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POLITECNICO DI TORINO

Abstract
Collegio di Ingegneria Elettronica, delle Telecomunicazioni e Fisica (ETF)

ICT for Smart Societies

Disorders of Consciousness: using the Perturbational Complexity Index
to distinguish between voluntary and involuntary movements

by Federica Sgrò

The debate behind the word "consciousness" has been vivid for centuries among
ethicists, philosophers and neurologists. Distinguishing between different
Disorders of Consciousness (DOCs) in after-coma patients, in particular, is
still difficult, and the diagnosis is based on scales whose assignement may
be subjective and thus mistaken. Finding an accurate mathematical way
to interpret a patient’s movements and understand if they are completely
voluntary or just involuntary reflexes may be a more objective way to classify
their level of consciousness.

This thesis work proposes to find a way to distinguish among voluntary
and involuntary movements in healthy subjects by analysing the Event
Related Potentials (ERPs) behaviour obtained from EEG recordings. For each
subject and experiment (voluntary, semi-voluntary and involuntary actions),
after recording the EEG signals while performing the movements, the ERPs
were extracted and a measure of the Integrated Information Theory firstly
proposed by Giulio Tononi, called Perturbational Complexity Index (PCI),
was calculated on the basis of the state transitions before and after the on-set
of the movement.

The values obtained from the algorithm were finally used to validate two
different classifiers, one based on the Minimum Distance Criterion and the
other using Support Vector Machines (SVM). In both cases, significant results
were obtained in the case of the binary classifier (considering only voluntary
and involuntary movements), and in particular 88.9% specificity and 77.8%
sensitivity were achieved with the minimum distance and 66.7% specificity
and 83.3% sensitivity with SVM. The multi-class classifiers, however, led to
many errors due to the ambiguous nature of the semi-voluntary experiment.
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Chapter 1

Introduction

The debate behind consciousness has been vivid for centuries, and it still
is largely discussed in many disciplines, such as philosophy, ethics, and
neurology. This introductory chapter aims at clarifying the difference between
conscious and unconscious state and at coupling the most abstract aspects of
the subject with a more scientific approach from which we can start our work.

1.1 Consciousness

1.1.1 What is consciousness?

The first problem that arises in writing this work is understanding what
consciousness is, and especially finding a uniform way to define it and
calculate it. Yet, whoever tries to look up for the term on a dictionary or
on the internet will probably be overwhelmed by the vastity of different
definitions and meanings given for the same word.

Here are just a few examples taken from some of the most influential
english dictionaries:

1. "The state of being awake and being able to think and notice things",
Cambridge Dictionary;

2. "The state of being aware of and responsive to one’s surroundings. A person’s
awareness or perception of something; the fact of awareness by the mind of itself
and the world.", Oxford Dictionary;

3. "[. . . ] The upper level of mental life of which the person is aware as contrasted
with unconscious processes.", Merriam-Webster Dictionary;

4. "The infinite awareness of the present", Urban Dictionary.

If we try on our own to give a meaning to the word "consciousness", all the
above definitions seem to suit, despite the differences in one another. And if
we try to extend to other areas of knowledge, this scattering of interpretations
gets only worse. "Consciousness" may be the awareness of mental events for
psychology, the ability to distinguish between good and evil for ethics, the
competence to separate the self from the external world for psychiatry, or it
may even be referred to Karl Marx’s class consciousness. In philosophy, each
author gave its own interpretation, varying widely across the history and



2 Chapter 1. Introduction

even differentiating among a myriad of types and categories. This can give an
idea of how the topic is still lively and deep within the different disciplines,
and how many books will still be written discussing the vasitity of meanings
the word "consciousness" may contain.

1.1.2 Wakefulness and Awareness

The previous subsection probably caught the reader into a vortex of
expressions and definitions from which it seems practically impossible to
get out. However, two words seem to be recurring: awake and aware. From
this, the consciousness definition offered by neurology and neuroscience seems
to be the most suitable and most appropriate to start to work on. [9]

In neurology terms, consciousness is represented by two components:

• Wakefulness: Characterized by a vigil state, fundamental for the wake-
sleep cycle;

• Awareness: Perception of the self and the environment.

The conscious state exists only if both elements are present, but it’s possible
to observe wakefulness in absence of awareness. However, the opposite is
never achievable.

Everyday we experience the loss of consciousness as soon as we fall asleep,
or maybe someone sensed it while fainting or under the effects of anesthesia.
This, however, are all temporary states which last only for hours, very different
from the states of uncosciousness that may happen after a trauma or an
accident.

1.1.3 Disorders of Consciousness (DOCs)

At this point, the reader may observe that the easiest way to understand if
someone is conscious or not is by directly asking him/herself. This is also
what each one of us instinctively does when a person passes out: asking "Are
you there? Can you hear me?" and wait for the reply or at least a movement of
approval in case the person is unable to speak. Some may argue, however,
that this may also be misleading. Just think of all the artificial intelligences out
there that can "talk" to us and help us in everyday life like they are perfectly
conscious of themselves and the world. When you ask "Alexa, are you there?",
Alexa replies, tells you that she is existing and hearing you and ready for your
orders. And yet, how can we define as "conscious" a non-living human being?
This is also the point behind the famous Turing Test to identify if a machine
is able to "think", one of the biggest theories in computer technology, and the
Zombie Theory developed by the philosopher and cognitive scientist David
John Chalmers. As interesting as both these concepts are for the debate behind
the conception of "consciousness" and "free will", they will not be discussed
further in this work, which will focus purely on the state of consciousness in
human beings.

Even in human beings, yet, it is rather easy to say when a person is
perfectly conscious and able to move and communicate with the external
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FIGURE 1.1: Awareness and Wakefulness in different states of
consciousness.

Notice that it is possible to experience wakefulness in absence
of awareness, but the opposite never happens. (Adapted from

LAUREYS)

world, but a wide range of conditions and undefined states may arise in case
a person is laying in a bed unable to speak, for example after an accident, and
his movements cannot clearly be identified as perfectly voluntary. To go on
in our analysis, it is necessary to try and make some order in the extensive
spctrum of Disorders of Consciousness (DOCs), comprehending all those
states in which a patient is not able to communicate his or her conscious state:

• Coma: It corresponds to a state of profound sleep and unresposiveness
in which the patient does not wake, and it is due to a suffering in the
brainstem, regulating basic functions. A patient usually exits the coma
state by waking and regaining the normal wake-sleep cycle, but this
does not necessary mean a recover of cosciousness.

• Vegetative State (VS): It happens after coma, when a patient correctly
regains the wake-sleep cycle and the thalamocortical functions. The
Vegetative State was brightly described by Bryan Jennet and Fred Plum
in 1972 as an "unresponsive wakefulness": there is no reply to painful
stimulus and no reply to simple commands, but some non-intentional
movements and automatic reflexes are observed.

• Minimally Conscious States (MCSs): It is a wide range of not-perfectly
defined states in which the patient is not able to communicate with
the external world, but some signs of non-automatic movements can
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be observed. Differently from VS patients, in the case of minimally
conscious states it is possible to regain full consciousness also after many
years.

• Locked-in State (LIS): It happens when a patient after coma regains
not only the correct wake-sleep cycle, but also full consciousness
of him/herself and the surrounding world. Due to a neural
damage, however, he/she is permanently paralyzed and is unable to
communicate his/her condition, at least at the starting stage. Most of
the patients in Locked-in State, however, eventually recover the ability
to move the eyes, since these movements are not dependent on the
brainstem, and they can communicate again with the external world.

• Total Locked-in State: It is a very rare condition of Locked-in State in
which unfortunately the patient is also unable to move the eyes. Because
of the total incommunicability of this state, it is practically impossible to
correctly estimate how many people are under this condition.

This last definition of total LIS probably left the reader in a state of distress.
Just imagine to be blocked into a body that you cannot move, perfectly
capable of understanding the outside world but in no way being able to
communicate this to anyone, without anyone noticing that you are there. . . Or
again, think about wrongly considering a patient in a permanent vegetative
state, completely unable to recover, while in truth being in a MCS with the
possibility of regain consciousness under intensive rehabilitation. The whole
point behind the constant study behind the concept of consciousness suddenly
makes sense: understanding when a person is there and move more decisevly
across the blurred lines of Minimally Conscious States.

1.1.4 Between Mind and Matter

Now that we have a better idea about what consciousness is, the problem
that arises is to understand how an abstract concept like this can be linked to
the phisical world. The separation between "mind" and "matter" has been at
the center of the philosophical debate since Cartesio’s "res cogitans" and "res
extensa", but a way to tie the two things together must be present. Without this
connection, it would be impossible to translate a phisical state into a mental
image (for example, the act of touching an object becomes the sensation of
touching that object) or the opposite (thinking about touching the object and
actually moving the body to touch it). In other words, there must be some
aspects in the brain activity which explain the presence of consciousness and
can be used as a starting point in our study.

1.2 The Human Brain

To find which aspects of the brain activity play a key role in the definition of
consciousness, we need first to find our way into the human Central Nervous
System (CNS), and in particular the human brain. The CNS is an important
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FIGURE 1.2: Anatomy of the human brain.

system taking care of a person’s perception and personality, coordinating also
the activity within the organs. It is structured into the spinal cord, spinal
nerves allowing for the transmission of sensory and motor stimuli to the rest
of the body, and the brain.

1.2.1 Anatomy of the Human Brain

Inside the brain we can identify three different entities. The brainstem plays
an important role in the regulation of basic functions, such as the sleep cycle
and cardiac and respiratory activities. The cerebellum, instead, controls the
posture, coordinates movements and takes care of sensory stimuli and motor
information. The largest portion of the human brain is the cerebrum, in which
the cerebral cortex is the outer layer.

The cerebral cortex plays a key role in memory, attention, perception.
thought and language. It can be divided in two hemispheres, left and right,
and four regions or lobes:

• Frontal Lobe: The primary motor cortex, responsible of speech and
personality;

• Parietal Lobe: In charge of the elaboration of stimuli, in particular for
pain, tact and temperature, and language processing;

• Temporal Lobe: Responsible of hearing/smelling senses, visual
memory, language comprehension and emotion association;

• Occipital Lobe: The visual cortex, in charge of the elaboration of visual
stimuli, colour differentiation and motion perception.
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1.2.2 The role of neurons in consciousness

The thalamocortical system, which corresponds to the thalamus and the
cerebral cortex, and the cerebellum are both accomodating neurons, cells that
receive, process and transmit information through electrical and chemical
signals.

While the presence of neurons is a sign of high transmission of information,
both for sensations and actions, it is not enough to assess the presence of
consciousness. Indeed, the cerebellum has a very high number of neurons
(about 80 billions), and yet from direct experience we can see that life and
consciousness can go on even in its total absence. [23] Those patients for
which it was necessary to completely remove the cerebellum, for example
because of a tumor, struggle to speak fluently and coordinate movements, but
they in no way change their conscious experience and they keep feeling
sensations, perceive colours and shapes, hear sounds and savour tastes.
The thalamocortical system, on the other hand, hosts a minor number of
neurons (only 20 billions) but is the relevant part in the conscious experience.
An important damage to this system can cancel from the subject a whole
dimension of the conscious experience (for example, the visual perception of
colours) or, in worst cases, leave an empty body without anyone inside.

What is the practical difference between the two entities is a central point
in the defiition of "consciousness", and will be further discussed later in the
text.

1.2.3 The Electroencephalogram (EEG)

One of the most essential techniques to study the brain activity is the
Electroencephalogram (EEG), invented by Hans Berger in 1929. The EEG
permits to identify the electric potentials associated to those currents flowing
perpendicularly to the scalp, thanks to some electrodes placed directly on the
scalp and a conductive gel between each electrode and the skin in order to
provide a stable electrical connection. [13] The electrodes, in particular, are
usually placed according to a standard called the 10-20 International System
of Electrodes Placement (IS 10-20), which is based on the area of the cerebral
cortex underlying a certain electrode, shown in figure 1.3. Higher resolution
systems based on 10-20 are possible, and in this case other electrodes are
placed on intermediate areas.

Since the signals recorded are usually between only 10-100 μV, the
amplitudes are very near to the electrical noise generated by the device.
Moreover, most of the recordings suffer from some artifacts, which interfere
with the useful signal, such as the eye and muscle movement or an electrode
temporary detachment. For this reason, attention must be payed not only
during the recording, to avoid any interference with other instruments, but
also in filtering, artifact-removal and deleting any trial that is corrupted.

The EEG can identify a spontaneous activity of the brain, which is always
present. The frequency spectrum is characterized by bands, called rythms,
such as delta rythm (< 4 Hz) , found during dreamless sleep, theta rythm (4-7
Hz), found in sleep, meditation and hypnotic state, alpha (8-15 Hz), found
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FIGURE 1.3: The 10-20 Electrode Location System.
Letters correspond to the lobe or brain area: Pre-frontal (Fp),
Frontal (F), Temporal (T), Occipital (O), Parietal (P), Central (C).
Even numbers correspond to those electrodes placed on the right
side, odd numbers to those on the left. "Z" electrodes are those

placed along the midline.

in a very relaxed state of wake or in the moments immediately before falling
asleep, Beta (16-30 Hz), in states of normal waking consciousness.
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Chapter 2

The Road so far

Thanks to chapter 1, the importance of assigning the correct DOC to a patient
is very clear. However, the only way that nowdays neurologists have to give a
diagnosis is by using scales, such as the JFK Coma Recovery Scale-Revised
(CRS-R), developed by Giacino, Kalmar and Whyte in 2004 and consisting in
6 subscales for a total of 23 items. [6] In this cases, a standardized scoring is
given on the basis of the patient’s responses and a DOC state is assigned.

The problems arising from this type of assessment are mainly two:

• The scale assignment is based on the subjective perspective of the
examiners, who can misinterpret or misread signals from the patient;

• The only aspects taken into consideration are the responses to stimuli.

But what happens if the analysts distort the patient’s responses? Or again, if
the patient is not able to communicate with the external world?

The absence of response is wrongly read by the examiner as absence of
consciousness, and this is something that according to studies happens to
more than 40% of the diagnosed vegetative state patients. This number needs
to be reduced to zero, and what is needed to achieve this is a methodology
based on objective parameters. This chapter is a brief excursus into some of
the most interesting reaserches and studies conducted in the past years in this
direction.

2.1 Readiness Potentials (Kornhuber and Deecke,
1964)

One of the most relevant studies in the field of brain activity was conducted
in 1964 by Hans Helmut Kornhuber and Lüder Deecke, who discovered the
socalled Bereitschaftspotential (BP). [8]

2.1.1 Event Related Potentials (ERPs)

As we already mentioned, EEG is usually employed to analyze the
spontaneous brain activity. However, it can also be used to identify the brain
response to a specific sensory, cognitive or motor event, the Event Related
Potentials (ERPs). ERPs provide a direct and instantaneous measure of the
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FIGURE 2.1: Readiness Potential (RP).
It is possible to identify the early component (Early BP) from
-1 to -0.5 s and the late component (Late BP) from -0.5 to 0s.

(KORNHUBER and DEECKE)

neural activity and they reflect the synchronous activity of a very high number
of neurons, activating due to a stimulus. [12]

The best way to calculate ERPs is by averaging together recordings from
many trials. This way, random brain activity is averaged out and the brain
activity time-locked to the stimulus can be extracted.

2.1.2 Movements and Readiness Potentials

In 1964 Hans Helmut Kornhuber and Lüder Deecke by using the ERP
technique discovered an activation process preceding of about a second a
voluntary movement. This electrical activity, registered in the supplementary
motor area, is called Bereitschaftspotential (BP) or Readiness Potential (RP)
and it reflects the intention of the subject to perform a movement. It has an
early component, called Early BP lasting from about 1 to 0.5 second before
the movement, and a late component called Late BP, approximately from
-0.5 to 0s. Before limb movements, the RP is initially equally distruted across
the two hemispheres, but it starts to lateralize before the onset of the motion
(Lateralized Readiness-Potential (LRP)).
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FIGURE 2.2: Libet’s Experiment.
The Readiness Potential starts 350 ms before the subject is aware

of his/her intention to move.

2.1.3 Libet’s experiment

In 1980s, Benjamin Libet conducted a series of experiments in order to find the
timing occurring between executing an action and being conscious of doing it.
[10] [11] In his experiments, he was asking the subjects to perform a movement,
such as pressing a button or flexing a finger: an electromyograph (EMG) was
used to register the instant the action started, while an oscilloscope and an
electroencephalograph were recording the neuronal activity. By averaging
together 40 trials for each subject according to the ERP technique, it was
shown that the RP starts about 350 ms before the subject is fully conscious of
his/her decision to fulfill the motion, as shown in figure 2.2.

2.1.4 Contingent Negative Variance

The RP must not be mistaken for the Contingent Negative Variation (CNV),
a different event-related potential component shown in figure 2.3.

Firstly discovered by W. Grey Walter in 1964, the CNV appears in cases of
warning-go tasks. [24] Two different stimuli are given: the first one is called
warning stimulus and it simply "alerts" the subject that the second stimulus
will arrive soon, the so called imperative stimulus, asking the subject to perform
an action.

The CNV is a sustained negative component appearing between the
warning stimulus and the imperative stimulus. The shape of the potential is
similar to that of the Readiness Potential, but it shows a negative trend.

2.1.5 Readiness Potential and "Free will"

Libet’s experiment set fire to the already lit debate about the concept of "free
will": if the brain prepares the action before the subject is even aware of the
intention to move, can we really say that we "freely" decided to perform
that action? This is, again, a discussion that will probably remain vivid for
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FIGURE 2.3: Contingent Negative Variation (CNV).
The ERP in the figure represents the Contingent Negative
Variation timelocked to the stimulus onset. The dotted lines
represent the warning stimulus and the imperative stimulus,
among which the CNV is defined. Before the CNV, a short
negative component and a short positive component also appear.

(NG, TOBIN and PENNEY [14] )

centuries among philosophers and psychologist, and will probably never see
a unanimous answer.

As lively as the debate may be about the philosophical implications of the
RP, what is essential for us engineers are actually the practical implications:
the RP is recorded only in case of a voluntary movement, and not is case of an
involuntary one. Being able to distinguish between voluntary/involuntary
actions may be a way to identify the presence of consciousness.

2.2 Information Integration Theory (Tononi, 2004)

We already mentioned before in this text that high information is not enough
to assess the presence of consciousness. According to Giulio Tononi, this is
due to the fact that information should also be integrated. [22]

2.2.1 Integrated Information

As we said in subsection 1.2.1, neurons are the main center of conscious
experience, since they transmit information. However, despite neurons are
present in a much higher number inside the cerebellum, this organ does not
have any role in the state of consciousness of a subject, who could still feel and
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perceive him/herself and the external world even after a cerebellectomy. The
thalamocortical system, instead, has a minor number of neurons, but a lesion
or injury to it leads the patient to "lose" a part of the conscious experience.

The difference among the two structures is that the cerebellum neurons
are high in terms of information quantity, but basically are independent one
another. In other words, the cerebellum acts as a "zombie": it receives and
elaborates information, but it doesn’t "feel" or "perceive" this information, and
the reason behind this is still unknow.

The neurons inside the thalamocortical system, instead, provide for
integrated information: this means that the repertoire of available states
cannot be sub-divided into a repertoire of states available to independent
components.

2.2.2 The Φ measure

Tononi proposes the Φ(S) function as a measure of the information integration
of a certain subset S.

First of all, it is important to state some basic definitions from Claude
Shannon’s Information Theory. One of the key measures of information is
Entropy, defined as the average uncertainty of a random variable A:

H(A) = −∑
a

P(a) log2 P(a) (2.1)

where P(a) is the probability mass function of the source A. Entropy is
measured in bits and it corresponds to the number of bits required on average
to describe the random variable. It is zero when A takes only one value with
probability 1, or a maximum of log2 1/K if P(a) is equiprobable, with K equal
to the total number of possible outputs.

The Joint Entropy of two random variables A and B with joint distribution
P(a, b) is defined as:

H(A, B) = −∑
a,b

P(a, b) log2 P(a, b) (2.2)

The Mutual Information is the reduction of uncertainty due to another
random variable, and it can be written as:

MI(A; B) = H(A) + H(B)− H(A, B) (2.3)

Now that some basic notions about information theory have been defined,
suppose to have a subset S of elements from a system, and suppose to divide
it into two complementary parts A and B. Give maximum entropy to A and
determine the entropy of the responses B which can be induced by A. The
Effective Information between A and B is:

EI(A→ B) = MI(AHmax; B) (2.4)

Notice that EI(A→ B) is high if different outputs from A induce different
firing patterns from B, while it will be low or even zero if the connections



14 Chapter 2. The Road so far

FIGURE 2.4: Effective Information, Minimum Information
Bipartition, Complexes.

a) The subset S is made of four elements and is part of a larger
system X. The subset S is bisected into two comlement A and B
by a bipartition (the dotted line). Arrows indicate causal effect
of A on B and B on A. Effective Information (EI) is calculated
by injecting maximum entropy. b) The horizontal bipartition
(black dotted line) yields positive effective information, while
the vertical bipartition (grey dotted line) leads to EI = 0, and
thus corresponds to the Minimum Information Bipartition
(MIB). Notice that also other bipartitions are possible but not
represented here, and they all lead to positive EI. c) The two
subsets (1, 2) and (3,4) represented in figure with grey ovals are
not part of any other subset with larger Φ, and thus constitute

complexes. (TONONI)

between A and B produce scarce effects or if these effects are always the
same. The effective information for both direction measures the repertoire of
possible causal effects of A on B and of B on A:

EI(A ⇀↽ B) = EI(A→ B) + EI(B→ A) (2.5)

The Minimum Information Bipartition of a certain subset S corresponds
to the bipartition for which the normalized effective information reaches a
minimum, in other words the weakest link:

MIB A ⇀↽ B = min
EI(A ⇀↽ B)

Hmax(A ⇀↽ B)
(2.6)

Finally, the Information Integration for the subset S is simply defined by
the Φ(S) function, the non-normalized effective information for the minimum
information bipartition:

Φ(S) = EI(MIB A ⇀↽ B) (2.7)
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FIGURE 2.5: Two complexes with the same Φ.
a) The represented complexes (in the grey ovals) have the
same value of Φ, but the connections among elements are very
different: the left one has a "divergent" architecture, while the
other is a "chain". b) The effective information matrices for both
complexes are represented (black: zero, red: intermediate value,
yellow: high). Notice that despite the same Φ value, the two
matrices look different. c) The state diagrams of both complexes
are represented (blue: active elements, black: inactive elements)
for the four elements. The state diagrams look the same, but
they have a different meaning, because the effective information

matrices are different. (TONONI)

2.2.3 Complexes

A complex is a subset S having Φ(S) > 0 and not included in any other larger
subset having larger Φ. In particular, the main complex is the complex of a
given system having the maximum Φ(S).

The relationship between effective information, minimum information
bipartion and complexes is better explained in figure 2.4.

The Effective Information Matrix defines the relationship between the
structural elements of a system: it contains the values of the effective
information between each subset and any other subset, or in other words
the informational relationships among the elements. Two complexes may
have the same value of Φ (corresponding to the quantity of information), but
very different effective information matrix (quality of information). The values
of the variables mediating these interactions among elements of a complex
specify the particular conscious experience at any time and are represented
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FIGURE 2.6: Information integration for a thalamocortical-like
system.

a) The picture represents a system that is both specialized and
functionally integrated, resembling the anatomical organization
of the thalamocortical system. Each element is connected
to a different subset of elements with different weights, in
an heterogeneous arrangement. b) The same amount of
connectivity but homogeneously distributed leads to a loss of
specialization and thus a reduction of information integration.
c) The same amount of connectivity but distributed in a way to
form independent modules eliminates functional integration,

and yields to separate complexes with lower Φ. (TONONI)

by Activity States.
In figure 2.5 there is an example of two complexes with the same Φ measure

but different architectures, and their respective effective information matrix
and state diagram.

2.2.4 Integrated information theory and thalamocortical
system

As we already know, a lesion or ablasion of the thalamo-cortical system
impairs the conscious experience of a subject. This would lead to thinking
that consciousness lies in a distributed thalamocortical network, and not a
single cortical area.

The thalamocortical system is made of elements which are functionally
specialized. It is divided into systems, each of them dealing with a different
function, and subdived into specialized areas. These specialized elements
are then linked by a rich network of connections within an area and between
areas. The organization of the thalamocortical system emphasizes at the same
time specialization and integration, as shown in figure 2.6.

In terms of graph theory, a well-functioning system is a network
providing different connection patterns for different elements (in other
words, heterogeneous links) and all elements can be reached from any other
element. There are two ways in which a thalamocortical-like system can lose
information integration and thus reduce its Φ value:

• by replacing the heterogeneous link connections with homogeneous
ones (reduction of specialization);

• by rearranging the system into smaller modules (reduction of
integration).
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The reason why the cerebellum is not a central part of the consciousness
experience is that its organization is such that the cerebellar patches are
activated independently from one another. This means that its connections
rather generate many small complexes of low Φ (small integration).

Moreover, depending on certain conditions, the same thalamo-cortical
system organization may lead to more or less consciousness. This is the case,
for example, of what happens when a subject is under anesthesia or simply
sleeping. Indeed, some key parameters may change the readiness of some
neurons to respond to stimuli and thus reduce the Φ of the system.

2.2.5 For the future

The theory of integrated information seems to be an optimal way to measure
the level of consciousness of a subject in almost every condition, also when
unable to move or communicate with the external world, for example in
locked-in state. However, at the time of publication of this Tononi’s work, the
validity of this theory still had to be experimentally proven. Further studies in
this direction may be interesting to better understand which parameters take
part in the information integration of the thalamocortical system and which
conditions determine a certain quantity and quality of consciousness.

2.3 Decoding Algorithms and Information Theory
(Quiroga and Panzeri, 2009)

For years, studies were conducted on the basis of a single-neuron multiple-
trial approach. However, the brain typically makes decisions by evaluating
the activity of a large neuronal population, and for this reason it would be
best to shift to a multiple-neuron single-trial framework. As Rodrigo Quian
Quiroga and Stefano Panzeri observed in 2009, this would be the optimal
approach to obtain information about how neurons decode stimuli. [15]

2.3.1 The Multiple-neuron Single-trial approach

After recording the neuronal activity through implanted microwires, the first
problem that arises in this approach is to distiguish the activity of single
neurons from extracellular registrations. This can be obtained by using Spike-
sorting algorithms, which cluster the spikes on the basis of their shape and
through which it is possible to understand which spike belongs to which
neuron, as shown in Figure 2.7.

Then, the information obtained from the neuronal population needs to be
extracted by using objective measurements. An interpretation of the resulting
patterns may be given by using two separate approaches, either by using
Decoding Algorithms or by applying the Information Theory.
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FIGURE 2.7: Spike-sorting algorithm.
A low-pass filter is used to identify the mean potential generated
by the neurons near the electrode, called Local Field Potential
(LFP). An high-pass filter, instead, is used detect the spikes
through an amplitude threshold, in order to distinguish them
from background activity. The spikes are then sorted according

to the extracted features. (QUIROGA and PANZERI)

2.3.2 Decoding Algorithms

Decoding algorithms are able to predict which stimulus or behaviour elicits
a particular neuronal response, as shown in Figure 2.8. They work through
machine-learning: some trials are taken as training while the remaining are
used as testing samples to validate the algorithm. Trials to be decoded are
assigned to the nearest class, which is, in other words, the most "similar" to
the given trial.

The results are then presented in the form of a confusion matrix, in which
each element cij represents the normalized number of times the stimulus i was
predicted as j. Of course, the wish is to have a diagonal matrix, corresponding
to a perfect decoding. In case of equiprobable stimuli, instead, each element
of the matrix will be equal to 1/K, where K is the total number of stimuli.

2.3.3 Information theory

Information theory is a discipline studying the quantification, compression
and transmission rate of the information, originally developed in 1948 by
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FIGURE 2.8: Decoding algorithm.
Suppose we want to predict which image elicited which
single-cells response. a) For simplicity, only two pictures are
here represented. b) Each point of the N-dimensional space
represents a trial: trials in which the first picture was presented
are red points, trials in which the second one was presented
are blue points. The black point is a new trial, which will be
assigned to the nearest neighbour (the second class). c) The
outcome of the decoding algorithm is shown in the form of a
confusion matrix: a perfect decoding means a diagonal matrix.

(QUIROGA and PANZERI)

Claude Shannon. With information theory, it is possible to quantify the total
knowledge of a stimulus gained through the known neuronal responses.

The Shannon Entropy of a stimulus with probability distribution P(s) is
defined as:

H(S) = −∑
s

P(s) log2 P(s) (2.8)

It is measured in bits and it gives a measure of the average uncertainty
about which stimulus is presented, or also the average amount of information
gained for the stimulus presentation. Entropy is zero when the same stimulus
is presented each time, or a maximum of log2 1/K if the K stimulus are all
equiprobable.

The residual uncertainty about a stimulus after observing the neuronal
response is then given by the weighted average entropy of the posterior
distribution, where P(s|r) is the conditional probability:
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H(S|R) = −∑
s,r

P(r) · P(s|r) log2 P(s|r) (2.9)

Notice that H(S|R) 6= H(R|S) and H(S)− H(S|R) = H(R)− H(R|S).
At this point, we can define the mutual information as the gained

information or reduction of uncertainty about the obtained stimuli given
the neuronal responses, where P(s, r) is the joint probability:

MI(S; R) = ∑
s,r

P(r)P(s|r) log2
P(s|r)
P(s)

= ∑
s,r

P(s, r) log2
P(s, r)

P(s)P(r)
(2.10)

Mutual information is zero if the stimuli and the responses are
independent, while a perfect knowledge about the stimulus given the
neuronal response gives a maximum of MI(S; R) = H(S).

2.3.4 Merging the two approaches

As we got from the previous subsections, decoding algorithms and
information theory are two very different approaches to the problem and
they quantify different aspects of knowledge. Decoding algorithms are able
to predict the stimulus that caused a certain response, but the amount of
extracted information, even with an optimal decoder, can still be less than the
information available in the neuronal responses. Information theory, on the
other hand, is used to quantify the total knowledge of the presented stimulus.

What Quiroga and Panzeri suggest is to link the two approaches by
computing the mutual information between the actual stimuli and the ones
predicted by the decoder, MI(S; SP), or in other words between the rows and
columns of the confusion matrix obtained with the decoding algorithm. In
this way, we could be able to have a measure about how the neurons can
report the predicted stimuli and the uncertainty of these predictions.

This idea has not been applied yet purely in the field of consciousness, but
it may be interesting for further studies.

2.4 Approximate Entropy (Sarà, Pistoia et al., 2011)

According to Marco Sarà and Francesca Pistoia, consciousness depends on the
interaction of wide neural networks, with a degree of unpredictability. For this
reason, in 2011 with their research group they proposed to use a non-linear
parameter such as Approximate Entropy (ApEn) to experimentally quantify
the level of consciousness. [18]

2.4.1 Approximate Entropy calculation

Approximate Entropy is a way to quantify the unpredictability and the
irregularity of a time-series. In this case, we will consider the EEG data,
and the ApEn is defined as the logarithmic likelihood that patterns of data
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close to each other will remain close for the next comparison within longer
pattern. First of all, for each EEG dataset m-dimensional vectors sequences
pm(i) are costructed, where i ranges from 1 to N −m + 1. At this point, the
mean of the fraction of patterns of length m that resemble the pattern of the
same length that begins at i is defined as:

Cm
i (d) =

1
N −m + 1

· D (2.11)

where D is equal to the number of vectors for which the distance |pm(j)−
pm(i)| < d, m specifies the pattern length and d the criterion of similarity. For
their study, Sarà and Pistoia set m = 2 and d = 20% of the standard deviation
of 400 EEG data.

The Approximate Entropy is then calculated as:

ApEn(N, m, d) =
∑N−m+1

i=1 ln Cm
i (d)

N −m + 1
− ∑N−m

i=1 ln Cm+1
i (d)

N −m
(2.12)

In other words, what Sarà and Pistoia did was to take 400 adjacent EEG
datapoints and they divided them into 200 subsets of length m = 2. Then, they
determined the number D of subsets with the criterion of similarity d = 20%
of the standard deviation of the 400 points and calculated ApEn according
to equation 2.12. This calculation was made for each EEG electrode: what
could be taken into consideration for quantifying the level of consciousness is
both the average ApEn among electrodes or also the minimum and maximum
values.

What was expected in the study was that a reduction of ApEn was a sign
of functional isolation of the source from the other sources, and so a sign of
low consciousness.

2.4.2 Results

In their study, Sarà and Pistoia evaluated the ApEn for a set of healty subjects
and for vegetative state patients for which they were assigned two different
scales (the Extended Glasgow Outcomes Coma Scale and the Coma Recovery
Scale-Revised).

As it is shown in figure 2.9, the mean ApEn can be used to discriminate
healthy subjects from patients, but it is not enough to differentiate among the
patients. However, after 6 months from the measurements, patients with the
lowest mean ApEn either died or persisted in vegetative state, while those
with the highest values became minimally conscious or showed partial/full
recovery. The relationship between ApEn and both coma scales follows an
exponential model and it is shown more in detail in figure 2.10.

The results obtained by Sarà and Pistoia in their reaserch prove that
Approximate Entropy is a valuable way to quantify the level of consciousness
and that non-linear parameters should be further studied to understand their
role in the DOC classification.
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FIGURE 2.9: Mean Approximate Entropy for healty subjects and
patients.

The open circles represent the mean ApEn for healthy subjects,
while closed circles are the mean ApEn for patients. The
dotted and slashed line respectively represent the two cutoffs
respectively at 70% specificity 100% sensitivity and 100%

specificity 94.7% sensitivity. (SARÀ, PISTOIA et al.)

2.5 Connectivity Biomarkers (Höller et al., 2014)

Consciousness can be examined both by asking the subject to follow
commands or by using resting parameters.

Despite examining consciousness by using active paradigms would be the
easiest to identify conscious patients, as Yvonne Höller observed in 2014 this
can be efficient only for those subjects who are willing to cooperate. Indeed, a
depression phase is a common experience among disabled people, and it is
especially frequent among locked-in patients, who may voluntarily decide to
not collaborate. For this reason, Höller and other reaserchers in their studies
decided to focus on connectivity biomarkers extracted from resting EEG and
use them to try to distinguish among different consciousness levels. [7]

2.5.1 Classification

In Höller’s experiments, EEG were recorded in quiet conditions on both
awake patients in MCS or VS, for which a stable CRS-R score was assigned,
and on healthy subjects. The data was pre-processed and segmented into 2
seconds-long segments. For each of them, a list of features was evaluated and
these features were averaged on the segments. In particular, the classification
was performed as a two class-problem: healthy vs MCS, healthy vs VS, MCS
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FIGURE 2.10: Relationship between Approximate Entropy and
Coma Scales.

The coma scales are referred to the 6-months follow-up. a)
Extended Glasgow Outcomes Coma scale (E-GOS) also includes
the death cases and was evaluate for the overall patients group.
b) Coma Recovery Scale-Revised (CRS-R) is better focused on
consciousness transitions and was calculated only for those

patients who remained alive. (SARÀ, PISTOIA et al.)

vs VS. Support Vector Machines (SVM) with a linear kernel function were
used.

2.5.2 Results

In this thesis, we won’t list and explain all the 44 features used for the reaserch,
since not all of them were relevant and it is beyond the scope of our work, but
the most important will be mentioned since they led to interesting results.

In fact, almost all the biomarkers used in the reaserch were able to
differentiate between patients and healty subjects, but only a few could
distinguish among patient groups. In particular, only three features related
to the multivariate frequency response accurately classified among the
three different levels of consciousness: Partial Coherence, Directed Transfer
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Function (DTF) and Generalized Partial Directed Coherence (GPDC). More
precisely, the most accurate results were obtained for partial coherence.

These results proved that connectivity patterns on resting EEG can be used
to accurately differentiate not only among healthy subjects and patients, but
in some cases also among MCS and VS cases.
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Chapter 3

An Integrated Information
measure: the Perturbational
Complexity Index

As we saw in section 2.2, the idea of Integrated Information Theory described
by Tononi is to perturb the system and estimate the amount of integrated
information by using the Φ function. However, what was missing in the study
was a way to have this measure in an easy and objective way, for example by
using EEG recordings.

For this reason, in 2013 Adenauer G. Casali and a group of researchers,
among which Tononi himself, proposed to measure the integrated information
from the thalamocortical system of a subject by using the Perturbational
Complexity Index (PCI).

3.1 PCI as Lempel-Ziv compression algorithm
complexity

Casali defined the PCI as the algorithm complexity of the compression of the
spatio-temporal pattern of cortical activations after a Transcranic Magnetic
Stimulation (TMS). In other words, from EEG recordings of TMS-evoked
potentials, a matrix of significant sources is extracted and compressed by
using the Lempel-Ziv algorithm: the PCI corresponds to the normalized
algorithm complexity. [1]

The procedure for the PCI calculation is represented in figure 3.1 and its
steps are better described in the following subsections.

3.1.1 Recordings of the brain response

As we said, in order to measure the amount of integrated information, the
first step is to perturb the system. In their study, Casali decided to obtain this
perturbation by direct activation thanks to Transcranic Magnetic Stimulation.

TMS is a non-invasive neurostimulation procedure, consisting in using
electromagnetic induction to cause the flow of electrical currents into certain
areas of the brain. In particular, for their study Casali oriented the maximum
induced electric field perpendicularly to the cortical gyrus and the intensity
was adjusted to obtain a significant response. The neural response to TMS
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FIGURE 3.1: PCI calculation based on Lempel-Ziv algorithm
complexity.

a) Averaged TMS-evoked potentials recorded from all EEG
channels in one representative wakeful subject. b) Color-coded
maps of the instanteneous voltages at selected latencies. c) The
corresponding distributions of cortical currents. The green star is
the location of the TMS stimulation. d) Significant TMS-evoked
cortical currents. e) Binary distribution of significant sources:
SS(x, t) = 1 if source x is significant at time t, 0 otherwise. The
sources in SS(x, t) are sorted on the basis of their total activity
during post-stimulus period. f) The integrated information
content is evaluated by measuring the Lempel-Ziv algorithm

complexity. (CASALI et al.)

was recorded with an High Definition EEG (hd-EEG), an improvement of
the traditional EEG using more electrodes and sensors and providing higher
accuracy.

More than 200 stimuli were acquired for each subject, and in offline data
processing all trials containing artifacts and channels with bad signal to noise
ratio were rejected.
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FIGURE 3.2: PCI and loss of integration/differentiation.
On the left side, TMS-evoked currents for some representative
sources, where the grey area is the statistical threshold applied
to identify significant sources. On the right side, spatio-temporal
matrix of significant sources SS(x, t) for representative healthy
subjects. The red frames show an extended set of the matrix.
The green star identifies the location where TMS was applied.
a) SS(x, t) for alert wakefulness and 90 V/m TMS intensity,
resulting in PCI = 0.51. b) SS(x, t) for NREM sleep and 90
V/m TMS intensity, resulting in PCI = 0.23. Notice that the
low value of PCI is due to the low number of active sources
(low integration). c) SS(x, t) for NREM sleep and 160 V/m TMS
intensity, resulting in PCI = 0.21. Notice that the low value
of PCI is due to the high redundacy in the SS(x, t) matrix (low
differentiation). Also, changing the intensity of the TMS does

not define a drastic change in the PCI value. (CASALI et al.)

3.1.2 Source Modelling

Source modelling of the EEG activity was performed by modelling conductive
head volume according to the 3-spheres BERG method, which allows to
approximate the scalp potential in a 4-shell spherical head model. Then, each
source’s activity was centralized on the mean and normalized on the standard
deviation of the baseline level. Surrogate average baseline was obtained by
shuffling pre-stimulus samples at the single-trial level and the maximum
absolute value of the surrogates across all sources was calculated. This was
repeated 500 times to obtain a distribution of 500 bootstraps and according to
this a threshold T was extracted.

On the basis of the threshold T, the Significant Sources matrix SS(x, t)
was calculated by setting SS(x, t) = 1 if source x was significant at time t,
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SS(x, t) = 0 otherwise. The matrix was computed for the immediate cortical
response, which is 300 ms after the stimulus.

3.1.3 Lempel-Ziv algorithm

After the Significant Sources matrix is obtained, SS(x, t) can be compressed,
for example by using the Lempel-Ziv data compression algorithm. This
algorithm works as a dictionary of symbols from an aphabet: the symbols
are grouped into strings and each string is converted into a smaller code.
The Lempel-Ziv complexity cL is the number of times a new subsequence is
present while scanning the sequence. In particular, the sequence is given by
the subsequent columns of the SS(x, t) matrix.

The normalized Lempel-Ziv complexity is defined as:

cL = cL
log2 L
LH(L)

(3.1)

where L = L1 · L2 is the total number of spatiotemporal samples of the
matrix (L1 sources and L2 timesamples) and H(L) = −p1 log2 p1 − (1 −
p1) log2(1− p1) is the source entropy, being p1 the fraction of ones contained
in the matrix.

The Lempel-Ziv Perturbational Complexity Index (PCILZ) is finally
defined as the normalized Lempel-Ziv complexity of the spatio-temporal
patterns of the TMS-evoked cortical activations SS(x, t). The result, as shown
in figure 3.2, is that PCILZ results lower both if less sources are significant
on the overall post-stimulus interval or if their behaviour is standardized (in
other words, if the matris SS(x, t) is very redundant).

3.1.4 Results

The algorithm defined above to calculate PCILZ was firstly used on healthy
subjects in both wakefulness and in a state of unconsciousness due to sleep
or anesthesia. As it is shown in figure 3.3, the Significant Current Density
(SCD) or strenght of the response in the post-stimulus interval (300 ms) is
similar in both cases of alert wakefulness and in unconsciousness, while the
number of significant samples in the spatio-temporal response SS(x, t) only
defines the number of active sources over the time interval and does not give
an idea about the level of differentiation of information. The values of PCI,
instead, result significantly higher in alert wakefulness, when the cortical
responses are both integrated and differentiated. In other words, PCI can be
used to distinguish between states of consciousness and unconsciousness.

Interesting results were also obtained by applying the algorithm to
calculate PCILZ in graded states of unconsciousness. As shown in figure
3.4, in an intermediate level of propofol sedation the PCI values result still
lower than the ones obtained in wakefulness, but also higher than the ones
in deep sedation. The same can be said about different sleep stages: as we
could expect, the lowest PCI values were obtained during Non-Rapid Eye
Movement (NREM) sleep, during which there is little eye-movement and
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FIGURE 3.3: Parameters of cortical responses to TMS during
wakefulness and sleep/anesthesia.

On the left side, the parameters for each subject in wakefulness
and sleep/anesthesia, on the right the distributions of each
parameter. a) Significant Current Density (SCD), or strength
of the response, cumulative over the post-stimulus time. b)
Number of total significant samples cumulative over the post-
stimulus time. c) Perturbational Complexity Index (PCI). Notice
that only PCI is a significant parameter to discriminate among

wakefulness and sleep/anesthesia. (CASALI et al.)

usually no dreaming, while during the Rapid Eye Movement (REM) phase,
in which we experience vivid dreams, PCI values are considerably similar to
those in wakefulness. Consequently, PCI is also sensible to graded changes
of consciousness, and this is a good premise to distinguish among different
states of DOC.

This is proven by the results obtained when PCILZ was applied to severely
brain-injured patients. As shown in figure 3.5, those patients with a stable
diagnosis of vegetative state or unresponsive wakefulness syndrome (UWS)
follow the behaviour of unconscious healthy patients, while those patients
diagnosed with Locked-in Syndrome result in a PCI comparable with the ones
in wakefulness. Those subjects with an intermediate level of consciousness,
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FIGURE 3.4: PCI and graded changes in consciousness.
The grey dashed line is the maximum observed complexity
during unconsciousness (PCI = 0.31), the red dashed line
is the observed minimum complexity in alert wakefulness
(PCI = 0.44). a) PCI in six subjects in wakefulness, under
intermediate and in deep levels of propofol ansthesia. b) PCI in
one subject in wakefulness, sleep stage 1 (S1), NREM and REM

sleep. (CASALI et al.)

FIGURE 3.5: PCI in brain injured patients.
The grey dashed line is the maximum observed complexity
during unconsciousness (PCI = 0.31), the red dashed line
is the observed minimum complexity in alert wakefulness
(PCI = 0.44). a) On the left side, PCI values for 20 severely
brain-injured patients for diffrent TMS targeting. On the right
side, PCI distribution for healthy subjects in wakefulness and
sleep or anesthesia. b) Box plots for PCI in brain-injured patients

(CASALI et al.)

such as Minimally Conscious State (MCS) and Emerged Minimally Conscious
State (EMCS), result in an intermediate PCI value. This proved that PCI
evaluation can be used to identify the state of consciousness of a brain-
damaged patient.
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FIGURE 3.6: PCI in healthy patients under ansthesia.
While propofol and xenon result in a loss of integration or
differentiation, the behaviour of the cortical responses under
ketamine anesthesia is very similar to the one in wakefulness.
a) Spatio-temporal matrix of significant sources SS(x, t) for
representative healthy subjects in wakefulness and under
propofol, xenon and ketamine ansthesia. The red frames show
an extended set of the matrix. b) Individual PCI values for the
three experiments in wakefulness and under anesthesia. The
triangle and the square identify the different cortical targeting.

(SARASSO, BOLY et al.)

More studies were conducted in 2015 by a research group lead by Simone
Sarasso and Melanie Boly about PCI in healthy subjects under the effects of
different anesthetics. [19] [20] As shown in figure 3.6, while the values of
PCI for those who underwent xenon and propofol anesthesia are as expected
significantly lower than those in wakefulness, the results obtained in ketamine-
induced unresponsiveness are comparable to those obtained in a conscious
state. This difference is explained by the retrospective reports of the subjects
when waking up after the anesthesia: while those under propofol and xenon
did not recall any conscious experience under the effects of the drug, subjects
who underwent the ketamine experiments reported vivid, explicit dreams
with a narrative structure, and some of them experienced hallucinations and
distortions of the reality when awakening. This is particularly interesting
because it shows that PCI is sensible to disconnected consciousness, also in
those subjects who, based on their behavioural responses, are considered
unconscious.
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3.1.5 Limitations

As we have seen, the results obtained by estimating the PCILZ value
in different consciousness conditions are very promising. However, this
approach also shows some drawbacks and limitations.

The first problem resides in the algorithm itself. The PCILZ calculation
requires a long and challenging processing of the TMS-evoked hd-EEG
recordings. Indeed, obtaining the spatio-temporal matrix of the significant
sources SS(x, t) may be not so easy. The best would be to obtain a measure
similar to the Perturbational Complexity Index that we described, but
estimated directly at the EEG-sensors level.

Moreover, PCILZ is limited to TMS/hd-EEG evoked potentials: extending
the algorithm to the usage of a traditional EEG recording system instead of
the high density, or other types of recordings such as local field potentials,
may lead to different conclusions.

3.2 PCI as State Transitions

Because of the limitations in the PCILZ approach explained earlier, a faster
algorithm was proposed in 2018 by the same group researchers, led by Renzo
Comolatti, and estimating the Perturbational Complexity Index directly from
the EEG recordings of TMS-evoked potentials as the overall number of non-
redundant state transitions (ST) caused by the perturbation. [3]

The proposed algorithm is shown more in detail in figure 3.7 and in the
following subsections.

3.2.1 Recordings and Principal Component Analysis (PCA)

Details about the recordings of TMS/hd-EEG evoked potentials were already
given for the PCILZ algorithm in 3.1.1.

Starting from the ERPs of these recordings, the first step is to perform
Principal Component Analysis (PCA), a method consisting in reducing the
number of variables while limiting the information loss. In particular, being
X the N × T matrix of the trial-averaged signals from n = 1, . . . , N different
locations and k = 1, . . . , T time samples and X with t = 0 the instant of
perturbation, the autocorrelation matrix of the response signal is calculated
as:

A = XRES(t)× XRES(t)T (3.2)

where XRES(t) is the response signal. The NC Principal Components (PCs)
are selected as the highest eigenvalues an of matrix A to account for at least
99% of the square mean field power of the response.

X(t) is then projected into the principal components, obtaining the N × T
matrix Y(t).
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3.2.2 Distance and Transition Matrices

At this point, each component yn(t) is considered separately, and the Distance
Matrix Dn is defined as the euclidean distance between timepoints:

Dn(ti, tj) = ‖yn(ti)− yn(tj)‖ (3.3)

This matrix is evaluated separately for baseline and reponse. Both are
thresholded at different scales ε and for each ε a Transition Matrix Tn is
calculated as the contour plot of the relative distance matrix, or in other words
the non-recurrent states.

3.2.3 State Transitions

From the transition matrix for each ε, the mean number of state transitions
(NST) across the Tc timesamples is calculated as:

NSTn(ε) =
1

T2
c

Tc

∑
i=1

Tc

∑
j=1

Tn(ε, ti, tj) (3.4)

The temporal complexity of each component n is the maximized weighted
difference at the optimal scale:

∆NSTn = TR[NSTres
n (εn∗)− k× NSTbase

n (εn∗)] (3.5)

where TR is the number of response samples and εn∗ =
arg max[NSTres

n (ε) − k × NSTbase
n (ε)] is the scale providing the maximum

difference according to a weight parameter k (in Comolatti’s work, it was set
as k = 1.2).

Finally, the State Transition Perturbational Complexity Index (PCIST) is
defined as the sum of the optimal weighted differences across all the NC
components:

PCIST =
NC

∑
n=1

∆NSTn (3.6)

Notice that PCIST can be read as the product between the number of
principal components NC and the average number of state transitions among
all components ∆NST. NC represents the spatial differentiation of the brain’s
response, since it is higher when different responses are given at different brain
areas, while ∆NST is the average temporal complexity of each component and
is higher when for each component a high variety of patterns is evoked by the
stimulation. High values of PCIST are obtained only when both parameters
are high.

3.2.4 Results

In Comolatti’s study, the method was firstly applied on 382 TMS Evoked
Potentials from 108 healthy subjects both in alert wakefulness and in
unconsciousness conditions due to NREM sleep or anesthesia. As shown



34 Chapter 3. An Integrated Information measure: ...

in figure 3.8, significant higher values of PCIST were obtained in a conscious
condition and with a higher variability. The classification power was very
similar to the one obtained by PCILZ, since the correlation between the two
PCIs follows a linear model, but the biggest advantage was that the time
required to perform the State Transitions algorithm took a much less inferior
time to compute than the one with the Lempel-Ziv complexity.

The method was then applied also on 108 brain-injured patients, and for
each of them different EEG settings were tried: the already used hd-EEG with
60 channels, the 10-20 system with 19 channels and a 10-20 system with only 8
channels. As shown in figure 3.9, the signs of consciousness in patients were
detected with a very high accuracy while using the hd-EEG. The performance
of state transitions PCI resulted just slightly inferior using 19 and 8 channels,
proving that, on the contrary to the Lempel-Ziv complexity method, simpler
EEG standards can be used having still good accuracy. Notice however that
in UWS patients the absence of signs of consciousness cannot be considered
as proof of absence of consciousness.

In conclusion, PCIST seems to be a method as reliable as the PCILZ in
detecting signs of consciousness both in healthy and brain-injured patients,
but with respect to the Lempel-Ziv complexity it provides a faster algorithm
that can be applied without significant accuracy losses also in simpler EEG
structures using an inferior number of channels.
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FIGURE 3.7: PCI calculation based on state transitions.
a) From TMS/hd-EEG evoked potentials (TEPs), Nc principal
components are extracted. b) For each single component PCn,
a distance matrix, based on the amplitude distance between
timesamples, is extracted for both baseline and response time
intervals. c) Distance matrices are thresholded at different
amplitudes ε (in the figure: ε′ and ε∗ are represented. d) For
each ε, a transition matrix is extracted both for the baseline
and the response. The number of state transitions for both of
them is calculated (NSTbase and NSTres). e) The complexity of
each component is defined as the weighted difference between
state transitions in baseline and in response (∆NSTn). PCIST is
finally obtained as the sum of the ∆NSTn for all NC principal

components. (COMOLATTI et al.)
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FIGURE 3.8: PCIST in healthy subjects in consciousness and
unconsciousness.

a) Histogram of the values of PCIST in healthy subjects in
alert wakefulness and under NREM sleep or anesthesia. b)

Correlation between PCIST and PCILZ. (COMOLATTI et al.)

FIGURE 3.9: States of consciousness in brain-injured patients
using PCIST in different EEG setups.

The tables represents the number and percentages of patients
classified as high and low complexity with respect to the
classification cutoffs for different EEG setups (60 channels for hd-
EEG, 19 for 10-20 system, 8 channels). a) In LIS, EMCS and MCS
patients, PCIST’s sensitivity does not change much according to
the EEG setups. b) Contingency tables for UWS patients in low
and high complexity subgroups according to PCIST and PCILZ.

(COMOLATTI et al.)
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Chapter 4

Project Development

When visiting a rehabilitation center or the department of an hospital, it may
happen to observe that a bed patient diagnosed with minimum consciousness
or even in a vegatative state slightly moves a finger or a leg. This experience
usually lights up hope inside the patient’s relatives, who interpret this as
a sign of consciousness and an attempt of the subject to communicate with
the external world. However, things may be more complex than this, and
behind this action there may be a variety of different explanaitions: there is
a possibility that it truly is an effort to interact with the outside, but it could
also be an involuntary response to a stimulus, or even a muscle spasm.

In this thesis, we propose to use the Perturbational Complexity Index to
distinguish among voluntary and involuntary movements in a subject. In
particular the approach was tested on healthy subjects and we chose to use the
PCIST as defined in 3.2, since it is a fast and easy way to obtain the parameter
that can be used without significant losses even in easier EEG systems. In the
following chapter, we better describe the algorithm used to calculate the PCI
and show the obtained results for voluntary, semivoluntary and involuntary
movements. We also tried to apply the found results to different classifiers,
and we will define the error rates of the outcomes.

4.1 EEG Recordings and ERP extraction

To apply the algorithm previously defined and calculate the PCI, the ERPs of
each subject in response to the subject’s movement are needed. This section
defines the steps applied to obtain them.

4.1.1 Protocol definition

Three different experiments were conducted, and for each of them distinct
recordings were taken.

The experiments were so defined:

1. Voluntary Actions: Subjects were requested to move a finger of their
hand after hearing an acoustic signal. The stimulus were presented at
random intervals and the subjects could autonomously decide on their
own when to perform the action.
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FIGURE 4.1: Channel locations of the EEG recordings.

2. Semi-voluntary Actions: Subjects were requested to perform the same
action of the previous experiment, but immedately after hearing the
acoustic signal. Again, the stimulus were presented at random intervals,
but this time the subjects had to move as fast and as accurately as
possible.

3. Involuntary Reflexes: The experimenter applied a percussion stimulus
under the subjects’ knee, in order to elicit the phasic patellar reflex and
obtain a totally involuntary movement of the leg. This time, no will to
perform the action was requested from the subject.

4.1.2 Materials

To acquire data, a Galileo Suite from EB Neuro with Brain Explorer amplifiers
was used, and the Galileo Software was adopted to visualize traces.

A total of 34 EEG electrodes were applied on the scalp of each subject
as shown in figure 4.1. In particular, the scalp was firstly cleaned with an
abrasive cream called Nuprep, and then the electrodes were set on the head
through a cap. Inside the electrodes, an electroconductive gel was put, in order
to enhance the adherence to the scalp and improve the electrode impedence.
The threshold of the electrodes impedence was set to be 10kΩ.

Electrodes were also placed on the subject’s hand or leg, in order to record
the movement for the EMG trace. More than 40 trials for each subject and
each experiment were performed.

All recordings were taken on healthy subjects in Centro Puzzle, a
cooperative center for brain injured patients in Turin.
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FIGURE 4.2: Grand Average of ERP on Fc3 for the experiments.
a) For the voluntary actions, the grand average on Fc3 shows
a behaviour similar to that of the Readiness Potential. b) For
the semi-voluntary actions, the grande average on Fc3 shows a
behaviour similar to that of the Contingent Negative Variation.
c) For the involuntary reflexes, the grand average on Fc3 does ot

a show a particular behaviour.

4.1.3 ERP extraction

After recording EEG and EMG traces for each subject and each experiment,
they were analyzed by using eeglab, an interactive and opensource toolbox
for Matlab, provided by the Swartz Center for Computational Neuroscience
(SCCN). In particular, an eeglab program, already developed in 2018 by
Simone Rumac for his thesis work, was used to extract the ERPs in response
to the movement. [17]

At first, the onset instant of the action was detected from the EMG trace by
using the Teager-Kaiser Energy Operator (TKEO), as explained in Rumac’s thesis.
From the onset, the EEG data from all channels was divided into epochs, from
4 seconds before the movement to 4 seconds after the movement. Finally, the
ERP averages for all eletrodes were extracted and exported into a text file, in
order to use them for developing the wanted algorithm.

4.1.4 Chosen subjects

The measurements were performed on a high number of healthy subjects.
Unfortunately, two problems arose:

• The first problem appeared while taking EEG measurements in the
third experiment. In fact, every subject is different, and not all of them
showed a visible and clear phasic patellar reflex. For this reason, it
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wasn’t possible to conduct the involuntary reflex experiment on all of
the subjects.

• The second problem emerged during the signal processing analysis.
Indeed, many measurements appeared to be badly taken or corrupted
by an high electrode impedence and had to be discarded.

For this reason, a low number of subjects were still left for testing the
hypothesis. In order to enlarge the dataset, we obtained some fictitious
measurements by considering the valid ones and taking a lower number of
trials for calculating the ERPs. Thanks to this expedient, we were able to
obtain a total of 18 subjects: for all of them, the measurements for the first two
experiments (voluntary and semi-voluntary actions) were present, and for
half of them there were also the measurements for the involuntary reflex.

The validity of the experiments and chosen measurements are proven by
the calculated Grand Averages on Fc3 channel shown in figure 4.2. While no
particular behaviour is elicited for the involuntary reflexes, as expected the
voluntary actions evoke a behaviour which appears as a Readiness Potential
(RP), and the semi-voluntary actions bring out a potential similar to the
Contingent Negative Variation (CNV) due to the imperative nature of the
stimulus (both the RP and CNV were already mentioned in section 2.1).

4.2 PCI calculation

In this section, we will explain the applied algorithm more in detail and
the principal differences implemented with respect to the procedure already
defined in 3.2.

As an example, only figures from one subject (subject #3) and for
experiments 1 and 3 (voluntary and involuntary actions) are reported. Similar
considerations to the ones reported can be given for the other subjects and for
experiment 2 (semi-voluntary actions).

4.2.1 Data cleaning

Before starting the algorithm, data needs to be cleaned.
First of all, we applied a low-pass filter to the imported ERPs, in order

to have a smoother behaviour and better visualize the signals to work with.
The filter we chose was the same for all channels, a low-pass Butterworth IIR
filter of the third order with −3dB normalized frequency at 0.05.

Moreover, as already mentioned, because of electrode detachment and high
electrode impedence, in some experiments some channels resulted invalid to
be used and had to be discarded. Using one channel less in some experiments
didn’t result in any particularly different behaviour. The channels to be
discarded were selected by visual inspection.

Examples of ERPs after the data cleaning step are shown in figure 4.3.
What could be already seen from this firs step was a prominent RP component
in the first experiment for voluntary actions, while no particular behaviour
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FIGURE 4.3: ERPs of subject 3 after filtering and data cleaning.
The imported ERPs from all channels were low-pass filtered
and invalid channels were deleted. In the figures, the black
dotted line represents the onset of the stimulus (the intention
to perform an action), set to one second before the onset of the
movement. a) ERPs from experiment 1, voluntary actions. It’s
already possible to notice the RP component starting around
the onset of the movement, or intention to move. b) ERPs from
experiment 3, involuntary reflex. Neither the RP nor the CNV
are visible, and the voltage behaviour seems to be similar for all

electrodes.

was shown for the involuntary reflexes, which instead showed a sterotypical
voltage for all the electrodes. In the second experiment, for semi-voluntary
actions, most of the subjects showed a potential similar to the CNV, but in
some cases there also appeared to be a stereotypical behaviour.



42 Chapter 4. Project Development

FIGURE 4.4: Principal Components of subject 3.
a) Principal components from experiment 1, voluntary actions.
Notice that the first component follows the behaviour of the
RP. b) Principal components from experiment 3, involuntary
reflex. The number of extracted PC is lower than the previous
case because the voltage across all the electrodes is more

stereotypical.

4.2.2 Principal Component Analysis

The second step is the Principal Component Analysis (PCA).
Differently from what was described in 3.2.1, in which the weights of the

PCA were extracted only from the reponses, in the algorithm we developed
we considered the whole time interval. It was chosen to keep the eigenvalues
providing for at least the 99% of the total square sum.

Applying the PCA means linearly tranforming the variables and keeping
only those providing for the largest eigenvalues. What happens, as shown



4.2. PCI calculation 43

in figure 4.4, is that for those measurements following a stereotypical trend
in all electrodes, like in the involuntary reflex experiment, the number of
principal components is strongly reduced. On the contrary, for the voluntary
action experiment an higher number of PCs is provided, and interestingly the
first component follows the RP behaviour. Again, for the second experiment
(semi-voluntary actions) the situation in most cases appeared to be similar to
that of the first experiment, with the first component following the trend of
the CNV, but in some cases the number of principal components was smaller
due to a stereotypical response.

4.2.3 Distance Matrix

After extracting the principal components, each of them is analyzed separately.
In particular, for each of them a Distance Matrix is calculated for both the
baseline and the response, in which each element D(i, j) represents the
absolute difference between the value of the component at timesample i
and timesample j.

Instead of considering t = 0, corresponding to the onset of the movement,
as the instant of response start, we considered t = −1s, which ideally
represents the beginning of the RP, and so the "intention" of the movement
is taken as the stimulus of the experiment. We also took off 1 second at the
beginning and 1 second at the end of the considered time interval, in order to
streamline the calculation process. The baseline interval was then defined as
tbase = [−3;−1]s and the response interval as tres = [−1; 3]s.

An example of obtained Distance Matrix is shown in figure 4.5. For
experiment 1, voluntary actions, the baseline Distance Matrix for the first
component tends to have lower values with respect to the response Distance
Matrix, having wide areas of high value elements. This difference between
the two matrices tends to be less evident for the other components. The same
happens for those measurements of the second experiment for semi-voluntary
actions in which the CNV component is prominent and clearly visible. For
those experiment 2 measurements that are less clear and the involuntary
reflexes of experiment 3, instead, for all components the elements of the two
matrices tend to have a similar range of values.

4.2.4 Transition Matrix

At this point, different thresholds ε are set: we can define a "binary state" as
"below" or "over" the threshold. The Transition Matrix for each ε represents
the transitions between one state and the other.

A simpler way to interpret the Transition Matrix, as already explained, is
by considering the matrix of the states (below and over) and, as shown in
figure 4.6, taking the contour plot. In general, the transition matrix of the
response presents an higher number of transitions than the baseline.
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FIGURE 4.5: Distance Matrices of subject 3 for Principal
Component 1.

On the left side of the figures, distance matrix of the baseline, on
the right side the distance matrix of the response. a) Distance
matrix for baseline and response from experiment 1, voluntary
actions. Notice that the matrix of the baseline presents much
smaller values, while the response one presents wide areas of
high distance. b) Distance matrix for baseline and response
from experiment 3, involuntary actions. Notice that baseline
matrix and response matrix are more similar than in the previous

experiment.

4.2.5 Number of State Transitions and PCI calculation

From the Transition Matrix for a given threshold ε, the number of state
transitions can be simply calculated by summing up the non-zero elements
of the matrix. In order to compare the NST from baseline and response the
number needs to be normalized for the number of timesamples.

As shown in figure 4.7, the weighted difference between the NST from
response and NST from baseline is calculated for each ε, and in particular we
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FIGURE 4.6: Transition Matrices of subject 3 for Principal
Component 1.

On the left side of the figures, transition matrix of the baseline,
on the right side the transition matrix of the response. For both
shown experiments the number of transitions in the response
matrix is higher than in the baseline matrix. a) Transition matrix
for baseline and response from experiment 1, voluntary actions,
and ε = 3.9223. b) Transition matrix for baseline and response

from experiment 3, involuntary reflex, and ε = 3.30430.

decided to keep k = 1.2 as already chosen in Comolatti’s experiment. The
maximum NST difference tends to be higher for the voluntary actions rather
than the involuntary movements.

Finally, the PCI for the given subject and experiment can be calculated with
the expression 3.6, by summing the maximum ∆NST for each component and
multiplied by the square number of timesamples. This means that the PCI
value results higher if the number of extracted principal components is high
and if for each of them the difference of state transitions is high (or, in other
words, if the response to the stimulus is both integrated and differentiated).
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FIGURE 4.7: Normalized Number of State Transitions of subject
3 for Principal Component 1.

a) Normalized NST in function of the threshold ε for experiment
1, voluntary actions. b) Normalized NST in function of the

threshold ε for experiment 3, involuntary reflexes.

4.3 Collected results and classification methods

The algorithm defined above was applied to all the valid subjects and
experiments. In this section we will discuss the results obtained and try
to apply classification methods to demonstrate if PCI is a valid measure for
detecting voluntary and involuntary movements in healthy subjects.

4.3.1 Obtained PCI measures

The PCI obtained for each subject and experiment is enumerated in detail in
table 4.1, and is visually represented in figure 4.8.

As it is possible to see from the figures, in the voluntary action experiment
the PCI tends to be higher. However, the variance of the values is quite big,
and the range of obtained measures varies between more than 100 and about
260. This variance gets even bigger in the case of the second experiment,
in which it is possible to identify two macro-groups: the first one for those
subjects in which, similarly to the first experiment, the visible CNV component
in the ERP measurements determined an higher PCI value, and the second
group for those in which the very low number of principal components, due to
the prominent stereotipical behaviour among electrodes, affected the PCI with
a lower value. In the third experiment for involuntary reflexes, as expected,
the obtained PCI resulted in lower values and lower variance.

Clearly, the behaviour of the PCI in the second experiments tells us that
probably a multi-class classification is not a good idea using this data. The
semi-voluntary movements, indeed, determined a measure that cannot be
fitted in the between of the other two experiments, but rather incorporates
them both. For this reason, we don’t expect to have good results in using
non-binary classifiers.
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Perturbational Complexity Index (PCI)
#Subject exp1: Voluntary exp2: Semi-voluntary exp3: Involuntary

1 126.4298 142.1391 119.0455
2 151.0882 190.308
3 172.6657 59.0406 80.4885
4 240.3718 76.3888 139.93
5 186.6717 91.8866 102.3606
6 246.7878 69.2528 100.4594
7 169.4423 64.7171 86.651
8 176.8913 73.658 125.5887
9 122.6754 152.9294

10 155.0153 182.3589
11 105.7229 97.2142 108.4465
12 151.3627 167.892 96.722
13 137.5652 167.7437
14 183.6098 223.1921
15 255.1215 225.24
16 200.686 189.5639
17 173.5344 205.7463
18 199.5932 189.0868

TABLE 4.1: Table of the obtained Perturbational Complexity
Index (PCI) for each subject and experiment.

Even the binary classification using only experiment 1 and experiment 3
PCI, however, seems to be problematic: there is a relevant overlap among the
two groups of measures, and so a valid thresholding with a low error rate
does not seem possible.

4.3.2 Obtained Number of Principal Components

It is interesting, however, to have a look also at the number of principal
components extracted in the PCA stage of the algorithm, determined by
the stereotipical behaviour of the ERPs across electrodes. The obtained
number of components, in particular, are enumerated in table 4.2 and visually
represented in figure 4.9.

You can see that in the voluntary action experiment the number of
components (NC) tends to be higher and for involuntary reflexes it is smaller.
Again, for the second experiment the resulted NC is a wide range variable
following the behaviour of both the other two experiments. This time,
however, the variance of the measure seems to be similar for all three
experiments.

Using this number together with the PCI as features to classify the will
of the action might be a solution to obtain better results in the classification
phase.
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FIGURE 4.8: Obtained PCI for each experiment.
As expected, PCI is smaller for involuntary reflexes and higher
for voluntary movements, while semi-voluntary movements
determine a wider range of possible values with high variance.
a) PCI obtained by applying the algorithm for each subject in
different experiments. b) Box plot of the obtained PCI. The red
central mark represents the median of the group variable, the
blue box identifies the 25th and 75th percentile, while the black

whiskers extend to the most extreme data points.

4.3.3 Classification with Minimum Distance Criterion

The first method we applied to classify the obtained data is based on the
Minimum Distance criterion.

Calling xi the representative vector of class i, obtained by taking the mean
values of the normalized features (PCI and number of principal components),
the decision regions of the classifier according to the criterion can be written
as:

Rj =
{

u :
∥∥ u− xj

∥∥2 ≤ ‖ u− xk‖2 , ∀k 6= j
}

(4.1)

In other words, the classifier assigns to a given measurement the class that
is the most "similar".

Considering only experiment 1 and 3, we can apply a binary classifer,
distinguishing only between voluntary actions and involuntary reflexes.
Results can be summed up in a Confusion Matrix, in which each element cij
is equal to the number of cases belonging to class i and classified as j. In the
binary case, the elements of the matrix correspond to:

• The True Positives, those voluntary actions correctly classified as
voluntary;
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Number of Principal Components
#Subject exp1: Voluntary exp2: Semi-voluntary exp3: Involuntary

1 8 7 10
2 10 10
3 9 4 5
4 13 6 7
5 9 5 6
6 13 4 5
7 9 5 6
8 10 5 7
9 8 7

10 8 10
11 7 6 9
12 9 8 9
13 8 8
14 11 11
15 14 11
16 11 10
17 11 11
18 11 9

TABLE 4.2: Table of the obtained number of extracted principal
components for each subject and experiment.

• The True Negatives, involuntary reflexes correctly classified as
involuntary;

• The False Positives or Type I errors, voluntary movements mistakenly
classified as involuntary;

• The False Negatives or Type II errors, those involuntary actions
classfied as voluntary.

The true positive rate, or the probability that a voluntary movement is
correctly classfied as voluntary, is called sensitivity, while the true negatives
rate or probability that an involuntary reflex is classified as involuntary
is called specificity. Of course, both sensitivity and specificity in a good
classifiers are wanted to be as close as possible to 1, in order to have reliable
test results.

The classifier was compiled and tested taking all elements of the dataset
as training samples.

Figure 4.10 represents the confusion matrix obtained by the binary
minimum distance classifier. As you can see, we obtained an 88.9% specificity
and 77.8% sensitivity, which is a quite good result. More interestingly, the
precision of the classifier, or probability that an element classfied as voluntary
is actually voluntary, is 93.3%: this means that if using this method we classify
a movement as voluntary, we can be sure with a probability very close to 1
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FIGURE 4.9: Obtained number of principal components for each
experiment.

As expected, the number of components is smaller for
involuntary reflexes and higher for voluntary movements, while
semi-voluntary movements determine a wider range of possible
values with high variance. a) Histogram of the number of
principal components for each experiment. b) Box plot of the
obtained number of principal components. The red central
mark represents the median of the group variable, the blue box
identifies the 25th and 75th percentile, while the black whiskers

extend to the most extreme data points.

that the action was actually voluntary. Still, a relevant portion of voluntary
actions are mistaken as involuntary.

We also applied the criterion to test a multi-class classifier, considering
again all three experiments. As it is shown in figure 4.11, as expected, the
classifier fails in identifying the semi-voluntary actions: due the fact that in
this second experiment two groups can be identified, one with a visible
CNV component giving results similar to the first one and the other in
which like in the involuntary reflexes the ERPs are strongly stereotypical
along all electrodes, the 77.8% of the semi-voluntary movements are labelled
as one of the other two classes. The percentages of correctly classified
involuntary and voluntary actions, nevertheless, are respectively 77.8% and
66.7%. It’s important to notice, however, how low the percentages of how
many estimated classes were correct are: saying that only the 46.7% of
the estimated involuntary reflexes were actually involuntary, means that
if we estimate a movement as involuntary there is less than half chance
that is truly involuntary, and this percentage drops to 36.4% in the case of
the semi-voluntary actions. Only in the case of the voluntary experiment
this percentage is still relevant, and it goes up to 63.2%: this is particularly
interesting if we notice that none of the involuntary reflexes were classified as
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FIGURE 4.10: Confusion matrix in binary classification using
the minimum distance criterion.

Blue cells represent correct classifications, red cells represent
incorrect classifications. In the top left of the figure, the
confusion matrix is represented. The true positives and true
negatives are respectively 14 and 8, while the false positives
(type I error) and the false negatives (type II error) are 1 and
4. In the top right of the figure, the percentages on the rows
of the confusion matrix, or in other words how many true
classes were correctly and incorrectly classified. Notice that
88.9% corresponds to the specificity of the classifier while 77.8%
is the sensitivity, and 11.1% and 22.2% are respectively the
false negative and false positive rates. In the bottom left of the
figure, the percentages of the columns of the confusion matrix,
or in other words how many estimated classes were correct or
incorrect. Notice that 66.7% is the negative predictive value
and 93.3% is the precision, while 33.3% and 6.7% correspond
respectively to the false omission and the false discovery rate.

voluntary. This means that all of the actions labelled as voluntary are either
truly voluntary or semi-voluntary, so a movement in which a certain level of
"will" to act is included.

In conclusion, the results obtained by the minimum distance classifier
may be interesting in the binary case, considering only purely voluntary and
involuntary actions, but the multi-class classifier is still not reliable, since it
fails to identify the semi-voluntary actions.
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FIGURE 4.11: Confusion matrix in non-binary classification
using the minimum distance criterion.

Blue cells represent correct classifications, red cells represent
incorrect classifications. In the top left of the figure, the
confusion matrix is represented. In the top right of the figure,
the percentages on the rows of the confusion matrix, or in other
words how many true classes were correctly and incorrectly
classified. In the bottom left of the figure, the percentages of the
columns of the confusion matrix, or in other words how many

estimated classes were correct or incorrect.

4.3.4 Classification with Support Vector Machines (SVM)

The second classification method we applied is based on Support Vector
Machines (SVM).

The idea behind the binary SVM is to split the dataset in two hyperspaces
of features, separated by an hyperplane. Of course, more than one hyperplane
can exist allowing the wanted split between classes, but the SVM algorithm
tries to find the solution at maximum distance from the closest points, called
support vectors. The hyperplanes can be seen as the decision regions of the
algorithm.

The classifier was trained with the leave-one-out technique: for each
sample of the dataset, the algorithm was trained with all the other elements
and tested on the excluded sample. The results reported in the following refer
to the testing samples.

Figure 4.12 represents the confusion matrix obtained in the binary
classification using SVM. In particular, the given results are comparable to
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FIGURE 4.12: Confusion matrix in binary classification using
Support Vector Machines.

Blue cells represent correct classifications, red cells represent
incorrect classifications. In the top left of the figure, the
confusion matrix is represented. The true positives and true
negatives are respectively 15 and 6, while the false positives
(type I error) and the false negatives (type II error) are 3 and
3. In the top right of the figure, the percentages on the rows
of the confusion matrix, or in other words how many true
classes were correctly and incorrectly classified. Notice that
66.7% corresponds to the specificity of the classifier while 83.3%
is the sensitivity, and 33.3% and 16.7% are respectively the
false negative and false positive rates. In the bottom left of the
figure, the percentages of the columns of the confusion matrix,
or in other words how many estimated classes were correct or
incorrect. Notice that 66.7% is the negative predictive value
and 83.3% is the precision, while 33.3% and 16.7% correspond
respectively to the false omission and the false discovery rate.

those with the minimum distance method, with an 66.7% specificity and 83.3%
sensitivity.

For the multi-class SVM classifier, the One-Versus-One (OVO) design
method was applied, in which the binary SVM is run K(K− 1)/2 times, with
K equal to the total number of classes (in our case K = 3), to distinguish
among all the couples of classes.

The obtained confusion matrix is shown in figure 4.13. As it is possible
to see, the most interesting thing about this classifier is that all of the second
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FIGURE 4.13: Confusion matrix in non-binary classification
using Support Vector Machines.

Blue cells represent correct classifications, red cells represent
incorrect classifications. In the top left of the figure, the
confusion matrix is represented. In the top right of the figure,
the percentages on the rows of the confusion matrix, or in other
words how many true classes were correctly and incorrectly
classified. In the bottom left of the figure, the percentages of the
columns of the confusion matrix, or in other words how many

estimated classes were correct or incorrect.

experiment elements are wrongly labelled as either voluntary or involuntary.
This is because semi-voluntary actions, due to their double nature that we
already discussed, are not considered as a distinct class but as belonging to
one of the other two. Again, for this reason the non-binary classifier with
SVM does not seem to be reliable, just as much as the minimum distance one.
However, it might be interesting to try to fit the second experiment into one
of the other two categories.
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Chapter 5

Conclusions

The validity of calculating the PCIST with transcranial magnetic stimulation
to detect signs of consciousness in healthy subjects and in patients was already
discussed in 3.2.4.

The project developed for this thesis, however, took a step forward in the
study, demonstrating that:

• The Perturbational Complexity Index is a measure that can be
calculated also on the ERPs of a subject, and not only from TMS-
evoked potentials. The Transcranial Magnetic Stimulation is an
expensive technique, not accessible to all researchers, and proving that
common EEG measurements and ERPs relative to other stimuli can be
used to calculate PCI means that the measure could become a method
that is both cheap and available to everyone.

• The Readiness Potential, or intention of movement, can be used as a
stimulus to set the baseline and response while estimating the PCI.
This is particularly important because it could lead the reaserch into
calculating the PCI also in absence of a real physical movement and
using only the "intention" to act, useful for those subjects who are unable
to move.

• PCI can be used to distinguish among a purely voluntary action from
an healthy subject and an involuntary reflex. Applying the measure
in brain-injured patients, we could be able to identify a voluntary
movement and assess the presence of consciousness in that patient.

This means, of course, that further researches on the subject, especially on
brain-injured patients, may lead to more interesting conclusions and give a
hand to move across the vast spectrum of "consciousness".

5.1 Issues and limitations of the approach

Before concluding this thesis and articulate some ideas for the future, however,
it is important to examine the main problems encountered while developing
the project and the limitations of the described approach.
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5.1.1 The dataset

We already mentioned in 4.1.4 the issues about the testing dataset. In
particular, the available measurements were mostly badly taken or corrupted
by noise, and on a large portion of subjects it was not possible to experience
the involuntary patellar reflex, necessary for the third experiment. Due to this,
the dataset had to be enlarged with "fictious" measurements, how we already
explained in the previous chapter.

Despite being an approach widely used in literature, using "fake" subjects
obtained from the real ones also brings some limitations. The results obtained
from the fictious measurements, in fact, tend to be similar one another, and
using them to test a classifier might lead to erroneous assumptions.

Moreover, the issues encountered in taking the EEG measurements, like
electrode detachment and high impedence, would only get worse on brain-
injured patients. Identifying the ERP components could be very challenging
on patients, and so the calculated PCI might have a distorted value.

5.1.2 The classification

The most important issue with the used approach, however, lies in the results
obtained by the algorithm and in particular in how they were used in the
multi-class classification methods tested.

As we already discussed, indeed, both of the proposed classifiers are able
to distinguish between voluntary and involuntary movements with good
sensibility and sensitivity. This is a good starting point, but the real world is
not only black or white, and it includes also a set of greys. And unfortunately, at
the moment the non-binary classifiers we developed are not able to distinguish
this grey area, the semi-voluntary actions .

What happens is that the elements from that class, instead of being
considered as a new class are assigned to one of the other two. This may
be due to two different possibilities. The first one, and the most desirable
for our purpose, is that this is a problem restricted to the currently used
dataset. In other words, enlarging the dataset and avoiding to include fictious
measurements may lead to different conclusions and results, identifying more
clearly a well defined class of semi-voluntary movements. The second option,
however, is that the PCI is a measure that fails to capture this "grey area"
between the purely voluntary movements and involuntary reflexes. This,
of course, would be a critical problem in this approach: we cannot enclose
the semi-voluntary actions into the involuntary ones, because they include a
certain level of willingness that is not present in reflexes, but this "willingness"
is also on a different level than the one that causes the voluntary actions.

5.1.3 Actions and consciousness

Finally, an essential limitation of this approach is in the main idea behind it.
At the center of this work, in fact, there is the idea that identifying a

voluntary movement in a brain-injured patient is a sign of consciousness in
the patient. And even if we can take for real this assumption, however, it is
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important to notice that the opposite would never be true. After more studies,
the method proposed in this approach could lead, in a near future, to take off
many subjects from the darkness of a consciousness incommunicable to the
external world, by demonstrating that a performed action included a certain
level of willingness to move and was more or less voluntary. Nevertheless, if
we state that a patient moved only due to an involuntary reflex, we could not
assert that he/she is unconscious. In other words, the will to move is a sign
of consciousness, but we cannot say that the absence of this will is a sign of
unconsciousness.

Moreover, this approach is based on the concept of performing an action,
while many brain-injured patients are unable to move, for example those in
a locked-in state. It’s true that with more studies on the subject it could be
possible to extract the ERPs on the mere "will" to act without a real movement
and extract the PCI measure even in absence of an action from the subject, but
this would still be not enough. A relevant number of brain-injured patients,
in fact, develop a form of rejection for the external world and refuse to
communicate and respond to the examiner’s stimuli. For these subjects and
other similar cases, despite their conscious being, the proposed method would
fail to find signs of consciousness, since they not only would not perform any
action, but also not express any will to do it.

5.2 Ideas for the future

The limitations reported in the previous section must not induce the reader
in diminishing the progresses obtained so far. This thesis proved that there
is a difference in the amount of integrated information extracted from the
ERPs of an healthy subject performing a voluntary movement or during an
involuntary reflex, and the Perturbational Complexity Index may become an
essential instrument to identify the will of patient to communicate with the
external world.

This was just the first step of the study, and further researches may lead to
overcome the issues and limitations we came across while writing this thesis.
As a final discussion on this work, we propose here some ideas to continue
the study.

5.2.1 Enlarging the dataset

The first and most important step is to enlarge the dataset with real good
measurements and take off the fictious ones. More specifically, special
attention must be taken in selecting for the study subjects with a visible
phasic patellar reflex, since the number of available elements for the third
experiment resulted particularly limited.

With a larger testing dataset, the study on both the PCI measure itself and
the classification methods may become more precise. Consider that in the
algorithm we defined in 4.2 the value of the PCI measure and the number of
extracted principal components strongly depend on two parameters:
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• the percentage of the total square sum of eigenvalues taken in the
Principal Component Analysis phase (in this work, taken as 99%);

• the weight of the weighted difference of the number of state transitions
among the baseline and the response (here, taken as k = 1.2).

In this thesis, we left the parameters as they were defined in the Comolatti’s
study, but changing one of them (or both of them) brings important changes
in the resulting measures. Enlarging the dataset, these variables could also
be studied and analyzed in order to obtain some settings providing a better
differentiation among the classes.

5.2.2 Studying the semi-voluntary actions

Once the dataset is enlarged, particular attention should be given to the second
experiment, the semi-voluntary actions.

If the double nature manifested by these elements in this work is
attributable uniquely to the currently used dataset, then this problem would
eventually disappear by using more real measurements and discard the
fictious ones. If instead the PCI truly fails to capture the area in between
a purely voluntary movement and an involuntary reflex, some changes to the
protocol or the approach could be generated to overcome this limitation.

5.2.3 Testing on brain-injured patients

Finally, the approach could be tested on brain-injured patients: this would be
the final and most important phase of the project, but also the most critical.

As we already said, the EEG measurement phase was already a demanding
step in the healthy subjects. Most of them had to be discarded due to the
high electrodes impedence, and this noise would only get worse in patients.
Moreover, contrary to what happens in healthy subjects, patients are not able
to repeat the trials as many times as needed, and for this reason the ERP
components might become very difficult to be interpreted.

In the end, however, with some strong pre-processing of the EEG signals,
we could be able to demonstrate if this approach actually works. We could
prove to have found a new method to identify signs of consciousness by using
a mathematical measure of easy and fast calculation.
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