
POLITECNICO DI TORINO

Master of Science in Electronic Engineering

Master Degree Thesis

VLSI QC-LDPC Decoder for
Post-Quantum Cryptography

Supervisor:
prof. Guido Masera
Co-Supervisor:
prof. Maurizio Martina

Candidate
Kristjane Koleci

Anno accademico 2018 – 2019



Contents

List of Tables 4

List of Figures 5

1 Introduction 7

2 McEliece Cryptosystem 11
2.1 Asymmetric cryptosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Shor’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 McEliece cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 LDPC codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 LDPC codes 19
3.1 Linear block codes and low density parity check codes . . . . . . . . . . . . 19

3.1.1 Tanner Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Notations and definitions . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Code construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Code construction Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Progressive Edge Growth . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Quasi Cyclic construction . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.3 Girth reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 LDPC codes encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.1 Minimum distance and maximum error . . . . . . . . . . . . . . . . 28

3.5 LDPC decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.1 Decoder characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Soft Decoding algorithms . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.3 Hard Decoding algorithms . . . . . . . . . . . . . . . . . . . . . . . 32

3.6 Code parameters to achieve high pBSC with complete error correction . . . 39
3.6.1 Matrix dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6.2 Code Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6.3 Density of the Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.4 Variable nodes degree . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.5 General conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2



3.7 Architecture of Decoder and type of codes . . . . . . . . . . . . . . . . . . 48

4 LEDA Algorithm 51
4.1 Key generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.1 Public Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 Public key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 Q-Decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Code parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 LEDA Architecture 59
5.1 Memory organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Q-Decoder simplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Vector by Matrix Product . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Comparison between the algorithms . . . . . . . . . . . . . . . . . . 66

5.3 Vector By Circulant Architecture . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 Version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Architecture Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.5 Syndrome and Correlation Computation . . . . . . . . . . . . . . . . . . . 79

5.5.1 Syndrome Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5.2 Correlation Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.6 Threshold Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.7 Message Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.7.1 ErrorPosition Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.7.2 MessageUpdate Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Architecture Synthesis and Simulation 89
6.1 Modelsim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Synopsys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Area analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2.2 Timing analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2.3 Memories required . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 FPGA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.1 64 bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.2 32 bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.3 16 bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.4 8 bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.5 Comments on FPGA implementation . . . . . . . . . . . . . . . . . 100

6.4 Comparison with RSA implementations . . . . . . . . . . . . . . . . . . . . 101

7 Conclusions 103
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3



List of Tables

2.1 Work Factor for Instruction Set Decoding with different algorithms . . . . 16
2.2 Work factor for different Goppa codes dimensions . . . . . . . . . . . . . . 16
3.1 Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 PEG parameters for different cases . . . . . . . . . . . . . . . . . . . . . . 44
4.1 Code parameters[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Code parameters [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1 Architecture parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Threshold Look-Up table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Modelsim Simulations for each Module . . . . . . . . . . . . . . . . . . . . 90
6.3 Synthesis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.4 Convergence time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5 Modules area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6 Modules area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.7 Syndrome Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.8 Syndrome Computation DataPath components . . . . . . . . . . . . . . . . 94
6.9 Synthesis after a second compile . . . . . . . . . . . . . . . . . . . . . . . 95
6.10 64 bit parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.11 32 bit parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.12 16 bit parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.13 8 bit parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4



List of Figures

2.1 McEliece cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Regular (3,8) LDPC code with n = 15 and r = 6 . . . . . . . . . . . . . . . 20
3.2 Different Parity-Check matrices . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Step 1,2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Three expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Variable node v3 connections. . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Variable node v3 connections. . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 Final arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.8 Parity-Check Matrix with quasi-cyclic construction . . . . . . . . . . . . . . 27
3.9 Size of the matrix and girth[10] . . . . . . . . . . . . . . . . . . . . . . . . 27
3.10 Girth examples[11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.11 Waterfall and Error Floor region for two different methods . . . . . . . . . 30
3.12 Graphic representation of the structure . . . . . . . . . . . . . . . . . . . . 31
3.13 GDBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.14 PGDBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.15 PPBF with codes with different dimension . . . . . . . . . . . . . . . . . . 38
3.16 Regular codes error correction with different dimensions, with GDBF de-

coder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.17 Irregular codes error correction with different dimensions, with GDBF de-

coder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.18 Irregular codes correction with GDBF doubling the number of matrices con-

sidered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.19 Irregular codes error correction capability in different code rates/density

conditions, with GDBF decoder. . . . . . . . . . . . . . . . . . . . . . . . 43
3.20 Irregular code error capabilities for different densities . . . . . . . . . . . . 43
3.21 Code with density 3% with errors corrected in a more detailed range. . . . 44
3.22 Regular codes with dv = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.23 Regular codes with dv = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.24 Irregular codes with dv = 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Comparison of the two algorithms with respect to the density of the input

vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 VectorByCirculantBinary DataPath . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Message and Syndrome Memory . . . . . . . . . . . . . . . . . . . . . . . . 69

5



5.5 Vector By Circulant Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 Ltr Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.7 Message Memory correspondence with Ltr . . . . . . . . . . . . . . . . . . 71
5.8 nth cycle for Condition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.9 nth cycle for Condition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.10 nth cycle for Condition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.11 Vector By Circulant ControlUnit . . . . . . . . . . . . . . . . . . . . . . . 74
5.12 Vector By Circulant DataPath . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.13 Vector By Circulant DataPath in Integer version . . . . . . . . . . . . . . . 75
5.14 Message Address Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.15 Initial cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.16 Last row generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.17 Syndrome Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.18 Decoder DataPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.19 Decoder ControlUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.20 DataPath of the Syndrome Computation Module . . . . . . . . . . . . . . 80
5.21 ControlUnit of the Syndrome Computation Module . . . . . . . . . . . . . 80
5.22 DataPath of the Correlation Computation Module . . . . . . . . . . . . . . 82
5.23 ControlUnit of the Correlation Computation Module . . . . . . . . . . . . 82
5.24 DataPath of Syndrome Weight module . . . . . . . . . . . . . . . . . . . . 83
5.25 Sign Pattern Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.26 ErrorPosition DataPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.27 ErrorPosition ControlUnit . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.28 MessageUpdate operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.1 Spartan-7 Family[19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Artix -7 Family[19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6



Chapter 1

Introduction

The technological progress introduces new challenges and new problems to be handled and
solved. The next big technological improvement is for sure the quantum computer, that in
the next years is going to change deeply the concepts of bit, the computational capabilities
of the devices and poses problems regarding security of currently employed cryptographic
systems.

The asymmetric encryption systems employed nowadays are the RSA and ECC, the sys-
tems are considered secure against currently known attacks. The RSA is based on the
problem of recovering prime factors of the key, this problem is hard to be solved by a clas-
sical computer but Shor developed an algorithm that if run on a quantum computer could
retrive the keys in a small amount of time, the keys adopted are too small to be considered
secure. The next technological revolution requires new and more complex problems to
create safer cryptosystems.

The problems that could be suitable for this purpose are:

• Lattice-based cryptography: NTRU encryption.

• Code-based cryptography: McEliece cryptosystem.

In both cases the security is based on the harness of retrieving the secret key from the public
key, they are called NP-hard problems since the computational cost increases exponentially
with the dimension of the keys.
The quantum algorithms developed to break the systems do not succeed in their purpose,
the result is just a reduction is the CPU cycles.

Goppa codes in the McEliece cryptosystem adopt large matrices, that can make the prob-
lem not suitable for embedded systems with limited memory, this issue requires different
linear codes to be adopted. The Low-Density Parity Check codes are the best candidates.
The McEliece cryptosystem for LDPC codes has a Public Key (PK) named G employed
to add redundancy to the message m and the Secret Key (SK) that is used by the decoder
to retrive the original message, it is H. The encoding process add a bounded number of
errors, e, to the redundant message thus obtaining the ciphertext x There is an additional

7



1 – Introduction

important that is the syndrome, evaluated as x ∗ LT , if the vector is zero the message
contains no errors.

x = m ∗G + e (1.1)

The advantage in the use of LDPC codes is the reduced size of the matrices, they can
be further compressed employing structured codes as QC-LDPC codes. The decoding
capabilities of the codes is the same independently of the way they are constructed, the
difference is in the possibility to further reduce their size and in the security threats since
the information of the construction can be exploited by an attacker. The common ways to
increase the security is to increase the size of the keys or increase the number of errors in
the message.

The codes considered in the initial work are unstructured code and the error applied to
the message is of BSC type, the errors are just flips of a number of bit, the probability
to exchange a bit is given by a probability p. The decoders are divided in two categories:
hard decoders and soft decoder. The hard decoding techniques are based on the bit flipping
of the message, the criteria to select the bit depends on the decoder adopted. The most
common ones are: Bit Flipping, Gradient Descent Bit Flipping and Probabilistic Gradiente
Descent Bit Flipping.

The study of the algorithms clarifies the number of iterations required to converge that
is important in order to select the best decoder and the BSC probability. The second
study shifted the problem of lowering the iterations and increasing the error probability to
code parameters, such as size, density and code regularity. Unfortunately the LDPC code
parameters do not affect the performance of the decoder, they remain approximately the
same a part from small changes. Due to this the attention moved to structured codes and
a system in particular: LEDApck.

The LEDApck method is based on QC-LDPC codes, that can further reduce the size of
the keys, and a Bit Flipping decoder able to correct the message in most case in a 3 or
4 iterations. The deep study of their security and ability to correct the code made the
system the best candidate to be implemented in hardware.
The operations to be performed by the decoder are:

1. evaluate the Syndrome of the ciphertext and count the ones in the syndrome;

2. evaluate the Correlation;

3. evaluate the Threshold from the

4. find the positions of the Correlation that has a value higher than the threshold;

5. update the ciphertext;

Quasi Cyclic code studied in this thesis has Secret Matrix in format L = [L0,L1], each
block is a square matrix of size p = 15013 and the first row is enough to store the complete
matrix the next row is the previous shifted by 1. The fundamental evaluation in the

8



1 – Introduction

decoder is the vector by matrix multiplication both in GF(2) and in integer domain. The
quantities to be evaluated are:

s = x ∗ LT (1.2)

Correlation = s ∗ L (1.3)

The equation 1.2 evaluates the Syndrome of the ciphertext is evaluated in GF(2) while
the product in equation 1.3 is in integer domain. The length of the vector are: p for the
Syndrome and 2*p for the Correlation. The multiplication is done only with square blocks,
then the complete vectors are easily derived.

The object to be implemented is something that evaluates the product of a vector of size p,
dense in general, by a square matrix of size p cyclic and sparse, the asserted positions are d
that is the way the matrix is stored in memory, only by position. The cyclic nature of the
matrix produces and elegant result in which the product in given by d vectors shifted by
a quantity equal to the position and xored all together. The integer version of the result
requires just to sum the shifted versions of the input vector.

The vector can not be stored in memory as a 1× p vector due to its size, but it is stored in
rows of length Nb. The xor operation is performed on portions of this length among Nb bits
of the input and Nb bits of the result. The bits of the input vector aligned with the row of
the result are contained in two memory location, to produce the right set of values there
are two consecutive rows of the input available, they are connected to a multiplexer that
gives in output the consecutive Nb bits starting from the selection provided to the logic.
The resulting vector is updated row by row instead of bit by bit. Nb is the parallelism of
the architecture, it depends on the aspect ratio of the memory and can be sized considering
the resources available.

The other units provided are simpler, to realized since its is required just to count the
number of ones, match a value in a LUT and then flip the bit of a vector.

The other components implemented are simpler than this one, but the effort was to keep
them parallelized too in order to avoid the presence of wasted cycles.

The solution is able to give a huge speed-up in the computation of the product, the time
employed considering 8-bit parallelism is at most 29ms, that is lower than the 51 ms re-
quired by the RSA running on an FPGA. The parallelism can be increased and the time
required by the decoder to converge is halved. The larger case tested is with 64-bit par-
allelism, it converges to a solution in 5ms, the penalty to pay is in terms of area but the
results are promising.

The work can be improved introducing units that updates the Syndrome instead of com-
puting it again and reconsidering the way the Correlation is computed, since splitting the
product in two steps reduces the number of cycles even if the parallelism is low.

The other problem to address is the memory management since the presence of the Cor-
relation requires a large memory and the parallelization can be limited by the number of

9



1 – Introduction

integers that can be provided at the same time, since wide memory are required.

The security is main concern in the use of Low density codes for cryptographic purposes,
this aspect is not studied in this work, but in literature there are many works that in-
troduced proper parameters to make the code secure against most of the known attack,
coming both from classical computers and quantum computers.

10



Chapter 2

McEliece Cryptosystem

Cryptography studies the strategies to secure data in presence of an insecure communica-
tion channel. The basic principle is to transform the clear text in something more cryptic,
thus the decryption without the proper key is too expensive in terms of resources or a code
can take years to be broken.
The recent algorithms to secure data belong to two categories:

• Symmetric cryptosystems, one key is employed to encrypt and decrypt;

• Asymmetric cryptosystem, two keys are employed to encrypt and decrypt.

Asymmetric and Symmetric cryptosystems are employed for different purposes due to their
practical differences and requirement. For example the asymmetric encryption and decryp-
tion take more time, but one key can be shared to everybody without affecting the security
of the code. This is not true for a symmetric cryptosystem, just one key is used and it has
to be kept secure.

Asymmetric key, for example, can be useful to exchange a symmetric key or to be able to
carry out an authentication to a system. On the other hand the symmetric key, since it is
in general faster, can be employed in a communications in which both parts can be trusted.

The system analyzed in this work is an asymmetric cryptosystem.

2.1 Asymmetric cryptosystems
The asymmetric cryptosystem is a scheme used to secure data that adopts two different
keys, Public Key (PK) and Secret Key (SK). The scheme is known as Public-key cryp-
tography.
The entity, Alice, that wants to receive secret messages through an insecure channel pro-
vides the Public Key but keeps secret the other one. The sender of a message, Bob,
employees the PK to encrypt the message and send to Alice, who is able to decrypt the
ciphertext through a decoding method based on SK.

11



2 – McEliece Cryptosystem

The two keys are related one to the other, but:

• The method to generate the keys starts from SK and it is simple to generate PK;

• the asymmetry is in the fact that discovering SK from PK is a hard task, it is based
on a problem that requires more computations to be solved.

The most common asymmetric key method employed nowadays are:

• RSA
The public key of the RSA is a number derived from the product of two prime num-
bers, the factors selected are large in order to make the reverse problem even more
difficult. The provided Public Key is the product of this two prime numbers and an
additional value.

The system employed is secure from attacks running on classical computers, for key
of length 2048 and 4096 bit. But there is a class of algorithms developed for quantum
computers that is able to factorize a number is log(N).

The algorithms is Shor’s algorithm, developed in 1994 by Peter Shor.

• ECC
The Elliptic Curve Cryptography is based on plane curves defined over a finite field,
in GF(2) for example.
The problem is the basis of key agreement schemes and digital signatures. The
problem is secure against modern attacks, but Shor’s algorithm is a threat for this
systems, that is even less reliable than RSA[1].

2.1.1 RSA
The key generation process starts from the generation of two large and near prime numbers:
p1 and p2. Then the steps are:

• Compute the product q = p1 ∗ p2;

• Compute λ(n) = lcm(p1 − 1, p2 − 1), the value is part of the Secret Key;

• Select an integer e without common dividers with λ(n), but smaller then λ;

• Evaluate d ≡ e−1(mod λ(n))

The set of Private Keys are n and e, given as public key exponent. The Secret Key is d
the secret key exponent.

The encryption works starting from the clear text converted into an integer m, then the
operation is:

c ≡ me (mod n) (2.1)
The encryption is:

cd ≡ (me)d = m (mod n) (2.2)

12



2.2 – McEliece cryptosystem

2.1.2 Shor’s algorithm
The attack RSA method is the algorithm presented by P. Shor in 1994 [2], if it runs on
a large enough quantum computer it can retrive the two prime numbers of SK and then
evaluate SK.
The quantum factorization algorithm is organized in two parts:

• Classical part that reduces the problem;

• Quantum part, called period-finding subroutine

The classical part provides the starting point to the Quantum part, since a random number
a, lower than N , is selected and tested as a divisor of the input N . The quantum part is
called in case the random number is not a factor of N. The period-finding part searches a
value r that is the period of the function describing the ciphertext:

f(x) = ax mod N → f(x+ r) = ax+r mod N ≡ ax mod N (2.3)

The resulting value of r is even a new a is selected, while if it is odd a new check has to
be done:

ar/2 ≡ −1 (mod N) (2.4)

in case r does not satisfy this condition one among ar/2 + 1 and ar/2 − 1 is a factor of N .

The speed up is given by the quantum part in the evaluation of a period, all the possible
values are considered in a reasonably amount of time.

The time complexity of the algorithm is log2(N).

2.2 McEliece cryptosystem
The McEliece cryptosystem is an asymmetric encryption technique developed in 1978 by
Robert McEliece[3]. The security of the system is based on a NP-complete problem, the
problem of retrieving the linear code without any information on the structure of the code.

The original version of the system is based on a class of error correcting coded: Goppa
codes. The design of the systems starts from the selection of n, the code length, and the
number of error to be corrected t. Then it is selected an irreducible polynomial, a(x) of
degree t in GF(2 m). From a(x) the Generator Matrix G is derived, it has dimensions k×n.

The code selected has dimensions (n, k) and has an efficient decoding algorithm that is
able to correct t errors.
The next step is to design the other two components of the The Public Key. The
additional matrices are:

• a k × k random and dense non-singular matrix S, the "scrambling" matrix.

• a n× n permutation matrix P,

13



2 – McEliece Cryptosystem

These matrices are selected in order to hide the structure of the Generator Matrix, in
this way it would be harder to exploit its structure. Then the public key is the matrix:
G′ = SGP. The operation generates a new code that keeps the same parameters of the
original one.
The Private key is (S,G,P).

Encryption The encryption procedure works as follows:

• The original message m is a dataword on k-bits, through G′ a redundancy is added
to it: u = mG′.

• The string obtained is a codeword c on n-bits.

• An intentional error vector e, of weight t, is added to u.

The ciphertext is:
y = u + e = mG′ + e (2.5)

The encrypted message can be sent to an insecure channel.

Decryption The decryption phase tries to retrieve m from y in the following way:

• The inverse of P is computed.

• y′ = y ∗P−1 is the string that has to be decoded.

• a decoding algorithm, for example the one developed by Patterson[4], is used to
remove the errors in y′ and obtain mS−1.

• the "scrambling" matrix is inverted.

• the original message is m = m′S−1.

The use of Goppa codes makes the system secure against many types of attacks, but it has
some important drawbacks. The use of this type of codes required large keys since all the
elements has to be stored due to the randomness of the codes, this means that the system
can not be adopted in devices where memory is limited.

The size proposed is not secure considering the performances of modern computer, in an
article of 2008 [5] an attack running on a cluster with 200 computers broke the code in 7
days. The authors of the improved attack proposed two ways to increase the security:

• Increase the size of the matrices;

• Increase the number of errors to a higher value still correctable by the decoder, since
50 is a too conservative choice.

14



2.2 – McEliece cryptosystem

The explored sizes considering a security level of 256-bit for the proposed attack the sizes
are (6624,5129) with 117 errors, the matrix to be stored has size considerably large: 0.91
MB.

The options to improve this systems relays in the use of different error correcting codes,
but the challenge is to try to keep the security, while increasing the rate and decreasing
the size of the keys.
The drawbacks of the Goppa codes can be overcame considering the use of a different
family of error correcting codes.

clear message

G’ e

Unsecure channel

P S

clear message

Goppa encoder Goppa decoder

ciphertext G

-1 -1

Figure 2.1: McEliece cryptosystem

The family of codes suitable for this systems must have some specific characteristics:

• a large set of possible matrices can be employed for specific dimensions and parame-
ters, this aspect in order to avoid that an exhaustive search could retrive the original
matrix;

• a fast decoding algorithm should be available;

• the public key should oscure information that can be exploited to derive H.

2.2.1 Security
The definitions that describes the security of a system are the following:

• IND-CPA is the indistinguishability under chosen plaintext attack
the challengers selects a Private Key and a Public Key (this one is known to the ad-
versary too), the adversary choose two plaintext of the same length and the challenger
randomly selects one of them and encrypts it, the adversary is able to understand
which message has been selected performing any encryption or computation on the
ciphertext; the benefit is obtained if it is more probable to make a correct guess with
additional operation than randomly choosing between the two plaintexts.

• IND-CCA1 is indistinguishability under non-adaptive chosen ciphertext attack
The initial conditions are the the same before. The additional help to the attacker
is the presence of a decryption oracle that can be called just one time and perform
operations and encryption to the message. The choice made at the end is correct.
The system belong to the category if the advantage in discovering the right plaintext
is non-negligible.

15



2 – McEliece Cryptosystem

• IND-CCA2 is indistinguishability under adaptive chosen ciphertext attack
The only difference is that the oracle can be called multiple times for ciphertext
different to the received one. The adversary wins if the guess is correct. The system
belong to the category if the advantage in discovering the right plaintext is non-
negligible.

The system is more secure if it is IND-CCA2, meaning that even considering the help of an
oracle that can be called multiple times the effort to retrive the Secret Key is huge. The
definition is referred to an asymmetric system, but can be adapted to the symmetric case.

The other definition of security that is given is usually in number of operations that the
attacker executes to break the code. The security is defined with respect to a method
adopted by the attacker.The security is given by a “n-bit” format, this means that the
operations are 2n. The lowest work factor to consider a system secure is 80-bit.

Information Set Decoding The most important attack on the code that has to be
mentioned is the information set decoding (ISD), that is suitable to attack all other types
of codes, and it tries to find low weight codewords. The starting point of the search is
the presence of portions in the ciphertext that does not contain errors and corresponds to
portions of the generator matrix that together produce an invertible sub matrix.
The detailed results of ISD with different algorithm on a McEliece cryptosystem based on
Goppa (1024,524) code with 50 errors is summarized in Table 2.1

Table 2.1: Work Factor for Instruction Set Decoding with different algorithms

Algorithm n-bit Year
Stern 66.21[6] 1989
Canteaut-Chabanne 65.5[7] 1994
Canteaut-Sendrier 64.2 [8] 1998
Bernstein-Lange-Peters 58[5] 2008

The most recent article [5] describing the attack proposed the modifications in the dimen-
sion of the code in order to make Goppa codes secure against newest attacks based on
Stern’s searching algorithm with Grover’s improvement (again a quantum algorithm). In
Table 2.2 the different dimensions to obtain higher security.

Table 2.2: Work factor for different Goppa codes dimensions

Code n-bit Memory
(1632,1269,34) 80 56 kB
(2960,2288,57) 128 187 kB
(6624,5129,117) 256 1MB

16



2.3 – LDPC codes

The second possible attack is an exhaustive attack, but since there are many possibilities
the algorithm will not be able to retrieve the keys in a a small amount of time.

2.3 LDPC codes
The candidates explored in this work are the Low-Density-Parity-Check codes, discovered
by Robert G. Gallager in 1960 [9]. They are a channel capacity approaching error correct-
ing codes and mainly used in Telecommunication in order to remove the error added by
the communication channel. The big advantage of these class of codes is the low density
matrix that can be exploited on order to save some space in memory, their structured
version allows to save the matrix in a compressed format that takes even less space.

The big drawback is that they are not secure as the Goppa codes, but some work has been
done in this sense.

The core of the thesis regards the LDPC codes employing in the McEliece cryptosystem.

17



18



Chapter 3

LDPC codes

3.1 Linear block codes and low density parity check
codes

Linear Codes are a class of codes used in coding theory, their main advantage is the error-
correcting capability that approaches channel capacity. The message to be transmitted is
subdivided in blocks, it is encoded and then it is sent through a channel which introduces
some error bit that a specific algorithm is able to remove.

The data word is mapped on k-bit, while the codeword is mapped on n-bit, where n > k.
The codeword contains the same information of the data word, but with a redundancy. The
additional bits are exploited later in order to be able to recover the clear message.

The linear code is described by a Generator Matrix G and the Parity Check Matrix H.
The codeword from the original message is generated by:

x = u ·G (3.1)

The code is systematic if the first M -bit of it corresponds to the dataword, the following
bit are the parity bits. The generator matrix for a systematic codes is:

G = [Ik|P] (3.2)

The dimensions of P are k × (n − k) and this is called the Parity Matrix, while Ik is the
identity matrix of dimension k × k.
The codeword is sent to the receiver and some errors due to the transmission are added,
the received message is:

y = x + e (3.3)

The correct value of x can be evaluated with the parity check matrix H, this is constructed
in this way:

H = [PT |In−k] (3.4)

19



3 – LDPC codes

H =



0 1 1 0 1 0 0 1 0 1 0 1 1 0 1
1 0 0 1 0 1 1 0 1 0 0 1 1 0 0
1 0 1 0 0 1 0 1 1 0 1 0 0 1 1
0 1 0 1 1 0 0 1 0 1 0 1 1 0 0
0 1 1 0 1 0 1 0 1 0 1 0 0 1 1
1 0 0 1 0 1 1 0 0 1 1 0 0 1 0


The received word is a codeword when the syndrome is:

s = yHT = 0 (3.5)

The condition 3.5 is valid for more than one code on n-bit: there are 2n possible codes,
among them the codewords are 2k.

The following decoding process has to remove the errors added in the original message x.
The LDPC codes are iterative linear block codes, with a low density Parity Check matrix,
which means a low presence of ′1′s, for this reason the are Low Density.

3.1.1 Tanner Graph
The H can be represented by a Tanner Graph, a type of bipartite graph: one set of
variable nodes with n elements, one for each column of the matrix, and a set of check nodes
with n− k elements, one for each row of the matrix, the connections among these groups
corresponds to a ′1′ in the Parity Check matrix.
In terms of graph theory the low density means that the degree of its variable nodes (dv)
is much smaller than n− k and the check node degree( ds) is much smaller than n.
The check nodes correspond to the bits of the syndrome of the message, while the variable
nodes correspond to the bits of the encoded message.

Figure 3.1: Regular (3,8) LDPC code with n = 15 and r = 6

The representation is useful in order to understand more clearly some decoders explained
later.

20



3.2 – Code construction

3.1.2 Notations and definitions
The quantity dv(i), with i = 1 to N , is the number of 1s in the ith column, while ds(j),
with j = 1 to K,is the number of 1s in the jth row.
The set of variable nodes is called Nv and the set of check nodes is called Ns.
The group of variable nodes connected to the jth check node, j = 1 to n− k, up to depth
l is N l

sj
, while N l

vi
is the group of check nodes connected to the ith variable nodes, with

i = 1 to n. The complementary set of these groups is: N l
sj

and N l
vi
.

The important distinction that can be done regards the regular and irregular codes:

• regular : ds = γs ∀s ∈ Ns and dv = γv;∀v ∈ Nv

• irregular : ds and dv has a variable degree along the nodes.

The matrix has low density if ds � N and dv � K.
The graph is characterized by another important parameter: the girth. The parameter
defines the minimum length of the cycles in a graph, the girth is important when it comes
to design codes.
The minimum distance is the minimum Hamming distance between all the codewords that
satisfies the syndrome relation with H.

3.2 Code construction
The code construction refers to the construction of the Parity-Check matrix. Different
algorithms are available, in the following they are going to be described in detail.

Parity-check matrix derivation

The LDPC codes belong to two categories.

• Structured codes: H has a predefined structure that allows to reduce the elements to
be stored.

• Unstructured codes: H has a structure that can not be compressed since there is no
relation between the asserted position of the matrix.

The best choice is the one that generates matrices with a few (or none) small cycles, a
suitable algorithm that can generate good matrices is the Progressive Edge Growth [10],
which generates unstructured codes.
Structured codes are, for example, QC-LDPC codes[11] or codes based on Pseudo Difference
Families[11].

Generator matrix derivation

The Generator Matrix is derived from the Parity Check Matrix in this way.
The matrix should be in the from

H = [AB] (3.6)

21



3 – LDPC codes

Where A is a r × r invertible matrix, the permutation of the columns does not affect the
properties of H, then some columns exchange is done in order to have a suitable structure.
In this way the systematic form of H can be obtained by: H′ = [AB] ∗A−1 = [P, Ir].
The row exchange in order to produce a suitable matrix introduces additional time com-
plexity to the code generation, in order to check the rank of the sub-matrix, find the
non-independent rows and exchange it with a suitable row.
The Generator Matrix can be obtained:

G = [(BA−1)T, Ik] (3.7)

The step changes H, but allows to have G in systematic form.
The decoder has to use H′ to recover the message without errors; the use of H is not going
to give the right message unless a permutation is applied on the resulting vector.

3.3 Code construction Algorithms
The algorithms described are:

• Progressive Edge Growth

• QC-LDPC

Algorithms have to generate H with full rank in order to be able to generate G, the
proposed methods does not include this step. The condition is more probable to be satisfied
with specific parameters of the code otherwise a new run of the construction is required.

3.3.1 Progressive Edge Growth
The algorithm is able to generate codes without a relation between the asserted positions
and that has a large girth, it is described in detail in article [10].
The method inserts at each step a new connection that does not include the previous paths.
The pseudo-code is in Algorithm 1.
The central operation of the algorithm is to find the connections of each node and introduce
a new connection among far nodes. The only change that can be introduced is in the
selection of the new connection if more than one node is suitable.
The codes can be both regular and irregular, the type of matrix depends on the degree
selected at the beginning: the value of ds can be the constant ∀k or not, moreover the dv
is decided by this choice.
The problem is in the generation of G because it can happen that H is not full rank, in
this case the process has to be iterated again or the degree of the rows and columns has
to be changed. The check to be done is to compute the rank of H, this value has to be r,
otherwise an invertible matrix A cannot be derived. In general the suggestion is to avoid
generation of regular codes with even ds or with one of the dimensions even.

The variations that can be added on the selection of the new node leads to matrices with
different shapes. The different cases are in Fig. 3.2

22



3.3 – Code construction Algorithms

Data: c : check nodes,v : variable nodes
Result: H
initialization: ;
for j = 0 to n− 1 do

for k = 0 to dsj − 1 do
if k = 0 then

E0
sj
← edge (ci, sj), where E0

sj
is the first edge connected to sj , and ci is

a check node with the lowest check degree in the current graph
arrangement Es0

⋃
Es1 · · ·

⋃
Esj−1

else
expanding a tree from a symbol node sj up to depth l under the current
graph arrangement such that N l

sj
/= ∅ but N l+1

sj
/= ∅, or the cardinality

of the N l
sj

stops increasing but is less than m, then Ek
sj
← edge (ci, sj),

where Ek
sj

is the k-th edge incident to sj and ci is one check node
selected from the set N l

sj
having the lowest check-node degree. ;

end
end

end
Algorithm 1: PEG

0 500 1000 1500
nz = 7532

0

100

200

300

400

500

600

(a) Example of random selection for the
new node of H

0 500 1000 1500
nz = 7412

0

100

200

300

400

500

600

(b) Example of random fixed selection for
the new node of H

Figure 3.2: Different Parity-Check matrices

PEG example

The PEG algorithms works as follows:

• The variable nodes are: {v1, v2, v3, v4, v5, v6, v7} with degree ds = {2,1,3,1,2,1,2}.

• The check nodes are: {c1, c2, c3} with degree that depends on the construction.

The first variable node has degree 2 and the check nodes has no connections, thus the first
arc connect v1 with c1. The second arc from v1 can be connected to both c2 or c3, c2 is
randomly selected. At this point the arrangement in Figure 3.3(a) in obtained.

23



3 – LDPC codes

1

1

2 3 4 5 6 7

2 3

variable nodes

check nodes

j = 1

degree: 1 1 0

designed
degree: 2 1 3 1 2 1 2

k =;1
k =;2

(a) Variable node v1 and arc 1,2

1

1

2 3 4 5 6 7

2 3

variable nodes

check nodes

j = 2

degree: 1 1 1

designed
degree: 2 1 3 1 2 1 2

k =:1

(b) Variable node v2 and arc 1

Figure 3.3: Step 1,2

The following variable node, v3, is selected then the choice of the check node is among
{c1, c2, c3}, c1 is selected since it is the first one of the list. The second arc, k = 2,
is selected and a path starting from v3 is expanded as in Figure 3.4(a), the remaining
check node is only c3 then this one is selected. The next arc, with k = 3, requires again
the expansion of the tree starting from the variable node v3, as in Figure 3.4(b) but the
situation is different now because the set of possible the expansion stops at depth l = 2.
The new connection is with check node c2.

1

1

3

2

j =&3
k = 1

N =&c1
depth = 1

N =&c1,c2
depth = 2

3 N =&3
depth = 2

1

1

3

2

j =&3
k = 1

N =&c1,c3
depth = 1

N =&c1,c2,c3
depth = 2

3

2

N =&c2
depth = 1

1

2

5

1

3

3

N =&c2
depth = 1

N =&c1,c2,c3
depth = 2

N =&c1,c3&&1>&c1&
has lower degree
depth = 1(a) Expansion of node

v3 with k = 1

1

1

3

2

j =&3
k = 1

N =&c1
depth = 1

N =&c1,c2
depth = 2

3 N =&3
depth = 2

1

1

3

2

j =&3
k = 1

N =&c1,c3
depth = 1

N =&c1,c2,c3
depth = 2

3

2

N =&c2
depth = 1

1

2

5

1

3

3

N =&c2
depth = 1

N =&c1,c2,c3
depth = 2

N =&c1,c3&&1>&c1&
has lower degree
depth = 1

(b) Expansion of node
v3 with k = 1,2

1

1

3

2

j =&3
k = 1

N =&c1
depth = 1

N =&c1,c2
depth = 2

3 N =&3
depth = 2

1

1

3

2

j =&3
k = 1

N =&c1,c3
depth = 1

N =&c1,c2,c3
depth = 2

3

2

N =&c2
depth = 1

1

2

5

1

3

3

N =&c2
depth = 1

N =&c1,c2,c3
depth = 2

N =&c1,c3&&1>&c1&
has lower degree
depth = 1

(c) Expansion of node
v5 with k = 1,2

Figure 3.4: Three expansions

24



3.3 – Code construction Algorithms

1

1

2 3 4 5 6 7

2 3

variable nodes

check nodes

j = 3

degree: 2 1 1

designed
degree: 2 1 3 1 2 1 2

k =:1

(a) Variable node v3 and arc 1

1

1

2 3 4 5 6 7

2 3

variable nodes

check nodes

j = 3

degree: 2 1 2

designed
degree: 2 1 3 1 2 1 2

k =:1 k =:2

(b) Variable node v3 and arc 2

1

1

2 3 4 5 6 7

2 3

variable nodes

check nodes

j = 3

degree: 2 2 2

designed
degree: 2 1 3 1 2 1 2

k =:1 k =:2

k =:3

(c) Variable node v3 and arc 3

Figure 3.5: Variable node v3 connections.

The connections for v4 and v5 with k = 1 are straightforward since no expansion is needed:
the check node selected is the first one with lower degree, the step is in Figure 3.6(a).
The selection of the second connection of v5 requires an expansion of the node(see Figure
3.4(c)), since the expansion has to be stopped before the maximum cardinality of the check
node is reached there are two possible candidates c2 and c3, the next arc is between v5 and
one of the previous nodes.

1

1

2 3 4 5 6 7

2 3

variable nodes

check nodes

j = 4

degree: 3 3 2

designed
degree: 2 1 3 1 2 1 2

k =:1j = 5
k =:1

(a) Variable nodes v4 and v5 con-
nection.

1

1

2 3 4 5 6 7

2 3

variable nodes

check nodes

j = 5

degree: 3 3 3

designed
degree: 2 1 3 1 2 1 2

k =:1
k =:2

(b) variable node v5 connections

Figure 3.6: Variable node v3 connections.

The final arrangement of the graph is in Figure 3.7

1

1

2 3 4 5 6 7

2 3

variable nodes

check nodes

degree: 4 4 4

designed
degree: 2 1 3 1 2 1 2

Figure 3.7: Final arrangement

PEG security The structure of the Parity-Check Matrix is unpredictable then the at-
tacker can not exploit any information to recover H from G. They are still insecure against
other types of attacks due to their sparsity, the only solution is to increase the size of the
code but the code generation could be time consuming at this point since the rank and

25



3 – LDPC codes

the inverse of the matrix have to be computed. The study regarding their security is not
available, then they can be used just to test the performances of the decoding algorithms.

3.3.2 Quasi Cyclic construction
The Quasi-Cyclic construction for LDPC codes has been presented the first time in 1967
and in [12]. The codes generated are structured and a recent work on the McEliece Cryp-
tosystem showed that they can be adopted in order to reduce the key size[13].
Quasi-cyclic codes have the following structure:

H =


H0,0 H0,1 · · · H0,n0−1
H1,0 H1,1 · · · H1,n0−1
...

... . . . ...
Hr0−1,0 Hr0−1,1 · · · Hr0,n0−1

 (3.8)

The block are p× p circulant matrices, in which only the first row has to be specified. The
dimensions of H is r×n, where r = pr0 and n = pn0; the dimensions of G are n×k, where
k = pk0. The code rate is: k0/n0, it depends on the number of blocks in the matrix.

The Parity Check Matrix for this particular case is:

H = [H0,H1, . . . ,Hn0−1] (3.9)
each Hi block is a circular matrix with size p× p.
The Generator Matrix is:

G =


H−1

n0−1
T ∗H0

H−1
n0−1

T ∗H1
I, . . .

H−1
n0−1

T ∗Hn0−2

 (3.10)

In order to be able to generate G, Hn0−1 must be invertible. The random choice of the
first row can lead to a singular matrix.
The important advantage of the construction is in the computation of the inverse since it
requires less operation compared to the other case, even if larger matrices are involved.The
derivation of the Generator Matrix is less computationally expensive.

Moreover only n0 rows have to be saved, since the full matrix can be derived from them,
the problems related to the space in memory is easily overcame. The main drawback relays
in the fact that some common attacks on the code could discover easily the secret key from
the public key, but some modifications on the encoder allow to reduces this risk.

The article that presents this options suggests the use of large (order of thousands) p values
and small n0 (usually between 2 and 4 circulant blocks). The rate for this arrangement is
r = (n0 − 1)/n0[14].
The shape of the Parity-Check Matrix in Quasi-Cyclic case is in Figure 3.8.
The method produces suitable codes, but there are some problems in terms of security
since the unknowns to find are less then the one of the PEG codes, unless some counter
measurements are not applied the QC structure can be easily exploited by an attacker.

26



3.3 – Code construction Algorithms

0 5 10 15 20 25 30 35 40
nz = 195

0

2

4

6

8

10

12

14

Figure 3.8: Parity-Check Matrix with quasi-cyclic construction

3.3.3 Girth reduction
The main purpose of the PEG construction is to reduce the number of cycles in the Tanner
Graph. The minimum length of the cycle present is called girth. Small cycles (ex. girth
4,6,8) do not allow a proper correction of the code in most of the cases the decoder is not
able to converge to the solution since it is trapped in a cycle as it is explained later.

The article[10] relates the girth of PEG codes with the dimensions of the matrix, in Fig.
3.9 it can be seen that with larger codes the maximum girth increases, the presence of
small cycles is avoided.
The work presents also a lower bound to the girth, which appears to be related with codes

at depth 0, and there are check nodes at depth 1,
at depth 2, etc. Thus we have

(10)

which reduces to

(11)

Changing inequality (11) to equality and taking the largest in-
teger solution, we obtain an upper bound on the girth as

(12)

where is defined by (9).
Fig. 3 depicts both the lower bound on a PEG Tanner graph

and the upper bound on a general Tanner graph for regular
code with varying ( ). The lower

bound for the entire range of block lengths attains half the up-
per bound. Compared to Gallager’s construction [3] for large
girth, the PEG construction achieves essentially the same per-
formance on the girth but with less complexity. Recall that for
large block lengths the complexity of Gallager’s construction
becomes prohibitively large owing to the so-called emergency
procedure contained therein. Also, the PEG construction can
be applied to irregular graphs, whereas Gallager’s construction
only applies to regular graphs.
The randomly constructed -regular code for

has a minimum distance that increases linearly with the block
length for and constant [3]. This is only valid for rela-
tively large block lengths, however, and a code with a low min-
imum distance will be impaired in its performance SNRs. Al-
though finding the minimum distance is difficult, some bounds
on the minimum distance of an arbitrary Tanner graph have
been established in [11]. For a PEG Tanner graph, a stronger
bound is possible, mainly because of the strength of the lower
bound on the girth.
The lower bound on the minimum distance of a PEG Tanner-

graph code is based on the properties of the subgraph induced

Fig. 3. Lower and upper bounds on a PEG regular Tanner graph with
.

by a minimum weight codeword in the code. A symbol node
whose associated value in the minimum weight codeword is
nonzero will be called an active symbol node. The edges inci-
dent to such a node will be called active edges, and the check
nodes with at least one active incident edge will be called ac-
tive check nodes. Note that in a binary LDPC code, any edge
incident to an active symbol node must be active, and any ac-
tive check node must be incident to even active edges.

Lemma 4: Given a regular Tanner graph with edges inci-
dent to each check node and to each symbol node.
Assume . Then its minimum distance satisfies

(13)

Furthermore, if is even, the lower bound on can be
made even tighter:

(14)

Proof: Consider a subgraph induced by a minimum-weight
codeword in the graph, consisting of active symbol nodes,
active check nodes, and all (active) edges incident on ac-

tive symbol nodes. Note that is exactly equivalent to .
Now start a depth- tree from any active symbol node as shown
in Fig. 4, where . Any symbol node, check
node, and edge resident in the tree must be active and mutu-
ally different, except that the last row of check nodes does not
have to meet the condition of being mutually different if
is odd. The number of active edges incident to an active check
node can in principle be 2, 4, , etc.; however only a degree-2
(active) check node is considered to generate a minimum ex-
pansion for the number of active symbol nodes, which in turn
gives rise to a lower bound on the minimum distance. There is
only one active symbol node at depth 0, and there are active
symbol nodes at depth 1, at depth 2, and similarly

at depth . As the girth of the underlying graph
is given by , it is clear that all active symbol nodes within this
depth- tree must be mutually different, otherwise
there always exists a closed path shorter than , leading to a

Fig. 4. An “active” tree induced by a minimum weight codeword.

998

Figure 3.9: Size of the matrix and girth[10]

parameters (both for regular and irregular codes):

g > 2(floort+ 2) (3.11)

where

t =
log(kdmaxc − kdmax

c

dmax
v
− k + 1)

log(dmaxv − 1)(dmaxc − 1) − 1 (3.12)

In case of PEG constructed codes the minimum girth can be increased changing the degree
of the nodes and the size of the matrices.

27



3 – LDPC codes

The QC-LDPC, studied in [13], requires two conditions to construct matrices with high
girth.

• Lemma 1: A circulant matrix with row (column) weight equal to 2 has length-4
cycles only if its size p is even and the difference between the positions of two ones in
each row is p/2.

• Lemma 2: A circulant matrix with row (column) weight higher than 2 has local
girth at most equal to 6.

The girth can be graphically represented in this way:

(a) Example of girth-4 (b) Example of girth-6 (c) Example of girth-8

Figure 3.10: Girth examples[11]

3.4 LDPC codes encoding
The encoding process requires to multiply the message by the public key and then add a
bounded error on it.
The error added is supposed to be the one of a Binary Symmetric Channel (BSC) with
probability perror, which only flips the bit of the redundant message, m ∗ G, with that
probability.
The encoded message has the following form:

x = m ∗G⊕ e (3.13)

3.4.1 Minimum distance and maximum error
The probability of the BSC has to be chosen carefully since it will affect the decoding pro-
cess. The codeword corresponding to the original message is unique given that G and H
are defined, but there is more than one codeword for the matrix H, the minimum distance
between two codewords gives a bound to the maximum error that can be applied. The
codes involved in the following analysis are huge and an exhaustive search of the minimum
distance would be too time expensive, the solution adopted is to simulate the various de-
coding algorithms with different probabilities, then the perror,max could be selected.

28



3.5 – LDPC decryption

The second problem of LDPC codes and the choice of the probability is that the error cor-
rection capabilities of codes with similar characteristics are not the same, to overcome this
issue the choice is to change the construction: the QC-LDPC codes based on Difference
Families.

The minimum distance problem is not analyzed in this thesis, but mentioned just for
completness.

3.5 LDPC decryption
The first step of the decoding process for the McEliece cryptosystem requires a multipli-
cation for the permutation matrix:

message to decoder = x ∗ S ∗G′ + e ∗P′ (3.14)

The LDPC/QC-LDPC codes employe does not require this operation because the Private
Key does not include a permutation to be generated.

The error is removed through an LDPC decoder, two classes of them are available, both
based on different kind of decisions and information about the added error:

• Soft decision algorithm: soft decoders consider the stream of informations not
only with they specific value, but also their probability to assume value ′1′ or ′0′, the
informations on the errors introduced by the channel are taken into account.

• Hard decision algorithm: hard decoders consider only the stream of the data and
do not include any information from the channel, the flipping decision in based mainly
on the computation of the syndrome.

The following steps are the ones already explained in the general description of the McEliece
cryptosystem.

3.5.1 Decoder characteristics
The decoding algorithms and codes can be classified and compared considering some figure
of merit:

• BSC: the algorithm has to be suitable and optimized for this type of error.

• Waterfall Region: this is the region where the algorithm starts to correct error, it
depends on the structure of the matrix and not on the decoding algorithm, but it
should be analyzed if the starting point changes.

• Error Floor Region: the decoder correction capability stops to increase at a certain
perror,max.

• Complexity: the operations involved should not be complex (such as divisions,
multiplications), it’s better to use basic boolean operations. The complexity can be
reduced not only adopting simpler decoders, but also dealing with structured codes.

29



3 – LDPC codes

• Correction: the error correction capability should be as higher as possible, which
means that perror,max has to be high.

• Iterations: algorithms that require, in general, a lower number of iterations to con-
verge are preferred.

The meaning of the Waterfall and Error Floor regions for the BER vs. S/N0 is in Figure
3.11. The first region is between 30 and 45 dB, in this part the decoder starts to correct,
the second region starts from 45 dB in this case the BER is more flat (in the Figure is not
much clear but the variation of BER vs S/N0 changes).
In general these are basic requirements of a decoder used in Telecommunication, while in
Cryptography the requirements are different: the key point is to have messages is always
successfully decrypted, it is useful to know the maximum number of errors that can be
applied and the failure rate of the decoder with that value. Unfortunately the LDPC codes
have a decoding rate that can not be predicted in advance.

The value can not be found with a huge number of iterations since these decrypting proce-
dure is not meant to work on devices with a high computational capability. The parameters
that may be useful are: the degree of the variable nodes and check nodes and the size of the
code. Always taking into account that in many cases the maximum number of iteration is
not that high, so the error correcting capability could be reduced.

The most important class od decoders are the Belief Propagation, based on a soft decision,
and the Bit Flipping, based on a hard decision. The other decoding solutions are mainly
based on this two algorithms.

10 20 30 40 50 60 70
10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

Figure 3.11: Waterfall and Error Floor region for two different methods

3.5.2 Soft Decoding algorithms
The soft decoding algorithms are all based on message passing between check nodes and
variable nodes. The stream of bits considered are ′1′ or ′0′, with an additional value
that includes the reliability of that value. The most famous one is the Belief Propagation

30



3.5 – LDPC decryption

Algorithm developed by Gallager, the other soft decoding algorithms are a semplification
of this one.[9]

Belief Propagation

The two set of nodes exchange the Tn,m and En,m messages:

• Tn,m is the partial message produced by the i − th, with i = 1 to N , variable node
and sent to the check nodes connected to it;

• En,m is the partial message produces by the j − th, with j = 1 to N −M ,check node
and sent to the variable node connected to it.

The variable nodes produce a total information of the node, Tn, that includes the message
coming from the arrival node.
On the other hand Tn,m and En,m doesn’t have the total information, this is the key point
of the Gallager algorithm and makes the Belief Propagation the best correcting algorithm.

T(n,m) E(n,m)

Bit Nodes

Check Nodes

Figure 3.12: Graphic representation of the structure

The update rule for each node is:

Check nodes update rule Bit nodes update rule

Tn,m from bnn to cnm E(i)
n,m = 2tanh−1 ∏

n′∈N(m)\n

tanh
T

(i)
n′ ,m

2 T in,m = In +
∑

m′∈M(n)\M

E
(i−1)
n,m′

Tn from vnn to cnm E(i)
n,m = 2tanh−1 ∏

n′∈N(m)\n

tanh
T

(i)
n′
E

(i−1)
n′ ,m

2 T in = In +
∑

m′∈M(n)

E(i−1)
n,m

Table 3.1: Updating

31



3 – LDPC codes

Sum Product Algorithm

The previous algorithm considered products and hyperbolic tangents that implemented in
hardware can be some time consuming tasks, in order to prevent this the likelihood ratio
can be substituted with its logarithm, the log-likelihood ratio and the operations to be done
are simpler.
The new notation is:

• k is the current iteration;

• Qji is the message from BNj to CNi;

• Rij is the message from CNi to BNj ;

• C[j] is the set of incoming messages for BNj ;

• R[i] is the set of incoming messages for CNi.

The first step initializes BN with the specific γi, then CN receives the information and at
each iteration the message from CN is:

R
(k)
ij = ψ−1

[ ∑
j′∈R[i]\j

ψ(Q(k)
j′ i

)
]
· δij′ (3.15)

where
δij′ = (−1)|R[j]| ·

∏
j′∈R[i]\j

sign(Qj′ i) (3.16)

while ψ is a non linear function with ψ(x) = ψ(x)−1 for x >= 0

ψ = −ln(tanh
∣∣∣x2
∣∣∣) = ln

1 + e−|x|

1− e−|x| (3.17)

The equation 3.15 can be rewritten in

R
(k)
ij = ψ[PSi − ψ(Q(k)

ji )] · δij′ (3.18)

Where PSi is the sum of all incoming message to ci with ψ applied.

Q
(k)
ji = λj +

∑
i′∈C(j)\i

(3.19)

3.5.3 Hard Decoding algorithms
Hard decoding algorithms consider the hard information of the bit stream: ′0′ or ′1′. The
following algorithms presented here are suitable when each single bit does not include an
additional information related to the error added by the channel. The simplest hard algo-
rithm for LDPC decoding is the Bit Flipping. The syndrome is evaluated and the number
of unsatisfied check nodes connected to a variable nodes is counted and compared to a
predefined threshold, the algorithms ends when the syndrome is 0 or a maximum number

32



3.5 – LDPC decryption

of iterations is reached.

The algorithm is also the worst in terms of performance, since the threshold remains always
the same and it’s not able to correct a huge number of errors. The main benefit is the
complexity since only some basic operations are required.

The improvements of the Bit Flipping introduces an higher computational complexity, but
their performance are highly improved.

Gallager’s algorithm

The hard decoding technique developed by Gallager[9] is a type of Bit Flipping. Two
versions has been studied, for regular codes the threshold δ:

• Gallager A: δ ≤ γv − 1.

• Gallager B: γv/2 ≤ δ ≤ γv − 1
The B-version works better, while both has the same behavior if the degree node is 3.
The main issue of the BF solution is its determinism since the threshold remains constant
during the iterations. The main improvement of this solution can be achieved by including
a way to change δ in case no additional error is corrected, otherwise the decoder will iterate
each time the same approximated codeword without being able to correct any new error.
The computation stops when a maximum number of iterations is reached or the syndrome
is 0, in the second case the message is decoded.

Data: y : message encoded
Initialization: ∀v ∈ V : x̂(0)

v ← yv
s(0) ← x(0)HT

l = 0;
while s(0) /= 0 and l ≤ L do
∀v ∈ V : Compute ψlus(v)
for v = 1 to N do

if ψlus(v) > γv

2 then
x̂

(l+1)
v ← 1⊕ x̂(l)

v

else
x̂

(l+1)
v ← x̂

(l)
v

end
end
s(l+1) ← x(l+1)HT

l = l + 1
end
Result: x̂lv : message decoded

Algorithm 2: Parallel Bit Flipping over BSC

The decoder was tested for many cases, but the result are not enough to consider it as a
possible candidate to be implemented in hardware, the structure is simple but the residual
error is not acceptable.

33



3 – LDPC codes

Gradient Descent Bit Flipping for BSC

The algorithm is an improvement of the Bit Flipping, the threshold changes as the al-
gorithm goes on. The version presented is an adaptation of BSC error of the original
GDBF[15].
The Gradient Descent Bit Flipping tries to solve the problem in a different way: the search
of the correct codeword can be seen as the process to minimize a function (since we want
to find the codeword that have a zero-vector as syndrome), this is called the objective-
function. It is derived considering two different decoding processes:

• Maximum likelihood decoding process: the goal of this step is to find an approximation
with the highest correlation with the original encoded message, the ciphertext.

• Sum of syndromes of the approximated codeword: this counts the number of unsatis-
fied check nodes connected to each variable node (as in the Bit Flipping).

The GDBF for BSC works as follows:

• Evaluate the syndrome of the current approximation of the codeword;

• Evaluate for each variable node its inverse function in case of γ-variable-regular codes

Λ(l)
v (x̂(l)

v ,y) = x̂(l)
v ⊕+

∑
c∈Nv

⊕
u∈Nc

x̂(l)
u (3.20)

or more in general

Λ(l)
v (x̂(l)

v ,y) = x̂(l)
v ⊕+

∑
c∈Nv

⊕
u∈Nc

x̂(l)
u − 0.5 · dv (3.21)

The quantity is the inverse function it is an integer vector with the same length as cipher-
text, it has to be evaluated at each new iteration. Then the maximum is evaluated and
the corresponding variable node with that value are flipped.
The algorithm works better than bit flipping since at each iteration a new threshold is eval-
uated, but with small cycles a problem arises: the approximation of the original message
changes only between two incorrect values and it is not able to escape from this condition
and successfully correct other errors or jump into another bit configuration. The only so-
lution is to construct matrices without small cycles.

34



3.5 – LDPC decryption

Data: y : message encoded
Initialization: ∀v ∈ V : x̂(0)

v ← yv
s(0) ← x(0)HT

l = 0;
while s(0) /= 0 and l ≤ L do
∀v ∈ V : Compute Λ(l)

v (x̂,y)
b(l) ← maxv(Λl

v(x̂,y))
for v = 1 to N do

if Λ(l)
v (x̂,y))b(l) = b(l) then
x̂

(l+1)
v ← 1⊕ x̂(l)

v

else
x̂

(l+1)
v ← x̂

(l)
v

end
end
s(l+1) ← x(l+1)HT

l = l + 1
end
Result: x̂lv : message decoded

Algorithm 3: Gradient Descent Bit Flipping over BSC

The decoding behavior of GDBF for a (400,200) code with different values of BSC proba-
bility are in Figure 3.13, the requirement to have the errors completely cleared is achieved
only considering a number of iterations of 100 or 200, at least. Even if the residual error
in the message is lower, there are still some cases that does not allow complete correction.
The code considered is constructed by PEG.

10 -3 10 -2

10 -5

10 -4

10 -3

10 -2

inital error
It = 5
It = 10
It = 20
It = 50
It = 100
It = 200

Figure 3.13: GDBF

35



3 – LDPC codes

Probabilistic Gradient Descent Bit Flipping

The PGDBF is an improvements of the GDBF[15]: in the first case all the bits that
satisfy the flipping condition are changed, here they are changed with a certain probability
pPGDBF . The difference is that :

• a Bernoulli random variable av is generated with Pr(av = 1) = p

• the new approximation is evaluated as
x̂lv = av ⊕ x̂lv (3.22)

for the values that have the maximum value od inverse function
The algorithm works better than the previous one, since all the error are corrected up to
a perr,max = 10−2 for a code (151,61), for pPGDBF = 0.8[15].
The complexity is higher with respect to the previous case, since it is required the evalua-
tion of a quantity considering a Bernoulli distribution.
The main advantage is that increasing the number of iterations and the dimensions of the
code perr,max can be slightly increased, but it has again the same problems of the GDBF,
because the errors not corrected by the PGDBF are the ones that the GDBF is able to
correct, sizing successfully the pPGDBF can overcome this problem.

The decoder is simulated for the same conditions of the GDBF for two values of p. The
behavior is in Figures 3.14 that consider two probabilities, it is suggested to increase it in
order to exploit at most the algorithm.

10 -3 10 -2

10 -5

10 -4

10 -3

10 -2

inital error
It = 5
It = 10
It = 20
It = 50
It = 100
It = 200

(a) PGDBF with p = 0.2

10 -3 10 -2

10 -6

10 -5

10 -4

10 -3

10 -2

inital error
It = 5
It = 10
It = 20
It = 50
It = 100
It = 200

(b) PGDBF with p = 0.5

Figure 3.14: PGDBF

Multiple Decoding attempts and Random re-Initialization

The PGDBF behavior shows that the erroneous corrections depends on the first flipping
conditions evaluated at the beginning of the process, a new idea is to restore the original

36



3.5 – LDPC decryption

condition when there is a specified number of iteration and the syndrome is not 0.

The algorithm is widely described in [15]. The performance is studied below compared to
other decoders.

Probabilistic Parallel Bit Flipping

The Probabilistic Parallel Bit Flipping is a technique suitable for regular codes.
The last adopted technique is based again on a different phylosophy. The variable to
evaluate for each bit of the approximated codeword at each iteration is the energy:

E(k)
n = v(k)

n ⊕ yn +
∑

cm∈Nvn

ckm (3.23)

where c(k)
m is:

c(k)
m = ⊕vn∈N(cm)v

k
n (3.24)

The quantity is the same evaluated for the previous algorithms, instead of considering
the maximum value there is a predefined flipping probability for each of the possible En.
The values that can be assumed are 0 ≤ Ek

n ≤ dv + 1, for each of them there is a vector
p = (p0, p1, . . . , pdv+1). The vector R(k)

n is the flipping condition evaluated for each bit.
The vector p is evaluated with an exaustive simulation.

Data: y : message encoded
Initialization: ∀v ∈ V : x̂(0)

v ← yv
s(0) ← x(0)HT

p = (p0, p1, . . . , pdv+1)
l = 0;
while l ≤ L do

for 1 ≤ m ≤M do
Compute c(k)

m

end
if c(k) = 0 then

exit while
end
for 1 ≤ n ≤ N do

Compute E(k)
n = v

(k)
n ⊕ yn +

∑
cm∈Nvn

ckm

Generate R(k)
n from B(p(E(k)

n ))
if R(k)

n = 1 then
v

(l+1)
n = v

(l)
n ⊕ 1

end
end
l = l + 1

end
Result: x̂lv : message decoded

Algorithm 4: PPBF
The algorithm can be adapted to irregular codes in two different ways:

37



3 – LDPC codes

• modify E(k)
n to adapt it to different degrees, this one is more similar to the PGDBF,

but it avoid the evaluation of the maximum;

• use different p depending on the degree of the node, this is for sure the most complex
option since in case od high degree of the nodes many possibilities are present.

The first option is adopted. The most relevant part of the algorithms is the selection of
the probabilities, since many combinations are possible.
The simulations considered the case of (200,60) codes, with variable node degree 5. The
resulting vector p is p = [0 0.001 0.003 0.005 0.3 0.7 1], which worked similarly for a
(200,100) code with the same variable node degree.
The same probability vector is kept and tested for larger codes, in all the cases it worked
similarly obtaining promising results. The only drawback is the huge number of iterations
required, but it is not required the computation of the maximum.
The increasing number of iterations increases the error correction capabilities of the algo-
rithm, the same does not happen for the other algorithms.
The algorithm has been tested comparing different code sizes, while keeping the same vari-
able node degree (5 in out case). The probability vector remains the same and the results
are in Figures 3.15.

10 -4 10 -3 10 -2 10 -1
10 -4

10 -3

10 -2

10 -1

100

code 200
code 400
code 800
code 1600
initial error

Figure 3.15: PPBF with codes with different dimension

Q-Decoder

The Q_Decoder is a special type of decoder adapted to the case of QC-LDPC codes that
includes a Q matrix in order to add density to the original key. The decoder is developed
in order to exploit the structure of Q and its effect on the error vector since it is able to
’move’ the errors on some bits. This last point does not create any security issue since the
matrix Q is only known to the decoder.

The main peculiarity of the algorithm is that increasing the number of iterations the error
correcting capabilities are not improved. The Itmax = 4 produces outstanding results
since only in some few cases the decoder is not able to converge. The only drawback of the
proposed solution is that the results are obtained adopting too large codes, which means
that the resources employed are huge. The requirement of ’large codes’ is important since

38



3.6 – Code parameters to achieve high pBSC with complete error correction

the codes tested in this work are smaller and the results obtained are not the same at all
since even with a small number of errors per each message the decoder has some residual
error.
The Q_Decoder has been tested even with PEG generated matrices, since the QC-LDPC
codes seems to behave approximately in the same way as the other, but something has to
be noted since the results are less promising in that case.

3.6 Code parameters to achieve high pBSC with com-
plete error correction

The code has some variables that can be modified in order to be able to increase pBSC
without decreasing the decoding performances. The increase in the error added to the
message can improve the security of codes or the number of iterations can be reduced to
obtain a faster decoder.

The matrices employed in the study are constructed with PEG, the study on the crypto-
graphic use of this codes is wide as is it the one of QC-LDPC codes, then they are selected
for this purpose.

The parameters under attention are:

• Matrix dimensions: the values of n and r of the H matrix, keeping constant the
other parameters may affect the decoding phase;

• Code Rate: the second value that could be changed is r, since this means that
more equations to verify are present in H and there are more connections among the
various bits of the encoded message;

• Density of the matrix: the parameter could be important since it is the measure
of the connections of the nodes, but this parameter has an upper bound since codes
are low density;

• Regular/Irregular codes: this aspect has been already explored in literature and
Irregular appeared to be the best ones;

• Variable nodes degree: the maximum value of the variable nodes degree could
affect the decoding performance.

The decoder considered in order to simulate the error correction capability are the GDBF
and the PGDBF with Imax = 100, the reason of this choice is that, as stated by the group
who developed the algorithms, the probabilistic one has better performances but fails to
correct patterns that the GDBF is able to solve, then it’s meaningful to study codes with
both methods.

The total number of errors considered varies during the simulations, initially 1000 error
are corrected but in order to have a more precise study the number has been increased up
to 2000. The same happened for the number of matrices studied for each configuration,

39



3 – LDPC codes

they are 20 for most of the case, increased only if some results seemed to be too optimistic
and in these case it is specified. The iterations considered are 100, unless a more precise
analysis has to be done or another algorithm is take into account.

The plots presented in the following figures has pBSC on the x-axis and on the y-axis is
present the maximum error/message length, the initial error introduced is plotted too
in order to have a comparison between the quantities. The Figures present a “worst case
analysis” of the decoders.

3.6.1 Matrix dimensions
The first study takes into account the following code length:

• 200

• 400

• 800

with a code rate varying from: 0.5, 0.6, 0.7. The study considers just the dimensions of
the matrix, but in order to understand its impact on the error correcting capabilities it is
important to test it with different arrangements.

The dimensions of the matrices appears to be relevant in the error correcting capabilities,
since as shown in Figures 3.16 a larger code is able to correct more errors, despite the code
rate. The reason of this may be from two causes:

• The construction of larger codes creates less cycles and thus it is less probable to be in
a trapping set. The construction algorithm considered, the PEG, links the dimensions
of the matrix to the minimum size of the cycle and larger codes has larger minimum
cycles.

• The density is approximately the same among the matrices, then the degree of the
nodes is higher as the matrix becomes larger, it is possible that the presence of more
connections for a single node has some benefits. This option can be denied comparing
the performances of regular codes with different degree, another proof could be an
analysis related to the density of the codes: denser (but still with a low density of
1’s) codes could behave better.

The codes with code length = 200 fails to correct errors even if there is only one error
added, which is the case of pBSC = 10−4 − 10−3 and this is for sure linked to the presence
of cycles, because just one erroneous bit can cause the decoder to be trapped into a cycle.
The decoding process has the same trend both for regular and irregular codes: larger
codes has better error correcting capabilities since in some cases the errors are completely
corrected.
The decoder considered is the GDBF, the results with the PGDBF decoder has approxi-
mately the same trend.
The generation of larger matrices allows to have an higher pBSC , from the analysis seems
that also codes with length 400 are enough. This point has to be clarified taking into

40



3.6 – Code parameters to achieve high pBSC with complete error correction

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

code length 200
code length 400
code length 800
initial error

(a) Code rate = 0.5

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

code length 200
code length 400
code length 800
initial error

(b) Code rate = 0.6

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

code length 200
code length 400
code length 800
initial error

(c) Code rate = 0.7

Figure 3.16: Regular codes error correction with different dimensions, with GDBF decoder

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

code length 200
code length 400
code length 800
initial error

(a) Code rate = 0.5

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

code length 200
code length 400
code length 800
initial error

(b) Code rate = 0.6

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

code length 200
code length 400
code length 800
initial error

(c) Code rate = 0.7

Figure 3.17: Irregular codes error correction with different dimensions, with GDBF de-
coder.

41



3 – LDPC codes

account an higher number of matrices with approximately the same characteristics.
The trend is the same both with regular and irregular matrices, then irregular codes with
length 400 and 800 are compared, the rate considered is 0.7. Considering 40 matrices the
result obtained is in Figure 3.18

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

code length 200
code length 400
code length 800
initial error

Figure 3.18: Irregular codes correction with GDBF doubling the number of matrices con-
sidered.

Conclusion

The result including more matrices does not change, this means that the assumptions made
before are correct. The following simulations and analysis will be done considering codes
with length 800, since working with larger matrices has a positive impact.

3.6.2 Code Rate
The rate is defined as k/n, as this value becomes higher the redundancy added decreases.
It is clear that as the redundancy is higher the error correcting capabilities of the code
increases, but having code rates approximately of 0.5 means that half of the ciphertext is
dedicated to the redundancy and it is not the message that has to be sent, obviously the
space dedicated to the redundancy has to be limited, then solutions with higher rate are
explored.
The simulations presented in Figures 3.16 show clearly that lower code rates produces a
lower residual error in the corrected message. The QC-LDPC codes works usually with the
rates mentioned above, rates between 0.6 and 0.7 are going to be explored. The test will
consider irregular codes with length 800 and different densities of the Parity-Check Matrix.
The densities considered for the matrices are: 1%, 3%, 7% of 1’s.
The different conditions simulated clearly show the dependence on the rate of the output of
the decoder, this is clear since having more redundant bit increases the possibilities of the
decoder and thus it is possible to have more connections between variable nodes and check
nodes in the bipartite graph. This behavior is constant even if the density has changed
and even if there are different dimensions of the matrices (considering the same density of
1’s).

The best option seems to select a code with rate 0.7, in order to have less space occupied
by the matrices, and further tune the correcting capabilities with the following parameter
that is going to be explored: the density of H.

42



3.6 – Code parameters to achieve high pBSC with complete error correction

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

r=0.6
r=0.65
r=0.7
initial error

(a) Density = 1

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

r=0.6
r=0.65
r=0.7
initial error

(b) Density = 3

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

r=0.6
r=0.65
r=0.7
initial error

(c) Density = 7

Figure 3.19: Irregular codes error correction capability in different code rates/density con-
ditions, with GDBF decoder.

Conclusion

The code rate is important for the space occupied by the matrix and the message to be
sent, but since the most important thing is to have the message to be corrected this aspect
will be for sure preferred, then is no meaningful result will be obtained with the other
parameters the choice will be to select.

3.6.3 Density of the Matrix
The density of the Parity-Check Matrix is directly linked to the degree of the nodes. Differ-
ent cases are explored, in the analysis the code rate is kept equal to 0.7. The considerations
done previously on the density are verified in this step, in addition an higher number of
matrices with the same density are generated and then simulated. The result is in Figure
3.20.

101 102 103 104
10 -5

10 -4

10 -3

10 -2

10 -1

100

d=1
d=3
d=7
initial error

Figure 3.20: Irregular code error capabilities for different densities

The different densities has been generated with a different degree of the nodes, for each
density the variable node degree and check node degree has been evaluated in this way:

• Density = 1:

43



3 – LDPC codes

– degree_variable_node= randi([2 7]),1,code_length)

– degree_check_node= randi([7 24]),1,redundancy)

• Density = 3:

– degree_variable_node= randi([4 14]),1,code_length)

– degree_check_node= randi([14 48]),1,redundancy)

• Density = 7:

– degree_variable_node= randi([8 28]),1,code_length)

– degree_check_node= randi([28 96]),1,redundancy)

The result obtained shows that it is possible to have a complete correction of the errors in
a range between 3 ∗ 10−3 and ∗10−2, which means that a number of errors among 8 and 2.
The following simulations will consider the errors in that range to find the approximately
exact point. In Figure 3.21. The additional consideration that can be done on the error is

102 103
10 -4

10 -3

10 -2

10 -1

d=3
initial error

Figure 3.21: Code with density 3% with errors corrected in a more detailed range.

linked to the construction algorithm adopted for the codes and the lower bound of the girth
given by its authors. The parameters of the code can be used in 3.11 and 3.12 in order to
know the lowest possible girth. In the last case considered, for the different densities the
lower bound of the girth is in Table 3.2.

Table 3.2: PEG parameters for different cases

Density = 1% Density = 2% Density = 7%
t 0.88 0.57 0.38

gmin 4 4 4

The result clearly shows that the most relevant parameter in the evaluation of the ex-
pected minimum girth are the maximum degree of the variable and check node: lower
values of dmaxc and dmaxs with large values of k allows to have larger cycle in the graph.
But this point is in contradiction with the simulations that has been done in the last

44



3.6 – Code parameters to achieve high pBSC with complete error correction

step since is seems clear from Figure 3.20, that codes with a lower density behave worse
than the ones with a medium density. This point has to be analyzed more in detail,
since the article in the PEG[10] consider the generation of the degree of the nodes in
a different ways and even lower numbers are included, in this description the initial de-
gree is higher. Moreover it could be possible that considering the degree of nodes in a
small range, i.e. considering degree_variable_node= randi([2 28]),1,code_length)
instead of degree_variable_node= randi([8 28]),1,code_length), could be the rea-
son of this mismatch. If this is true the relevant parameter is not the density, but the
degree of the nodes, which is not actually linked to the density but directly affect the
performances.

3.6.4 Variable nodes degree
The last analysis that can be done take into account matrices with different dimension
but the same degree of the node (or the same distribution for irregular codes), in order to
verify the impact of this parameters.
The code length considered are: 200,400,800,1600.

Regular codes with dv = 5,11,21

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

code 200
code 400
code 800
code 1600
initial error

(a) GDBF decoder

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

code 200
code 400
code 800
code 1600
initial error

(b) PGDBF decoder

Figure 3.22: Regular codes with dv = 5.

The degree is doubled in this case, the trend is the same.

45



3 – LDPC codes

Irregular codes with dmaxv = 5,11,21

The result seems strange at first sight, since in the previous sections the irregular codes
seems to behave better then their regular version, but in this case the vector containing
the degrees of each node has numbers from 2 to 5, each of them selected with the same
probability. The same simulations has been done also in other arrangements, i.e. with
different rate, with the degree of the nodes that cover a wider range, from 2 to higher
values, and even in that case the results were not promising. This behavior can be linked
to the not promising behavior of codes with low density and small length since in those
cases nodes with low degree where included. Further simulations will be done.
The following simulations consider a code with length 400, but different distributions of
the vector containing the variable node degree. The only possibility that cannot be tested
is the one that has only even numbers as variable nodes degree, since in that case the
Generator Matrix cannot be derived. The result consider degrees of variable nodes of

• for dmaxv = 5 : 2, 3, 4, 5.

• for dmaxv = 7 : 4, 5, 6, 7.

• for dmaxv = 10 : 5, 6, 7, 8, 9, 10.

The vector with the degree of variable nodes is generated selecting each value with a specific
probability. The different cases taken into account are:

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

code 200
code 400
code 800
code 1600
initial error

(a) GDBF decoder

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

code 200
code 400
code 800
code 1600
initial error

(b) PGDBF decoder

Figure 3.23: Regular codes with dv = 11 .

46



3.6 – Code parameters to achieve high pBSC with complete error correction

• less even degree: it is more probable to have odd numbers as degree, 2 and 4 has an
higher probability to be selected;

• less higher degree: it is more probable to have small numbers as degree, 2 and 3 has
an higher probability to be selected.

• less odd degree: it is more probable to have even numbers as degree, 3 and 5 has an
higher probability to be selected.

• more higher degree: it is more probable to have large numbers as degree, 4 and 5 has
an higher probability to be selected.

• odd degree: only odd numbers as degree, 3 and 5 are the only ones selected.

The result shows that including an odd number of degree nodes has some benefits in the
error correcting capabilities since the curves with lowest residual error are from the odd
degree case. The worst choice that can be done is the one that includes mainly small and
even values for the degree. This aspect can be linked to the results obtained previously on
the density, since matrices with quite low density appeared to behave better the the ones
with a really small number of ones.
The comparison of the results obtained here and the section dedicated to the density gives
some limits to the selection of the variable nodes degree.

Conclusions

The simulations done up to now shows that considering a low degree for the variable node
could improve the performances even if regular code are adopted, in an important work
proposed by a group that studied in detail LDPC codes for cryptographic applications
the following result has bean already found, since the realized that BF based decoders
convergence is improved if the elements of the codeword are included in a small number of
equations[11].This is true for regular codes, but appeared to fail in case there are regular
codes with low density, which is linked to a low degree of the nodes.

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

code 200
code 400
code 800
initial error

(a) GDBF decoder

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

code 200
code 400
code 800
initial error

(b) PGDBF decoder

Figure 3.24: Irregular codes with dv = 11 .

47



3 – LDPC codes

3.6.5 General conclusions
The result with different structure of the code has not a huge impact on the correction
capabilities, since the pBSC can not be increased too much. Moreover there is an impor-
tant problem related to the cryptographic use of these codes: nobody has studied their
security increasing their dimensions, larges codes requires more computations to be bro-
ken, but this is true also for the generation of the key pair because of the computation of
the inverse. The choice to realize a Decoder for PEG was abandoned mainly for this reason.

The other aspect considered is the memory required to store them since the small codes
taken into account requires kB of memory to store the matrix and their random structure
does not allow simplification in the decoder.
PEG codes has advantages because there is not a structure in them, but the limitations
that they introduce are huge and their employment in the cryptographic field is not sug-
gested.

The best choice are the QC-LDPC codes widely studied in order to make them secure
enough for cryptographic standards, moreover the memory required to store them is less
the PEG ones. There is an huge work dedicated to the cryptographic use of these cyclic
codes, the following work is entirely dedicated to it.

3.7 Architecture of Decoder and type of codes
The choice of a good decoder is important to consider other aspects, since the architecture
has to be implemented in VHDL and then the huge dimensions of the code has to be taken
into account in order to adopt the best choices. The best decoder in this sense is the Bit
Flipping algorithm with a QC-LDPC code for two reasons:

• QC-LDPC codes required less memory to be stored (even if they are huge) and their
structure allow further simplification in the computation;

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

less even degree
less higher degree
less odd degree
more higher degree
odd degree
initial error

(a) dmax
v = 7

101 102 103 104
10 -4

10 -3

10 -2

10 -1

100

less even degree
less higher degree
less odd degree
more higher degree
odd degree
initial error

(b) dmax
v = 5

Figure 3.25

48



3.7 – Architecture of Decoder and type of codes

• The security of these codes has been studied in detail;

• the Bit-Flipping with a LuT table that allows to reduce the iterations to 4 or 5, which
is better then the 100 required for the GDBF or the BF .

The decoder presented previously behave similarly in the worst case since there is no
guarantee that a message, even with few errors, is always successfully corrected. Then a
high complexity in the decoder does not improve the correcting capabilities of the decoder,
then a simpler decoder is adopted and the decoding performances are improved selecting
properly the threshold, for example.
The simulations of the soft decoding algorithms done in previous works showed the same
issue, they require a huge number of iterations to converge and the complexity is even
higher compared to the GDBF and PGDBF or the others.
The work done on the Bit-Flipping decoder for QC −LDPC that has a variable threshold
is huge and allows to reduce the time to compute the clear message because there are less
computations to be performed and it converges in less iterations, there are still some cases
in which the message is not corrected but this is a problem of all LDPC codes since their
decoding radius is unknown.

49



50



Chapter 4

LEDA Algorithm

The LEDA algorithm is a method developed by an Italian research group that studied the
a way to generate the keys and the security of this kind of codes[14].
The LEDA has two versions:

• LEDApkc: developed on the basis of the McEliece cryptosystem with QC-LDPC
codes;

• LEDAkem: developed on the Niederreiter cryptosystem with QC-LDPC code.

The choice is obviously the LEDApkc that states for Low-dEnsity parity-check coDe-bAsed
Public Key Cryptosystem.

LEDA overcomes the limits of the LDPC codes and a faster Bit-Flipping decoder is studied.
The other big advantage is that less memory is required to store the matrices, this thanks
to the cyclic structure of the keys.

4.1 Key generation

4.1.1 Public Key
The generation of the private and public key has as a starting point the generation of the
private key, called L. In LEDApkc the key is the result of the multiplication among two
matrices:

• H: the secret key;

• Q: the transformation matrix.

The structure of the code is QC, Quasi-Cyclic, the secret matrix contains n0 square ma-
trices, of size p, that are circulant and the first row (or column) is sufficient to describe the
entire matrix. In the LEDA case the code is:

H = [H0,H1, . . . ,Hn0−1] (4.1)

51



4 – LEDA Algorithm

The Hi matrix has a cyclic structure:

Hi =


h0 h1 . . . hn0−1

hn0−1 h0 . . . hn0−2
...

... . . . ...
h1 h2 . . . h0

 (4.2)

The set positions in the first row hi = [h0h1 . . . hn0−1] are stored.

The transformation matrix has a slightly different structure, but it is still QC. The block
contained are n0 × n0, but each sub-matrix is p× p.

Q =


Q0,0 Q0,1 . . . Q0,n0−1
Q1,0 Q1,1 . . . Q1,n0−1
...

... . . . ...
Qn0−1,0 Qn0−1,1 . . . Qn0−1,n0−1

 (4.3)

The product between the two is still a circular matrix:

L = HQ = [L0,L1, . . . ,Ln0−1] (4.4)

The codes involved in this method are regular, then the weight, dv, of each sub-block in Hi

is the same. The weights of sub-block in the transformation matrix are defined by another
QC matrix:

w(Q) =


m0 m1 . . . mn0−1

mn0−1 m0 . . . mn0−2
...

... . . . ...
m1 m2 . . . m0

 (4.5)

The sum of all mi is m =
∑n0−1
i=0 mi, which is again constant among all the rows (or

columns).
The second key is generated starting from the secret key, in particular it is required to
have an invertible sub-block. This condition is reached when two conditions hold:

• dv and m must be odd;

• Q has to be full rank.

The second point introduces some limitations in the choice of the weights: it can be shown
that Q is invertible if the permanent of w(Q) is odd and lower than p.
The permanent of a matrix is the same as the determinant, but the summation is with
plus sign.
The matrix Q is required in order generate a denser key, in this way the resulting matrix
L is denser than H. The additional sparsity is required in order to make the LDPC codes
more secure, their limits are due to sparsity of the matrices.

The public key can be further compressed introducing a Deterministic Random Bit Gener-
ator (DRBG), the starting bit of this generation comes from another module that generates
a random number.

52



4.1 – Key generation

4.1.2 Public key

The steps to generate the public code were already explained in the above sections, the
algorithm is the same here but less computations are required in order to have the secret
matrix in the correct form, the construction generated an invertible sub-block.

The public key is generated starting from the inverse of Ln0−1. The inverse of a matrix
requires a huge amount of time if it is evaluated in the canonical way, but thanks to the
structure of QC matrices the operations can be strongly reduced.

The generation starts SK:

L = LQ = [L0,L1, ...,Ln0−1] (4.6)

The Generator matrix is:

M = L−1
n0−1L = [Ml, Ip] (4.7)

The block Ml is the result of a matrix multiplication.
The inverse has to be performed just on one block, not all the square matrices.

Multiplicative inverse

The first row of the matrix is sufficient to define a QC matrix, this row can be written in
another form, the polynomial a(x) in GF(2), then the inverse of the matrix is the multi-
plicative inverse of a(x), there is a theorem to compute this value, it is a method developed
by Euclides. The proposed version employed to invert these matrices is in article [16]. In
algorithm 5 the pseudo-code of the VLSI implementation.

The starting polynomial are a(x), that describes the first row of the cyclic matrix, and
g(x), an irreducible polynomial of degree p.
The value of g(x) for the block sizes employed is g(x) = xp−1 + 1.

53



4 – LEDA Algorithm

Data: g(x),a(x)
s(x) := g(x); v(x) := 0
r(x) := a(x); u(x) := 1
δ = 0;
for i=1 to 2m do do

if rm = 0 then
r(x) := x× r(x);
u(x) := x× g(x);
δ := δ + 1

else
if sm = 1 then

s(x) := s(x)− r(x);
v(x) := v(x)− u(x);

end
s(x) := x× s(x);
if δ = 0 then

r(x) := s(x); s(x) := r(x)
u(x) := x× v(x); v(x) := u(x)
δ = 1

else
u(x) := u(x)/x;
δ = δ − 1

end
end

end
Result: u(x) = a(x)−1

Algorithm 5: Euclidean Inversion for hardware implementation [16]

4.2 Encryption

The encryption is done in three steps:

• the message u is multiplied by MT , the output is m = [u, r] where r is the redundancy;

• the error vector e is generated.

• the ciphertext is x = m⊕ e

The number of errors to be added is a parameter of the system and depends on the error
correcting capability of the code and the decoder. The value can not be predicted in
advance since the correcting radius of this kind of LDPC codes is unknown, but a huge
number of simulations allows to find the maximum number of errors that allows correctable
in most of the cases.
The result is x can be sent to an insecure channel.

54



4.3 – Q-Decoder

4.3 Q-Decoder
The decoding algorithm employed is the Q-Decoder. The algorithm consists in a Bit Fllip-
ing with a LuT to reduce the iterations. The decryption executes the following operations
in each iteration:

• Sigma is :
∑(l) = s(l−1)H

• Correlation is : R(l) =
∑(l) Q = [ρ(l)

1 , ρ
(l)
2 , . . . , ρ

(l)
n ]

• The Correlation threshold is evaluated based on the sum of Sigma: b(l)

• The position in Correlation that have a value higher than the threshold are saved:
P = {v ∈ [1, n]|ρ(l)

v = b(l)}

• The current error is: e(l)
new = [e(l)

1 , e
(l)
2 , . . . , e

(l)
n ] and ej = 1 for j ∈ P , updated to

e(l) = e(l−1) ⊕ e(l)
new

• Syndrome is updated: s(l) = s + e(l) ∗ L

• The sum of the Syndrome vector is evaluated and the iteration updated, if s is 0 or
It = Itmax the decoding is stopped.

The LuT with threshold is required in order to avoid the evaluation of the maximum that
requires to find its value and then to store the positions that contain it, this results in more
operation involved. Moreover the algorithm requires more iterations to reach a syndrome
equal to 0. The LuT is a way to obtain a suitable threshold depending on the value of the
Syndrome at that iteration.

The choices adopted by the authors works fine for a software implementation, but the size
of the problem requires some changes to translate the code to hardware.

4.4 Code parameters
The QC −LDPC code involved in the method have some parameters to be defined, their
performances and security have been studied in detail for the ones listed in 4.1.
The values presented are:

• Category is related to the dimension of the code;

• n0 is the number of circulant block;

• p is the dimension of each block;

• dv and m the weight of the rows in H and Q, respectively;

• t number of errors;

• DFR is the decoding failure of the code for that error, the simulations involved 108

decoding attempts.

55



4 – LEDA Algorithm

Table 4.1: Code parameters[14]

Category n0 p dv m t DFR
2 27779 17 [4,3] 224 ≈ 8.3 · 10−9

1 3 18701 19 [3,2,2] 141 . 10−9

4 17027 21 [4,1,1,1] 112 . 10−9

2 57557 17 [6,5] 349 . 10−8

2 3 41507 19 [3,4,4] 220 . 10−8

4 35027 21 [4,3,3,3] 175 . 10−8

2 99053 19 [7,6] 474 . 10−8

3 3 72019 19 [7,4,4] 301 . 10−8

4 60509 23 [4,3,3,3] 239 . 10−8

4.5 Security
The security of LEDApck and of QC-LDPC codes more in general has been studied widely
by the research group that developed the system, in the article [14] all the details are
present.

The important aspect that arise in the work is that the regularity of the codes provides a
speed-up in the key or clear message retrieving, the improvement introduced is at most p.
Apparently this seems not a good news, but considering the exponential complexity of the
attacks having a polynomial reduction is not much relevant. The security of QC-LDPC
codes is not lower that the PEG codes. The security issues are still related to their sparsity
and not their cyclic nature.

The attacks developed recently on this type of system are presented in the following.
• Squaring Attack

The attack is paired with an Information Set Decoding method, the article [17] pro-
poses a method that simplifies the ISD if applied before it. The system is intended
to introduce a huge improvement, but it works just for matrices size of the power of
2.
LEDA overcome the problems since, as can be seen in Table 4.1, the size of the cir-
culant blocks is even and a prime number. The choice of p prime number in order to
further simplify the inverse evaluation, otherwise for an odd number in general the
inverse evaluation takes more time.

• Instruction Set Decoding
The ISD attack is based on the search of low weight codewords, the most promising
one that works better than the others is Stern’s algorithm with a quantum part
proposed by Grover’s that introduces a speed-up in the computation. The results for
McEliece cryptosystem based on Goppa codes are in Table 2.1. The LDPC codes, due
to their sparse nature, are even more easier to break with this method, but LEDApck
huge dimensions overcome the problem.

56



4.5 – Security

• Attack on the Dual Code
The attack is based on the search of low wight codeword in the Public matrix, since
PK is derived from SK. In this case the task can be simplified by the sparse nature
of the codes.

The Table 4.1 has to be extended including the security level of the code. The complete
results are in Table 4.2. The security estimate is given in log2 number of operations on
Quantum machine (QM) and Classical machine (CM) both for ISD and Dual Code Attack
(DC). The work factor (WF) is in the “n-bit” format.

Table 4.2: Code parameters [14]

Category n0 p WFDualCode
cm WFDualCode

qm WFISD
cm WFISD

qm

2 27779 223.66 134.84 217.45 135.43
1 3 18701 219.84 133.06 216.42 135.63

4 17027 230.61 139.29 216.86 136.11
2 57557 358.16 204.84 341.53 200.47

2 3 41507 351.57 200.95 341.61 200.44
4 35027 351.96 201.40 343.36 200.41
2 99053 478.67 267.00 467.24 265.38

3 3 72019 484.48 270.18 471.67 265.70
4 60509 480.73 268.03 473.38 265.48

The last class of attacks is the Reaction Attack. It is based on a a study of the failure
of the decoder, from this study additional informations can be obtained on the structure
of the code. This limits in time the use of a key-pair.

The property of indistinguishability is reached if a conversion is applied on the codes, this
is described in article [18], it is called KI-γ conversion. The applied obfuscation allows the
system to reach semantic security (IND-CCA2) if employed in the given key-pair lifetime
or if the decoder has no failures.

57



58



Chapter 5

LEDA Architecture

The algorithm of the Q-Decoder has been implemented in hardware, but some modifica-
tions are introduced to make the evaluation faster, with less modules and to avoid too
heavy computations.

The parameters considered in the design are listed in Table 5.1. The values are not in-
cluded in Table 4.1, but the architecture can be easily adapted to codes with different p,
while codes with different n0 require more modification, but they are still feasible. The
considerations that will be done can be applied to any code of this kind and length with
only some slightly changes.

The second change is that L is stored in memory and the computation of HQ is not
implemented in order to reduce the logic to be added and unnecessary computations. The
same happens for LT, it is required for the evaluation, but since the memory required is
small it is not computed in the decoder, but already present.

Table 5.1: Architecture parameters

Category n0 p dv m t Itmax
1 2 15013 9 [5,6] 143 4

5.1 Memory organization
The length of the message is huge, it occupies at least 2kB of memory if stored bit-by.bit. It
is supposed to be divided in two memories, one for each block of length p of the ciphertext,
the manipulation of the data is easier in this way. The same happens for the partial result,
they are all stored in block, a part from the Syndrome that requires just one block.
The matrices are saved by position, the different blocks are stored in different memories.
There are:

• Message : Msg1 and Msg2 both of length 15013bit;

59



5 – LEDA Architecture

• Public key : Ltr1 and Ltr2 both of length 81 bits and width 16 bit;

• Syndrome : Syn of length 15013 bits.

• Correlation : UPC1 and UPC2 of length 15013 bits and width 8 bit;

• Error Position : Pos1 and Pos2 of variable length and with width 16bit.

The variables of the algorithm can be seen as vectors in software, but when considering an
hardware implementation it is not feasible to have a memory that in output has 15013 bit
since they are too much and in the datapath this amount of FlipFlops is required in order
to be able to temporary store a value for the computation.

The memories, instead of long vectors, are seen ad matrices of different width. In particular:

• MsgMem1,2 and Syn are Nb bit wide and 1877 high;

• UpcMem1,2 are Nb ∗ 8bit wide and 1877 high;

The memories containing positions have a different structure. Less rows are required to
store them, 81 at most for this particular case. The other categories present in Table 4.1
require different sizes that are present in the table, in particular the number of rows to
store the matrix is given by dv ∗m, that can be a huge number in case the circulant block
taken into account are 3 or 4.

Figures 5.1 represents how data are stored in memories for Nb = 8. UPC Memory and
Msg Memory have the same format, but each location has different size. UPC requires 8
bit for one value, while Msg requires just 1 bit for a single value. The Syndrome has the
same format as Msg Memory.

60



5.2 – Q-Decoder simplification

Msg1
(0)

Msg1
(1)

Msg1
(2)

Msg1
(3)

Msg1
(4)

Msg1
(5)

Msg1
(6)

Msg1
(7)

Msg1
(8)

Msg1
(9)

Msg1
(10)

Msg1
(11)

Msg1
(12)

Msg1
(13)

Msg1
(14)

Msg1
(15)

Msg1
(15012)

Msg1
(15011)

Msg1
(15010)

Msg1
(15009)

Msg1
(15008) 0 0 0

0

1

1877

Ltr1Mem(0)

Ltr1Mem(1)

Ltr1Mem(Dv)

Msg1
(16)

Msg1
(17)

Msg1
(18)

Msg1
(19)

Msg1
(20)

Msg1
(21)

Msg1
(22)

Msg1
(23)2

Msg1
(a)

Msg1
(a+1)

Msg1
(a+2)

Msg1
(a+3)

Msg1
(a+4)

Msg1
(a+5)

Msg1
(a+6)

Msg1
(a+7)i

…
…

(a) Message Memory

UPC1
(0)

UPC1
(1)

UPC1
(2)

UPC1
(3)

UPC1
(4)

UPC1
(5)

UPC1
(6)

UPC1
(7)

UPC1
(8)

UPC1
(9)

UPC1
(10)

UPC1
(11)

UPC1
(12)

UPC1
(13)

UPC1
(14)

UPC1
(15)

UPC1
(15012)

UPC1
(15011)

UPC1
(15010)

UPC1
(15009)

UPC1
(15008) 0 0 0

0

1

1877

Ltr1Mem(0)

Ltr1Mem(1)

Ltr1Mem(Dv)

UPC1
(16)

Msg1
(17)

UPC1
(18)

UPC1
(19)

UPC1
(20)

UPC1
(21)

UPC1
(22)

UPC1
(23)2

UPC1
(a)

UPC1
(a+1)

UPC1
(a+2)

UPC1
(a+3)

UPC1
(a+4)

UPC1
(a+5)

UPC1
(a+6)

UPC1
(a+7)i

…
…

(b) UPC MemoryMsg1
(0)

Msg1
(1)

Msg1
(2)

Msg1
(3)

Msg1
(4)

Msg1
(5)

Msg1
(6)

Msg1
(7)

Msg1
(8)

Msg1
(9)

Msg1
(10)

Msg1
(11)

Msg1
(12)

Msg1
(13)

Msg1
(14)

Msg1
(15)

Msg1
(15012)

Msg1
(15011)

Msg1
(15010)

Msg1
(15009)

Msg1
(15008) 0 0 0

0

1

1877

MsgAdx

Ltr1Mem(0)

Ltr1Mem(1)

Ltr1Mem(Dv)

(c) Ltr Memory

Figure 5.1: Memories

The message and the syndrome are saved as bit-by-bit vector, but those vectors can be
stored by position. The second option requires less memory for sparse vectors, the assump-
tion is valid only for the syndrome when the decoder is in the last iteration.

5.2 Q-Decoder simplification
The algorithm requires some little changes in order to reduce the overall computations.

• The Correlation can be directly obtained by sl−1L, this is done in order to avoid the
storage of a partial result;

• The sum of the rows in Q is not required to update the error, it is sufficient to take
the flipped bit in the message;

• The new syndrome can be both obtained updating its current value with eL of eval-
uating it by x ∗ L.

The choice to consider just L as secret key requires a bit more memory to store it, but this
is saved since Σ is not stored.

61



5 – LEDA Architecture

The second change requires to choose between two different approaches in the update of
the error vector.

• The error vector can be updated with a xor with its previous value and the message
is updated only at the end of the decoding process, this required to work by position
in the update of the syndrome.

• The error vector is applied to the message at each iteration and the syndrome is
evaluated again at each iteration.

The first solution was explored, but not implemented because it requires an additional unit
and can not be easily parallelized, but working by positions in some steps of the evaluation
lowers the cycles required.

5.2.1 Vector by Matrix Product
The decoder requires an optimization of the product of a vector by a matrix, both in GF(2)
and in integer domain, because it is required in two steps of the algorithm.
The units developed for this purpose are:

• Vector By Circulant: to optimize the product of a dense vector by a circulant matrix,

• Sparse Vector By Circulant: to optimize the product of a sparse vector by a circulant
matrix,

Vector By Circulant

The unit that is the most important since is a big change in the way the multiplications
between vector and matrix are performed.
The starting point to explain it are a vector m = [m0 m1 . . .mn−1] of length n and a
circulant matrix B of size n× n with the first column b0 = [b0 b1 . . . bn−1] that defines the
whole matrix.
The product is:

[
m0 m1 . . . mn−1

]


b0 bn−1 . . . b1
b1 b0 . . . b2
... . . . ...

bn−1 bn−2 . . . b0

 (5.1)

The result of the product in GF(2) is the xor operation among the following vectors:

m0 ⊗ b0 m1 ⊗ b1 . . . mn−1 ⊗ bn−1
m0 ⊗ b1 m1 ⊗ b0 . . . mn−1 ⊗ b2
. . . . . . . . . . . .

m0 ⊗ bn−1 m1 ⊗ bn−2 . . . mn−1 ⊗ b0

(5.2)

Since the matrices involved are highly sparse the asserted positions are less than n which
means that some elements bi in 5.2 are missing, in our case the remaining elements are just
a few compared to the initial one.

62



5.2 – Q-Decoder simplification

The example below shows the remaining elements if a vector by a circular and sparse
matrix are multiplied.
The original message is m = [m0 m1 m2 m3 m4 m5 m6 m7 m8] , the first column of the
matrix B is b0 = [b0 b1 b2 b3 b4 b5 b6 b7 b8].

The result of the product is in general:

m0 ⊗ b0 m1 ⊗ b1 m2 ⊗ b2 m3 ⊗ b3 m4 ⊗ b4 m5 ⊗ b5 m6 ⊗ b6 m7 ⊗ b7 m8 ⊗ b8
m0 ⊗ b8 m1 ⊗ b0 m2 ⊗ b1 m3 ⊗ b2 m4 ⊗ b3 m5 ⊗ b4 m6 ⊗ b5 m7 ⊗ b6 m8 ⊗ b7
m0 ⊗ b7 m1 ⊗ b8 m2 ⊗ b0 m3 ⊗ b1 m4 ⊗ b2 m5 ⊗ b2 m6 ⊗ b4 m7 ⊗ b5 m8 ⊗ b6
m0 ⊗ b6 m1 ⊗ b7 m2 ⊗ b8 m3 ⊗ b0 m4 ⊗ b1 m5 ⊗ b2 m6 ⊗ b3 m7 ⊗ b4 m8 ⊗ b5
m0 ⊗ b5 m1 ⊗ b6 m2 ⊗ b7 m3 ⊗ b8 m4 ⊗ b0 m5 ⊗ b1 m6 ⊗ b2 m7 ⊗ b3 m8 ⊗ b4
m0 ⊗ b4 m1 ⊗ b5 m2 ⊗ b6 m3 ⊗ b7 m4 ⊗ b8 m5 ⊗ b0 m6 ⊗ b1 m7 ⊗ b2 m8 ⊗ b3
m0 ⊗ b3 m1 ⊗ b4 m2 ⊗ b5 m3 ⊗ b6 m4 ⊗ b7 m5 ⊗ b8 m6 ⊗ b0 m7 ⊗ b1 m8 ⊗ b2
m0 ⊗ b2 m1 ⊗ b3 m2 ⊗ b4 m3 ⊗ b5 m4 ⊗ b6 m5 ⊗ b7 m6 ⊗ b8 m7 ⊗ b0 m8 ⊗ b1
m0 ⊗ b1 m1 ⊗ b2 m2 ⊗ b3 m3 ⊗ b4 m4 ⊗ b5 m5 ⊗ b6 m6 ⊗ b7 m7 ⊗ b8 m8 ⊗ b0

The asserted bits of this example are only [b2 b5] then some values of each equation are
not useful. The resulting vector rT = [r0 r1 r2 r3 r4 r5 r6 r7 r8] is then equal to the xor
operation the rows:

0 0 m2 0 0 m5 0 0 0
0 0 0 m3 0 0 m6 0 0
0 0 0 0 m4 0 0 m7 0
0 0 0 0 0 m5 0 0 m8
m0 0 0 0 0 0 m6 0 0
0 m1 0 0 0 0 0 m7 0
0 0 m2 0 0 0 0 0 m8
m0 0 0 m3 0 0 0 0 0
0 m1 0 0 m4 0 0 0 0

=



m2 ⊕m5
m3 ⊕m6
m4 ⊕m7
m5 ⊕m8
m6 ⊕m0
m7 ⊕m1
m8 ⊕m2
m0 ⊕m3
m1 ⊕m4


(5.3)

The analysis of the result shows that each equation is a circular shift of the initial vector,
those shifts are given by the values asserted in the matrix.

m : binary vector
PosB : positions asserted in B
i = 0
r = 0
while i ≤ PosBSize do

r = circularshift(m,PosBi)⊕ r
i = i+ 1

end
Result: r : result

Algorithm 6: VectorbyCirculantBinary
The algorithm described is suitable for the integer case too. The vector and matrix must
be binary, but in case the result has to be an vector of integer values the xor operation is
substituted by an addition.

63



5 – LEDA Architecture

The integer result is:

0 0 m2 0 0 m5 0 0 0
0 0 0 m3 0 0 m6 0 0
0 0 0 0 m4 0 0 m7 0
0 0 0 0 0 m5 0 0 m8
m0 0 0 0 0 0 m6 0 0
0 m1 0 0 0 0 0 m7 0
0 0 m2 0 0 0 0 0 m8
m0 0 0 m3 0 0 0 0 0
0 m1 0 0 m4 0 0 0 0

=



m2 +m5
m3 +m6
m4 +m7
m5 +m8
m6 +m0
m7 +m1
m8 +m2
m0 +m3
m1 +m4


(5.4)

m : binary vector
PosB : positions asserted in B
i = 0
r = 0
while i ≤ PosBSize do

r = circularshift(m,PosBi) + r
i = i+ 1

end
Result: r : result

Algorithm 7: VectorbyCirculantInteger
The serial version of VectorByCirculant is the Algorithm 8.

m : binary vector
PosB : positions asserted in B
i = 0
r = 0
while i ≤ PosBSize do

j = 0
p = PosBi
while j ≤ n do

k = mod(p+ j, n)
rj = mk ⊕ rj
j = j + 1

end
i = i+ 1

end
Result: r : result

Algorithm 8: VectorbyCirculant
The effect of the algorithm on the product has been tested in Matlab to check the cor-
rectness and the reduction of the computational time. The result is promising because
the time required to compute the result is two order of magnitude lower than the classical
product and the result is always correct.
The big advantage is due to the parallelization of the operations, because each partial
result requires just a shift that in software does not require much time.

The version in Algorithm 8 employees the modulo operation in order to be able to restart
from the beginning of the vector when the end is reached. The input vector is aT =

64



5.2 – Q-Decoder simplification

[a0 a1 a2 a3 a4 a5 a6 a7 a8] and the position is p = 3. The inner while in Algorithm 8
starts from j = 0, the first value of a is in position k = mod(j + 3,9) = 3, then as j is
incremented the value of k is incremented, until the sum j+ i is higher than 9. This means
that the position to match is the first one in the input vector. The inner while stops when
the last bit of the result is reached. The partial result is:

bT = [a3 0 0 0 0 0 0 0 0]
bT = [a3 a4 0 0 0 0 0 0 0]

. . .

bT = [a3 a4 a5 a6 a7 a8 a0 a1 a2]

Sparse Vector By Circulant

The second way to compute the product is to consider the result by positon, but is instead
and evaluation by position of the product among a vector and a matrix. It is suitable in
case the input vector is sparse. The method is referred as SparseVectorByCirculant.

The basic idea of the algorithm is exposed in the example below. The product of the
previous case has some important reduction if the vector is sparse. The vector m =
[m0 m1 m2 m3 m4 m5 m6 m7 m8] has, for example, only [m1 m3] asserted. The result
vector for m ∗B is:

0 0 0 0 0 0 0 0 0
0 0 0 m3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 m1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 m3 0 0 0 0 0
0 m1 0 0 0 0 0 0 0

=



0
m3 ⊕ 0

0
0
0

0⊕m1
0

0⊕m3
m1 ⊕ 0


=



0
m3
0
0
0
m1
0
m3
m1


(5.5)

The resulting positions are: [r1 r5 r7 r8]. The evaluation of this result is basically the
difference in modulo n between the asserted position of the vector and of the matrix. It
may happen that some repetitions occur while performing the difference.
The algorithms works better then the other in case the vector is highly sparse, otherwise
the two are comparable.

The result is a list of position of asserted bits. The problem of the solution is that some
repetitions occur resulting in more than one position to be stored, for this reason a check
is required, but the cycles required to remove unwanted positions is huge.

The cycles needed to adjust the result can be huge, the method is included in the software
version of the decoder and the merge operation is included, the simulations showed that
millions of cycles are needed to perform this operation. In general this is not suggested and
the problem has to be handled in other ways or it can happen that this does not produce
a big impact in the further computations.

65



5 – LEDA Architecture

PosM : positions asserted in m
PosB : positions asserted in B
PosR : positions asserted in r i = 0
j = 0
r = 0
while i ≤ PosBSize do

CurrentBPos = PosBi while j ≤ PosMSize do
CurrentMPos = PosMj

Difference = CurrentBPos− CurrentMPos
if Difference ≤ 0 then

CurrentNewPos = n+ 1 +Difference
else

CurrentNewPos = Difference+ 1
end
PosRr = CurrentNewPos
r = r + 1

end
end
Result: PosR : positions asserted in r

Algorithm 9: SparseVectorbyCirculant

5.2.2 Comparison between the algorithms

The plot in Figure 5.2 shows that if the vector contains approximately 1000 ones the
SparseVectorByCirculant with BinaryMerge algorithm is more convenient. The second
point that has to be taken into account is the memory occupied by the two algorithms,
since the position required more bit to be stored.

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3 106

SparseVectorByCirculant
VectorByCirculant

Figure 5.2: Comparison of the two algorithms with respect to the density of the input
vector

The modules adopted must take into account this plot in order to be able to select the
best algorithm for the computation.

66



5.3 – Vector By Circulant Architecture

5.3 Vector By Circulant Architecture
The basic unit implements Algorithm 8. The relevant operations is to create a shifted
version of the input vector, the Message for example. The approach handled takes into
account how data are stored in memory and the meaning of the position vector. Version 2
is an improvement of Version1.

5.3.1 Version 1
The first version translates the algorithm without any improvement.
The flow of the operations is:

• The first position in Ltr memory is read and the position of the first bit to be xored
extracted;

• Ltr points the address row of MsgMemory and the specific bit of the line.

• The proper message row is read and at its output a multiplexer is inserted.

• The syndrome is read starting from the first row and at its output another multiplexer
is present;

• The two multiplexers starts to count from a value specified by Ltr and from 0 for
MsgSel and SynSel respectively;

• MsgSel is incremented until the end is reached, at this point MsgAdx is incremented
and a new read performed;

• SynSel is incremented until the end is reached and the new syndrome row is stored,
the SynAdx is incremented and a new read from SynMemory is performed;

• The endpoint of MsgMemory requires the MsgSel to be stopped before the end, the
same happens when the endpoint of SynMemory is reached.

The flow of the algorithms requires particular attention when the end is reached, in this
case the mux selections has to stop before the end and the counter of the message has to
be cleared.
At the end of the syndrome evaluation the mux of the result has to end before its maximum
value.
The integer version of the component has ad accumulator instead of a xor.
The DataPath requires 5 counters:

• MsgAdxCounter : the adx of the MsgMemory;

• MsgSelCounter : the selection bit of the Msg mux;

• SynAdxCounter : the adx of the SynMemory;

• SynSelCounter : the selection bit of the Syn mux;

67



5 – LEDA Architecture

• LtrAdxCounter : the adx of the LtrMemory.

In Figure 5.3 there is the Datapath of the Version1 for the binary case.

15 14 0

15

14

0

…

…

15 14 0

Memory Register

Syndrome Register

SyndromeNew Shift-Register

MsgSel

SynSel

SynOut

MsgOut

NewSynOut

Figure 5.3: VectorByCirculantBinary DataPath

The iterations required by the unit to complete one product is huge, it is:

Ncycles = p ∗ dv + 3 ∗ (p/nb) ∗ dv + dv (5.6)

The case studied has the parameters of Table 5.1 and nb = 8, then the cycles required to
compute just one product is: 1.3∗106 cycles. The cycles can be reduced increasing the size
of a row, but they cannot be lower then p ∗ dv that is 1.2 ∗ 106. The architecture requires
a modification in order to be able at least to parallelize the product.

The best option would be the possibility to have a row of the syndrome produced in a
single cycle, the limit to implement this is due to the fact that the row of the message that
matches a row of the syndrome is contained in two rows of the message memory.

5.3.2 Version 2
The shifted versions of the initial Message can be generated bit by bit, but the goal is to
generate them in groups of more than one bit.

Version 2 aims to generate a row of Nb bits of the shifted version of the message, in order
to be able to xor them with a row of the Syndrome, with no need to perform the xor bit
by bit.
The Memory alignement between the Message (input) and the Syndrome (result) is repre-
sented in Figure 5.4.

68



5.3 – Vector By Circulant Architecture

0 0 0

0

1

1877

i

i+1

i+2

i+3

0 0 0

0

1

1877

Message Memory Syndrome Memory

2

3

i

Figure 5.4: Message and Syndrome Memory

The Logic that is able to produce the shifted versions of the message requires two registers
and a multiplexer that at its inputs has the possible rows, the selection bit choses the
amount of the shift. In Figure 5.5 the basic logic block implemented for Nb = 4, this block
has in input vectors of Nb length that are the all the possible rows to be xored with the
Syndrome, the selection bits selects right one.

Msg1(3) Msg1(2) Msg1(1) Msg1(0) Msg2(3) Msg2(2) Msg2(1) Msg2(0)

0                      1                         2                                3 
Shift

s_MsgOut

Figure 5.5: Vector By Circulant Multiplexer

The registers Msg1 and Msg2 contain consecutive rows from memory. The first rows of
the Message is stored in Msg2, in the following iteration the value is loaded in Msg1, the
arrangement at this point is the desired one, the following cycles requires just to repeat
the process and store the new row in Msg2.

The complete DataPath and ControlUnit of this new solution are more complex than the
Version1, but a huge improvement is achieved.

The central operation performed by the unit is to read the result vector from the memory,
generate the shifted version of the input vector, compute the xor operation between the two
vectors and store in memory the output. The memory location is the same as the result
read at the beginning, the updated value is stored here. In some points of the memory
there are some small changes to be performed, those modifications produce the complex
ControlUnit in Figure 5.11.
The basic steps in the evaluation of the product are:

• Load_Ltr : the Ltr Address points the current position to be read;

69



5 – LEDA Architecture

• Load_Msg: the position read gives the initial Address of the Memory, this is read
and loaded is register Msg2 and the Counter of the Message Address is updated;

• Load_Msg_Syn: the Message Memory is again read, the vector in Msg2 is saved
in Msg1 and Msg2 is loaded with the new value read from memory, the Syndrome
Message is read and Syndrome Register is loaded;

• Cmp: the shifted version of the Message is generated, this is aligned with the value
in Syndrome Register, the xor operation between the two vectors is store in the
SyndromeNew Register;

• Store: the updated Syndrome row is stored in memory, the next operation depends
on the current Addresses of the Memories.

The first row of the Syndrome is produced at this point, the following operation requires
to cycles between:

• Load_Msg_Syn;

• Cmp;

• Store.

In Figures 5.15 there is the content of the registers during the execution of the algorithm,
in green the group of bits that is xored with the value of the Syndrome already present in
memory. The example contains two cases.

The behavior changes just in some points in order to be able to have always a group of
bits aligned with the result. In the following the additional checks are explained in detail.

The end is reached when the last row of the Syndrome is read, in the first cycle of the
execution the value store in memory is the circular-shift of the original message by the po-
sition defined in Ltr. The next time the end is reached the xor among two shifted version
of the message are store in the Syndrome Memory.

The memory that contains the positions of the matrix can be seen in the same format as
for Version1, in Figures 5.7 and 5.6 the meaning of each block, but there is a little change
to be introduced: the MSB contains a 0 or a 1 depending of the position of the shift with
respect to a quantity called Difference, the ControlUnit has two different paths depending
on that bit.

The last row of the memory contains an additional row full of zeros, this means that only
part of the resulting row is evaluated it is called PartialStore, the following row to be read
is the first one and its first bit has to be connected with the last one. The partial store is
required since in any case the last row contains zeros not belonging to the message, their
presence does not change the value already present in memory for those positions, but the
result row has to be completed.

70



5.3 – Vector By Circulant Architecture

The last rows requires different operations, then the flow of the computation is the same
explained before, there is just a change in the shift.

Msg1
(0)

Msg1
(1)

Msg1
(2)

Msg1
(3)

Msg1
(4)

Msg1
(5)

Msg1
(6)

Msg1
(7)

Msg1
(8)

Msg1
(9)

Msg1
(10)

Msg1
(11)

Msg1
(12)

Msg1
(13)

Msg1
(14)

Msg1
(15)

Msg1
(15012)

Msg1
(15011)

Msg1
(15010)

Msg1
(15009)

Msg1
(15008) 0 0 0

0

1

1877

Message Memory

Msg1
(a+4)

Msg1
(a+3)

Msg1
(a+2)

Msg1
(a+1)

Msg1
(a)i

i+1

Msg1
(a+5)

Msg1
(a+6)

Msg1
(a+7)

Msg1
(b+4)

Msg1
(b+3)

Msg1
(b+2)

Msg1
(b+1)

Msg1
(b)

Msg1
(b+5)

Msg1
(b+6)

Msg1
(b+7)

Address Shift

Ltr(i)
Shift
Pos

Figure 5.6: Ltr Position

Msg1
(0)

Msg1
(1)

Msg1
(2)

Msg1
(3)

Msg1
(4)

Msg1
(5)

Msg1
(6)

Msg1
(7)

Msg1
(8)

Msg1
(9)

Msg1
(10)

Msg1
(11)

Msg1
(12)

Msg1
(13)

Msg1
(14)

Msg1
(15)

Msg1
(15012)

Msg1
(15011)

Msg1
(15010)

Msg1
(15009)

Msg1
(15008) 0 0 0

0

1

1877

Message Memory

Msg1
(a+4)

Msg1
(a+3)

Msg1
(a+2)

Msg1
(a+1)

Msg1
(a)i

i+1

Msg1
(a+5)

Msg1
(a+6)

Msg1
(a+7)

Msg1
(b+4)

Msg1
(b+3)

Msg1
(b+2)

Msg1
(b+1)

Msg1
(b)

Msg1
(b+5)

Msg1
(b+6)

Msg1
(b+7)

Address Shift

Ltr(i)

0

Difference

Address

Shift

Figure 5.7: Message Memory correspondence with Ltr

The position of the last bit of the last row in the Message Memory is called difference. The
shift of each Ltr iteration can be higher or lower than Difference.
The case with Difference < shift is named as S0, the other one Difference > shift is named
as S1 in the ControlUnit. There is another condition to be mentioned since Difference can
be equal to shift, this case is included in S0.
The correct generation of the result requires an additional row, full of zeros, to be added
to the Message Memory.

Difference > shift The arrangement of this condition when the last row is read is in
Figure 5.8. The output includes some zeros, not belonging to the message, this means that
this is just a partial generation of the syndrome, the complete one requires to have in the
DataPath the bits from the first row of the Message Memory.

The portion of bits at the output of the multiplexer are in green. The color changes with
a different shift to be applied to the multiplexer.

The condition has the shift lower than the difference, the last value from the multiplexer is
stored in Syndrome Memory, the address of the Syndrome is not updated, the next value
generated has a different Shift that is sized in order to have zeros in the positions where

71



5 – LEDA Architecture

the previous read has relevant values of the message .

The new shift, named as Shift2 :

Shift2 = Nbit −Difference+ Shift (5.7)

In this case it is mandatory to have the last row full of zeros.

1876 1877

1878

Msg1
(0)

Msg1
(1)

Msg1
(2)

Msg1
(3)

Msg1
(4)

Msg1
(5)

Msg1
(6)

Msg1
(7)1

Msg1 Register Msg2 Register

1876th row of the message

1877nd row of the message

1nd row of the message

Msg1
(15006)

Msg1
(15005)

Msg1
(15004)

Msg1
(15002)

Msg1
(15001)

Msg1
(15000)

Msg1
(15007)

Msg1
(15003)

Msg1
(15011)

Msg1
(15012) 0 0

Msg1
(15010)

Msg1
(15009)

Msg1
(15008) 0

1877 Msg1
(15011)

Msg1
(15012) 0 0

Msg1
(15010)

Msg1
(15009)

Msg1
(15008) 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 01878

Figure 5.8: nth cycle for Condition 1

Difference < shift The case is in Figure 5.9. The last bits of the message are read one
cycle in advance with respect to the previous case, the condition to follow this branch is to
have the ShiftPosition bit equal to 1 and that the Address of the message is the last useful
one, 1877 with this parallelism.

It is required to connect the last bit with the first one: Msg1(15012) with Msg1(0). The
last partial row is stored in memory, the address of the Message Memory is updated but
without saving any group of bits since they are all zero. The new row to be stored is
generated for address 1, the second part of the vector is saved at this point. The last row
full of zeros is not required for this condition.

The operation is done correctly if the shift is changed, the new one is called Shift3.

Shift3 = Shift−Difference (5.8)

1876 1877

1878

Msg1
(0)

Msg1
(1)

Msg1
(2)

Msg1
(3)

Msg1
(4)

Msg1
(5)

Msg1
(6)

Msg1
(7)1

Msg1 Register Msg2 Register

1876th row of the message

1877nd row of the message

1nd row of the message

Msg1
(15006)

Msg1
(15005)

Msg1
(15004)

Msg1
(15002)

Msg1
(15001)

Msg1
(15000)

Msg1
(15007)

Msg1
(15003)

Msg1
(15011)

Msg1
(15012) 0 0

Msg1
(15010)

Msg1
(15009)

Msg1
(15008) 0

1877 Msg1
(15011)

Msg1
(15012) 0 0

Msg1
(15010)

Msg1
(15009)

Msg1
(15008) 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 01878

Figure 5.9: nth cycle for Condition 2

72



5.3 – Vector By Circulant Architecture

Difference = shift The last row is not a partial result, but it is the complete result. The
following cycle contains only zeros and it is considered as a partial result, the new Shift is
always the maximum possibile since it has to provide in output the first row of the message.

This choice is taken in order to avoid a too complex ControlUnit, since three different
paths are possible and an additional bit has to be introduced in order to be able to know
the shift. In this case two updates of the Message address has to be done and the Shift is
0. In order to avoid this an useless read and compute is done and the Shift is Nb.

The condition does not require the last row of the Message Memory full of zeros.
Figure 5.10 represents this condition

1876 1877

1878

Msg1
(0)

Msg1
(1)

Msg1
(2)

Msg1
(3)

Msg1
(4)

Msg1
(5)

Msg1
(6)

Msg1
(7)1

Msg1 Register Msg2 Register

1876th row of the message

1877nd row of the message

1nd row of the message

Msg1
(15006)

Msg1
(15005)

Msg1
(15004)

Msg1
(15002)

Msg1
(15001)

Msg1
(15000)

Msg1
(15007)

Msg1
(15003)

Msg1
(15011)

Msg1
(15012) 0 0

Msg1
(15010)

Msg1
(15009)

Msg1
(15008) 0

1877 Msg1
(15011)

Msg1
(15012) 0 0

Msg1
(15010)

Msg1
(15009)

Msg1
(15008) 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 01878

Figure 5.10: nth cycle for Condition 3

The detailed ControlUnit is in Figure 5.11. The operations performed are basically the one
listed before, the relevant point is in the choice of the path, selected thanks to the selection
bit. The ControlUnit in its integer version is basically the same, the only difference is in
the name of the sates.
The DataPath is in Figure 5.12 for the binary version, while the integer version is in Figure
5.13.
The only difference among the two version is the presence of an adder instead of a xor
port. The generation of the new Shift is done in the same way since they are computed in
the in the DataPath and the selection bit comes from the ControlUnit.

The values useful throughout the computation are stored in registers in order to be avail-
able in any moment. The different shifts are not stored in registers, but generated from
the output of the initial Shift register.

The input of the Msg1 is connected to the output of Msg2, each time is is enable the value
is loaded there.

The multiplexer is able to provide the Nb consecutive bits starting from the one pointed
by the Shift. The evolution, cycle by cycle, in in Figures 5.15(a) and 5.15(b), the Shift is
kept constant during the execution and it changes just one time.

The integer version of the ControlUnit has the same operations as the Binary one, the only
difference is in the same of the states.

73



5 – LEDA Architecture

IDLE

LOAD_Ltr

LOAD_Msg

LOAD_Msg_Syn

Clear Ltr Counter

start

Increment Ltr Counter
Enable Ltr Register
Load Msg Counter
Clear Syn Counter

Increment Msg Counter
Read Msg Memory

Enable Msg2 Register
Select Shift1

Increment Msg Counter
Read Msg and Syn Memory

Enable Msg1,2 and Syn Register
Select Shift1

ShiftPosition

0

1

01

MsgAdx = 
EndMsg -1 

MsgAdx = 
EndMsg 

No

CMP

Enable SynNew Register
Select Shift1

STORE

Select Shift1
Write Syn Memory

Increment Syn Counter

SynAdx = 
EndSyn-1 

No Yes

LtrAdx = 
Dv 

No Yes

ENDEV

Done

start 0

1

No

PARTIAL_ CMP_S1

PARTIAL_STORE_S1 PARTIAL_STORE_S0

PARTIAL_CMP_S0

MESSAGE_UPDATE

Enable SynNew Register
Select Shift1

Write Syn Memory

Clear Msg Counter
Enable Msg1,2 and Syn Register

LOAD_Msg_Syn_S1

Increment Msg Counter
Read Msg and Syn Memory

Enable Msg1,2 and Syn Register
Select Shift2

CMP_S1

Enable SynNew Register
Select Shift2

STORE_S1

Select Shift2
Write Syn Memory

Increment Syn Counter

LOAD_Msg_Syn_S0

Increment Msg Counter
Read Msg and Syn Memory

Enable Msg1,2 and Syn Register
Select Shift3

CMP_S0

Enable SynNew Register
Select Shift3

STORE_S0

Select Shift3
Write Syn Memory

Increment Syn Counter

Write Syn Memory

Enable SynNew Register
Select Shift1

SynAdx = 
EndSyn-1 

LtrAdx = 
Dv 

No Yes

YesNo

SynAdx = 
EndSyn-1 

LtrAdx = 
Dv 

No Yes

YesNo

Figure 5.11: Vector By Circulant ControlUnit

The address generation is contained in the DataPath, in Figure 5.14 the Counter of the
Message is driven by the value of the position, this is necessary in order t point the correct

74



5.3 – Vector By Circulant Architecture

Msg1(7) Msg1(6) Msg1(5) Msg1(4) Msg1(3) Msg1(2) Msg1(1) Msg1(0) Msg2(7) Msg2(6) Msg2(5) Msg2(4) Msg2(3) Msg2(2) Msg2(1) Msg2(0)

Msg2In

Msg2OutMsg1Out

Msg1In

Shift

Msg1(7)Msg1(6)…Msg1(0)
Msg1(6)Msg1(5)…Msg2(7)

Msg1(5)Msg1(4)…Msg2(6)
Msg1(4)Msg1(3)…Msg2(5)

Msg1(0)Msg2(7)…Msg2(1)
Msg1(1)Msg1(0)…Msg2(2)

Msg1(2)Msg1(1)…Msg2(3)

Msg1(3)Msg1(2)…Msg2(4)

Syn(7)

Syn(6)

Syn(5)

Syn(4)

Syn(3)

Syn(2)

Syn(1)

Syn(0)

SynOut SynIn

s_Out(6) s_Out(0)s_Out(7)
…

SynNew   
(7)

SynNew
(6)

SynNew
(5)

SynNew
(4)

SynNew
(3)

SynNew
(2)

SynNew
(1)

SynNew
(0)

SynNewIn

SynNewOut

Ltr(15)

Ltr(14)

…

Ltr(3)

Ltr(2)

Ltr(1)

Ltr(0)

LtrOut

SelShift

LtrIn

ShiftPosition

s_Shift

Shift1      00

Shift2      01    

Shift3      10

SynOut(6)SynOut(7)

s_Out(7)s_Out(6)…s_Out(0)

…

…

SynNewIn(7) SynNewIn(6) SynNewIn(0)

SynOut(0)

…

+

-

Nb -Difference

Difference

to ControlUnit

from ControlUnit

Figure 5.12: Vector By Circulant DataPath

Syn1(7) Syn1(6) Syn1(5) Syn1(4) Syn1(3) Syn1(2) Syn1(1) Syn1(0) Syn2(7) Syn2(6) Syn2(5) Syn2(4) Syn2(3) Syn2(2) Syn2(1) Syn2(0)

Syn2In

Syn2OutSyn1Out

Syn1In

Shift

Syn1(7) Syn1(6)…Syn1(0)

Syn1(6) Syn1(5)…Syn2(7)

Syn1(5) Syn1(4)…Syn2(6)

Syn1(4) Syn1(3)…Syn2(5)

Syn1(0) Syn2(7)…Syn2(1)

Syn1(1) Syn1(0)…Syn2(2)

Syn1(2) Syn1(1)…Syn2(3)

Syn1(3) Syn1(2)…Syn2(4)

UPC(7)

UPC(6)

UPC(5)

UPC(4)

UPC(3)

UPC(2)

UPC(1)

UPC(0)

UPCOut UPCIn

s_Out(6)
s_Out(0)s_Out(7)

…

UPCNew
(7)

UPCNewIn

UPCNewOut

LtrT(15)

LtrT(14)

…

LtrT(3)

LtrT(2)

LtrT(1)

LtrT(0)

LtrTOut

SelShift

LtrTIn

ShiftPosition

s_Shift

Shift1      00

Shift2      01    

Shift3      10

UPCOut(6)
UPCOut(7)

s_Out(7)s_Out(6)…s_Out(0)

…

…

UPCNewIn(7) UPCNewIn(6) UPCNewIn(0)

UPCOut(0)

…

+

-

Nb -Difference

Difference

to ControlUnit

from ControlUnit

UPCNew
(6)

UPCNew
(5)

UPCNew
(4)

UPCNew
(3)

UPCNew
(2)

UPCNew
(1)

UPCNew
(0)

+ + +

Figure 5.13: Vector By Circulant DataPath in Integer version

memory location.
The integer version of the architecture has LtrT instead of Ltr and the Syndrome Address
counter that loaded by the shift present in memory.

The counters included are:

• Ltr Address Counter

• Syn Address Counter

75



5 – LEDA Architecture

Ltr(15)

Ltr(14)

…

Ltr(3)

Ltr(2)

Ltr(1)

Ltr(0)

LtrIn

Shift

ShiftPosition

Initial MsgAdx MsgAdx
Cin Cout

MsgAdx
Counter

clk rst_n

load

enable

from ControlUnit

from ControlUnit

Figure 5.14: Message Address Counter

3 4

Msg1
(32)

Msg1
(33)

Msg1
(34)

Msg1
(35)

Msg1
(36)

Msg1
(37)

Msg1
(38)

Msg1
(39)4 Msg1

(40)
Msg1
(41)

Msg1
(42)

Msg1
(43)

Msg1
(44)

Msg1
(45)

Msg1
(46)

Msg1
(47)5

Msg1
(48)

Msg1
(49)

Msg1
(50)

Msg1
(51)

Msg1
(52)

Msg1
(53)

Msg1
(54)

Msg1
(55)5 Msg1

(56)
Msg1
(57)

Msg1
(58)

Msg1
(59)

Msg1
(60)

Msg1
(61)

Msg1
(62)

Msg1
(63)6

Msg1 Register Msg2 Register

1st row of the syndrome

2nd row of the syndrome

3rd row of the syndrome

Msg1
(24)

Msg1
(25)

Msg1
(26)

Msg1
(27)

Msg1
(28)

Msg1
(29)

Msg1
(30)

Msg1
(31)

Msg1
(32)

Msg1
(33)

Msg1
(34)

Msg1
(35)

Msg1
(36)

Msg1
(37)

Msg1
(38)

Msg1
(39)

(a) Condition 1

3 4

Msg1
(32)

Msg1
(33)

Msg1
(34)

Msg1
(35)

Msg1
(36)

Msg1
(37)

Msg1
(38)

Msg1
(39)4 Msg1

(40)
Msg1
(41)

Msg1
(42)

Msg1
(43)

Msg1
(44)

Msg1
(45)

Msg1
(46)

Msg1
(47)5

Msg1
(48)

Msg1
(49)

Msg1
(50)

Msg1
(51)

Msg1
(52)

Msg1
(53)

Msg1
(54)

Msg1
(55)5 Msg1

(56)
Msg1
(57)

Msg1
(58)

Msg1
(59)

Msg1
(60)

Msg1
(61)

Msg1
(62)

Msg1
(63)6

Msg1 Register Msg2 Register

1st row of the syndrome

2nd row of the syndrome

3rd row of the syndrome

Msg1
(24)

Msg1
(25)

Msg1
(26)

Msg1
(27)

Msg1
(28)

Msg1
(29)

Msg1
(30)

Msg1
(31)

Msg1
(32)

Msg1
(33)

Msg1
(34)

Msg1
(35)

Msg1
(36)

Msg1
(37)

Msg1
(38)

Msg1
(39)

(b) Condition 2

Figure 5.15: Initial cycles

These counters are driven in a more simpler way.
The ControlUnit provides the enable, clk and rst_n to the Counters and Registers present
in the architecture. The only counter loaded by a value is the Message Address Counter.

The Version 2 ControlUnit and DataPath can be further modified and reduced in com-
plexity if some conditions are satisfied. The length of the registers is in general Nbit, the
number is supposes to be a power of 2, this can lead a simplification. The modulo Nbit

can be obtained just performing the operation Shift = ShiftMem − Difference and
taking the last log2(Nbit) bits. The implications of this solution has not been studied in
detail, but there is a change to be performed in the ControlUnit since the condition with
Shift = Difference requires another path, different from the previous two since the three
conditions mentioned above require different processes of data, moreover it is required to
include in the Position a bit that states if the Shift is equal to the Difference because the
path is different.

76



5.3 – Vector By Circulant Architecture

The second change is in the DataPath, there is just a multiplexer with two entries instead
of three. The positions in Ltr Memory has still to be saved in the format mentioned above
with a small change, because there is a different behavior in the two cases.

The only problem of Version is in the last iteration. The last row of the Syndrome is read
and xored with the last portion of Message in output of the multiplexer, but in Syndrome
after Difference there is no zero filling but instead some bits that has to be considered as
noise and not take into account. This can be a problem is Syndrome has to be considered
as input vector of the VectorByCirculant unit because in that case it is mandatory to have
bits equal to 1. This problem arises in the following modules where the method is em-
ployed. The condition is in Figure 5.16 and the memory content at the end is in Figure 5.17.

3 4

Msg1
(32)

Msg1
(33)

Msg1
(34)

Msg1
(35)

Msg1
(36)

Msg1
(37)

Msg1
(38)

Msg1
(39)4 Msg1

(40)
Msg1
(41)

Msg1
(42)

Msg1
(43)

Msg1
(44)

Msg1
(45)

Msg1
(46)

Msg1
(47)5

Msg1
(48)

Msg1
(49)

Msg1
(50)

Msg1
(51)

Msg1
(52)

Msg1
(53)

Msg1
(54)

Msg1
(55)5 Msg1

(56)
Msg1
(57)

Msg1
(58)

Msg1
(59)

Msg1
(60)

Msg1
(61)

Msg1
(62)

Msg1
(63)6

Msg1 Register Msg2 Register

1885st row of the syndrome

1886nd row of the syndrome

1887rd row of the syndrome

Msg1
(24)

Msg1
(25)

Msg1
(26)

Msg1
(27)

Msg1
(28)

Msg1
(29)

Msg1
(30)

Msg1
(31)

Msg1
(32)

Msg1
(33)

Msg1
(34)

Msg1
(35)

Msg1
(36)

Msg1
(37)

Msg1
(38)

Msg1
(39)

noisedifference

Figure 5.16: Last row generation

Syn1
(0)

Syn1
(1)

Syn1
(2)

Syn1
(3)

Syn1
(4)

Syn1
(5)

Syn1
(6)

Syn1
(7)

Syn1
(8)

Syn1
(9)

Syn1
(10)

Syn1
(11)

Syn1
(12)

Syn1
(13)

Syn1
(14)

Syn1
(15)

Syn1
(15012)

Syn1
(15011)

Syn1
(15010)

Syn1
(15009)

Syn1
(15008)

0

1

1877

Message Memory

Difference

Syn1
(15013)

Syn1
(15014)

Syn1
(15015)

noise

Figure 5.17: Syndrome Memory

Version 1 and Version 2 require the same amount of memory to store the values, but for
sure Version2 works better since it is enough to change some parameters to highly increase
its parallelism.

77



5 – LEDA Architecture

5.4 Architecture Modules
The important units involved are:

• Syndrome Evaluation unit: the Syndrome is evaluated by Algorithm 6 working on
the two blocks of the matrix;

• Syndrome Weight Evaluation: the weight is the sum of each bit in the syndrome;

• Correlation Evaluation unit: the Correlation is evaluated by Algorithm 7;

• Threshold Evaluation: the syndrome weight points a specific threshold;

• Error Evaluation: the threshold is compare to each value of the Correlation and if
higher or equal it is stored as error bit;

• Message Update unit: the bits of the message pointed by the error vector are flipped;

• Syndrome Update unit: the syndrome bit to be changed are evaluated with the error
vector and the key, then they are flipped.

The Decoder included all the units in the DataPath, they are connected to the memories
for the input result and provides the values to be stored and the addresses. The connections
among units involves only three parameters. The DataPath is in Figure 5.18. The signals
not present are the start for each module that is provided by the ControlUnit, while the
done is used for the execution.

The ControlUnit is in Figure 5.19. The flow of the decoder follows the steps in the algo-
rithm.

Correlation 
Computation

Syndrome 
Weight

Error
Position

Message
Update

Threshold 
Evaluation

Message1

Message2

Ltr1
Ltr2

LtrAdx

SynAdx_SynWCMP

SynW

SynAdx_SynAdj

LtrT1
LtrT2

LtrTAdx

UPC

UPCAdx_CorrCMP

SynAdx_CorrCMP

Threshold

UPC1

UPC2

UPCAdx_ErrorPos

Pos

PosAdx_ErrorPos

Pos1

Pos2
PosAdx_MsgUpdt

MsgAdx_MsgUpdt

Message

Pos1AdxMax Pos2AdxMaxSyndrome 
Adjust

Syndrome

Syndrome 
Computation

Syndrome_SynCMP

MsgAdx_SynCMP

SynAdx_SynCMP

Syndrome_SynAdj

SynAdx_SynCMP
SynAdx_CorrCMP

SynAdx_SynAdj
SynAdx_SynWCMP

UPCAdx_CorrCMP
UPCAdx_ErrorPos

PosAdx_ErrorPos

PosAdx_MsgUpdt

MsgAdx_MsgUpdt

MsgAdx_SynCMP

Syndrome_SynAdj

Syndrome_SynCMP
Syndrome

SynAdx

UPCAdx

PosAdx

MsgAdx

Figure 5.18: Decoder DataPath

78



5.5 – Syndrome and Correlation Computation

Idle
clear Iteration start = 1

No

Yes

SynCMP
Start Syndrome 

evaluation
doneSynCmp

= 1

No

Yes

SynAdj
Adjust 

Syndrome last 
row filling

doneSynAdj
= 1

SynW

Start Syndrome 
weight evaluation

doneSynW
= 1

SynW
= 0

EndEvSuccessful
Successful 
decryption

Done asserted

It= Itmax
Increment 
Iteration 
Counter

No

ItUptThEv
Compute the 

Threshold

doneThEv = 1
No

YesCorrCMP

Compute CorrelationdoneCorrCmp
= 1

No

ErrorPos

Evaluate position 
of errors

doneErrorPos
= 1

No

MessageUpdate

Update the Message

No

Yes

No

Yes Yes

No

Unsuccessful 
decryption

Done asserted

EndEvNotSuccessful
Yes

Yes
Yes

doneMsgUpdt
= 1

No

Yes

Figure 5.19: Decoder ControlUnit

5.5 Syndrome and Correlation Computation
The units presented here evaluated the Syndrome and Correlation requires the product of
vector by square circulant matrix, the block employed in the VectorByCirculant component
in both the two versions.

The inner block is modified depending on the variable to be computed, because different
requirement has to be met.

5.5.1 Syndrome Evaluation
The Syndrome is:

MsgEncoded ∗ LT (5.9)

The codes adopted contains n0 (n0 = 2) circulant blocks with size p× p (p = 15013), then
L is p× n0 ∗ p and m is 1× n0 ∗ p, the message can be divided in two equal parts m0 and
m1 of size 1× p each.

[
m0 m1

] [ L0
L1

]
=

m0 ∗ L0
⊕

m1 ∗ L1

 =

s0
⊕
s1

 (5.10)

The DataPath of the unit has the VectorByCirculant module that evaluates s. The memo-
ries with m0, m1, L0 and L1 are provided at the input of the component, the ControlUnit
selects the right one depending on the partial sindrome to be evaluated.

The partial syndrome s0 is evaluated as a progressive xor among different vectors, then it
is required to have only zeros stored in memory or not take into account its content in the

79



5 – LEDA Architecture

first run. The option selected is the second one, in order to avoid a clear of the memory
that is a waste of time.

The result s is the xor among shifted versions of the partial message.

Vector
By

Circulant

blockSel

Ltr0

Msg0
Msg1

Ltr1

LtrAdx

MsgAdx

DP_SYNCMP

SynOut
SynIn

SynAdx

clk rst_n

0

1

0

1

Figure 5.20: DataPath of the Syndrome Computation Module

Syn0Ev

Syn1Ev

Idle

StartSynCmp
= 1

yes

no

Syn0Done 
= 1

yes

no

Syn1Done
= 1

yes

no

SynEv

Assert first cycle
Select first block
Start VbC

Select second block
Start VbC

SynEvaluated

Figure 5.21: ControlUnit of the Syndrome Computation Module

The ControlUnit has to select the correct input for the module that evaluates the product.
The unit can be adapted to matrices with 3 and 4 blocks. It is required to add one or two
states to be able to selected the other blocks. The operations in the other states are the
same, only the first one is different. The syndrome present in memory at the beginning
may not be ‘0’, then a signal has to be provided to the logic in order to be sure that
during the first load the syndrome register contains only zeros and the xor among it and

80



5.5 – Syndrome and Correlation Computation

the message shifted is not affected by unwanted values.

The VectorByCirculant units can be modified in two ways: the ControlUnit can be repli-
cated considering a “first position” execution; the second is set a signal in one state that
enable the clear signal to the syndrome register. The second option has been selected in
order to avoid too many states to be inserted. The version required the addition of two
states :

• Load_Ltr_FirstCycle: this is required in order to assert the flag that select
ClearSynReg= 1, the state is reached after Idle only for Syn0Ev for the other ones
Load_Ltr in the first state.

• End_Ltr: this state is reached every time the operation with a Ltr value has been
completed and it is required to modify the value of the flag that in this case asserts
ClearSynReg= 0.

The execution after the first time End_Ltr is reached has the flow described before. De-
spite the presence of a condition in a state this is still a Moore Machine since the signal is
provided synchronously and not in a state transition.

The Syndrome is computed and a done signal is asserted. The result is in Syndrome
Memory that is the input of the following unit that is still based on the same method,
for this reason it is required to remove the noise from the last row. The Decoder has an
additional unit, SyndromeAdjust, that has to remove the noise in the last row. The clear
of the noise is realized in parallel in order to take just 3 clock cycles since the unwanted
bits are just masked with by predefined vector, otherwise the number of cycles required is:

Nclr cycles = Nb −Difference (5.11)

5.5.2 Correlation Evaluation

The Correlation is:

Syndrome ∗ L (5.12)

The Syndrome is a 1× p vector and the matrix is the same as before, the computation is:

s ∗
[

L0 L1
]

=
[
s ∗ L0 s ∗ L1

]
(5.13)

The CorrelationEvaluation unit has almost the same structure as the previous one. The
input vectors are the transpose of Ltr (again stored by position), the two blocks of the
Correlation vector. and the Syndrome vector. The component provides at each iteration
an update version of the Correlation.

81



5 – LEDA Architecture

Vector
By

Circulant

blockSel

Ltr0

UPCIn0
UPCIn1

Ltr1

LtrAdx

SynAdx

DP_CORRCMP

UPCOut

SynIn

UPCAdx

clk rst_n

0

1

0

1

UPCMemSel

Figure 5.22: DataPath of the Correlation Computation Module

UPC0Ev

UPC1Ev

Idle

StartCorrCmp
= 1

yes

no

UPC0Done 
= 1

yes

no

UPC1Done
= 1

yes

no

UPCEv

Assert first cycle
Select first block
Start VbC

Select second block
Start VbC

UPCEvaluated

Figure 5.23: ControlUnit of the Correlation Computation Module

The parallelism introduced makes this block the one with more interconnections. The Cor-
relation is a vector of length 2 ∗ 15013 of values that require at least 8 bits to be stored.
Then if there are 8 values read at each iteration there are 64 bits for one memory, in total
there are 3 ∗ 64 for UPCIn1,UPCIn2 and UPCOut. This can be a limit to the implemen-
tations in devices with a few resources.

82



5.6 – Threshold Evaluation

The changes in the VectorByCirculant ControlUnit are different for the integer version
because it is required to work with a cleared register each time a new UPC (both UPC1
and UPC2) is selected, because this vector is organized in blocks. The condition flag to
state the first run to VectorByCirculant can be asserted while in Idle because the state is
reached each time the method is called, the End_Ltr is still required to set the flag to
zero.

5.6 Threshold Evaluation
The threshold evaluation module requires firstly to evaluate the weight of the syndrome.
The SynW register stores this value, that is updated at each read of the syndrome memory.
The number of 1s in one row is counted and summed to the previous value in SynW.
The DataPath of the is in Figure 5.24, the ControlUnit is simple and then not included here
since it has just to read the Syndrome rows and update the register, the only requirement
is to clear the register each time it starts the evaluation.

Syn(7) Syn(6) Syn(5) Syn(4) Syn(3) Syn(2) Syn(1) Syn(0)

SynIn

8-bit 1s 
Counter

SynWCurrent

SynW
Out

+

SynW
CurrentSynW

Reg

SynW
In

Figure 5.24: DataPath of Syndrome Weight module

The SyndromeAdjust is required to be performed before the evaluation of the Syndrome
weight in order to not have the correct value from the computation.

The different strategy that can be employed here is to update SynW reading the Syndrome
bit by bit. The solution requires at least 15013 cycles to update the weight bit by bit.
The effect on the whole systems is an increase in the time to compute it, but the benefit
is that instead of a unit that sums in parallel a group of bits the operation is done by an

83



5 – LEDA Architecture

accumulator, thus reducing the critical path.

The Threshold is given by ranges of SynW, then the difference among SynW and the value
in the range is evaluated, as in Figure 5.25. There is a sign pattern coming from those
differences that points the threshold.
The specific UPC value is pointed considering the specific error pattern.

-
-

-
-SynW

5193

2843

4392

5679

signPattern(3)

signPattern(2)

signPattern(1)

signPattern(0)

Figure 5.25: Sign Pattern Generation

The output is given by another LUT, describe in Table 5.2

Table 5.2: Threshold Look-Up table

Sign Pattern Threshold
1111 42
0111 43
0011 44
0001 45
0000 46

5.7 Message Update
The message update is made considering the threshold evaluated and the UPC vector.
The row of UPC is read and subtracted to the threshold, then each value of the subtraction
is read and if it is higher than the threshold it is saved as a position.
The positions that satisfy this condition are a few compared to the length of the vector,
to exploit this fact the end of the difference bit an or port is present, if they are all 0 the
row is skipped.
The process follows a different path if the row is 1, in this case a match is present. The unit
checks each bit of the difference pattern and if there is a value higher than the threshold

84



5.7 – Message Update

it is stored in memory.

The MessageUpdate is performed reading from memory the corresponding row and flipping
the error bit, then the row is stored again in memory.
The units introduces at this step are two:

• ErrorPosition Unit;

• MessageUpdate Unit.

The blocks are organized as the other units, they can be easily adapted to cases with a
different number of circulant blocks.
The details of the ControlUnit and DataPath are described in the following.

5.7.1 ErrorPosition Unit

The inner block included in this unit is the VectorPosFlip component. The DataPath and
ControlUnit are included in Figures 5.26 and 5.27.

UPC(7) UPC(6) UPC(5) UPC(4) UPC(3) UPC(2) UPC(1) UPC(0)

UPCIn

- - - - - - - -

Threshold

s(7) s(6) s(5) s(4) s(3) s(2) s(1) s(0)

…
s(7) s(6) s(0)

Cmp0

Cmp(7) Cmp(6) Cmp(5) Cmp(4) Cmp(3) Cmp(2) Cmp(1) Cmp(0)

s(7) s(6) s(5) s(4) s(3) s(2) s(1) s(0)

CmpSel

CmpCurrent

Figure 5.26: ErrorPosition DataPath

85



5 – LEDA Architecture

ReadUPC

Idle

StartCorrCmp
= 1

yes

no

UPCAdx=
MaxAdx

yes

no

EndEv

Load Upc row
Increment UPCAdx
Load UPCAdx

Increment Shift
Load Shift

UPCEvaluated

clear NewPos Adx

CmpRes

Store

Cmp0 = 0
yes

no

CmpCurrent = 1
yes no

NotStore

UPCAdx=
MaxAdx

yes

no

Shift=
difference

yes no

CmpCurrent = 1
yes no

Shift=
Nb

no yes

Write Pos
Increment Shift
Load Adx and Shift

Increment Shift
Load Adx and Shift

Figure 5.27: ErrorPosition ControlUnit

The ControlUnit requires the Cmp0 signal in order to drive the execution and to know if
the rows has to be skipped or not.
The second useful signal is CmpCurrent if it is 1 the value of Message Address and CmpSel
has to be stored since it is the position of the error. Cmp0 is different from 0 if at least one
value of the row is higher than the threshold, in this case each sign bit is passed and when

86



5.7 – Message Update

equal to 1 (when a match is present) the value of Address and Shift present in a specific
register are saved in memory. The operation is repeated until the end is reached. The unit
provides the size of the vector too, this is because it changes during the decoding process.

The vectors generated contains the positions of both UPC1 and UPC2 that matched the
threshold, the positions are saved in two separate memories.

The parallelization of the error position search has a big benefit due to the skip of the row
in case no relevant position are present in a row. The improvement that can be introduced
is in the the case Cmp0 is equal to 1, a number of cycles equal to the parallelism is nec-
essary to find the all the ones in a row, the increasing parallelism increases the number
of cycles required. In example if the at most 80 errors are all in different rows and the
parallelism is 64 the total cycles are 64 ∗ 80 = 5120, for Pos1 and Pos2.

The solution is to save in parallel the positions that satisfy the condition. The idea can be
to use a LeadingZero Architecture in case the position to be saved is only one in one row.
The study of the occurrence of an error in one row of the message saved in memory clarify
this point. The simulations shows that the condition to have more than 3 positions per
row are unlikely. Then it is required some logic to generate the position if it is only one
or instead save multiple positions, it is better to introduce only this two possibilities since
the more probable one is the condition of a single position.

The simulations showed that just 2 or 3 vector per cycle have two error position in the
same row, this means that the cycles saved with a different unit are (80− 6) ∗ 64 = 4736.
The problem can be due to the presence of a complex unit that could increase the critical
path. The modification is not added to the Decoder because the number of cycles required
by the unit is irrelevant compared to the VectorByCirculant module.

5.7.2 MessageUpdate Unit

The idea is to consider the positions as the values included in Ltr Memory, the last bit are
decoded and stored in a register the output is decoded and stored in another register.

The second register present in the DataPath contains the row of the Message Memory with
the erroneous bit. This is pointed by the first part of the position and loaded in a register.

The output of the two register is xored and the result is the bit flipping of that specific
bit. Then the message is saved in memory.

The DataPath in Figure 5.28 shows the operation performed and the content of the registers
for a specific case. The result is the Message with just one bit flipped.

87



5 – LEDA Architecture

iMsg1
(b+4)

Msg1
(b+3)

Msg1
(b+2)

Msg1
(b+1)

Msg1
(b)

Msg1
(b+5)

Msg1
(b+6)

Msg1
(b+7)

Shift

Address

Shift

Pos1(i)

To memory

3-bit 
Decoder

000 0 1 0 0 0

inot(Msg1
(b+4))

Msg1
(b+3)

Msg1
(b+2)

Msg1
(b+1)

Msg1
(b)

Msg1
(b+5)

Msg1
(b+6)

Msg1
(b+7)

Figure 5.28: MessageUpdate operation

88



Chapter 6

Architecture Synthesis and
Simulation

The synthesis result refers to the following parallelisms:

• 8 bit

• 16 bit

• 32 bit

• 64 bit

The higher parallelism requires more resources to be implemented, but depending on the
device it can be feasible. The main problem regards the connections among the logic and
the memory since increasing working with more bits requires wider memory or smaller but
more in number.

6.1 Modelsim

The Simulation has been done on Modelsim, the cycles are referred to the worst case in
which the convergence is reached in 3 iterations. The algorithms works fine, but in some
cases more than 2 iteration are necessary. The cases in which the decoder is not able to
converge are for sure the worst ones, but this is unlikely to happen.

The number of cycles required by the different parallelism are:

89



6 – Architecture Synthesis and Simulation

Table 6.1: Simulation results

Parallelism Cycles It = 4 Cycles It = 3
8 6500000 4500000
16 3300000 2300000
32 1630000 1200000
64 824000 600000

The relevant number of cycles is the one employed by each unit to evaluate its result. The
cycles required are summarized in Table 6.2 for each parallelism selected.

Table 6.2: Modelsim Simulations for each Module

Parallelism Module Cycles %
Syndrome Computation 913240 49.6%
Correlation Computation 913240 49.6%

8 Syndrome Weight 3756 0.2%
ErrorPos (It = 0) 8644 0.46%
Message Update (It = 0) 578 0.03%
Total: 1839450
Syndrome Computation 457430 49.5%
Correlation Computation 457430 49.5%

16 Syndrome Weight 1880 0.2%
ErrorPos (It = 0) 5780 0.6%
Message Update (It = 0) 530 0.05%
Total: 923050
Syndrome Computation 229534 49.2%
Correlation Computation 229534 49.2%

32 Syndrome Weight 942 0.2%
ErrorPos (It = 0) 5600 1%
Message Update (It = 0) 514 0.1%
Total: 466124
Syndrome Computation 115247 48%
Correlation Computation 115247 48%

64 Syndrome Weight 472 0.2%
ErrorPos (It = 0) 8244 3%
Message Update (It = 0) 538 0.2%
Total: 239748

The result is useful in order to clarify the effect of some choices and presence of all the
modules. The SyndromeWeight and ErrorPos unit could be included in the Syndrome-
Computation and SyndromeComputation modules, the effect of this change is that a more

90



6.1 – Modelsim

complex ControlUnits and DataPath are required, the original VectorByCirculant module
has to be further modified. The additional complexity could create a longer critical path
that requires the addition of registers in order to cut the path and have the same values of
the modular case, more states means that the benefit of the “all in one” strategy are lost.
The solution could be not to include the small modules inside the larger ones, but to assert
the “start” in the larger control unit and be able to read the same value in memory without
the need to read it from memory two times. This prevents 81 useless read from memory,
that compered to all the read and write present are just a few.

The Table 6.2 has the percentage of the units that should remain the same while increasing
the parallelism, a part from the MessageUpdate unit, but analyzing in detail the result the
cycles of the ErrorPos unit does not scale. The cycles required are only 1% (at most) of
the total number of cycles required, then the solution to limit its effect (as explained in
the dedicated section) are not necessarily required. The adoption of a different unit should
be taken into account in case the parallelism is further increased, in that case the effect of
the non optimized unit could be more relevant.

The last change to be mentioned required an additional unit to be inserted and an addi-
tional memory. The SyndromeUpdate unit evaluated just the positions of the Syndrome
that has to be flipped, they are at most 12000. The new unit requires 2 ∗ 12000 cycles
to compute the position, 12000 cycles to read the initial position and the same amount
to store them, the update unit involves 3 ∗ 12000 cycles in total. The amount of cycles
required (referred to the second iteration) are: 84000. The difference among this and the
unit described is:

• 8 bit: 913240− 84000 = 829240

• 16 bit: 457430− 84000 = 373430

• 32 bit: 229534− 84000 = 145534

• 64 bit: 115247− 84000 = 31247
The improvement is huge in terms of cycles required. The Decoder DataPath and Con-
trolUnit has to be modified in order to include the new unit, the unit is not included in
the Decoder but its presence can be tested in future works.

The module was designed, but not tested inside the Decoder. It is the architectural deriva-
tion of Algorithm 9. The position of the syndrome is evaluated and flipped in order to
avoid the use of an additional memory to save positions.

The other change that can be introduces regards the initial choices and modification of
the Q-Decoder. The modification involved the evaluation of the Correlation, the original
description involved both Q and H computing the integer value in two steps. The solution
requires an additional memory to be connected and to store the two matrices of the private
key, but in this case the cycles to evaluate the correlation. The reduction is due to the
structure of the algorithm because it generates shifted versions of a vector for each asserted
bit in the matrix, the dimensions of H and Q are 27 in total, on the other side the asserted
bits in L are 81, the cycles are reduced by a factor of 4.5.

91



6 – Architecture Synthesis and Simulation

6.2 Synopsys
The critical path for each unit is the same it comes from the presentState of the ControlU-
nit in the VectorByCirculantInteger and goes to SelShift, in the accumulator and then to
the output register.

The synthesis does not took into account the presence of the memories.

Table 6.3: Synthesis results

Parallelism tcp Comb. Area Non Comb. Area Total Cell Area Static Power
8 4.58 ns 4254 µm2 5024 µm2 9279 µm2 0.2631 µW
16 5.30 ns 6324 µm2 7882 µm2 14103 µm2 0.4057 µW
32 5.57 ns 10366 µm2 13654 µm2 24021 µm2 0.6927 µW
64 6.09 ns 31602 µm2 25226µm2 56768 µm2 1.2777 µW

The results are referred only to the decoder without memories, but the one containing
positions are small and can be synthesized as Flip-Flops.

The result of the area has some anomalies. Then a detailed report is presented in order to
understand clearly origin of these values.

The important result is the time employed by the Decoder to converge with different
parallelisms. In Table 6.4 the comparison of the Tev combining the values in Table 6.3 and
Table ??.

Table 6.4: Convergence time

Parallelism Tev It = 4 ratio Tev It = 3 ratio
8 29.8 ms 20.6ms
16 17.5 ms 0.6 12.2ms 0.6
32 9.1 ms 0.52 6.7 ms 0.54
64 5.01 ms 0.55 3.6 ms 0.53

The time is almost halved at each time the parallelism is doubled, the reduction is not 0.5
but a bit more because the increase in the tcp while the parallelism increases.

Convergence time reduction The introduction of the modifications mentioned above
can further reduce the number of cycles, while the critical path should remain the same
(the larger port is an adder).
The parallelism considered is 8-bit. The presence of the SyndromeUpdate unit considering
It = 4 is applied in three cycles, then the cycles are reduce of 829240 per iteration:

92



6.2 – Synopsys

Ttotal − Tsyn = 6500000− 3 ∗ 829240 ≈ 4100000 (6.1)

The reduction is of 5ms, the converge time is comparable to the case with one iteration
less.
The second improvement that splits the evaluation of the Correlation produces a reduction
on every cycle, the amount is:

TCorrCmp/4.5 = 913240/4.5 ≈ 202843 (6.2)

The difference is 710297 valid for three cycles, then the total reduction is:

Ttotal − 3 ∗ Tdiff,CorrCmp = 6500000− 3 ∗ 710297 ≈ 4400000 (6.3)

The time saved is 9ms.

The introduction of both the improvements saves in total 14ms.

6.2.1 Area analysis
The detailed report of the most relevant units is useful, in Table 6.5 and 6.6 there is the
area of each module of the decoder. The tables reports in red the ratio between the current
area and the one with half the parallelism.

Table 6.5: Modules area

Parallelism CorrelationCmp ratio ErrorPos ratio MessageUpdate ratio
8 3355 µm2 2049 µm2 891 µm2

16 5672 µm2 1.69 3321 µm2 1.62 1239 µm2 1.40
32 10439 µm2 1.84 5825 µm2 1.75 1921 µm2 1.55
64 26495µm2 2.54 10805 µm2 1.75 3282 µm2 1.70

Table 6.6: Modules area

Parallelism SyndromeCmp ratio SyndromeAdjust ratio SyndromeWeight ratio
8 1580 µm2 227 µm2 624 µm2

16 2126 µm2 1.34 406 µm2 1.78 762 µm2 1.22
32 3349 µm2 1.57 769 µm2 1.89 1098 µm2 1.44
64 12337µm2 3.68 1487 µm2 1.93 1715 µm2 1.56

The area of the ThresholdEvaluation module is fixed to 187 µm2, the same for the iteration
counter that is 50 µm2.

93



6 – Architecture Synthesis and Simulation

The ratio should be constant increasing the parallelism but in most of the cases there are
small changes, this is due to the fact that the ControlUnit of the modules are included
in the computation, their dimension is constant then it is an offset in the complete area
evaluation. The deeper analysis of the area shows that the size of the DataPath doubles
for all the modules, just some small changes are present in the units that store positions
since the increasing parallelism does not change these registers.

The Syndrome Computation and Correlation Computation has a different behavior that
explains the difference in the complete area. The components with parallelism 64 and 32
are analyzed more in detail in the following, the two values has been selected since they
have high ratios.

Table 6.7: Syndrome Computation

Parallelism DataPath ratio ControlUnit
8 1545 µm2 35 µm2

16 2091 µm2 1.35 35 µm2

32 3314 µm2 1.58 35 µm2

64 12302µm2 3.71 35 µm2

The Syndrome Computation Unit includes a register in order to store the position, its size
is an offset then the variation from 8 to 16 bit does not have a huge increase in the area.
The effect of the offset is less relevant doubling further the size of the registers. There
is something more to be taken into account in this analysis, since the unexpected area
increase is between 32 to 64.

Table 6.8: Syndrome Computation DataPath components

Parallelism Counters ratio Registers ratio Multiplexer ratio
8 198 µm2 91 µm2 102
16 178 µm2 0.90 181 µm2 2 259 2.5
32 162 µm2 0.91 362 µm2 2 664 2.5
64 144 µm2 0.90 730 µm2 2 7949 12

The area increase is unexpected for the 64 bit case. The idea to solve the problem is
to find another way to implement the multiplexer, due to the sizes of the problem it is
implemented in a behavioral way, but a description near to the hardware could solve the
problem, another solution could be to use 32 bit multiplexer and one two way multiplexer
to implement the whole device.

The same decoder is implemented in FPGA where the are increased by the same factor,
but the critical path is longer. This can lead to a second way to reduce the gates, the clock

94



6.2 – Synopsys

frequency can be increased in order to relax the specifications.

The first option tried on Synopsys was to run a second compile of the design, this option
solved the previous problem. The second compile running on all the designs produced a
strong reduction in the area, the critical path. The tcp, area and power results after the
second compile are reported in Table 6.9

Table 6.9: Synthesis after a second compile

Parallelism tcp Total Cell Area Static Power
8 3.65 ns 2591 µm2 0.1126 µW
16 3.68 ns 3567 µm2 0.1566 µW
32 3.66 ns 5166 µm2 0.2137 µW
64 4.45 ns 23201µm2 0.2714 µW

The reduction in the critical path makes the decoder even more faster. The critical path
with different parallelisms is almost the same, this is due to the fact that the critical path
is moved to the MessageUpdate unit. The complex multiplexer is reduced to a less complex
unit that does not occupy a lot of area as previously.

6.2.2 Timing analysis
The path length distribution is analyzed for the 64 bit version.
The second longest path in the architecture is in the Syndrome Weight unit, the time
required is approximately the same as the longest one. The variations that could be
adopted to speed up the architecture can be applied on this two units, but this will result
in an higher number of cycles required by the computation in this modules, the effect
on Syndrome Weight is not relevant since it occupies a few cycles, but applied on the
Correlation Computation unit this requires an additional cycle.
The critical path of the two units is cut with a register in the middle, the new synthesized
design has a critical path of Tcp = 5.53ns and placed in the unit that evaluates the erro-
neous bits. This can be further cut, but the other DataPath of the Decoder has the same
blocks, the path length is the same along the architecture.

The version generated by the second compile was not studied with a cut on the new critical
path, but if this is the longest path of the design it can be easily reduced with a register
in the middle, thus further reducing the critical path. The unit works for just a reduce
number of cycles, then an additional state to include the presence of the register does not
increase in an appreciable way the time required.

6.2.3 Memories required
The parallelism in the DataPath took into account the width of the memories, since they
are usually provided with the dimensions power of 2 the sizes has been approximated in
order to match this condition.

95



6 – Architecture Synthesis and Simulation

The memories required to store the positions are 6 and with size 16∗81 bit, this is the aspect
ratio that they could have, independently of the parallelism. Since they are connected
separately to the decoder, six distinct memories with that size are required. The total
storage required is: 972 Byte.
The memories are:

• Ltr1,Ltr2 ;

• LtrT1,LtrT2 ;

• Pos1,Pos2.

The binary vector stored requires memories of different aspect ratio depending on the
selected parallelism. In general the memory required is 6 kB. The aspect ratios are:

• 8 bit : 8 bit× 1887 addresses;

• 16 bit: 16 bit× 938 addresses;

• 32 bit: 32 bit× 470 addresses;

• 64 bit: 64 bit× 235 addresses;

The Correlation requires memories of:

• 8 bit : 64 bit× 1887 addresses;

• 16 bit: 128 bit× 938 addresses;

• 32 bit: 256 bit× 470 addresses;

• 64 bit: 512 bit× 235 addresses;

The memory required is 22kB, but with different aspect ratios.

6.3 FPGA implementation
The synthesis in a Xilinx FPGA took into account the presence of the Memories that are
included in the design. The clock period considered is 10ns and was always met.

The most critical point are the connections, but even for 64 bit parallelism there was no
problem in instantiating the decoder.
The FPGA selected belongs to the Artix-7 family, the characteristics are in Figure 6.2.
The part considered is the XC7A15T, with CPG236 package.
The Spartan-7 family has even less resources, despite there is no possibility to synthesize
the decoder for them it is possible to compare the result obtained for other families with the
resources available for this one. The characteristics of the devices are provided in Figure
6.1.

96



6.3 – FPGA implementation

Page 2

Spartan-7 FPGAs

Notes:
1. Packages with the same last letter and number sequence, e.g., A484, are footprint compatible with all other Spartan-7 devices with the same sequence. The footprint compatible devices within this family are outlined. 

I/O Optimization at the Lowest Cost and Highest Performance-per-Watt
(1.0V, 0.95V)

Part Number XC7S6 XC7S15 XC7S25 XC7S50 XC7S75 XC7S100

Logic Resources

Logic Cells 6,000 12,800 23,360 52,160 76,800 102,400

Slices 938 2,000 3,650 8,150 12,000 16,000

CLB Flip-Flops 7,500 16,000 29,200 65,200 96,000 128,000

Memory Resources

Max. Distributed RAM (Kb) 70 150 313 600 832 1,100

Block RAM/FIFO w/ ECC (36 Kb each) 5 10 45 75 90 120

Total Block RAM (Kb) 180 360 1,620 2,700 3,240 4,320
Clock Resources Clock Mgmt Tiles (1 MMCM + 1 PLL) 2 2 3 5 8 8

I/O Resources
Max. Single-Ended I/O Pins 100 100 150 250 400 400

Max. Differential I/O Pairs 48 48 72 120 192 192

Embedded Hard IP 
Resources

DSP Slices 10 20 80 120 140 160

Analog Mixed Signal (AMS) / XADC 0 0 1 1 1 1

Configuration AES / HMAC Blocks 0 0 1 1 1 1

Speed Grades

Commercial Temp (C) -1,-2 -1,-2 -1,-2 -1,-2 -1,-2 -1,-2

Industrial Temp (I) -1,-2,-1L -1,-2,-1L -1,-2,-1L -1,-2,-1L -1,-2,-1L -1,-2,-1L

Expanded Temp (Q) -1 -1 -1 -1 -1 -1

Package(1)

Body Area 
(mm)

Ball Pitch
(mm) Available User I/O: 3.3V SelectIO™ HR I/O

CPGA196 8x8 0.5 100 100
CSGA225 13x13 0.8 100 100 150
CSGA324 15x15 0.8 150 210
FTGB196 15x15 1.0 100 100 100 100
FGGA484 23x23 1.0 250 338 338
FGGA676 27x27 1.0 400 400

Figure 6.1: Spartan-7 Family[19]

6.3.1 64 bit
The result obtained for the resources employed if the only constraint applied is the clock
period are:

Table 6.10: 64 bit parallelism

Resource Utilization Utilization (%)
LUT 3579 34%
FF 2459 12%

BRAM 21 84%
IO 5 5%

BUFG 1 3%

The worst negative slack for the specified clock period is : Twns = 1.813ns, for the imple-
mented decoder. Considering a clock period of Tclk = 10ns the critical path is:

Tcp = Tclk − Twns = 8.187ns (6.4)

The Total On-Chip Power is: 0.138W.

The type of memories required are block RAMs with the following sizes:

97



6 – Architecture Synthesis and Simulation

Page 3

Artix-7 FPGAs

Notes:
1. Supports PCI Express Base 2.1 specification at Gen1 and Gen2 data rates.
2. Represents the maximum number of transceivers available. Note that the majority of devices are available without transceivers. See the Package section of this table for details.
3. Leaded package option available for all packages. See DS180, 7 Series FPGAs Overview for package details.
4. Device migration is available within the Artix-7 family for like packages but is not supported between other 7 series families.
5. Devices in FGG484 and FBG484 are footprint compatible. 
6. Devices in FGG676 and FBG676 are footprint compatible.

Transceiver Optimization at the Lowest Cost and Highest DSP Bandwidth 
(1.0V, 0.95V, 0.9V)

Part Number XC7A12T XC7A15T XC7A25T XC7A35T XC7A50T XC7A75T XC7A100T XC7A200T

Logic
Resources

Logic Cells 12,800 16,640 23,360 33,280 52,160 75,520 101,440 215,360
Slices 2,000 2,600 3,650 5,200 8,150 11,800 15,850 33,650

CLB Flip-Flops 16,000 20,800 29,200 41,600 65,200 94,400 126,800 269,200

Memory
Resources

Maximum Distributed RAM (Kb) 171 200 313 400 600 892 1,188 2,888
Block RAM/FIFO w/ ECC (36 Kb each) 20 25 45 50 75 105 135 365

Total Block RAM (Kb) 720 900 1,620 1,800 2,700 3,780 4,860 13,140
Clock Resources CMTs (1 MMCM + 1 PLL) 3 5 3 5 5 6 6 10

I/O Resources
Maximum Single-Ended I/O 150 250 150 250 250 300 300 500

Maximum Differential I/O Pairs 72 120 72 120 120 144 144 240

Embedded 
Hard IP 

Resources

DSP Slices 40 45 80 90 120 180 240 740
PCIe® Gen2(1) 1 1 1 1 1 1 1 1

Analog Mixed Signal (AMS) / XADC 1 1 1 1 1 1 1 1

Configuration AES / HMAC Blocks 1 1 1 1 1 1 1 1
GTP Transceivers (6.6 Gb/s Max 

Rate)(2) 2 4 4 4 4 8 8 16

Speed Grades

Commercial Temp (C) -1, -2 -1, -2 -1, -2 -1, -2 -1, -2 -1, -2 -1, -2 -1, -2
Extended Temp (E) -2L, -3 -2L, -3 -2L, -3 -2L, -3 -2L, -3 -2L, -3 -2L, -3 -2L, -3
Industrial Temp (I) -1, -2, -1L -1, -2, -1L -1, -2, -1L -1, -2, -1L -1, -2, -1L -1, -2, -1L -1, -2, -1L -1, -2, -1L

Package(3), (4) Dimensions 
(mm)

Ball Pitch
(mm)

Available User I/O: 3.3V SelectIO™ HR I/O (GTP Transceivers)

CPG236 10 x 10 0.5 106 (2) 106 (2) 106 (2)
CPG238 10 x 10 0.5 112 (2) 112 (2)
CSG324 15 x 15 0.8 210 (0) 210 (0) 210 (0) 210 (0) 210 (0)
CSG325 15 x 15 0.8 150 (2) 150 (4) 150 (4) 150 (4) 150 (4)
FTG256 17 x 17 1.0 170 (0) 170 (0) 170 (0) 170 (0) 170 (0)
SBG484 19 x 19 0.8 285 (4)

Footprint
Compatible

FGG484(5) 23 x 23 1.0 250 (4) 250 (4) 250 (4) 285 (4) 285 (4)
FBG484(5) 23 x 23 1.0 285 (4)

Footprint
Compatible

FGG676(6) 27 x 27 1.0 300 (8) 300 (8)
FBG676(6) 27 x 27 1.0 400 (8)
FFG1156 35 x 35 1.0 500 (16)

Figure 6.2: Artix -7 Family[19]

• VectorMemory: with size 64 bit by 235, three of them are required;

• UPCMemory: with size 64 ∗ 8 bit by 235, two of them are required;

• PosMemory: with size 16bit by 81, six of them are required.

The utilization of the BRAM in this case is higher compared to other cases. The 64bit
parallelism requires a memory with width of 512bit, that is not available then this is divided
in two separated memories that since are block memories are available in predefined sizes.
The high value of utilization come from the fact that wide memories are required.

6.3.2 32 bit

The result obtained for the resources employed is:

98



6.3 – FPGA implementation

Table 6.11: 32 bit parallelism

Resource Utilization Utilization (%)
LUT 1994 19%
FF 1309 6%

BRAM 12.50 50%
IO 5 5%

BUFG 1 3%

The worst negative slack for the specified clock period is : 2.153ns, for the implemented
decoder.

Tcp = Tclk − Twns = 7.848ns (6.5)

The Total On-Chip Power is: 0.109W.

The type of memories required are block RAMs with the following sizes:

• VectorMemory: with size 32 bit by 471, three of them are required;

• UPCMemory: with size 32 ∗ 8 bit by 471, two of them are required;

• PosMemory: with size 16bit by 81, six of them are required.

6.3.3 16 bit
The result obtained for the resources employed is:

Table 6.12: 16 bit parallelism

Resource Utilization Utilization (%)
LUT 1160 11%
FF 762 4%

BRAM 12.50 50%
IO 5 5%

BUFG 1 3%

The worst negative slack for the specified clock period is : 2.953ns, for the implemented
decoder.

Tcp = Tclk − Twns = 7.04ns (6.6)

The Total On-Chip Power is: 0.092W.

The type of memories required are block RAMs with the following sizes:

99



6 – Architecture Synthesis and Simulation

• VectorMemory: with size 16 bit by 938, three of them are required;

• UPCMemory: with size 16 ∗ 8 bit by 938, two of them are required;

• PosMemory: with size 16bit by 81, six of them are required.

6.3.4 8 bit
The result obtained for the resources employed is:

Table 6.13: 8 bit parallelism

Resource Utilization Utilization (%)
LUT 838 8%
FF 493 2%

BRAM 12.50 50%
IO 5 5%

BUFG 1 3%

The worst negative slack for the specified clock period is : 4.189ns, for the implemented
decoder.

Tcp = Tclk − Twns = 5.811ns (6.7)
The Total On-Chip Power is: 0.089W.

The type of memories required are block RAMs with the following sizes:
• VectorMemory: with size 32 bit by 471, three of them are required;

• UPCMemory: with size 32 ∗ 8 bit by 471, two of them are required;

• PosMemory: with size 16bit by 81, six of them are required.

6.3.5 Comments on FPGA implementation
The code synthesized for FPGA has not the same issues of the ASIC version, the increase
in the are is approximately the same and even the larger version does not creates problems.

The results are tested varying the clock applied to the decoder, but the values of area and
critical path remains the same. The utilization of the logic inside is not a problem, only a
small part of the array is occupied. the comparison of Figures 6.2 and 6.1 allows to have
an idea of the possible implementations on smaller devices.
The LUT required are at most 3600 and the Flip Flops are 2500 for 64-bit parallelism, the
decoder can be implemented in smaller FPGAs as the Spartan-7 XC7S6, the only limit
is in the number of memory blocks required because this parallelism has an utilization of
84% of the memory, smaller devices could not be enough. The idea can be to reduce the
parallelism to 32-bit, in this case the memory required is less and even smaller devices can
be enough.

100



6.4 – Comparison with RSA implementations

6.4 Comparison with RSA implementations
The smallest Decoder can correct a message in at most 29ms with an ASIC implementation
and in 37ms for the FPGA implementation.
The results of an FPGA implementation of RSA are present in the PhD Thesis [15] that
developed one of the Decoders explained above. The time employed by the RSA employing
1024 bit long keys is 51ms.
The result obtained with this architecture is huge, since even the unoptimized version is
faster than commonly used decoders. Moreover the RSA decoding time is huge if more
secure keys are employed, nowadays it is suggested to use keys of 2048 or 4096 bit, the
decoding time dramatically increases.

101



102



Chapter 7

Conclusions

The selection of a method to construct LDPC codes and the decoder explored different
possibilities. The structured and unstructured codes behave in almost the same way, then
the candidates selected are the QC-LDPC codes in order to reduce the size of the keys.

The method discovered that satisfied the cryptographic requirements is LEDApck because
it adopted quasi cyclic matrix as keys and the choice of the Q-Decoder is the most suitable
for a hardware implementation, the structure of the code combined with the simplicity of
the BitFlipping allowed to design a decoder that in some milliseconds can provide the clear
text.

The multiplication is parallelized because the result is computed by Nb bit at time and
not by single bit, the parallelization does not increase that much the area occupied, since
it can be employed even in small FPGAs, but the improvement in the evaluation time is
significant.

7.1 Future work
The future work that can be done can cover many aspects of the hardware implementation.
The possibilities are listed below.

• The SyndromeUpdate unit can be introduced in order to reduce the number of cycles
required by the decoder to converge. The effect of the unit in the critical path length
and area is relevant since if it increases too much the combinatorial path the reduction
in the number of cycles can not be enough to save time. The new unit has different
impact for the various parallelisms studied, in some cases it may not be suggested.

• The second change to be introduced is in the CorrelationCmp, this change requires a
more invasive change in the decoder because an additional memories to be connected,
this may limits its employing in smaller devices. The way to reduce the number of
memory connected can be to evaluate the circulant matrix product in the decoder,
they are not kept in memory but in FlipFlops inside the architecture. The effect of
this changes has to be studied.

103



7 – Conclusions

The security was a topic non studied in this thesis, only the work done by others is pre-
sented. The big improvement in the architecture can be to introduce some modifications
to make the design secure against power analysis attacks since in the computation of the
multiplication is present an asymmetry in the ControlUnit, this can be exploited by a
possible attacker.

The thesis describes possible decoders and one implementation, other studies can cover the
implementation of both the encoder and decoder.

104



Bibliography

[1] M. Roetteler, M. Naehrig, K. M. Svore, and K. Lauter, “Quantum Resource Estimates
for Computing Elliptic Curve Discrete Logarithms”, in Advances in Cryptology –
ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds., Cham: Springer International
Publishing, 2017, pp. 241–270, isbn: 978-3-319-70697-9.

[2] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factor-
ing”, in Proceedings 35th Annual Symposium on Foundations of Computer Science,
1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700.

[3] R. J. McEliece, “A Public-Key Cryptosystem Based On Algebraic Coding Theory”,
Deep Space Network Progress Report, vol. 44, pp. 114–116, Jan. 1978.

[4] N. J. Patterson, “The Algebraic Decoding of Goppa Codes”, IEEE Transactions on
Information Theory, vol. IT-20, no. 2, 1975.

[5] D. J. Bernstein, T. Lange, and C. Peters, “Attacking and Defending the McEliece
Cryptosystem”, in Post-Quantum Cryptography, J. Buchmann and J. Ding, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 31–46, isbn: 978-3-540-
88403-3.

[6] J. Stern, “A method for finding codewords of small weight”, in Coding Theory and
Applications, G. Cohen and J. Wolfmann, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 1989, pp. 106–113, isbn: 978-3-540-46726-7.

[7] A. Canteaut and H. Chabanne, “A further improvement of the work factor in an
attempt at breaking McEliece’s cryptosystem”, Jan. 1994.

[8] A. Canteaut and N. Sendrier, “Cryptanalysis of the Original McEliece Cryptosys-
tem”, in Advances in Cryptology — ASIACRYPT’98, K. Ohta and D. Pei, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 187–199, isbn: 978-3-540-
49649-6.

[9] R. Gallager, “Low-density parity-check codes”, IRE Transactions on Information
Theory, vol. 8, no. 1, pp. 21–28, 1962, issn: 0096-1000. doi: 10.1109/TIT.1962.
1057683.

[10] and E. Eleftheriou and D. Arnold, “Progressive edge-growth Tanner graphs”, in
GLOBECOM’01. IEEE Global Telecommunications Conference (Cat. No.01CH37270),
vol. 2, 2001, 995–1001 vol.2. doi: 10.1109/GLOCOM.2001.965567.

[11] M. Baldi, QC-LDPC Code-Based Cryptography. Jan. 2014, isbn: 978-3-319-02555-1.
doi: 10.1007/978-3-319-02556-8.

105

https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1109/GLOCOM.2001.965567
https://doi.org/10.1007/978-3-319-02556-8


BIBLIOGRAPHY

[12] R. Townsend and E. Weldon, “Self-orthogonal quasi-cyclic codes”, IEEE Transactions
on Information Theory, vol. 13, no. 2, pp. 183–195, 1967, issn: 0018-9448. doi: 10.
1109/TIT.1967.1053974.

[13] M. Baldi, F. Chiaraluce, R. Garello, and F. Mininni, “Quasi-Cyclic Low-Density
Parity-Check Codes in the McEliece Cryptosystem”, in 2007 IEEE International
Conference on Communications, 2007, pp. 951–956. doi: 10.1109/ICC.2007.161.

[14] F. C.G.P.P. S. M. Baldi A. Barenghi, “Low-Density Parity-Check Code-based public-
key cryptosystems”, p. 58, 2017. [Online]. Available: https://www.ledacrypt.org/
documents/LEDApkc_spec_latest.pdf.

[15] O. A. Rasheed, “Low complexity decoding algorithms suitable for application in
asymmetric cryptosystems”, PhD thesis, University of Belgrade, 2015. [Online]. Avail-
able: https://bit.ly/2UtVXQT.

[16] K. K.Kobayashu N.Takagi, “An Algorithm for Inversion in GF(2m) Suitable for Im-
plementation usgin a Polynomial Multiply Instruction on GF(2)”,

[17] M. Koochak Shooshtari, M. Ahmadian-Attari, T. Johansson, and M. Reza Aref,
“Cryptanalysis of McEliece cryptosystem variants based on quasi-cyclic low-density
parity check codes”, IET Information Security, vol. 10, no. 4, pp. 194–202, 2016,
issn: 1751-8709. doi: 10.1049/iet-ifs.2015.0064.

[18] K. Kobara and H. Imai, “Semantically Secure McEliece Public-Key Cryptosystems
-Conversions for McEliece PKC -”, vol. 1992, Feb. 2001, pp. 19–35. doi: 10.1007/3-
540-44586-2_2.

[19] [Online]. Available: https://www.xilinx.com/support/documentation/selection-
guides/7-series-product-selection-guide.pdf.

106

https://doi.org/10.1109/TIT.1967.1053974
https://doi.org/10.1109/TIT.1967.1053974
https://doi.org/10.1109/ICC.2007.161
https://www.ledacrypt.org/documents/LEDApkc_spec_latest.pdf
https://www.ledacrypt.org/documents/LEDApkc_spec_latest.pdf
https://bit.ly/2UtVXQT
https://doi.org/10.1049/iet-ifs.2015.0064
https://doi.org/10.1007/3-540-44586-2_2
https://doi.org/10.1007/3-540-44586-2_2
https://www.xilinx.com/support/documentation/selection-guides/7-series-product-selection-guide.pdf
https://www.xilinx.com/support/documentation/selection-guides/7-series-product-selection-guide.pdf

	List of Tables
	List of Figures
	Introduction
	McEliece Cryptosystem
	Asymmetric cryptosystems
	RSA
	Shor’s algorithm

	McEliece cryptosystem
	Security

	LDPC codes

	LDPC codes
	Linear block codes and low density parity check codes
	Tanner Graph
	Notations and definitions

	Code construction
	Code construction Algorithms
	Progressive Edge Growth
	Quasi Cyclic construction
	Girth reduction

	LDPC codes encoding
	Minimum distance and maximum error

	LDPC decryption
	Decoder characteristics
	Soft Decoding algorithms
	Hard Decoding algorithms

	Code parameters to achieve high pBSC with complete error correction
	Matrix dimensions
	Code Rate
	Density of the Matrix
	Variable nodes degree
	General conclusions

	Architecture of Decoder and type of codes

	LEDA Algorithm
	Key generation
	Public Key
	Public key

	Encryption
	Q-Decoder
	Code parameters
	Security

	LEDA Architecture
	Memory organization
	Q-Decoder simplification
	Vector by Matrix Product
	Comparison between the algorithms

	Vector By Circulant Architecture
	Version 1
	Version 2

	Architecture Modules
	Syndrome and Correlation Computation
	Syndrome Evaluation
	Correlation Evaluation

	Threshold Evaluation
	Message Update
	ErrorPosition Unit
	MessageUpdate Unit


	Architecture Synthesis and Simulation
	Modelsim
	Synopsys
	Area analysis
	Timing analysis
	Memories required

	FPGA implementation
	64 bit
	32 bit
	16 bit
	8 bit
	Comments on FPGA implementation

	Comparison with RSA implementations

	Conclusions
	Future work


