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Abstract

This thesis was carried out at the research center Barcelona Supercomputing Center (BSC)

which is the national supercomputing center in Spain. It is specialized in High Performance

Computing and its mission consists in investigating, developing and exploiting technologies

in order to facilitate the scientific progress.

I had this opportunity through the research group CAOS (Computer Architecture - Operat-

ing System interface); it has a long experience in important projects with the industry, the

European Space Agency (ESA) and with the European Union (EU), specially as regards the

embedded systems.

Critical real-time embedded systems, such as automated driver assistance, surveillance cam-

eras, and drones, require high-performance hardware to be exploited in new applications.

In this scenario, the FPGAs provide a low development cost alternative with respect to the

ASIC custom chips; they also have the advantage of reconfigurability which allows to reduce

the lead time. Recently, research is moving towards open-source hardware modules that rep-

resent an opportunity; in parallel, during the last decades, Systems-on-Chip (SoCs) gained

an important role in the electronic world, for this type of applications and generally in the

embedded systems and Internet of Things (IoT) fields.

Performance improvements are continuously required; modern SoCs include multiple cores

and a higher number of each type of IP blocks. The system bottleneck can become the in-

terconnection because the traditional buses could not provide the required performance, e.g.

in terms of scalability and data transfer speed.

This thesis fits in this framework. Currently, the CAOS group is working on adapting a
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RISCV-based platform to the space domain. According to the requirements for this applica-

tion, the objective of this thesis has consisted in analyzing different typologies of intercon-

nection along with the related SoCs and cores (RISC-V ISA); finally trying to implement a

new mixed SoC configuration. The experience, in broad terms, could be split in two phases:

the first one concerns the analysis of a bus-based crossbar interconnect in the open source

SoC Untethered Rocket Chip; the second part involves the study of a Network-on-Chip Tile,

in order to replace the original MIPS core with the new RISC-V processor Lagarto.
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Abstract

Questo lavoro di tesi é stato svolto presso il centro di ricerca Barcelona Supercomputing Cen-

ter (BSC) che rappresenta il centro nazionale di supercomputazione in Spagna, specializzato

in High Performance Computing (HPC). La sua missione consiste in investigare, sviluppare

e gestire le tecnologie allo scopo di facilitare il progresso scentifico.

L’opportunitá di svolgere qùı questo progetto mi è stata data dal gruppo di ricerca CAOS

(Computer Architecture – Operating System interface); il quale ha una lunga esperienza in

importanti progetti con l’industria, con la Agenzia Spaziale Europea (ESA) e con l’Unione

Europea (EU), specialmente nel settore dei sistemi embedded.

L’industria spaziale richiede hardware ad alte prestazioni da sfruttare in nuove applicazioni.

In questo scenario, le FPGA forniscono un’alternativa a basso costo rispetto agli ASIC custom

chip; avendo inoltre il vantaggio della riconfigurabilità che permette di accorciare i tempi tec-

nici. Recentemente ci si sta muovendo verso moduli hardware open-source che rappresentano

un’opportunitá; parallelamente, durante le ultime decadi, i System-on-Chip (SoC) hanno ac-

quisito un ruolo importante nel mondo dell’elettronica, per questo tipo di applicazioni ed in

generale nel settore dei sistemi embedded e del Internet of Things (IoT).

Miglioramenti prestazionali sono continuamente richiesti; i moderni SoC includono più cores

e un maggiore numero di ogni tipo di IP. Il collo di bottiglia del sistema può diventare la in-

terconnessione poichè i consueti bus potrebbero non essere in grado di fornire le performance

richieste, scalabilità e velocità di trasferimento dati su tutte.

Il progetto realizzato si incastra in questa cornice. Attualmente il gruppo CAOS sta la-

vorando sull’adattamento di una piattaforma RISCV-based per il dominio spaziale. Sulla
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base dei requisiti per le applicazioni spaziali, l’obiettivo di questa tesi consiste nella analisi

dei diversi tipi di interconnessione insieme ai relativi SoC e processori (ISA RISC-V), infine

provando a implementare una nuova configurazione di System-on-Chip. Il progetto può essere

suddiviso in due fasi: la prima riguarda l’analisi di una crossbar/bus-based interconnessione

nel SoC open source called Untethered Rocket Chip; la seconda parte prevede lo studio di

un Tile che costituisce un nodo di una Network-on-Chip, allo scopo di rimpiazzare al suo

interno l’originale MIPS core con il nuovo processore Lagarto che implementa il sopracitato

ISA RISC-V.
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Chapter 1

Introduction

1.1 Overview

This thesis was carried out at the research center Barcelona Supercomputing Center (BSC)

which represents the national supercomputing center in Spain. It is specialized in High Per-

formance Computing and its mission consists in investigating, developing and managing the

technologies in order to facilitate the scientific progress.

The opportunity was giving to me by the research group CAOS (Computer Architecture -

Operating System interface); it has a long experience in important projects with the automo-

tive, space and avionics industry, the European Space Agency (ESA) and with the European

Union (EU), specially as regards the embedded systems.

Critical real-time embedded systems industry (e.g. space, avionics) requires high-performance

hardware to be exploited in new applications. In this scenario, the FPGAs provide a low-cost

alternative with respect to the ASIC custom chips; they also have the advantage of reconfig-

urability which allows to reduce the lead time. Recently, the research is moving towards to

open-source hardware modules that represent an opportunity.

During the last decades, the Systems-on-Chip (SoCs) gained an important role in the

electronic world, above all in embedded systems and Internet of Things.
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1.2. OBJECTIVES

Performance improvements are continuously required, so modern SoCs are used to incorpo-

rate multiple cores (MPSoCs) and, generally, a higher number of IPs: the system bottleneck

can become the interconnection.

For systems with intensive parallel communication requirements buses may not provide the

required bandwidth, latency, and power consumption. Thus, to achieve high performance

and scalability, is more and more taking off the idea of scaling down the basic architecture of

the large-scale networks, by carrying out an embedded switching network, called Network-

on-Chip (NoC), to interconnect the IP modules in SoCs.

1.2 Objectives

The realized project fits in the described above framework. Currently, the CAOS group is

working on adapting a RISCV-based platform to the critical real-time embedded systems do-

main, with emphasis on the space domain. According to the requirements for this application,

the objective of this thesis has consisted in analyzing different typologies of interconnection

along with the related SoCs and cores (RISC-V ISA); finally trying to implement a new

mixed SoC configuration.

The experience, in broad terms, could be split in two phases:

1. The first one concerns the analysis of a bus-based crossbar interconnect in the open

source SoC Untethered Rocket Chip.

2. The second part involves the study of a Network-on-Chip Tile, in order to replace the

original MIPS core with the new RISC-V processor Lagarto.

The structure of this document is now outlined.

The following section deals with an overview of SoCs and of the types of interconnection up

to the NoCs, in order to frame the project background.

In the second chapter, the systems assessed during the experience are presented.
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1.2. OBJECTIVES

Subsequently, there is a focus on the methodologies used to simulate and to analyze the

systems.

The fourth chapter includes the results obtained from the first part of the experience, so the

interconnect analysis and the deriving latency results of the SoC.

The subsequent chapter describes the steps carried out during the second phase of the work

focusing on the NoC Tile, reporting the achieved outcome.

Finally, the conclusion and some possible developments in the future are listed.
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Chapter 2

State of the art

2.1 SoCs

System-on-Chip (SoCs) are integrated circuits including various parts: processors, memo-

ries, interconnections and other elements depending on the specific chip. They are usually

employed in embedded applications, since they consume lower power, they have lower costs

and higher reliability than the multi-chip systems that they can replace. They are commonly

used in handheld electronic devices, such as tablets and smartphones.

Figure 2.1: Basic SoC structure. [2]
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2.2. SOCS INTERCONNECTS

A SoC can include digital, analog and radio-frequency circuits over the same chip.

Overall, it can contain:

• one or more cores (µC, µP or DSP);

• a memory system eventually composed by different cache levels, one or more blocks of

RAM, ROM, EEPROM or Flash;

• clock generator, PLL, counters;

• A/D and D/A converters;

• connectors for standard interfaces such as USB, USART, SPI and so on;

• voltage regulators and power supply management circuitry.

2.2 SoCs interconnects

2.2.1 Buses

SoCs can exploit different type of interconnects, the most commons is the bus-based solution,

with a hierarchical topology for optimization issue (latency, bandwidth, power consumption,

...). Buses with different features and performance are connected; bridges to adapt the sig-

nals are necessary but their implementation can be complex. During the last years, several

bus-based communication architecture standards have been designed in order to simplify

that issue, to speed up SoC integration and enhance IP reuse over different designs; e.g.

AMBA from ARM, IBM CoreConnect, Altera Avalon. AMBA 2.0 has initially defined three

different buses: Advanced High-performance Bus (AHB), Advanced Peripheral Bus (APB),

Advanced System Bus (ASB, not used anymore). AMBA 3.0 introduced the Advanced eX-

tensible Interface (AXI) bus to improve the AHB bus with advanced features to support the

new high-performance MPSoC.
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2.2. SOCS INTERCONNECTS

This second part of the section deals with the brief explanation of generic bus-based and

crossbar structures, the reason why there are moves towards NoCs and their overview.

Figure 2.2: Traditional bus-bused (left) and crossbar (right) interconnects [3]

In the bus-based interconnect there are several wires connecting IP modules and an arbiter

which manages the requests to use the bus. This initial and simple type of interconnection

comes across some limitations; first of all latency and bandwidth, which depends on clock-

frequency that is limited by the wires length. Increasing the IP modules in a SoC and the

required performance, a first evolution of the simple bus-based interconnect consists in cross-

bar structures. They allow to have higher latency predictability and a significant increase of

aggregate bandwidth; but, on the other hand, they require a very larger number of wires [3].

A first version of the interconnect structures described above can be defined as ”coupled”,

there is an unique communication protocol among IP modules. A big drawback affects it:

the difficulty of integration and IP re-use.

To overcome this problem and to handle more complex SoC, a second version was designed

and defined as ”decoupled” because the Transaction Layer is decoupled from the Transport

Layer; it means that there is not anymore just one communication protocol. There is a

protocol for the signals traveling within the interconnect (Transport Layer) and another one

to communicate from the IP to the interconnect (Transaction Layer).

Even though, on the one hand, the decoupled solution leads to steps forward, on the other

hand it also comes across further limitations of all the bus-based interconnect, such as data

transfer bottleneck and the inherently unscalability (the higher the number of IP linked to

a bus, the higher the congestion; the higher the load, the higher the power consumption).
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2.2. SOCS INTERCONNECTS

These restrictions, together with the new high performance requirements (power manage-

ment, multiple clock domains, error handling), leads to the development of a new type of

interconnection called Network-on-Chip (NoC).

2.2.2 NoCs

A NoC is basically defined as an embedded switching network which uses packets to route

data from the source PE to the destination PE.

Figure 2.3: Typical NoC architecture (mesh topology). [6]

The NoC architecture is composed by three fundamental entities:

• Network Interface (NI): it converts the signal coming from the IP to the protocol used

into the net based on packets.

• Router (R): it deals with the routing operations.
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2.2. SOCS INTERCONNECTS

Figure 2.4: Typical NoC router architecture. [6]

Through a buffer, all the input lines are connected to a crossbar switch, which is used

to select the proper output line; there is an arbiter determining which packets have the

priority when two or more of them need the same channel to be transferred.

• Link: it is the physical connection between routers, it consists of wires and it can

include also repeaters.

By considering as a starting and reference point the ISO/OSI network protocol stack

model, NoCs use three different communication schemes, related to Transaction, Transport

and Physical layers (fig. 2.5).

1. Transaction: it defines the communication protocol before the actual network, so right

down the IP module and before its Network Interface Unit, outlining the primitives to

interconnect IP blocks.

2. Transport: it establishes the rules for the packets that flow inside the net and so through

the routers. The main goal is decomposing messages into packets at the source and

then assemble them at the destination.
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2.2. SOCS INTERCONNECTS

3. Physical: it defines in which way the packets physically travel though the interface. A

limit of bus-based architectures is related to the maximum frequency. Buses exploit a

synchronous and multipoint approach; on the other hand, NoCs are based on a point-to-

point, Globally Asynchronous Locally Synchronous method. Thus, NoC-based system

can operate at higher clock frequencies [8].

Figure 2.5: OSI stack model (left) and NoC communcation layers: Transaction, Transport,

Physical (right). [4]

There are many ways to connect nodes, switches and links to each other. NoCs can have

different topologies divided in three categories:

• Direct networks - This topology foresees for each node a direct point-to-point link to the

neighboring nodes, a well-determined subset of nodes (e.g. Mesh, Octagon network).

• Indirect network - Each node is connected to only one switch and the switches have

point-to-point links to other switches (e.g. Fat-tree network).

• Irregural network - it is based on a mix of shared bus, direct and indirect network

topologies.
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2.2. SOCS INTERCONNECTS

Figure 2.6: Octagonal network (left). Fat-tree network (right). [7]

As regards how data flow through the routers in the network, the idea consists in dividing

the messages generated from the PEs in data packets ; then, the packet is further divided into

flits, elementary packets on which link flow control operation are performed. Finally, each

flit is divided in more phits, a unit of data that is transferred over a link in a single cycle,

whose size is the width of the communication link (fig. 2.7). The choice of the size of the

phit has a high influence on the trade-off cost/performance of the NoC.

The two main modes to transport flits are the circuit switching and the packet switching.

Figure 2.7: PEs message partitioning from http://pages.cs.wisc.edu.

A key-point in the NoC design is the routing algorithm: it determines how data are routed

from the sender to the receiver. It is necessary to face several trade-offs, such as minimizing

power and, on the other hand, reducing area and delay. They can be divided in oblivious

(i.e static) and adaptive (i.e dynamic) algorithms. The first category routes packets without
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2.2. SOCS INTERCONNECTS

information about traffic amounts and conditions of the network. The second one does it

taking into account the current state of the network.

During the routing process, some problems have to be faced:

• Routing is in deadlock when two packets are waiting each other to be routed forward.

Both of the packets reserve some resources and both are waiting each other to release

the resources.

• Livelock occurs when a packet keeps spinning around its destination without ever reach-

ing it. This problem exists in non-minimal routing algorithms. Livelock should be cut

out to guarantee packet’s throughput.

• Starvation: Assigned different priorities, the packets with higher priorities reserve the

resources all the time and packets with lower priorities never reach their destinations.

To manage the transmission properly, eventually solving transmission errors and link con-

gestion, flow control mechanisms are implemented.

Nowadays, the open source world offers different opportunities to implement a custom

SoC, sometimes also exploiting the Network-on-Chip interconnect topology. Since this work

is focuses on this background, some examples of this type of projects are now reported.

• minsoc is a minimal SoC with standards IPs which includes the synthesizable core

OR1200 (exploting the OpenRISC1 ISA). It mainly uses the Wishbone2 bus for the

communication of the blocks.

1OpenRISC: open-source project proposing SoC architectures, simulators and a RISC-based ISA.

2Wishbone: bus-based open-source standard using a single, high-speed synchronous bus specification in

order to connect all the blocks within a SoC.
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2.2. SOCS INTERCONNECTS

Figure 2.8: minsoc System-on-Chip. [10]

• OpTiMSoC is a flexible multicore SoC adopting OpenRISC processors (mor1kx) and

based on a Network-on-Chip structure.

• OpenPiton + Ariane is a brand-new SoC consisting of a scalable, cache coherent system

based on Network-on-Chip (OpenPiton) whose tiles incorporate the Ariane core. It is

an open-source 64-bit Linux capable, RISC-V3 core (supporting RV64-IMC 4), 6-stages,

in-order, described in System Verilog [11]. This processor belongs to the PULP family

and it was designed at ETH Zurich (Switzerland) and University of Bologna (Italy).

It can be considered the next of kin for the cores evaluated in this thesis since they

exploit the same ISA.

The lowrisc SoC is the platform used in the first part of this work and it fits in this

category.

On the other hand, the second part of this experience focuses on a SoC that is not yet

publicly released, it is being developed at the present time at the Universitat Politècnica de

Valencia (UPV).

3RISC-V: free and open RISC-based ISA, defined by the creators as ”clear, micro-architecture-agnostic

and highly extensible”[14]. This Instruction Set Architecture, developed at UC Berkeley, aims at being an

industry standard.

4RISC-V ISA base and extensions. I: Base Integer Instruction Set; M: Standard Extension for Integer

Multiplication and Division; C: Standard Extension for Compressed Instructions.
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Chapter 3

Baseline SoC

After having framed the background, this chapter concern the actual components and systems

assessed in this work, starting from the processors. After that, there is an overview of

the analyzed SoC, together with a focus on the communication standard used in its main

interconnections.

At the end, the NoC Tile processed during the second phase of the work is outlined.

3.1 CPU cores

The evaluated two processors follow the open source trend and implement the RISC-V In-

struction Set Architecture. They are known as Rocket and Lagarto cores.

3.1.1 Rocket Core

Rocket: The Rocket core is an in-order scalar processor that provides a 5-stages (or 6 with the

addition of a pcgen stage) pipeline described in Chisel1. It implements the RV64G2 variant

1”Chisel is an open-source hardware construction language developed at UC Berkeley supporting advanced

hardware using highly parameterized generators and layered domain-specific hardware languages”. [17]

2G extension provides a general-purpose, scalar instruction set. G includes the common extensions I, M,

A (single-precision), F (double-precision), D (floating point).
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of the RISC-V ISA It was developed by the Berkeley Architecture group, United States. The

Rocket core provides a Branch Target Buffers (BTB) to reduce the branch penalty, a 64-bit

Register File and a Floating Point Unit (FPU) can be set, alongside the usual integer ALU.

In addition there is an accelerator or co-processor interface, called RoCC. This core is able to

detect data hazards involving instructions with multi-cycle latencies thanks to a scoreboard.

Figure 3.1: Rocket core, simplified pipeline scheme. [12]

Figure 3.2: Rocket core focus. Pcgen and fetch stages on the left, the remaining four pipeline

stages are shown on the right. [13]

3.1.2 Lagarto

Lagarto I: the first ”mexican” processor, it is open-source and addressed to the research

3.3. Lagarto exploits a 32 bits RISC-V architecture and it is described in Verilog. Further

improvements are being carried out. It was designed by the Centro de Investigación en

Computación, Instituto Politécnico Nacional, Mexico.
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Figure 3.3: Lagarto I core pipeline. [15]

Figure 3.4: Lagarto I core microarchitecture. [16]

Lagarto I exploits a dynamic predictor and a complete bypass net to bring forward data

among the functional units (e.g. integer unit, floating point unit, ...) allowing to improve

the core performances.

Another version of this core is called Lagarto II and it has a different microarchitecture.

In this thesis only Lagarto I is used and so, from now on, the name Lagarto will stands for

Lagarto I.
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3.2 Lowrisc project & Untethered Rocket chip

”LowRISC is a not-for-profit organisation working closely with the University of Cambridge

and the open-source community” [13]. It created a fully open-sourced, Linux-capable, RISC-

V based SoC; it can be directly used or exploited as basis for further processing and design.

Thus, this system is prone to constant maintaining and varied developments.

During the last four years, six official releases have been published, improving some fea-

tures and adding new functionalities from time to time (table 3.1).

Table 3.1: The six official lowrisc releases in comparison. [13]

This work provides the use of the lowrisc release Untethered-v0.2, as a starting point.

The choice was made since BSC has an on-going project which exploits this release and it

led to the following considerations:

1. focusing on the same system allowed to collaborate with the group working on that

project;

2. this under test release could be less insidious with respect to an undiscovered version;

3. finally, merging the master thesis objective with the BSC on-going official Lagarto

project could be an opportunity.
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The release version 0.2 dates from December 2015 and it constitutes the untethered Rocket

chip.

”Rocket Chip is an open-source System-on-Chip design generator that emits synthesiz-

able RTL. It leverages the Chisel hardware construction language to compose a library of

sophisticated generators for cores, caches, and interconnects into an integrated SoC”. [14]

This is the definition given at the UC Berkeley, where it was developed for research and

industrial purposes.

A high-level overview of the untethered Rocket chip is reported in the figure 3.5.

Figure 3.5: Untethered Rocket chip overview. [13]

The SoC is composed by a configurable number of Rocket Tile including a processor, an

instruction cache iL1 and a data cache L1. The tiles share a banked L2 cache and an I/O bus.
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3.2. LOWRISC PROJECT & UNTETHERED ROCKET CHIP

As visible in the picture 3.5, the part at the bottom is described in SystemVerilog (known

hardware description language based on verilog and extensions) and the one at the top is

built in Chisel.

In the original Untethered Rocket chip, the processor included into the tile is the Rocket

core presented in the section 3.1, exploiting the 32-bit instruction format of its RISC-V im-

plemented version.

Recently, it was possible to replace the Rocket core with Lagarto in this SoC letting unaf-

fected the rest of the tile and of the system. Thus, it is possible to talk about an alternative

Rocket chip including the Lagarto core in the tiles.

Both the cases have been evaluated in this work but, since the whole system is the same

except for the core, the steps performed, described in the following chapters, have been car-

ried out by selecting a core and going on using it. It was chosen the Rocket core and so the

original unthetered Rocket chip.

As regards the memory system, inside the tile, each core has its private L1 instruction and

write-back data caches. It means that when a core changes the value of a variable, it is not

upgraded also in the lower memories. If another core needs that updated value, the coherence

mechanism is applied flowing through L2. This procedure is explained in the section 3.2.1.

The implemented caches are non-blocking, so they allow the CPU to continue executing

instructions while a miss is being handled; they exploit the miss status holding registers

(MSHRs) that are hardware structure for tracking outstanding misses: one MSHR register

for each miss to be handled concurrently.

The default values of some memory parameters are the following ones:

• Set associative mapped caches.
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• Cache block size: 64 Bytes.

• Istruction cache L1 size: 16KB.

Instructions cache L1 number of sets: 64.

Instructions cache L1 number of ways per set: 4.

• Data cache L1 size: 16KB

Data cache L1 number of sets: 64.

Data cache L1 number of ways per set: 4.

Data cache L1 number of MSHRs: 2

• Cache L2 (multi-bank) size: 128 KB. Number of L2 cache banks: NBanks = NTiles.

Cache L2 number of sets: 256

Cache L2 number of ways per set: 8.

The interconnection used in the ”Chisel island” is bus-based exploiting a communication

protocol called TileLink (it constitutes all the black and gray links in the figure 3.5). It

is designed to implement a particular cache coherence policy within an on-chip hierarchy.

TileLink will be deepened in the following dedicated section, focusing on its features and

how it works in this system.

In the SoC there are two NASTI/NASTI-Lite interfaces towards to the FPGA peripher-

als. They implement a limited subset of the AXI/AXI-Lite functions. On the one hand, The

NASTI interface is used by the L2 cache for memory reads and writes; on the other hand,

the NASTI-Lite interface is used by the I/O bus for peripheral accesses.

The whole open project can be downloaded from the github. The main folder contains all

the SoC sources, the RISC-V libraries and tools, the resources needed for the FPGA imple-

mentation and some files necessary for the configuration and for the simulation of the system.
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The system is highly customizable, through a configuration file named Configs.scala. It

is possible to choose a lot of parameters to customize the SoC, most of them are listed in the

webpage lowrisc parameter, some main examples are listed below.

• The number of Tiles and so of the cores. The set number of L2 banks has to be equal

to the chosen Tiles number.

• The number of ways and of sets of the L1 and L2 caches that are set-associative, but

they can also behave also as direct mapped caches.

• The number of MSHRs in the data cache L1.

• The width of the data bus and size of a cache block.

Chosen the configuration for the SoC, it is possible to analyze it by carrying out several

types of test, described in the first two sections of the chapter 4 dedicated to the methodolo-

gies.

3.2.1 TileLink

TileLink (TL) is a chip-scale interconnect standard able to manage multiple masters and

slaves with coherent memory-mapped access to memory, implementing a particular cache

coherence policy. [18][19]

The TL newest version 1.7.1 was released in December 2018 and it includes several upgrades

with respect the older versions.

The TL release used in the unthetered Rocket chip is the 0.3.3 which involves the main basic

features of the protocol.

It provides two types of agents :

• clients requesting access to cache blocks;

• managers supervising the propagation of cache block permissions and data.
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3.2. LOWRISC PROJECT & UNTETHERED ROCKET CHIP

Five independent transaction channels are defined with priority avoiding deadlock:

Finish >> Grant >> Release >> Probe >> Acquire.

• Acquire: the client starts a transaction signaling a block acquire request.

• Probe: the manager asks to the other clients if they have an upgrade version of that

block.

• Release: the questioned clients answered to the probe of the manager. It is also used

to voluntarily write back data when a cache client makes room for a new block.

• Grant: After that the manager communicates with backing memory if required, the

needed data or permission travel to the original requestor (client).

• Finish: The manager receives the final acknowledgement indicating the end of that

transaction.

Figure 3.6: TL agents and channels (left) [18]. Overview of a TL complete transaction (right).

In each channel there are several signals involved: from the data and address signals up

to all the necessary control (e.g type of operation, validity, ready).
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In the analyzed system in fig. 3.5 TileLink is used for three different links:

1. L1 to L2: cached3 Tilelink; L1 = client side; L2 = manager side.

2. L2 to NASTI interface: cached Tilelink; L2 = client side.

3. L2 to IO Bus interface: uncached4 Tilelink; L1 = client side.

Focusing on the core/main memory path, it possible to get the simplified scheme shown

in the figure 3.7.

Figure 3.7: TL channels and links in untethered Rocket chip.

It is necessary to specify that data cache dL1 and instruction cache iL1 are separated and

the Probe and Release channels are connected only between dL1 and cache L2. Indeed these

two are the channels exploited only to manage the data coherence when it is needed and for

voluntary cache block release in case of block replacement. The remaining channels (Acquire,

Grant, Finish) are shared between iL1 and dL1 and used in each type of memory transaction.

3TL configuration providing the cache coherency using all five TL channels.

4TL configuration which does not provide the coherency, it use only the TL channels: Acquire, Grant and

Finish.
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In case of multiple tiles and multiple L2 banks, the L2 Cache Bus of the Rocket SoC

(figure 3.5) consists of a crossbar (figure 3.8) in which the clients are the double of the man-

agers. It happens because the tiles number and the L2 banks number are the same for the

given constraint: each L2 bank is a manager, each cache in the Tile is a client and every tile

includes an instruction and a data L1 cache.

Figure 3.8: TileLink Crossbar. [20]

Similarly, the TL link between L2 and the TL/NASTI interface consists of a crossbar in

case of multi-core system. It has only one manager and a number of clients equal to the

number of L2 banks and so of the cores. As normal, an arbiter manages concurrent accesses

before than the TL/NASTI converter.

3.3 UPV NoC

The Universitat Politècnica de Valencia (UPV) is developing a SoC based on Network-on-

Chip. Each node of the network consists of a tile (in figure 3.9) including the following

elements:

• A MIPS processor named MIPSCORE which includes the instruction cache, so it re-

ceives directly blocks of 16 instructions from NI.
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• A data cache L1.

• A second level of cache L2.

• A bank of registers called TILEREG, with a configurable number of registers, currently

it is equal to 32. This module is designed in such a way that the registers shared by all

the tiles are at the beginning of the bank and specific tile register at the end.

• The Network Interface (NI) to convert the traditional signals in the packets format

required for the data stream across the network and vice versa.

• Three routers to shunt the packets: one is addressed to data and memory traffic, and

the other two are used for control and debugging support.

• A gather network (GN).

Figure 3.9: Simplified scheme of the UPV NoC Tile

This tile is used as a starting point in order to try to incorporate Lagarto in a NoC-based

system, as described in the appropriate chapter 6.
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Chapter 4

Methodology

This chapter concerns the methodologies exploited to simulate and analyze the systems in-

volved in the whole experience.

4.1 RTL and Behavioral simulations of Rocket chip

The untethered Rocket chip was tested through software simulations and only later on the

FPGA. Thus, from time to time, each step forward was processed with software tests (RTL

and behavior simulations) and after verified on the programmable device.

The RTL simulation of Rocket chip is executed by using verilator, a free HDL simulator

which compiles SystemVerilog and Verilog into single or multi-threaded C++ or SystemC

code. [21]

A part of the system is already described in SystemVerilog (see figure 3.5); on the other

hand, the parts in Chisel are converted into Verilog sources. After that, the simulation can

be run and all the SystemVerilog/Verilog sources are processed in cpp files.

The benchmark which runs on the simulated SoC has to be designed in C or in assembly (or

both) and its executable file has to be generated by considering the RISC-V ISA and so the

corresponding libraries.

By exploiting the obtained files and the provided tool Spike, it is possible to have a behavioral
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simulation and so to generate the waveforms related to the benchmark running on the SoC,

saving the information in a vcd (Value/Variable Change Dump) file.

Finally, the waveforms are displayed by using an appropriate visualization tool named gtk-

wave.

These simulations were carried out by increasing the number of Tiles in the system,

obtaining a dual-cores, four-cores system and an eight-cores system. In the two last config-

urations, the tests were made by exploiting the cluster arvei belonging to the Universitat

Politècnica de Catalunya (UPC), because of the needed high computing power.

Verified the proper behavior of all the multi-cores configurations, it was decided to go on

with the interconnect analysis by using the 4-cores system due to the following considerations:

• It allows to get a general idea about how the multi-cores system work. It can be

widespread and extended to higher tiles number system.

• The FPGA used to make tests is able to contain up to the 4-tiles configuration. It

covers almost all the space over the programmable device.

4.2 FPGA testing of Rocket Chip

A part from the software simulations, the system can also tested on the FPGA. It can be

synthesized and implemented through Vivado Design Suite offered by Xilinx. The generated

bitstream is run and the provided Kintex-7 KC705 Evaluation Platform (xc7k325tffg900-2)

is programmed.

To verify and to analyze the functioning of the system implemented on the FPGA running

the chosen benchmark, two procedures are exploited.

The first one was used only in case of single-core system, it deals with the design of a

test exploiting the UART communication to print some real-time information about the built
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SoC on the connected PC screen, proving the proper functioning of the under-test system.

This type of FPGA verification was not used for the multi-cores systems because of a

problematic handling of the UART port in the event of concurrent accesses; in these con-

figurations only the second FPGA testing procedure was exploited. It is the most useful for

our goals since it allows to observe the internal signals of the system. Indeed, thanks to the

Integrated Logic Analyzer (ILA) tool provided by Vivado, it is possible to instantiate some

debug modules (even called debug cores). In this way, it is possible to select the signals of

interest and to store a configurable number of their samples during the execution on the

FPGA, likewise using some appropriate probes. Finally the corresponding waveforms are

displayed, showing the correctness of the tested system.

This method is exploited during the analysis of the Rocket chip interconnection, the debug

modules were employed to record the trends of the program counters of the cores and the

TileLink signals involving the data transfer along the memory system.

4.3 Approach to analyze the interconnect

The analysis of the interconnection involves its stress, produced by generating the highest

number of transactions. This scenario, which normally corresponds to the worst case in

terms of performance, is particularly relevant for critical real-time embedded systems, since

it allows estimating the Worst-Case Execution Time (WCET) of critical real-time tasks, as

needed to guarantee that the allocated time budget suffices for their execution. In order to

get it, the idea consists in designing the benchmarks so as to lead to as many caches misses

as possible, by ensuring a constant and dense data stream through the different levels of the

memory system and so along the TileLink channels.

The initial study involves the simplest system configuration with only one tile.

To achieve the predefined goal, a first faced issue consisted in how to create systematical
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cache misses.

The SoC with its original configuration parameters provides set-associative caches L1 and L2

with random replacement policy which leads to an unpredictable estimate about the cache

block that is replaced time by time. Thus, keeping this caches configuration, is not possible

to get systematical caches misses.

To overcome this problem, the idea was to modify some parameters in the Configs.scala

file in order to implement direct mapped caches in place of set associative ones; in this way

the random replacement policy becomes invalid and the prevision on the replaced cache block

can be done. Direct-mapped L1 and L2 are obtained by setting the number of ways per set

equal to ”1”.

The size of the caches depends on the chosen parameters: cache block size, number of

sets, number of ways per set. It has been chosen to keep fixed the cache block size (64 Bytes)

and also the number of sets (dL1 sets = 64, L2 sets = 256). Anyway the benchmarks can

be adapted to whatever combination of these parameters simply adjusting the count of the

addresses bits involved (belonging to the fields: tag, index, block and byte offset).
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Figure 4.1: L1 and L2 caches and addresses composition

The designed benchmarks are divided in two groups depending on the type of generated

misses:

• Systematical dL1 miss & L2 hit. It is obtained by loading data consecutively on a loop

from equal memory addresses except for a bit of the two MSBs in the field Set of the

L2 address (described in green in the figure 4.1). L2 is four times bigger than dL1, its

addressing involves the above-mentioned two bits more in the Set field with respect to

the dL1 address (cyan in the same figure). This type of cyclic load requests leads to

systematical dL1 cache misses, but whose data instead fit in the L2.

Considering two memory locations at the addresses A and B from where the data are

read/loaded:

A = 32b00....00100000000000000 (tag=0..01, set=00000000, b.offset=000000)

B = 32b00....00101000000000000 (tag=0..01, set=01000000, b.offset=000000)
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The basic benchmark structure is the following one. Below the corresponding wave-

forms are reported.

load A

load B

label loop:

load A

load B

jal label loop

Figure 4.2: Single-core system, Systematical dL1 miss & L2 hit. dL1 ask for a cache block

to L2 that owns it and so it does not need outer acquire to request these data to the main

memory. The outer acquire validity signal (highlighted in blue) is fixed at 0 and no outer

grant data flow from main memory to L2.

• Systematical dL1 miss & L2 miss. It is achieved by loading data consecutively on a

loop from equal memory addresses except for a bit in the field Tag of the L2 address

(figure 4.1). This operation guarantees that always the same location is replaced in L1

and in L2, this time data are unable to fit in the latter.

The basic benchmark structure is still the one above described, in this case two possible

memory addresses A and B are:
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A = 32b00....00100000000000000 (tag=0..01, set=00000000, b.offset=000000)

B = 32b00....01000000000000000 (tag=0..10, set=00000000, b.offset=000000)

Figure 4.3: Single-core system, Systematical dL1 miss & L2 miss. dL1 ask for a cache block

to L2 that it does not have, so it needs outer acquire to request these data to the main

memory. In this case the outer acquire validity signal (highlighted in blue) goes to 1 and the

outer grant data flow from main memory to L2.

The figures 4.2 and 4.3 are displayed on GTKWave, after RTL (verilator) and behavioral

(spike) simulations. These tests, how even all the following ones, were carried out also on

the FPGA by exploiting the Vivado ILA tool previously described to debug. In this way it

was possible to verify the functioning of the SoC on the programmable device and also to

observe eventual discrepancies between software and FPGA system tests.

In this context, in case of these two benchmarks running on single-core system, there are no

differences in terms of trend and of latency as regards the TL signals involved.

Starting from the benchmarks previously described in single-core configuration, the same

test concept is appropriately extended to multi-cores system.

In this case it is considered on the one hand core 0 as main core and, on the other hand,

the other cores that can be defined as contenders (at the same level among them); so this

approach basically consists in observing the influence of other cores on the main one during

concurrent memory requests under different scenarios.
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Whereas each tile includes a core and that the number of L2 banks has to be equal to

the tile number, first of all, it was necessary to understand in which way the main memory

maps the data in L2 when there is more than one bank.

As simply shown below in the figure 4.4, the RAM maps the memory locations alternately

among the several L2 banks. In the following graphical explanation let us suppose that there

are 2 cores and so 2 banks of L2, but anyway the concept can be extended to higher numbers

of cores/L2banks. The number of ways and sets of L1 and L2 are the same chosen in the

one-core simulations of the previous section and so the parameters are:

• Ncores = NL2banks = 2.

• Cache block size = 64 Bytes.

• dL1: ways/set=1; sets=64.

• L2: ways/set=1; sets=256.

Figure 4.4: How the Main Memory is mapped in L2 multi-bank.

As visible, in the case of two cores system, simply even blocks of the RAM are mapped

in L2 bank0 and odd blocks into L2 bank1.
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The main parameter evaluated in these simulations is a time interval that it is going to

be called δτ and it represents the difference on time between the mem acq valid signal of the

data cache L1 of the core 0 and the inner finish valid signal of the used L2 bank; thus it is

the time interval from when the dL1 core 0 starts its request for a data block to L2 up to

this transaction is completed properly and the requestor receives the data.

Figure 4.5: δτ : parameter evaluated to estimate the latency transaction.

By observing the final tables reporting the values of the latency δτo for each analyzed

case (chapter 5), it is possible to have an idea about the system interconnect performances

and about how the other cores influence the timing execution of core0 memory requests.

4.4 Simulation of the UUT NoC Tile

The simulations of the NoC tile have been carried out through the Vivado simulator. It was

designed a testbench in SystemVerilog instantiating the involved blocks, from time to time,

observing the waveforms of the probed signals.

Firstly, to collocate Lagarto in place of the original MIPSCORE inside the UPV NoC

tile, it was created a fake instruction memory addressed to send the instruction data to the

core, generating appropriately the signals involved. Lagarto works with this fake memory as

it was its external instruction cache.

Adjusted and verified the functioning of the core, the following step was to append the data

cache L1 of the original Tile. The interfaces were not compatible, so some modules were

purposely designed in verilog.
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In accordance with this operation, step by step is added a new block of the UPV NoC tile

in the testbench and it is connected to Lagarto, changing some modules and adapting the

interfaces when necessary.
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Chapter 5

Analysis of the interconnections

5.1 System configuration

The first operations carried out on the system consisted in setting and simulating the system

in its single-core and multi-core configurations.

The default value of Tiles is equal to 1. This parameter is set in the previously described

Configs.scala file, in addition the initial status of the other configurations files allows only

the single-core system works.

The waveforms obtained from the simulations have been converted into simplified chrono-

grams in order to clarify the dynamic. Here, the names used for the signals match with the

ones in the figure 3.7.

A first timing diagram in figure 5.1 is obtained by running a simple benchmark on the

simulated system, a matrix multiplication is executed and particular attention was given to

the data stream trough the memory system.
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Figure 5.1: Single-core simulation. Timing diagram of a data request flowing through the

entire memory system.

As visible, for a cache block acquire request of the core, four beats of data are received.

It happens because a cache block consist of 64 Bytes that it the size of information that can

be transferred for each acquire/grant iteration. On the other hand, the data bus consists of

128 bits, so four pulses are needed to transfer the block. Since each data (intended also as

instruction) is composed by four Bytes, every transfer involves 16 data of 32 bits.

The successive step consisted in configuring the multiple-cores system. A first change

is done in the Configs.scala, by setting the number of Tiles and of L2 banks equal to two.

Nevertheless, even if the two cores are instantiated, the execution of the second one was

stuck. To solve this issue and to manage properly the two cores, it was necessary to act on

some configuration and initialization files (crt.S and syscalls.c) in two ways:

1. Deleting some lines of code which allowed only the first core goes on executing.

2. Adding an instruction to store the core id in a core temporary register which could be

read directly in the benchmark, allowing to split the workload among cores depending

on its identifier value, by giving them different functions. It was needed because the

original initialization file only saved the id core in a reserved register which is inacces-

sible in user mode.

After having verified the correct execution of the two cores in the simulations, it was

possible to observe how the coherence is managed among cores and their private data caches

L1. A simple chronogram was extracted and reported in the figure 5.2.
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Figure 5.2: Two-cores system simulation. Chronogram describing the coherence management

through L2 by using the Probe and Release channels.

Data cache core 0 (client A) asks for acquiring a data block to cache L2 bank 0 (manager)

that sends a necessary Probe to the other client Data cache core 1 (client B). Basically, the

procedure takes place as described in the figure 3.6. L2 bank 1 waits for receiving a Release

for the Probe that was sent and it communicates with backing memory if required (not in this

case). Having obtained the required cache block, the manager L2 responds to the original

requestor with the Grant data and the transaction is completed with the Finish signal.

Overall, it was observed that the communication works properly. Nevertheless, in presence

of multiple masters/cores, it was noted that, even if the coherency policy basically works,

this TileLink version is prone to bugs and a perfect functioning is not guaranteed.

5.2 Examined scenarios and latency results

The basic procedure used to carry out the interconnect analysis is explained in the section

4.3. This paragraph described the system configuration set during this study, the wide range

of designed benchmarks, the latency results and the related comments.

The system parameters set in the configuration files have been kept unaffected (expect

for the Tiles and L2 banks numbers) during the simulations of all benchmarks to allow a

coherent evaluation and comparison of the several scenarios.

54



5.2. EXAMINED SCENARIOS AND LATENCY RESULTS

System configuration file (Configs.scala)

Parameter name Assigned value

N Tiles Variable (1, 2, 4)

N L2 banks N Tiles

L1D MSHRS 2

L1D SETS 64

L1D WAYS 1

L1I SETS 64

L1I WAYS 1

L2 XACTORS 2

L2 SETS 256

L2 WAYS 1

TC1 XACTORS 1

TC SETS 256

TC WAYS 1

N IO Sections 4

N Mem Sections 4

Table 5.1: System configuration parameters used for the interconnect analysis.

The system has been simulated in single core, dual core and quad core configurations for

all the scenarios described in the table 5.2. On each of these three different sets of benchmark

were designed, by changing their structure to lead to higher contentions, in theory and as

proven in the tables 5.3 and 5.4, pound for benchmarks:

contention set 1 < contention set 2 < contention set 3.

1. Set 1: loops composed by only two load instructions (4.3).

2. Set 2: unrolled loops consisting of 32 load instructions with the purpose of increasing

1TC stands for Tag Cache, it is used in the TL/NASTI conversion stage.
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the relative number of loads by decreasing the relative impact of control loop instruc-

tions.

load A

load B

label loop:

load A

load B

... 32 times overall ...

load A

load B

jal label loop

3. Set 3: unrolled loops of 32 atomic load instructions. In the RISC-V ISA complex atomic

memory operations on a single memory word are performed with the load-reserved (LR)

and store-conditional (SC) instructions. LR loads a word from the address in a source

register, places the sign-extended value in a destination register, and records a reser-

vation on the memory address. In this case it is used RISC-V 32 and so the suitable

load instruction is ”lr.w”; it has not bits dedicated to the offset so each address has

to be explicitly written. In general, atomic loads either cause the same contention as

regular loads, or cause higher contention if they lock some specific resources (e.g. the

interconnect).

Atomic load A

Atomic load B

label loop:

Atomic load A

Atomic load B
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... 32 times overall ...

Atomic load A

Atomic load B

jal label loop

System Conf. Scenario label Scenario description

Single core 1A L1 miss & L2 hit.

Single core 1B L1 miss & L2 miss.

Dual Core 2A

For both tiles L1miss&L2hit: Core0 and Core1

access to the same L2bank but replacing blocks

at different addresses.

Dual Core 2B
For both tiles L1miss&L2hit: Core0 replaces blocks

in L2bank0; Core1 replaces blocks in L2bank1.

Dual Core 2C

For both tiles L1miss&L2miss: Core0 and Core1

access tothe same L2bank but replacing

blocks at different addresses.

Dual Core 2D
For both tiles L1miss&L2miss: Core0 replaces blocks

in L2bank0; Core1 replaces blocks in L2bank1.

Dual Core 2E

Core0 L1 miss & L2 hit, Core1 L1&L2 miss, both cores

work with the same L2 bank but different couple

of addresses are replaced.

Dual Core 2F

Core0 L1&L2 miss, Core1 L1 miss & L2 hit, both cores

work with the same L2 bank but different couple

of addresses are replaced.

Dual Core 2G
Core0 L1 miss & L2 hit, Core1 L1&L2 miss,

each core work with a different L2 bank.

Dual core 2H
Core0 L1&L2 miss, Core1 L1 miss & L2 hit,

each core work with a different L2 bank.
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Quad core 4A

For all tiles L1miss&L2hit: Core0 and Cores 1,2,3

access to the same L2bank but replacing blocks

at different addresses.

Quad core 4B

For all tiles L1miss&L2hit: Core0 replaces blocks

in L2bank0; Core1 replaces blocks in L2bank1;

Core2 replaces blocks in L2bank2; Core3 replaces

blocks in L2bank3.

Quad core 4C

For all tiles L1miss&L2miss: Core0 and Cores 1,2,3

access to the same L2bank but replacing blocks

at different addresses.

Quad core 4D

For all tiles L1miss&L2miss: Core0 replaces blocks

in L2bank0; Core1 replaces blocks in L2bank1;

Core2 replaces blocks in L2bank2;

Core3 replaces blocks in L2bank3.

Quad core 4E

Core0 works replacing different addresses in L2 bank 0

(L1miss&L2hit); Core1, Core2 and Core 3 also work

with L2bank0 but having systematically L1&L2 miss.

Quad core 4F

Core0 works replacing different addresses in L2 bank 0

(L1&L2miss); Core1, Core2 and Core 3 also work with

L2bank0 but having systematically L1miss & L2 hit.

Quad core 4G
Core0 L1 miss & L2 hit; Core1, Core2 and Core3

L1&L2 miss, each core work with a different L2 bank.

Quad core 4H

Core0 L1&L2 miss; Core1, Core2 and Core3

L1 miss & L2 hit, each core work with a

different L2 bank.

Table 5.2: Listing of the examined scenarios for the interconnect analysis.
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Table 5.3: Latency results obtained from software (RTL and Behavioral) simulations.

Table 5.4: Latency results obtained from FPGA tests.
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Latency tables legend

x-y clk means values within the interval [x;y].

x/y clk means that the latency values are these ones alternately (i.e. x,y,x,y,..).

* These cases are related to the verilator and FPGA simulations with atomic instructions.

To make the benchmark was executed properly, the number of load instructions inside the

loops was shortened to less than 16 instructions (assuming because of the atomic

instructions limitations, described below).

** These cases are related to the fpga simulations without atomic instructions. To make

the benchmark was executed properly, the number of load instructions inside the loops was

reduced (supposing a different reason with respect to the case above, blaming the FPGA

shortcomings).

N.B. Proper execution of the benchmark stands for a program execution in which the

simulation goes on carrying out the designed systematical functioning during all the simula-

tion time. When it does not take place, in this context it means that the program counter(s)

of the core(s) gets stuck on an instruction without proceeding its designed operation.

Latency tables comments

• Latency values meaning. As mentioned in the section 4.3, the analyzed latency δτ ,

whose values fill the tables above, consists in the time interval from when the dL1 core

0 starts its request for a data block to L2 up to this transaction is completed properly

and the requestor receives the data.

• Clock frequencies. The tables report δτ in terms of clock cycles. To have an idea of the

latency in terms of time is sufficient to know the clock period which in the verilator

simulations is equal to 10 ns. As regards the FPGA tests, the main clock frequency of

the system on the programmable device is 200 MHz, so the clock period is 5 ns (i.e half

of the clock period of the software simulations).
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• Overall results observation. As expected the system comes across higher contention in

the third set of benchmarks consisting of atomic loads. On the other hand, the second

set presents an unique different case with respect to the first one. In general, When the

cores work with different L2 banks, no contention is observed, so the crossbar between

L1 and L2 manages the concurrent requests properly without delaying them. Instead,

in the case in which the cores needs data from the same L2 bank, higher latency values

and so higher contentions show up with the increase of the contenders number. As

regards single core and dual core systems, the latency results almost coincide, it occurs

because of the set L2 Xactor value 2; a detailed explanation is outlined in the following

section 5.3.

• Discrepancy results between FPGA and software tests. In case of L1 and L2 misses of

core 0 or of the contenders there is a considerable difference between the latency values

obtained in the verilator simulations and on the FPGA. This discrepancy goes from 7

up to 14 clock cycles depending on the number and on the systematical behaviors of

the cores. This means that the FPGA implementation execute faster (in terms of clock

cycles) the benchmarks which need to take data from the main memory with respect

to the software simulation. Thus the part of the system between L2 and the RAM is

built with some small differences during the two types of test.

• Atomic instructions restriction. The main disadvantage of the atomic instructions

LR/SC is livelock; indeed LR/SC atomic sequence could livelock indefinitely on some

systems. This phenomenon can be avoided with an architectural guarantee of eventual

forward progress. So certain constrained LR/SC sequences are guaranteed to succeed

eventually. Among the limitations which lead to ensure the proper functioning of

the system in presence of LR/SC sequences there is one which justified the obtained

results. The length of LR/SC sequences has to fit within 64 contiguous instruction

bytes in the base ISA to avoid undue restrictions on instruction cache and TLB size and

2It was set L2 Xactor = 2. It was not used L2 Xactor = 1 since with this value the quad core system is

not able to execute the designed benchmarks, indeed all the cores get stuck in an initialization instruction.
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associativity. Considering that each atomic load is composed by 32 bits (4 bytes), the

maximum number of instructions in a LR sequence who should allow the system works

is
64bytes

4bytes
= 16 instructions placed sequentially in memory. LR/SC sequences that do

not meet these constraints might complete on some attempts on some implementations,

but there is no guarantee of eventual success. [22] In these simulations, for all the

system configurations, the sequences of LR into the loops had to be of 32 instructions,

but the quad core system did not work, no core was able to execute the program;

it makes sense since the requirement described above was not respected and so the

proper functioning could not be ensured. That is why, in order to get meaningful

latency results, the number of atomic loads inside the loops was reduced just lower

than 16 in the benchmarks running on the four cores system.

5.3 Focus on L1/L2 interface

The final part of this analysis focuses on the L1/L2 interface, outlining the different stages of

a memory request with its timing constraints and evaluating the influence of the parameter

L2 Xactor. It is briefly defined as the number of trackers in L2: trackers are provided to

allow multiple memory requests to be served in parallel.

The latency results, reported in the previous section, show that there is a high contention

when the cores do concurrent accesses in the same L2 bank. This scenario is deepened in

case of L1 miss & L2 hit for double-cores and four-cores systems.

To better explain the analysis outcome, some chronograms have been extracted and drawn

in the cases of set 1 (rolled loops, two instructions), set 2 (unrolled loops of 32 instructions)

and set 3 (unrolled loops, atomic instructions for the contenders). Subsequently the ones

related to first set are going to be appended; anyway the features of the transaction in the

system are always the same; simply, different structures of the benchmark can lead to some

slight differences in the waveforms trends.
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First of all, the complete chronograms related to the case 2A e 4A are reported, with

the appropriate description. Secondly, there will be a focus on the parameter L2 Xactor,

analyzing its effects on the transactions series.

Benchmark 2A: 2-cores system, core 0 has L1 miss and L2 hit, the contender core 1 has

also systematical L1 miss and L2 hit too in the same L2 bank 0 but replacing different couples

of addresses.

Figure 5.3: Chronogram related to the benchmark 2A by setting L2 Xactor=1

Figure 5.4: Chronogram related to the benchmark 2A by setting L2 Xactor=2

Benchmark 4A: 4-cores system, core 0 has L1 miss and L2 hit, the contenders core 1,

core 2, core 3 have also systematical L1 miss and L2 hit in the same L2 bank 0 but replacing

different couples of addresses.

Figure 5.5: Chronogram related to the benchmark 4A (L2 Xactor=2)

63



5.3. FOCUS ON L1/L2 INTERFACE

In these chronograms some letters are used to refer to particular transaction phases. The

legend, explaining the different highlighted phases of a single transaction, is now reported.

1. A : the data cache L1 sends an acquire request to L2 bank 0, [1 ck cycle].

2. B : the L2 bank 0 validate the request [variable ck cycles (1/4/11 in our cases)].

3. C : time interval from when L2 bank 0 has validated the acquire request up to it starts

to send the required cache block to the dL1 requestor, [6 ck cycles].

4. D : the L2 sends out the required data to the dL1 requestor, [4 ck cycle].

5. end : TL finish signal which indicates the end of the transaction dL1/dL2. So it

indicates that the dL1 receives the data and not that the data has been stored in the

register of the core (not yet). Indeed, the core receives that data at the third clock

cycle after the end signal.

As regards the requests, the labels on the left identifying them, have the following mean-

ing: R1(0) stands for 1 st request of core 0; R1(1) stands for 1 st request of core 1; R1(2)

stands for 1 st request of core 2; R1(3) stands for 1 st request of core 3; R2(0) stands for 2

nd request of core 0; R2(1) stands for 2 nd request of core 1 and so on...

It is possible to notice that in every case the interval between the ”end” of a transaction

(dL1/dL2) and a new acquire request of the same tile is 7 clock cycles; so there are 4 clock

cycles between when the core effectively receives the data related to its previous request and

when it starts the new acquire request.

As regards the 4-cores case, looking at chronogram 5.5 the following considerations have

been done:

• A never overlaps with A (even if generally it could happen), B with B (it can not occur,

unique channel for acquire request shared among tiles), and D with D (it can not take

place, once again there is only an unique channel for data grant shared among the tiles).
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Only C can overlap with C (specifically, what it is possible to see is that the second

part of C of the request i is overlapped with the first part of C of the request i+1 ).

• There are several critical paths: Due to B and given that there are 7 cycles among

requests of the same core, it cannot send again after at least 30 cycles.

• Due to the critical paths (29-30 cycles) and particular alignments of events, the repe-

tition interval reaches 32 cycles.

To understand the difference of the ”B” stage in the chronograms 5.3 and 5.4 and so the

task of L2 Xactor, let us observe the following chronograms that have a different structures

with respect to the previous ones where each line corresponded to a request in its different

stages. In these diagrams, the lines correspond to specific signals of the tiles and of L2, so

the stages of a same transaction (A,B,C,D,end) are distributed over the lines in iterative way

(request by request).

Figure 5.6: Alternative chronogram 2A with L2 Xactor=1

Figure 5.7: Alternative chronogram 2A with L2 Xactor=2

Similarly to the labels previously assigned to the requests, here each stage contains in-

formation about the id of the core which is executing it and its request number, e.g. A1(0)
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stands for stage ”A” of the first request of core 0.

As regards the dynamic, first of all, a new acquire request can not start before than the

L2 is ”ready” to accept another request.

The value assigned to L2 Xactor decides in which cases the L2 can be ”ready”.

1. L2 Xactor = 1 : L2 is ready only when there are no transactions pending. The state

”B” takes 11 clock cycles because the ready signal is being waited. During that cycles

L2 is not ready to accept that request because it is serving the previous one and it can

accept only one request per time because L2 Xactor=1. A new request can be accepted

after 2 clk cycles that there is the ”end” state of the previous transaction.

2. L2 Xactor = 2 : L2 is ready when there are no transactions pending or also when

there is only one pending. Thus L2 does not need to wait in the ”B” state because the

”ready” signal remains at ”1” even if there is another acquire request pending.

5.4 Summary of the analysis

A brief summary with the main considerations resulted from this analysis of the system

interconnect in multi-core configurations is now reported.

• The interconnect creates no contention or low contention when the cores require data

from different L2 banks, so the crossbar between tiles and L2 almost does not influences

the execution since no significant delay is observed.

• Contention occurs in the L2 banks: when the cores asks for data to the same L2 bank

the latency considerably increases.

• The atomic instructions must respect the restrictions declared in the RISC-V manual

in case of critical system (quad-core), only in this way its execution can go on properly.

• A key-parameter is L2 Xactors. The higher its set value, the higher the number of

concurrent memory operations that L2 can manage in parallel. Stressing the quad-core
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configuration with the minimum L2 Xactors leads to a non-working system. On the

other hand, increasing too much its value leads to other violations by preventing the

proper cores execution. That is why L2 Xactors = 2 has been a reasonable choice in

this context.

• The main constraints of a memory request are two. The first one deals with its valida-

tion by L2 depending on the L2 Xactors value and so also on the number of memory

instructions that are being handled. The second constraint concerns two consecutive

memory operations executed by the same core which has to wait 7 clock cycles from

when its DL1 receives the requested data (i operation) to start a new acquire request

(i+1 operation).
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Chapter 6

System Re-design: NoC-based

The UPV NoC tile described in the section 3.3 is now prone to an evolution. The main

idea consists in replacing the MIPSCORE with the LAGARTO in this tile, so the outwards

interfaces of the core should be the same in order to hold the connections unaffected inside

the Tile. In addition, during this process, further developments are made from time to time

as regards the whole system itself.

Figure 6.1: Lagarto placement inside the UPV NoC Tile

Thus, recently Lagarto was placed in the Rocket chip in place of the Rocket core, as

mentioned in the section 3.2. The same core is now going to face a new challenge: the

insertion in a Tile of a NoC-based system.
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6.1 Lagarto placement

Initially, only Lagarto was instantiated in the testbench designed in the Vivado environment.

The first task consisted in making this core execute the chosen instructions. In the original

tile the processor MIPSCORE includes the instruction cache (it receives blocks of 16 instruc-

tions directly from NI), Lagarto does not include it. Thus, it is created a fake instruction

memory that is seen by Lagarto as it was its instruction cache.

In simple terms: Lagarto was simulated in the Rocket Chip with verilator and Spike, fi-

nally observing the waveform on gtkwave, focusing on the way in which Lagarto receives

the instructions from the Rocket instruction cache. After that, in the designed testbench,

the appropriate signals at the Lagarto/iL1 interface are managed so as to copy the observed

protocol, simulating an instruction cache and choosing the instructions from time to time.

The initial Lagarto interface was suitable to connect the core in the Rocket chip; since it

is going to be insert in another system some signals at its interface became unconnected. To

overcome the obstacles generated by this issue, some internal signals of Lagarto were driven,

allowing its proper execution of the instructions.

Ensured the proper functioning of the core, the second goal consisted in appending

the data cache L1 of the UPV NoC Tile. To do it, the Lagarto/Rocket dL1 and MIP-

SCORE/UPV dL1 interfaces were analyzed in order to accomplish the desired connection

Lagarto/UPV dL1.
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Figure 6.2: Lagarto in its interface with the Rocket dL1 (left). UPV dL1 in its interface with

the MIPSCORE (right).

At this point, it was possible to simplify the two interfaces in two ways:

1. Considering that the purple signals in the picture 6.2 are used to connect Lagarto in the

low risc platform; so placing the core in a new system, they are not needed anymore.

2. Presuming that the atomic instructions are not used currently. This hypothesis allow

to deleted the blue highlighted signals L1D SC, L1D LL, L1 SC SUCCEEDED at the

UPV dL1 interface that are only addressed for that type of instructions. In addition

it allows to go on using the initial Lagarto version which is only able to decode the

atomic load instruction, but not all the other ones.1;

The resultant interfaces that have to be matched are reported in the picture 6.3.

1In the Rocket chip, all the atomic operations are implemented in the Rocket cache, Lagarto (or the

Rocket core) only decodes that instructions and send the necessary information to the cache.

Thanks to the last updates, the newest Lagarto version is able to handle all the atomic instructions.
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Figure 6.3: Final interfaces that have to be connected.

After a complete analysis of this partial system, consisting of the simulations of the two

interfaces separately and the debugging of the code describing these modules, it was designed

the Lagarto/UPV dL1 interfacing (fig. 6.4).

Figure 6.4: Lagarto/UPV dL1 interfacing.
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The interfacing yellow blocks in the picture 6.4 were purposely designed. In addition, for

the proper DL1 functioning, some modifications were needed in the DL1 verilog codes.

Given these adjustments, it was proven that the data cache L1 receives properly the sig-

nals and so it is able to propagate the data and control signals towards the rest of the Tile

modules that are appended (in figure 6.5).

Thus, at this point, the current system instantiated in the testbench provides:

• The core Lagarto that has been placed inside the NoC Tile and it was interfaced with

the data cache through some interfacing modules.

• A fake instruction memory from which Lagarto read the instructions.

• The data caches (L1 and L2) and the Network Interface of the original UPV NoC Tile.

Figure 6.5: Temporary system composition after the Lagarto placement.
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• The TILEREG module is not instantiated currently. By considering only a tile, it

would be necessary only to upload the communication protocol inside the caches and

to manage the core program counter. The first issue was overcome by loading directly

the protocols into the caches. As regards the pc issue: the original processor MIP-

SCORE manages its program counter through TILEREG; on the other hand, Lagarto

handle its pc on its own, thus also this issue is bypassed.

6.2 System processing

When Lagarto executes a memory instruction (e.g. a load), the examined procedure, carried

out along the system, to serve this request is the following one:

1. Lagarto asks for reading a block to dL1.

2. If this block is in dL1, the data cache gives it to the core. If dL1 does not contain this

block, dL1 sends this request to NI.

3. Firstly, NI asks to L2 if it has the required data.

4. If L2 has got the block, it is sent to NI which gives it to dL1. If L2 responds with a

negative outcome to NI, the Network Interface sends the request to the memory con-

troller MC which takes this data block from the main memory.

N.B. The MC and the RAM are outside the tile and they are shared among the eventual

several tiles of the NoC.

Thus, the following step consists in appending a memory controller and a main memory.

The original UPV NoC exploits a Double Data Rate (DDR) RAM and a sophisticated

memory controller (figure 6.6). The necessary related modules can be hardly handled, leading
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to the main drawback of this NoC structure: a very complex specific and difficult to reuse

design.

In order to get through this obstacle, the idea consisted in simplifying this part of the

system (figure 6.7):

• Using a basic RAM in place of the DDR RAM.

• Designing a new MC, simpler than the original one and able to be interfaced with the

original Network Interface on the one hand and with the new basic RAM on the other

hand.

Figure 6.6: Original system with complex MC and DDR RAM.
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Figure 6.7: Adjusted system with simpler MC and basic RAM

The used synchronous basic RAM (figure 6.8) exploits a txt file to read and save informa-

tion. This memory has only the following signals at the interface: address, data in, data out,

read/write.

Figure 6.8: Basic RAM interface with the new MC.

The new designed MC 6.9 deals with the following tasks:

• it manages the NI inputs and sends the address and the command (read/write) to the

RAM; writing or reading data depending on the required operation.

• it tracks essential information of the request in order to deliver the proper memory

response to the original requestor (which tile and which module inside the tile).
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Figure 6.9: New MC interface with the NI.

Currently, this system is being processed in order to carry out steps forward to achieve

the final goal of a complete incorporation of Lagarto in this NoC structure.

At present there is one instantiated tile and the rest of the system is the one reported

in the picture 6.7. It needs to be adapted by taking into account the new inserted modules,

thus several adjustments are being studied and carried out.

Today’s system state allow to execute properly the load operation from main memory,

following mostly the original communication protocol. The required data are taken from

the RAM, stored in L2 and finally they can arrive up to Lagarto by forcing a dL1 signal or

sending directly that data from the network interface, bypassing the first level of cache. As

regards the store operation, it is possible to write data in the cache dL1; nevertheless this

cache and L2 are both write back and currently their proper behavior is not guaranteed since

it is not possible to release data from cache to the memory.
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The troubleshooting of this caches issues is on-going, in the meantime it was enabled an

alternative communication path between Lagarto and the main memory, it provides Non-

Cacheable Access (NCA), storing and loading properly from memory in a specific addresses

range bypassing the caches and following the path Lagarto ⇒ NI ⇒ MC ⇒ RAM and vice

versa.

6.3 Summary of the core placement

The Lagarto placement process is proceeding. It is possible to store and load from memory

properly with a NCA.

Anyway, on the one hand the data caches issue has to be handled, getting their proper func-

tionalities; on the other hand Lagarto needs an actual instruction cache in order to replace

the fake instruction memory that is using temporarily. In order to achieve this task, the

idea consists in extracting the IL1 incorporated inside the MIPSCORE, placing it next to

Lagarto with the needed interface adaptation and connecting it to NI in order to receive the

block instructions from the main memory flowing through NI like in the original UPV project.

This experience shows the procedure involving a core replacement. The first step consists

in the analysis of the initial system, focusing on the interfaces of the original core. The second

step provides the placement of the new core with the designing of a fake instruction memory

where the instructions are fetched. The third step consists in the core/memory connection,

adapting the interfaces and leading to proper store and read operations. This stage involves

above all the interfacing between core and first level of cache in case of usual cacheable access.

Subsequently, the further modules of the system can be appropriately connected step by step,

finally testing the whole tile.
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Chapter 7

Conclusion

This thesis focused on two Systems-on-Chip exploiting different types of interconnection:

crossbar and bus-based in the Rocket chip, NoC in the UPV tile.

The first one was analyzed, figuring out the latency values in several stress conditions and

extracting the timing constraints which a memory request comes across.

The second structure, after an initial study phase, has been processed by placing the Lagarto

core and some new modules, proceeding with the needed system adaptation.

This RISC-V processor played a central role in this context, it was recently incorporated

in the low risc/Berkeley SoC and, for the first time, in this work it is placed in a NoC struc-

ture, as a starting point.

In order to achieve a complete working Network-on-Chip using Lagarto, many further

improvements are required. First of all, the current limitations related to the memory oper-

ations, described in the previous section, have to be solved. Once the core is perfectly able

to execute load and store instructions, the following step could consist in including another

tile, building a first 2D-mesh net. Connecting the routers of the two tiles, the whole system

can be globally tested, carrying out the necessary adjustments, finally analyzing the system

performance.
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The long-term objective consists in implementing a highly-capable RISC-V heterogeneous

platform including multi-core, NoC and accelerators.
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[16] Cristóbal Ramı́rez, César Hernández, Carlos RojasMorales, Gustavo Mondragón
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Glossary

AMBA Advanced Microcontroller Bus Architecture

BSC Barcelona Supercomputing Center

DDR Double Data Rate

DL1 first Level Data cache

FPGA Field-Programmable Gate Array

ILA Integrated Logic Analyzer

IL1 first Level Instruction cache

IP Intellectual Property

ISA Instruction Set Architecture

LR Load-Reserved (RISC-V atomic instruction)

L2 Unified second Level of cache

MC Memory Controller

MPSoCs Multi-Processor System-on-Chip

MSHR Miss Status Holding Register

NCA Non-Cacheable Access

NI Network Interface

NoC Network-on-Chip

PE Processing Element

RTL Register Transfer Level

SC Store-Conditional (RISC-V atomic instruction)

SoC System-on-Chip

TL TileLink

TLB Translation Lookaside Buffer

UART Universal Asynchronous Receiver-Transmitter

UPC Universitat Politécnica de Catalunya

UPV Universitat Politècnica de Valencia

UUT Unit Under Test
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