects of
R), when the voltage difference results in a compensation current exactly equal to
the leakage one, the variation stops and the voltage can be held indefinitely. If the
compensation is insufficient, the voltage difference grows in magnitude, increasing the
injected current. Conversely, if injection is too much, both voltages increase, at a faster
rate on the smallest capacitor. Feedback then reduces the injection. In any case, the
effect is to bring the compensation current towards the level of the leakage. In reality,
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5. Compensator

the always-present resistive component prevents the settlement to an equilibrium and
both voltages decay continuously over time. Tuning the parameters of the compensator,
namely the scaling factor k and transconductance gm, or even modifying the value of Ch,
the voltage variation can be constrained to an acceptable level.

The complete analytic model of the compensator will be derived from its block
diagram description in Laplace domain. This will allow the evaluation of the time
domain behaviour as well as stability margins. Doing so considering the effect of initial
conditions requires the description of a charged capacitor in Laplace domain. The
development is included here in order to select the most suitable form of its description.

5.1. Charged Capacitor in Laplace Domain

Starting from the constitutive relation of a linear capacitor

i(t) = C
dv(t)

dt
,

we get:

L {i(t)} = C
(︂

sL {v(t)} − v(0−)
)︂

I(s) + Cv(0−) = sCV(s) (5.1)

I(s) = sC

(︄

V(s)− v(0−)
s

)︄

(5.2)

According to (5.1), initial conditions can be represented as an independent current source
acting in parallel to the capacitor, since the term Cv(0−) does not depend on quantities
in the transformed domain. The equivalent circuit and its Thévenin counterpart (5.2)
are shown in Figure 5.2.

v(0)
sCL {·} Cv(0−)

sC

v(0−)/s

i

❋✐❣✉r❡ ✺✳✷✳✿ Equivalent circuits of a charged capacitor in Laplace domain.

Notice how the equivalent current in (5.1) has units of charge (capacitance times voltage).
This is indeed the case since the Laplace transform integrates a physical quantity, here
the capacitor current, over time.
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5. Compensator

Between the two possible descriptions of a charged capacitor, the one with the parallel
current source is easier to apply to the actual structure of the compensator, as each cell
is already made of parallel elements and the addition is straightforward.

5.2. Block diagram description

The most general description of the compensator has to account for all possible inputs,
including asymmetries between the two cells. The system then becomes a Multiple-
Input-Single-Output one, since the only quantity of interest is the hold voltage Vh(s).
As such, the compensator is described by one transfer function for every input.

The complete block diagram is shown in Figure 5.3. The nominal leakage IL(s) is
common to both cells. An eventual difference ∆IL(s) may unbalance one of the branches.
The initial voltage has an effect which depends on the capacitance (5.1), thus the different
scaling of that input before being injected into the cells. A second asymmetry is that of
the sampled voltage, represented by ∆V0.

Zh(s)

Zrep(s)

gm(s)

kCh

IL/s

V0

∆IL/s ∆V0

Ch

Vh(s)

Vdi f f (s)Iinj(s)

❋✐❣✉r❡ ✺✳✸✳✿ Complete block diagram of the compensator

The hold and replica cells are represented by their equivalent impedance, given by
the parallel connection of the capacitor and the resistor. Therefore:

Zh(s) =
1

sCh
⊕ Rh =

Rh

1 + sRhCh

Zrep(s) =
1

skCh
⊕ Rrep =

Rrep

1 + skRrepCh

Concerning the description of input signals, initial conditions in time domain are
described by a Dirac delta function, which translates, coherently with the result in (5.1),
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5. Compensator

to a constant term in Laplace domain:

V0(s) = V0

∆V0(s) = ∆V0.

Leakage instead can be considered a step input. Until the switches are closed and the
hold capacitor tracks the input signal, there is a low impedance path for the leakage
currents, which flow preferentially towards the signal source. As soon as the switches
are opened, the current flows entirely in the capacitive cells. Therefore:

IL(s) =
IL

s
.

The same is true for the asymmetry ∆IL(s).
Having defined all the elements in Figure 5.3, the input/output transfer functions can

be derived (the complex frequency variable has been hidden):

H|V0
= ZhC

1 + gmZrep (1 − k)

1 + gm

(︂

Zrep − Zh

)︂

H|Il
=

−Zh

1 + gm

(︂

Zrep − Zh

)︂

H|∆Il
=

gmZhZrep

1 + gm

(︂

Zrep − Zh

)︂

H|Vo f f
=

gmZh

1 + gm

(︂

Zrep − Zh

)︂ (5.3)

Depending on the accuracy of the description one wants to obtain, several levels of ap-
proximation can be derived by considering particular values for the system parameters.

In the following analysis, only the first two transfer functions will be considered,
deriving the expression of the hold voltage in time domain in the case of constant
transconductance gm,0.

5.2.1. Infinite parallel resistances

Having both Rh and Rrep → ∞, the previous expressions become:

H|V0
→ 1

s

H|Il
→ − k

gm,0 (1 − k)

1

1 + s Ck
gm,0(1−k)
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and the corresponding components of vh(t) are:

vh(t)|v0 = L
−1

{︃

v(0−)
1

s

}︃

= v(0−)u(t)

vh(t)|il
= L

−1

⎧

⎨

⎩

− IL

gm
1−k

k

1

s

1

1 + s Ck
gm,0(1−k)

⎫

⎬

⎭

= − IL

gm,0
1−k

k

⎡

⎢

⎣
1 − exp

⎛

⎝− t
Ck

gm,0(1−k)

⎞

⎠

⎤

⎥

⎦
u(t)

Obviously, since the leakage current stems from reverse biased junctions, the discharge
would end once the voltage across the junctions is null. The model is thus valid until
the overall hold voltage, summing all contributions, is vh(t) = 0.

Notice that the initial conditions are maintained indefinitely. Conversely, leakage
results in a sudden but small discharge, up to a voltage difference between the two cells
that compensates completely the discharge current. Therefore the voltage waveform,
shown in Figure 5.4, after an initial transient (unnoticeable at the scale of the plot),
remains constant. Compare it to the uncompensated cell which discharges completely
in a much shorter time.

0 2 4 6 8 10 12 14 16 18 20

0

0.25

0.5

0.75

1

1.25

1.5

t (ms)

v
h
(t
)

(V
)

Parameters:
uncompensated
RÑ✽
R, α = 0
R, α = 0.2
R, α = ✁0.2

❋✐❣✉r❡ ✺✳✹✳✿ Transient behaviour of the voltage in the hold cell. R = 1 GΩ when finite, gm0 =
1 µS, Ch = 1 pF, k = 0.1 and IL = 300 nA.
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The magnitude and phase plots of the transfer function H|Il
(s) are shown in Fig. 5.5.

5.2.2. Finite and equal parallel resistances

With identical resistances Rh = Rrep = R and having gm0R ≫ 1, the transfer functions
become:

H|V0
= gm,0R (1 − k) RC

1

1 + sgm,0R (1 − k) RC

H|Il
= −R

1 + skRC

1 + sgm,0R (1 − k) RC

The time domain behaviour is:

vh(t)|v0 = V0 exp

(︄

− t

gm,0R (1 − k) RC

)︄

u(t)

vh(t)|il
= −ILR

⎡

⎣1 − exp

(︄

− t

gm,0R (1 − k) RC

)︄

⎤

⎦ u(t) (5.4)

Adding a finite resistance, as it is reasonable to do, results in a larger decay of the voltage.
The interesting result to highlight is that the compensator determines a scaling of the
time constant by a factor gm,0R(1 − k). Knowing the duration of the interval in which a
sample has to be maintained, these parameters can be sized to minimize the decay.

5.2.3. Mismatched parallel resistances

Under the effect of an asymmetry α in the equivalent parallel resistances, the impedances
of the cells become:

ZH(s) =
R

1 + sRC

ZREP(s) =
R (1 + α)

1 + sRC (1 + α)

Correspondingly, the transfer functions are:

H|V0
= gm,0R (1 − k) RC

1

1 + sgm,0R (1 − k) RC

H|Il
= − R

1 + gm,0Rα

1 + skRC (1 + α)
(︂

1 + s
gm,0R(1+α−k)

1+gm,0Rα RC
)︂ (︂

1 + s
C(1+α)k

gm(1+α−k)

)︂
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In time domain this corresponds to:

vh(t)|v0 ≃ V0 exp

(︄

− t

gm,0R (1 − k) RC

)︄

u(t)

vh(t)|il
≃ − ILR

1 + gm,0Rα

⎡

⎢

⎣
1 − exp

⎛

⎝− t
gm,0R(1+α−k)

1+gm,0Rα RC

⎞

⎠

⎤

⎥

⎦
u(t)

− IL
k

gm,0RC

⎡

⎢

⎣
1 − exp

⎛

⎝− t
C(1+α)k

gm(1+α−k)

⎞

⎠

⎤

⎥

⎦
u(t)

The decay of initial conditions is not affected significantly if α is small, as it is a decay of
two RC cells of almost equal component values.

If the term gm0Rα is larger than 1 in absolute value, the mismatch factor reduces the
time constant of the decay. The important point is that, as α can also be negative, the
exponential decay may become an exponential growth, with the consequence of a much
larger absolute variation of the signal in a given time interval.

The behaviour is identical at high frequencies, whereas at low frequencies the nature
of the resistances heavily affects the curves, especially in terms of phase. In any case,
only real poles have emerged, therefore no oscillations can be observed on the output
voltage.

5.3. CS reconstruction with compensated leakage

All the discussion so far has been focused on the behaviour of the compensator, trying to
model analytically all the effects we could possibly expect from such a feedback circuit.
What we are really interested in is how the reconstruction of a signal acquired by the
AIC compares with the original one.

As already done in Section 2.3.1 to evaluate the global effects of leakage, the time
domain model defined in(5.4) has been applied to the sensing matrix S. Using as
parameters IL = 300 pA, R = 1 GΩ, gm0 = 1 mS, k = 0.1 and C = 1 pF, the dashed
curves in 5.6 have been obtained. The plot includes the curves already shown in the
previous figures so that it is easier to draw a comparison.

The first thing to notice is that the lighter curves are quite close to the original, solid
lines. Compensation results in a good performance if the width of the matrix blocks
is not too long, i.e. the acquisition window does not span too much time. Indeed for
nb = 8 the compensated and reference curves are identical. For CR > 2.5 also the
nb = 16 curves coincide and result in better performance with respect to the previous
ones. Increasing nb further, compensation starts to suffer from low gain, especially since
the total capacitance of the converter has been kept constant. Only for CR > 3.5 the
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❋✐❣✉r❡ ✺✳✺✳✿ Transfer function from input IL for several values of the parameters (specified in
the legend). Dashed curves refer to the phase. R = 1 GΩ when finite, gm0 = 1 µS,
Ch = 1 pF, k = 0.1.

quality improves above the previously discussed ones. The best compromise between
hardware complexity and reconstruction quality, for low compression ratios, is nb = 16.

It is striking to observe how the ARSNR is still negative in the case of a full sensing
matrix. Such a long acquisition window (approx one second), coupled with extremely
small hold capacitances, would require a much better, probably unfeasible, compensator.
The result is that all the information is lost below the noise level.

5.4. Stability

One simplification that in reality does not hold is the constant transconductance, al-
though it has been helpful to observe and understand the fundamental nature of the
compensation. The frequency response of the transconductor may bring the system
at the onset of instability, giving rise to unwanted oscillations. Instead of following
the same approach as before, deriving the time-domain behaviour of the compensator
through the transfer functions, we will take advantage of the results from the theory of
feedback systems [15], observing the properties of the loop gain T(s).

T(s) is the gain incurred by a signal traveling around the loop. It can be evaluated
from the block diagram in 5.3 by cutting the loop at one point, injecting a test signal
on the forward path and evaluating the response coming back at the cut. However,
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❋✐❣✉r❡ ✺✳✻✳✿ Reconstruction performance with leakage compensation

changing the location of the injection, the loop gain may change. Thus one might ask if
different gains result in the same stability criteria. Indeed this is case, as derived later in
5.4.1.

Even if the loop gain changes, the transfer functions have to be the same, since the
system has not been modified. According to [16] the complete expression of a transfer
function requires, other than T, also the two quantities H∞ and H0, which are affected by
the choice of injection point in a way that keeps the overall transfer function unchanged.

Having already derived the transfer functions in a previous section, we can readily
observe one form of the loop gain. The denominators of (5.3) are in fact equal to 1+ T(s).
That form of the loop gain is the one obtained by injecting a test signal as a current just
after the transconductor, as confirmed by a direct visual inspection of the block diagram.
Therefore:

T(s) = gm(s)
(︁

ZH(s)− ZREP(s)
)︁

.

We will use this form as it is the easiest to work with and understand (i.e. it has “low-
entropy” [17]). The behaviour of T as frequency is increased is shown in Figure 5.7, still
in the case of a constant transconductance.

When the parallel resistance goes to infinity, the system behaves as an ideal integrator,
therefore even a minuscule amount of current injected in the capacitors gives rise to a
large voltage, easily detectable by the transconductor that can compensate for it.

Having finite and equal resistances, the DC component of the current does not flow
in the capacitors anymore. However, identical resistances affected by the same current
generate equal voltages, making the loop insensitive to the effect, thus the zero in the
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❋✐❣✉r❡ ✺✳✼✳✿ Loop gain with constant transconductance. Dashed curves refer to the phase.

origin.
Introducing a mismatch in the resistive element, the DC gain becomes finite. The

phase depends on the sign of the mismatch. If negative, there is half a rotation of the
signal around the loop which, coupled with the sign inversion due to the negative
feedback, enhances the voltage variation. This is what has been observed in Fig. 5.4
with the exponential growth of the sampled voltage.

Let us now model the transconductor with a transfer function of the kind:

gm(s) = gm,0

1 + s
ωz

(︂

1 + s
ωp,1

)︂ (︂

1 + s
ωp,2

)︂ (5.5)

The most critical condition is for the transfer function to have a right half plane zero,
followed by two poles with negative real part, especially in combination with a small
scaling factor k for the capacitances. All the singularities contribute a decrease in phase,
which may reach −180◦ when the gain is still larger than 1, |T| > 0 dB. In that condition,
the system may start to oscillate.

The same might be concluded by observing the sensitivity function, defined as:

S(s)
def
=

1

1 + T(s)
≃
{︄

1
T(s)

if |T(s)| ≫ 1

1 if |T(s)| ≪ 1
(5.6)

S(s) can be used to easily obtain a closed loop transfer function from the correspond-
ing open loop one, evaluated on the direct path from the input to the output under
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consideration:
Hcl(s) = S(s)Hol(s)

If Hol is well behaved, i.e. it does not present unstable poles, S, which stems from the
introduction of a feedback loop, is the one that may bring unwanted phenomena in play.
Indeed, the transition between the two approximations in (5.6) is the critical one. Since
typically T decreases with frequency, we can safely assume that S ≃ 1 for frequencies
above a certain crossover value. Depending on the slope with which T approaches such
a value, a given number of singularities have to appear to result in a flat behaviour at
high frequencies.

If the slope of T at the 0 dB crossing point is −20 dB/dec, then the sensitivity function
will have only one pole at that frequency. In the case of a larger slope, two or more poles
will appear, with the possibility of them being complex conjugate. This will be reflected
in the transient response showing peaking and oscillations of vh(t) .

5.4.1. Equivalence of any loop gain

It is known [16] that a given loop may have different loop gains depending on the
injection point from which the gain is evaluated. By using the complete expression of
the gain established by Prof. Middlebrook, it is clear that also the terms G∞ and G0 have
to change in order for the transfer function to be the same. Expanding each quantity in
the expression of G in terms of its numerator and denominator, the following result is
obtained

G =
G∞T + G0

1 + T
=

N∞

D∞

NT
DT

+ N0
D0

1 + NT
DT

=
N∞NTD0 + D∞DT N0

D∞D0(DT + NT)

Poles of G∞ and G0 are also poles of the transfer function, therefore stable open loop
systems still have stable poles coming from those terms. The remaining part of the
denominator is the one typically analyzed through the Nyquist criterion. Because the
stability of certain G is unique, even if unknown, and provided that the two gains do
not have unstable singularities, the conditions described by any T have to agree.
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The element responsible for the evolution of the successive approximation conversion
is the comparator. As for any other circuit, the energy it requires should be minimal,
especially in the context of a CS-based acquisition, where one of the key factors motivat-
ing its introduction is that of saving power. An additional parameter is the response
time from the stimulation of the comparator until a decision is made, since it determines
the speed at which bits can be generated. Even more importantly, the internal coupling
from the comparator outputs to its inputs has to avoid the injection of noise back in the
hold capacitors. And finally the comparator should be able to resolve an input voltage
smaller than the expected quantization error of the D/A converter.

All these constraints drove the selection of a suitable topology. The candidate architec-
ture we have analyzed in detail and that will be described in the following is shown in
Figure 6.1 and has been taken from [18]. It is built as the cascade of a dynamic residual
preamplifier and a parallel-coupled regenerative latch.

Each stage will be analyzed separately, deriving the analytic expression of the transient
response in the different operating phases. Then, asymmetries of the circuits will be
quantified as an input referred offset voltage.

❋✐❣✉r❡ ✻✳✶✳✿ Elements of the comparator: (a) dynamic residual preamplifier and (b) parallel-
coupled regenerative latch.
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6.1. Preamplifier

The first stage of the comparator is a dynamic residual amplifier. Its main purpose is
to decouple the fast transitions of the comparator outputs from the highly sensitive
inputs. It works by unbalancing the current flowing in two identical, capacitively loaded
branches. The output voltage difference, observed on the capacitors, grows over time,
resulting in a time dependent voltage gain. The cross-coupled transistors in the middle
of each branch introduce some positive feedback, increasing the gain until one branch
saturates.

The circuit shown in Figure 6.2a, requires steady inputs, which the capacitive DAC
is able to provide. They are applied to the differential couple M1, M2, which charges
the parasitic capacitance Cl of two clocked MOS transistors M5, M6. When the clock
signal is active, the output nodes are shorted to ground, removing any memory of the
previous cycle. Releasing the clock, the capacitances between drain and ground become
the load for each branch (Fig. 6.2).

The cross-coupled pair (M3, M4), is initially current-biased and contributes a little gain.
Its most significant effect is the positive feedback introduced during the regenerative
phase, turning the weakest branch off and resulting in further amplification.

❋✐❣✉r❡ ✻✳✷✳✿ (a) Preamplifier circuit. (b) Equivalent circuit in the active phase. (c) Equivalent
circuit with parasitic capacitances.

Assumptions in the analysis are:

• quadratic MOSFET model, neglecting channel length modulation

• exact symmetry of the circuit (mismatches will be considered separately)

• small input differential voltage, as this is the most critical operating condition for
the amplifier
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• parasitic capacitive loading at the inner nodes X{1,2}, as well as across the branches

Under these assumptions, the circuit can be linearized around its DC operating point,
obtaining Common-Mode (CM) and Differential-Mode (DM) equivalent circuits. Given
a couple of signals y1 and y2, they can be described in an equivalent form as:

y1 = ycm +
ydm

2

y2 = ycm − ydm

2
,

where
ycm =

y1 + y2

2

ydm = y2 − y1.

The analysis is simplified if the branches are decoupled, removing the crossed con-
nection involving M3 and M4 in such a way as to preserve the behaviour of the original
circuit.

In the initial phase of linear output voltage growth, assuming all devices in saturation,
the crossed couple acts as a voltage shifter from the output on one branch, to the X node
on the opposite branch. Therefore it can be represented as an equivalent voltage source
Vsh acting on a single branch, with a proper value. Let us first write down the voltage at
nodes X:

vx1
= vo2 + Vthp +

√︄

2i1
βxcp

vx2 = vo1
+ Vthp +

√︄

2i2
βxcp

We want to express it in terms of the output voltage on the same branch:

vx1
= vo1

+ Vsh1

vx2 = vo2 + Vsh2

Solving for Vsh and linearizing the square root of the current, considering a small
differential voltage vd applied to the input of the amplifier, we obtain

Vsh1
= vo2 − vo1

+ Vthp +

√︄

2i1
βxcp

= vdm
o + Vthp +

√︄

IB

βxcp

(︄

1 +
gdiff

m vd

IB

)︄

= Vthp +

√︄

IB

βxcp
+ vdm

o +

√︄

βdiff

βxcp
vd

Vsh2
= Vthp +

√︄

IB

βxcp
− vdm

o −
√︄

βdiff

βxcp
vd (6.1)
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In these expressions, Vth is the threshold voltage of the devices, IB the bias current
determined by M0 and β the transconductance of the MOS devices.

The first two terms in the result belong to the common mode, the last two are instead
differential terms. Since the expressions are mutually-decoupled, the CM-DM half
circuits can be easily obtained (Figure 6.3). In the first, parasitic ‘across’ capacitances Cp

and Cpx see the same voltage on both terminals, therefore they can be safely removed. In
the latter, those same capacitances see the positive differential voltage on one side, and
the negative one on the other, therefore, using a single branch, the equivalent capacitive
loading has to double.

6.1.1. Linear growth regime

❋✐❣✉r❡ ✻✳✸✳✿ Preamplifier equivalent half-circuits during the linear growth phase. (a) CM circuit
(b) DM circuit.

Common mode:

Applying only the common mode input voltage, the differential couple injects half of
the bias current in each branch. The crossed couple introduces a voltage shift of value
Vthp +

√︁

IB/βxcp between the output and the inner node. The output voltage is then

Vcm
o (t) ≃ IB

2(Cx + Cl)
t.

The linear increase in voltage goes on until a time t1, when the differential couple
leaves saturation. Assuming vdm

o (t1) still small compared to Vcm
o , the time t1 can be

approximated by imposing the condition Vcm
x (t1) = Vcm

in + Vthp, obtaining

t1 ≃ Vcm
in

IB
2(Cx + Cl),
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where the overdrive voltage of the crossed couple has been neglected and the threshold
voltages of the crossed and differential couples have been considered equal. Under the
same assumption of small vdm

o (t1), then both branches of the differential couple have
similar voltages, therefore they leave saturation almost at the same time.

Differential mode:

In differential mode, the input transistors are ground-referred transconductors, being
their source terminal equivalent to virtual ground (Figure 6.3b). The crossed couple,
according to (6.1), is modeled as a voltage-controlled voltage source, depending on
both the input and output differential voltages. This substitution unveils the origin of
the positive feedback. While the output changes as −vdm

o /2, the inner node goes in
the opposite direction, being +vdm

o /2 + kvd. If vo1
is the lowest output voltage, vx1

is
the highest inner voltage, weakening the differential couple on its branch and further
decreasing the growth of vo1

. The differential output voltage is then

vdm
o (t) =

gmvd

Cl − Cx + 2(Cp − Cpx)
t

At time t1, when the linear growth ends, its value is

vdm
o (t1) ≃ gmvd

Vcm
in

IB

2(Cl + Cx)

Cl − Cx

≃ 2gmvd
Vcm

in

IB

where last approximation holds if Cx is small compared to Cl .

6.1.2. Regenerative regime

Let us reconsider the original circuit (Fig. 6.2a) with a trioded differential couple. The
effects of vd can be neglected and the couple can be modeled as two equal-valued
resistors R acting as source degeneration for the crossed pair. The differential voltage
across the internal nodes is then

vdm
x = vdm

o +

√︄

Ib

βxcp

(︃

− i1 − i2
IB

)︃

= vdm
o −

√︄

Ib

βxcp

vdm
x

RIB

=
vdm

o

1 +
√︂

Ib
βxcp

vdm
x

RIB

≃ g
xcp
m R

1 + g
xcp
m R

vdm
o
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Being the resistance in the order of 10 kΩ, and the transconductance a few to tens of
µS, vdm

x is much smaller than vdm
o . Neglecting it, the sources of the crossed couple are

both at virtual ground. The equivalent circuit then is the one in Figure 6.4a.

❋✐❣✉r❡ ✻✳✹✳✿ Preamplifier in regeneration

Transistors M3 and M4 act as transconductors, driven by the voltage on the opposite
branch. Since the output voltages at the end of linear growth are slightly unbalanced,
the currents through the branches, depending on the conduction of the cross-coupled
transistors, are unbalanced, too. For simplicity, let us assume the transconductance to be
constant.

Since the control voltage of each transconductor is the output on the other branch,
the transistors behave as a negative conductance, as shown in Figure 6.4b. The time
constant of the circuit is negative, resulting in an exponential growth of the differential
output voltage:

vdm
o (t) = vdm

o (0) exp

(︄

g
xcp
m

Cl + 2Cp
t

)︄

Being the total capacitance relatively small, the transient immediately determines a
voltage sufficient to turn one branch off (by reducing the source/drain voltage) and
bring the transistor on the other side into triode region. Such a condition can be
expressed as vdm

o (t) = Vthp and it is reached after

∆t =
Cl + 2Cp

g
xcp
m

ln
Vthp

vdm
o (t1)

In reality the transconductance decreases rapidly during the transient, causing the
transient to last longer than predicted.

The fundamental result is that even a small vdm
o is rapidly amplified to a value close

to one threshold voltage, large enough to make the second stage of the comparator
insensitive to mismatches. To achieve that, we have to guarantee the correct sign of
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vdm
o (t1) with respect to vd, thus enforcing constraints on the asymmetries that can be

tolerated.

6.1.3. Saturation

After regeneration only one branch is still active and receive the entire bias current. Until
the tail transistor is in saturation, both CM and DM output voltages continue to rise
linearly; when also M0 enters triode, an exponential transient (the resistive tail charging
the capacitive load) ends the evolution.

At the very end of the transient, one voltage reaches the supply while the other is still
close to Vcm

in . If the latch that follows is turned on after this transient has completed,
then only one of its input transistors will be on, causing a huge unbalance and making
sure the decision of the regenerative circuit goes in the expected direction.

6.1.4. Signal waveforms

Fig. 6.5 shows the most significant waveforms describing the operations of the pream-
plifier. The bottom plot represents the differential input voltage applied to the circuit.
Its values are ± 5 mV in the two halves of the simulation.

The preamplifier is activated just after instants 0 ns and 250 ns and it is reset after
200 ns and 450 ns. Looking at the vo1

and vo2 waveforms, it is clear how their difference
increases over time until a point where the two curves diverge (regeneration, around 90
ns and 340 ns). As already remarked before, on the branch of the highest output voltage,
vx is lower.

The common mode output voltage increases steadily towards the supply, with a slope
that decreases slightly at the end of the transient. A reasonable approximation might be
to consider it constant, therefore having a lower bound on the duration of the transient.
The differential mode output voltage is also varying monotonically.

6.1.5. Mismatch analysis

Mismatches are small deviations of a device parameter from its nominal value. Ac-
counting for such deviations, parameters of topologically symmetric devices can be
decomposed into an average and a differential term. The preceding analysis can be
considered as based on the average values of the parameters. The differential term
is responsible for the coupling of CM and DM modes [19]. This phenomenon can be
understood by examining the case of mismatched capacitive loads.

Consider the capacitances expressed as an average and a differential term:

CL1
= CL +

δC

2

CL2
= CL −

δC

2
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If a constant current I is equally applied to them, the voltage across each capacitor
becomes:

vC1
=

I

CL +
δC
2

t

≃ I

CL
t − I

CL

δC

2CL
t

vC2
=

I

CL − δC
2

t

≃ I

CL
t +

I

CL

δC

2CL
t

The response due to the average value of the parameter is common to both branches.
The mismatch determines a differential component. If such a component is small with
respect to the common one, then the operating point of the circuit is not affected. In this
example this is meaningless since we are considering passive components and an ideal
current source. In an active circuit, where the device parameters depend on the physical
quantities in the circuit, this allows us to approximate the response for small differential
terms and use superposition to work separately with the common mode and differential
mode circuits. The alternative would be to keep track of the coupling by solving the
exact differential equations. If the approximation holds, the effort can be spared.

The differential response that stems from a mismatched parameter with a common
mode input signal can be moved to the differential mode half circuit. Since the effect
depends only on common mode parameters it becomes an independent source.

Conversely, by considering the effects when a differential input is applied to the
circuit, the response becomes:

vC1
=

i

CL +
δC
2

t

≃ I

CL
t +

I

CL

δC

2CL
t

vC2
=

−i

CL − δC
2

t

≃ −I

CL
t +

I

CL

δC

2CL
t

The average parameter value results in a differential component, as desired, while the
mismatch generates a common mode response. This becomes an independent source in
the common mode equivalent half circuit. However, since this is typically negligible with
respect to the original common mode signal, this part of the analysis is not performed.

The technique can be applied to the preamplifier, considering a small variation as-
sociated to each parameter in the CM circuit and evaluating the resulting differential
response. This, in turn, is placed into the DM circuit as an independent source and
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referred to the input in order to determine the equivalent offset voltage in the amplifier
transcharacteristic. A few notable cases are shown here, the remaining values in Table 6.1
are derived with the same methodology.

Capacitor Cl

Consider a variation on the load capacitor. It can be represented as a parallel element of
value ∆C

2 on one branch, and the opposite on the other. The current it sources is

i∆ =
∆Cl

2

dVcm
o

dt

=
∆Cl

2

IB

2

1

Cl + Cx + 2(Cp + Cpx)

≃ ∆Cl

2

IB

2

1

Cl + Cx

The effect can be compared to the other DM quantities, by introducing it as an indepen-
dent generator in the DM equivalent circuit.

If the differential current forced in the branch by vd is exactly equal to the one just
evaluated, then no differential output voltage is generated. In this condition an offset
has appeared at the input.

−gm
vd

2
=

∆Cl

2

IB

2

1

Cl + Cx

voff
d

⃓

⃓

⃓

∆Cl

≃ ∆Cl

Cl + Cx

IB

2gm

Cross-coupled pair Voff

Suppose on the gate connection of the cross-coupled pair appears a differential offset
voltage Voff. Since the XCP is current-biased, the voltage appears as a shift of the source
voltage. If this constant differential voltage is so large to change the sign of vdm

x (t1), then
the wrong decision is taken.

vdm
x (t1) =

⎛

⎝

Cl + Cx

Cl − Cx

2gmVcm
in

IB
+ 2

√︄

(W/L)1

(W/L)2

⎞

⎠ vd

≃

⎛

⎝

2gmVcm
in

IB
+ 2

√︄

(W/L)1

(W/L)2

⎞

⎠ vd

voff
d

⃓

⃓

⃓

Voff

≃ Voff

2gmVcm
in

IB
+ 2
√︂

(W/L)1

(W/L)2
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Clock transition

The release of the reset condition may not happen simultaneously on both branches. The
variation is modeled differentially by a delay td applied to the start of the amplification
in the CM circuit. Its differential effect is:

vdm
o =

IB

2CL
td

since it stems from the charging of one load capacitor at half the bias current.
The input-referred offset is evaluated as the vd that would result in the opposite

differential output voltage reached at the end of the linear growth.

voff
d

⃓

⃓

⃓

td

= − I2
B

gmVcm
in

Cl − Cx

4Cl(Cl + Cx)

= − I2
B

gmVcm
in

td

4Cl

❚❛❜❧❡ ✻✳✶✳✿ Input-referred offset voltage due to parameter variations. Curly braces are used to
compact the table when the same multiplicative factor affects a given term

Component Parameter Offset (absolute)

Differential couple
Vth ∆Vth

β
∆β
β

IB

2gdiff
m

Rds
Vcm

in
gmRds

∆R
Rds

Crossed couple {Vth, β, Voff}

{︃

Voff,∆Vth,
∆β
β

√︂

IB
β

}︃

2gmVcm
in

IB
+2

√︃

(W/L)1
(W/L)2

Capacitances Cl , Cx
{∆Cl ,∆Cx}

Cl+Cx

IB

2gdiff
m

tsoc
I2
B

gmVcm
in

td
4Cl
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6.2. Regenerative latch

The output of the preamplifier is coupled to the regenerative latch through a couple of
parallel transistors that unbalance the internal nodes of the latch by injecting unequal
currents.

Modeling the inverters as constant transconductances Gm driven by the voltage on
the opposite branch and capacitively loaded, the behaviour of the output voltages can
be derived. Performing the analysis with respect to the common and differential modes,
the descriptive equations are:

Vcm
o = Vcm

o (0) exp

(︃

−Gm

Cl
t

)︃

+
Icm

Gm

[︄

1 − exp

(︃

−Gm

Cl
t

)︃

]︄

vdm
o = vdm

o (0) exp

(︄

Gm

Cl + 2Cp
t

)︄

+
idm

Gm

⎡

⎣1 − exp

(︄

Gm

Cl + 2Cp
t

)︄

⎤

⎦

The result shows a CM voltage that decays exponentially, while the DM signal grows
with the same time constant, up to the point where the devices change operating region.
The differential output response, ideally, should only stem from the injected currents.
However, the fact of having an exponential growth implies careful evaluation of possible
noise injected in the output nodes.

An interesting perspective on the evolution of the CM and DM output voltages of a
simpler regenerative latch is provided [20]. The model for the latch analyzed here has
been compared to the more simple one, however, the results have not been included.
What has been observed is that the curves get closer to the middle of the plot, as the
injected current speeds up the transient of both modes.

6.2.1. Mismatch considerations

The latch is cascaded to the dynamic preamplifier analyzed previously. If the preampli-
fier is given enough time to reach saturation of one output, then the matching properties
of the latch are not critical, since the output differential mode voltage is around one
threshold voltage.

If for some reason, the transient is halted in advance, for example to reduce the power
consumption by reducing the on time of the structure, then the input referred offset
induced by mismatches in the structure of the latch might become important. The same
reasoning already described for the preamplifier, namely the evaluation of the coupling
of the CM and DM modes, can be applied here.

One additional mismatch term that is unique to the latch is the one referred to the trip
points of the embedded inverters.
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7. Mismatch models

Anytime a circuit has to be realized, its elementary components will be affected by
errors due to variations of the process parameters. These errors can be of two natures:
stochastic, if they can be characterized statistically as instances of some random variable
with a given probability density function, or deterministic if they manifest themselves
as a gradient along the wafer.

In general, a circuit should be designed to withstand such nonidealities, but in case
of extremely accurate operations, the consequences of mismatched parameters might
be significant. Therefore the need to quantify such effects at design time, modeling the
properties of the technology in use and adjusting the component sizes so that those
effects are under control.

The characterization of the devices a given technology can offer is based on several
measurements conducted on test structures where the devices have different areas,
orientation and distance [21]. However a model interpolating the measured points is
required. In the scientific literature several models have been proposed to describe
the mismatch of device parameters on a silicon die. They can be classified broadly as
physics-based and statistical models. While the former preserve a link to real parameters
under the control of the designer, the latter might result in better accuracy, though at the
cost of a difficult mapping of the model parameters with real world properties.

Among the physics-based models, the one proposed by Pelgrom et al. in [22] has
gradually become the most popular in the design community, in particular for the
simplicity of its description. However, the assumptions on which it is based do not
allow the treatment of layout styles that decompose the devices in smaller, intertwined
sub-elements with the only effects of interdigitation and centroid structures observable
on the deterministic component, i.e. long distance gradients.

Since the stochastic component of mismatch could have a spatial correlation larger
than the dimensions of one device, ad-hoc positioning of the components might deter-
mine better-than-expected performance. Pelgrom’s model fails to predict this, providing
a pessimistic estimate of the resulting behaviour.

A statistical model that is able to manage the short-range correlation of the stochastic
parameter variations comes from Conti [23]. The description assumes a gaussian auto-
correlation function for the mismatched parameter and was initially derived to solve
the problem observed with Pelgrom’s model, of having a variance that grew indefinitely
with the distance among identical elements.

This section will try to derive the expected mismatch when interdigitated structures
are considered. At first, a brief derivation of Pelgrom’s model will be described, showing
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where it fails to account for the layout style. Then Conti’s model will be introduced
in its final form, as presented in the original paper. Its approximated expression for
small distances among the elements will be derived, so that the expected mismatch in
interdigitated structures can be described analytically, in a easy-to-use formula. Finally,
several layout techniques will be compared, in order to define which is the most suitable
to the designer’s needs.

7.1. Pelgrom’s physics-based model

The derivation follows closely the one in [21], with additional comments included for
clarity. The model considers a generic parameter P having a spatial dependency on
coordinates (x,y). A device occupying some area will be characterized by the average
value of P(x,y) over that area. Two devices with identical geometries can therefore be
described by different average values:

∆P12 =
1

S

[︃

∫︂

S2

P(x, y)dS −
∫︂

S1

P(x, y)dS

]︃

= G(x, y) ∗ P(x, y),

where the last term interprets the difference as a convolution of the mismatch-generating
process P(x, y) with a double rectangular function G(x, y):

G(x, y) =
1

A
·

⎧

⎪

⎨

⎪

⎩

−1 x, y ∈ device 1
1 x, y ∈ device 2
0 elsewhere

Convolution becomes a product in Fourier domain:

∆P(ωx, ωy) = G (ωx, ωy)P(ωx, ωy).

Moreover, the variance of the stochastic parameter ∆P is equivalent to its power therefore

σ2
∆P =

1

4π2

∫︂ ∞

−∞

∫︂ ∞

−∞

⃓

⃓

⃓G (ωx, ωy)
⃓

⃓

⃓

2 ⃓
⃓

⃓P(ωx, ωy)
⃓

⃓

⃓

2
dωxdωy

Given a geometry, typically consisting of rectangular elements arranged on the plane,
and a description of the mismatch source in terms of spatial frequencies, the variance of
the parameter differences characterizing identical devices can be computed.

Up to now, the model is general enough to manage any geometry and mismatch
description. The assumption used by the authors to derive its formula is to consider
P(x, y) as spatial white noise, with correlation distance of the values at any given point
much smaller than the transistor dimensions. Under the previous assumption, the
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lowest frequency of the mismatch generating process is much larger than 1/W and 1/L,
therefore the formula can be approximated as

σ2
∆P =

1

4π2

∫︂ ∞

−∞

∫︂ ∞

−∞

⃓

⃓

⃓G (ωx, ωy)
⃓

⃓

⃓

2 ⃓
⃓P(0, 0)

⃓

⃓

2
dωxdωy (7.1)

≈
⃓

⃓P(0, 0)
⃓

⃓

2

2A

def
=

A2
P

WL
.

Mismatch is a function of the device area, independently on how the area is built. Two
full rectangles placed in proximity of one another or each of them being subdivided and
the elementary devices arranged like a chess board, if resulting in the same total area,
would provide the same expected mismatch.

Eventually considering a distance-dependent factor in P(x, y), the term linking mis-
match to the relative positioning of the devices can be derived, with the complete
description of the mismatch being:

σ2
∆P =

A2
P

WL
+ S2

PD2.

In the original paper, the authors actually report the result for a cross coupled geome-
try, in which, however, each sub-element is as big as the original device. The reduction
in mismatch variance, therefore, stems from the increase in the total area, and not on the
layout style.

The assumption that prevents the model from being used to evaluate the effect of
layout on the performance of symmetric devices is the one that considers the correlation
distance of the mismatch-generating process much smaller than the device dimensions,
resulting in a constant term inside the integral in (7.1). Before the introduction of
the assumption, the model is valid under more general conditions and therefore, we
suggest, by using a different description as, for example, a Gaussian profile, a meaningful
expression could be derived.

Further work is required, which has not been carried on having found a different
model that seemed to solve the problem, though being more oriented towards numerical
evaluations than paper-and-pencil calculations.

7.2. Conti’s statistical model

This statistical model derived in [23] is again defined on rectangular devices. A random
variable P̂ characterizes one of the device properties. It results from the spatial average
of a process parameter P(x, y), whose value depends on the spatial coordinates:

P̂ =
1

A

∫︂

S
P(x, y)dS
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The model is based around a Gaussian autocorrelation function for the stochastic
process P:

RP

(︂

τx, τy

)︂

= aP exp

[︃

−K2
P

(︂

τ2
x + τ2

y

)︂

]︃

where aP defines the maximum value of the function and KPP the decay constant, also
referred to as correlation distance. The autocorrelation defined this way is based on the
Euclidean distance between points. It peaks when distance is null, is close for nearby
elements small distances and vanishes as they are separated.

The model derived in the original paper for the variance of the mismatch in parameter
P is then:

σ2
∆P̂

= 2

[︃

Ω (L, W, 0, 0, aP, KP)

− Ω
(︂

L, W, Dx, Dy, aP, KP

)︂

]︃

where
Ω
(︂

L, W, dx, dy, aP, KP

)︂

=
aP

(2K2
PPLW)2

A(L, dx, KP)A(W, dy, KP)

and

A(r, d, KP) =
√

πKP

[︂

(d − r)erf
[︁

KP(d − r)
]︁

− 2derf [KPd] + (d + r)erf
[︁

KP(d + r)
]︁

]︂

+ exp
[︂

−K2
P(d − r)2

]︂

− 2 exp
[︂

−K2
Pd2
]︂

+ exp
[︂

−K2
P(d + r)2

]︂

If the devices are partitioned into nd smaller elements, the variance becomes

σ2
∆P̂

=
2

n2
d

nd

∑
l=1

nd

∑
m=1

[︃

Ω
(︂

L, W/nd, D
(1)(1)
xlm

, D
(1)(1)
ylm

, aP, KP

)︂

− Ω
(︂

L, W/nd, D
(1)(2)
xlm

, D
(1)(2)
xlm

, aP, KP

)︂

]︃

This description is very powerful, since it can be applied to any arrangement of the
elements, taking into account the mutual distance between them. Depending on the
layout style, the mutual distances take different forms, therefore this expression can
be easily applied to evaluate how particular layout strategies affect the behaviour of
nominally-identical devices in symmetric structures.

The comparison between the physics-based and statistical models is depicted in
Fig. 7.1. The most striking difference is the value of mismatch for low distances, which
is much lower in Conti’s model. This result comes from the increased correlation of
stochastic device parameters when they are placed in close proximity.

Fig.7.2 shows how the mismatch for two adjacent devices vary with W and L. Since
the curves are non monotonic, we suppose that a different domain might be more
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suitable. Indeed, using as coordinates the area and aspect ratio of the devices, the
surface becomes convex (Fig.7.3).

The constant mismatch contours of the surface in Fig.7.3 have been plotted in Fig.7.4,
together with the constant length lines. Choosing the desired channel length, W is
defined by the allowed mismatch.
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❋✐❣✉r❡ ✼✳✶✳✿ Comparison of Pelgrom’s and Conti’s interpolation on the mismatch data used by
Pelgrom in his original paper.
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❋✐❣✉r❡ ✼✳✷✳✿ Mismatch σ∆Vth
(mV) in terms of W and L of the devices.
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❋✐❣✉r❡ ✼✳✸✳✿ Mismatch σ∆Vth
(mV) in terms of area and aspect ratio of the devices.
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❋✐❣✉r❡ ✼✳✹✳✿ (Coloured) Contour plot of σ∆Vth
(mV) in terms of area and aspect ratio of the

devices. (Greyscale) Constant L (µm) curves
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7.2.1. Approximated model for short distance mismatch

In order to obtain some simple relationship on the layout dependence of mismatch, the
functions involved in the definition of the model have been approximated around 0,
starting from the innermost functions.

The erf(x) and exp(x) functions have to be approximated to fourth order to get to a
meaningful result:

erf(x) ∼ 2x√
π
− 2x3

3
√

π
+ o

(︂

x4
)︂

exp(x) ∼ 1 + x +
x2

2
+

x3

6
+

x4

24
+ o

(︂

x4
)︂

The model expressions thus become:

A(r, d, k) ∼ 2k2r2

⎛

⎝1 − k2

(︄

d2 +
r2

6

)︄

⎞

⎠

Ω = a

(︄

1 − k2

(︃

d2
x +

1

6
L2

)︃

)︄(︄

1 − k2

(︃

d2
y +

1

6
W2

)︃

)︄

(7.2)

7.3. Effects of layout style on mismatch

Assuming a linear arrangement of the elements, only one of the distance terms in Ω will
be different from zero at a given time. Therefore the function can be rewritten as:

Ω = a

(︄

1 − k2

(︃

d2
ξ +

1

6
λ2

)︃

)︄(︄

1 − k2

(︃

1

6
ω2

)︃

)︄

,

where dξ is the distance along the alignment axis, λ is the length of the elementary
rectangle along said axis and ω is the length in the orthogonal direction. If the elements
are aligned along x, with horizontal dimension L and vertical one W, then the mapping
is:

dξ = dx

ω = W

λ = L

The variance requires the computation of the difference

Ω(1,1) − Ω(1,2) = a

(︄

1 − k2

(︃

1

6
ω2

)︃

)︄(︄

−k2

(︃

d
(1,1)
ξ

2
− d

(1,2)
ξ

2
)︃

)︄
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Consider that the distances between the elements of index l and m can be expressed,
depending on the device to which they belong, as:

d
(1,1)
ξ = 2|l − m|du

d
(1,2)
ξ = 2|l − m + 1|du

where du = ds + λ is the unitary distance between two similar corners of the device
geometry and ds is the actual spacing (empty space) between the elements Therefore the
previous difference can be further developed, becoming

Ω(1,1) − Ω(1,2) = a

(︄

1 − k2

(︃

1

6
ω2

)︃

)︄

(︂

−4k2
(︁

2(l − m) + 1
)︁

)︂

Finally:

σ2 = 8ak2d2
u

(︃

1 − 1

6
k2ω2

)︃

In the case of x-aligned elements, without spacing among them, this becomes

σ2 = 8ak2L2

(︄

1 − 1

6
k2 W2

n2
d

)︄

And it varies as n−2
d .

The same sequence of operations can be carried out in the case of the sub-elements
positioned in two columns, alternating the device order in each one. This layout corre-
sponds to a common centroid when nd is even. Both distances have to be considered.
They can be expressed as:

d
(1,1)
ξ = dξ,u ·

{︄

1 if l, m both even or odd
0 else

d
(1,2)
ξ = dξ,u ·

{︄

0 if l, m both even or odd
1 else

d
(1,1)
ω = d

(1,2)
ω = dω,u|l − m|

As a result, the distances

d
(1,1)
ξ − d

(1,2)
ξ = dξ,u(−1)l+m

d
(1,1)
ω − d

(1,2)
ω = 0

Computing Ω(1,1) − Ω(1,2) starting from the complete expression for Ω (7.2) and substi-
tuting the distances with the terms just derived, we find:

σ2 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a

(︃

k2LW
n2

d

)︃2

if nd even

2a
(︂

kL
nd

)︂2
(︃

1 − (kW)2

2 + 1
3

(︂

kW
nd

)︂2
)︃

if nd odd

(7.3)
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7. Mismatch models
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8. Conclusion

This thesis has been focused on the design of a low power Analog-to-Information
architecture. After an initial review of the underlying theory of Compressed Sensing, the
modifications applied to a traditional charge-redistribution successive-approximation-
register A/D converter have been discussed.

The identification of the limitations determined by technological factors has lead to
the introduction of additional circuital elements (the leakage compensator in particular)
as well as more abstract modification (the design of the sensing matrix) so that the
performance of the real system could closely match an ideal CS-based signal processing
chain.

Several non-idealities have been modeled, with the intention of guiding the designer
in more appropriate choices both on the circuit topologies to be employed and proper
device sizing. The design constraints derived in the thesis, applied to the architecture
under consideration, have been validated through algorithmic and circuital simulation,
highlighting the effective performance gains.

Future work would involve further modeling of some of the phenomena whose
analysis has been left incomplete. Then all circuit elements have to be sized, again
taking great consideration of all possible non-idealities and culminating in the layout
of the entire structure. Finally measurements should be performed on the actual chip,
validating hopefully the modeling-driven design choices. Taking advantage of the
extensive analysis effort started with this thesis, the design should be straightforward,
leading to an effective use of the technology and resulting in an efficient acquisition
system.
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