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Introduction

Every living thing on Earth exists thanks to a delicate balance held by the Sun that is

not only the starting point for the chemical and biological chains, but also is necessary

for the development of our society. One of the most important problems of the modern

age is being able to combine the economic and technological growth with the global

warming and atmospheric pollution. In this scenario, the “clean energies” represent an

alternative to the fossil-fuel system.

Among the several energy sources, the solar power is probably one of the most inter-

esting because it can be converted directly into electricity by the solar cell device. In

the past, solar cells were limited to space and military applications due to the low

conversion efficiency and high manufacturing cost. Today, thanks to a constant re-

search, different kinds of solar cells are not used only in satellite operations or space

manufacturing but also for terrestrial applications.

Although many important results have been achieved in the last few years, it is neces-

sary continue investing on the realization of high-performing and low-cost solar cells.

This would help the photovoltaic technology to definitively placing on the global mar-

ket becoming the most important driver in the development of modern societies.

Today, multi-junction (MJ) solar cells achieve the highest performance by stacking sev-

eral compound semiconductors able to absorb different wavelength ranges of the sun

spectrum. Increasing the number of junctions leads to high efficiency alongside to a

higher device complexity.

In the thesis it is investigated the possibility of a new kind of solar cell similar to a

heterostructure bipolar transistor (HBJT) in order to overcome several constraints of

the traditional MJ cells and to achieve a simpler structure. Several simulations lead to

a confident conclusion about the possibility of implementation of a HBJT structures

as solar energy absorbers, in fact it seems that their efficiency approaches that one of

a dual-junction solar cell.

The hope is that, through the following Chapters to the discovery of the features of

several solar cells, it may glimpse in the solar power a real alternative to the “non

renewable sources”.
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CHAPTER 1

A green energy future

We live in a world where the energy is the driving force in promoting growth, welfare

and technology development. Our life is swept up in a sea of scientific and digital

innovation.

1.1 Against the “non-renewable” resources

The world energy demand, above all by non-OECD countries, has risen exponentially

predicting that it will continue growing in the years ahead.

In order to satisfy the incessant electricity demand, several energy sources are exploited.

The Fig. 1.1 shows the energy consumption of both non-OECD and OECD countries

and the Energy Resources, in billion toe, used.

Figure 1.1: Energy Consumption by region on the left & Energy Resources on the right

(BP Energy Outlook [1]).

In Fig. 1.1 we can note that the fossil fuels, such as Oil Gas and Coal, were and will re-

2



Chapter 1 3

main at least up 2030/2040 the main resources for the energy production as confirmed

also by the International Energy Agency (IEA). Fossil fuels are ”non-renewable” be-

cause they have considerable time for creation scales of millions of years, hence not

compatible with human lifespan. Today, not only the human exploits them much more

quickly than they should regenerate, but also their incessant exploitation is responsible

for climate change and irreversible ecological disasters.

When fossil fuels are burned to create energy emit a significant amount of carbon

dioxide (CO2) in the atmosphere, increasing the global warming (Fig. 1.2), and of

sulphur dioxide (SO2) producing acid rain phenomena, responsible of the atmospheric

pollution that has worsened in recent years.

Figure 1.2: Earths global surface temperatures (Analysis by NASA Climate Change[2]).

In order to prevent a more critical scenario, on 16 February 2005 the Kyoto Proto-

col entered into effect as a first step against global warming. This international and

legal framework commits to industrialized countries to reduce emissions of CO2. For

example Italy has ratified the protocol in 2002, instead USA, that emits more than

36% of the total emissions, has signed but not ratified the protocol. Although the

global warming and the atmospheric pollution are among the most alarming problems

of the modern age, it seems that a real solution is far from found because of in contrast

with the profits of the major world powers. In this scenario, we report some words of

the speech of Greta Thunberg, a 16-year-old climate activist, at COP24 in Katowice

(Poland 2018) addressing to the worlds leaders [3]:

“We need to keep the fossil fuels in the ground, and we need to focus on equity. And

if solutions within the system are so impossible to find, maybe we should change the

system itself.”
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A real solution is to invest more and more in research into renewables resources or

“clean energies” such as Solar power, Wind power, Biofuel, Hydroelectric power, Tidal

power and Geothermal power. These not only are regarded as infinite sources of energy

because they are able to regenerate but also the use of which contribute to complies

with natural resources and the environment making alongside global markets more en-

vironmentally friendly. This work, particularly, has the aim to explore the converting

solar energy into electricity that is made possible thanks to the solar cell device. Dif-

ferently by the others renewable energies, the ability of photovoltaic application lies in

the directly conversion of the solar power into electricity rather than some intermediate

form of energy.

Before investigating the study of the photovoltaic device, is necessary to give some

information about the primary source used: the Sun.

1.2 Solar Spectrum

Solar cells create energy exploiting photons coming from the Sun. The amount of pho-

tons, particles of light emanating uniformly in space in all directions, changes based

on the wavelengths creating the so-called Solar Spectra.

The Power distribution versus the wavelength is expressed by the Planck’s law (Eq.

1.1)[4]:

SI =
2πc2h

λ5 [e(hc/kT ) − 1]
(1.1)

where:

• c is the light speed
[m
s

]
;

• h is the Planck’s constant [Js];

• λ is the wavelength [m];

• k is the Boltzmann’s constant

[
J

K

]
;

• T is the Temperature of the Sun in Kelvin [K] .

In order to apply Eq. 1.1, let’s consider the Sun as a black-body whose surface tem-

perature is equal to T = 5762 K.
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For a range of wavelengths from the ultraviolet section up to that infrared of the

electromagnetic spectrum we can obtain the entire energy per unit of area emitted by

the Sun, also known as Solar Irradiance (SI) (Fig. 1.3) and measured in
W

m2
.

Figure 1.3: Planck Solar Irradiance.

In Fig. 1.3, we can detect that the peak of energy is around the “visible range” that

covers the wavelengths for 400 nm < λ < 700 nm; instead, the Solar Irradiance decreases

for λ < 400 nm in the ultraviolet section and for λ > 700 nm in the infrared one that

covers more than 50 % of the total Solar Spectra.

The Solar Irradiance shown in Fig. 1.3 is not equal to that one on the Earth’s surface

based on several variables such as latitude, weather conditions, day of the year and oth-

ers. First, the solar radiation is partially absorbed, reflected, diffused and transmitted

crossing the earth’s atmosphere.

1.3 Air Mass

Respect to the SI of Fig. 1.3, the solar spectra that arrives on the earth surface is

different both in its shape that in the intensity, in fact it is attenuated. These effects

are linked to the thick layer of atmosphere and to the path of the light crossing it in

order to reach the earth’s surface. In order to quantify the reduction in the power of
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the Solar Irradiance, it is necessary to introduce the Air Mass (AM) parameter. We

know the earth revolves around itself and around the sun, but to make the concept of

AM simpler, we could think to be at the Zenith and observing the displacement of the

Sun, relative to this point, along an arc of an imaginary circumference.

Observing Fig. 1.4, let’s assume with PZ the position of the Sun at the Zenith point

respect to the observing point; instead, with PG a position different by the previous

such as in Fig. 1.4. The angle ϑ, subtended to the imaginary arc of circumference

between the points PZ and PG, gives us information about the shifting of the Sun [5].

Figure 1.4: Air Mass.

From Fig. 1.4, when the Sun is in the PG position, the photons before arriving on

the Earth’s surface must make a longer path. In this case, it is more likely that occur

diffusion and absorption phenomena across the atmosphere.

This means that according to the ϑ angle, the Solar Irradiance is not exactly that

obtained from Eq. 1.1, but is also attenuated based on the Air Mass parameter.

In order to define the AM, let’s consider, from Fig. 1.4, the triangle OAB (red dashed

line). By the Pythagorean theorem:

OA2 = OB2 +BA2 (1.2)

Replacing the terms in the previous equation with the notation adopted in Fig. 1.4:

(RE + hATM)2 = (RE + Igcos(θ))2 + (Igsin(θ))2 (1.3)

Developing Eq. 1.3 and through some simplification we arrive to the following expres-
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sion for the AM parameter:

AM =
√

(REcos(θ))2 + 2REhATM + h2
ATM −REcos(θ) (1.4)

Eq. 1.4 can be approximated as follows:

AM ≈ 1

cos(θ)
(1.5)

The effect of the AM, computed on the basis of Eq. 1.5, on the ideal Solar Irradiance

(Fig. 1.3) is shown in Fig. 1.5 where the blue line is the behavior obtained for AM=1.5

[6] corresponding to ϑ equal to 48.19◦.

Figure 1.5: Solar Irradiance with AM0 in red line, Planck Solar Irradiation in green

line and Solar Irradiance with AM1.5 in blue line.

On Fig. 1.5 is also shown the extraterrestrial radiation, the spectrum outside the

atmosphere, known as AM0 [7], in general used for space applications.

We have obtained a first limitation on the ideal Solar spectra given by the attenuation

caused by the atmosphere layers and by the path that the light makes arriving on the

earth’s surface. There are other constraints that could limit the total SI such as the

atmospheric conditions. In the following sections we will assume to work in an ideal

case, considering the SI spectra of Fig. 1.3.
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1.4 Photovoltaic Action

The device able to convert the solar energy into electricity (the so-called photoelectric

effect) is the solar cell that is the basis of the photovoltaic system.

In order to exploit the photoelectric effect [8] is necessary to use semiconductor ma-

terials characterized by a relatively low bandgap energy (Eg measured in eV) between

the top state of the valence band (the lowest energy states) and the bottom one of the

conduction band (the highest energy states) (Fig. 1.6). Commonly used semiconduc-

tors such as Ge, Si and GaAs have respectively, at room temperature, an Eg equal to

0.67 eV, 1.11 eV and 1.42 eV.

A semiconductor is able to conduct only if electrons by the valence band, acquiring

energy, occupy free energy states in the conduction one.

Figure 1.6: Semiconductor Band Diagram where Ec is the bottom state of the conduc-

tion band, Ev is the top state of the valence band and Eg is equal to Ec − Ev.

At T = 0 K, all electrons are in the valence band and the conduction band is empty.

Instead, at room temperature, without any external excitations such as light, pressure

or an electric field, electrons are thermally excited thanks to the thermal energy kT

around 0.026 eV. In this condition an appreciable number of electrons jump in the

conduction band, leaving an equal number of “holes” in the valence one. If we con-

sider a perfectly ordered and homogeneous semiconductor by a crystallographic point

of view, with a small amount of impurities (intrinsic semiconductor), at a finite tem-

perature, the number of electrons n is equal to the number of the generated holes p,

hence n = p = ni where ni is the intrinsic carrier density.

At the thermal equilibrium, there are continuously generation and recombination of

electrons and holes. Physically, the generation corresponds to break a covalent bond

in the semiconductor to free an electron that can participate in current conduction;

instead the recombination is the opposite phenomena.

The problem of the electrons distribution among the electronic states is solved by the

Fermi-Dirac distribution, according to which the Fermi level EF has the 0.5 probability

of occupation by an electron (Fig. 1.6). The details of the topic in Ref. [8].
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It is necessary to underline that, at room temperature, the values of the intrinsic con-

centrations [107÷1013] cm−3 are many orders of magnitude lower than the free electrons

and holes concentrations in the metal; hence, the conductivity in the intrinsic semi-

conductors is very low. An extremely efficient way in order to increase the free charges

concentration involves the introduction of impurities (doping) in the crystal lattice of

the material leading to two different scenarios: an addition of the negative charge car-

riers or positive charge carriers. Hence, the semiconductor with a high concentration

of electrons/holes becomes n-type/p-type, indicating the majority carriers with nn/pp
and the minority carriers with pn/np. In the case of n-doped material the Fermi level

is closer to the bottom of the conduction band. Similarly, for higher positive charge

concentration, the Fermi level is closer to the top of the valence band. In both cases

the semiconductor is called extrinsic.

First, let’s consider a semiconductor at non thermal equilibrium condition with an

external excitation such as light. When photons are absorbed into a semiconductor

material deliver their energy to the electrons that by the valence band jump into the

conduction band only if the photons energy hν is greater than the Eg of the material

considered.

Figure 1.7: Photon energy used to excite electrons from the valence band to the con-

duction one.

Fig. 1.7 has the aim to show, in a simple way, the situation linked to the absorption

of the photons. Considering a semiconductor connected to an external electric load,

if hν > Eg electrons jump in the conduction band where they are free to move and

can be transported to a selective n-type metal contact. Once they deliver their excess

energy to the load, return to the valence band by a selective p-type contact.

As already mentioned, the Generation mechanism is competed by the recombination

one that decreases the solar power conversion because e-h pairs cannot be collected.

In order to avoid this effect allowing current to flow in only one direction we have

exploit the traditional p-n junction in order to provide a driving force for the spatial

separation of electrons and holes.

Fig. 1.8a shows the p-n junction at thermal equilibrium without external bias. When

the p-type and n-type semiconductors are jointed together is formed a depletion region

where the mobile carrier densities are zero and the potential energy difference from
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the p-side to n-side is qVbi. By this, electrons majority carriers nn and holes pp cannot

overcome the potential barrier and are confined in their regions.

Figure 1.8: a) p-n junction under Dark Condition; b) p-n junction exposed to the solar

power; c) p-n junction Self Biased.

Now, assume the p-n junction exposed under solar radiation. In Fig. 1.8b we can ob-

serve that photons are absorbed along the device generating e-h pairs. Again, electrons

nn and holes pp cannot overcome the barrier, but the minority charges np(green dashed

arrow) and pn(red dashed arrow) photo-generated are able to move across the deple-

tion region towards the n- and p-side respectively where they can be collected to the

metal contacts, then delivering their energy to the load (a detailed description about

the transport of carriers is in Chapter 3). By this, the p-n junction is the simplest

solar cell, also called Single junction (SJ) solar cell.

When the carriers move to the load, a positive voltage is developed by the p-side contact

and a negative one by the n-side. Hence, it feels like the p-n junction is self forward-

biased (Fig. 1.8c) where the difference between the two quasi-Fermi levels EFn − EFp
is equal to qVoc where Voc is the open-circuit voltage. Based on the forward-biased con-

dition, we will have a flux of carriers (Dark current) opposite to that photo-generated

(Photocurrent Jph) (red and green dashed arrows in Fig. 1.8). By this, the J-V char-

acteristic of a p-n junction under illumination (red line in Fig. 1.9) is like that of a

diode in forward biased (green line in Fig. 1.9) shifted along the negative J -axis of a

quantity Jph since the photocurrent is opposite in direction to the Dark current.
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Figure 1.9: J-V characteristic in Dark condition (green line) and under illumination

(red line); on the right an ideal model of a SJ solar cell.

The J-V characteristic under illumination is given from Eq. 1.6:

J = Js
(
eqV/kT − 1

)
− Jph (1.6)

In Fig. 1.9 Jsc is the short-circuit current density obtained with a short-circuit between

the two metal contacts (V = 0), and Voc is the open-circuit voltage developed when

the two terminals are not connected to the load (J = 0).

The Operating Point, where the load and the solar cell have the same current and

voltage, is given by the intersection between the blue load line with slope −1/RL and

the red J-V characteristic. Hence, it is necessary to choose a proper load in order to

extract a power close to 80% of the product VocJsc . In Fig. 1.9 we can also detect the

quantities Vmpp and Jmpp that correspond to the voltage and current for the maximum

power point. The wheat area is the maximum power rectangle equal to Pm , VmppJmpp.

Hence it is possible to define an ideal efficiency of a solar cell given by:

η =
VmppJmpp
Pin

(1.7)

where Pin is the total incident Power on the solar cell.

Another important parameter is the Fill Factor, FF, indicating how much the rectangle

of the maximum power (in wheat in Fig. 1.9) is able to cover the rectangle ideally

formed by the product VocJsc:

FF =
VmppJmpp
VocJsc

(1.8)
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We have said that photons with hν > Eg can create e-h pairs generating the photocur-

rent. If ideally we consider that for each incident photon that satisfies the previous

relationship there is a e-h pair generated, we can obtain the maximum photocurrent

(so-called Cumulative photocurrent) should be developed by a solar cell.

First, it is necessary to find the number of photons arriving on the solar cell surface.

Let’s define the “Solar Photon Flux” (SPF) the number of photons for second:

SPF =
SI

hν
(1.9)

From Eq. 1.9 we can obtain the number of photons for each wavelength of the solar

spectra. Considering an ideal material able to absorb the entire solar irradiance, the

cumulative photocurrent can be defined as follows:

Jph = q

∫
λ

SPF dλ (1.10)

Fig. 1.10 shows the Cumulative photocurrent versus the wavelength.

Figure 1.10: Cumulative Photocurrent Jph versus λ.

In the plot, we can observe that the photocurrent increases initially because there

is a peak on the “visible region” of the SI (Fig. 1.3) and then it saturates because

the SI decreases in the infrared region. From this plot we can have an approximated

ideal value of the maximum photocurrent that should be obtained knowing the Eg of

a material.
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Fig. 1.11 shows the Cumulative photocurrent versus the Eg:

Figure 1.11: Cumulative Photocurrent Jph versus Eg.

Materials with high value of Eg can have a high open circuit voltage Voc but cannot

reach an elevated photocurrent. In order to clarify the previous sentence, it is necessary

get into a lot more details about the Optical Absorption. Fig 1.7 showed the generation

of e-h pairs thanks to photons absorbed. In reality, the jump of the electron from the

valence band to the energy state of the conduction one depends strongly by the energy

of the photons.

Figure 1.12: Photons absorption for (a) hν = Eg, (b) hν > Eg,(c) hν < Eg.

If hν = Eg (Fig 1.12a) electrons jump in the bottom state of the excited states; instead,

if hν > Eg electrons initially occupy states with energy greater than Ec and then,

dissipating as heat the excess energy hν − Eg, relaxing to the state with energy Ec as

shown in Fig. 1.12b. For completeness, if there are chemical impurities or defects in
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the lattice (Fig. 1.12c) also for hν < Eg photons can be absorbed [8]. From Fig. 1.12,

the processes a and b are called intrinsic transitions, instead the other is known as

extrinsic transition. The process b (so-called thermalization) provides an upper limit

to the energy of the collected electrons to the Eg of the material limiting the Voc that

will be proportional to the bandgap. By these considerations, it is possible deduce that

the efficiency of a solar cell is limited not only by the Generation rate developing a

high photocurrent only if Eg is small, but also, for the same case, by the Voc that will

have a small value.

Figure 1.13: Limiting factors on efficiency of a solar cell.

By the previous considerations, we have two limitations on the efficiency:

• for a small Eg the efficiency is limited by the small Voc, but the Jph is high;

• for a high Eg the efficiency is limited by the small photocurrent (Fig. 1.11) given

by the fact that the Generation rate decreases, alongside the Voc is high.

By the first/second item we can draw the red/green dashed line in Fig. 1.13. The

ideal intersection of the two lines gives us the best Efficiency versus the Energy Gap.

In the same figure the green line should be a possible behavior of a solar cell efficiency.

In order to obtain values of efficiency versus the Eg for a SJ solar cell, Chapter 2 will

have the aim to explore this topic.

We have presented the photovoltaic action and the main parameters of a basic solar

cell. In modern day, there are different kind of photovoltaic devices developed above

all at the end of the 20th century; a brief scenario of the photovoltaic technology will

be summarized in the following section.
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1.5 Photovoltaic technology

The conversion of the light, hence the photovoltaic technology can potentially become

the most useful and economically tool in the future to produce electrical energy. On

1839 Alexander Edmond Becquerel discovered the photovoltaic effect. Since then, the

constant technological developments paved the way to efficient and economical solar

cells.

In the past, terrestrial photovoltaic applications were limited due to three important

factors: low conversion efficiency, reliability and high manufacturing cost. Especially,

the thrust towards better energy efficiency is given by the space race in the ’60s, in

order to power satellites of various types in orbit around the earth. At the end of the

20th century, the ongoing research in photovoltaics and into innovative materials have

led to the development of high-efficiency solar cells not only for military applications

but also for terrestrial ones.

Figure 1.14: The progress of the efficiency over the years for several kinds of photo-

voltaic technology (NREL Transforming ENERGY, [9]).

In Fig. 1.14 we can observe that from 1976 to 2019 the efficiency increased for all kinds

of solar cells, especially for multi-junctions (MJ) cells that are built by stacking III-V

semiconductor layers on top of each other.

Two examples of Triple junctions are InGaP/GaAs/Ge cell that shows the highest

performance for terrestrial applications and GaInP/GaInAs/Ge cell [10] in production

for space applications, of which Fig. 1.15 shows qualitatively its structure and the exact

bandgap combination. The reason of the success of this technology is linked to the fact

that, today, it is possible grow excellent materials quality in a good lattice-matched

structure able to harvest a wide spectral range with their bandgaps [10].

From Fig. 1.15, it is possible to detect that each material of the Triple junction solar
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cell covers a different range of wavelengths thanks to a correct overlapping.

Figure 1.15: A basic structure of a GaInP/GaInAs/Ge solar cell (on the left) and the

parts of the spectrum (on the right, [10]) that this kind of cell can, in theory, use.

In Fig. 1.15 the Triple junction solar cell consists of a p-n junction for each sub-cell and

the interband tunnel junctions, necessary for the current flow along the device, results

in an addition of the number of layers, hence to a more complex structure. However, for

high-efficiency, the MJ solar cell plays a leading role and shows up the most promising

photovoltaic technologies for the future although many challenges about the structure

device and the optimal use of each material, must be achieved.

Today, the aim is focused on further improving the attainable efficiency by increasing

the number of junctions towards 4/5 and alongside finding solutions to many structural

problems that not only rise the device complexity but also the manufacturing costs.

1.6 Thesis Setting Goals

Based on the fact that the design and practical realization of MJ solar cells is not an

easy task due to the constraint on current matching and the need of tunnel junctions,

is necessary to achieve a simpler structure. In this scenario, a paper on a new kind of

solar cell characterized by a multi-terminal bipolar junction transistor (BJT) structure

has been recently published by A. Marti and A. Luque [11]. They were strong-minded

about the calculation of the efficiency limit by using the Shokley and Queisser [12]

discovering that is necessary review the fundamental constraints of a common bipolar

structure in order to obtain the same efficiency of a double junction solar cell. Being

motivated by the fact that a heterostructure bipolar transistor, potentially usable as

solar energy absorbers, could obtain the same efficiency of a dual-junction cell, the aim

of the thesis is to explore it by a more realistic model.

In order to do that Chapter 2 focuses in the exposition of the Shokley-Queisser detailed
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balance model for a single junction (SJ) solar cell, then extended also to the DJ case

allowing to calculate the efficiency as a function of the top and bottom bandgaps.

Chapter 3 provides some information about the Reflectance and Absorption Coeffi-

cient for GaAs and Al0.4Ga0.6As semiconductors, showing also a mobility model [13]

applicable to the simulations conducted. Then, the analytical drift-diffusion equations

(so-called Hovel model, [14]) are derived and implemented for a homo-junction p-n

GaAs solar cell, for a n-p Al0.4Ga0.6As solar cell and for a p-n Al0.4Ga0.6As/GaAs

hetero-junction solar cell. For each of them, simulations were carried out in order to

study their properties including but not limited to: diffusion current of the minority

charges along the device and spectral response.

In Chapter 4, after a summary of the most important features of a common BJT, the

Hovel model is extended to an HBJT structure with emitter and base in Al0.4Ga0.6As

and collector in GaAs. First of all, simulations are carried out for a HBJT with tra-

ditional structural parameters discovering that the photocurrent would be very small.

Hence, in order to increase the photocurrent several structural changes are done such

as increasing the base dimensions and doping levels. By this, the simulations show that

the photocurrents behavior seek to that of the n-p Al0.4Ga0.6As homojunction solar cell

and that p-n Al0.4Ga0.6As/GaAs heterojunction confirming a good efficiency.

This is an important result because the structure is simple avoiding a significant num-

ber of layers required, as just said, in DJ solar cell in order to solve the current matching

constraints. Based on the rudimentary simulations carried out in the thesis, an HBJT

structure could be used as building block for MJ solar cells, decreasing the number of

junctions. In this context, further research is necessary in order to solve many practi-

cal challenges on the design and technological levels, such as the necessity to extract

additional contacts to connect the sub cells independently.
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Detailed Balance Models

2.1 Theoretical efficiency limit for a SJ solar cell

In the previous section, Eq. 1.7 defines the efficiency of a solar cell. In order to cal-

culate exactly the Voc and Jsc several physical factors intrinsic/extrinsic to the device

should be considered (Chapter 3). When a solar cell is exposed to the solar irradiance,

the photons with hν > Eg absorbed by the semiconductor material generate e-h pairs

(Fig. 1.12).

The reverse process of the Generation is the Recombination process such that an elec-

tron and hole recombine resulting in a release of energy. The Recombination process

[8] can be of two types:

• Radiative recombination given by electrons that make a transition from the Con-

duction Band to the Valence Band giving off photons of energy equal to the Eg
of the semiconductor material; if the transition between the two bands is done

without any external stimulus the recombination is spontaneous, otherwise the

recombination is called stimulated.

• Non Radiative recombination for which the recombination e-h leads not to pho-

tons emission but the energy in excess is converted to vibrational energy of lattice

atoms generating heat.

In 1961, Shokley and Queisser proposed the “Detailed Balance Limit of Efficiency” [12]

for a Single Junction solar cell considering the radiative recombination a fixed fraction

of the total recombination phenomena. Following, we will discuss this kind of model

in order to obtain a quantitative plot about the efficiency of a solar cell versus its Eg
respect to that obtained in Fig. 1.13.

18
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2.1.1 Ultimate Efficiency

First, supposed to have a circular solar cell, at a temperature of Tc = 0 K, surrounded

by a blackbody which temperature is Ts = 6000 K (Fig. 2.1).

Figure 2.1: Idealized solar cell model: a solar cell maintained at temperature of Tc = 0 K

surrounded by a black-body (Sun) at temperature of Tc = 6000 K.

Eq. 1.7 can be rewritten as follows:

η =
Pout
Pinc

(2.1)

where Pout is the Output Power produced by the solar cell, instead Pinc is the Input

Power generated by the solar irradiance.

First, in order to find Pinc let’s consider again the Planck’s formulation, now in function

of the frequency ν.

Eq. 1.1 in function of λ can be rewritten in function of ν as follows:

SI =
2πν3h

c2 [e(hν/kT ) − 1]
(2.2)

By Planck’s law, as just done in the Section 2.1, we can calculate the incident Power

(Pinc) generated by a black-body.

Considering a Solar Cell as in Fig. 2.1, circular in shape, that is able to absorb the

blackbody radiation (Sun) without losses due to geometric factors, so we obtain:

Pinc = A

∫ ∞
0

SI dν (2.3)

where A is the area subject to the solar radiation.
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In order to find out Pout, it is necessary to consider that:

• Photons’s absorption is modeled by a “step-function”: the material absorbs the

incident photons only if hν > Eg;

• Each photon absorbed generates a charge q at a voltage of Vg = h

(
νg
q

)
;

• Temperature of the cell TC = 0 K;

• Circular geometry of the solar cell.

The hypothesis TC = 0 K has an important consequence in order to obtain Pout. In fact,

we know that if a material is at temperature TC > 0 K the atoms thermal excitement can

break some bonds. By the energetic point of view, this means that some electrons jump

from the valence band to conduction band increasing the semiconductor conductivity.

Instead, TC = 0 K means that none electron jumps from the conduction to valence band

unless the material is exposed to the solar irradiance. If we assume that the solar cell

is maintained to the TC = 0 K by an external means during the exposure to the solar

irradiation we have that the amount of e-h pairs generated are in number equal to

the absorbed photons. As done in Section 1.4, we are able to calculate the number of

photons (SPF) arriving in the solar cell surface (Eq. 1.9) considering now the SI of Eq.

2.2 arriving to the following expression for the Pout:

Pout = Ahνg

∫ ∞
νg

SPF dν (2.4)

where hνg is the energy developed by the each electron promoted from the valence to

the conduction band.

We have both Pin and Pout, hence it is possible to obtain the expression for the effi-

ciency η. In particular, the efficiency found is called “Ultimate Efficiency” u(νg).

u(νg) = νg


∞

νg

ν2

e

 hν
kT


− 1


−1

dν


∞

0

ν3

e

 hν
kT


− 1


−1

dν

(2.5)
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2.1.2 Nominal Efficiency

Let’s consider a more realistic case (Fig. 2.2):

Figure 2.2: Planar solar cell at temperature of Tc = 300 K exposed to a spherical

blackbody.

where:

• the solar cell has a planar structure;

• the temperature of the cell is Tc = 300 K;

• the cell is surrounded by a blackbody at its own temperature (Ts = 300 K).

In this scenario, where the solar cell is at thermal equilibrium with the surrounding

environment because they are at the same temperature, all the energy that the cell

receives will be divested again to the environment. The solar cell transfers energy to

the environment in the form of Radiative recombination. At equilibrium, such as in this

case, the rate of recombination with resultant radiation phenomena is exactly equal to

the rate of Generation, so the blackbody radiation from the cell can be expressed with

Fc0:

Fco = 2Ap tcQc (2.6)

where Qc is equal to the number of photons absorbed in the solar cell, considering the

temperature of Tc = 300 K. The parameter tc is equal to the probability that a photon

with hν > Eg will produce an h-e pair and 2Ap is the area of the flat plate of the cell

where the black-body radiation comes out.

Under thermal equilibrium condition the mass action law holds:

np = n2
i (2.7)
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where n is the electron density in the conduction band, p is the hole density in the

valence band and n2
i is the intrinsic carrier density.

The case described was at thermal equilibrium. In a real case, the environment’s

temperature is Ts u 6000 K, instead the cell’s temperature is Tc u 300 K. If we consider

the real case for Ts u 6000 K and Tc u 300 K we move to a situation where there is not

thermal equilibrium; hence the Generation rate is different from the Recombination

rate and Eq. 2.7 is not valid leading to np > n2
i . In this new scenario, we can redefine

the radiative recombination rate in the following way:

Fc = Fco

(
np

n2
i

)
= Fcoe

(V/Vc) (2.8)

where:

• V is the voltage difference between the terminals connected to the n and p regions

of the solar cell;

• Vc stands for
kTc
q

.

Let’s consider also the generation rate Fs of h-e pairs by the incident solar radiation:

Fs = AfωtsQs; (2.9)

where ts is the probability that incident photons produce e-h pairs. This parameter

is different from the previous tc based on the difference in the spectral distribution

of the black-body radiation given by the two different temperatures Ts and Tc. The

parameter fω is a geometrical factor function of the solid angle ωs subtended by the

sun (Fig. 2.2), so that:

fω =
ωs
π

= 2.18 x 10−5 (2.10)

Actually we have obtained the Generation rate Fs and the radiative recombination rate

Fc; in order to carry out the calculation and obtaining the final nominal efficiency, it

is necessary to consider also the following three processes:

• R(V ): non radiative recombination of e-h pairs;

• R(0): non radiative generation processes;

• the removal of holes and electrons from p and n regions at a rate of
I

q
.
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By the steady state condition the sum of the listed processes is equal to zero, so that:

Fs − Fc(V ) +R(0)−R(V )− I

q
= 0 (2.11)

Eq. 2.11 can be rewritten as follows:

Fs − Fc0 + [Fc0 − Fc(V ) +R(0)−R(V )]− I

q
= 0 (2.12)

In order to relate the radiative and non radiative rate it is possible to introduce a new

parameter fc :

Fc0 − Fc(V ) = fc [Fc0 − Fc(V ) +R(0)−R(V )] (2.13)

By a simple case of a germanium p-n junctions, it is possible to write:

R(V ) = R(0)e(V/Vc); (2.14)

Considering Eq. 2.8, Eq. 2.13, and Eq. 2.14 we obtain:

fc =
Fc0

Fc0 +R(0)
; (2.15)

The term fc is independent by the voltage and in the case of Fc0 � R(0) we should

obtain fc u 1 leading to non-radiative losses and a greater efficiency.

For a general model, considering fc 6= 1, by the general diode equation (providing

power):

I = I0

[
1− e(V/Vc)

]
(2.16)

where I0 = q[Fc0 +R(0)].

Let’s replace Eq. 2.12, Eq. 2.14 and Eq. 2.15 into Eq. 2.8, so that:

I = q(Fs − Fc0) + q
Fc0
fc

[
1− e(V/Vc)

]
; (2.17)

Eq. 2.19 has the shape of Eq. 1.6 with:

Isc = q(Fs − Fc0); (2.18)

Considering that Ts > Tc, it is possible to deduce that Fs >> Fc0 leading to Isc u qFs.

Hence Eq. 2.19 becomes:

I = qFs + q
Fc0
fc

[
1− e(V/Vc)

]
(2.19)
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In order to find the open circuit voltage Voc, it is necessary to force I = 0 in Eq. 2.19,

so that:

Voc = Vc

[
ln

(
Isc
I0

)
+ 1

]
; (2.20)

As made for Isc, neglecting Fc0 with respect to the term Fs, with some simplifications

we can obtain:

Voc = Vc ln

(
f
Qs

Qc

)
; (2.21)

where f =
fcfωts

2tc
.

From Eq. 2.1, the nominal efficiency η in terms Isc and Voc results as:

ηn =
Pout
Pinc

=
VocIsc
Pinc

=
Voc
Vg
u(νg)ts (2.22)

Eq. 2.22 is able to provide an upper theoretical limit for a Single Junction solar cell,

hence Fig. 2.3 shows the nominal efficiency ηn for a SJ solar cell at temperature

Tc = 300 K exposed to the blackbody radiation at Ts = 6000 K.

Figure 2.3: nominal efficiency limit based on S-Q Detailed Balance model.
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From Fig. 2.3, the nominal efficiency limit for f = 1 (blue line) is similar to that we

could get from the “ultimate efficiency” with an upper limit around 45% for an Energy

Gap of 1.03 eV.

The efficiency decreases taking into account geometrical losses and non radiative re-

combination (green and red line). In Fig. 2.3, the green curve is the detailed balance

limit of nominal efficiency based on: a perfectly absorbing cell with ts = tc ≡ 1, a

normal incidence fω = 2.18x10−5 and a non-radiative recombination fc = 1 (data from

[12]). This approaches 34% of efficiency for an Eg of 1.2 eV. Furthermore, in the same

figure, the red curve is obtained for fω = 1.36x10−5, fc = 10−3 and ts = tc = 0.9,

leading to a less efficiency (data from [12]).

Hence, the maximum limit that a SJ solar cell can approach is first of all function of

its Energy Gap, also depend by several geometrical and basic degrading factors. The

last step is finding the maximum efficiency.

2.1.3 Detailed Balance Limit of Efficiency

In order to obtain the Detailed balance limit of efficiency it is necessary to compute

the maximum power output and then replacing it into Eq. 1.7. The maximum power

occurs by choosing the voltage V so that the product IV is a maximum. Analytically,

Pm can be obtained as follows:

d(IV )

dV
= 0 (2.23)

where I is given from Eq. 2.19.

From Eq. 2.23 we are able to obtain Impp and Vmpp (Fig. 1.9). Vmpp is always smaller

than the open-circuit voltage Voc. By that, the maximum power output from solar cell

is smaller than that obtained from the product VocIsc (Eq. 2.3).

Considering the expression

η =
ImppVmpp
Pinc

(2.24)

we will find that the detailed balance limit will be a little smaller than that nominal

in the same conditions (ts = tc ≡ 1, fω = 2.18x10−5 and fc = 1). Fig. 2.4 shows the

nominal efficiency ηn in green line (the same of Fig. 2.3) and η, detailed balance limit

one.

Light blue curve, in Fig. 2.4, confirms that the upper limit of efficiency, around 30 %

for an Energy Gap of 1.25 eV is smaller than that obtained in Fig. 2.3.

The result obtained is very important because give us an idea on the upper limit that

a SJ solar cell can obtain versus the Eg of the material semiconductor.
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Figure 2.4: nominal efficiency (green curve) and detailed balance limit of efficiency

(light blue curve) versus Eg for ts = tc ≡ 1, fω = 2.18x10−5 and fc = 1.

In Chapter 3, we will see that there are many physical constraints linked to both

external and internal factors to the solar cell device that lead to decrease the efficiency.

The only way to increase the efficiency is to satisfy, remembering also the considerations

done in Sec. 1.4, two opposite requirements:

• high energy gap materials in order to have a significant Voc;

• low energy gap materials in order to increase Jph.

These items can be present at the same time in a kind of structure different by that

assumed by Shockley and Queisser. In fact, the efficiency can be increased using

multiple materials in Double-Junction (DJ) solar cell or Multi-junction solar cell where

semiconductors with different bandgap energies can be fabricated in a single piece or

fabricated separately and then brought together [10].
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2.2 Theoretical efficiency limit for a DJ solar cell

A good way in order to increase the efficiency of a solar cell is creating a structure with

different materials, each of which is characterized by its Eg. The aim of this Section is

to exploit the characteristic of a DJ solar cell in order to find a simple model that can

represent it.

First, in a double junction solar cell the absorption of the blackbody irradiance is done

by two different materials (M1 and M2): suppose M1 with Energy Gap Eg1 and M2

with the Energy Gap Eg2 such that Eg1 > Eg2.

The main problem is understand how to place the two materials. Let’s observe the

following cases:

Figure 2.5: case a on the left, case b on the right

In Fig. 2.5, the case a shows an idealized DJ solar cell where the material with the

highest Eg is placed above the other; instead the case b shows the opposite case.

Choosing the case a or the case b has an important consequence on the absorption

of the solar irradiance.

In fact, from Eq. 2.25

Eg = hν = h
c

λ
(2.25)

we can deduce that if Eg1 > Eg2 then λ1 < λ2. The material with Eg1 absorbs the re-

gion of the spectrum for which it occurs λ < λ1, instead the material with Eg2 absorbs

up to λ < λ2. Hence, considering the solar irradiance (Fig. 1.3), we are able to detect

the wavelengths absorbed by the two materials.

Based on the previous considerations, the case a and the case b lead to two different

situations showed in Fig. 2.7 and in Fig. 2.6.

Let’s consider the case b where the material M2, with the smallest Eg, is on the top

of the stack. Considering that λ1 < λ2 the material M1, placed on the bottom, cannot

absorb the solar spectrum because the material M2 will absorb the spectrum in the

range of λ < λ2 ( Fig.12), reducing a DJ solar cell to the case of a SJ one.

By this we can conclude that the case b is not useful.
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Figure 2.6: case b: the material M2 absorbs the solar spectrum for λ < λ2 (blue area);

the material M2, placed on the bottom side, cannot absorb the blackbody radiation.

Let’s explore the case a.

In this situation, the material M1, placed on the top of the stack, can absorb the part

of the spectrum for λ < λ1. The remaining part is absorbed by the material M2 that

is able to absorb up to λ2 (Fig. 2.7). We can conclude that the case a is useful.

Figure 2.7: case a: the material M1 absorbs the solar spectrum for λ < λ1 (green

area); the material M2, placed on the bottom side, absorbs the blackbody radiation

forλ1 < λ < λ2 (blue area).

By this discussion, a DJ solar cell consists of two different materials such that the

semiconductor with the highest Eg is placed on the top of the stack.

In order to collect holes and electrons it is necessary to dope the materials as discussed

in the SJ case. Ideally, a DJ solar cell is formed by a stack of two SJ solar cells (p-n/p-

n). About this structure we should understand if the efficiency is greater than that of

a SJ one. If a SJ solar cell can be represented by a diode, for a DJ we can consider a

system with two diode in series.
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From Fig. 2.8,

Figure 2.8: Ideal circuit model of a Double Junction solar cell.

we have the following notation:

• IDT is the current in the Top diode;

• IDD is the current in the Bottom diode;

• VDT is the voltage in the Top diode;

• VDD is the voltage in the Bottom diode.

The current on the Top diode, consistent to Eq. 2.19, is:

IDT = ISHT + IDT
[
1− e(VDT /VC)

]
(2.26)

The current in the Bottom diode is

IDD = ISHD + IDD
[
1− e(VDD/VC)

]
(2.27)

The Voltage at the terminals is:

V = VDT + VDD (2.28)

First of all, it is necessary to find the short-circuit current ICC . Let’s put V = 0 and

from the circuit model (Fig. 2.8 ) we get IDT = IDD = ICC . Hence, Eq. 2.26 and Eq.

2.27 yield to :

ISHT + IDT
[
1− e(VDT /VC)

]
= ISHD + IDD

[
1− e(VDD/VC)

]
From V=0, it results VDT = −VDD:

ISHT + IDT − IDT e−(VDD/VC) = ISHD + IDD − IDD e(VDD/VC)
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Substituting y = e(VDD/VC) in the previous we obtain:

IDD y
2 + (ISHT + IDT − ISHD − IDD)y − IDT = 0 (2.29)

Renaming:

• a = IDD

• b = ISHT + IDT − ISHD − IDD

• c = −IDT

Solving Eq. 2.29 through y =
−b±

√
b2 − 4ac

2a
we should obtain two solutions; picking

up that one for y > 0 it is possible to obtain VDD by the previous relation:

VDD = VC ln(y) (2.30)

By this, it is possible obtain the short-circuit current:

ICC = ISHD + IDD
(
1− e(VDD/VC)

)
(2.31)

The short-circuit current ICC will be the minimum between ISHD and ISHT .

Now, let’s put I = 0 in order to obtain the open-circuit voltage Voc. Eq. 2.26 and Eq.

2.27, for IDT = IDD = 0, yield to:

ISHT + IDT
[
1− e(VDT /VC)

]
= 0 (2.32)

ISHD + IDD
[
1− e(VDD/VC)

]
= 0 (2.33)

From Eq. 2.32 and Eq. 2.33, it is possible to obtain VDT and VDD respectively.

Considering that Voc = VDT + VDD, the open-circuit voltage will be:

Voc = VC ln

(
ISHT
IDT

+ 1

)
+ VC ln

(
ISHD
IDD

+ 1

)
(2.34)

Now, we have both Voc and Icc. By applying the S-Q model to the top SJ solar cell and

to the bottom one, using Eq. 2.34 and Eq. 2.31 into Eq. 2.22 we are able to obtain

the nominal efficiency ηn for the DJ solar cell.

Fig. 2.9 shows the nominal efficiency ηn as a function of the Eg of the top and the

bottom materials.

The upper limit is around 44% for a Top gap equal to 1.6 and bottom gap equal to

0.71. Also for Top gap equal to 1.8 and bottom gap equal to 0.93 the nominal efficiency
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Figure 2.9: Nominal efficiency as a function of the bottom gap and top gap, considering

detailed balance parameters: f = 1.09 x 10−5, fω = 2.18 x 10−5, fc = 1 and ts = tc = 1.

has a high value around 43 %.

In order to find a simple mathematical expression for the I-V characteristic, let’s con-

sider the explicit expression of V as a function of I.

Hence, Eq. 2.26 yields to:

VDT (I) = VC ln

(
ISHT − I
IDT

+ 1

)
(2.35)

and from Eq. 2.27:

VDD(I) = VC ln

(
ISHD − I
IDD

+ 1

)
(2.36)

By the relation V = VDT + VDD:

V (I) = VC ln

(
ISHT − I
IDT

+ 1

)
+ VC ln

(
ISHD − I
IDD

+ 1

)
(2.37)

where the current I = [0÷min{ISHT , ISHD}].
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Figure 2.10: J-V characteristics

Fig. 2.10 shows a characteristic J-V related to a top band gap Eg1 = 1.97 and a

bottom band gap Eg2 = 1.1.

From Fig. 2.10, we can observe that the characteristic J-V of an ideal DJ solar cell

(green line) has its short-circuit current equal to the minimum photocurrent Icc =

min{ISHT , ISHD} and the open-circuit voltage is the sum of each one.

In order to obtain the maximum efficiency η (Eq. 1.7), it is necessary to get the

maximum power that can be developed by the DJ solar cell. Considering Eq. 2.37:

P = I

[
VC ln

(
ISHT − I
IDT

+ 1

)
+ VC ln

(
ISHD − I
IDD

+ 1

)]
(2.38)

The maximum power PMAX can be achieved forcing
dP

dI
= 0.

First, it is necessary to get the current I that satisfies the following equation:

ln

(
ISHT − I
IDT

+ 1

)
+

I

−ISHT + I − IDT
+ ln

(
ISHD − I
IDD

+ 1

)
+

I

−ISHD + I − IDD
= 0

(2.39)

By this, the value of I found is nothing more than IMAX . Substituting the value of

IMAX into Eq. 2.37 we obtain the value of VMAX , hence PMAX .
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As it has already been done for the nominal efficiency ηn (Fig. 2.9), we show the max-

imum efficiency η as a function of the top bandgap Eg1 and the bottom bandgap Eg2.

Figure 2.11: Efficiency of an ideal DJ solar cell with f = 10−5

The table below summarizes the values of the nominal efficiency ηn and the detailed

balance limit of efficiency η found versus the optimal bandgap for SJ and DJ solar cells

based on Shockley-Queisser model:

f Top gap Bottom gap ηn η

- [eV] [eV] [%] [%]

SJ solar cell 1.09 x 10−5 1.2 - 34.43 30.31

SJ solar cell 1.09 x 10−5 1.25 - 34.4 30.4

DJ solar cell 1.09 x 10−5 1.6 0.71 43.72 39.26

DJ solar cell 1.09 x 10−5 1.8 0.93 42.75 39.32

Putting in comparison the values of efficiency found from Fig. 2.9 and Fig. 2.11 related

to a DJ solar cell with that of SJ solar cell (Fig. 2.4), we can conclude that the efficiency

of a DJ solar cell is greater than that of a SJ solar cell.

There is the possibility of increasing again the total efficiency using solar cells with
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more than two junctions. If we want the limit efficiency of this kind of solar cells it

would be enough extend the previously model based on the number of layers chosen.

Based on the S-Q model we can obtain an upper bound for the efficiency of the SJ or,

in general, for MJ solar cell. For the sake of completeness, considering the DJ and MJ

solar cell, the current flow between the diodes is realized, practically, by interconnecting

them with intermediate tunnel junctions crossed by the electrons thanks to the tunnel

effect. Hence, the circuit model previously exposed should be also modified taking into

account intermediate tunnel diodes (see Fig. 1.15).

Anyway, the S-Q model does not take into account several physical constraints limiting

the efficiency. Hence, in Chapter 3, we will study a different model in order to obtain

a more realistic efficiency for a SJ solar cell and then we will extend it to a new kind

of DJ structure.



CHAPTER 3

Device-level model of

Single Junction Solar Cells

In the previous chapter, we have explored SJ solar cell and DJ solar cell by a theorical

point of view without considering several physical problems such us intrinsic/extrinsic

device losses. In this chapter, passing from an ideal model to a physical one, we

will explore some physical features of a solar cell leading to an efficiency lower than

that ideal; in fact, not only each material has its ability to absorb light of a given

wavelength, hence decreasing the probability that for each arriving photon there is a

generation of an e-h pair, but also the collection of the photogenerated electrons and

holes is in competition with the loss of them because of bulk and surface recombination.

These features can be taken into account thanks to the Hovel model [14]. It is a drift-

diffusion analytical model based on the assumptions that lifetime, mobility and doping

level are reasonably constant, although in reality, these parameters can be function of

position above all when the regions of the device are produced by diffusion. However,

in our case, Hovel model is an excellent means in predicting a more practical balance

of the photocurrent and dark current, hence the external quantum efficiency and the

J-V characteristic of a solar cell. The material chosen for the simulations are AlGaAs

and GaAs, two of the most important materials used for III-V multiple junction solar

cells. Before implementing the Hovel model, we will investigate some features about

materials such as AlGaAs and GaAs and explore the minority carriers transport.

3.1 Materials: some properties

The aim of this section is introducing the most important features of the materials

used in the thesis. In fact, at the basis of a solar cell there are some semiconductor

materials with their intrinsic properties.

35
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3.1.1 Reflectance

One of the hypothesis of the S-Q model is that there is no reflection of photons at the

interface between air and the exposed surface of the solar cell.

In a realistic model, it is necessary to consider the Reflection phenomena at the interface

because, based on the Snell’s law, the amount of photons reaching the solar cell surface

is different by that able to cross it. When light reaches the surface, photons can be

reflected or refracted based on the refractive index of the material and based on the

incident angle of the light at the surface [15], as in figure 3.1:

Figure 3.1: Behavior of the incident light at the interface Air-Material.

For our model, we suppose a normal incidence to the solar cell surface. This means that

the component that is transmitted through the surface will have the same direction of

the incident one, but it is necessary to calculate the amount of reflected light.

By Fresnel equation the Reflectance is:

R =
|n1 − ñ2|
|n1 + ñ2|

(3.1)

where the refraction index of the air n1 is equal to 1 and ñ2 is the complex refractive

index of the material chosen.

The complex refractive index is composed by a real part and by an imaginary part

including the extinction coefficient k:

ñ = n− ik

If the Reflectance is high, the amount of photons absorbed by the material semicon-

ductor decreases leading to a lower efficiency of the solar cell.

Fig. 3.2 shows three different cases of the Reflectance where it is possible detect that

the Reflectance is high for the case studies Air-Al0.4Ga0.6As and Air-GaAs based on the

difference between the refractive index n1 and ñ2; instead, at the interface Al0.4Ga0.6As-

GaAs the value of R is very low leading to a small amount of light reflected.
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Figure 3.2: Reflectance for: Al0.4Ga0.6As blue line, Air-GaAs red line, Al0.4Ga0.6As-

GaAs orange line.

In general, it is helpful to put as first layer a material whose index of refraction is

similar to that of the air in order to have R −→ 0. Today, is very common using an

ARC (Anti-Reflection Coatings) in order to reduce the reflected light.

3.1.2 Absorption coefficient

By S-Q model [12]:

“Each photon with energy greater than hνg produces one electronic charge q”.

This hypothesis, in a physical model, cannot be applied because each material responds

differently based on the wavelength. In order to find out a realistic efficiency is neces-

sary to introduce the absorption coefficient α proportional to the extinction coefficient

k and to the wavelength λ.

α =
4πk

λ
(3.2)

The absorption coefficient α is measured in units of a reciprocal distance [14]. It is in-

trinsic to each material giving us a starting point in order to understand how materials

responds to different wavelengths.

In general, the larger the bandgap, the smaller the value of α for a given wavelength.

It is also necessary to underline that the absorption coefficient is linked to the densities

of states in the valence band and in the conduction one changing if the semiconductor
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Figure 3.3: Absorption coefficient

material has a direct or indirect bandgap.

Fig. 3.3 shows the absorption coefficient for GaAs and Al0.4Ga0.6As materials.

GaAs can absorb until roughly 870 nm, but in the first part of the spectrum the coeffi-

cient α is lower than that one of Al0.4Ga0.6As that is able to absorb until roughly 640

nm.

3.1.3 Generation rate

The absorption problem, so the generation of e-h pairs, is not only related to the

absorption coefficient and to the Reflectance, but also to the depth of the material.

By the previous section, the absorption coefficient of a material is given by α(λ); we

know also, by the first chapter, the expression of the photon flux incident on the solar

cell (Eq. 1.9), now renamed F0. If a semiconductor is illuminated from a light source,

a fraction of photons crosses the surface, then travels through the device; the amount

of photons absorbed is proportional to the intensity of the incident flux [8]. Hence, it

is possible to introduce F (x) that describes the photon flux as a function of depth in

the solar cell [16].

It is described by the the Beer-Lambert law:

F (x) = (1−R)F0e−αx (3.3)

where R is the reflectance at the surface. Fig. 3.4 shows the Relative Photon Flux

(RPF) F (x)/F0 in the range of wavelengths [300÷ 824] nm for GaAs material semicon-

ductor. We can observe that for λ = 300 nm the RPF has a different behavior respect

to that for λ = 824 nm.
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Figure 3.4: Relative photon flux in the solar cell in the range of λ = [300 ÷ 824] nm.

In fact, for λ = 300 nm the photons will be absorbed above all for x < 100 nm based

on the fact the RPF has a strongly exponential decreasing; instead, for λ = 824 nm

the photons can be absorbed very good until x < 600 nm thanks to the relative RPF

that decreases always exponentially, but less pronounced. Hence, we can detect that

photons incident on the solar cell surface falls off in intensity by a factor 1/e for each

1/α, absorption length, distance into the material [14].

It is necessary taking into account this effect by choosing properly the dimensions of

the solar cell in order to absorb at best the solar spectrum. For example, if we want

to absorb photons with λ = 824 nm and we choose an absorption region dimension of

200 nm, from Fig. 3.4 we can deduce that most photons escape without generating e-h

pairs, decreasing the efficiency of the solar cell; instead photons with λ = 300 nm will

be fully absorbed.

Summarizing, the generation of the e-h pairs is not uniform along the device, but it is

based on two factors:

• wavelength λ;

• depth x.

Eq. 3.3 allows the Generation rate G(λ, x) to be written as:

G(λ, x) = α(λ)(1−R(λ))F0(λ)e(−α(λ)x) (3.4)

Thanks to Eq. 3.4 it is possible to analyze the distribution of the photons absorbed

along the device with respect to the total photon flux incident on the surface of the

solar cell. Let’s apply Eq. 3.4 to GaAs and Al0.4Ga0.6As and detect the differences.

Observing Fig.3.5, based on the SI distribution, the following features can be detected

for GaAs:

• λ < 340 nm the SI is low and photons are absorbed in the first layers of the

material.
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• 340 nm < λ < 460 nm the SI is high, photons are absorbed first of all in the first

10 nm, but also e-h pairs are generated at greater depth. The peak of absorption

is around 420 nm.

• 460 nm < λ < 700 nm the SI is high, photons are able to get deeper into the

device, but totally G(λ, x)is lower than the previous case.

Figure 3.5: Generation rate in GaAs material measured in [s−1 m−3].

Figure 3.6: Generation rate in Al0.4Ga0.6As material measured in [s−1 m−3]
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Fig. 3.6 is about the Generation rate of Al0.4Ga0.6As:

• λ < 340 nm the SI is low and photons are absorbed in the first layers of the

material.

• 340 nm < λ < 390 nm the SI is high, photons are absorbed first of all in the first

10 nm, but also e-h pair are generated at greater depth.

• 390 nm < λ < 700 nm the SI is high, photons are able to get deeper into the

device, but intensity of the G(λ, x) is lower than the previous case.

Both the Generation rate of Fig. 3.6 and Fig. 3.5 confirms the considerations done in

the previous section, in fact the generation of e-h of Al0.4Ga0.6As is greater than that

GaAs for λ < 400 nm.

When e-h pairs are created, not all of them can be collected at the terminals because,

moving across the device, they suffer the bulk and surface recombination.

3.1.4 Bulk & Surface Recombination

From Fig. 1.9, free electrons in conduction band and free holes in valence band, must be

collected to the metal contacts in order to make a solar cell work. The problem is that

there are several recombination mechanisms [18], as said in Sec. 2.1: recombination

through traps (defects) in the forbidden gap (Fig. 3.7a), radiative (band-to-band)

recombination (Fig. 3.7b), and Auger recombination (Fig. 3.7c). Based on these

phenomena, the electrons and holes involved cannot deliver their energy to the load.

Figure 3.7: Band Diagram of a p-n junction

The recombination linked to the single level trap within the forbidden gap is also known

as Shockley-Read-Hall recombination where the carrier lifetimes τSLT are given by:

τSLT =
1

σ νthNT

(3.5)
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where σ is the capture cross section, νth is the thermal velocity of the carriers and

NT is the concentration of traps [18]. Based on Eq. 3.5, increasing the concentration

of traps the probability of interaction with them increases, hence the lifetimes, in-

versely proportional to the trap concentration, decrease and the rates of recombination

grow. Considering a SJ solar cell (Fig. 1.8), in each n-p region there are far fewer

minority carriers than majority carriers, hence it is expecting that the recombination

rate is solely dependent on the minority carriers. The Shockley-Read-Hall recombina-

tion rate RSLT in a p-type region, in low injection condition (n0 ≤ n� p0), is equal to:

RSLT ≈
n− n0

τSLT,n
(3.6)

The same expression, function of holes, is valid in a n-type region.

The inverse of the photo-generation process is the Radiative recombination; when it

occurs, electrons and holes recombine delivering the energy in the form of emitted

photons. The Radiative recombination rate, in a p-type material for low injection

condition, can be written as:

Rλ ≈
n− n0

τλ,n
(3.7)

where the carrier lifetimes is equal to:

τλ,n =
1

p0B
(3.8)

where B is the bimolecular recombination coefficient.

Finally, in Auger recombination (Fig. 3.7c) the energy of electron or hole transition

is given to another minority carrier that then relaxes thermally delivering its excess

energy and momentum to phonons. In a p-type material, in low injection condition,

the net Auger recombination rate can be written as:

RAuger ≈
n− n0

τAuger,n
(3.9)

where the carrier lifetimes is equal to:

τAuger,n =
1

Λnp2
0

(3.10)

Finally, Eq. 3.11 expresses the total Recombination:

R =
∑
traps i

RSLT,i +Rλ +RAuger (3.11)

and the total carrier lifetime is equal to:

1

τ
=
∑
traps i

1

τSLT,i
+

1

τλ
+

1

τAuger
(3.12)
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Another important phenomena in the solar cells is the Surface recombination.

Each semiconductor is characterised by a periodicity of its crystal lattice, its abrupt

termination leads to a high concentration defects that are called dangling bonds.

Figure 3.8: Dangling Bonds.

Electrons and holes can recombine through them just as in Fig. 3.7a; hence, based

on the abrupt discontinuity of the lattice structure at the top and bottom surface of

the solar cell, many charges recombine and cannot be collected to the metal contacts

leading to a lower efficiency. The surface recombination rate can be written as:

RS,n = Sn(np − np0); for p-type material (3.13)

RS,p = Sp(pn − pn0); for n-type material (3.14)

where:

• Sn is the surface recombination velocity of the electrons minority carriers in the

p-type material;

• Sp is the surface recombination velocity of the holes minority carriers in the

n-type material.

Electron-hole pairs are created inside the solar cell thanks to the absorption of the

photons. The objective is to collect the minority carriers before they are lost to recom-

bination [18].

3.1.5 Minority Carriers Transport

The aim of this section is to show the carrier transport and we will try to find the

recombination phenomena in opposition to the collection of the minority carriers.

Electrons and holes are subject to the drift and diffusion processes. The drift process,

so the generation of the drift current, occurs when an electric field E is applied to the

semiconductor, hence each electron and hole moves in the opposite direction to the

field.
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Fig. 3.9 shows the electrons and holes flux generated by the electric field E.

Figure 3.9: Drift current.

Eq. 3.15 and Eq. 3.16 are the analytical expressions for the Drift current :

Jn = qµnnE; (3.15)

Jp = qµppE. (3.16)

The other current component is the Diffusion current. It is generated if there is a

non-uniform concentration of charges along the device (Fig. 3.10).

Figure 3.10: Diffusion current.

Jn = qDn
dn

dx
; (3.17)

Jp = −qDp
dp

dx
. (3.18)

where Dn and Dp are the diffusion coefficients.

From this, we introduce the parameter Lp =
√
Dpτp, diffusion length for holes in the

n-region, and Ln =
√
Dnτn, diffusion length for electrons in p-region. Lp and Ln are
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very important parameters because give us an idea of how long a hole or electron can

move, along the device, without a recombination phenomena occurs. For example, if

the diffusion length is lower than the thickness of a region of the solar cell, electrons

np or holes pn are not able to be collected because they recombine before arriving to

the metal contacts. Hence, it is necessary also taking into account the diffusion length

in order to design the solar cell.

The total current density for electrons is:

Jn = qµnnE + qDn
dn

dx
(3.19)

the total current density for holes is:

Jp = qµppE − qDp
dp

dx
(3.20)

Now, we consider a SJ solar cell. The relative p-n band diagram is showed in Fig. 3.11.

Let’s try to understand how electrons and holes minority carriers can be collected to

the terminals.

Figure 3.11: Band Diagram of a p-n junction

From Fig. 3.11, at thermal equilibrium, in the p-region electrons np are the minority

charges; holes, pp, are majority charges that cannot cross the high built-in potential

barrier and go into the n-region. In this last one, holes are the minority carriers; instead

electrons, majority carriers nn, cannot overcome the barrier and go in the p-region.

When the p-n junction is under illumination e-h pairs are generated such as in figure

3.12. In this situation, in the p-type (n-type), the increase of the np (pn) concentra-

tion rate under illumination in percentage is greater than the increase of the majority

carriers pp (nn). The situation, in which the change is significant only for the minority

charges is called low injection level. The nn and pp majority carriers cannot cross the

built-in barrier, but minority carriers np in the p-region and pn in the n-region diffuse

towards the depletion region where the electric field sweep out them into the region

where they become majority carriers [17].

In opposition to the carrier transport described, there are the radiative and non-

radiative recombination mechanisms that, if occur, lead to the loss of the minority
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Figure 3.12: p-n junction under illumination.

charges np and pn. In addition, the surface recombination phenomena creates a cur-

rent flux opposite in direction to that photogenerated. The np and pn carriers diffuse

towards the depletion region according to the arrow’s direction of Fig. 3.12. In reality,

let’s consider that there are many dangling bonds in the p/n-surface, hence the concen-

tration of electrons np/pn photogenerated in non-uniform along the p/n-region. Hence,

many electrons np/ holes pn diffuse towards the p/n-surface in order to recombine with

the free holes/electrons generated by the dangling bonds. It is necessary taking into

account this flux toward the surface.

The behavior of the minority carrier linked to the surface recombination, so the current

density toward the surface is expressed by:

JSp = qSp(pn − pn0) (3.21)

JSn = qSn(np − np0) (3.22)

We will observe the effect of the surface recombination in Sec. 3.3.1, where we will

discover that it is non negligible leading to a lower efficiency. The problem of dangling

bonds can be solved with a technique of passivation.
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3.1.6 Mobility model

GaAs and AlGaAs are the materials used in the simulations and will be necessary

find intrinsic parameter values of the materials that depends on the mobility of elec-

trons µn and holes µp. In this context, the choice of implementing a model able to

provide mobility values changing the doping level. The model is that developed by

M.Sotoodeh, A.H.Khalid, and A. A. Rezazadeh [13] based on physically interpola-

tion schemes. This kind of model gives the possibility to find out electrons and holes

mobility not only for binary compounds, such as GaAs or InP, but also for ternary

compounds as AlxGa(1−x)As and quaternary alloys In1−xGaxAsyP1−y.

The low-field mobility model is based on Eq. 3.23:

µLF (N, T ) = µmin +

µmax(300K)

(
300K

T

)θ1
− µmin

1 +

 N

Nref (300K)

(
T

300K

)θ2

λ

(3.23)

where µmax(T ) is the saturation value of mobility at very low doping concentration,

µmin is the saturation value of mobility at very high doping concentration and θ1, θ2,

λ influence the mobility depending on the temperature T.

In the table there are parameters value for Eq. 3.23 both for GaAs and AlGaAs:

µmax(300K) µmin(300K) Nref (300K) λ θ1 θ2[
cm2

Vs

] [
cm2

Vs

]
[cm−3]

GaAselectron 9400 500 6 x 1016 0.394 2.1 3.0

GaAshole 491.5 20 1.48 x 1017 0.38 2.2 3.0

AlAselectron 400 10 5.46 x 1017 1 2.1 3.0

AlAshole 200 10 3.84x 1017 0.488 2.24 3.0

Al0.3Ga0.7Ashole 240 5 1 x 1017 0.324 - - - -

For ternary compounds the values in the table are function of the mole fraction x.

Hence it is necessary to adopt interpolation schemes. The AlxGa(1−x)As material

changes its features based on Al mole fraction x. GaAs is a direct Energy gap semicon-

ductor with its minimum conduction band in the Γ-valley, instead AlAs is an indirect

Energy gap material with its minimum conduction band in the X-valley. Hence, the

Energy Gap of the AlxGa(1−x)As changes by direct to indirect based on Al mole frac-

tion.

By Fig. 3.13, the values of the three valleys are obtained with a quadratic interpolation

scheme (Eq. 3.24):

Egν(x) = xEgν(AlAs) + (1− x)Egν(GaAs)− b(AlGaAs)x(1− x) (3.24)
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where b is the band gap bowing parameter.

Figure 3.13: Γ-valley, X-valley and L-valley for AlxGa(1−x)As.

It is possible detect by Fig. 3.13 the critical point is for x = 0.4.

• for x < 0.4 AlxGa(1−x)As is a direct band-gap material ;

• for x > 0.4 AlxGa(1−x)As is an indirect band-gap material.

Considering that the value of the Eg can change based on x, in order to find out µmax
and µmin for Eq. 3.23, it is defined an effective mobility, for electrons:

µM(x) =
nΓ(x)µD(x) + [nX(x) + nL(x)]µI(x)

n
(3.25)

where µD(x) and µI(x) are the electron mobility in the direct and indirect conduction

valleys. The parameters nΓ(x), nX(x), nL(x) are the concentrations in corresponding

conduction band minima. In order to find out µD(x), it is possible use Eq. 3.26:

µD = µM(GaAs)

[
mnΓ(GaAs)

mnΓ(x)

]3/2
ε−1
∞ (GaAs)− ε−1

s (GaAs)

ε−1
∞ (x)− ε−1

s (x)
(3.26)

where mnΓ(GaAs) is the effective mass in the relative conduction band for the electrons,

instead ε∞ is the optical dielectric constant and εs is the static one. In order to find

out mnΓ(x) is used a linear interpolation scheme:

mnν(x) = xmnν(x)(AlAs) + (1− x)mnν(x)(GaAs) (3.27)
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Based on Eq. 3.28 it is possible obtain both the optical and static dielectric constant.

ε∞,s(x) =
1 + 2A+ 2B

1− A−B
(3.28)

where:

• A= x
ε∞,s(AlAs)− 1

ε∞,s(AlAs) + 2

• B= (1− x)
ε∞,s(GaAs)− 1

ε∞,s(GaAs) + 2

Then, the others formulas are:

µI = µM(AlAs) (3.29)

Nn,ref = [Nn,ref (GaAs)]1−x [Nn,ref (AlAs)]x (3.30)

θn1 =
(1− x)θn1(GaAs) + xθn1(AlAs)

1 +mx(1− x)
(3.31)

In order to find out the mobility for holes, the parameters of µp(AlGaAs) like µp,max(300K),

µp,min, λ and Np,ref are obtained with quadratic interpolation scheme using GaAs,

AlAs and Al0.3Ga0.7As; instead, θp1(AlGaAs) is assumed equal to θn1(AlGaAs) and

θp2(AlGaAs) is assumed equal to θp2(GaAs).

The quadratic interpolation scheme is that of Eq. 3.32:

PAlxGa(1−x)As(x) = xPAlAs + (1− x)PGaAs − PAl0.3Ga0.7Asx(1− x) (3.32)

In the following table we summarize the values of the parameters used, taken by the

reference article:

εs ε∞ EgΓ EgX EgL mnΓ mnX mnL bG bX bL
[ε0] [ε0] [eV] [eV] [eV] [eV] [m0] [m0] [eV] [eV] [eV]

GaAs 12.90 10.92 1.422 1.899 1.707 0.065 0.85 0.56 – – –

AlAs 10.06 8.16 2.799 2.163 2.469 0.150 0.71 0.66 – – –

AlGaAs – – – – – – – – 0 0.143 0.15
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In Fig. 3.14 we report an example of holes mobility obtained with this model:

Figure 3.14: AlGaAs Hole mobility for N = 1017 cm−3.

Following, an example of electron mobility for AlGaAs fixing the doping concentration,

changing the mole fraction.

Figure 3.15: AlGaAs Electron mobility for N = 1016 cm−3.



Chapter 3 51

3.2 Single Junction solar cell: Analytical Approach

The aim of this section is to obtain a model able to describe the current flow of the

minority charges under illumination along a SJ solar cell. Let’s consider the continuity

equations for minority carriers under low-injection condition.

Holes equation in the n-type material:

1

q

(
dJp
dx

)
−Gp +

pn − pn0

τp
= 0 (3.33)

Electrons equation in the p-type material:

1

q

(
dJn
dx

)
+Gn −

np − np0
τn

= 0 (3.34)

where pn0 and np0 are the minority carrier concentrations at equilibrium condition. Into

Eq. 3.33 and Eq. 3.34 we can note both the Generation and the explicit Recombination

term. The case study in order to derive the drift-diffusion model (the so-called Hovel

model) is a solar cell with a p-type emitter (exposed to the sun) and n-type base [14].

All following considerations are the same in the case for n-type emitter and p-type

base, only changing np with pn and otherwise.

Let’s consider a p-n junction with both sides of the junction uniform in doping. This

means that there is not an Electric Field E outside the depletion region.

3.2.1 p-type Emitter

In the case of uniform doping, Eq. 3.19 becomes:

Jn = qDn
dnp
dx

(3.35)

Substituting Eq. 3.35 into Eq. 3.34 yields:

d2(np − np0)

dx2
−
(
np − np0
Dnτn

)
+
Gn

Dn

= 0 (3.36)

Considering the Generation rate equation, Eq. 3.4, the complete expression of the Eq.

3.36 is:
d2(np − np0)

dx2
−
(
np − np0
Dnτn

)
+

(
αF (1−R)e(−αx)

Dn

)
= 0 (3.37)

where F is the photon flux.
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Solution of the differential equation

In order to solve Eq. 3.37, let’s rename the following terms :

• y(x) = np − np0;

• b =
1

Dnτn

• f(x) = −
(
αF (1−R)e(−αx)

Dn

)
the equation has the shape of a second order non-homogeneous differential equation:

y′′(x)− by(x) = f(x) (3.38)

The solution is the sum of:

• z(x): homogeneous function associated to the Eq. 3.38;

• ϕ(x): particular solution of the Eq. 3.38.

First, consider the homogeneous function in order to find out z(x):

y′′(x)− by(x) = 0 (3.39)

whose characteristic equation is:

k2 − bk = 0 (3.40)

The solutions are real and distinct such as k1 =
√
b and k2 = −

√
b. The function z(x)

will be:

z(x) = Γe(x
√
b) + Θe(−x

√
b) (3.41)

where Γ and Θ are the two integration constants.

In order to find the particular solution ϕ(x), apply similarity method. Observing the

term f(x), it has the shape:

f(x) = ρ(x)e−βx (3.42)

where ρ(x) is of zero degree.

β is not a solution of the equation Eq. 3.40, hence the particular solution is:

ϕ(x) = Ae−αx (3.43)
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In order to find A, consider the equation of (3.38) and replace in it the function ϕ(x),

whose derivatives are:

• ϕ(x)′ = −Aαe−αx

• ϕ(x)′′ = Aα2e−αx

The resulting expression is:

Aα2e−αx − bAe−αx = −
(
αF (1−R)e(−αx)

Dn

)
and A results as:

A = −
(
αF (1−R)

Dn(α2 − b)

)
Considering Eq. 3.43 and the expression of the diffusion length Ln =

√
Dnτn :

ϕ(x) = −αF (1−R)τn
α2L2

n − 1
e−αx (3.44)

Equation Eq. 3.37 has the following solution:

np − np0 = Γe

( x

Ln

)
+ Θe

(
−
x

Ln

)
− αF (1−R)τn

α2L2
n − 1

e−αx (3.45)

By the trigonometric formulas:

• ex = cosh(x) + sinh(x)

• e−x = cosh(x)− sinh(x)

Eq. 3.45 becomes:

np−np0 = Γ

[
cosh

(
x

Ln

)
+ sinh

(
x

Ln

)]
+Θ

[
cosh

(
x

Ln

)
− sinh

(
x

Ln

)]
−αF (1−R)τn

α2L2
n − 1

e−αx

(3.46)

Renaming A = (Γ + Θ) and B = (Γ−Θ) :

np − np0 = Acosh

(
x

Ln

)
+Bsinh

(
x

Ln

)
− αF (1−R)τn

α2L2
n − 1

e−αx (3.47)

Eq. 3.47 give us the minority carriers concentration, np − np0, along the emitter part

of the solar cell device.

Based on the fact that the concentration of electrons changes along the x-axis because

of several physical phenomena, it is necessary taking into account these constraints

into Eq. 3.47 through the coefficients A and B.
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A and B coefficients

In order to obtain the coefficients A and B of Eq. 3.47, consider the boundary condi-

tions referring to the emitter part of Fig. 3.16.

Figure 3.16: p-n solar cell structure.

In Fig. 3.16, the total width of the solar cell is H, of which W is the dimension of the

depletion region. The boundary conditions are at the surface because of the surface

recombination phenomena and at the interface with the depletion region, so for x = xj.

These two can be expressed by the following equations:

d(np − np0)

dx
=
Sn
Dn

(np − np0); for x = 0 (3.48)

np − np0 = 0; for x = xj (3.49)

Let’s apply Eq. 3.48:

A

Ln
sinh

(
x

Ln

)
+
B

Ln
cosh

(
x

Ln

)
+δαe−αx =

Sn
Dn

[
Acosh

(
x

Ln

)
+Bsinh

(
x

Ln

)
− δe−αx

]

where: δ =
αF (1−R)τn
α2L2

n − 1
.

Put x = 0:

B

Ln
+ δα =

Sn
Dn

(A− δ)

B = A
SnLn
Dn

− δLn
(
α +

Sn
Dn

)
(3.50)

In order to obtain the A coefficient, one can consider the 2nd boundary equation Eq.

3.49.
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For x = xj:

Acosh

(
xj
Ln

)
+Bsinh

(
xj
Ln

)
= δe−αxj

Substituting Eq. 3.50 in the previous equation:

Acosh

(
xj
Ln

)
+

[
A
SnLn
Dn

− δLn
(
α +

Sn
Dn

)]
sinh

(
xj
Ln

)
= δe−αxj

One obtains:

A =

δLn

(
α +

Sn
Dn

)
sinh

(
xj
Ln

)
+ δe−αxj

cosh

(
xj
Ln

)
+
SnLn
Dn

sinh

(
xj
Ln

) (3.51)

At this point, A and B are known; hence, putting them into Eq. 3.47 it is possible to

obtain:

np − np0 =

[
cosh

(
x

Ln

)
+
SnLn
Dn

sinh

(
x

Ln

)] δLn(α +
Sn
Dn

)
sinh

(
xj
Ln

)
+ δe−αxj

cosh

(
xj
Ln

)
+
SnLn
Dn

sinh

(
xj
Ln

) +

− sinh

(
x

Ln

)[
δLn

(
α +

Sn
Dn

)]
− αF (1−R)τn

α2L2
n − 1

e−αx

(3.52)

Bringing together the terms in e−αxj , then considering the trigonometric formula:

sinh

(
xj − x
Ln

)
= sinh

(
xj
Ln

)
cosh

(
x

Ln

)
− cosh

(
xj
Ln

)
sinh

(
x

Ln

)
Eq. 3.52 becomes:

np − np0 = δ

e−αxj
(

cosh

(
x

Ln

)
+
SnLn
Dn

sinh

(
x

Ln

))
+ sinh

(
xj − x
Ln

)(
αLn +

SnLn
Dn

)
cosh

(
xj
Ln

)
+
SnLn
Dn

sinh

(
xj
Ln

)
+

− δe−αx (3.53)

Finally, considering Eq. 3.35, it is possible to obtain the electron photocurrent density
along the emitter part of the solar cell:

Jn = qDn
αF (1−R)τn
α2L2

n − 1

e−αxj
[

1

Ln
sinh

(
x

Ln

)
+
Sn
Dn

cosh

(
xj
Ln

)]
− cosh

(
xj − x
Ln

)(
α+

Sn
Dn

)
cosh

(
xj
Ln

)
+
SnLn
Dn

sinh

(
xj
Ln

)
+

+ qDn
αF (1−R)τn
α2L2

n − 1
αe−αx (3.54)
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3.2.2 n-type Base

In order to obtain the Hole photocurrent density in the base part of the solar cell, is

necessary to repeat again the previous method with some changes.

By Eq. 3.20, for E=0:

Jp = −qDp
dpn
dx

(3.55)

Let’s substitute Eq. 3.55 into Eq. 3.33 obtaining the same equation of (3.37) in terms

of pn − pn0. Solving it in the same way, the solution is:

pn − pn0 = Acosh

(
x

Lp

)
+Bsinh

(
x

Lp

)
− αF (1−R)τp

α2L2
p − 1

e−αx (3.56)

Again we must find out A and B coefficient based on the following boundary conditions

(Fig. 3.16):

• from interface n-type base with depletion region:

pn − pn0 = 0; for x = xj +W (3.57)

• from surface recombination on the bottom side:

d(pn − pn0)

dx
= − Sp

Dp

(pn − pn0); for x = H (3.58)

From Eq. 3.57:

Acosh

(
xj +W

Lp

)
+Bsinh

(
xj +W

Lp

)
− δe−α(xj+W ) = 0 (3.59)

From Eq. 3.58:

A

Lp
sinh

(
x

Lp

)
+
B

Lp
cosh

(
x

Lp

)
+δαe−αx = − Sp

Dp

[
Acosh

(
x

Lp

)
+Bsinh

(
x

Lp

)
− δe−αx

]
(3.60)

The Eq 3.60 for x = H yields:

A

[
sinh

(
H

Lp

)
+
SpLp
Dp

cosh

(
H

Lp

)]
= −B

[
SpLp
Dp

sinh

(
H

Lp

)
+ cosh

(
H

Lp

)]
+

+ δ

(
SpLp
Dp

− αLp
)

e−αH (3.61)
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In order to make the development of the equations easier, the following parameters

are introduced:

• ε = sinh

(
H

Lp

)
+
SpLp
Dp

cosh

(
H

Lp

)

• ϕ =
SpLp
Dp

sinh

(
H

Lp

)
+ cosh

(
H

Lp

)

• δ′ = δ

(
SpLp
Dp

− αLp
)

With these parameters, the coefficient A is equal to:

A =
−Bϕ+ δ′e−αH

ε
(3.62)

Substituting Eq. 3.62 into Eq. 3.59:

Bϕcosh
xj +W

Lp
−Bεsinh

xj +W

Lp
− δ′e−αHcosh

xj +W

Lp
= −εδe−α(xj+W ) (3.63)

With the following thrigonometric formulas:

• ϕcosh
xj +W

Lp
=
SpLp
Dp

sinh

(
H

Lp

)
cosh

xj +W

Lp
+ cosh

(
H

Lp

)
cosh

xj +W

Lp

• −εsinh
xj +W

Lp
= −SpLp

Dp

cosh

(
H

Lp

)
sinh

xj +W

Lp
− sinh

(
H

Lp

)
sinh

xj +W

Lp

calling H ′ = H − (xj +W ), Eq. 3.63 becomes:

B

[
SpLp
Dp

sinh

(
H ′

Lp

)
+ cosh

H ′

Lp

]
= δ′e−αHcosh

xj +W

Lp
− εδe−α(xj+W ) (3.64)

The coefficient B is:

B =

δ′e−αHcosh

(
xj +W

Lp

)
− εδe−α(xj+W )

χ
(3.65)

where χ =

[
SpLp
Dp

sinh

(
H ′

Lp

)
+ cosh

H ′

Lp

]
= ϕ cosh

xj +W

Lp
− εsinh

xj +W

Lp
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Considering again the coefficient A, put B into the Eq. 3.62:

A =

−ϕδ′e−αHcosh
xj +W

Lp
+ εδϕe−α(xj+W ) + χδ′e−αH

εχ
(3.66)

Let’s simplify the previous expression considering the relationship between χ, ϕ and ε,

hence A can be written as:

A =

−δ′e−αHsinh
xj +W

Lp
+ δϕe−α(xj+W )

χ
(3.67)

Now, with A and B into Eq. 3.56:

pn − pn0 = cosh

(
x

Lp

) −δ′e−αHsinh

(
xj +W

Lp

)
+ δϕe−α(xj+W )

χ
+

+ sinh

(
x

Lp

) δ′e−αHcosh

(
xj +W

Lp

)
− εδe−α(xj+W )

χ
− δe−αx (3.68)

Collect the common term e−α(xj+W ):

pn − pn0 = δe−α(xj+W )

−cosh

(
x

Lp

)
sinh

(
xj +W

Lp

)(
SpLp
Dp

− αLp
)

e−αH
′
+ ϕcosh

(
x

Lp

)
χ

+

+ δe−α(xj+W )

sinh

(
x

Lp

)
cosh

(
xj +W

Lp

)(
SpLp
Dp

− αLp
)

e−αH
′ − ε sinh

(
x

Lp

)
χ

+

− δe−α(xj+W )e−α(x−xj−W ) (3.69)

In order to simplify the previous expression, let’s work on the two different parts of it.

First of all:

− cosh

(
x

Lp

)
sinh

(
xj +W

Lp

)(
SpLp
Dp

− αLp
)

e−αH
′
+

+ sinh

(
x

Lp

)
cosh

(
xj +W

Lp

)(
SpLp
Dp

− αLp
)

e−αH
′
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can be simplified into:(
SpLp
Dp

− αLp
)

e−αH
′
sinh

(
x− (xj +W )

Lp

)
The second part:

ϕcosh

(
x

Lp

)
− εsinh

(
x

Lp

)
= −

[
sinh

(
H

Lp

)
sinh

(
x

Lp

)
+
SpLp
Dp

sinh

(
x

Lp

)
cosh

(
H

Lp

)]
+

[
cosh

(
H

Lp

)
cosh

(
x

Lp

)
+
SpLp
Dp

sinh

(
H

Lp

)
cosh

(
x

Lp

)]

Considering H = H ′ + xj +W , the previous expression can be simplified into:

ϕcosh

(
x

Lp

)
− εsinh

(
x

Lp

)
= cosh

(
x− (H ′ + xj +W )

Lp

)
+

+
SpLp
Dp

sinh

(
−x+ (H ′ + xj +W )

Lp

)

Let’s analyze the two terms at the 2nd member:

cosh

(
x− (H ′ + xj +W )

Lp

)
=

[
cosh

(
x− xj −W

Lp

)
cosh

(
H ′

Lp

)
+

− sinh

(
x− xj −W

Lp

)
sinh

(
H ′

Lp

)]
Based on the fact that the function sinh(y) is an odd function, so sinh(−y) = −sinh(y):

sinh

(
−x+ (H ′ + xj +W )

Lp

)
= −sinh

(
x− (H ′ + xj +W )

Lp

)
we can write:

sinh

(
−x+ (H ′ + xj +W )

Lp

)
= −

[
sinh

(
x− (xj +W )

Lp

)
cosh

(
H ′

Lp

)]
+

+

[
cosh

(
x− (xj +W )

Lp

)
sinh

(
H ′

Lp

)]
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With the previous expressions, we can rewrite:

ϕcosh

(
x

Lp

)
− εsinh

(
x

Lp

)
= cosh

(
x− xj −W

Lp

)[
SpLp
Dp

sinh

(
H ′

Lp

)
+ cosh

(
H ′

Lp

)]
−sinh

(
x− xj −W

Lp

)[
SpLp
Dp

cosh

(
H ′

Lp

)
+ sinh

(
H ′

Lp

)]
With these simplifications Eq. 3.69 becomes:

pn − pn0 =
αF (1−R)τp
α2L2

p − 1
e−α(xj+W )

[
cosh

(
x− xj −W

Lp

)
− e−α(x−xj−W )

]
+

−αF (1−R)τp
α2L2

p − 1
e−α(xj+W )


SpLp
Dp

[
cosh

H ′

Lp
− e−αH

′
]

+ sinh
H ′

Lp
+ αLpe

−αH′

cosh

(
H ′

Lp

)
+
SpLp
Dp

sinh

(
H ′

Lp

) sinh
x− xj −W

Lp


(3.70)

Considering the Eq. 3.55, it is possible to obtain the hole photocurrent density:

Jp = −qDp
αF (1−R)τp
α2L2

p − 1
e−α(xj+W )

[
1

Lp
sinh

(
x− xj −W

Lp

)
+ αe−α(x−xj−W )

]
+

+ qDp
αF (1−R)τp
α2L2

p − 1
e−α(xj+W )


SpLp
Dp

[
cosh

H ′

Lp
− e−αH

′
]

+ sinh
H ′

Lp
+ αLpe

−αH′

cosh

(
H ′

Lp

)
+
SpLp
Dp

sinh

(
H ′

Lp

)


x

[
1

Lp
cosh

x− xj −W
Lp

]
(3.71)

In order to have a complete model, it is necessary to consider also the photogeneration

of carriers that takes place into the depletion region (see Fig. 3.12 and Fig. 3.16).

In fact, photons not only create e-h pairs in the n-region and p-region, but also into

the depletion one. In this region, the electric field is high enough that e-h pairs

photogenerated are swept out of the depletion region before they can recombine [14].

Hence, the electron and hole pairs can be collected are equal to the number of photons

absorbed. Hence, considering Eq. 3.4, the equation of the generated photocurrent into

the depletion region can be written as:

Jdr = qF (1−R)e−α(xj)
(
1− e−αW

)
(3.72)

At this point, we have three equations able to describe the generated photocurrent

along the entire solar cell device: Eq. 3.54 for p-type emitter, Eq. 3.72 for the depletion

region, Eq. 3.71 for n-type base.
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3.3 Single Junction solar cells: Simulations

In the previous section we have obtained a model able to characterize a p-n solar cell.

Obviously the same model can be used for a n-p solar cell with the same boundary

conditions remembering that in the emitter the minority charges will be holes and in

the base will be electrons. Now, in order to appreciate some physical aspects, let’s

simulate a p-n solar cell in GaAs.

3.3.1 GaAs solar cell: concentration profile and photocurrent

Following we will explore the trend of the minority carriers along the device and then

the total photocurrent carried by them. As we have seen in Section 3.1.2, GaAs absorbs

up to λ = 870 nm, so let’s consider two different wavelengths:

• λ = 400 nm

• λ = 750 nm

Based on the selected λ, the absorption coefficient α and the reflectance R have different

values:

λ [nm] α [cm−1] R

400 6.7 x 105 0.48

750 1.88 x 104 0.33

From the table, for λ = 400 nm the absorption coefficient α(λ) is greater than that

for λ = 750 nm. The propagation of the waves, along the device, is attenuated as a

decreasing exponential leading to a greater absorption near the front surface; opposite

behavior for an increasing λ.

In order to plot the concentration profile of the minority carriers along the device, we

consider a solar cell with the following parameters (taken from [14]):

xj W H Dp Dn τp τn NE NB

[µm] [µm] [µm]

[
cm2

s

] [
cm2

s

]
[s] [s] [cm−3] [cm−3]

0.5 0.09 10 5.7 32.4 1.58 x 10−8 1 x 10−9 2 x 1019 2 x 1017

From the table we obtain Ln=1.8 µm and Lp=3 µm.

For the emitter part let’s analyze the concentration profile of the excess minority car-

riers np − np0. The Eq. 3.53 is based on two different boundary conditions (Eq. 3.48

, Eq. 3.49); this means that in the point x = xj, at the interface with the depletion

region, we should expect np − np0 = 0 and for x = 0 we should observe the effect of

the surface recombination phenomena.

In order to appreciate it, Fig. 3.17 and Fig. 3.18 show several concentration profiles

for different values of recombination velocity Sn.
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Figure 3.17: electrons concentration in the p-emitter for λ = 750 nm.

By the previous plot we can confirm that:

• at the interface p-emitter/depletion region the concentration profile np−np0 = 0;

• for x = 0, at the surface, changing the value of Sn the profile np−np0 is different.

In fact, increasing Sn the electron minority carrier concentration decreases.

We will see that the value of the recombination velocity has an important impact

on the photogenerated current.

Figure 3.18: electrons concentration in the p-emitter for λ = 400 nm

For λ = 400nm (Fig. 3.18) we can note the same behavior at the interface and for

x = xj. Instead, in the middle part of the emitter, the concentration profile for the
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two wavelengths is different given by the fact that the Generation rate changes with λ

and x.

In order to understand how much the surface recombination influences the performance

of the solar cell let’s consider the diffusion current density for the minority carriers based

on equations (3.54) and (3.71).

For λ = 750 nm and Sn = 106
[
m
s

]
we obtain the following plot:

Figure 3.19: Hole and Electron Current Density for λ = 750 nm.

In Fig. 3.19:

• for x < 0.2µm, the electron diffusion current is positive, produced by the diffusion

of the minority charges to the front section of the solar cell because of the surface

recombination. Greater Sn, greater will be the net rate of the electron diffusion

current that decrease negatively the total diffusion current. In this case JTOT
will be lower than that obtained for a small Sn. Hence, Sn has a key role in the

rate of the total diffusion photocurrent.

Summing up, a small Sn means a greater concentration of electrons np able to

reach the n-base through Diffusion phenomena.

Also, in this region, by the plot, we can note that the electron diffusion current is

compensated by the excess of photogenerated holes, so the total diffusion current

is close to the hole diffusion current Jp;

• for x > 0.5µm going towards the n-region the total current density JTOT is close

to Jn. In the back surface of the solar cell, in this case, the surface recombination
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phenomena has a lower impact than that of the front surface, so holes go through

Diffusion phenomena to p-emitter.

For λ = 400 nm and Sn = 106
[m
s

]
we obtain the following plot:

Figure 3.20: Hole and Electron Current Density for λ = 400 nm

If we put in comparison Fig. 3.20 with Fig. 3.19, we note that the only difference

is that for λ = 400 nm most photons are absorbed near the surface contact, so the

photogenerated electrons suffer more the recombination phenomena.

In fact, for x < 0.05µm the Jn is relatively high and the diffusion current Jp cannot

compensate it as in the case for λ = 750 nm, so the amount of the diffusion photocurrent

is small.

The previous plots give us an idea of the impact of the surface recombination on the

performance of the solar cell. In fact, if the generated photocurrent is small, the Power

extracted by the solar cell decreases leading to a lower efficiency.

We have said that in order to decrease the amount of losses linked to the Surface

Recombination there was the possibility of using several technique such us passivation

of the dangling bonds leading to a very small values of S. Now, we should simulate this

situation forcing Sn = 1 and Sp = 1. This is an ideal case, but it is very important in

order to understand the bad impact of this kind of recombination on the photocurrent.
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Figure 3.21: Diffusion Current for λ = 750nm on the left, Diffusion Current for λ =

400nm on the right; Sn = 1 and Sp = 1 for both cases.

From Fig. 3.21, in both cases, the total diffusion photocurrent value is near to

the ideal photogenerated current. In order to better understand how much the per-

formances of a solar cell are linked to the Surface Recombination we will study in the

following section the EQE (External Quantum Efficiency) of a n-p solar cell.

3.3.2 GaAs solar cell: EQE

The aim of this Section is studying the behavior of the solar cell at each wavelength

of the solar spectrum. Considering that at each wavelength the number of incident

photons is different, we want to understand how many of those photons create e-h

pairs that can be collected.

The amount of e-h generated with respect to the number of incident photons is called

EQE: External Quantum Efficiency [14].

EQE =
Jn
qF

+
Jp
qF

+
Jdr
qF

(3.73)

First, let’s consider the p-n solar cell of Fig. 3.16 with the parameters used before. If

we put Eq. 3.54, Eq. 3.71, calculated for x = xj and x = xj + W respectively, and

Eq. 3.72 into Eq. 3.73, the EQE is shown in Fig. 3.22. From Fig.3.22 we can see that

the p-emitter part is able to absorb around 31 % of the total solar irradiance for λ <

430 nm; this small value of EQE is given by the value of Surface Recombination equal

to Sn = Sp = 5 x103
[
m
s

]
. Increasing the value of λ the total EQE increases thanks to

the photons also absorbed into the depleted region and into the n-base, instead the

amount of photons collected by the emitter decreases for high wavelength (λ > 600 nm)

because of its width. Then, for λ >870 nm the absorption of the photons is zero and

so the EQE decreases quickly.
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Figure 3.22: EQE for p-n GaAs solar cell.

Now, we will study the Spectral Response of a n-p solar cell comparing the obtained

results with that of the Lumb article [16]. Consider the reference structure (Fig. 3.23)

and the table with some parameters used for the simulation.

Figure 3.23: n-p GaAs solar cell

xj H Sn Sp NE NB

[nm] [nm]
[
m
s

] [
m
s

] [
1
cm3

] [
1
cm3

]
100 1300 5 x 103 5 x 103 5 x 1017 5 x 1016
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In Lumb’s article, lifetime of the minority charges is obtained with the following

parameters:

• radiative lifetime τr = BradN where N is the doping concentration in the con-

sidered region, instead Brad is the bimolecular recombination coefficient, or B-

coefficient.

This last one changes based on the doping concentration, but, in this case, the

value is Brad = 2.86 x 10−10
[
cm3

s

]
• Shockley-Read-Hall lifetime τSRH = 20ns in both emitter and base region.

The total carrier lifetime can be obtained from Eq. 3.74 where the Auger recombination

phenomena is neglected respect to Eq. 3.12:

1

τ
=

1

τSRH
+

1

τr
(3.74)

Considering that Ln =
√
Dnτn and Lp =

√
Dpτp, it is necessary to obtain the Diffusion

coefficients Dn and Dp where: Dn =
µnKT

q
and Dp =

µpKT

q
.

In order to obtain Dn and Dp similar to that of the Lumb’s article, we have used

the approximated values of mobility µn and µp of the reference article [19]:

• Dp = 3.88
[
cm2

s

]
• Dn = 207

[
cm2

s

]
• Ln = 0.103 [µm]

• Lp = 2.45 [µm]

Eq. 3.54 and Eq. 3.71 can be rewritten for the case of n-p GaAs solar cell, considering
that what has been said about the p-n solar cell is also valid for a solar cell whose n-
region is exposed to the solar spectrum. For a n-p solar cell the equations linked to the
diffusion photocurrent of the minority carriers, calculated for x = xj and x = xj + W
respectively for Jp and Jn are:

Jp = q
αF (1−R)Lp
α2L2

p − 1

e−αxj
(
−sinh

(
xj
Lp

)
− SpLp

Dp
cosh

(
xj
Lp

))
+

(
αLp +

SpLp
Dp

)
cosh

(
xj
Lp

)
+
SpLp
Dp

sinh

(
xj
Lp

) − αLpe−αxj


(3.75)
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Jn = q
αF (1−R) Ln
α2L2

n − 1
e−α(xj+W )

Lnα−
SnLn
Dn

[
cosh

H ′

Ln
− e−αH

′
]

+ sinh
H ′

Ln
+ αLne−αH

′

cosh

(
H ′

Ln

)
+
SnLn
Dn

sinh

(
H ′

Ln

)


(3.76)

Let’s consider the n-p solar cell (Fig. 3.23) based on the Lumb article.

The EQE obtained for this kind of solar cell is the following:

Figure 3.24: EQE for n-p GaAs solar cell.

From Fig. 3.24 we can see that the n-emitter part is able to absorbs a 30 % of the

total solar irradiance for λ < 450 nm; this small value of EQE is given by the value of

Surface Recombination but also by the high reflectance in this part of the spectra (Fig.

3.2). Hence, also, the reflectance is an important problem for a performance of a solar

cell.

Increasing the value of λ, photons are absorbed into the depleted region and into

the p-base, instead the amount of photons collected by the emitter decreases for high

wavelength because of its small width. Then, for λ >870 nm the absorption of the

photons is zero and so the EQE decreases quickly.

Fig. 3.25 puts in comparison the total EQE obtained from the simulation and that of

the Lumb model. The blue line is the EQE obtained by our simulation, instead the

black line is taken from Lumb article. There is a good qualitative agreement, with

some minor quantitative discrepancy possibly done to the different optical model and

mobility models.
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Figure 3.25: Comparison between the EQE obtained from the simulation and that one

reported in the Lumb article.

3.3.3 GaAs solar cell: influence of the Surface Recombination

on EQE

In the previous discussion we have observed the influence of the Surface Recombination

on the electrons and holes photocurrent (Fig. 3.21). Now, considering the n-p solar

cell of Fig. 3.23, we want to see the impact of surface recombination on the EQE,

changing the value of Sn, referred to the bottom side, and Sp, referred to the top side

of the solar cell. We will see, based on the value of Sn how much the efficiency may

decrease and we will compare it with the efficiency lost changing Sp.

In the following simulations the values of the electrons and holes mobility are obtained

with the method exposed in the sub-section 3.1.6.

First, growing up Sn, the EQE has the following variations:

Figure 3.26: EQE(Sn).
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Increasing Sn (Fig. 3.26) there is a decreasing of the EQE for λ > 600 nm; in this case,

the surface recombination interests the back surface that absorbs photons with high

wavelengths.

Changing the value of Sp, the EQE will be:

Figure 3.27: EQE(Sp).

From Fig. 3.27 we have the opposite case. In fact, we can see there is a decrease of

the EQE for λ < 450 nm.

Decreasing or growing up Sn or Sp the alterations on the EQE are not negligible.

In order to quantize the variation of the EQE, we consider an ideal case for the EQE

with Sn = 1 and then for Sp = 1. Hence, it is possible to obtain the Efficiency Losses

(E.L.), in percentage, of the EQE respect to the ideal case.

Changing Sn the Efficiency Losses will be:

Figure 3.28: Efficiency losses(Sn).
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Changing Sp:

Figure 3.29: Efficiency losses(Sp).

The worst case is for Sn = 107
[m
s

]
(Fig. 3.28 ) and for Sp = 107

[m
s

]
(Fig. 3.29).

By the two plots it is possible to observe that for the values of Sn and Sp up to 103
[m
s

]
there are low efficiency losses, around 3 % and 12 % respectively. Putting in comparison

the two cases, although Sp has a greater negative influence in a n-p GaAs solar cell, it

is necessary working on both Sp and Sn in order to have good performances.

3.3.4 GaAs solar cell: influence of the Surface Recombination

and Carrier Lifetime on the Saturation current

From Section 3.2 we have obtained the equations linked to the generated photocurrent.

In the previous sections we have seen also the Surface Recombination effect on the

photocurrent density and on the EQE.

We know that the photocurrent is not the only current component travelled along the

device; in fact, there is also the component of “Dark current” that exists also when

the junction is not under illumination. The Dark current aims to decrease the total

current collected at the terminals of the device, in fact it is opposite in direction to

the photocurrent. Now, we apply the drift-diffusion equations for the case of non-

illumination in order to find the Dark component. We consider only the “Injected

current” created by the electrons injected from the n-side to the p-side and opposite

for the holes. It is anticipated that the simulations in this Section are based on the

parameters shown in the Section 3.3.2.
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Equations of the Dark current Let’s consider the equations of the minority

carriers without the term of Generation rate because of the hypothesis of “not illumi-

nation” .

Considering the structure of Fig. 3.23, the starting equations are:

for the n-emitter region

1

q

(
dJp
dx

)
+
pn − pn0

τp
= 0 (3.77)

for the p-base region

1

q

(
dJn
dx

)
+
np − np0

τn
= 0 (3.78)

The general solutions are, respectively:

pn − pn0 = Acosh

(
x

Lp

)
+Bsinh

(
x

Lp

)
(3.79)

np − np0 = Acosh

(
x

Ln

)
+Bsinh

(
x

Ln

)
(3.80)

Again we must find out A and B coefficient for each equation. In order to obtain the

complete solution of the Eq. 3.79 the boundary conditions are:

d(pn − pn0)

dx
=
Sp
Dp

(pn − pn0); for x = 0 (3.81)

pn = pn0e

qVd
kT


; for x = xj (3.82)

In order to obtain the complete solution of the Eq. 3.80 the boundary conditions are:

np = np0e

qVd
kT


; for x = xj +W (3.83)

d(np − np0)

dx
= − Sn

Dn

(np − np0); for x = H (3.84)

where Vd is the voltage across the device, in this case, generated by the incident light.

Considering the previous boundary equations, the complete solution for the n-emitter

region, for x = xj is :

Jpdark = −qDp
ni2

ND

1

Lp

sinh

(
xj
Lp

)
+
SpLp
Dp

cosh

(
xj
Lp

)
cosh

(
xj
Lp

)
+
SpLp
Dp

sinh

(
xj
Lp

)
(e

(
qVd
KT

)
− 1

)
(3.85)
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for the p-base, in the point x = xj +W :

Jndark = −qDn
ni2

NA

1

Ln

sinh

(
H ′

Ln

)
+
SnLn
Dn

cosh

(
H ′

Ln

)
cosh

(
H ′

Ln

)
+
SnLn
Dn

sinh

(
H ′

Ln

)
(e

(
qVd
KT

)
− 1

)
(3.86)

where H
′
= H − (xj +W ).

Eq. 3.85 can be rewritten as:

Jpdark = Jp0

(
1− e

(
qVd
KT

))
(3.87)

and the Eq. 3.86 as:

Jndark = Jn0

(
1− e

(
qVd
KT

))
(3.88)

Now, the aim is to explore the influence of Sp, Sn and of the carrier lifetime τp, τn on

the saturation current density components Jp0, Jn0 respectively. In Eq. 3.85 and Eq.

3.86 we can note that the transport of minority carriers depend also on the diffusion

length Lp =
√
Dpτp and Ln =

√
Dnτn.

Figure 3.30: Saturation current density Jp0 versus minority carrier lifetime τp consid-

ering values of recombination velocities Sp in the range [100 ÷ 107]
[
m
s

]
.

Fig. 3.30 investigates the effect of the surface recombination velocity Sp on Jp0 con-

sidering also different values of carrier lifetime τp. We can note that increasing Sp,
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the value of Jp0 increases of several orders of magnitude respect to the ideal case for

Sp = 1
[
m
s

]
for high carrier lifetimes. Instead, the effect of the surface recombination

velocity is irrelevant considering short carrier lifetimes.

Figure 3.31: Saturation current density Jn0 versus minority carrier lifetime τn consid-

ering values of recombination velocities Sn in the range [100 ÷ 107]
[
m
s

]
.

In the p-base region, Fig. 3.31 investigates the effect of Sn on Jn0 considering carrier

lifetime τn in the range of [10−12 ÷ 10−5] s. We can note that the qualitative behavior

of the saturation current Jn0 is the same of that of Jp0 in Fig. 3.30.

We know, from Chapter 2, that the Dark current component shall be taken into con-

sideration when calculating the open circuit voltage Voc in order to obtain the J-V

characteristic and the total efficiency η. Hence, the value of the saturation current

influences the total power that the solar cell can deliver to the external load.

In the next Section we will observe also the behavior of the Voc versus the Saturation

current.

3.3.5 GaAs solar cell: J-V characteristic

In Section 1.4 we have introduced the concept of Dark Current and Photocurrent

calculating them with the Shokley-Queisser model, then showing the J-V characteristic.

Now we want to obtain the characteristic of a solar cell based on the Hovel model.

Hence, let’s consider the n-p GaAs solar cell of Fig. 3.23 and put Eq. 3.72, Eq. 3.75,

Eq. 3.76, Eq. 3.85 and Eq. 3.86 into Eq. 3.89. The total current is given by:

J = Jn + Jp + Jdr + Jpdark + Jndark (3.89)
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In order to obtain the J-V characteristic it is necessary to find the open circuit Voltage

Voc.

Calling Jph = Jn + Jp + Jdr, Eq. 3.89 becomes:

J = Jph + (Jp0 + Jn0)

[
1− e

(
qVd
KT

)]
(3.90)

It is necessary to put the total current J equal to zero. Hence, Eq. 3.90 yields to:

Voc =

(
kT

q

)
ln

(
Jph + Jo

Jo

)
(3.91)

where J0 = Jp0 + Jn0.

Influence of the Surface Recombination and Carrier Lifetime on the open

circuit voltage From Eq. 3.91 we can deduce that the Voc depends on the value of

photocurrent Jph and saturation current J0. Although quantitatively the relationship

between the two current components is Jph � J0 (see Fig. 3.21 and Fig. 3.31), the

effect of J0 is significant for the value of the open circuit voltage Voc. On the basis of

these considerations Fig. 3.32 shows the Voc as a function of carrier lifetime and surface

recombination velocity.

Figure 3.32: Open circuit voltage Voc as a function of minority carrier lifetime. We

assume τp = τn considering values of recombination velocities Sn = Sp in the range

[100 ÷ 107]
m

s
.
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From Fig. 3.32 we can note that Voc gets smaller decreasing the value of the car-

rier lifetime or increasing the surface recombination velocity.

Figure 3.33: J-V characteristics as functions of the recombination velocities Sn = Sp

in the range [100 ÷ 107]
m

s
and assuming τp = τn = 10−5 s.

In Fig. 3.33 are shown different J-V characteristics based on carrier lifetime τn = τp =

10−5 s.

We know that the efficiency depends on the open circuit voltage, so we can understand

that for small values of Voc the efficiency decreases. Hence, it is necessary to get Sn/p
and recombination phenomena under control in order to achieve good results.

J-V characteristic based on Shokley-Queisser model and Hovel model

Fig. 3.34 shows the ideal characteristic, based on Shokley-Queisser model of a SJ solar

cell whose Eg is equal to 1.42 eV.

Based on this Eg, the nominal efficiency ηn is equal to 33.7 % (Fig. 2.4), instead the

detailed balance limit of efficiency η is equal to 30.3 % (Fig. 2.4). Now, let’s consider

the n-p GaAs solar cell with the n-region exposed to the Solar Irradiance (Fig 3.23), we

show the relative J-V characteristic (Fig. 3.35) for ideal value of surface recombination

Sn/p = 1 and reflection loss summed into shadowing loss, producing R = 6.6 %. The

value of R is taken by [20] considering an ARC typically used on the front of the solar

cell in order to reduce the reflection of the photons. Although we have forced ideal

values for these critical parameters, we can detect that the photocurrent and the Voc
are lower than that of Fig. 3.34.
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Figure 3.34: J-V characteristic obtained with S-Q model.

Fig. 3.35 is based on parameters taken by Lumb article except for the value of R.

However, the J-V characteristic (Fig. 3.35) is comparable with that shown in [16].

Figure 3.35: J-V characteristic obtained with Hovel model.

For the J-V characteristic of Fig. 3.35 the nominal efficiency is equal ηn = 17% and

η = 15%, also the Fill Factor results FF = 88%.
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3.3.6 AlGaAs solar cell: photocurrent, EQE, J-V characteris-

tic

The aim of this subsection is to apply the same model to another device: Al0.4Ga0.6As

n-p solar cell. The following study is not relevant for a real implementation such as SJ

solar cell, but it is a benchmark for the study that we will carry out in Chapter 4 for a

DJ solar cell. In Fig. 3.3 we can see that Al0.4Ga0.6As absorbs up to 650 nm; this limit

is smaller than that of GaAs leading to a lower photocurrent and efficiency.

Consider as reference structure that of Fig. 3.23 exposed by the n-side. The parameters

in the following table have been chosen in accordance with several criteria linked to

the simulations of Section 4.4.1.

xj W H Sn Sp NE NB Lp Ln
[µm] [µm] [µm]

[
m
s

] [
m
s

] [
1
cm3

] [
1
cm3

]
[µm] [µm]

0.56 0.15 4.7 1 5 x 103 1017 1018 4 1.38

Fig. 3.36 reports the behavior of the current density along the emitter and base region.

Figure 3.36: Electron and Hole Diffusion Current along x for a n-p Al0.4Ga0.6As solar

cell. On the left for Sp = 5x103
[
m
s

]
, on the right for Sp = 1

[
m
s

]
.

In Fig. 3.36, on the left, for x < 0.5 µm, the negative value of the hole photocurrent

is given by the Surface Recombination phenomena. We can observe that changing the

value of Sp, on the right, the hole photocurrent increases leading to a higher total cur-

rent. The behavior and comments are the same done for GaAs (Fig. 3.21). The only

difference is that the total current will be lower than that obtained for GaAs based on

the fact that Al0.4Ga0.6As material has an Eg = 1.97. This high bandgap puts a strong

limitation on the photocurrent that can be collected, in fact if we focus on Fig. 1.12, in

Chapter 1, we can see that the Eg limits the cumulative photocurrent around 25
mA

cm2
.

For this kind of structure, let’s obtain the Spectral Efficiency in order to understand

how this material, with the reference structure considered, responds to the Solar Irra-

diance.
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From Fig. 3.37, for Sp = 5x103
[
m
s

]
, it is possible to appreciate that for λ < 400 nm

the emitter has a bad EQE, instead for 400 nm < λ < 600 nm it increases its spectral

response around 40%.

The base increases its External Quantum Efficiency beyond 500 nm. Near to 650 nm all

the components decrease, linked to the absorption coefficient behavior.

Figure 3.37: EQE for the n-p Al0.4Ga0.6As solar cell. On the left for Sp = 5x103
[
m
s

]
,

on the right for Sp = 1
[
m
s

]
.

For Sp = 1
[
m
s

]
, the total EQE in Fig. 3.37 increases, but the EQE linked to the base

decreases. With the parameters chosen the base is very limited in the absorption of

the photons. Hence, we should change some structural parameters in order to obtain

an enhanced efficiency.

The ideal photocurrent for this kind of solar cell, calculated with S-Q model, is around

25 mA as shown in Fig. 3.38, on the right. The J-V characteristic for R=6.6% [20],

obtained with the Hovel model is shown in Fig. 3.38, on the left. We can note that

both photocurrent and open circuit voltage are lower than that obtained with S-Q

model.

Figure 3.38: J-V characteristic for the n-p Al0.4Ga0.6As solar cell. On the left, J-V

based on Hovel model, on the right, J-V based on S-Q model.
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3.3.7 AlGaAs-GaAs solar cell: photocurrent, EQE, J-V char-

acteristic

In this section we present another kind of structure composed with both Al0.4Ga0.6As

and GaAs. In this case, we consider a heterojunction p-n solar cell with the p-side ex-

posed to the solar irradiance. The p-emitter in Al0.4Ga0.6As and the base in GaAs. In

the previous case, the materials were the same for both emitter and base, just the kind

of doping was different; hence the depletion region was formed by an homo-junction.

In this case, using two different materials, at the interface, there is an hetero-junction.

This leads to important consequences in the structure, hence in the equations of the

model developed. The aim of this section is to briefly report the only features of the

hetero-junctions used to modify correctly the equation of the model in the case of the

hetero-structure and simulate this kind of device.

Consider as reference structure that one of Fig. 3.39 where we can observe the ef-

fect of the reflectance twice: at the interface Air − Al0.4Ga0.6As and at the interface

Al0.4Ga0.6As. This is linked to the fact that the two materials have also different

refraction index.

Figure 3.39: Al0.4Ga0.6As-GaAs p-n solar cell structure.

In this case, considering normal incidence, photons have a first reflection at the

interface Air−Al0.4Ga0.6As and a second reflection at the interface Al0.4Ga0.6As-GaAs.

In this last one case, the value of Reflectance R
′

will be lower than that one of the

the first case, as already shown in Fig. 3.2. This linked to the fact that the refraction

indexes of the two materials are very similar. However, it is necessary taking into

account R
′

into the Generation rate equation (Eq. 3.4).

Another important feature is that the two materials have not only different refraction

index but also different absorption coefficient (Fig. 3.3). First of all, photons are
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absorbed with the absorption coefficient α2 in Al0.4Ga0.6As material and then with α3

in GaAs. It is necessary taking into account also this phenomena. Hence considering

also the Reflectance, the Generation Rate for the base region is modified in Eq. 3.92:

G(λ, x) = α3(λ)SPF (λ)(1−R(λ))e(−α2(λ)W1)(1−R′(λ))e(−α3(λ)(x−W1)) (3.92)

Now, let’s consider the parameters reported in the following table:

xj W H Sn Sp NE NB Ln Lp
[µm] [µm] [µm]

[
m
s

] [
m
s

] [
1
cm3

] [
1
cm3

]
[µm] [µm]

4.68 0.16 6 1 5 x 103 1018 1017 4 5

Fig. 3.40, on the left, shows the Diffusion photocurrent for the base and emitter; on

the right, the relative EQE is shown.

Figure 3.40: Electron and Hole Diffusion Current along x on the left; on the right the

EQE.

With these dimensions the emitter region has a bad External Quantum Efficiency and

it is not able to absorb photons efficiently.

In order to increase the spectral response let’s change some structural parameters:

xj W H Sn Sp NE NB Lp Ln
[µm] [µm] [µm]

[
m
s

] [
m
s

] [
1
cm3

] [
1
cm3

]
[µm] [µm]

0.7 0.16 6 1 1 1018 1017 4 5

From Fig. 3.41 we can observe that changing the dimension of the emitter region its

spectral response for Sn/p = 1
[
m
s

]
improves. However, the effect of the parameter Sn

is not negligible; indeed for Sn = 5x103
[
m
s

]
the EQE linked to the emitter part has a

bad behavior.
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Figure 3.41: EQE characteristic for the p-n Al0.4Ga0.6As-GaAs solar cell. On the right

for Sp/n = 5x103
[
m
s

]
, on the left for Sp/n = 1

[
m
s

]
.

Fig. 3.42 shows the characteristic J-V considering R=6.6% [20].

Figure 3.42: J-V characteristic for the p-n Al0.4Ga0.6As-GaAs solar cell.

With the parameters used, Fig. 3.42 is similar to that obtained in Fig. 3.35 for a n-p

GaAs solar cell.

Now, we have analyzed different types of SJ solar cells with the help of Hovel model

and observed how the characteristics are modified by the structure and material pa-

rameters.

In the following Chapter we will introduce a new kind of DJ solar cell based on

Al0.4Ga0.6As and GaAs semiconductor materials in order to explore its several fea-

tures.



CHAPTER 4

Double Junction Solar cell: the BJT

approach

We have analyzed the behavior of a single homo-junction GaAs solar cell, observing

the diffusion minority current along the device, the External Quantum Efficiency and

the J-V characteristic. Several simulations are also obtained for a n-p Al0.4Ga0.6As

solar cell and for a hetero-junction Al0.4Ga0.6As-GaAs n-p solar cell. In the previous

Chapter we have found positive and negative properties of several types of SJ solar

cells. Moreover, we have seen that, by playing around with different parameters, it

is possible to increase the photocurrent, the EQE or others for a higher conversion

efficiency. However, from Chapter 2, we have concluded, thanks to S-Q model, that a

DJ solar cell was able to achieve an efficiency higher than that of a SJ one.

DJ solar cells are built by stacking III-V semiconductor layers on top of each other, as

several diodes of different materials in series where the current flow between the diodes

is realized, practically, by interconnecting them with intermediate tunnel junctions

crossed by the electrons thanks to the tunnel effect (Fig. 1.15).

In order to overcome the current matching constraints and achieve a simpler structure

respect to the traditional MJ ones, the aim of this chapter is to explore a new kind of

DJ solar cell based on a multi-terminal n-p-n structure, similar to a heterostructure

bipolar transistor (HBJT) proposed, recently, by A. Marti and A. Luque [11]. They

were strong-minded about the calculation of the efficiency limit by using the Shokley

and Queisser [12]; we will study this new kind of DJ solar cell extending the Hovel

model [14].

We will analyze the simulations, using Al0.4Ga0.6As and GaAs materials in order to

understand how this kind of device replies to the Solar Spectrum, investigating its

features and perhaps recommend some optimization.

We will find that is necessary review the fundamental constraints of a common bipolar

structure in order to obtain the same efficiency of a double junction solar cell.

83
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4.1 Bipolar Junction Transistor

First, it is necessary to summarize some properties of the bipolar junction transistor

(BJT). Considering a simplified structure n-p-n in Fig. 4.1:

Figure 4.1: n-p-n Bipolar Junction Transistor.

The device is made of three regions doped differently. In Fig. 4.1, for an n-p-n BJT,

emitter is n-doped, base p-doped and collector n-doped. There is a terminal contact

for each region, for this the Bipolar transistor is known as a three-terminal device [21].

Observing emitter-base junction and base-collector junction we can detect two different

diodes. We know that based on how a diode is biased its behavior changes (Fig. 4.2).

Figure 4.2: BJT device can work in four different regions depending on the value of

VBE and VBC .

Fig. 4.2 shows the four operating regions for a BJT [8]:
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• Active region (VBE > 0 and VBC < 0) is used if the transistor must be used as

an Amplifier;

• Saturation (VBE > 0 and VBC > 0) and Cut-off (VBE < 0 and VBC < 0) mode

when the BJT operates like a switching device, for example in digital applications;

• Reverse Active (VBE < 0 and VBC > 0) mode is generally not used; it is

specular to the active region but with marginal or no current gain due to the

device optimization in terms of doping.

For our goal, we explore the Saturation mode. First, we want to find the Ebers-Moll

model, a circuital model helps us to understand how a BJT works.

Fig. 4.3 shows the Band Diagram for a BJT at equilibrium and biased in saturation

mode.

Figure 4.3: Band Diagram: on the left BJT not biased, on the right BJT in saturation

mode.

From the theory [8], we know that if we put in contact a n-doped material and a p-

doped one, a depletion region is formed and there is a built in potential barrier able

to block majority carriers. In saturation mode, the voltage drop at the junction E-B

and B-C is lower than that one at equilibrium. In this case, electrons in the emitter

Conduction band can cross the barrier and arrive in the base (Red Current flow FeE
in Fig. 4.3). In this region, there are two kind of situations based on the relationship

between the width of the base WB and the length that electrons can travel before

recombine, expressed by the diffusion length LD:

• if WB > LD significant Recombination takes place;

• if WB < LD marginal Recombination takes place.

For a BJT, working in saturation mode, it is very important the second condition

because, if there is a marginal recombination, electrons can cross the base and be

collected by the collector terminal creating a Current flow FeE between the emitter

and collector (Fig. 4.3). In general, a BJT works like a switch in digital applications:

cut-off mode in order to have switch OFF and in saturation mode in order to have
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switch ON, so maximum transfer of current between emitter and collector. Hence,

there is a relationship between the electrons that are injected from the emitter and the

electrons that, indeed, arrive at the collector because of Recombination in the base. In

Active region the transport of electrons by the emitter to collector FeE is the largest

component in a well-designed transistor [8] and the flow FeC is not allowed. In this last

operating region, the performance of a BJT is described in terms of its base transport

factor αT and emitter injection efficiency γ that for a n-p-n transistor are defined as

follows:

αT ≡
ICn
IEn

(4.1)

γ ≡ IEn
IEn + IEp

(4.2)

γ is a measure of the injected electron current compared with the total emitter current

IE; αT is the ratio between the electron current component able to reach the collector

region and the electron current injected from the emitter region. A BJT can reach

its ideal performance, the ideal transistor effect, if both the base transport factor and

emitter injection efficiency approach unity.

In Saturation mode, both E-B and B-C are direct biased, so the voltage drop is small in

both junctions. In this case, there is not only the Current flow FeE but also the Current

flow FeC given by the electrons can cross the barrier going from the collector to the

emitter. Again, it is possible quantify the electrons injected from the emitter towards

the collector by the base transport factor parameter αF and the electrons injected from

the collector towards the emitter by the base transport factor parameter αR.

The points made above are also valid for the holes (Blue Current Flow FhE and FhC
in Fig. 4.3), with the only difference that the flux of the holes is the opposite to that

of the electrons.

Considering Fig. 4.3, let’s calculate the total flux to the emitter and the total flux to

the collector.

At the emitter:

FE − FeE + αRFeC + FhE − αRFhC = 0 (4.3)

Considering that Ie = −qFe and Ih = qFh, the total emitter Current will be:

IE = −(IeE + IhE) + αR(IeC + IhC) (4.4)
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At the collector:

FC − FeC + αFFeE + FhC − αFFhE = 0 (4.5)

The total collector current will be:

IE = −(IeC + IhC) + αF (IeE + IhE) (4.6)

Eq. 4.4 and Eq. 4.6 lead to the Ebers-Moll model:

IE = −IDE + αR(IDC) (4.7)

IC = −IDC + αF (IDE) (4.8)

By Eq. 4.7 and Eq. 4.8, we can conclude that the bipolar transistor can be modeled by

two diodes, whose current components are IDE and IDC , and two Current Controlled

Current Sources, αF IDE and αRIDC .

Fig. 4.4 is the Ebers-Moll scheme, based on Eq. 4.7 and Eq. 4.8:

Figure 4.4: Bipolar Junction Transistor: Ebers-Moll model.

The parameter αR/F can have values in the range 0 < αR/F < 1.

• If αR/F is ideally equal to 1, the charges are able to be collected in the collector

or emitter without recombination, hence IC ' IE.

• If αR/F is ideally equal to 0, the charges recombine and the current will be a lot

smaller.

In a normal BJT it is clear that we want the first situation with αR/F = 1, traduced

in practical parameters with WB < LD.
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4.2 BJT under illumination

In the previous discussion we have only considered the contributions obtained without

illumination. Based on the fact that the goal is using a Bipolar Transistor structure as

a solar cell device is necessary collocate, in this model, the photocurrent component.

Consider the BJT of Fig. 4.1 with two loads: one between emitter and base and

another between base and collector according to the scheme in Fig. 4.5:

Figure 4.5: BJT device.

Let’s illuminate the BJT from the emitter surface. It should be noted that when a

BJT is under illumination it is working in a Saturation mode where VBE is the voltage

on the load REB and the VBC is the voltage on the load RBC .

From Fig. 4.5 the total power P extracted from the cell is that through two resistors

REB and RBC .

Pout = IEVBE + ICVBC (4.9)

In Section 2.2, the total power extracted by the DJ solar cell was limited by the mini-

mum current between the top diode and the bottom diode (Fig. 2.8) and the electron

flow was allowed by a tunnel diode; hence the optimizations of the device taken also

into account these current constraints. Instead, considering a BJT structure there are

several advantages. The structure in its simplicity reduces the number of layers avoid-

ing tunnel junctions and above all overcomes the constraint on the current flow thanks

to the three-terminal configuration by eliminating the configuration in series of the two

diodes (Fig. 4.4). Hence, we should be able to maximize independently the current

components IE and IC .

Fig. 4.6 shows the photogenerated flows. These are in addition to the fluxes, in Dark

condition, of Fig. 4.3 . When the BJT device is illuminated, again there are different

fluxes linked to the transport of the minority charges based on diffusion phenomena.
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Figure 4.6: Current flows developed under illumination condition.

Under illumination, there is an enhancement of the quantity of the minority charges:

• pn in the emitter n-region creating the current flux F PH
hE

• np in the base p-region creating the current flux F PH
eB

• pn in the collector n-region creating the current flux F PH
hC

Considering Fig. 4.6 and 4.3 the photogenerated fluxes are in opposite directions to

that generated in the dark condition. By these considerations, we can define the Ebers-

Moll model with both Photogenerated and Dark Current components (Fig. 4.7).

Figure 4.7: BJT-like solar cell: Ebers Moll model under illumination.

The Ebers-Moll model of Fig. 4.7 has, in addition, the component of the photo-

generated current, IPHE and IPHC , with respect to that of the Fig. 4.4.
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There is a high dependence between the parameter αR/F and the generated photocur-

rent. In Chapter 3 there is an important plot of the Generation rate (Fig. 3.5, Fig.

3.6). In that case we have observed that the Generation rate is based on λ and x, the

dimension of the device along the photons propagate. Hence, if the base is short, de-

pending the material adopted, the base will be able or not to absorb some wavelengths.

The photocurrent depends a lot by the Generation rate; hence the dimension of each

Bipolar Transistor region should influence the total Photocurrent. Probably, for a BJT

working under illumination, having a short base can be the worst case.

In this context there is another aspect to underline. In Ebers Moll model, having a

BJT with a long base is translated, ideally, into the condition αR/F =0. Only in this

case the Ebers Moll model has the scheme of Fig. 4.8:

Figure 4.8: BJT-like solar cell: Ebers Moll model under illumination with αR/F=0.

Increasing the base dimension, developing a situation of WB > LD with total recom-

bination in the base region, in the Ebers-Moll Model it is possible to delete the two

Current Controlled Current Sources (Fig. 4.7).

In this situation a Bipolar Transistor can be seen like two diodes with a common region.

Without simulations a first idea can be that a multi-terminal solar cell can be approx-

imated by two different solar cells. In order to understand if our considerations are

correct, we extend the Hovel model to a BJT structure in order to obtain an analytical

way to describe the photovoltaic characteristic of the device.
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4.3 Analytical model: multi-terminal solar cell with

Bipolar Transistor structure

In order to study the diffusion current along the device, it is necessary to extend the

Hovel model, studied in Chapter 3 for a SJ solar cell, to a BJT structure (Fig. 4.9):

Figure 4.9: Bipolar Junction Transistor structure.

From Fig. 4.9 the dimensions of emitter collector and base are W1, W2 and W3 respec-

tively. The thicknesses of the depletion regions are: W1 − xj1 for the n-emitter side,

xpl for the p-base side at the interface with the emitter, instead xpr at the interface

with the collector and finally W
′
3 for the n-collector side. W

′
2 is the dimension of the

base without the depletions region. H is the depth of the solar cell.

The material used for the emitter and base is the same, developing a homojunction;

instead the collector has different material; hence creating a heterojunction between

base and collector. The material used for the emitter and base is Al0.4Ga0.6As and for

the collector is GaAs; α1 is the absorption coefficient for Al0.4Ga0.6As and α2 for GaAs.

We note that in Chapter 3 we have studied separately the n-p homojunction solar cell

in Al0.4Ga0.6As and the heterojunction solar cell in Al0.4Ga0.6As-GaAs.

4.3.1 Emitter region

The approach is the same of Section 3.2. First, consider the n-type emitter region

whose starting equation is:

d2(pn − pn0)

dx2
−
(
pn − pn0

Dpτp

)
+

(
α1F (1−R)e(−α1x)

Dp

)
= 0 (4.10)

The associated boundary equations, without considering Dark conditions, are:

d(pn − pn0)

dx
=
Sp
Dp

(pn − pn0); for x = 0 (4.11)

pn − pn0 = 0; for x = xj1 (4.12)
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The solution is the same of that of the previous chapter, just changing the electrons

with holes, arriving to the solution given in Eq. 4.13:

pn − pn0 = δ

e−α1xj1

(
cosh

(
x

Lp

)
+
SpLp
Dp

sinh

(
x

Lp

))
+ sinh

(
xj1 − x
Lp

)(
α1Lp +

SpLp
Dp

)
cosh

(
xj
Lp

)
+
SpLp
Dp

sinh

(
xj
Lp

)
+

− δe−α1x (4.13)

where δ =
α1F (1−R)τp
α2

1L
2
p − 1

.

From equation:

Jp = −qDp
dpn
dx

(4.14)

it is possible to obtain the hole diffusion current density, for x = xj1:

Jp = qLp
α1F (1−R)

α2
1L

2
p − 1

−e−α1xj1

(
sinh

(
xj1
Lp

)
+
SpLp
Dp

cosh

(
xj1
Lp

))
+

(
α1Lp +

SpLp
Dp

)
cosh

(
xj1
Lp

)
+
SpLp
Dp

sinh

(
xj1
Lp

)
+

− qLp
α1F (1−R)

α2
1L

2
p − 1

(
α1e
−α1xj1

)
(4.15)

In order to obtain also the Dark current we put the Generation rate equal to zero:

1

q

(
dJp
dx

)
+
pn − pn0

τp
= 0 (4.16)

considering the boundary conditions (Eq. 4.17 and Eq. 4.18):

d(pn − pn0)

dx
=
Sp
Dp

(pn − pn0); for x = 0 (4.17)

pn = pn0e

qVBE
kT


; for x = xj1 (4.18)

where VBE is the voltage across the load RBE.

Solving Eq. 4.16 and using the previous boundary equations we obtain the Dark cur-

rent.
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Let’s write the complete equation for the minority charges in the emitter for x = xj1 :

JpE = qLp
α1F (1−R)

α2
1L

2
p − 1

−e−α1xj1

(
sinh

(
xj1
Lp

)
+
SpLp
Dp

cosh

(
xj1
Lp

))
+

(
α1Lp +

SpLp
Dp

)
cosh

(
xj1
Lp

)
+
SpLp
Dp

sinh

(
xj1
Lp

)
+

− qLp
α1F (1−R)

α2
1L

2
p − 1

(
α1 e−α1xj1

)
+

− qDp
ni2

ND

1

Lp

sinh

(
xj1
Lp

)
+
SpLp
Dp

cosh

(
xj1
Lp

)
cosh

(
xj1
Lp

)
+
SpLp
Dp

sinh

(
xj1
Lp

)
(e

(
qVBE
KT

)
− 1

)
(4.19)

4.3.2 Base region

The starting equation for the p-type base region is:

d2(np − np0)

dx2
−
(
np − np0
Dnτn

)
+

(
α1F (1−R)e(−α1x)

Dn

)
= 0 (4.20)

Solving the differential equation, we obtain the solution given by the Eq. 4.21, like in

the Chapter 3.

np − np0 = Γe

( x

Ln

)
+ Θe

(
−
x

Ln

)
− δe−α1x (4.21)

In order to obtain directly both the Photocurrent and the Dark Current, consider the

boundary conditions (Eq. 4.22 and Eq. 4.23) based on the Boltzmann relationships

for carriers on the two sides of the junction:

np − np0 = n
′

p = np0

e

qVBE
KT


− 1

 ; for x = W1 + xPL (4.22)

np − np0 = n
′′

p = np0

e

qVBC
KT


− 1

 ; for x = W1 + xPL +W
′

2 (4.23)
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For x = W1 + xPL, Eq. 4.21 yields to:

Γe

W1 + xPL
Ln


+ Θe

−W1 + xPL
Ln


− δe−α(W1+xPL) = n

′

p (4.24)

From the previous equation:

Γ = e

−W1 + xPL
Ln

 −Θe

−W1 + xPL
Ln


+ δe−α(W1+xPL) + n

′

p

 (4.25)

Then, apply the boundary condition Eq. 4.23 for x = W1 + xPL +W
′
2 to Eq. 4.21:

e

−W1 + xPL
Ln

 −Θe

−W1 + xPL
Ln


+ δe−α(W1+xPL) + n

′

p

 e

W1 + xPL +W
′
2

Ln


+

+ Θe

−W1 + xPL +W
′
2

Ln


− δe−α

(
W1+xPL+W

′
2

)
= n

′′

p (4.26)

The Eq. 4.26 can be rewritten in the following way:

−Θe

−W1 + xPL
Ln


e

W
′
2

Ln


+ Θe

−W1 + xPL +W
′
2

Ln


=

= −δe
−α

W1+xPL+
W
′
2

Ln


+ δe

−α
(
W1+xPL+W

′
2

)
− n′pe

W
′
2

Ln


+ n

′′

p (4.27)

Also considering that:

−θe

−W1 + xPL
Ln


e

W
′
2

Ln


− e

−W
′
2

Ln


 = −Θe

−W1 + xPL
Ln


2sinh

(
W
′
2

Ln

)



Chapter 4 95

It is possible obtain Θ:

Θ =
e

W1 + xPL
Ln



2sinh

(
W
′
2

Ln

)
δe−α(W1+xPL)

 e

W
′
2

Ln


− e−W

′
2

− n′pe
W

′
2

Ln


+ n

′′

p

 (4.28)

Replacing Θ in Γ:

Γ =
e

−W1 + xPL
Ln



2sinh

(
W
′
2

Ln

)
n′p

e
W

′
2

Ln


− e

−W
′
2

Ln


− n′pe

W
′
2

Ln


+ n

′′

p

+

+
e

−W1 + xPL
Ln



2sinh

(
W
′
2

Ln

)
−δe−αxj

e

W
′
2

Ln


− e−αW

′
2

+ δe−αxj

e

W
′
2

Ln


− e

−W
′
2

Ln





(4.29)

Simplifying the previous equation:

Γ =
e

−W1 + xPL
Ln



2sinh

(
W
′
2

Ln

)
−n′pe

−

W
′
2

Ln


+ n

′′

p + δe−αxj

e−αW
′
2 − e

−W
′
2

Ln



 (4.30)

Substituting Eq. 4.30 and Eq. 4.28 in Eq. 4.21, this last one becomes:

np − np0 =
e

−W1 + xPL
Ln



2sinh

(
W
′
2

Ln

) e

( x

Ln

) −n′pe
−W

′
2

Ln


+ n

′′

p + δe−αxj

e−αW
′
2 − e

−W
′
2

Ln





+
e

W1 + xPL
Ln



2sinh

(
W
′
2

Ln

) e

(−x
Ln

) n′pe
−W

′
2

Ln


− n′′p + δe−αxj

 e−αW
′
2 − e

−W
′
2

Ln





(4.31)
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Using Eulero transformations, the previous yields to:

np − np0 = n
′

p


sinh

(
xj +W

′
2 − x

Ln

)
sinh

(
W
′
2

Ln

)
− n′′p


sinh

(
xj − x
Ln

)
sinh

(
W
′
2

Ln

)
+

− δe−α
(
W
′
2+xj

)


sinh

(
xj − x
Ln

)
sinh

(
W
′
2

Ln

)
+ δe−αxj


sinh

(
xj +W

′
2 − x

Ln

)
sinh

(
W
′
2

Ln

)
− δe−αx (4.32)

In order to obtain the diffusion current, apply the following equation:

Jn = qDn
dnp
dx

(4.33)

So, for x = xPL +W1, the electron diffusion current is:

JnEB = qLn
α1F (1−R)

α2
1L

2
n − 1


np0

e

(
qVBC
KT

)
− 1

+ e
−α1

(
xPL+W1+W

′
2

)

sinh

(
W
′
2

Ln

)


+

− qLn
α1F (1−R)

α2
1L

2
n − 1


np0

e

(
qVBE
KT

)
− 1

+ e−α1(xPL+W1)

sinh

(
W
′
2

Ln

) cosh

(
W
′
2

Ln

)
+ Lnα1 e−α1(xPL+W1)


(4.34)
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So, for x = xPL +W1 +W
′
2, the electron diffusion current is:

JnBC = qLn
α1F (1−R)

α2
1L

2
n − 1


np0

e

(
qVBC
KT

)
− 1

+ e
−α1

(
xPL+W1+W

′
2

)

sinh

(
W
′
2

Ln

) cosh

(
W
′
2

Ln

)


+

− qLn
α1F (1−R)

α2
1L

2
n − 1


np0

e

(
qVBE
KT

)
− 1

+ e−α1(xPL+W1)

sinh

(
W
′
2

Ln

) + Lnα1e
−α1

(
xPL+W1+W

′
2

)


(4.35)

4.3.3 Collector region

In order to obtain the photocurrent in the collector region it is necessary to consider

that between the base and collector there is a heterojunction.

In this case, the term of the Generation rate changes taking into account the different

refraction index between the interface Al0.4Ga0.6As/GaAs and the different absorption

coefficient (Section 3.3.6 for more details).

Also for the collector, the solution of Eq. 4.36 is similar to that of Chapter 3. In order

to give a complete solution, we report only the relevant changes in the equations with

respect to the solution procedure explained in Section 3.2.2. The starting equation is:

d2(pn − pn0)

dx2
−
(
pn − pn0

Dpτp

)
+

(
α2F (1−R)e−α1(W1+W2)(1−R′)e−α2(x−W1−W2)

Dp

)
= 0

(4.36)

The general solution of the differential equation is:

pn − pn0 = Acosh

(
x

Lp

)
+Bsinh

(
x

Lp

)
− δe−α2(x−(W1+W2)) (4.37)

where:

δ =
τpα2F (1−R) (1−R′)eα1(W1+W2)

α2
2L

2
p − 1
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Eq. 4.38 and Eq. 4.39 give the boundary equations at VBE = 0 and VBC = 0:

pn − pn0 = 0; for x = W1 +W2 +W
′

3 (4.38)

d(pn − pn0)

dx
= − Sp

Dp

(pn − pn0); for x = H (4.39)

Solving Eq. 4.37 with the Eq. 4.38 and the Eq. 4.39:

pn − pn0 =
α2(1−R′)F (1−R)τpe

−α1(W1+W2)e−α2(W
′
3)

α2
2L

2
p − 1

[
cosh

(
x−W1 −W2 −W

′
3

Lp

)
−

e−α2(x−W1−W2)

]
−

[
α2(1−R′)F (1−R)τpe

−α1(W1+W2)e−α2(W
′
3)

α2
2L

2
p − 1

sinh
x−W1 −W2 −W

′
3

Lp

]

x


SpLp
Dp

[
cosh

H ′

Lp
− e−α2H′

]
+ sinh

H ′

Lp
+ α2Lpe

−α2H′

cosh

(
H ′

Lp

)
+
SpLp
Dp

sinh

(
H ′

Lp

)
 (4.40)

where H
′
= H − (W1 +W2 +W

′
3) .

In order to obtain the dark current, we put the Generation rate equal to zero considering

the following boundary conditions:

pn = pn0e

qVBC
kT


; for x = W1 +W2 +W

′

3 (4.41)

d(pn − pn0)

dx
= − Sp

Dp

(pn − pn0); for x = H (4.42)

where VBC is the voltage across the load RBC .

Solving Eq. 4.37, with the Generation rate equal to 0, and using the previous boundary

conditions we obtain the Dark current.

Eq. 4.43 is the complete solution with both Dark current and Photocurrent for x =

W1 +W2 +W
′
3.
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JpC = −qLpα2(1−R′)F (1−R)e−α1(W1+W2)e−α2(W
′
3)

α2L2
p − 1

x

α2Lp −

SpLp
Dp

[
cosh

H ′

Lp
− e−α2H′

]
+ sinh

H ′

Lp
+ α2Lpe

−α2H′

cosh

(
H ′

Lp

)
+
SpLp
Dp

sinh

(
H ′

Lp

)


+ qDp
ni2

ND

1

Lp


sinh

(
H
′

Lp

)
+
SpLp
Dp

cosh

(
H
′

Lp

)
cosh

(
H
′

Lp

)
+
SpLp
Dp

sinh

(
H
′

Lp

)

(

e

(
qVBC
KT

)
− 1

)
(4.43)

In order to have a complete model, it is necessary to introduce the equations of the

generated photocurrent into the depletion regions.

In the depletion region between emitter and base:

JdrEB = qF (1−R)e−α1(xj1)
(

1− e−α1W
′
1

)
(4.44)

In the base depletion region for (W1 +W2 − xPR) < x < (W1 +W2):

JdrBC = qF (1−R)e−α1(xj2)
(
1− e−α1xPR

)
(4.45)

In the collector depletion region for (W1 +W2) < x < (W1 +W2 +W
′
3):

JdrC = qF (1−R)(1−R′)e−α1(W1+W2)
(

1− e−α2W
′
3

)
(4.46)

Now, we can define the short-circuit current from the emitter part JscE (Eq. 4.47) and

collector part (Eq. 4.48) JscC for VBE = 0 and VBC = 0.

From Eq. 4.19, Eq. 4.44 and Eq. 4.34, we can obtain:

JscE = JpE + JdrEB + JnEB (4.47)

Eq. 4.35, Eq. 4.45, Eq. 4.46 and Eq. 4.43 yield to:

JscC = JnBC + JdrBC + JdrC + JpC (4.48)

Considering Eq. 4.47, Eq. 4.48, it is possible obtain the nominal efficiency of a HBJT

solar cell:

ηn =
(JscE V

oc
BE) + (JscC V

oc
BC)

Pin
(4.49)

where the open-circuit voltage V oc
BE and V oc

BC can be obtained considering the total

current from emitter and collector respectively equal to zero; Pin is the power incident

on the solar cell surface.
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4.4 Simulations: multi-terminal solar cell with Bipo-

lar Transistor structure

We have obtained the analytical model able to describe the current components in each

region of the BJT. Hence, we are ready, through the following simulations, to find how

a traditional BJT can achieve a good efficiency as solar cell.

4.4.1 A common BJT as a solar cell device

First, we consider the BJT in Dark condition in order to observe the concentration

profile of the minority charges along the device.

We impose possible values for VBE and VBC similar to that we should obtain under

illumination considering the open circuit voltages.

The parameters, referred to Fig. 4.9, have the following values:

W1 W2 W3 H xPL xPR NDE NAB NDC LpE LnB LpC
[µm] [µm] [µm] [µm] [µm] [µm] [cm−3] [cm−3] [cm−3] [µm] [µm] [µm]

2 0.6 5.4 8 0.047 0.046 1019 1018 1019 0.27 1.38 0.3

Fig. 4.10 shows the minority carriers concentration profile for emitter, base, and col-

lector.

Figure 4.10: Minority carriers concentration profile along the device.

From Fig. 4.10 is interesting to observe the linear behavior of the minority concentra-

tion profile in the base; this confirms that there is not recombination phenomena along

the base. For a common BJT this is the best case!

Now, we should discover if this case is the best also when the BJT is under illumination.

First of all, let’s consider the spectral response EQE

EQE =
JphpE
qF

+
JdrB
qF

+
JphnEB + JphnBC

qF
+
JdrBC + JdrC

qF
+
JphpC
qF

(4.50)

In order to understand how each component of a traditional BJT replies to the Solar

Irradiance let’s observe Fig. 4.11.
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Figure 4.11: External Quantum Efficiency for a common BJT structure.

From Fig. 4.11, we can detect that each component has bad spectral response. The

peak of absorption is in the collector region around 0.35 that is a very small value.

Let’s observe the diffusion photocurrent JphpE in emitter, JphnB in base and JphpC in collector

region shown in Fig. 4.12:

Figure 4.12: Diffusion Photocurrent JphpE in emitter region, JphnB in base region and JphpC
in collector region.

Both Fig. 4.11 and Fig. 4.12 are based on the values of the previous table that are

typical of a Bipolar Transistor where both emitter and collector are more doped than

the base whose width is short in order to avoid recombination phenomena (confirmed

from Fig. 4.10).

In Fig. 4.12 data tips are positioned in the points linked to the boundary conditions

where the diffusion photocurrent components are calculated:

• emitter part: x = xj1;

• base part: x = W1 + xPL and x = W1 + xPL +W
′
2;

• collector part: x = W1 +W2 +W
′
3.
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In the positions itemized, the relative photocurrent has a very small value, hence the

total emitter current (Eq 4.47) and collector current (Eq. 4.48) will be small, leading

to a low efficiency.

It is possible conclude that a standard HBJT with these dimensions and doping levels

cannot be used as solar cell.

As we have said in Section 4.2, there is a strong dependency between the base width,

the Generation rate and the photocurrent density. In particular, we have underlined

that if the base is short, probably we should have a bad photocurrent components, also

proven from simulations in Fig. 4.11 and in Fig. 4.12.

Based on this consideration, let’s change some parameters in order to find out if we

have some improvements.

Let’s suppose to increase the base dimension; in the following table we report the value

of the new structural parameters:

W1 W2 W3

[µm] [µm] [µm]

0.7 4 3.3

First, increasing the base width, let’s see also how the minority concentration profile

in the base changes.

Fig. 4.13 shows the new concentration profile of the minority charges in Dark condition.

Figure 4.13: Minority carriers concentration profile along the base.

In Fig. 4.13, it is possible to note the Recombination phenomena. In fact, increasing

the base Width up to 4 µm the behavior changes from linear (Fig. 4.10) to exponential
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(Fig. 4.13) due to Recombination (LnB < W2).

Let’s observe the base photocurrent:

Figure 4.14: Photocurrent in the base region for W2 = 0.6µm and for W2 = 4µm.

From Fig. 4.14, we can see that increasing the width of the base the value of the

photocurrent at the boundary conditions increases respect to that obtained for a short

base. In particular, the dashed line is achieved only changing structural parameters.

In order to increase both photocurrent in emitter, base and collector it is also necessary

reasoning on the effect of the doping level.

For the purpose of finding the best compromise for our structure we remember that

doping parameter and dimensions are linked. Indeed, there are several points to take

into account; following we report the most important points:

• If we put in contact a n-region and a p-region, a depletion region is formed and

it will cover more space in the material less doped. Let’s consider a practical

example linked to our device. If the emitter is less doped respect to the base,

we put attention that the depletion region doesn’t cover all the emitter part.

The greater the emitter region covered from the depleted one, the lower will be

its spectral response. By this, it is necessary to examine how the doping level

influences the dimensions of the depletion region respect to the width of the

emitter part.

• Another important parameter is the diffusion length and the problem of the
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recombination. This phenomenon, in the collector and in the emitter, is not good

because we want that electrons and holes should be collected at the contacts. We

know that there is a strong connection between doping level and diffusion length.

Consider a practical case. Emitter is, in our case of study, n-type doped. This

has an important consequence on the quantity of the holes and electrons. For the

electrons, the diffusion length in the n-material is not important because they

are the majority carriers: a very small quantity recombines with holes, so this

percentage of electrons is negligible. Instead, the amount of holes is very low in a

n-type material. This means that if the diffusion length of the holes is very low,

the recombination is high and holes cannot be collected. Hence, the generated

photocurrent in the emitter and collector will be very small. This effect can be

seen, very well, in the spectral response (Fig. 4.11) with high doping level in the

emitter and collector.

Usually, in a common BJT, the emitter and collector doping is higher than that

in base because the minority charges have a different and negligible roles.

Instead, for a BJT used as solar cell is very important that holes can be collected,

avoiding recombination. In order to do that we can working on the doping and

on the width of the emitter. It is important noting the role of the emitter and

collector are different. In fact, the first is the window, the first layer exposed to

the Solar Irradiance, of a hypothetical solar cell. Instead, the collector has the

role of a “base”, “base” referred to the term used for a common Single Junction

solar cell.

• For the collector region is important a good thickness in order to collect the part

of SI with high wavelength.

Summarizing, the starting point was considering a BJT with its common structural

and doping parameters. In that case, from Fig. 4.11 and Fig. 4.12 we have noted

that the EQE and the photocurrent for the base, emitter and collector had a bad

values; concluding that a common BJT cannot be a good solar cell device. Hence,

we have changed the width of the base finding, from Fig. 4.14, that the values of the

photocurrent, in the base, rise increasing the base dimensions.

Now, we try to do some changing on doping and structure dimensions. It is very

difficult find the best structure; our aim is to achieve a medium optimization in order

to understand if our BJT with some changes can be used as a solar cell.

Let’s consider the parameters reported in the following tables:

W1 W2 W3 H (W1 − xj1) xPL xPR W
′
3 NDE NAB NDC

[µm] [µm] [µm] [µm] [µm] [µm] [µm] [µm] [cm−3] [cm−3] [cm−3]

0.7 4 1.3 6 0.14 0.014 0.015 0.15 1017 1018 1017
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SpE SpC LpE LnB LpC[
m
s

] [
m
s

]
[µm] [µm] [µm]

5 x 103 5 x 103 4 1.38 5

Based on these parameters, Fig. 4.15 shows the Diffusion Photocurrent along the

device.

Figure 4.15: Diffusion Photocurrent along the BJT structure.

First, it is necessary to remember that the BJT, that we are simulating, is composed

by Al0.4Ga0.6As emitter and base and GaAs collector. The width of the base, now, is

W2 = 4µm with a high Recombination phenomena (Fig. 4.13). This means that in the

Ebers-Moll model of Fig. 4.7 both the parameters αR and αF decrease to zero. Hence

we are moving to the Ebers-Moll model of Fig. 4.8 where the BJT can be represented

by two diodes with a common region:

• a n-p diode in Al0.4Ga0.6As;

• a p-n diode in Al0.4Ga0.6As-GaAs.

Each diode can be seen as a SJ sub-cell connected to a load. Hence, we are reducing

to the cases just studied in Section 3.3.6 where we have applied the Hovel model to a

n-p homojunction Al0.4Ga0.6As solar cell and in Section 3.3.7 for a heterojunction p-n

Al0.4Ga0.6As-GaAs solar cell.
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We report the simulations about the diffusion photocurrent obtained in the cases men-

tioned (Fig. 4.16).

Figure 4.16: Diffusion Photocurrent for a homojunction n-p Al0.4Ga0.6As solar cell and

for a heterojunction p-n Al0.4Ga0.6As-GaAs solar cell.

Let’s observe Fig. 4.15 and Fig. 4.16 based on the same parameters. Very interesting

is the behavior of the base Diffusion photocurrent referred to the BJT (red line in Fig.

4.15) respect to the same Diffusion photocurrent for the two types of solar cell (red and

yellow line in Fig. 4.16). In fact, we can note that the base photocurrent in bipolar

transistor is nothing than more a compromise between the two curves obtained from

the single sub-cells. Initially, its behavior is similar to that we can find in the n-p

solar cell (red line), and then, around x = 3µm, the electrons photocurrent of Fig. 4.15

changes its behavior leading to that of the electrons photocurrent in the emitter region

of the p-n heterojunction solar cell (yellow line). About the emitter and collector bipo-

lar transistor photocurrent it is possible to note that they are the same respectively to

the Holes Diffusion Current of the n-p solar cell and to the Holes Diffusion Current of

the p-n solar cell. It is possible to conclude that increasing the width of the base, the

photocurrent components of the n-p-n BJT solar cell lead to that of two independents

n-p and p-n sub-cells. Hence, by changing the traditional structure parameters, a BJT

can be used as a possible solar cell.
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4.4.2 A better design

First, let’s observe the External Quantum Efficiency of Fig. 4.17 considering the pa-

rameters of the previous table.

Figure 4.17: External Quantum Efficiency for a BJT solar cell.

From Fig. 4.17 we can observe that the EQE has improved respect to that of Fig. 4.11.

However, the spectral response is not good above all in the emitter region.

In order to increase the EQE, let’s consider the following parameters:

W1 W2 W3 H (W1 − xj1) xPL xPR W
′
3 NDE NAB NDC

[µm] [µm] [µm] [µm] [µm] [µm] [µm] [µm] [cm−3] [cm−3] [cm−3]

0.1 3 4.9 8 0.0.34 0.034 0.014 0.15 1018 1018 1017

SpE SpC LpE LnB LpC[
m
s

] [
m
s

]
[µm] [µm] [µm]

5 x 103 5 x 103 1 1.38 5

Fig. 4.18 shows the External Quantum Efficiency considering separately emitter base

sub-cell and base collector one.

The blue line in Fig. 4.18 is obtained from:

EQEEB =
JphpE
qF

+
JdrB
qF

+
JphnEB
qF

(4.51)

The green line in Fig. 4.18 is obtained from:

EQEBC =
JphnBC
qF

+
JdrBC + JdrC

qF
+
JphpC
qF

(4.52)
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Figure 4.18: External Quantum Efficiency for emitter-base and base-collector sub-cell.

From Fig. 4.18 we can note that the EQE is increased respect to the previous cases.

This means that with some changes the BJT can have a good External Quantum Effi-

ciency. In order to quantify how much Solar Irradiance this BJT solar cell can absorb,

we can observe Fig. 4.19. From this simulation we can detect that the BJT structure

has the behavior of DJ solar cell (Fig. 2.7), in fact the first layers of a material absorb

the first part of spectrum and the others, the remaining one.

Figure 4.19: Solar Irradiance absorbed by the emitter-base and base-collector sub-cells

respect to the total one.
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For the collector we have chosen GaAs material that has an Eg=1.42 eV. This means

that the part of the Solar Irradiance since λ > 870nm cannot be absorbed.

In order to solve this problem, the idea can be to choose a material with a smaller

Eg or very interesting should be using the BJT structure as a building block for a MJ

solar cell. In this way, for example, we can choose for the second BJT building block

materials with lower Eg in order to cover all parts of the Solar Irradiance spectrum.

However, in order to complete the discussion is very interesting to obtain the charac-

teristic J-V for the three-terminal HBJT solar cell.

In Fig. 4.5 we can detect two loads REB and RBC . The current JE on the load REB

is obtained from the sum of: JpE (Eq. 4.19), JdrEB (Eq. 4.34) and JnEB (Eq. 4.44),

instead on the load RBC the current JC is obtained from JnBC (Eq. 4.35), JdrBC (Eq.

4.43), JdrC (Eq. 4.45) and JpC (Eq. 4.46).

The short-circuit current JshE and JshC are obtained from Eq. 4.47 and Eq. 4.48.

Then, in order to obtain the open-circuit voltage V oc
BE across the load REB we put

VBC = 0 and JE=0.

For the open-circuit voltage V oc
BC across the load RBC we put VBE = 0 and JC=0.

We put also the Reflectance of the Al0.4Ga0.6As equal to 6.6% (taken by [20]); Sn and

Sp equal to 1.

Figure 4.20: emitter-base J-V characteristic and base-collector J-V characteristic.

Fig. 4.20 is based on the parameters reported in the following table:

W1 W2 H NDE NAB NDC

[µm] [µm] [µm] [cm−3] [cm−3] [cm−3]

0.1 2 14 1018 1018 1017
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The length diffusion for emitter, base and collector are the same of previous. The blue

and green characteristic are not good if we take them separately. The advantage of

this multi-terminal structure is that the base-emitter and the base-collector sub-cells

are connected to two independent loads leading to a high efficiency obtained from Eq.

4.49.

Finally, we propose some plots in order to understand how the total efficiency can

change respect to some parameters.

There are a lot of degrees of freedom linked to doping and to the structure dimensions.

We must remember that the creation of two sub-cells is linked to the dimension of the

base and to the recombination phenomena.

Fig. 4.21 shows the Nominal Efficiency respect to the emitter Thickness. In all solar

cells the emitter layer thickness has an important effect on the solar cell efficiency.

A good efficiency is given by a short emitter, but it is necessary to control that the

depleted region doesn’t cover the emitter one. In order to decide the best emitter

thickness, it will be necessary to put attention on both doping level and width of the

depletion region.

Figure 4.21: Nominal Efficiency versus emitter Thickness.

Finally, let’s consider the following parameters:

W1 W2 H NAB

[µm] [µm] [µm] [cm−3]

0.2 1.8 14 1018
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We have fixed a value for the base doping. Hence, let’s change the emitter doping and

collector one in order to observe the behavior of the Efficiency.

Figure 4.22: Nominal Efficiency based on emitter doping and collector doping.

Figure 4.23: Efficiency based on emitter doping and collector doping.

From Fig. 4.23 we can note that increasing the collector doping, the Efficiency de-

creases. In general, with the parameters chosen in this last section the maximum

nominal efficiency is around 26-27%. This value is consistent with values that can be

found in literature [22][23]. Probably, the efficiency found can be improved choosing

others structural parameters and levels doping.

However, from the previous results we must be optimistic on future developing of this

type of solar cell. Based on this thesis project it is possible to conclude that a multi-

terminal solar cell with Bipolar transistor structure can be used as an alternative to the

traditional DJ solar cell or as a building block for MJ solar cell reducing the number

of layers and at the same time avoiding tunnel junctions.



Conclusions

Solar power is one of the most important solutions against the non-renewable resources

that are the main resources for the energy production and responsible for ecological

disasters.

In modern days, there are several kinds of solar cells; MJ ones play a leading role

achieving a high conversion efficiency thanks to their structure and innovative mate-

rials. In general, for a successful solar cell, the keywords are: high efficiency, good

reliability and low manufacturing cost.

For MJ cells, the design and practical realization are not an easy task due to the current

limitations and the need of tunnel junctions. Furthermore, if the number of junctions

increases, the efficiency improves, but also the device complexity and manufacturing

costs rise.

In this scenario, multiterminal solar cells with heterojunction-bipolar transistor struc-

ture can be a good alternative to the traditional DJ solar cells. Indeed, as shown from

the study carried out in this thesis, this device is potentially usable as solar energy

absorbers, despite the fundamental limitations, such as requiring a long base. Partic-

ularly, the efficiency leads to that of a DJ solar cell alongside reducing the number of

layers and avoiding tunnel junctions.

Although the simulations of the MT bipolar transistor device lead to a confident conclu-

sion about the possibility of implementation, it is necessary to solve several problems.

In fact, this type of solar cell can be also used as a building block for MJ solar cell

leading to several challenges on the design and technological levels including but not

limited to the necessity to extract additional contacts to connect the sub cells indepen-

dently. Also many problems are linked to the design and layout of the metal grid.

At the end of this thesis, the hope is that the interest in this new kind of technology

and, in general, for photovoltaic devices will grow up in the coming years in order to

obtain solar cells more efficient able to become the driving force in the global energy

market.
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