
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

Application Specific
Instruction-set Processor for

HSG-based Pedestrian Detection
Algorithm

Relatori:
Prof. Guido Masera
Prof. Maurizio Martina

Candidato:
Beatrice Giannetta

Aprile 2019



Acknowledgments

I



Table of contents

Acknowledgments I

1 Introduction 1

2 Pedestrian Detection Algorithm 3

2.1 Histogram of Oriented Gradient . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Histogram of Significant Gradient . . . . . . . . . . . . . . . . . . . 9

3 ASIP 14

3.1 ASIP Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 ASIP DESIGNER Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 ASIP Implementation 18

4.1 SW Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 C Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.2 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Second Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Magflagcomp Instruction . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Fillhist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.3 Parallel loads of operands . . . . . . . . . . . . . . . . . . . . 31

4.2.4 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Second Sw implementation . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 C code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Third Design: parallel approach . . . . . . . . . . . . . . . . . . . . . 38

4.4.1 Additional Features of processor model . . . . . . . . . . . . . 38

4.4.2 New vector instruction . . . . . . . . . . . . . . . . . . . . . . 43

4.4.3 Promotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.4 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Fourth Design: a second parallel approach . . . . . . . . . . . . . . . 51

4.5.1 Processor model . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.2 New vector instruction . . . . . . . . . . . . . . . . . . . . . . 53

4.5.3 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

II



5 Simulation and Synthesis 57
5.1 HDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 HDL simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Graphical result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Conclusions and Future works 64
6.1 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 66

III



List of tables

4.1 Instructions count among functions. Pure SW Implementation. . . . . 23
4.2 Instructions count among functions. Design 2. . . . . . . . . . . . . . 36
4.3 Instructions count among functions. Second pure sw implementation. 37
4.4 Instructions count among functions. Design3. . . . . . . . . . . . . . 51
4.5 Instructions count among functions. Design 4. . . . . . . . . . . . . . 56
5.1 HSG:Pure Sw Implementation . . . . . . . . . . . . . . . . . . . . . . 61
5.2 HSG:Design2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 HSG:Design3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 HSG:Design4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

IV



List of figures

2.1 Flow of Feautures Extraxion Operation[1]. . . . . . . . . . . . . . . . 5
2.2 Detection Windows divided into block and cells, cell histogram generated[2]. 7
2.3 Simplified Example of how histogram are filled[3]. . . . . . . . . . . . 7
2.4 Normalized histogram related to overlapping cells[3]. . . . . . . . . . 8
2.5 Finel vector of descriptors of dimensions 3780x1[3] . . . . . . . . . . . 9
2.6 Pictorial illustration of histograms corresponding to EOH and HSG

in nonoverlapped cells [4]. . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 ASIP vs ASIC and GPuP . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 ASIP Designer Tool Flow [5] . . . . . . . . . . . . . . . . . . . . . . . 16
4.1 Byte Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Angolar binning, from 0 to (π)/4 of the gradient vector . . . . . . . . 22
4.3 Assembly instr. of magflag function. . . . . . . . . . . . . . . . . . . 23
4.4 Assembly instr. of fillhist function. . . . . . . . . . . . . . . . . . . . 24
4.5 Magflag Functional Unit . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 Fillhist Functional Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.7 Load R0 behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.8 Magflag and Parallel load . . . . . . . . . . . . . . . . . . . . . . . . 34
4.9 Fillhist and Parallel load . . . . . . . . . . . . . . . . . . . . . . . . 34
4.10 Magflag function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.11 Fillhist Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.12 The vword type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.13 Alignment in DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.14 Vector Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.15 Vmagflag functional unit . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.16 Vfill functional unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.17 Vfill2 functional unit . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.18 Fillhist Function,part 1 . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.19 Fillhist Function,part 2 . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.20 Vmagth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.21 Fillhist Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1 Schematic representation of the data path, generated by GO[16]. . . . 57
5.2 Statements included in test bench to record switching activity. . . . . 60
5.3 Synthesys Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 HSG Final Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

V



Chapter 1

Introduction

The growth in the number of automobiles in circulation in the last century has led to

a rise in road accidents that represent an important and common cause of fatalities.

Each year, in fact, about 10 million persons are involved with road injuries around

the world and accordly with the data reported in the ”Global status report on road

safety” [6] it can be asserted that 1.2 million of world’s inhabitants die each year.

The scientific community and the automotive world have focused their attention

on the development of protection systems such as Advanced driver assistance systems

also called ADASs. In particular pedestrian protection systems or PPSs, have been

an important research area in recent years with the aim of improving traffic safety.

The purpose of these systems is to detect stationary but also moving pedestrians

inside a ROI (Region of interest), and to perform specific actions in order to avoid

the collision.

Moreover object detection is becoming an important part of smart systems for video

surveillance in the modern era.

To design reliable pedestrian detection systems complex algorithms and imple-

mentation schemes are needed to meet the challenge of detecting human faces against

backgrounds. Three main aspects represent a difficult problem in the operations that

feature the detection of pedestrians :

1. Continuous changing of scenarios : pedestrian localization represents one very

difficult challenge due to very different appearance of humans, in fact many

factors like different clothes, different dimensions and proportions, the variety

of positions articulate exhibited by human make this process very complicated.

[7].

2. Surroundings conditions : the unstructured and various environment that

1



1 – Introduction

characterize the urban area contexts, changing of light conditions and the

possible overlap of the pedestrian with other objects make very difficult to

develope systems with the level of robustness required.

3. Real-time requirement : speed of reaction and accuracy, so the ratio between

miss detections and false positive is a fundamental point because this systems

could determine the live of people.

2



Chapter 2

Pedestrian Detection Algorithm

A pedestrian detection framework is composed of some steps.

• Preprocessing: performed in order to reduce noise and to improve lighting

conditions. An image could have any size, but there is a constraint to be

considered: patches analyzed must have a fixed aspect ratio. In the cases

considered in this work the aspect ratio is 1:2, so input images are cropped to

this scope[8]. Moreover Dalal and Triggs also evaluate gamma correction as

a step of preprocessing process but accordly to [7] normalization doesn’t have

a significant effect on performances.

• Feature Vector Extraction: the traditional image encryption is not suitable for

classification. With the aim of underlining significant features in the image, a

lot of features extraction techniques are exploited to make able the classifier

to recognize the presence of a target like a possible pedestrian. The output of

feature extraction operation is a set of constant length vectors that are then

given as input to the classifier.

• Feature Vector Classification: given a set of objects represented as feature

vectors associated to, in general, N dimensional spaces, and a related class

label for each object that represents the category which it belongs, the classifier

is a model that can predict the class given the features. The model itself can

take on many different forms: linear classifiers, decision trees, neural networks

and support vector machines are a few popular examples. In particular, the

binary classifier is considered when the space of categories allowed is only

of two elements. It is the case of the considered algorithm where the two

predefined classes are pedestrian or non-pedestrian.Two steps characterize the

classification:

3



2 – Pedestrian Detection Algorithm

– Training phase: a classifier is learned from a training set of measurements

that are representative of the data. In this way the classifier is assisted

to build, itself, a classification rule.

– Testing phase, the learned classifier is used to discriminate between mea-

surements in a test dataset that contains information about realistic

pedestrian situation. In this step the performances of classification have

to be validate.

Linear Support vector machines SVM and Ada Boost are the methods most

used thanks to their theoretical results, good performance and extensibility.

They are also particularly well appropriate because of their speed. Nonlinear

kernel isn’t common, with the exception of HIK(histogram intersection kernel).

In order to perform classification, training and and testing phases, and deter-

mine efficiently the performance of pedestrian recognition, different datasets

have been created:

1. INRIA

2. Caltech;

3. ETH;

• Postprocessing: performed in order to enhance results of detection trought

non maxima suppression[9]

2.1 Histogram of Oriented Gradient

The HOG descriptors has been proposed in 2005 by N.Dalal and B.Triggs [7]

and has characterized by an high accuracy on the INRIA data set. This method

is based on Sliding Windows Approach. The basic idea is that human shape can

be characterized looking at the distribution of pixel intensity gradient and edge

directions. The reference image is represented by Feature Descriptors that collect

useful shape information. An image of size width x height x 3 (3 is the number of

channels if an RGB image is considered ) to a feature array/vector of length n.

4



2.1 – Histogram of Oriented Gradient

2.1.1 Feature Extraction

Two computation units are considered in order to obtain HOG descriptors : cell

and block. According to [1] the size of the cell is tipically 8x8 pixels and a block

contains 4 cells, so its dimension is 16x16 pixels.

Features extraction can be executed following three steps :

• Gradient Computation

• Histogram Generation (Gradient Vote)

• Histogram Normalization

Figure 2.1: Flow of Feautures Extraxion Operation[1].

Gradient Computation The Gradients Gx and Gy are directional changes in

the intensity or color of an image. Their magnitude is enough high around edges

and corners (that are defined ”abrupt intensity changes”) so these parameters allow

5



2 – Pedestrian Detection Algorithm

to obtain precise informations about the shape of the object.

The horizontal and vertical Gradients can be defined as:

fx(x,y) =
∂f(x,y)

∂x
(2.1)

fy(x,y) =
∂f(x,y)

∂y
(2.2)

These values are computed by utilizing filter kernels for the input image, the

first for Gx and the second for Gy :
[
−1 0 1

]
and


−1

0

1

 (2.3)

Magnitude and orientation are then computed using the following formulas:m(x,y) =
√
fx(x,y)2 + fy(x,y)2

θ(x,y) = arctan fy(x,y)

fx(x,y)

(2.4)

Histogram Generation After the computation of magnitude and orientation,

for each image patch, and for each pixel of a block it is obtained a set of 2 values.

Each pixel computes one weighted vote for an histogram channel according to the

direction of the element of the gradient centred on it, these votes are accumulated

into orientation bins over each cell, the local spatial area considered .The vote is

related to the gradient magnitude of the pixel, the histogram is composed by 9-

bins if it is considered the so-called ”unsigned gradients representation”. In this

case, the bins are spaced over 0, π. In order to reduce the effect of the aliasing,

votes are bilinearly interpolated between the neighbouring bins for both position

and orientation.

6



2.1 – Histogram of Oriented Gradient

Figure 2.2: Detection Windows divided into block and cells, cell histogram
generated[2].

The steps needed to fill an histogram are presented in the following picture. In

order to make more direct the example a simplest situation is reported [3], the cell

has a dimension of 4x4 pixels and the histogram presents only 3 bins.

Figure 2.3: Simplified Example of how histogram are filled[3].

At this point, all the pixels in a cell have contribuited to the 9-elements vector

7



2 – Pedestrian Detection Algorithm

and the HOG for this cell is obtained.

Histogram Normalization As last step a large histogram is generated by com-

bining all histograms which belonging to one block that consist of four cells. Finally

the big histogram obtained has to be normalized, in fact the obtained values are

clearly influenced by light changing and normalization allows to overcame this prob-

lem and makes better the invariance to illumination and shallowing. Moreover, once

the computation of the current block is finished, the next computation is performed

and the next block considered overlaps of one cell (8x8 pixels) the previous.

Figure 2.4: Normalized histogram related to overlapping cells[3].

The overlapping blocks make possible that the descriptors at the end contains

different contributions from one single cell which is normalized with respect to a

different block. The normalized result can be realized by appling the so called “L2-

norm”:

Vi =
Vi

‖v‖2 + ε2
(2.5)

8



2.2 – Histogram of Significant Gradient

where Vi is the vector which correspond to the combined histogram for the whole

block, i is a number from 1 to 36 ([9 bins]x[4 cells]), ‖v‖2 = v21 + v22 + .... + V 2
36 e ε

is a constant very small to prevent dividing by zero.

Finally the output vector is obtained, its dimension can be computed tacking into

account some considerations:

• The detection window has a size of 64x128 and is divided into blocks of di-

mension 16x16. The blocks are overlapped each other and share one cell. So

sliding the window 7 blocks are considered for the horizontal dimension and

15 for vertical one. In total 7 ∗ 15 = 105 overlapping blocks are handled.

• For each block a vector of features of size 36x1 is obtained. The final concate-

nated vector have dimension of 105 ∗ 36 = 3780.

Figure 2.5: Finel vector of descriptors of dimensions 3780x1[3]

2.2 Histogram of Significant Gradient

HOG combined with SVM classifier is by now the most performant feature detector.

With the aim to have better detection rate, the world of research has combined

HOG with more complicated features world in cascade. But since HOG feature

9



2 – Pedestrian Detection Algorithm

extraction requests floating point computation and a lot of memory accesses, the

obtained solutions in hardware and software result to be very power expensive and

complex. In [4] it is proposed a pedestrian detection framework which is efficient and

fast, characterized by less expensive computation. In fact in the proposed solution,

the orientation histograms are built without utilizing floating point operations but

exploiting the capability of discrimination of locally significant gradients in addiction

to a fast Look-up-table based Support Vector Machine classifier. According to [4]

HSG presents better performance with respect to HOG on INRIA and ETH Data

sets.

HSG Computation Starting from detection windows of 64x128, blocks of dimen-

sion 8x8 are extracted. For each pixel belonging to the block gradient magnitude and

direction are computed. Now, while in HOG method histograms were filled exploit-

ing bilinear interpolation, in HSG solution the average value of gradient magnitudes

related to the block is computed. This parameter is used as a threshold value: only

at the edges that have a higher value of magnitude is allowed to binary vote the

corresponding bin. The final features vector is obtained by concatenating the his-

tograms coming from overlapping blocks (stride of 4). In this way, it is sure that the

consequences of the variation in local illumination are neglected. This solution is

simpler than HOG not only because the algorithm has been reduced in complexity,

but also because only binary voting is allowed so, only integer operands are involved

in the computation. In figure a result of HSG is illustrated. Also the EOH method

is shown, a difference can be noticeable: HSG captures the contours of the figure in

a more efficient way, it captures only dominant edges while EOH allows all gradi-

ents to vote and histograms appear distributed uniformly, the shape is not clearly

recognizable.

10



2.2 – Histogram of Significant Gradient

Figure 2.6: Pictorial illustration of histograms corresponding to EOH and HSG in
nonoverlapped cells [4].

HSG Classification An additional advantage is that final feature vector is clas-

sified with SVM method using a LUT approach. This also allows reducing the com-

putational complexity avoiding floating point value. The following formula shows

the h SVM classification function:

h(x) =
n∑

i=1

(
m∑
j=1

αjK(x(i),SVj(i))

)
+ b (2.6)

where:

• x is equal to the input feature vector composed by n elements

• SVj is the element in position jth of support vector

• i is the access index for SVj and x

• αj represents support vector learned coefficient

• b is the learned bias

• K is the kernel function [10]

11



2 – Pedestrian Detection Algorithm

k, the kernel function considering the linear case is a multiplication, also x(i) is

a linear term so it can be put out of the first summation.

hlinear(x) =
n∑

i=1

(x(i)

(
m∑
j=1

αjSVj(i)

)
+ b (2.7)

In this way the term contained in the brackets can be calculated previously, so the

equation above can be rewritten as:

hlinear(x) =
n∑

i=1

(x(i) ∗ C(i)) + b (2.8)

where Ci is the precomputed term that contains the support vector and the

learned coefficient.

It can be observed that SupportVectorMachine classification, for the linear case

is simply a dot product among input feature vector and coefficient vector summed

to the bias b.

In general, the kernel function is not linear but finds the minimum of the elements

corresponded both input feature vector and the current support vector.

h(x) =
n∑

i=1

(
m∑
j=1

αjmin(x(i),SVj(i))

)
+ b (2.9)

The solution useful to reduce the run-time computation can be to utilize a LUT

considering an input vector that only allows integer value in a reduced dynamic

range. This result can be reached by previously computing the inner summation in

(2.9) considering all possible value assumed by xi and storing them in a 2D LUT

T (i,k)[10] that has the following form:

T (i,k) =
m∑
j=1

(αjmin(k,SVj(i))) (2.10)

hHIK(x) =
n∑

i=1

(T (i,x(i))) + b (2.11)

Looking at the relation (2.10), it can be asserted that T (i,k) allows only values

of xi greater than zero and k can vary from 0 to the maximum of xi. T (i,k) presents

12



2.2 – Histogram of Significant Gradient

floating point values because of alphaj is a real value and it is multiplied with an

integer value.

The greater advantage utilizing the LUT is that in this case only n floating point

addictions are exploited to perform classification, n floating point multiplications

are prevented. This can be traduced in terms of performance in a evident speedup

and better discrimination Power.

13



Chapter 3

ASIP

3.1 ASIP Design Approach

ASIP stands for Application Specific Instruction set Processor. It can be seen as

an intermediate approach between two opposite method to obtain processors: Asic

and General Purpose uP .

ASIC

GPuP

ASIP

   
   

   
   

   
   

   
   

   
   

   
  E

ffi
ci

en
ty

 
   

(P
er

fo
rm

an
ce

, A
re

a 
an

d 
Po

w
er

 c
on

su
m

pt
io

n)

                              Flexibility

As Programmability as GpuP

As high Performance and Low 
 Power Consumption as Asic

Figure 3.1: ASIP vs ASIC and GPuP

ASIC

Application Specific Integrated Circuits or ASICs are non-standard integrated cir-

cuits that have been custom designed for a specific use or application. ASIC is a

completely hardwired hardware design, where algorithms are completely described

14



3.1 – ASIP Design Approach

at RTL level and then realized in silicon. They are incredibly expensive, time-

consuming, and resource-intensive to develop, but they offer extremely high perfor-

mance, smallest area and low power consumption. The main disadvantage of this

method is the total lack of flexibility of the project: when a function is implemented

in hw it is impossible to modify the algorithm; the only solution is to re-design the

whole circuit. This implies very high additional cost. For this reason, ASIC design

is only used for applications with very strict constrains and is a dominant solution

when the level of integration is limited.

GPuP

General purpose instruction processors are programmable devices used in a variety

of applications that have dominated computing for a long time. In this approach,

design is handled at high level, algorithms are implemented at software level, by

using C or Assembly languages. It is a pure software design and it does not allow

any optimization at hardware level. They are characterized by low design costs

and high flexibility but present big area, high power consumption and tend to lose

performance when dealing with non-standard operations and non-standard data not

supported by the instruction set format.

ASIP

ASIPs, instead, represent a third implementation option for the design of a lot of

application in which the power, area and performance of a standard general purpose

processor is not enought and hardware accelerators of ASIC are not sufficient flexible.

Starting from a general purpose processor, this approach is implemented to optimize

it. In fact its assembly instruction set is designed to accelerate the most appearing

function and critical functions, its architecture is modified in order to accelerate

them to make ASIP fit to the specific application.

One of the key part of the design of an ASIP is the choice of the general purpose

processor which is used as a starting point for the project. It is important to consider

two main aspects:

1. Wasted area and power have to be avoided, so it has to be simple.

15



3 – ASIP

2. It has to be powerful enough in order to allow to perform all the operations

needed to execute the application with a low number of instructions.

3.2 ASIP DESIGNER Tool

ASIP DESIGNER by Synopsys is a tool which allows to design, program and verify

ASIPs. It provides all aspects of design of ASIP, its main capabilities concern the

fast exploration of architectural possibilities, development of a C C ++ compiler

based SDK (software development kit) that adapts automatically to architectural

changes, simulation of instruction set and automatic generation of synthesizable

RTL optimized in terms of area and power.

Figure 3.2: ASIP Designer Tool Flow [5]

16



3.2 – ASIP DESIGNER Tool

The technology of Asip Dsigner supports different features:

• Modeling the ISA of the ASIP using the processor description language nML,

where nML is a high level language used to define the instruction set and

processor architecture. This description includes the instruction pipeline, the

instruction set , the primitive operations of processors and the resurces that

it exploit. In addition nmL language allows to model the Input Output inter-

faces.

• Compiler in the loop technology that enables the generation of SDK (software

development kit) for each ASIP.

The software is made of different components:

– An optimizing compiler, that generates automatically the code. The

compiler uses C, C++, OpenCL C. The compiler supports the data-level

parallelism, the instruction level parallelism, the pipelined instructions,

specialized functions arithmetic, data-type custom.

– A linker that builds an executable file from separately compiled Elf/Dwarf

object files for different C functions.

– An assembler and disassembler that allows the translation of the machine

code written in assembly into binary format and viceversa.

– A fast instruction-set simulator that provides cycle and instruction accu-

rate abstraction level.

– A multicore debugger that is used to connect the instruction set of sim-

ulators and on-chip debug hardware.

• The generation of an hardware implementation optimized in terms of area and

power, using synthesizable VHDL or Verilog. In order to support the debug

on chip a debug controller and Jtag can be generated

• Multifaceted capabilities of verification with an automatically generation of

specific test program written in C or in assembly code.

17



Chapter 4

ASIP Implementation

In this chapter is presented the microprocessor core in different versions optimized

for pedestrian detection algorithm. The starting point of the obtained microproces-

sor is the Tmotion processor provided by ASIP Designer. It has the same instruction

set and structures and additional special features have been added to improve per-

formances.

Tmotion

Tmotion[11] is based on the basic processor Tmicro[12] presents in ASIP Designer

library, it is a 16 bit microcontroller general purpose characterized by the following

architectural features:

• 16 bit ALU able to perform 16 bit instructions for integer arithmetic opera-

tions,compare and bitwise logical operations. They operate on a register file

with eight fields.

• Instructions for integer multiplication among 16 bit operands producing a

result on 32 bit, stored on 2 separated registers of 16 bit.

• Instruction for 16 bit shift .

• instructions for 16 bit division .

• Instructions for load and store operations from and to a data memory (address

space=64k words), characterized by indirect addressing and by little endian

format.

• Instruction fetch from the program memory(address space=64k words) char-

acterized by little endian format.

18



• Control instructions like subroutine call, jumps and return.

• Architecture characterized by three stages of pipeline that are IF, ID, E1.

• Zero overhead loop.

In addition, it provides instructions to store and load bytes in memory. Byte

access implies that the smallest possible value (the value that occupies one address

location in the memory) is a byte. In fact, as unsigned bytes are used to represent

pixel values in application of video processing (they have a range from 0 to 255), these

additional features have been inserted to improve memory usage. The extensions

added to the processor model are:

• A byte memory DMb.

• Byte load and store instructions.

• Representations for the C built-in character types were added to the compiler

header file.

Byte load and store instructions added to the instruction set are shown in figure.

Figure 4.1: Byte Instructions

The above table represents the binary encoding and the assembler sintax of the

nine instructions added.

The instructions lbs executes an operation of signed byte load. Before the byte

value is written in the destination register that is of 16 bits, it need to be sign

19



4 – ASIP Implementation

extended at the Most Significant Bit side thanks to the extend sign function.

lbs : wreg ← extend sign(DMb[R[r]])

The instruction lbu executes an operation of unsigned byte load. Before the byte

value is written in the destination register, it need to be zero extended at the Most

Significant Bit side thanks to the extend zero function.

lbs : wreg ← extend zero(DMb[R[r]])

The instruction sb executes an operation of byte store. The memory location of

destination have a size of 8 bits so only the eight least significant bits of the source

register have to be stored. The function extract low is used to this aim.

sb : DMb[R[r]]← extract low(wreg)

These instructions utilize indirect addressing, the address is taken from the R

register file and its field can be adeguately postincremented or postdecremented.

4.1 SW Implementation

This first Version is an absolute software implementation where the HSG algorithm

has been compiled on the TMotion core without any modification, no accelerating

instructions or hardware support has been added.

4.1.1 C Code

The Source code is composed of:

1. Y.inc: this file contains a 134x70 pixel windows, obtained by the reference

frame. The YCoCg (luminance + offset orange + offset green) color space

is considered, it ensures improved coding gain relative to both RGB and

YCbCr[13].The YCoCg color space transform is defined by:

20



4.1 – SW Implementation

 YCo
Cg

 =

 1/4 1/2 1/4

1/2 0 −1/2

−1/4 1/2 −1/4


RG
B

 (4.1)

2. HSG ASIP.c: that contains the C source code able to implement the HSG

pedestrian detection algorithm.

The C code is based on same functions as Compute Gradient, Compute Mag flag,

and Fill Histogram.

Compute Gradient function performs the exploration of the windows of 128x64

pixel (3 pixels on each side have been discarded to avoid boundary conditions),

separating each block of 8x8 pixel and computing for each the x and y gradient.

Data related to a block are organized in a bidimensional array format.

Compute Mag function receives as input the x and y gradients related to a block

and computes the gradient magnitude by taking into account the simplification

presented in [4].

Mag = |Dx|+ |Dy|

This function also produces the flag values. Starting from gradients Dx and Dy

values, it gives an information about the sign of the ratio Dx

Dy
. This parameter is

useful to assign the vote to the correct bin histogram.

Compute Threshold function computes the average value of all magnitudes on

a block. This is the threshold value with that magnitudes are compared to decide

if the corresponding pixel votes to bin histogram.

Fill Histogram: The calculation of the arctangent function represents an oper-

ation very complex in terms of complexity. Accordly to the algorithm, the direction

values, are computed to fill bins of histograms in the correct way. Looking at the

instructions presented in [14] arctangent computation can be avoided by considering

the following expression:

fx(x,y) ∗ tan(θi) <= fy(x,y) <= fx(x,y) ∗ tan(θi+1)

By restricting the range of angles from 0 to π it can be obtained the representa-

tion in figure :

21



4 – ASIP Implementation

Figure 4.2: Angolar binning, from 0 to (π)/4 of the gradient vector
. .

Moreover, the computation of flag values allows to reduce the number of calcu-

lations to perform.

So Fill Histogram function allows to fill in the correct way the nine bins of the

histogram accordly to some factors as gradient magnitude and direction, threshold

of magnitude values and flag like described above. Block is divided into cells and

9 bins for each cell are computed. The final output is a vector of 36 elements for a

block.

4.1.2 Compilation

Using ASIP DESIGNER the processor model of tmotion and the C code presented

above are compiled and simulated. The file obtained is compared with the correct

one in order to ensure the consistency of results. As can be seen in the Instruction

Report provided by the tool, the program is simulated requiring a total number of

cycles equal to 723510 while the number of instructions that are executed is 660237.

The total size occupied by instructions in program memory is 439 bytes. The values

mentioned are divided among the various functions of the program as listed in table

4.1.

22



4.1 – SW Implementation

Function Instr Count % Cycle Count %
Fill hist 289865 43.90% 323935 44.77%

Compute Mag Flag 238793 36.17% 264887 36.61%
Compute gradient 110502 16.74% 112313 15.52%

Compute Th 20992 3.18% 22272 3.08%

Table 4.1: Instructions count among functions. Pure SW Implementation.

It is noticeble that the two functions most expensive are Fill hist and

Compute Mag flag, the 81.02% of total clock cycles is used to perform them. With

the aim to optimize this functions it is important to focus on them looking at

their assembly instructions. The following image presents the assembly related to

Compute Mag flag.

Figure 4.3: Assembly instr. of magflag function.

The first for loop starts at instruction 12 and terminates at 48. There is one

23



4 – ASIP Implementation

delay space before that do is performed and the compiler utilizes it to perform a

mvib instruction. The second for loop starts at instruction 16 and finishes at 47.

After it the compiler inserts a nop because no operations can be scheduled.

The computation of absolute value of Dx starts at instruction 16, where a load is

performed. The instruction 17 compares its value against zero and if it is negative

the conditional jump is taken at instruction 22 where the absolute value of Dy is

computed in the same way. In case of negative value, the jump is not performed

and the instruction 19 negates the value.

At instruction 31 the addition is performed and the Magnitude value is computed.

At instruction 36 the multiplication between Dx and Dy is computed, and flag value

calculation is performed from instruction 38 to 45.

It can be observed that the assembly instruction which are executed a lot of times

are those internal to the loops with address from 16 to 45, related to computation

of absolute values of Dx and Dy, magnitude and flag.

Same considerations can be done for the function Fill hist looking at the fol-

lowing listing of instructions related to a portion of function.

Figure 4.4: Assembly instr. of fillhist function.

24



4.2 – Second Design

4.2 Second Design

A second design of the processor has been implemented. It has been extended

adding two special purpose instructions. The first is able to compute the absolute

value of the gradients, make the sum of them obtaining the magnitude, and the

flag value. Moreover, this computation is combined with parallel load operations

over the needed operands. The second instruction is able to perform a number of

if statements in order to determine the position of bin that has to be implemented.

Also this second instruction is combined with parallel load operand operations. The

aim is to accelerate the calculation in a way that the one iteration of the loop

employs one clock cycle.

4.2.1 Magflagcomp Instruction

In order to define an instruction that computes magnitude and flag , some items

are been put into the processor model.

Magflagcomp primitive function The magflagcomp primitive function has to

be added to the header file tmotion.h.

void magcompflag(word,word,word&,word&,word&);

The function receives as input two parameters of length 16 bit, word type, and

returns three values of type word.

The file tmotion.p, is modified adding the function implementation.

void magflagcomp(word x,word y, word& adx , word& ady , word& mag ,word& flag){

word adx_t = x<0? -x:x;

word ady_t = y<0? -y:y;

adx=adx_t;

5 ady=ady_t;

mag = adx_t + ady_t;

word flag_t = x*y;

if (flag_t < 0) flag =0;

10 else flag =1;

}

25



4 – ASIP Implementation

Finally, it is necessary to define a promotion and add it to the header file

tmotion int.h with the aim to use directly the magflagcomp function in the C

code and call it as an intrinsic function.

promotion void magflagcomp(int,int,int&,int&,int&) =

void magflagcomp(word,word,word&,word&,word&);

In this way the function can be directly call using int arguments type.

Magflagcomp added instruction The first part of the new instruction defines

the magflagcomp instr, it is an Or-rules between two instructions as can be seen

in the following portion of code:

opn magflagcomp_instr(magflagcomp_operation_instr| magflagcomp_parr_instr)

{

image

: "100":: magflagcomp_operation_instr

5 | "100":: magflagcomp_parr_instr

;

}

The most significant part of the binary encoding, for these instructios is defined

in the image attribute: “100”.

Functional unit The functional unit that implements the primitive function is

defined as shown below. Also the transistories which are connections like buses

and nets (wires) utilized to connect the unit to the rest of the datapath without

introducing delay, are defined. Input and output are declared by the keyword trn.

fu magflagcomp; // compute magnitude_flag unit

trn mfc_r <word >; // input

trn mfc_s <word >; // input

5

trn mc_u <word >; // output

trn mc_v <word >; // output

trn mc_t <word >; // output

10 trn fc_u <word >; // output

26



4.2 – Second Design

In the following portion of code is described the instruction core, using the nML

code:

opn magflagcomp_operation_instr( r: c3u , s: c3u , u:c3u ,t:c3u )

{

5 action {

stage E1:

magflagcomp(mfc_r=rre1=R[r],mfc_s=rse1=R[s],mc_u ,mc_v , mc_t ,fc_u)

@magflagcomp;

10 R[u]=rue1=mc_u;

BN0=mc_v;

R[t]=rte1=mc_t;

PL=fc_u;

15 }

syntax : "mfc("r "," s "," u "," v ","t")";

image : "0"::r::s::u::t;

}

r,s,u and t are the four parameters used by this instruction. They correspond

to the addresses of Register File, r and s are the addresses of the location in which

input values are stored, u and t are the addresses of the location in which output

values are stored. Also two additional registers are used to memorize outputs. It

is important that the registers BN0 and PL are involved in the move and load and

store base instructions of the processor in order to guarantee the transfer of these

values in memory.

The sequence of actions that the instruction performs are described in the action

attribute and depicted in the image 4.5.

The values in the register R[r] and R[s] are elaborated to compute the absolute

values and then added. The results are stored in the register R[u], R[t] and BNO.

The input values are also multiplied, and their product is elaborated to compute

flag, that is stored in the register PL. These operations are executed by the magflag

functional unit thanks to the command @magflag.

The third attribute of the instruction, the image attribute specifies the sequence

of bits that compose the second part of thirteen bits of the opcode regarding this

instruction:

27



4 – ASIP Implementation

ABS_x

ABS_y

+

x <

R[t]

PL

R[u]

BN0

R[r]

R[s]

magflag fu 

Figure 4.5: Magflag Functional Unit

"0"::r::s::u::t;

The processor structure has to be modified to perform this instruction. In partic-

ular, three write ports are added to the Register file in order to execute two reading

and four writing operations in a single clock cycle.

4.2.2 Fillhist

In order to define an instruction that compute the position of the bin that has to be

incremented , the following items are been put into the processor model in a similar

way as described above.

Fillhist primitive function The fillhist primitive function has to be added to

the header file tmotion.h.

word fillhist(word,word,word);

The function receives as input three parameters of length 16 bit, and returns one

values of type word.

The file tmotion.p, is modified adding the function implementation.

28



4.2 – Second Design

word fillhist(word x,word y,word flag){

word x_t= x;

word y_t= y<<3;

5

word lim1=TAN0*x_t;

word lim2=TAN20*x_t;

word lim3=TAN40*x_t;

word lim4=TAN60*x_t;

10 word lim5=TAN80*x_t;

word pos;

if((y_t >= lim1)){ if((y_t < lim2)) {if(flag ==1) pos=0; if(flag ==0)

pos =8;}}

15

if((y_t >= lim2)) {if((y_t < lim3)) {if(flag ==1) pos =1; if(flag ==0)

pos =7;}}

if((y_t >= lim3)) {if((y_t < lim4)) {if(flag ==1) pos =2; if(flag ==0)

pos =6;}}

20 if((y_t >= lim4)) {if((y_t < lim5)) {if(flag ==1) pos =3; if(flag ==0)

pos =5;}}

if(y_t >= lim5) pos =4;

return pos;

25

}

A promotion is defined and add it to the header file tmotion int.h.

promotion int fillhist(int,int,int) =

word fillhist(word,word,word);

Fillhist added instruction The Fillhist instr instruction is an Or-rule between

the operation instruction and the parallel operand load instruction:

opn fillhist_instr( fillhist1_operation_instr | fillhist1_parr_instr)

{

image

5 : "11":: fillhist1_operation_instr

| "110":: fillhist1_parr_instr

29



4 – ASIP Implementation

;

}

Functional unit The functional unit that implement the primitive function is the

following:

fu fillhist1;

trn fh_r <word >; // input

trn fh_s <word >; // input

5 trn fh_d <word >; // input

trn fh_pos <word >; // input

The operation performed by the instruction, listed below, show that four field

of Register File are used to store operand values, three for inputs and one for the

output, so four parameter are requested by fillhist operation inst .

opn fillhist1_operation_instr( r: c3u , s: c3u , d:c3u , t:c3u )

{

action {

5 stage E1:

R[t]=rte1=fh_pos=fillhist1(fh_r=rre1=R[r],fh_s=rse1=R[s],fh_d=rde1=R[d])

@fillhist1;

}

10 syntax : "fh("r "," s "," d ","t ;

image : "11"::r::s::d::t;

}

The sequence of actions that the instruction performs are described in the action

attribute and depicted in the image 4.5.

The value stored in register R[r] is multiplied with the constant values that that

tangent can assume and the limits that determine each bin are obtained. The value

in register R[s] is shifted of three (the whole program acts on integer value, for

this reason tangent values are been approximate and y need to be multiplied by 8).

The value in register R[d] is read and then a series of conditions, exploited by a

series of if statements, are verified and the the correct value is stored in register

30



4.2 – Second Design

R[t]. These operations are executed by the fillhist1 functional unit thanks to the

command @fillhist1.

Figure 4.6: Fillhist Functional Unit

4.2.3 Parallel loads of operands

With the aim to perform these two operations just described in parallel with load

operations from memory some additional functional units are added named ag2, ag3,

xs2 and xs3. Functional units ag and xs are already present in processor model,

defined in load store operation.

fu ag2; fu ag3;

trn agp2 <word >; trn agp3 <word >;

trn agm2 <word >; trn agm3 <word >;

trn agq2 <word >; trn agq3 <word >;

5

fu xs2; fu xs3;

trn wbus2 <word >; trn wbus3 <word >;

31



4 – ASIP Implementation

AG2 and AG3 fus are two additional address generation units, each of them has

the task to generate the address needed to read the data memory by incrementing

the value stored in the source register.

XS2 and XS3 allow to zero extend the two bytes fetched from memory to 16 bits

before to be put in the register of destination.

Moreover, some modifications have to be done on the processor model. Original

data memory has one read port and one write port. In order to perform parallel

loads, so enter in memory two times simultaneously, two additional read port has

to be provided. The data memory Dmb is declared in this way in tmotion.n file:

dmb load2 and dmb load3 are the two extra ports. dmb addr2 and dmb addr3

are the signals in input of memory, address signals, on the bus at the stage ID,

while dmb read2 and dmb read3 are the output signals and carry the values taken

by memory available on the data bus in E1 stage.

The instructions are so composed:

opn magflagcomp_parr_instr(mc: magcomp_opn ,

ld0 : load_R0 ,

ld1 : load_R1)

5 {

action { mc; ld0; ld1; }

syntax : mc " | " ld0 " | " ld1;

image : "1"::"000"::"000"::"000"::"000"::mc::ld0::ld1;

}

opn fillhist1_parr_instr(fh: fillhist1_opn ,

ld0 : load_R0fh ,

ld1 : load_R1fh ,

ld2 : load_R2fh )

5 {

32



4.2 – Second Design

action { fh; ld0; ld1; ld2; }

syntax : fh " | " ld0 " | " ld1 " | " ld2;

image : "0111"::"000"::"000"::"000"::fh::ld0::ld1::ld2;

}

In particular the load R0 rules is characterized by the code:

The action attribute describes the operations acted:

• In the stage ID the value in the register R2 is put on the address bus in order

to access memory, and in the same cycle this address is incremented by one,

thanks to ag1 and restored in R2.

• In the stage E1 the value of eight bit taken in the memory is extended by xs1

and written in R0.

In order to fit the opcode related to the parallel instructions in one single string of

16 bit, no parameters are used in this instruction but specific registers are considered:

R0 and R2.

The same is done for load R1 and load R2.

The operations described are represented in a graphical way in figure:

Figure 4.7: Load R0 behavior

33



4 – ASIP Implementation

Also instructions magflagcomp Fig.4.8 and fillhist Fig.4.9 are reworked in order

to reduce the opcode bits by using specific registers.

Figure 4.8: Magflag and Parallel load

Figure 4.9: Fillhist and Parallel load

To be executed, this instruction required some modifications to the Register File,

34



4.2 – Second Design

in particular some ports have been added:

• two read ports in the ID stage in order to allow three reading operations

• two read ports in the E1 stage in order to allow three reading operations

• two write ports in the E1 stage in order to allow three writing operations

• four read port in the E1 stage in order to allow five writing operations.

The nml desctription of RF in file tmotion.n is modified in this way:

C Code

The C code is modified in order to use these two instructions with proper line that

call the primitive functions:

Figure 4.10: Magflag function

35



4 – ASIP Implementation

Figure 4.11: Fillhist Function

4.2.4 Compilation

The processor model of tmotion and the C code are compiled and simulated. The

file obtained is compared with the correct one in order to ensure the consistency of

results and the correctness of obtained design.

The program is simulated exploiting a total number of cycle equal to 388370 while

the number of instructions that are executed is 369117. The total size occupied by

instructions in program memory is 331 bytes. The values mentioned are divided

among the various function of the program as listed in table:

Function Instr Count % Cycle Count %
Fill hist 159519 43.21% 120505 44.82%

Compute Mag Flag 69888 18.93% 71424 18.39%
Compute gradient 118694 32.15% 120505 31.03%

Compute Th 20992 5.69% 22272 5.73%

Table 4.2: Instructions count among functions. Design 2.

36



4.3 – Second Sw implementation

4.3 Second Sw implementation

In order to exploit data parallelism it is necessary to obtain a data organization

suitable for this kind of approach.

4.3.1 C code

The source code has been modified to this aim. Data related to a block are arranged

in a vectorial way, not in matrix way, like in the precedent case. So a vector of 64

elements is obtained for each block and it is organized in a way that first them

related to the first cell are listed, then the ones related to the second cell and so on.

The C code is based on functions: Compute Gradient and Fill Histogram.

Compute Gradient function performs the exploration of the windows of 128x64

pixel, separating each block of 8x8 pixel and computing for each the x and y gradient.

Fill Histogram function receives as input the x and y gradients related to a

block and computes the magnitude, the flag and threshold values. Then it produces

the final output of 36 elements for a block.

4.3.2 Compilation

The processor model of tmotion and this new version of C code presented above

are compiled and simulated. The file obtained is compared with the correct one in

order to ensure the consistency of results. As can be seen in the Instruction Report

provided by the tool, the program is simulated exploiting a total number of cycle

equal to 926330 while the number of instructions that are executed is 852976. The

total size occupied by instructions in program memory is 545 bytes. The values

mentioned are divided among the various function of the program as listed in table:

Function Instr Count % Cycle Count %
Fill hist 658151 77.16% 726731 78.45%

Compute gradient 194740 22.83% 199496 21.54%

Table 4.3: Instructions count among functions. Second pure sw implementation.

37



4 – ASIP Implementation

4.4 Third Design: parallel approach

A third design of the processor has been implemented in order to exploit SIMD

(Single Instruction Multiple Data) instructions. This kind of instructions are able

to elaborate in an equal way and simultaneously all the elements of a vectorial

datum.

4.4.1 Additional Features of processor model

New primitive data type A new data type vword is added to processor model

in order to shape a SIMD vector. This type has been defined in a way that all the

values related to a cell, 16 elements, can be fit in a vector. The type is declared in

the header file tmotion.h:

class v8word property (vector word[V SIZE]);

The costant value VSIZE, instead, is defined in the file tmotion config.h as

follow:

#define V SIZE = 16; //number of words

The SIMD instructions identify this type as a vector of 16 word, 256 bit wide,

as shown in the following figure:

Figure 4.12: The vword type

Alias Vector Data Memory In order to store and load one whole vector in the

data memory, a record alias DMv must be defined[15].

mem DMb[dm_size , 1]<w8, addr > access {

38



4.4 – Third Design: parallel approach

dmb_ld ‘ID ‘: dmb_read ‘E1 ‘ = DMb[dm_addr ‘ID ‘]‘ID ‘;

dmb_st ‘E1 ‘: DMb[dm_addr ‘E1 ‘]‘E1‘ = dmb_write ‘E1 ‘;

5 };

mem DMv [dm_size ,32]<vword , addr > alias DMb access {

dmv_ld ‘ID ‘: dmv_read ‘E1 ‘ = DMv[dm_addr ‘ID ‘]‘ID ‘;

dmv_st ‘E1 ‘: DMv[dm_addr ‘E1 ‘]‘E1‘ = dmv_write ‘E1 ‘;

10 };

In this way Dmv has been declared like an alias of memory DMb.

It can be noticed that bytes in Dmb have an alignment of 1 and vwords in DMv

have an alignment of 2*VSIZE because it deals with vectors of word type. An

alignment of 32 means that vword elements have to be allocated at addresses that

must be multiple of 32. Moreover, Tmotion has a memory with an organization

of type little endian, so least significant part of the vector data are stored at the

smaller storage address, that is the address of the whole vector.

Figure 4.13: Alignment in DM

The figure 4.13 shows how the objects are allocated in data memory. A and B

are word type elements and are stored at addresses 0 and 2 respectively. C is of

vword type and is stored at the aligned address 16. The last object D is stored at

address 32.

Memory has two ports: dmv ld and dmv st. The first is taken to load vectors

in memory: in the stage ID the address is on the bus and an access of memory is

performed, in the E1 stage, instead, the data vector is available on data bus. The

second port is taken to store vectors in memory, in E1 stage the whole operation is

performed. The vector that has to be stored is on data bus in E1 and it is put at

the location specified in address bus. Also two signals are defined: dmv read and

dmv write, they correspond respectevely to vector data read signal and vector data

write signal.

39



4 – ASIP Implementation

Vector Register File A vector Register File is defined in order to put in vectors

when they are taken from memory. In file tmotion.n the following portion of code

is added:

reg V[6]<vword ,uint3 > // general purpose Vector registers

syntax ("V")

read( vecr vecs ) // read ports

write(vect); // write port

V Register file has 6 fields, two read ports and one write port. Three bits are

necessary to address it.

Vector Primitive functions The new primitives that allow to manipulate vec-

tors are declared in the file tmotion.h

void vmagflagcomp(vword ,vword ,vword&,vword&,vword&,vword&);

vword fillhist1(vword , vword ,vword , vword , word );

vword fillhist2(vword);

addr force_align(addr);

The vmagflagcomp primitive function receives in input two vectors containing

x and y gradient values related to a whole cell, compute their absolute values, sum

them to calculate the magnitude vector and compare their sign to obtain the flag

vector. These vectorial operations are done by performing scalar operations on the

elements that have the same position in the input vectors and storing the results in

an output vector that has the same dimension.

Figure 4.14: Vector Operation

40



4.4 – Third Design: parallel approach

The file tmotion.p, is modified adding the function impementation.

void vmagflagcomp(vword x,vword y, vword& adx , vword& ady , vword& mag , vword& flag

)

{

vword result0 , result1 ,result2 , result3;

5 int32_t i;

int32_t k;

int32_t l;

int32_t m;

10 for (int32_t m = 0; m < VSIZE; m++)

result3[m]=((x[m]*y[m]) <0)? 0:1;

for (int32_t k = 0; k < VSIZE; k++)

15 result1[k]=(x[k]<0)? -x[k]:x[k];

for (int32_t l = 0; l < VSIZE; l++)

result2[l]=(y[l]<0)? -y[l]:y[l];

for (int32_t i = 0; i < VSIZE; i++)

result0[i]= result1[i]+ result2[i];

20

mag=result0;

adx=result1;

ady=result2;

25 flag=result3;

}

The fillhist1 primitive function receives in input four vectors, and returns an

output vector containing the values of positions of bin vector to be incremented of

one.

vword fillhist1(vword x, vword y ,vword Mag , vword flag , word Mag_th){

int32_t k;

vword pos;

5

for (int32_t k = 0; k < VSIZE; k++){pos[k]=14;}

for (int32_t k = 0; k < VSIZE; k++){

10 word x_t= x[k];

word y_t= y[k]<<3;

word lim1=TAN0*x_t;

word lim2=TAN20*x_t;

word lim3=TAN40*x_t;

41



4 – ASIP Implementation

15 word lim4=TAN60*x_t;

word lim5=TAN80*x_t;

if(Mag[k]>Mag_th){

20 if((y_t >= lim1)){ if((y_t < lim2)) {if(flag[k]==1) pos[k]=0; if(flag[k]==0)

pos[k]=8;}}

if((y_t >= lim2)) {if((y_t < lim3)) {if(flag[k]==1) pos[k]=1; if(flag[k]==0)

pos[k]=7;}}

if((y_t >= lim3)) {if((y_t < lim4)) {if(flag[k]==1) pos[k]=2; if(flag[k]==0)

pos[k]=6;}}

25

if((y_t >= lim4)) {if((y_t < lim5)) {if(flag[k]==1) pos[k]=3; if(flag[k]==0)

pos[k]=5;}}

if(y_t >= lim5) pos[k]=4;

}

30 }

return pos;

}

The fillhist2 primitive function receives in input one vector of position, and

returns as output the bin vector, its elements has been incremented according to

input vector.

v8word fillhist2(v8word pos){

int32_t k;

5 vword bin;

for (int32_t k = 0; k < VSIZE; k++){bin[k]=0;}

for (int32_t k = 0; k < VSIZE; k++){

10

if(pos[k]==0){ bin [0]+=1;}

if(pos[k]==1){ bin [1]+=1;}

if(pos[k]==2){ bin [2]+=1;}

if(pos[k]==3){ bin [3]+=1;}

15 if(pos[k]==4){ bin [4]+=1;}

if(pos[k]==5){ bin [5]+=1;}

if(pos[k]==6){ bin [6]+=1;}

if(pos[k]==7){ bin [7]+=1;}

if(pos[k]==8){ bin [8]+=1;}

20 }

return bin;

}

42



4.4 – Third Design: parallel approach

The force align primitive function receives as argument an address, force the 5

least significant bit to zero and return it. This operation allows to perform aligned

store and load operations to and from memory.

addr force_align(addr a) { return a[15:5]::"00000"; }

4.4.2 New vector instruction

A new instruction defined as vector instr is added, it is an Or-rules between two

instructions as can be seen in the following portion of code.

opn vector_instr(load_store_vreg_sp_indexed

| vector_single_instr

)

5 {

image : "111":: load_store_vreg_sp_indexed

| "110":: vector_single_instr

;

}

SP-indexed addressing The instructions for SP-indexed are requested by the C

compiler. They are utilized in order to store registers of vector types on the stack

frame like a portion of the context switch, or in order to perform spilling when

the vector register file has a capacity that is insufficient. For the SP indexed load

and store instructions, the generated address is calculated by adding to the stack

pointer an offset that is negative. In order to have an offset to an aligned address, it

is necessary that the offset change with a step of 16. For this reason, a new primitive

type is defined:

class nint16s16 property(16 bit signed min = −32768 max = −16 step = 16);

this type is used to model the offs parameter of load store vreg sp indexed.

opn load_store_vreg_sp_indexed(ls: load_store_op , u: c3u , offs: c16n) //,

{

action {

stage ID:

5 ag1_addr = ag1q = add(ag1p=SP,ag1m=offs) @ag1;

stage ID..E1:

switch (ls) {

43



4 – ASIP Implementation

case ld:

dm_addr ‘ID ‘ = ag1_addr ‘ID ‘;

10 V[u]‘E1 ‘ =vect ‘E1 ‘= dmv_read ‘E1 ‘ = DMv[dm_addr ‘ID ‘]‘ID ‘;

case st:

dm_addr_pipe ‘ID‘ = ag1_addr ‘ID ‘;

dm_addr ‘E1 ‘ = dm_addr_pipe ‘E1 ‘;

DMv[dm_addr ‘E1 ‘]‘E1 ‘ = dmv_write ‘E1 ‘ = vecr ‘E1 ‘= V[u]‘E1 ‘;

15 }

}

syntax : ls ","u ",dm(sp" offs ")" ;

image : ls::offs[one 10..4 zero ]::"00"::u;

}

In ID stage the ag1 functional unit computes the address by adding the offset to

the Stack Pointer and the stack is accessed. In E1 stage, if a load operation (ls=ld)

is performed the vector read from memory is put on the data bus and stored in V

at the address specified by u parameter. If a store operation (ls=st) is executed,

instead, the vector present in V[u] is read and written at the address computed in

ID stage.

Because the address has to be aligned, the four least significant bits of offset are

always equal to zero and aren’t encoded in the opcode.

Vector Single instruction This second instruction contains different items, an

instruction to load and store in aligned way vectors from and to memory, one to

execute move operation between vector registers, and three instructions to perform

the computations before described. Additional functional unit and transistories are

added:

// Vector unit

fu vmagflag;

trn tvecr <v8word >; //in

trn tvecs <v8word >;

5 trn tvect <v8word >; //out

trn tveca <v8word >;

trn tvecb <v8word >;

trn tvecc <v8word >;

10 fu vfill; fu vfill2;

trn tvecfr <v8word >; //in

trn tvecfs <v8word >; trn tvecf2r <v8word >; //out

trn tvecft <v8word >; trn tvecf2s <v8word >; //in

trn tvecfb <v8word >;

15 trn tvecd <word >;

trn tvecfa <v8word >; //out

44



4.4 – Third Design: parallel approach

trn ag1_addr <addr >;

fu fa;

The following nML code describes the vec vmagflagcom opn instruction rule:

opn vec_vmagflagcomp_opn(r: c1u , s: c1u , t: c1u , u: c1u , v: c1u , z: c1u)

{

action {

stage E1:

5 vmagflagcomp(tvecr=VA[r],tvecs=VA[s],VB[t]=tvect ,VB[u]=tvecb ,VC[v]=tveca ,VC[z]=tvecc)

@vmagflag;

}

syntax : "vmagcomp v"r ",v"s ",v"t",v"u",v"v",v"z;

image : r::s::t::u::v::z::"00";

}

It can be noticed that alias of vector register file V are used in order to reduce

the number of bit that encoding the instruction.

// Register aliases

reg VA[2]<v8word ,uint1 > alias V[0];

reg VB[2]<v8word ,uint1 > alias V[2];

reg VC[2]<v8word ,uint1 > alias V[4];

5 property unconnected: VA, VB , VC;

In this way the parameter r,s,t,c,u,v,z are all addresses of one bit. In the action

section, the behaviour of instruction is described: input vectors are taken from the

alias VA of V , their absolute values, magnitude and flag are computed and written

into four output vectors. The functional unit @vmagflag performs these operations.

Figure 4.15: Vmagflag functional unit

45



4 – ASIP Implementation

The following nML code describes the vec fillhist1 opn instruction rule:

opn vec_fillhist1_opn(r: c1u , s: c1u , t: c1u , u: c1u , z: c3u ,v: c1u )

{

action {

stage E1:

5 VA[v] =tvecfa =

fillhist1(tvecfr=VC[r],tvecfs=VC[s],tvecft=VB[t],tvecfb=VB[u],tvecd=rfe1=R[z])

@vfill;

}

syntax : "fillhist usc"v ",ing"r","s","t","u","z;

image : r::s::t::u::v::z::"0";

}

In the action section, the behaviour of instruction is described: four input vectors

are taken from the alias VC and VB registers of V and from register R at the address

z, these values are elaborated by @vfill functional unit as shown in the figure below

and the results are stored in vector VA.

Figure 4.16: Vfill functional unit

opn vec_fillhist2_opn(r: c1u ,v: c1u )

{

46



4.4 – Third Design: parallel approach

action {

stage E1:

5 VA[r] =tvecf2r = fillhist2(tvecs=VC[v]) @vfill2;

}

syntax : "fillhist2 usc"r ",ing"v;

image : r::v;

}

In the action section, the behaviour of instruction is described: the input vector

is taken from the alias register VC of V, according to the position written in the

input register the elements of output vector VA, at address r, are incremented. The

functional unit @vfill2 performs these operations.

Figure 4.17: Vfill2 functional unit

The instruction fillhist1 and fillhist2 are been separated in order to avoid a

significant increment of the critical path.

The following nML code describes the vec vmagflagcom opn instruction rule:

// Indirect vector load_store with post modification

trn ag2_addr <addr >;

trn ag1_addr_algn <addr >;

5 //enum vec_ld_op { in "", pp "++", pm "--" };

enum vec_ld_op { in "", pp "++", pm "--" };

opn vec_load_store_opn(op: vec_ld_op , ls: load_store_op , v: c3u , r: c2u)

10 {

action {

stage ID:

switch (op) {

case in: ag1p = R03[r];

15 case pp: R03[r] = ag1q = add(ag1p=R03[r],ag1m =16) @ag1;

case pm: R03[r] = ag1q = add(ag1p=R03[r],ag1m =-16) @ag1;

}

ag2_addr = ag1p;

47



4 – ASIP Implementation

dm_addr =ag1_addr_algn = force_align(ag2_addr) @fa;

20 stage ID..E1:

switch (ls) {

case ld:

V[v]‘E1 ‘ = vect ‘E1‘ = dmv_read ‘E1‘ = DMv[dm_addr ‘ID ‘]‘ID ‘;

case st:

25 dm_addr_pipe ‘ID‘ = dm_addr ‘ID ‘;

dm_addr ‘E1 ‘ = dm_addr_pipe ‘E1 ‘;

DMv[dm_addr ‘E1 ‘]‘E1 ‘ = dmv_write ‘E1 ‘ = vecr ‘E1 ‘= V[v]‘E1 ‘;

}

}

This instruction is able to execute load and store operation from and to the

data memory of aligned vectors thanks to the utilization of the primitive function

force align.

In the action section, the behaviour of instruction is described: in stage ID

The value read from RO3[r] is elaborated by the @fu functional unit, so its least

significant bits are forced to zero. It is made available on address bus in order

to access memory DMv. Moreover, this value is elaborated by @ag1 functional

unit that performs a post-incrementation on it. The value in the register RO3 is

incremented or decremented of the dimension of a vector(16). In the E1 stage:

• If a load operation is performed, the vector fetched from memory is on data

bus and written in V.

• If a store operation is performed, the vector stored in V, is put in memory. A

pipe register is utilized.

4.4.3 Promotion

Finally, it is necessary to define the promotions and add them to the header file

tmotion vector.h with the aim to use directly the primitive function added in the c

code as intrinsic functions.

chess_properties {

representation vpix : vword;

}

5

promotion void vmagflagcomp(vpix , vpix , vpix&, vpix&, vpix&, vpix&) = void

vmagflagcomp(vword , vword , vword&,vword&,vword&,vword &);

48



4.4 – Third Design: parallel approach

promotion vpix fillhist1(vpix , vpix ,vpix , vpix , int)=vword fillhist1(vword ,

vword ,vword , vword , word );

promotion vpix fillhist2(vpix)=vword fillhist2(vword);

It can be seen that a new type, vpix, is defined, it correspond to a vector of 16

fields and it is related to the vword, primitive type defined in processor model. It is

a new data type in C code.

C Code

The C code is modified in order to use SIMD instructions with proper line that call

the primitive functions:

Figure 4.18: Fillhist Function,part 1

49



4 – ASIP Implementation

Figure 4.19: Fillhist Function,part 2

It can be noticed that a for loop that implements only four iterations is re-

quired, in fact the utilization of vectorial instructions allows to elaborate in a single

iteration a quarter of the whole vector. In the first loop the int pointers on the

desired element of the arrays prova1 and prova2 are cast to vpix pointers d x and

d y. The vmagflagcomp function is called, it receives parameter of type vpix and

returns values of the same type. Because of the fact that the parameters returned

by the vectorial function have to be processed in a second time by a scalar func-

tion that computes the average values of magnitude related to a whole block they

need to be stored in scalar variables, otherwise a data dependency problem would

be introduced. This implies a waste of cycles of execution and leads to mitigate

the improvement of this parallel approach. In the second for loop the needed cast

operations are performed and the two vectorial functions are called. Also in this

case the final output, bin, needs to be rewritten in a scalar way leading to ulterior

waste of cycles. Moreover a certain number of cycles is wasted because a local copy

of gradient values have to be performed in order to load these values from stack

pointer instead of memory.

50



4.5 – Fourth Design: a second parallel approach

4.4.4 Compilation

The processor model of tmotion and the C code are compiled and simulated. The

file obtained is compared with the correct one in order to ensure the consistance of

results and the correctness of obtained design. As can be seen in the Instruction

Report provided by the tool, the program is simulated exploiting a total number of

cycle equal to 420701 while the number of instructions that are executed is 412225.

The total size occupied by instructions in program memory is 361 bytes. The values

mentioned are divided among the various function of the program as listed in table:

Function Instr Count % Cycle Count %
Fill hist 217472 52.76% 22118 52.58%

Compute gradient 194740 47.24% 199496 47.42%

Table 4.4: Instructions count among functions. Design3.

4.5 Fourth Design: a second parallel approach

A fourth design of the processor has been implemented with the aim to reduce the

number of cycles wasted in the previous version due to data dependency problems.

For this scope the parallelism of the instructions has been incremented in a way that

all the elements of a block are elaborated at the same time.

4.5.1 Processor model

To implement this processor the starting point considered is the Design 3 above

described. This version shares with the previous the following items:

• Primitiv Data type vword

• Alias Vector Data Memory

• Vectorial instruction for SP indexed addressing

• Vectorial instructions for indirect addressing of memory

51



4 – ASIP Implementation

Additional Features

Vector Register File Three vector Register Files are added in order to put in

vectors when they are taken from memory. the four Register files have 6 fields, two

read ports and one write port each. Three bits are necessary to address them.

Vector Prinitive functions The new primitives that allow to manipulate vectors

are declared in the file tmotion.h

void vmagflagcomp(vword ,vword ,vword ,vword ,vword ,vword ,vword ,vword ,vword&,vword&,

vword&,vword&,vword&,vword&,vword&,vword&,vword&,vword&,vword&,vword&,vword&,vword&,

vword&,vword &);

5 word vmagth(vword ,vword ,vword ,vword );

void fillhist1(vword ,vword ,vword ,vword ,vword ,vword ,vword ,vword ,vword ,vword ,vword ,

vword ,vword ,vword ,vword ,vword ,word ,vword&,vword&,vword&,vword& );

void fillhist2(vword ,vword ,vword ,vword ,vword&,vword&,vword&,vword&);

10

addr force_align(addr);

Primitive functions vmagflagcomp fillhist1 and fillhist2 are very similar to

those defined in design 3 but have a greater number of inputs and outputs because

4 groups of vector inputs are processed at a time and results are produced in a

parallel way.

The primitive vmagth1, vmagth2, vmagth3 has been added. The first two cal-

culates the sum of the elements of half vector, for each input vector. vmagth3 sums

the received values and executes the shift of six bits. In this way the average value

of 64 elements of the block is obtained.

The computation of the threshold has been divided into three different instructions

in order to avoid the growth of critical path.

word vmagth1(v8word mag1 ,v8word mag2 ,v8word mag3 ,v8word mag4){

word result0 =0;

word result1 =0;

5 word result2 =0;

word result3 =0;

word magth1_t;

52



4.5 – Fourth Design: a second parallel approach

int32_t m;

10 for (int32_t m = 0; m < 8; m++)

result0 +=mag1[m];

for (int32_t m = 0; m < 8; m++)

result1 +=mag2[m];

for (int32_t m = 0; m < 8; m++)

15 result2 +=mag3[m];

for (int32_t m = 0; m < 8; m++)

result3 +=mag4[m];

magth1_t=result0+result1+result2+result3;

20 return magth1_t;

}

word vmagth3(word mag1 ,word mag2){

word magth;

25 word magth_t;

magth_t=mag1+mag2;

magth="000000":: magth_t [15:6];

return magth;

30 }

4.5.2 New vector instruction

A new instruction defined as vector instr is added, it is an Or-rules between two

instructions as can be seen in the following portion of code.

opn vector_instr(load_store_vreg_sp_indexed

| vector_single_instr

)

5 {

image : "111":: load_store_vreg_sp_indexed

| "110":: vector_single_instr

;

}

Vector Single instruction The instructions related to the computations of thresh-

old has been added, while the instructions related to the magnitude flag and bis

computations are been modified in order to extend the processing at 4 groups of

vectors at the same time.

Additional functional unit and transistories are added:

53



4 – ASIP Implementation

// Vector unit

fu vmagth1; fu vmagth2;

trn tvecth1r <v8word >; trn tvecth2r <v8word >;

trn tvecth1s <v8word >; trn tvecth2s <v8word >;

5 trn tvecth1t <v8word >; trn tvecth2t <v8word >;

trn tvecth1b <v8word >; trn tvecth2b <v8word >;

trn tvecth1d <word >; trn tvecth2d <word >;

fu vmagth3;

10 trn tvecth3n <word >;

trn tvecth3m <word >;

trn tvecth3d <word >;

The following nML code describes the vec vmagth1 opn, vec vmagth2 opn and

vec vmagth3 opn, instruction rules:

opn vec_vmagth1_opn(r: c1u , s: c1u , t: c1u , u: c1u , z: c3u)

{

action {

5 stage E1:

R[z]=rte1=tvecth1d=

vmagth1(tvecth1r=VC[r],tvecth1s=VC[s],tvecth1t=VB[t],tvecth1b=VB[u])

@vmagth1;

}

syntax : "vmagth1"r ","s","t","u","z;

image : s::r::t::u::z;

10 }

opn vec_vmagth2_opn(r: c1u , s: c1u , t: c1u , u: c1u , z: c3u)

{

action {

15 stage E1:

R[z]=rte1=tvecth2d=

vmagth2(tvecth2r=VC[r],tvecth2s=VC[s],tvecth2t=VB[t],tvecth2b=VB[u])

@vmagth2;

}

syntax : "vmagth2"r ","s","t","u","z;

image : s::r::t::u::z;

20 }

opn vec_vmagth3_opn(r: c3u , s: c3u , z: c3u)

{

action {

25 stage E1:

R[z]=rte1=tvecth3d= vmagth3(tvecth3m=rre1=R[r],tvecth3n=rse1=R[s]) @vmagth3;

}

syntax : "vmagth3"r ","s","z;

image : s::r::z;

30 }

54



4.5 – Fourth Design: a second parallel approach

In the action sections, the behaviour of instructions are described: the functional

units @vmagth1,@vmagth2,@vmagth3 perform the operations in the following fig-

ures:

Figure 4.20: Vmagth

C Code

The C code is modified in order to use SIMD instructions with higher parallelism.It

can be noticed that the for loop is not more necessary: the 64 elements of D x and

D y arrays are put into four vpix type variable. In this case it is obtained that only

the final result bin need to be stored in scalar variables, so a great number of cycles

can be saved.

55



4 – ASIP Implementation

Figure 4.21: Fillhist Function

4.5.3 Compilation

The processor model of tmotion and the C code are compiled and simulated. The

file obtained is compared with the correct one in order to ensure the consistency of

results and the correctness of obtained design.

The program is simulated exploiting a total number of cycles equal to 267997 while

the number of instructions that are executed is 261441. The total size occupied by

instructions in program memory is 269 bytes. The values mentioned are divided

among the various function of the program as listed in table:

Function Instr Count % Cycle Count %
Fill hist 66688 26.01% 68480 26.05.%

Compute gradient 194740 47.24% 199496 47.42%

Table 4.5: Instructions count among functions. Design 4.

56



Chapter 5

Simulation and Synthesis

5.1 HDL

GO tools, provided by ASIP DESIGNER allows to obtain a direct translation of the

nML description of the processor: for each hardware unit nML (register, functional

unit) a corresponding entity in VHDL or module in Verilog HDL is obtained. The

following figure shows schematic representation of the datapath generated by GO,

each rectangle represents an entity/module [16]. GO also generates a HDL test-

bench, that can simulate the external stimulus of the processor.

Figure 5.1: Schematic representation of the data path, generated by GO[16].

The files created by GO when Verilog HDL is generated are:

• In the tmotion folder, the Verilog file tmotion.v can be found: it represents

57



5 – Simulation and Synthesis

the top-level module that describes the processor, in which all its modules are

interconnected.

• In the controller folder, tmotion’s subdirectory, there are the different parts

of the controller. It contains the files:

decoder.v: is the module that contains the instruction set decoder.

controller.v: is the module that contains the implementation of the control

behavior of primitive fetch and the computation of the next value assumed by

program counter.

• The prim folder, tmotion’s subdirectory, contains the modules of all the func-

tional units defined in the nML description.

• The reg folder contains the modules implementation of the physical registers

and register files present in the nML description.

• The mem folder, tmotion’s subdirectory, contains the implementation of a

memory interface for physical memories presented in the nML description:

Data memory and Program memory. Memory interface puts in communi-

cation the data-path and the memory ports.

• The pipe and mux folders, tmotion’s subdirectories, contain all the implemen-

tations of pipeline registers and multiplexers.

• In the test bench folder it can be found the following files: tb mem DM and

tb mem PM test-bench entities are generated for the two phisical memories,

they contain a behavioral model of the memory.

clock gen.v that implements the generation of Clock and reset signal.

test bench.v Test-bench module without ports, instantiating all components

needed for simulation, including the processor unit under test.

Configuration options The GO configuration file is a text files that lists a num-

ber of GO configuration options needed to obtain the hdl implementation. In par-

ticular it is advisable to set this configurations to 0 in order to simplify synthesys

steps:

58



5.1 – HDL

log register writes[: 1|0] Generates extra HDL code to log register writes during

simulation. Logging is done whenever a register location is written, changing its

value or not.

log memory writes[: 1|0] Generates extra HDL code to log memory writes dur-

ing simulation. Logging is done whenever a memory location is written, changing

its value or not.

5.1.1 HDL simulation

In order to simulate the HDL generated by Go with an RTL simulator same steps

and settings are needed.

Settings the Go configuration file In addition to test bench Go generate a

Makefile, with this means it is directly possible to simulate the HDL of the processor

while it executes a program.

With the default settings for the generation of the Makefile, GO is able to gen-

erate commands that allow to analyze, elaborate and simulate the RTL. For Men-

tor/ModelSim the option needed are:

modelsim makefile;

modelsim others ini : x;

Where x is the path to a modelsim.ini file that maps the standard and IEEE

VHDL libraries to their install directories.

Memory Content File Generation To simulate a program in the ELF binary

format it first have to be translated in a format understandable by the test-bench.

There are different ways to obtain the memory content: if the model doesn’t contain

I/O-interfaces, it is possible to use the read elf command [17]. The generated Make-

file supplies a target for this aim that calls read elf with appropriate parameters.

It can be used in this way (from the GO output directory):

make test TEST = ../../HSG/Code/Release/tmotion

This provides the memory content files data.PM and data.DM. It is also possible to

open the Release folder of the project and digit the following command:

59



5 – Simulation and Synthesis

read elf −G −fhath −e −PM = 16 −mDMb = 8 me HSG −o data
where me HSG is the name of executable contained in the Release folder.

5.2 Synthesis

As final step of this work the obtained processor has been synthesized by using

Synopsys Design Compiler. The synthesis has been performed in order to find

the maximum operating frequency that the design can achieve and the area. The

synthesis flow can be divided into the following steps:

• reading Verilog source files;

• applying constraints;

• start the synthesis;

• save the results (timing and area) and the netlist;

• preparing saif files of the technological libraries;

• modifying the verilog test-bench including statements to get the switching

activity;

Figure 5.2: Statements included in test bench to record switching activity.

• launching Modelsim with options to record switching activity;

60



5.2 – Synthesis

• power consumption estimation with Synopsys Design Compiler.

HDL

Analyze 

Elaborate

Constrains 

Report Area and
Timing

Optimized Netlist Back_Annotation

Report Power

Figure 5.3: Synthesys Flow

The synthesis process generates two important files:

-tmotion.v file, the netlist file that is the description of the electronic circuit. It

provides a list of the electronic components in the circuit and of the nodes.

-tmotion.sdf file describing the delay of the netlist, it provides the timing of each

cell present in the netlist .

-tmotion.sdc file containing the constraints to the input and output ports in a

standard format.

A worst case anaysyis has been done, in fact the technology library used is

”uk65lscllmvbbr 090c125 wc” and the standard cell considered is BUFM14R.

HSG:Pure Sw Implementation
Frequency 271.7 MHz

Area 22417.92 µm2

Power 251.8 µW

Table 5.1: HSG:Pure Sw Implementation

61



5 – Simulation and Synthesis

HSG:Design2
Frequency 271.7 MHz

Area 27447 µm2

Power 281.05 µW

Table 5.2: HSG:Design2

HSG:Design3
Frequency 271.7 MHz

Area 124365 µm2

Power 982.65 µW

Table 5.3: HSG:Design3

HSG:Design4
Frequency 232.4 MHz

Area 524820 µm2

Power 2.07 mW

Table 5.4: HSG:Design4

5.3 Graphical result

A Matlab script is been developed in order to visualize, in a more direct way, the

feature results obtained.

62



5.3 – Graphical result

Figure 5.4: HSG Final Results

63



Chapter 6

Conclusions and Future works

The HSG algorithm has been identified as a very good solution to perform feature

extraction for pedestrian detection application. It is based on the well-known HOG

algorithm but simpler. In fact, HOG feature extraction requests floating point com-

putation and a lot of memory accesses and solutions in hardware and software result

to be very power expensive and complex. HSG, instead, allows to obtain a pedes-

trian detection framework which is efficient and fast, characterized by less expensive

computation. In fact in the proposed solution, the orientation histograms are built

without utilizing floating point operations but exploiting the capability of discrim-

ination of locally significant gradients in addition to a fast Look-up-table based

Support Vector Machine classifier. Moreover HSG presents better performance with

respect to HOG on INRIA and ETH Data sets.

The initial part of this work of thesis provides an overview of the HSG Algorithm

and a description of different design solutions like ASIP, ASIC and GPµP.

The central part of the thesis instead presents the implementation of designed

processors in different versions realized exploiting the ASIP DESIGNER tool pro-

vided by Synopsys. Moving among these versions, starting from a pure sw imple-

mentation to a SIMD solution, an improvement in performance can be noticed but

a significant growth in area is the cost to pay.

In the final part the results of synthesis, performed using a 65 nm CMOS tech-

nology have been presented.

6.1 Future works

Further works could be exploited with the aim to obtain improvement in the archi-

tecture of realized processors.

A possible solution could be to increase instruction parallelism. In fact implementing

64



6.1 – Future works

a processor of MIMD (Multiple Instruction Multiple Data) type allows to execute

different instructions in parallel, this could lead to a very significant increase in

performances .

65



Bibliography

[1] C.-Y. L. Pei-Yin Chen, Chien-Chuan Huang and Y.-H. Tsai, “An efficient

hardware implementation of hog feature extraction for human detection,”

in IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYS-

TEMS, vol. 15, pp. 656–662, IEEE, 2015.

[2] B. B.-R. W. Colm Kelly, Fahad Manzoor Siddiqui, “Histogram of oriented

gradients front end processing: an fpga based processor approach,” in ECIT,

Queens University, Belfast.

[3] S. Bauer, FPGA Implementation of a HOG-based Pedestrian Recognition Sys-

tem. MPC Workshop, 2009.

[4] M. Bilal, A. Khan, M. U. K. Khan, and C.-M. Kyung, “A low-complexity

pedestrian detection framework for smart video surveillance systems,” IEEE

Transactions on Circuits and Systems for Video Technology, vol. 27, no. 10,

pp. 2260–2273, 2017.

[5] “Asip designer.” https://www.synopsys.com/dw/ipdir.php?ds=

asip-designer/.

[6] W. H. ORGANIZATION, World Health Organization. Global status report on

road safety. Management of Noncommunicable Diseases, Disability, Violence

and Injury Prevention (NVI), 2015.

[7] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detec-

tion,” in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE

Computer Society Conference on, vol. 1, pp. 886–893, IEEE, 2005.

[8] “Histogram of oriented gradients.” https://www.learnopencv.com/

histogram-of-oriented-gradients/.

[9] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An

evaluation of the state of the art,” PAMI, vol. 34, 2012.

[10] J. Wu and J. M. Rehg, “Beyond the euclidean distance: Creating effective visual

codebooks using the histogram intersection kernel,” in Computer Vision, 2009

IEEE 12th International Conference on, pp. 630–637, IEEE, 2009.

[11] Target Tmotion core-ASIP Designer. Synopsys, K-2015.12.

66

https://www.synopsys.com/dw/ipdir.php?ds=asip-designer/
https://www.synopsys.com/dw/ipdir.php?ds=asip-designer/
https://www.learnopencv.com/histogram-of-oriented-gradients/
https://www.learnopencv.com/histogram-of-oriented-gradients/


Bibliography

[12] Tmicro Core Processor Manual-ASIP Designer. Synopsys, Version M-2017.03.

[13] G. S. Henrique Malvar, YCoCg-R: A Color Space with RGB Reversibility and

Low Dynamic Range. Microsoft Corp., 2003.

[14] S. S.-M. Sebastian Bauer, Ulrich Brunsmann, “Fpga implementation of a hog-

based pedestrian recognition system,” in Faculty of Engineering Aschaffenburg

University of Applied Sciences, Aschaffenburg, Germany.

[15] Tvec core-ASIP Designer. Synopsys, Version L-2016.03.

[16] Go User Manual nML to synthesizable HDL translation-ASIP Designer. Syn-

opsys, Version N-2017.09.

[17] ASIP Programmer Read elf User Manual-ASIP Designer. Synopsys, Version

N-2017.09.

67


	Acknowledgments
	Introduction
	Pedestrian Detection Algorithm 
	Histogram of Oriented Gradient 
	Feature Extraction

	Histogram of Significant Gradient 

	ASIP 
	ASIP Design Approach 
	ASIP DESIGNER Tool

	ASIP Implementation 
	SW Implementation 
	C_Code
	Compilation

	Second Design
	Magflagcomp Instruction
	Fillhist
	Parallel loads of operands
	Compilation

	Second Sw implementation
	C_code
	Compilation

	Third Design: parallel approach
	Additional Features of processor model
	New vector instruction
	Promotion
	Compilation

	Fourth Design: a second parallel approach
	Processor model
	New vector instruction
	Compilation


	Simulation and Synthesis
	HDL
	HDL simulation

	Synthesis
	Graphical result

	Conclusions and Future works
	Future works

	Bibliography

