
POLITECNICO DI TORINO

Dipartimento di Automatica e Informatica
Master degree course in Computer Engineering

Master Degree Thesis

Design of a High Performance
Memory Packet Decoder for

Streaming Architecture on FPGA

Supervisors:
prof. Claudio Passerone
prof. Carlos Carreras Vaquer
dipl. Roberto Sierra Cabrera

Candidates
Filippo Mangani
matricola: 241916

Academic Year 2018-2019

Contents

1 Introduction 1
1.1 Background . 1
1.2 Objectives of this thesis . 4
1.3 Thesis structure . 6

2 Data encoding for stream processing 9
2.1 Computational Fluid Dynamics . 9
2.2 System description . 14
2.3 Memory bottleneck . 18
2.4 Streaming architecture implementation techniques 20
2.5 Summary of the key issues in the design of the Packet Decoder . . 23
2.6 Data frame optimization . 24

2.6.1 Header before the payload 27
2.6.2 Lines of headers and lines of payloads 28
2.6.3 Others versions . 30

2.7 Unavoidable performance overheads and relative solutions 31
2.8 Specification summary . 32

3 Architecture of the Packet Decoder 35
3.1 Specification of the module components 35
3.2 Module schematic . 43
3.3 External interfaces . 45
3.4 Design techniques . 46
3.5 Generics . 47
3.6 VHDL style . 49

4 Implementation of the Packet Decoder components 51
4.1 Packet Shifter . 52

4.1.1 Background . 52
4.1.2 Critical issues . 53

ii

4.1.3 Implementation and block diagram 55
4.1.4 Elasticity . 58

4.2 Packet Builder . 62
4.2.1 Payload Placer . 64
4.2.2 Payload Reader . 66
4.2.3 Build Sequencer . 66
4.2.4 First type instructions . 69
4.2.5 Second type instructions . 73
4.2.6 Packet Builder scenario . 74
4.2.7 Instruction Computer interface 77
4.2.8 Flow control management 78

4.3 Instruction Computer . 79
4.3.1 Information analysis . 79
4.3.2 Equation optimization . 81
4.3.3 Implementation and schematic 85
4.3.4 Complete component and critical path 91

4.4 Header Decoder . 94
4.5 Configuration program . 98

5 Testing and results 101
5.1 Functionality test analysis . 101
5.2 Performance and area tests . 106

6 Conclusions 111
6.1 Overall conclusions . 111
6.2 Further improvements . 112

A Demonstration of modulus operation properties 115
A.1 Demonstration of modulus property 1 115
A.2 Demonstration of modulus property 2 116
A.3 Demonstration of modulus property 3 118

B Testbench results 121
B.1 Input and output frames for 44 bit memory port width testbench . 121
B.2 Input and output frames for 128 bit memory port width testbench 124
B.3 Configuration file of the 44 bits port width testbench 129
B.4 Configuration file of the 128 bits port width testbench 130

Bibliography 131

iii

List of Tables

4.1 First type of instruction inputs and outputs 73
5.1 Performance evaluation and resource occupation of a 44 bits input

port width Packet Decoder and of a 128 bits input port width Packet
Decoder . 108

iv

List of Figures

1.1 Basic model of Streaming Architecture 4
2.1 Structured mesh vs unstructured mesh 11
2.2 Encoding and compression of an unstructured mesh [3] 14
2.3 Schematic of the whole project . 16
2.4 Interfaces of modules with flow control 22
2.5 Invalid and valid graphs . 23
2.6 Efficient packet configuration example 26
2.7 Encoded and decoded packets . 27
2.8 Data frame using the "header before payload" approach 28
2.9 Data frame using the "lines of header and lines of payload" approach 30
2.10 Inputs and outputs of the memory decoder 33
3.1 Payload and header sub-frames . 37
3.2 Inputs and outputs of the Packet Builder 40
3.3 Inputs and outputs of the Packet Shifter 42
3.4 Block schematic of the design . 44
3.5 Schematic of a FIFO module . 47
4.1 Level two and three of the Ultrasparc T2 Niagara Shifter 54
4.2 Schematic of a rigid Packet Shifter with an input line width equal

to 11 bits . 57
4.3 Rigid way and elastic way to manage stalls. 61
4.4 Block diagram of the Packet Builder’s sub-components. 63
4.5 Payload Placer schematic . 64
4.6 Payload Reader diagram . 67
4.7 State diagram when the maximum number of Used Lines is 4 . . . 70
4.8 N state diagram . 74
4.9 Packet Builder scenario . 76
4.10 Non-optimized and optimized circuit to obtain Xi 87
4.11 Non-optimized and optimized circuit to obtain Xreali and Klinei 88
4.12 Non-optimized and optimized circuit to obtain Ui 89
4.13 Ule1, Ule2, Zlen and Zshift computing 90
4.14 Complete Instruction Computer . 92

v

4.15 Header Decoder and decoder . 97
5.1 Packet Decoder simulation for 44 bits bus 106
5.2 Loop simulation for the 44 bits bus 106
6.1 Pipeline stage for the stall line of a rigid Packet Shifter 113

vi

Chapter 1

Introduction

1.1 Background

The need for solving problems that are way too complicated to be solved by hand
or mind is not a recent one. All computers have as primary purpose to solve prob-
lems efficiently and fast. However, there is a set of problems that occurs mostly
in the scientific and engineering fields that requires an extreme use of computing
capabilities to be solved. These problems aren’t new and neither their algorithmic
solution. However, the technology used to solve these problemd using machines is
instead fairly new as the Moore law has allowed enhancing the computing technol-
ogy to a point that a set of problems that were thought to be unsolvable due to the
complexity of their algorithms are today solvable with the use of machines. One
example of this kind of problems is the Schrödinger equation, which is capable of
describing completely the atomic structures of molecules. As we can imagine, the
more complex is the molecule, the more complex will be solution of the Schrödinger
equation.

The Schrödinger equation was proposed in the beginning of the 20th century,
but its solution using computer simulation wasn’t possible until recently. The same
concept is applicable to the Navier-Stokes equations, that describe the behaviour
of the interaction between fluids and solids, where the more complex is the solid,
the more complex is the solution of the equation. Also these equations have been
proposed in the 19th century, but they couldn’t be applied directly to problems as
their solution was too hard in not ideal cases. As we can understand, these sets of
equations are more and more essential to run precise simulations for the scientific
and engineering communities. However, the main obstacle in all these problems
is the time required to solve them, and therefore any solution that increases the

1

1 – Introduction

performance will be competitive in the market. Accelerating this set of algorithms
in any possible way is a necessity of the whole scientific and engineering community.

The field of High performance Computing (HPC) is where algorithms requiring
very long computational times are optimized to achieve ever increasing perfor-
mance. While parallel processing has always been the key aspect of HPC, it also
poses serious problems related to communication and synchronization that must
be solved in order to support cooperative execution of programs among many pro-
cessing elements. HPC has traditionally relied on general purpose processors as
main devices, frequently organized in clusters or connected by means of specialized
networks in supercomputers. Their model of computation (i.e. Von Neumann) is
robust and reliable, so the approach to connect many processors using such model
was the first one to provide good results. However, such computing model is se-
quential in nature and even though it has been adapted to exploit instruction level
and thread level parallelism, it is not necessarily the best approach to exploit data
level parallelism. So in recent years there is a tendency in complementing the pro-
cessing capabilities of general purpose processors with hardware accelerators that
act like co-processors and specialize in exploiting data level parallelism. These
accelerators are mainly based on one of two types of devices : GPUs (Graphic
Processing Units) and FPGAs (Field Programmable Gate Arrays). GPUs, that
are originally designed to perform graphics applications have shown to be more
performing than CPUs for a wide set of applications. This is due to the fact that
GPUs can exploit data parallelism while CPUs cannot. This means that for all
those algorithms where we have to perform the same operations on a wide set of
data, GPUs can perform better than CPUs. On the other hand, there is also an-
other device that is competitive when we have to accelerate algorithms: the FPGA.

While up to recently the FPGA was merely used as a substitute of ASICs in
low-volume productions, these devices can exploit both spatial and temporal data
parallelism in a completely flexible way. This means that we can adapt the circuit to
the application in a way that it can perform faster than GPUs and CPUs. This fact
wasn’t exploited up to recently, because using FPGAs involves an additional (and
very complex) step than GPUs and CPUs, and that’s the hardware design of the
circuit that will run the application. However, new developments are allowing some
degree of automation in the process. The goal is to achieve high-performance hard-
ware implementations in reduced times. While current design tools from high-level
languages have clearly reduced design times, the resulting implementations can
hardly qualify as high-performance, as required by HPC applications. Therefore,
there is an ongoing research effort in the direction of producing high-performance
implementations for HPC accelerators. This thesis aims at contributing to the use
the FPGAs to optimize the execution of a set of algorithms that today aren’t yet
implemented efficiently in FPGAs.

2

1.1 – Background

In the field of high performance computing, our research team is specifically
interested in the field of Computational Fluid Dynamics (CFD). This field is a
branch of HPC whose purpose is to solve with electronic hardware the equations
needed to perform Fluid Dynamics simulations, that’s to simulate the behaviour
of the dynamic of the fluids around solids, or between two fluids. An example of a
branch of engineering that extensively uses CFD is aerospace engineering: when-
ever we have to simulate the behaviour of a wing, an airfoil, or the whole plane
when it’s flying, we have to apply the CFD of equations to models that describe
both the object and the fluid. The basic equations used to solve this problem
are the finite volume equations of Navier-Stokes which, in turn, are based on the
equation of Euler. These equations are capable of describing the behaviour of a
fluid in terms of its density, energy, speed and their derivatives. The aim of the
research group is to use the properties of the FPGAs to accelerate the algorithm
related to the two and three dimensional solutions of the Navier-Stokes and Eu-
ler equations. While the work presented in this thesis has general application in
implementations based on streaming architectures and is not directly related to
any CFD application, a proper knowledge of finite volume applications and of the
methods needed to solve this kind of problems are necessary to understand some
aspects of the issues this thesis is about to solve.

The FPGA core advantage with respect to GPU and CPU is the capability of
being fast, programmable and flexible, allowing custom circuit design adapted to
the application. This means that in order to achieve maximum performance we
have to exploit the spatial and temporal parallelism as much as possible as the
device we are using is capable of granting this kind of optimization. Streaming
architectures, where the dataset flows through a datapath using deep pipelining
and many parallel functions, fully exploits the potential advantages of the FPGAs.
Therefore, they are the preferred solution when considering the design of an HPC
application in an FPGA. This kind of architecture differs mostly from the stan-
dard architecture (i.e. the Von Neumann architecture) of processors in the access
to memory. While in a general purpose processor the access to memory is provided
randomly, as we have to provide maximum flexibility to the processor, in stream-
ing architectures the accesses are performed sequentially and data are streamed
through a deep pipeline. Since the FPGA can implement full data flow graphs in
parallel in addition to the deep pipelining, we can achieve a throughput that is way
higher than in a standard Von Neumann architecture. Figure 1.1 shows an hypo-
thetical schematic of the streaming architecture. The datapath consists of a series
of pipeline stages of variable width, and the access to the memory is sequential [1].
This means that the memory itself doesn’t behave like a RAM but like a FIFO. It
should be noted that in a pure streaming architecture a continuous flow of data is
processed in the device as in a digital signal processing (DSP) application. This

3

1 – Introduction

is due to the iterative nature of the HPC application being considered. Since the
datasets correspond to large meshes processed using finite volume methods it takes
much longer to transfer the dataset than to traverse the processing device and the
streaming architecture can be safely applied.

Figure 1.1. Basic model of Streaming Architecture

1.2 Objectives of this thesis
The purpose of this thesis is to create a FPGA module that will manage the in-
terface between a on-board DRAM memory and the memories inside the FPGA
itself. The design will be based on the streaming architecture concept. The mod-
ule will have to decode the data that are encoded in an optimized way inside the
external memory. Inside the external memory data are organized as packets. This
module has the primary purpose of feeding the datapath with one packet in each
clock cycle. Since packets have different lengths, this is an ideal and impossible
requirement, and some control will be added to manage some cases. The decoding
of packets is performed to achieve maximum performance. Therefore, the module
will receive sequential data in the external memory port, it will extract the pack-
ets of different lengths, and will store them in individual RAM memories so the
packets can be processed by the rest of the system.

This module will have to satisfy the rules imposed by the streaming architec-
ture approach and the paradigm of high performance computing that is to keep
the performance as high as possible. It will also be taken in consideration the area
taken by the module, as this module has to co-exist with the remaining part of the

4

1.2 – Objectives of this thesis

system that is programmed as well inside the FPGA. We will see later that this
module can easily become the bottleneck of the whole system, and therefore it is
crucial to optimize it as much as possible, as the performance of the whole system
depends on the performance of this module;

The design has been thought and subsequently made to be as generic as pos-
sible. The data coming from the memory will not be treated as specific to the
system itself, but will be treated as abstracted multi-purpose data, which is stored
in external DRAM and transferred sequentially to the FPGA as a frame of packets
with different lengths. In fact, the frame design (i.e. the most appropriate way to
optimize the sequential data) is also an important part of the work developed here.
This fact is the main point of separation from the rest of the system: this module
has been intended not as a part of the algorithm of acceleration but as an interface
between the memory and a generic algorithm inside of the FPGA that uses the
streaming architecture concept. However, the CFD application will provide the
specifications and limitations in the working conditions that need to be considered
in order to avoid too many design choices. Still the module accounts for a very
small part of the design itself, it basically just defines the input configuration of the
design. In order to implement the design of the module, we’ll have to go through
a process of decision making and a process of determination of the specification
before arriving to the design itself.

This module implements is a new concept in FPGA design, since as far as we
know, the streaming architecture hasn’t been used for CFD applications before.
This module therefore has been designed from scratch; the only previous work has
been theoretical and performed by the research team. It is important therefore to
explore in detail the challenges posed caused by the streaming architecture con-
cept but also coming from the performance optimization goal, these topics will be
developed and discussed in this thesis as well.

In summary, the core points of this module and therefore the main objectives
of this thesis are:

• Design of a data decoder of packets received from memory that will pro-
vide the data for a pipelined design in the FPGA implementing the stream
processing model of computation. The main challenge of the design is to
handle packets of different sizes at maximum performance. This is a novel
approach that fills the requirements to stream process unstructured data, as
other previous approaches to data decoding have always relied on packets of
fixed width.

• Data frame design: structure of the sequential data from external memory
to favour fast decoding in the interface module.

5

1 – Introduction

• Performance optimization: The performance of this module will affect the
performance of the whole system and therefore it’s crucial that the module
is optimized in terms of performance.

• Area limitation: As performance can be usually improved by using more com-
putational area, we cannot abuse it as this module has to co-exist inside the
FPGA with the remaining part of the system. However, this is a secondary
goal.

• Portability and abstraction: We will abstract the module from the CFD appli-
cation, and we will make the module independent from the specific algorithm
implemented inside the FPGA.

• Streaming architecture: This module is intended to be used for a streaming
architecture based system and it will follow the principles of this kind of
architecture, including deep pipelining and control flow.

The software used for the design is Quartus Prime 16.2 [9], an IDE made for
the synthesis of the VHDL designs for Intel’s Altera FPGAs; The whole project
was initially intended to be implemented on a GiDEL PROCStar III board [8] with
Stratix 3 FPGAs and later on a recently acquired Nallatech 520C with s Stratix
10 FPGA [7], but as this design is intended to be generic, the board shouldn’t be
relevant. For the simulation of the system ModelSim 2 VHDL edition of 2008 [10]
has been used. Also Python 3.6.5 [11] has been used to do the configuration part of
the system. This software has been run in a PC with a Intel i7 processor running
a Windows 10 operating system.

1.3 Thesis structure
This thesis is composed by six chapters and two appendixes. The first chapter
contains the introduction, where we have discussed the background and objectives
of the thesis. In the next chapter, the core topics of this thesis will be addressed
: the problems arising from unstructured meshes, how from the definition of un-
structured mesh we arrive to the definition of the problem of this thesis, which is
to decode packets of variable lengths. It is also discussed the overall view of the
system, the modules that aren’t included in this work but that are necessary to the
processing of the algorithms. An analysis of the streaming architecture and the
definition of its main rules will follow. The chapter will finish with the definition
of the optimized data frame and the specification of the Packet Decoder.

Chapter 3 will define the specifications of each component of the Packet De-
coder starting from a detailed specification of the Packet Decoder itself. It will

6

1.3 – Thesis structure

also present the Packet Decoder from an external point of view, defining the re-
lationship between its components and the interfaces with the external modules.
In the end, it will also present the design techniques and the coding style adopted
during the development of the design.

Chapter 4 consists of the description of the implementation of the four com-
ponents of the Packet Decoder. It will have a back to front set up as it will start
from the component interfacing with the outputs going back to the component in-
terfacing with the inputs. Each component will be analyzed and described in detail.

Chapter 5 shows which kind of tests have been made to verify the Packet
Decoder and the results obtained from these tests. The first part consists on a
functionality analysis, where we prove that our design works correctly and that
complies with the specification made in Chapter 2 and Chapter 3. In the next
section, the resource and performance tests are presented.The main parameters
analyzed in that section are are clock frequency and Resource utilization.

Chapter 6 contains in the conclusions, where there is a summary of the achieve-
ments of this thesis and a section dedicated to further improvements to the design.
Finally there is the bibliography, where all the sources used to write this document
are cited.

Appendix A is a corollary to the maths used in Section 4.3. Appendix B shows
the results of the functionality test described in Chapter 6. The input frame and
the relative output frame of the testbenches made to verify the functionality of the
Packet Decoder are included.

7

8

Chapter 2

Data encoding for stream
processing

2.1 Computational Fluid Dynamics
CFD algorithms are very important for aerospace engineering, as they obtain the
solution of a set of differential equations that describe the interaction between dif-
ferent fluids or between fluids and solids. As with many other HPC algorithms, the
equations that model the fluid dynamics are way older than their actual implemen-
tation as algorithms. One of the milestones of fluid dynamics are the Navier-Strokes
equations, that define the dynamic of non compressible fluids by means of momen-
tum conservation, mass conservation and energy conservation laws. Starting from
these equations we can determine the various properties of the flow of fluid around
surfaces. This is very important for stability studies of aeronautical industries.
The most frequently used numerical methods used to solve these equations around
a surface are the finite volume methods. They are based on the representation
of a surface and its surroundings as a graph of vertices and edges. This system
representation is widely used by NACA, the association that determines the aero-
nautical standards in the USA. The base concept of this set of algorithms is to
compute the needed differential equations within a grid, that will represent the
space around the object that is submerged into the fluid. For each point of the
grid, finite volume methods will compute the requested variables by solving the
differential equations around the point. Therefore, the grid is defined as a set of
differential volumes around the points and the flow equations are solved in each
volume. This process is iterative until a stable solution is found. The main problem
that arises from this algorithm is that since we have an increasingly complex grid
(i.e. more and more complex objects and scenarios are simulated), the algorithm

9

2 – Data encoding for stream processing

to compute these variables is computationally expensive because the equations are
computed in millions of volumes (cells) in the grid over and over again until the
result converges. So to make the simulation efficient and complete, there is a need
to run such algorithms in a way that is the most performing possible. This is why
Computational Fluid Dynamics is a branch within the HPC family of applications.

The grid describing the volume space around the object constitutes the dataset
to be processed by the algorithm. It’s usually represented as a mesh of vertices
connected by edges describing the control volumes where the differential equations
are solved in every iteration of the algorithm. Typically a mesh is described as a
connected graph where each vertex is connected to at least other two vertices. The
algorithm can be computed by traversing the vertices or the edges of the mesh,
but in any case the algorithm has to be performed on each vertex or each edge.
Whether we choose to compute the algorithm based on edges or on the vertices
is a design choice. Meshes can be structured or unstructured as shown in Figure
2.1. The first image shows a structured mesh: each point in the space has a fixed
number of neighbouring vertices, and the space is homogeneously described with
polygons each one having the same order. In the case of the chosen figure, the
polygons are all rectangles and the order of connectivity of each vertex is four. On
the other hand unstructured meshes do not have a fixed connectivity: the vertices
have different degrees of connectivity.

We can compare the two kinds of representations in terms of their connectivity
and number of vertices. While both represent correctly the volume, the structured
mesh has a fixed connectivity degree for each vertex. Therefore, if great detail is
required in some parts of the volume, also great detail must be used in the rest of
the volume. On the other hand, unstructured meshes describe more easily different
parts with different densities of vertices. So the problem with structured meshes
is that to represent the same volume with the same precision we need a higher
amount of vertices. This fact becomes a mayor problem as we reach the critical
parts of the representation. While for most regular parts - the external parts -
this isn’t a problem as the required precision is not high, in the part where the
computation has to be more accurate the structured mesh requires more vertices
than the unstructured mesh. In other words, unstructured meshes adapt better to
the precision required in the different parts of the volume. This is a major problem
in terms of performance, as for structured meshes we would have to compute the
equations on each vertex/edge and the more of them there are, the greater the
workload to reach a solution. This the key reason why the trend in HPC is to use
unstructured meshes instead of structured ones.

10

2.1 – Computational Fluid Dynamics

Figure 2.1. Structured mesh vs unstructured mesh

11

2 – Data encoding for stream processing

A key aspect of unstructured meshes is that they are irregular: we do not know
a priori what is the connectivity of each vertex. It may vary from a number that is
very high in the most critical part of the mesh up to a small number in the border
of the mesh. Therefore, unstructured meshes generate irregular memory access
patterns when considering a Von-Neumann model of computation in CPUs. Even
though GPU’s support parallelism, they also rely on random memory accesses, so
the irregular patterns caused by unstructured meshes are not well suited for GPUs
either, particularly considering their fixed regular architecture. FPGAs using a
streaming architecture seem less affected by these irregularities, so this is one of
the reasons why improved performance is expected when unstructured meshes are
processed in FPGAs. However, one key point is to appropriately store in memory
the mesh data so it adapts well to streaming computation model in the FPGA.
This typically involves sorting the mesh vertices.

The processing of the mesh is performed by solving the differential equations
that describe the behaviour of the fluid around each vertex of the mesh, that is, in
each control volume of the mesh. Such computation depends on the data associ-
ated to the vertex and its neighbours. When considering stream processing of the
mesh in FPGA, the mesh is read from memory and flows through the datapath in
the FPGA where the processing takes place. Therefore, it is crucial that when the
equations are computed in the control volume of a vertex, its data and the data
of its vertex neighbours are available at the time inside the FPGA so computa-
tion can proceed. In other words, the mesh should be coded in memory so that
each vertex and its neighbours are located as close as possible in the flow of data
arriving from the memory and entering in the FPGA. The goal is that the mesh
data is only sent once to the FPGA per iteration, so all uses of a vertex data (to
compute its new state or the new state of its neighbours) must occur while the
vertex data is in the FPGA as part of the flow of mesh data. The term ’ vertex
window ’ is used to describe the distance in terms of mesh data between the first
use of the vertex data and the last use of the vertex data during the computation.
Therefore, in order to achieve that at each moment in time the FPGA is storing a
vertex for the duration of its window, the mesh data has to be organized so that
the maximum window size is minimized. It has been proposed [3] that the best
way to achieve this is by encoding the mesh by sorting its vertices according to a
breadth-first traversal of the mesh. The root vertex where the traversal starts can
have a significant impact on the maximum window obtained, so there are different
proposals to detect such root vertex (an NP-complete problem).

As the breadth-first traversal proceeds, vertices and edges are added to the
mesh representation. Note that typically a mesh (a graph) is described by a list
of vertices including the vertex data, and a list of edges including the identifiers
of the edge’s endpoints and the edge data. However, separate lists are not the

12

2.1 – Computational Fluid Dynamics

most efficient way to describe the mesh for stream processing in an FPGA because
the FPGA does not have the storage resources to store the lists, so it is much
better to have a unique stream of data that includes both, vertices and edges, and
that flows from memory to FPGA. Mesh data can be classified as geometry data,
including connectivity (i.e. edge endpoints), coordinates, volumes, normals etc.
and algorithmic data (i.e. the actual conservative variables associated to vertices
that must to be stored between iterations, like densities, velocities, energies etc...).
Geometry data are assumed to remain unchanged so it is read-only data, while
algorithmic data changes in every iteration so it is read-write data. Since FPGAs
in accelerator boards usually include more than one external DRAM per FPGA,
it makes sense to store read-only data in one DRAM and read-write data in a
different DRAM. Since algorithmic data is associated to vertices, once vertices are
sorted as a result of the breadth-first traversal, algorithmic data can be simply
read or written following such ordering. Since all vertices have the same amount
of algorithmic data, memory accesses in this case are performed sequentially and
only require the appropriate buffering in the FPGA [2]. Geometry data, however,
includes the description of the geometry which as previously mentioned, is highly
irregular and requires more careful treatment. The memory interface module de-
veloped in this work solves the problem posed by such irregular data. The results
of the breadth-first traversal of the mesh are represented on the left of Figure 2.2
Starting from vertex 1, its neighbouring vertices are included thus describing the
edges connected to vertices 1. Then each such neighbours is visited (its identifier is
noted in hold) and the corresponding neighbours not previously included are added
to the mesh description. This continues until all vertices in the mesh have been
visited. Only the first time a vertex identifier is included in the description, its
geometry data are also included. Such identifiers are underlined in the description
of Figure 2.2 . Edge data is included when listing each neighbour of a vertex as it
defines the other endpoint of the edge.

However, as the mesh is represented in this way, the first vertices hold much
more information than the last ones. This means that we cannot encode each
vertex in a memory line of fixed length, as it would be extremely inefficient. Not
only some vertex identifiers have associated geometry data, but the number of
neighbours per vertex is not fixed. So considering the units that compose the mesh
description and that we call packets, it is clear that a mesh will require packets
of different sizes to be described. Examples of packet descriptions can be "vertex
with data", "vertex without data","edge with data","two edges without data" and
so on.

Once the mesh is represented it goes through a phase of compression. Since
vertices are numbered as the mesh is breadth-first traversed, it is observed that
visited vertices have increasing identifiers, so the identifiers can be substituted by

13

2 – Data encoding for stream processing

a flag ($). The neighbours are also included following increasing identifiers which
in some cases are consecutive. Again, in these cases a flag (+) can substitute the
identifiers, and only when they are not consecutive the identifier is represented
by the offset with respect to the consecutive identifier. This compression method
reduces the size of the connectivity description of the mesh up to 90% as the
nodes can be listed in binary form and not with unsigned numbers representing
identifiers. Once the grid is encoded, it is going to be stored inside an external
DRAM memory and the sent to the FPGA, where subsequently will be decoded
and then used by the algorithm.

Figure 2.2. Encoding and compression of an unstructured mesh [3]

2.2 System description
This thesis deals with a part of a larger project that is about the acceleration of
CFD algorithms processing unstructured meshes using FPGAs. The procedure
to elaborate this system starts from the encoding and compression of the mesh
described in the previous section. This procedure is done in software on the host
computer. The whole system exploits the advantage given by the fast programming
of the FPGA. The whole design of an algorithm is made generic and configurable
to support different kinds of meshes. A type of mesh is what defines the different
types of packets used to describe it. This is achieved by dividing the project in
two different parts. The first part, done on the host computer performs these
operations:

14

2.2 – System description

• Mesh encoding and compression

• Configuration of the design

• FPGA programming

The mesh encoding and compression has been described in the previous section.
The configuration of the design is done by software. It has the purpose to adapt
the system to the particular mesh type to be processed. In this case it will be per-
formed by a Python software before the programming itself. It basically changes
the VHDL code in those cases where generics weren’t enough to make the VHDL
code generic. The FPGA programming consists of the configuration of the FPGA
for the particular algorithm and interface, that at this point is adapted to the
needs of the mesh type. In this phase, the CFD algorithm is translated to VHDL
directly from a C specification with an in-house tool developed by the research
team. It then goes through a synthesis phase, that depends on the board, on the
FPGA and the tools provided by the FPGA vendor, through an implementation
and assembler phase where the synthesized design is translated into the board’s
devices, and finally to the bitstream phase where we program the FPGA itself
with the VHDL code we have generated. Of course performance, area and power
consumption depend on the way the system is synthesized and implemented on the
FPGA.

The second part of the project loads the mesh to the board DRAMs and runs
the algorithm that was programmed on the FPGA. As we can see in Figure 2.3
the design in the FPGA can be subdivided into three parts:

• Algorithm’s Pipeline

• Geometric variables decoding

• Double data rate (DDR) interface

15

2 – Data encoding for stream processing

Figure 2.3. Schematic of the whole project

16

2.2 – System description

The algorithm’s pipeline is the implementation of the CFD algorithm itself. As
we have seen, it is designed as the rest of the system in a streaming architecture
fashion. The design is based on deep-pipelining and also includes flow control to
minimize the impact of stalls in the stream caused by the memory interface or in-
herent local feedback loops when performing reduction operations (accumulation,
max, min). The interesting point of this part of the system is that instead of
computing the algorithm by traversing the mesh by vertices, as in the mesh con-
nectivity coding, the mesh is now traversed by edges. This happens for a simple
reason: while vertices need a changing number of neighbours to compute them,
edges only depend on two vertices, the endpoints, to be computed. This makes the
design more straightforward and simple.

This pipeline performs all the operations of the CFD algorithm itself. This al-
gorithm is iterative and requires two kinds of data [1]: data about the geometry of
the mesh and data about the conservative values of the algorithm: energy, velocity
and density at each vertex of the mesh. All these data except for the edge data
are stored in block RAMs inside the FPGA when they arrive from the external
DRAMs as the stream of data flows through the FPGA. The edge data are stored
in a FIFO so it is the ordering of edges what controls the computation. On every
cycle the computation of a new edge starts. The edge endpoints act like addresses
for the internal block RAMs that are accessed randomly and provide the data of
the two vertices required to compute the edge. This data, along with the edge data
(i.e. its normal) enters the algorithmic pipeline where it proceeds for hundreds of
stages to compute one iteration of the algorithm. The resulting conservative vari-
ables are produced at the end of the pipeline and stored in the external DRAM
that keeps the read-write data. This process repeats for every new iteration while
some internal control variable data detects that the conservative variables have
converged to stable values (or for a predefined number of iterations).

The data representing the connectivity are static data that are written to a
DRAM memory during the configuration phase. Once they are sent from the
memory to the FPGA they have to be decoded in order to be used in the pipeline.
This is the part this thesis deals with. We have to feed the algorithm’s pipeline
with the semantic and connectivity data of the mesh, and since we need to perform
this operation at maximum speed, we have to decode the data frame arriving from
the memory in a way that supports maximum performance. The data stored here
are static, they don’t change during the execution of the algorithm, and they only
need to be read at the beginning of each iteration. This will be explained in detail
in the next sections.

As previously mentioned, the handling of the conservative values (i.e. read-
write data) is performed directly by the DDR memory controller since they are

17

2 – Data encoding for stream processing

simply read and written sequentially. Since these values are both requested at the
beginning of the iteration and are also rewritten at the end of the iteration they
require an interface to manage these variables. These read-write data are stored on
an on-board DRAM memory and need to be transferred to and from the memory
of the FPGA. It has been shown in [2] that the most efficient way to manage
these memory accesses is to use two memories at the same time: at each iteration
one memory stores the new results of the algorithm while the other provides the
algorithm with the data of the previous iteration. When an iteration is completed,
the two memory switch their roles: the memory that has been read is now written
and the memory that was written is now read. The DDR interface has to make
sure that this operation goes without problems and at maximum performance.
Differently from the memory decoder there isn’t any encoding and decoding of the
values provided by the algorithm. They are simply stored in sequence and read in
the same sequence in the next iteration. So this interface does not have to deal
with problems posed by the interface that handles the connectivity data which is
the interface designed in this work.

2.3 Memory bottleneck
The key issue of this project is to achieve a very high performance implementa-
tion. The streaming architecture grants us the possibility to have an extremely
performing design when it comes to the execution of the algorithm, as we can add
as many stages in the pipeline as needed. Furthermore, this system has also the
priority of being as simple as possible in order to avoid overheads in the design. As
previously mentioned, the computation of the algorithm is performed traversing
the mesh by edges, because this avoids the complexity implied by a vertex-based
traversal: an edge requires two vertices to be computed, while a vertex may need
a variable number of edges not known at compile-time.

However, the same approach is not applied for the storage of the grid con-
nectivity data. As we have seen in Section 2.1, the key point of the design is to
optimize the communication and thus we need to compress the information about
the connectivity as much as possible. This translates to the fact that we cannot use
edges to represent the grid when storing the information about the connectivity
inside the FPGA, because each edge would be represented with two vertices that
surely would be listed more than once, thus causing an overhead in the represen-
tation. Consequently, the grid geometry data is represented traversing the mesh
by vertices and coding the data as described in a previous section. The vertices
are therefore decoded and translated into vertices inside the algorithm’s pipeline
by the module that is described in this thesis.

18

2.3 – Memory bottleneck

The key point is that in order to grant the functioning of the system we do need
both the geometry data and the conservative data. In order to have the algorithm
to perform its operations we need to provide the geometry and conservative data at
a rate that matches the execution of the the algorithm pipeline. The throughput
of both the memory decoder and the DDR interface have thus to be optimized
at the maximum in order to grant the success of the system. When considering
the throughput of the internal pipeline which processes one edge per cycle and
comparing it with the amount of data that must be transferred from memory and
the maximum frequency of the DDR interface in the board being considered, it
happens that the throughput of the algorithm pipeline is greater than the band-
width of communication between the on-board memory and the FPGA: there is a
higher throughput of edges from the algorithm’s pipeline than of vertices from the
memory. This makes the design of this decoder a key part of the system as it deals
with the bottleneck of the execution of the whole system. Therefore, it is vital to
optimize this module as much as it is possible.

This problem translates into three types of performance optimizations:

• Optimization of the encoding and compression of the information

• Optimization of the data frames with mesh information

• Optimization of the implementation of the hardware decoder that converts
data frames into geometry data

While the optimization of the encoding and compression of the grid has already
been addressed by the team in a previous work [3] as explained in the previous sec-
tion, the two remaining optimizations are approached in this thesis and they will
be discussed later on this work. The optimization of the encoding of the grid’s in-
formation simply means that in order to grant the maximum performance we have
to store inside the memory as much as information as possible using as few bytes
possible, so that each time we will read from the memory it will have the maximum
possible vertex’s data density. In other words, we want to transfer the mesh in the
minimum possible time. This is why the representation has been chosen to be
made in terms of vertices, as we cannot afford any kind of memory overhead: the
edge representation would lead to a memory overhead that is intolerable. The op-
timization of the data frame with the mesh information deals with the problem of
transferring the data from memory to the FPGA. The grid data encoded according
to the previous optimization is a series of packets of different sizes. These packets
have to be assembled in a continuous sequence to be stored in memory and issued to
the FPGA where it will be decoded. This sequence has to include the packets and
some additional information like the packet type (i.e. size) or markers to identify
the end of the sequence. We call this sequence the data frame. The structure of the

19

2 – Data encoding for stream processing

data frame plays a crucial role when the decoding of the mesh has to be performed
at maximum speed. Such structure is analyzed and defined in the last section of
this chapter. The optimization of the implementation means that starting from
the encoded information received in the FPGA we have to restore the meaning
of the mesh information, that has been fragmented for the sake of performance,
in the most efficient way possible within the paradigms of a streaming architecture.

2.4 Streaming architecture implementation tech-
niques

Pipelining

The streaming architecture implies that the data are transferred sequentially
and processed in a way that data packets are processed independently from each
other. This allows us to use one very powerful technique to improve the perfor-
mance of the design: pipelining. The concept of pipelining is based on the fact
that the maximum frequency we can obtain from a design depends on the critical
path of the combinational logic between two sequential circuits [4]. The longer is
the combinational logic path, the lower will be the frequency of the design. This
wouldn’t be a problem if we have to perform an atomic operation, but since we
are working with a long sequence of data packets, the whole computational process
has to be repeated for each packet. This leads to the metric that influences the
most: throughput, that in our case is evaluated as data packets

seconds . Without the use
of pipelining the computation would be very slow as the time needed to process
each data packet would be very high. Since we cannot eliminate the combinational
logic what we can do is to introduce stages (i.e. registers) so that at each stage
the combinational logic is freed and ready to compute a new packet as soon as
it has performed the operations on the previous data packet. Therefore the less
complex it is the combinational logic, the faster will be the system. Hence pipelin-
ing. This technique is made to reduce the length of the critical path in a digital
circuit. Pipelining asserts that in a DAG (direct acyclic graph) we can add a stage
of delays in the circuit if this stage cuts the circuits in two separated sub-graphs
without altering its functionality.

20

2.4 – Streaming architecture implementation techniques

Flow control

The whole system is based on the concept of a streaming architecture. To grant
maximum performance we have to exploit all the strong points of the FPGA. In
our case is the temporal parallelism: in all the system each operation is divided
in as many stages as possible in order to grant the maximum operating frequency.
Even though pipelining is implemented in all parts of the design the fact that pro-
cessing speeds are different in the memory interface and decoder (conditioned by
the memory bandwidth) and in the internal pipeline leads to a problem regarding
the availability of the data, particularly since we are trying to exploit the algorithm
for irregular data structures. This problem is approached by implementing some
method of flow control among the complete pipeline structure that allows to stall
some part of the pipeline if data cannot advance while allowing that other parts
of the pipeline still continue with the processing. Necessarily there will be clock
cycles where data aren’t valid, it can be a partial form of a valid data that is going
to be ready in a few clock cycles. This type of data has to be discarded in a way
or another and the most effective way is not to let the next section to take them
as input. The whole structure can also be busy doing an operation on the same
data at a certain moment. This makes it impossible to take new data in the module.

Since there are many operations to perform and they differ from each other, to
simplify the design it is necessary to divide the design in multiple independent parts
or modules that perform different groups of operations. Since all these operations
are done in a pipelining fashion, all the modules behave similarly from an external
point of view: the input stages have to be ready and not stalling to allow the
insertion of new data in the module. On the other hand, all the outputs have
to communicate the validity of the value they are sending to the next module in
order to prevent errors. It may happen that some operations take more than one
clock cycle to be performed. During this time, the output of a module is not yet
the correct one, and thus it isn’t valid. This means that each output has also a
line which communicates the validity of the data, that each input has a line which
communicate its availability to the previous stage, that is whether the stage can
or not take any new input. This means that in order to proceed with the stream
of data of a module we need to have this two conditions: The output of a module
has to be ’valid’ data and the next module has to be ’ready’ to take new data.
If these two conditions occur the data can be transferred from the source module
to the next module. However, it remains to be defined how the source module
behaves when the next module is not ready to take new data. Depending on how
we implement the module we can still proceed with the execution of some valid
data inside the module if the previous condition is not met at the output of the
module. A module can therefore be implemented in two ways :

21

2 – Data encoding for stream processing

• Rigid

• Elastic

The rigid way is a simplified way where a module can work if and only if there
isn’t a stall. Both data, valid and invalid are going to be frozen inside the pipeline
if a stall appears at the module’s output. The elastic way is an optimization that
allows the processing in a module if a stall appears at its output by discarding the
invalid sections stored inside the pipeline. Once the pipeline is filled with valid data
and if the next module is still stalling, the module will freeze. This concept is valid
through the whole design and it applies to every module, including the memory. It
is clear that in order to achieve the maximum possible throughput, it’s necessary
to reduce to the minimum the number of stalls and the number of invalid data as
they take away precious clock cycles. The concept of flow control is implemented
in each component of the system in order to grant independence and modularity
of each operation, so that each module can be implemented independently from
the others as a black box.

Figure 2.4. Interfaces of modules with flow control

Loop reduction

The whole concept of the streaming architecture is based on pipelining. Un-
fortunately, pipelining goes with a big problem: whenever there is a loop inside
a pipeline, a set of hazards may occur. This means that if there is a loop, there
should also be a whole part of the design dedicated to manage the hazards the loop
would generate. As our design has to be as optimized as possible, hazards may
lead to a whole set of delays and area waste that are inconvenient for our purposes.
Unfortunately, in multiple parts of the design there are local loops that cannot be
removed while maintaining the functionality. The way we deal with them is simple:
we don’t deal with them. Since all the problems of the hazard come to effect if
there are pipeline stages inside the loop, we avoid to put any kind of stage inside
the loop, and all the combinational part of a loop is kept between two pipeline
stages. This may become a problem regarding performance if the combinational
part of the loop is not small; it will lead to a slower module. However, the loops

22

2.5 – Summary of the key issues in the design of the Packet Decoder

that occur can be reduced up to a point where they do not cause such problem,
as all the unnecessary parts can be computed outside the loop stage. As we will
see later on, the loop part in the memory decoder module is the longest path and
it will be the critical path of the whole design. Figure 2.5 shows two examples of
graphs with loops. The one on the left is not valid, as it adds delays to the graph
that are inside a loop and this translates into hazards. The graph on the right
is valid instead, as all the computations that have to be done are inside a single
pipeline stage

Figure 2.5. Invalid and valid graphs

2.5 Summary of the key issues in the design of the
Packet Decoder

This thesis is about the design and the optimization of the part of the system ded-
icated to the encoding and decoding of the data regarding the connectivity of the
mesh grid. The problem by itself isn’t complex, as we just have to process a series
of encoded data. The key issue is that we have to perform this operation optimiz-
ing the performance as much as possible. The challenge of the whole design relates
to the data representation: we are going to transmit data packets that are variable
in length, the vertices of the grid can have any number of neighbouring vertices
and the vertex data is only transferred the first time its identifier appears in the

23

2 – Data encoding for stream processing

sequence. Thus this translates into packets of data that aren’t fixed in length. The
second aspect of the problem is that we do have a bus to communicate between the
FPGA and the memory, and this bus has fixed width. We do have to find a way to
fit this variable information inside the memory in a way that can be transmitted
in an efficient manner.

Another aspect is portability. The design has to be portable for different boards
and thus a generic design had to be made, since different boards have different mem-
ory bandwidths and different widths in memory ports. Furthermore, the design of
the decoder has to be valid for whichever kind of mesh. Different types of meshes
include different types of geometry data and lead to different packet sizes, thus
leading to different designs. This is a key point in the specification as the design
has to be made not only portable for different boards, but adaptable to the needs
of each mesh.

The performance optimization also declines into the hardware optimization. It
is crucial to obtain a maximum performance when we are designing the hardware
module, as we have to grant that the whole system works at the maximum fre-
quency possible. This problem will be addressed with the use of the streaming
architecture and therefore applying its specific design techniques. Regarding flow
control we select the elastic approach that grants that if there is a stall in the
next sections of the pipeline, the previous parts will stop elaborating only if all the
stages of the pipeline are filled. This means that once the stall is over, the previous
section won’t have any invalid data.

The last key issue is area. This design has to be placed inside a FPGA, and
while area isn’t a key problem of the design, we cannot accept a solution that
causes an extreme overhead in area or power, as the FPGA resources are shared
with the remaining parts of the system.

2.6 Data frame optimization

One critical aspect of the design of the data decoder is that unstructured meshes
translate into irregular data. This means that they cannot be represented in a way
that matches perfectly the fixed memory port width of the design. Since the com-
munication between memory and FPGA is the bottleneck of the whole design, an
efficient encoding of the meshes is required in order to grant the best performance.
Unstructured meshes are encoded as explained in Section 2.1. This encoding has
to fit inside the on-board memory in the most efficient way possible. The most
effective way to fit the compressed mesh into the memory is to divide each set of

24

2.6 – Data frame optimization

data representing the connectivity and geometry of a vertex in a packet of vari-
able length. The packets describing the mesh geometry will be referred to as the
payload. Each vertex will have a corresponding packet with all the information
necessary to represent it and its connections to its neighbouring vertices. The
problem is that since there are vertices that have higher connectivity than others,
they hold much more information than other vertices that have lower connectivity.

Therefore, since all the vertices are ordered, the first data of the stream will
have a larger packet, while the last data will have a smaller ones since edges (con-
nections) are only included in the data stream. In conclusion, all packets have a
variable length that may or may not be larger than the memory port width and
can also be zero if all related data has already been sent. This method also ab-
stracts the module from the application itself: by defining the packets as generic
memory information we do not care anymore whether the data inside the payload
is a vertex or whatever else, we just care that this data has some lengths from a
possible set of length that goes from a maximum number down to zero.

It is important to realize that the memory itself behaves like a streaming archi-
tecture module. It has valid and stall lines, and at each clock cycle it transmits a
line of memory of the width of the bus. It basically behaves like a FIFO. We have
to grant that each line transmitted holds as much useful information as possible.
To achieve maximum performance, we store the beginning of a new packet after
the end of the previous one, filling therefore the whole memory. Figure 2.6 shows
the packet encoding in terms of memory lines of the size of the memory port. Each
number corresponds to a packet, and each packet is sliced into multiple parts to
fill each line of memory. Each time there is a transmission from the memory to
the FPGA, the maximum data possible (i.e. a memory line) is transmitted per
cycle. It is however important to consider that each packet doesn’t have a clear
distinction as seen on the image. Each packet is composed as a series of bits and
there isn’t any kind of way to distinguish between the end of a packet and the
beginning of the next one from the point of view of the decoder, as they look as a
uniform series of bits.

In the end, these data will have to be recomposed to the original form, as they
hold no meaning for the purpose of the algorithm encoded in this way. The goal of
the memory decoder is to start from an encoded frame like in Figure 2.7a and to
end with a set of separate packets as shown in Figure 2.7b. The whole hardware
design has to translate the encoded form in Figure 2.7a into a dataset that looks
like the one proposed on the right of the Figure of 2.7. The specification of the de-
sign data frame to be used by the memory decoder will revolve around this problem.

Each mesh has a unique correspondence with its encoding. This means that

25

2 – Data encoding for stream processing

Figure 2.6. Efficient packet configuration example

we can determine the possible sizes of the packets before the execution of the
algorithm. The set of possible packet lengths is determined when the mesh is pre-
processed at the host. The size of each packet is however necessary to the design,
as each packet may have whichever length among all the possible lengths declared
at configuration time. It is certainly an information needed at execution time, as
we do have distinguish between the end of one packet and the beginning of the
next one in order to recompose them correctly.

This information (i.e. the length of each individual packet) is therefore added
into the memory and transmitted to the FPGA along with the payload information.
This new information is called header. It can be a meaningful number or just a
unique series of bits so that each series maps to a packet length. A main problem
that arises from this kind of encoding is how to determine whether some data is
header data or whether it is payload. There are multiple possibilities to deal with
the headers. Since this problem is strictly related to the decoder it can be dealt
with multiple approaches. All come with some advantages and some drawbacks.
They are analyzed in the following subsections. The design of the data frame has
been performed as part of the design of the memory decoder in this thesis.

26

2.6 – Data frame optimization

Figure 2.7. Encoded and decoded packets

2.6.1 Header before the payload
In order to separate each packet from the next one, a first simple and intuitive
approach is to separate each packet with a unique series of bits. However a series
of hard problems emerge when selecting this approach :

• This series of bits has to be reserved and cannot be found inside the payload.

• The size of the payload remains unknown and therefore it is complex to make
the reconstruction at fast speed.

• A long header causes an unnecessary overhead in the mesh representation in
the memory

This approach reveals to be too much of a mess and therefore a slightly more
complex solution is taken into consideration: to provide the information about the
length of the payloads in the headers. While this approach is memory effective, as
we always know which part is payload and which part is not, it is highly problematic
due to the fact that the decoder doesn’t know in advance the dimension of each
payload, so the information about it becomes just an offset to the payload size.
Not knowing the size of the payload in advance would also apply on the header,
as it just would become and extension of the payload. Those facts would lead to
performance inefficiency: the lack of instantaneous knowledge of the width of the

27

2 – Data encoding for stream processing

packet would mean that each time a new packet arrives, we would have to wait
until it’s effective length is computed. This translates into a waste of clock cycles
and therefore performance inefficiency. However the advantage of this design is
that we can perform an efficient memory encoding. Figure 2.8 shows this frame
encoding: each small rectangle before each payload encodes the size of the payload
that follows it.

Figure 2.8. Data frame using the "header before payload" approach

2.6.2 Lines of headers and lines of payloads

An alternative to the previous approach is to send several headers before the cor-
responding payloads, so by the time the payloads are received in the FPGA their
lengths have been properly computed from the information in the headers. With
this approach we make a distinction between lines of headers and lines of payload.
A memory line can be filled with payloads -that have variable lengths- or headers,

28

2.6 – Data frame optimization

that would have fixed lengths. While this approach is good in terms of the fea-
sibility, it leads to further problems that may reduce the memory efficiency and
performance. The main problem is that the decoder in this case cannot distinguish
between the two different lines, and additional information about the kind of line
has to be added to the data frame. Some inefficiencies with this approach are :

• Header lines may not perfectly fit in a memory line and some bits will not
be used.

• Difficulty with computing when the decoder needs a new header line. Since
it’s not perfectly clear when the decoder will need a header line, as it depends
on the whole system, there may be some delay due to lack of available headers
at a some point in the decoding.

• The encoding of the headers may not be perfectly efficient as there may be
some packets that can be represented with a smaller number of bits than the
selected fixed width.

• The lines of headers break the flow of payload, so they might add stalls in
the system

However, since it is the most feasible approach for high-performance and despite
the previous set of inefficiencies it is considered that the streaming of data can be
continuous in most cases. The lines of headers, that in theory would add a useless
clock cycle to the decoding, are usually not a problem since there will be other
stalls in the rest of the system (for example, due to local reduction operations)
that would stop nevertheless the flow. Those stalls can be exploited to cover the
inefficiency caused by the header lines. While using headers of fixed width may
seem memory inefficient, as using the binary encoding there may be cases where
we need an extra bit just because we have a number of cases (i.e. possible packet
lengths) that is slightly more than a power of two, this approach is necessary as
the complexity of having headers of different lengths would lead to a much more
complex design that may lead to performance and area inefficiency. Therefore,
despite it is not perfectly efficient in terms of memory usage it is the approach
chosen for the implementation due to its feasibility and the small area it requires
inside the FPGA to decode the memory lines. Figure 2.9 shows the encoding of
the data frame using this method. In the left image we have a clear distinction
between the lines of headers and the lines of payload. However due to the fact
that both are an indistinguishable series of bits from the decoder point of view
is not obvious to determine whether a line corresponds to payload or to headers.
This problem is solved with the approach shown on the right, where each line of
data has attached a bit at the beginning that determines whether the line contains
payloads or headers.

29

2 – Data encoding for stream processing

Figure 2.9. Data frame using the "lines of header and lines of payload" approach

2.6.3 Others versions
The two approaches presented above are just some of the possible encodings of the
data frame. There are more examples of encoding that were discarded for other
reasons. These versions are briefly introduced here:

• Abolition of the header information: this version would imply that the header
information would be completely stored inside the FPGA during its config-
uration. This is highly inefficient due to the fact that the storage resources
needed to store the header information would be too large. This approach
leads to an area inefficiency so high that it would be intolerable.

• Payloads of all possible sizes: with this version the payload could have a
continuous range between zero and the maximum packet length. This version,
while being extremely generic would imply a variable header dimension, that
would lead to a second level of the same problem of the headers: lines of
headers of headers. Each header would not be encoded but would directly
provide a number. The advantage here would be that the design would be

30

2.7 – Unavoidable performance overheads and relative solutions

completely generic and would hold a minimum amount of memory space
inside the FPGA. However, this approach was discarded as there isn’t a need
for all this flexibility, as the encoding of the mesh will always lead to a limited
set of possible sizes a packet can possibly have. Furthermore it would lead to
a memory inefficiency as we would need extra lines for the header of headers,
as the headers wouldn’t be encoded.

• Transmission of all the headers at the beginning of the frame. This has
the same problem of the first example of this list. We would need many
storage resources in the FPGA dedicated to hold the values of the headers.
This problem makes this kind of approach unfeasible, as it would take out
significant amount of resources needed by other modules of the system.

These alternative versions were discarded. However, it is important to keep in
mind that this design hasn’t some other similar implementations. Also, these ver-
sions aren’t appropriate for this particular application, but in other circumstances
these kind of approaches may be useful and recommended.

2.7 Unavoidable performance overheads and rel-
ative solutions

In the end, the chosen encoding was the one described in Subsection 2.6.2 . This
design has however its own performance inefficiencies, both in terms of throughput
and in terms of frequency. Some of them are inherently unavoidable due to the
variability of the lengths of the packets. The unavoidable performance loss is that,
since we have packets that may be bigger than the memory line, it necessary takes
more than one clock cycle to decode those packets. This means that there will be a
series of clock cycles where there aren’t available output packets and thus there is
a decrease in the throughput. This problem is however manageable by making the
design elastic: whenever there is a stall from the algorithm, whenever the edge’s
pipeline doesn’t need a new vertex, we can use this clock cycle to decode more
packets. This fact can be exploited up to the length of the decoder pipeline, as
once it is filled it cannot decode any more lines from the memory.

Another unavoidable performance loss is the fact that there may be packets
smaller than the memory line. In this case we cannot set multiple lines from the
memory as the system can process at maximum one packet per clock cycle. This
however is not a real problem, as it only means that we can afford to make the
processing of the edges more efficient. Since the pipeline processing the edges is
already more performing than the decoder part, this is actually not an issue.

31

2 – Data encoding for stream processing

Other cause of performance loss are the headers as they carry information that
is not strictly necessary for the data processing, but they are instead necessary
for the data decoding. They cause a loss of a clock cycle each time a header line
arrives. This problem can be managed by exploiting the fact that there are some
packets smaller than the memory line. Whenever we encounter those kind of pack-
ets we virtually have another clock cycle to gather header’s information. During
the processing of packets larger than the memory port width there is a constant
need for payload lines and if we don’t have available headers we have to stop the
flow of payloads to take a header line. This problem can be addressed in the same
way we addressed the problem of having packets larger than the memory width: if
a stall from the edge’s pipeline occurs, we can use this clock cycle to take another
header line from the memory.

Another performance loss is the information about the type of memory line.
The decoder needs to know whether a line of memory is a payload line or a header
line. This fact may or may not lead to a performance loss depending on the method
to decode lines used by the decoder. In the selected approach, the performance
loss is in terms of memory throughput. Using a bit to communicate the type of
the packet we lose bandwidth, that translates to a loss of one bit per clock cycle.

2.8 Specification summary
In summary, the core problems of this design are :

• The port width of the on-bard memory is fixed, while the length of the packets
is not. This is the core problem of the design.

• The packets are fragmented in the memory and have to be recomposed cor-
rectly.

• The size of each packet is a property of the packet. This means that we have
to send this information during the transmission of the packets, and process
it at execution time.

• The design has to be portable and adaptable to each kind of grid (i.e. to
different sets of possible packet sizes) and different boards (i.e. memory port
widths).

• It has to operate using the streaming architecture paradigms: pipelining ,
flow control, loop reduction.

The optimization paradigms are:

32

2.8 – Specification summary

• Data encoding optimization: each memory line coming from the memory has
to be filled as much as possible with useful payload data.

• Decoder module optimization: The module has to be optimized in terms of
operating frequency. We have to maximize it using pipelining as much as pos-
sible. It also has to be efficient in terms of throughput, so every stall coming
from the edge processing part has to exploited to optimize the performance.

In the end we have chosen to go on with the data encoding design explained in
2.6.2. This means that the memory will provide to the FPGA a continuous series
of packets that are fragmented and, furthermore, there are some lines of headers
that will need to be managed. On the other hand, the next part of the FPGA
design will need each of the packets that was previously encoded correctly decoded
: each packet has to be recomposed and sent to the next stages of the system.
Figure 2.10 shows the inputs and the outputs of the memory decoder.

Figure 2.10. Inputs and outputs of the memory decoder

33

34

Chapter 3

Architecture of the Packet
Decoder

3.1 Specification of the module components
In the previous chapter we have seen how from the top-level view of the application
of the whole project, passing through the implementation of the whole system, we
have arrived to the specification of the module to be implemented. However, the
specification of the module only shows the problem from an external point of view,
and nothing is specified about the details of the inner components. To arrive to
the solution of this problem we cannot solve it directly in a monolithic way, as it
would lead to complex and messy solutions. The flow control technique allows us
to divide each module using the streaming architecture into various sub-modules
without altering the functionality and keeping the constraints of the streaming
architecture valid. In order to solve the problem, the way to go is to divide the
Packet Decoder into multiple components, following the divide et impera paradigm.
In this section, the specification of each inner component of the Packet Decoder-
will be defined from an external point of view. The detailed description of each
component will be addressed in the next chapter.

The first thing to set clear is the terminology we are going to use. There are
multiple concepts that will be essential to understand the way the system is going
to be implemented. Those terms are :

• Lines of memory

• Packets

• Payload

35

3 – Architecture of the Packet Decoder

• Headers

• Frames

With memory lines we define the data incoming from the on-board memory. These
data are organized as lines of data, and at each clock cycle one line of memory can
be sent from the memory to the decoder. Packets refer to the data units that
describe the dataset. This data is encoded and fragmented inside the memory and
it has to be composed by our memory decoder. Payload refers to all the geome-
try/connectivity data contained in the packets. It doesn’t refer to one single packet
but it is about data belonging to packets. This is useful as there is another kind of
data independent from the packet’s data coming from the same memory that are
the headers. A header contains the information that has a one-to-one relationship
with a single packet. This set of data is independent from the payload data and
it will be treated in a different way than payload data. The frame is the complete
sequence of data coming from the memory, holding both payload and header in-
formation.

The first operation to be done on the frame as it arrives to the FPGA is to
divide the frame into two different sub-frames: one for the header lines and one
for the payload lines. This is done at the beginning of the decoder and it will also
discard the extra bit describing the type of memory line. This can be done as the
data regarding headers and payloads are independent one from each other, and
thus we can treat them independently. Figure 3.1 shows the two different frames
on which the original frame shown in 2.10 is subdivided. This makes even more
clear why we have to distinguish between header lines and payload lines. They will
be treated differently as they belong to two different frames. Figure 3.1 shows the
sub-frame division: on the left we see the payload frame and on the right we see
the headers frame. The extra bit shown in 2.10 is now discarded.

By focusing on the payload frame shown in 3.1 and the output packet sequence
shown in 2.10 we see that packets are fragmented in the input, while at the output
are composed instead . By analyzing the payload frame we can see that the way
we have to rebuild the packets depends on how they are distributed in terms of
memory lines. In the previous chapter we have already seen the problems arising
from having variable packet lengths. However this property of the packets has to
be analyzed in further detail to get the solution of the decoding process.

The core point is that when packets are encoded they can belong to multiple
lines of memory depending on how long the packets are and on how large the width
of the bus is. There are therefore three ways a packet can be spread into the lines
of the memory, and this depends on the width of the packet:

36

3.1 – Specification of the module components

Figure 3.1. Payload and header sub-frames

• The packet is larger than the memory port width

• The packet is smaller or equal than the memory port width

• The packet has zero length

The first case happens mostly at the beginning of the transmission. As we have
seen the most connected vertices are the first ones to be listed and they will need
large packets to hold all their values. As we go through the frame, the packets
switch from being larger than the port width to packets smaller than the port
width, as the packets not located at the center of the mesh will be encoded with
less and less data because some of the vertex neighbours have already been sent.
In the end there is going to be a whole sequence of packets of zero length that
will represent the vertices where data and neighbours have already been sent. This
case is peculiar and has to be addressed as well.

It is important to notice that the payload frame however is not ordered in terms
of packet lengths, it may happen that some packet is larger than the previous
and than the next one, and this means that we cannot divide the payload frame
furthermore into sub-frames (i.e. the part of the frame with large packets, the
part of the frame with small packets, etc...). We have to grant that our system
is capable of decoding each kind of packet at whichever time during the frame
transmission.

37

3 – Architecture of the Packet Decoder

If we look at the payload frame, the three cases previously listed are valid. In
the first case, the case a packet is larger than the port width, the packet can be
spread on a maximum of N lines of memory, where N is equal to

N ≤ ç packet length

width of the bus
è + 1 (3.1)

For example, in Figure 3.1, if we consider the packet 5 we see that its length is
approximately 2.2 times the width of the bus (i.e. the width of the rectangle), and
it is spread exactly on three lines: the third, the fourth and the fifth. The plus
one in the formula above is necessary as each packet may occupy an extra line if
it starts at the end of the memory line: this is the case of packet 9, whose length
is more or less 1.8 times the memory port width but it still occupies three lines of
memory as it starts close to the end of the memory line.

The second case is when there is a packet smaller than the port width. In this
case the packet will be spread on one or two lines of memory depending on where
it starts. In Figure 3.1 we see some packets smaller than the port with, such as
packet 1 and packet 2. The first one occupies only one line of memory, the first
line, while the second one occupies two memory lines, the first and the second lines.
The difference between the number of lines occupied stands, as mentioned in the
previous paragraph, on where the packet begins. In the case of packet one, the
packet starts at the beginning of the line and thus it occupies only one line. In the
case of packet two, it begins at the end of the first line and thus it is spread on two
lines. The main problem with these packets is that the first line of memory holds
the information about two distinct packets, and thus it will be necessary to hold
this data for more than one clock cycle. This doesn’t happens for example in the
fourth memory line, where all the memory line belongs to one single packet and
once it is used it can be discarded.

The last case is when a packet has zero length. In this case the packet will nec-
essarily take only one line as it will be virtually located between two consecutive
packets. The only way we can know that a zero length packet exist is through its
header: it will determine whether there is or isn’t a zero length packet. Equation
3.1 is valid also for packets smaller than the port width or packets of zero length,
and thus it is valid for all packets.

The first step to be done in order to solve the problem is to store all the N
memory lines needed by a single packet to be reconstructed. In order to have a
complete packet we need at a certain clock cycle all the lines of memory that con-
tain the data of the packet. Those lines of memory could be ordered in a chaotic
way, but in order to have our packet completely built we have to align them in
a single register that is going to be wider than the memory port width. This

38

3.1 – Specification of the module components

extended register has to be exactly Max(N) times the memory port width, so it
can hold all possible packets. This representation is going to be redundant and
incorrect, as the packet can be smaller than this extended register and can start
in a position that isn’t the beginning of this extended register. However, it is an
intermediate passage that is necessary to decode our packets, as it is the way we
gather payload information from the memory. This is shown in Figure 3.2. Asso-
ciated with each packet we have a sequence of lines of memory where the packet
is completely rebuilt. We can see that the format of the input data is not the
one proposed in Section 2.8, as it misses both the header information and the bit
that determines the difference between a payload line and a header line. This is
intended to be in this way because this part of the system exclusively addresses
the problem of gathering payload lines, while there is another part of the system
dedicated to divide the frame into two sub-frames, one for the header lines and one
for the payload lines. We can also see that the width of this component output
port is equal exactly to Memory bus width∗max(N) where max(N) which is four
as the packet 5 could be spread on a maximum of four memory lines. It has to be
noticed that Figure 3.2 shows only the valid lines of the payload frame and of the
built packet frame. There are necessary invalid lines inside the built frame that
are omitted for the sake of simplicity.

Each reconstructed line can hold more than one packet. In this case the register
value has to be held for more than one clock cycle in order to extract all the packets
it holds. This problem has been addressed in Section 2.7: when a packet is smaller
than the memory line, it is necessary that we hold this intermediate form for more
than one clock cycle. The memory, on the other hand, according to the streaming
architecture, can provide at maximum one line of data at each clock cycle. This
means that in order to build packets like the packet 5 in Figure 3.2 we will need
more than one clock cycle. In the bottom part of Figure 3.2 we see that some
output lines have to be used more than once. The first, second and sixth line hold
information about at least two packets. In the case of the first line the first and
the second packet, and thus it has to be held for at least two clock cycles. The
same applies to second line for the packets 3 and 4 and to sixth line for packets
8 and 9. We can notice that in all these cases there are packets that are smaller
than the memory line. Inside each line there may be more than two packets. For
example in the first and second lines (referring to the bottom part of Figure 3.2)
packet four is completely built. This may lead to some redundancy as we in theory
could use both lines to gather packet 4. This redundancy is resolved by granting
that each built packet has to begin inside the first memory line part of the built
line. In this way the design is more simple and avoids overhead in performance as
the time to generate a new built line or to keep the previous line is the same: one
clock cycle. What we ultimately see is that not only this component builds the
packet from the payload frame, but also performs a coarse grained shift (in this

39

3 – Architecture of the Packet Decoder

case to the left) about a multiple of the size of a memory line on the built lines.
In the construction of the fourth line we see that we shift the previous line about
two memory lines. This consequently means that we will have to ask two new
payload lines from the memory, and thus it will take two clock cycles to perform
this operation. The intermediate form of this line will be an invalid line. These
lines are omitted from the bottom part of figure 3.2. The specification of being
capable at the same time to keep a packet line for more than one clock cycle, to
build a new extended line and to interface with the payload frame generates extra
corner cases than the one listed above. These cases will be further analyzed in
the next chapter as they depend on the implementation of this component. This
procedure, that is the one of taking lines from the payload frame and to build a
partial data format which holds the built packet is done by a component that is
called Packet Builder.

Figure 3.2. Inputs and outputs of the Packet Builder

40

3.1 – Specification of the module components

The data lines shown in the bottom part of Figure 3.2 already hold the complete
packet. The problem we have now is that there is too much useless information
inside these lines. For example, the packet 3 is held inside both the first line and
the second line of the bottom part of Figure 3.2 . In order to have the final form of
the data, we need to eliminate both the first part of the new extended line and the
last part of the extended line in order to have the packet completely decoded. The
simplest way to go is to shift each built line to the right or to the left about the
size of the part that is between the beginning of the line and the packet we have
to extract. In this way we have at the output a line that exactly contains a packet
that begins or ends with the respective beginning or ending of the packet, that is
the format we have to send to the FPGA memory. The problem is that by shifting
in one direction we are holding the values left on the other direction, and since the
width of the output line cannot change after it is programmed on the FPGA this is
an unavoidable problem. This problem will be solved by giving extra information
to the FPGA memory about the length of each packet exiting from the decoder.
In this way the edge’s algorithm knows exactly when the packet ends and therefore
it can gather the information correctly. The width of the external bus must be
capable to transmit each possible packet, therefore the width of the external bus
will be exactly the maximum length among all the possible lengths the packets in
a certain frame can have. The component that has to perform this operation is
the Packet Shifter. It takes the output of the Packet Builder, a value holding the
number of bits it will have to shift and another data about the dimension of the
packet. It therefore shifts to the left or right the line given by the Packet Builder,
and it also forwards the value about the length of the packet. Figure 3.3 shows the
inputs and the outputs of the Packet Shifter. We can see that the output width is
exactly the same width of the biggest packet inside the frame, that in this case is
the width of packet 5, the white rectangles on the right of each packet are useless
data that will be filtered by the algorithm’s pipeline using the information about
the length of each packet.

A problem of both the Packet Shifter and the Packet Builder is that they
need some additional information about the packets in order to work. The Packet
Builder has to know exactly how many lines a packet spreads over, the N value for
each packet, while the Packet Shifter has to know exactly how much the built line
has to be shifted, and also the FPGA memory requires the length of each packet.

To address all these problems we have to make another module that feeds both
the Packet Builder and the Packet Shifter with this values. This component is
called Instruction Computer, and what it basically does is to take the header infor-
mation and to compute for each packet both the shift value and the N value. It has
to be noticed that the header information doesn’t hold the value about the length
of the corresponding packet; but its value has a one-to-one correspondence with

41

3 – Architecture of the Packet Decoder

one specific packet and encodes the length information. In this way we can decode
the header to gather all the information necessary by this module to compute the
two values needed by the Packet Builder and Packet Shifter.

Figure 3.3. Inputs and outputs of the Packet Shifter

The Instruction Computer doesn’t know anything at execution time about the
packets that are incoming from the memory. It has to gain the information about
the sequence of packets from the data frame. This information is provided by the
headers, that are given to the module at a certain frequency. The values of these
headers hold information about the packet lengths, but it has to be encoded in

42

3.2 – Module schematic

order not to waste bits in the memory line. These headers have to be stored inside
the FPGA and have to feed the Instruction Computer in order to make it work.
This module that processes the headers is called Header Decoder, as it is basically
a FIFO memory designed to hold the headers. What it does is not only to store
headers, but also to interact with the memory as it has to be fed by the header’s
frame. Since there is only one memory port but there are two modules interacting
with the memory independently, the Packet Builder and the Header Decoder, there
has to be some more control dedicated to joining the two interfaces. It has also to
be noticed that this component is strictly related to the way we build the frame:
depending on the way we decide to store the header lines in the frame and on how
we discriminate between header and payload lines the design of this module may
change.

3.2 Module schematic
The previous section showed how from the specification of the module we can
achieve a more complex system made of four different sub-modules or components:

• Packet Builder

• Packet Shifter

• Instruction Computer

• Header Decoder

The complete module will be composed by the sub-modules and by their joint con-
trol. Figure 3.4 shows the module schematic within the system. We see that all
the interfaces of the components follow the flow control paradigm (thin arrows).
All of them have three signals exiting each component and three signals entering
each component (except for the Packet Builder which has two input interfaces).
The signal represented with a thick arrow represents the data line. As each compo-
nent in the flow control paradigm behaves like an FIFO, the data passing through
the components will behave like a FIFO as well. This data will pass in the form
of lines of data. The other two thin arrows represent a stall request and a valid
bit. The valid bit signals to the next component whether a line of data is valid
or not. This is useful in order to accept or discard the incoming lines. The stall
line instead tells to the previous component that the component is already busy
and it is incapable of taking any more lines of data. The previous component has
therefore to stall. This same concept is applied to the external interface. However,
since all the sub-modules have to perform different tasks and are independent, and

43

3 – Architecture of the Packet Decoder

since there is more than one component interfacing with the external memory some
control logic has to be added in order to manage the control signals coming from
the sub-modules.

Figure 3.4. Block schematic of the design

44

3.3 – External interfaces

An issue that may show up from this approach is that we are actually breaking
some pipelining rules, as we aren’t having the same number of pipeline stage if we
take into the account the data lines going from the external memory to the Packet
Builder and the header datapath coming from the Header Decoder up to the Packet
Builder. This apparent rule break doesn’t apply as we can model the system as
if the two sub-modules are actually taking data from two different memories. We
can think that there are two different FIFO memories, one holding the payload
frame and the other the header frame. The fact that there is only one memory is
a constraint that does not affect the functionality of the system because the flow
control at the input of the Packet Builder synchronizes the payload lines coming
from memory with the data provided by the Instruction Computer.

3.3 External interfaces
The module has two different interfaces with the external system. The first one is
between the module and the memory which holds the geometry values. The second
one is between the memory decoder and the memory inside the FPGA.

We can think about the interface between the Header Decoder and the external
memory and the interface between the Packet Builder and the external memory
as two independent interfaces that are joined as a final step in the design. The
interface between the Packet Builder and the memory is indeed simple: the Packet
Builder knows from the Instruction Computer how many lines of data it has to get
from the memory. Since the memory behaves like a FIFO, it has a line communi-
cating whether the incoming lines are valid -for example if the memory is empty
it will tell that the incoming data are invalid-, the Packet Builder will instead ask
through the stall line a line of data. This line in an ideal environment would never
be active (set), however it may be active when there isn’t an instruction available
or if the Packet Shifter is stalling.

The interface between the Header Decoder and the memory works basically in
the same way. It has a line coming from the memory telling whether the data are
valid or not, and a line coming from the header register telling whether the Header
Decoder needs a new line of headers or not. This line is not always active as the
Header Decoder has a width that grants that a certain number of headers can be
stored inside this FIFO. It will ask another line only when the Header Decoder is
empty.

On the other interface we have to send the data decoded to the memory of the
FPGA. The data format is shown in the bottom of Figure 3.3. We are going to

45

3 – Architecture of the Packet Decoder

send a packet completely built. However since the packets have different widths,
we have to grant that each packet can be transmitted to the FPGA memory. This
translates into a bus whose width is equal to the maximum number of bits a packet
can possibly have. This means that packets that are smaller than the maximum
width will necessarily have an additional number of bits attached to the end of the
line. This problem will be solved by adding to the output bus another line that tells
the width of each packet starting from the left. In this way, the next sections of
the system will be capable of determining the exact bits belonging to the packets.
This interface is exclusively between the Packet Shifter and the memory inside the
FPGA. It will also have a validity line coming from the shifter that tells whether
a packet is valid or not. The data outgoing may not be valid in the case when we
have to decode a packet that is larger than the width of the bus. In this case, there
will be some partial lines of data where the packet isn’t still completely built and
therefore in the end this data will not be valid. There is also a line coming from
the FPGA memory that tells whether the memory is full or not. If this happens
the module will not send any new data and it will stop operating. The memory on
the FPGA also works as a FIFO.

Figure 3.5 shows an example of standard FIFO memory module. In our case
we adapt the interface of this memory to the flow control module. We use the full
flag as a stall line, and it communicates to the previous stages of the pipeline to
compute the data. When it’s set it means that the memory is full and thus that
we have to stop the computation. On the other hand, the empty flag can be used
as a valid line. When the memory is empty the data sent to a module will not be
valid and therefore these data won’t be used.

3.4 Design techniques
This section is dedicated to the description of the techniques that have been used
when designing the memory interface. These techniques are not completely stan-
dard, and in order to understand the implemented components that will be de-
scribed in the following chapter we have to describe them. As explained in Section
1.2 we have used VHDL 2008 version as hardware description language, and Python
3.6.5 as programming language.

One of the problems addressed in the previous section is that we have to abstract
the design and make it valid for whatever kind of packet length. In order to do so,
first we have to declare in a file all the possible lengths the packets of the frame
may have, and also the width of the bus of the memory, that is a core variable that
may change from board to board. The file where there will be written this core

46

3.5 – Generics

Figure 3.5. Schematic of a FIFO module

variables is a simple text file with a structure like this

• bus width

• packet length #1

• packet length #2

• ...

• packet length #N

All these variables have to be expressed as hexadecimal numbers. From this prim-
itive file we extract all the useful information needed by our design.

3.5 Generics
The key point to abstract the system from the physical implementation on any
board is to make all the design parameters as generic as possible. The way we de-
cided to go to abstract the design was to use the generics description tool provided
by the VHDL language. This tool still isn’t complete when it comes to defining the
variables of the design, as sometimes we have to use different kind of approaches
to make the design more accurate. We have chosen to use the following three
approaches when it comes to the implementation of the generics variables.

47

3 – Architecture of the Packet Decoder

• Direct use of generics

• Use of a package of global variables

• Use Python software to generate VHDL code

The first case is the direct use of generics. Each component has its port’s width
not determined by a fixed number, but determined by a generic variable that is
the generic defined in the top part of each design. This grants us that each port
of our design is portable and flexible to represent every possible number. This is
useful when defining the interfaces, that depending from the configuration file may
vary a lot in the various designs. Furthermore, some designs will directly depend
on the generic values.

The generic tool is however a bit limited in some cases. We will encounter
cases where we have to grant that some variables used by more than one compo-
nent have to be the same, and also to generate some generic variable to declare
the components of a module. Finally, we have to grant that after the configura-
tion process the design is ready to be synthesized and implemented in the fastest
possible way, without adding variables that the final user may insert incorrectly.
In order to speed up the process and to avoid confusion with the use of generics
we decided to make the use of variables defined in VHDL packet files, and to make
these files readable by every VHDL file. In this way we can grant that once we
have written this values inside the packet file, each VHDL file will read the variable
correctly, and that this value will be the same for all the components of the system.

All the previous values to be written on the package file have to be extrapolated
from the configuration file. In order to do so we decided that the best way to go is
to generate the generic variables file with a software in Python that takes as input
the configuration file, and rewrites some basic variables inside a VHDL file. All the
other variables derived from these basic ones will be instead computed in another
VHDL packet file. Furthermore, there are some components in the design that
have to be pre-programmed at configuration time in order to work correctly. This
happens mostly when we need the result of a complex operation that would reduce
the performance of the design inside the FPGA. All these operations are performed
before the compilation and synthesis of the VHDL design. In this way we grant
that we have a simple user interface that is reduced only to the configuration file,
and no generic variables have to be declared inside the VHDL code.

48

3.6 – VHDL style

3.6 VHDL style
When we had to implement the components using an hardware description lan-
guage we use some design choices regarding which kind of style we had to choose to
implement the system. We first choose VHDL over Verilog because my formation
from the university has privileged the teaching of VHDL with respect to Verilog.

The VHDL language is very versatile as it is thought to be a generic hardware
description language. However, there is more than one possible approach when
using VHDL. The two main applications of this hardware description language are

• ASIC design

• FPGA programming

Since we have to program an FPGA, we had to go for a style that would be differ-
ent from the ASIC design style. When describing an ASIC component we can go
up from the lowest level of abstraction to describe it (bottom-up approach). Since
everything is going to be implemented up to the physical layer, we can define how
the architecture of each component it is going to be implemented on the chip. For
example, we can choose to implement an adder in many different ways: from a
ripple carry adder to a carry select adder and so on. This is different when pro-
gramming an FPGA. If we are going to implement our components in a custom
way, we are going probably to incur in some overheads, as there is already inside
the FPGA some hardware dedicated for the purpose we have. There are in fact
adders and multipliers already implemented inside the FPGA, and they are already
optimized for their purpose. Creating a custom device would be an overhead in
most of the cases as we would need to make it by programming the LUTs and the
interconnections between them, and this would lead to an inefficient way of using
our FPGA. Most of our work is therefore going to avoid this kind of structures, as
the latest form of VHDL grants a simple and fast way to do operations between
any data types, given that there is an on-chip block to perform the operation. This
basically means that we are going to privilege the behavioural style of coding with
respect to the structural style, as the structural way of coding is going to generate
overheads when specifying the component down to a too low level of abstraction.

VHDL is also a strongly typed language. In this language, we have to clearly
define the type of each operand when performing an assignment as both of the
types in the operation have to be the same. Since sometimes the data we are deal-
ing with are too complex to be represented by a VHDL standard data type, there
are some cases where we are creating a more complex data type in order to keep
the structure simple and close to the flow control design implementation. Most of
the times, when we have to communicate between two different components a set

49

3 – Architecture of the Packet Decoder

of data that is not unique, but is composed by two or more types, we are going to
include this information in a single data type, so that we keep clear which signal is
or isn’t inside the communication bus. This happens especially inside the Packet
Builder, as we will need to deal with a big amount of different signals that in the
interfaces is better to keep united, as they are transmitted all together through a
bus between two different components.

50

Chapter 4

Implementation of the
Packet Decoder components

In the previous chapter we have described how to address the problems posed
in Chapter 2 by decomposing the structure of the Packet Decoder into four sub-
modules or components.

• Packet Shifter

• Packet Builder

• Instruction Computer

• Header Decoder

The block which has to divide the frame into two different sub-frames will be ad-
dressed inside the Header Decoder, as it is the block which interfaces with the input
the most and, therefore, has a more intimate dependency on the format of the in-
put lines. These sub-modules however present multiple possible implementations,
and the solution to each one of the presented sub-modules has to be chosen appro-
priately in order to optimize the performance and to make the module portable
for multiple kinds of FPGAs. The sub-modules are here presented in a back to
front order: starting from the output we will go back to the inputs as each time we
describe a component we also add specifications to the previous one, by defining
its output format. The description of the components will start therefore with the
module that interfaces directly with the output: the Packet Shifter.

51

4 – Implementation of the Packet Decoder components

4.1 Packet Shifter
The Packet Shifter is the component that has to perform the operation of deleting
the exceeding information from the lines provided by the Packet Builder. The
specification of this component has already been discussed in Chapter 3. However,
here is a summary of its specification:

• It has to remove the first part of the lines provided by the Packet Builder.

• It has to do it within the streaming architecture; it, therefore, has to behave
like a FIFO module

• It has to perform this operation at the maximum possible throughput while
not exceeding the area usage

• It has to be portable to multiple FPGAs and, therefore, it has to be a generic
design

4.1.1 Background
The core point of this component is held inside the name itself: the simplest way
to perform the operation described above is to do a shift to the right or left of
the lines coming from the Packet Builder. There are some different ways to per-
form this operation. Firstly, it is a key point to understand how does a shifter work.

The shifter is a block that is commonly found inside digital components as it
can multiply or divide by powers of two efficiently. First of all, we have to set clear
that there is more than one possible operation that can be performed by the shift
block. Namely :

• Arithmetic shift

• Logic shift

The arithmetic shift performs the operation on signed numbers. This means that
the operation will keep the sign of the operand as it is. The logic shift is instead
more direct and simply adds zeros to the left or right of the word we have to shift.
Since we aren’t dealing with signed numbers, the arithmetic shift isn’t useful to our
purpose. It is instead useful to see which kind of logic shifters have been already
implemented, and which one fits better in our specification.

An example of a shifter that can perform any kind of logic shift is the Barrel
Shifter. The core ability of the barrel shifter is that it can perform any kind of
shift without using sequential logic (i.e. using a single clock cycle). While this can
be useful in architectures that have fixed pipeline stages, in our case we don’t have

52

4.1 – Packet Shifter

any limitation in the temporal parallelism and thus this design was discarded as
it requires many resources to be implemented. Furthermore, this design is mostly
used inside full or semi-custom designs, which isn’t our case

An interesting approach is the one provided by the Ultrasparc T2 Niagara [5]
shifter module (Figure 4.1). This module is important to us as the Ultrasparc
Niagara T2 is a processor that is optimized in terms of performance, as it was
intended to be used in server machines. The T2 shifter, which resides inside the
ALU which is inside the execution unit, can perform both the arithmetic and the
logic shift, but only the logic shift is the one which is interesting for our purposes.
The T2 shifter can perform shifts in a multi-level fashion. In particular, the T2
shifter is based on three levels of shifting: the first level consists in the selection of
a mask which will provide the inputs of the next levels of the shifter. The masks
provide eight words, each of these has already performed a shift by a multiple of
eight and, depending on the type of shift it has to perform, this words will be
logically or arithmetically shifted to the right or to the left, or rotated to the right
or to the left. Inside Figure 4.1 this is shown in the input lines of the multiplexer
at the top. These inputs are determined by the selected mask. The second level
performs the coarse level shifts. The initial word is shifted by multiples of 8 bits
up to 64 bits. This is achieved by the use of a eight to one multiplexer, which
has as input the already shifted values provided by the mask as shown in Figure
4.1. This stage has to select the correct coarse grained shift provided by the mask.
After this phase there is the fine grained shift that shifts the value by 0,1,2,3 up
to 7 bits. This is also provided by a multiplexer which has as input the value
generated by the previous multiplexer and this value is divided into eight different
words. Each one of this words performs the shift by selecting the appropriate bits
of the previous word. In Figure 4.1 the second multiplexer performs this shift.
The inputs are always the same previous word but inside a specific range. Each
on these ranges are shifted incrementally by one starting from the first input up
to the eighth input. As this block is defined by three levels that together make a
DAG, this block can be easily pipelined by subdividing the component into three
stages: a stage for the mask, a stage for the coarse level shift, a stage for the fine
grained shift. Since this module can support a high throughput and performs the
shift in a simple and modular way, it has been chosen as the basis for the shifter
we had to implement.

4.1.2 Critical issues
Compared with the T2 shifter, our block has relevant different specifications:

• Our shifter has to be implemented on an FPGA, not on a full custom chip

• More pipelining has to be included to optimize performance

53

4 – Implementation of the Packet Decoder components

Figure 4.1. Level two and three of the Ultrasparc T2 Niagara Shifter

• We do not need to shift the whole word, just the lengths of a memory line
almost

• The amount of shift to be shifted is not fixed, it has to be generic

The first point implies that the T2 shifter is optimized inside the environment it is
working. It is indeed probable that there are different modules inside the processor
that work at a slower rate than the T2 shifter. This may be the reason why it isn’t
pipelined and so it isn’t highly optimized for performance. This is not our case, as
we have to grant maximum performance without considering the other parts of the
system. Further optimizations of the T2 shifter will therefore be considered. The
basic optimization with respect to the T2 shifter is to divide the coarse grained

54

4.1 – Packet Shifter

shift and the fine grained shift into multiple sub stages, creating a pipeline stage
whenever possible.

Secondly, we have to consider that the incoming lines have the biggest width
among all the possible size of the packets. This means that there isn’t a case where
we have to completely shift an incoming line. The maximum possible shift we have
to make is instead equal to the width of a line of the memory bus, as the edge case
is that the packet begins exactly at the last bit before the end of the line. This
means also that the width of the data coming from the Packet Builder has to be
exactly

packet length + memory linewidth − 1 Bits (4.1)

These are the two parameters that will influence the design the most.

This design not only has to be optimized, but it has also to be generic. This
means that we have to grant that this module works for whichever packet length
and whichever memory line. This influences the design a bit, as the T2 shifter is
intended for a fixed data length, and therefore we have to modify the design in
order to make it portable.

4.1.3 Implementation and block diagram
Figure 4.2 shows the schematic of the design. As we can see, there are three ports
coming from the Packet Builder. The first port has the data to be shifted, in the
format shown in Figure 3.2. In addition there are two more ports, one for the
line of the header, which describes the length of the packet. This information is
necessary for the module that is going to use this data and it is just forwarded to
the end. The third port has the shift value line, a line of data which holds the
value about how much the packet inside the data line will be shifted. The lengths
of these ports are respectively :

Maximum packet length + memory line width − 1 (Dataport)

çlog2 Maximum packet lengthè (Headerline)

çlog2 Memory line widthè (Shiftline)

On the other side, there are the ports that will communicate the data to the
memory inside the FPGA. This ports are the shifted data port and the header
port; the first port will have a width equal to Maximum packet length while the

55

4 – Implementation of the Packet Decoder components

second port width is the same as the input port for the headers. As we see in Figure
4.2, the design is regular and is similar in a way to the T2 shifter. Considering the
stages after the top one, at each stage we have a two to one multiplexer that can
perform a partial shift of the input data. After the first stage, the number of bits
eventually shifted at each stage is equal to

2ålog2 Memory line widthæ−(#stage−1)

If the amount of bits to shift is greater than this value, the shift will be performed
and the same amount of bits shifted will be attached to the end of the register in
form of zero bits, otherwise the lines will simply be forwarded. This procedure is
repeated until we will reach the shift value of one, where we will have to make a
shift of just one bit. In this way we can directly use the number in the form of
an unsigned integer provided by the shift value line to control the multiplexers, as
any number represented as an unsigned integer is equal to

N =
nØ

i=0
xi2i

where N is the number in the decimal form, xi is the i-th bit of the number
represented in binary. This means that each bit of a binary number correspond to
2i in its decimal version. Therefore if we have to make a shift by five bits, since
the number 5 is represented as 101 in binary, we can decompose the shift into

1 ∗ shift by 4 + 0 ∗ shift by 2 + 1 ∗ shift by 1.

There is however a problem with this implementation.The problem is that we are
considering that the memory width is exactly a power of 2. This means that our
system works perfectly if the bus width is a power of 2, which rarely is the case for
FPGAs, but it doesn’t work for systems that have a memory port width that may
differ from a power of two. In these cases, the approximation of the bus width will
leave some cases unsolved: whenever we have to shift a value that is inside this
range

2ålog2 Memory line widthæ ≤ x < Memory line width (4.2)
the value cannot be possibly shifted, as it will necessarily remain an unshifted part
equal to

x − 2ålog2 Memory line widthæ (4.3)
The way to solve this problem is to add an extra pipeline stage at the beginning

of the module that will perform exactly this shift. If the value to shift goes inside
the range shown in 4.2 it will be shifted exactly by the value in 4.3. The remaining
part (4.4) will be shifted by the regular part of the shifter as it is necessary inside
the range 4.5.

Memory line width − 2ålog2 Memory line widthæ (4.4)

56

4.1 – Packet Shifter

Figure 4.2. Schematic of a rigid Packet Shifter with an input line
width equal to 11 bits

If the value to shift isn’t inside the 4.3 range, we simply use the regular part of
the shifter as it can perform any shift inside the range in 4.5

57

4 – Implementation of the Packet Decoder components

0 ≤ x < 2ålog2 Memory line widthæ (4.5)

In this way the block is both high performing and generic as the operation
between any two pipeline stage is selected by a two to one multiplexer, that can
be implemented directly on LUTs in parallel, as a LUT in the FPGA has at least
four inputs and one output. The portability requirement is also achieved as the
module can perform a shift of any value between zero and the width of the bus.
Therefore, the parameters needed to configure this block are

• Memory bus width

• Maximum packet length

• # of bits of the header value

• # of bits of the shift value

4.1.4 Elasticity
As mentioned in Section 2.3 the flow control technique is based on the concept of
validity and stall. This same concept is applied to the Packet Shifter: lines incom-
ing from the Packet Builder have attached a validity bit, and the lines processed
in the Packet Shifter can go to the FPGA memory only if the FPGA memory isn’t
full, which is signalled through the stall line. This creates an optimization problem:
each line incoming will be elaborated unless the memory is full, disregarding the
validity of the data. This means that some pipeline stage will be filled with data
that isn’t valid at some point in the execution. This in fact is unavoidable as long
as the FPGA memory can store data lines, as the FPGA memory is assumed to
discard the invalid lines. When a stall from the FPGA memory occurs, there are
however two ways to proceed in the Packer Shifter:

• Rigid way

• Elastic way

The rigid way is the simplest one: whenever a stall from the FPGA memory occurs,
all the component will pause and the stall signal will propagate a to the Packet
Builder, as well through the outgoing stall line. In this way the Packet Shifter will
be freezed and valid data both with invalid data inside its pipeline. This however
is an overhead, as the invalid data can be discarded and replaced with valid data
already inside the Packet Shifter even if the output is stalled.

The elastic way of managing flow control solves the problem of having invalid
data inside the pipeline. When a stall from the memory occurs, instead of freezing

58

4.1 – Packet Shifter

the component, it allows new data to shift as long as there are pipeline stages
filled with invalid data. This way grants that when the stall from the FPGA ends
there will be a sequence of packets ready to be sent to the FPGA memory, locally
increasing the throughput of lines. As the paradigm of performance optimization
applies to this component as well as to all the others, this is the implementation
that has been applied. The rigid way of stalling the pipeline was the original
version of the shifter, as it was simpler and it was firstly implemented to avoid
problems regarding its simulation. It works in this way: each pipeline stage is
made as a register which has four inputs: the data incoming from the previous
combinational circuit, the clock signal, the reset signal and the enable signal. In
the rigid way of implementing the stall, we simply connect each enable signal to
the stall line coming from the FPGA memory. Whenever the stall signal from the
FPGA memory occurs, all the registers will be disabled and will keep the value of
the previous clock cycle. In the elastic way, the stall signal changes from register
to register: it will stall only if the FPGA stall signal is active and all the pipeline
stages between the stage being considered and the FPGA memory port are filled
with valid data.

This leads to the chain shown in Figure 4.3. There is a chain of AND gates,
starting from the last stage and going through the pipeline up to the stall line going
to the Packet Builder. The stage of pipeline next to the interface with the memory
checks if the valid value related to its stage is 1 -valid- and if the stall line coming
from the FPGA memory is 1 -stall- if those two conditions appear the stage will
be stalling and it will signal this fact to the previous stage. The inverted signal
will determine the eneble signal of the registers inside that pipeline stage. All the
other stages will also check two values: the related valid value and the stall signal
coming from the the next stage of the Packet Shifter. If all those two lines are
set, then the register will be disabled and it will keep the value it already holds.
The same concept is propagated up to the interface with the Packet Builder and
it applies also to the stall signal going to the Packet Builder. In this way we can
manage all the possible stall signals coming from the FPGA. This translates into
the following cases:

• A stall that lasts more clock cycles than the number of clock cycle needed to
fill the Packet Shifter with valid data

• A stall that lasts less clock cycles than the number of clock cycle needed to
fill the Packet Shifter with valid data

In the first case, the pipeline stage will continue to be filled up to the point
that all the pipeline is full. If the pipeline is filled with valid values, then all
the component will stall and it will communicate to the Packet Builder to stall
as well. In the second case the shifter will continue to work as long as it isn’t

59

4 – Implementation of the Packet Decoder components

filled, but since all the enable lines of the registers monitor the stall line of the
FPGA memory, if it goes down it will simply continue to work as if nothing had
happened. In the end there will be a sequence of valid packets reaching the output.

The problem with this design is that it introduces a chain of AND gates that is
as long as the pipeline length. This chain is unfortunately impossible to pipeline,
as the data flow of the stall signals is going in the opposite direction of the data to
be shifted. The length of this chain will affect the maximum operating frequency
of the module. Figure 4.3 shows on the left the rigid way to manage the stalls, and
on the right the enhanced elastic way to manage the stalls. We can see that the
critical path is the chain of AND gates. It is linear with respect to the number of
pipeline stage and it is equal to one logic gates multiplied by the number of stages
minus one. Therefore in terms of the on-board memory bus width the critical path
length is logarithmic and it is equal to

çlog2 Bus widthè LUTs

60

4.1 – Packet Shifter

Figure 4.3. Rigid way and elastic way to manage stalls.

61

4 – Implementation of the Packet Decoder components

4.2 Packet Builder
In the previous section we have shown how the Packet Shifter module has been
implemented. Here we are going to describe the implementation of the Packet
Builder. The behaviour of this component has been described in Section 3.1.
Nevertheless, here is a summary of its specification:

• It has to transform the payload encoded in the memory to a format acceptable
by the Packet Shifter.

• It has to perform this operation following the streaming architecture concept
which implies a flow control technique

• It has to be optimized in terms of performance

Since this component has as main purpose to gather payload correctly from the
payload frame, it will interface with the payload FIFO. As explained in Chapter 3,
this frame can be thought to be independent from the header frame, and therefore,
this component can be modeled as an interface between the payload frame and the
Packet Shifter. This is a core component of the system, as it is the direct interface
with the payload frame. To solve the problem addressed in the specification, it is
important not to have a monolithic approach, but it is better to divide the com-
ponent into several sub-components, each of these with a single specific purpose.

As this component is an intermediate module between the external memory and
the Packet Shifter, it is immediate to set the specifications of two sub-components:
one as an interface with the payload frame and the other as an interface with the
Packet Shifter. The interface with the payload frame is called Payload Reader,
and has to deal with the control signal coming from the payload frame, such as the
valid/invalid signal, and the stall signal coming from the Packet Shifter.

The second sub-component is the interface with the Packet Shifter, and has the
main purpose of providing valid extended payload lines. This component is called
Payload Placer, as it has to put each payload line in the correct register, and to
generate a valid-invalid signal for the Packet Shifter, and also to manage the stall
signal coming from the Packet Shifter itself.

The Packet Builder also includes another interface, the one between the In-
struction Computer and the Packet Builder itself. This interface is called Build
Sequencer. Its main purpose is to control the other two sub-components. It has
to manage correctly all the possible cases that the two other sub-components can
encounter, and avoid the generation of an incorrect extended line. As explained in
Chapter 3, the Packet Builder requires additional information to correctly build the

62

4.2 – Packet Builder

packet and this information, which is generated by the Instruction Computer, is
sent to and managed by this sub-component. This sub-component can be thought
as a finite state machine and it will be modeled in this way.

From a top-level point of view, this component is modeled as shown in Figure
4.4; The Build Sequencer is placed before the Payload Reader. This happens
because the Build Sequencer has to control both the Payload Reader and the
Payload Placer. Some control signals generated by the Build Sequencer will be
used by the Payload Reader, and the remaining signals will be used by the Payload
Placer, and therefore they are forwarded by the Payload Reader. Each component
has only one stage of registers, so this whole component can be seen as a component
with three pipeline stages . What could look like a pipeline rule break, as the data
coming from the Instruction Computer have one more layer of registers compared
to the path of the payload lines path, shouldn’t be seen as a rule break as the
payload frame can be modeled a an FIFO component with undefined depth. The
last component is the Payload Placer, which gathers payloads from the Payload
Reader and control signals from the Build Sequencer. We see that all the sub-
components support the flow control technique.

Figure 4.4. Block diagram of the Packet Builder’s sub-components.

63

4 – Implementation of the Packet Decoder components

4.2.1 Payload Placer
This module has three interfaces, two input interfaces and one output interface.
The two input interfaces have to gather data from the Build Sequencer and from
the Payload Reader. The output interface has to issue data to the Packet Shifter.
The data required by the Packet Shifter includes the lines to be shifted, the packet
length and the shift value. While the length of the packet and its shift value aren’t
computed by this module, the payload has to be formatted by this module. The
format of the data is shown at the bottom of Figure 3.2 and the output port width
is Extended width = Maximum packet length + memory linewidth − 1.

While the width of the Packet Shifter input port is shown above, the correct
way to build an extended line is to do exactly as specified in Chapter 3, that is,
to align a series of registers, each one of the width of the external memory bus as
shown in Figure 4.5. In this way, we ensure that our extended line can hold all the
lines required by the Packet Shifter. The number of aligned registers is equal to
the max(N) value in Equation 3.1. The way the payload lines have to be stored
is explained in Section 3.1. Each valid built packet has to begin exactly inside the
first register of the set of aligned registers. There can be more than one packet
that begin inside the first register, and in this case the extended line has to be held
for more than one clock cycle, and at the output the valid signal will be set for two
or more consecutive cycles.

Figure 4.5. Payload Placer schematic

The core point of this sub-component is to put correctly the lines gathered
from the Payload Reader into the extended register of the width shown above.
The problem that arises from the encoded memory is that there are three possible
cases in which a packet can be distributed inside the on-board memory:

64

4.2 – Packet Builder

• The packet is larger than the on-board port width

• The packet is smaller or equal than the on-board memory port width

• The packet has zero length

These cases have to be treated properly. The Packet Shifter can take invalid data
as input, but in any of the previous cases there has to be exactly one clock cycle
where the packet is built correctly, so that the valid signal to the Packet Shifter
can be set, and the extended line forwarded.

In the first of the above cases, or when a packet is larger than the width of the
external memory bus, the packet has to be stored in more than one payload line
inside the extended register. Each of the corresponding payload lines has to be
placed in the correct register. Since the control signals which determine how many
lines have to be fetched from the payload frame come from the Build Sequencer,
the only thing to do here is to put them in the right place. The way to go is to put
a two to one multiplexer at the input of each step register, with one input with
payload line and the other input with the output of the step register itself. The
lines that control these multiplexers are managed by the Build Sequencer. In the
case that there is a packet larger than the linewidth, one multiplexer chooses the
payload line and all the other multiplexers choose to keep the register value. In
this way, we ensure that each packet is put in the correct place. As explained in
Section 2.6, there will be some clock cycles when the extended line is not complete,
and the built packet is not valid.

There is, however, a complication to this simple concept. There are some cases
where there are more packets stored inside one single payload line. When this
happens, as explained in Section 2.6 and in Section 3.1 as well, we have to keep
for more than one clock cycle the same payload line. The way to go to solve this
problem is to add another step register of the linewidth of the external memory
bus, with a multiplexer at the input controlled by the Build Sequencer like all the
other step registers. This register is called the Cache Register, and it doesn’t in-
terface with the Packet Shifter, but with the first step register of the extended line
as shown in Figure 4.5. Whenever a payload line is requested, it is automatically
stored in this cache line. The line that pilots the multiplexer above this register is
the same that asks to the memory to ask for a new payload line.

Figure 4.5 shows the schematic of this component. There are N step registers
(in this case N=4 as we are referring to the case shown in Figure 3.2), each of them
having a multiplexer controlled by the Build Sequencer. The first step register has
a three to one input multiplexer since it has to be capable of selecting the Cache
Register as input. This means that there are two lines controlling its multiplexer.

65

4 – Implementation of the Packet Decoder components

The valid line is simply forwarded from the Build Sequencer to the Packet Shifter,
just like the shift value and the packet’s length value. The stall line together with
the control lines have the role of blocking the register from allowing additional
information, and the stall line is then forwarded to the Payload Placer and Build
Sequencer.

4.2.2 Payload Reader
The main purpose of the Payload Reader has is to read correctly the payload frame.
It has to manage appropriately the stalls coming from the Packet Shifter and the
valid signal coming from the payload frame. It also has to manage the stall going
to the payload frame, and to forward the control signals coming from the Build
Sequencer together with the packet length and the shift value.

The stall signal coming from the Packet Shifter simply blocks the reading of
the payload frame. It is also forwarded to the Build Sequencer. The valid signal
coming from the payload frame will block the reading of the payload frame. The
valid signal coming from the Build Sequencer will stop the reading of a new pay-
load, as there may be instructions not valid coming from the Build Sequencer. The
Build Sequencer also has to tell the Payload Reader whether to ask or not for a
new payload. This happens, for example, in the third clock cycle of the scenario in
Figure 4.6, where the Payload Placer doesn’t need to ask for a new payload line.
We can see that in this case the stall line behaves like a request line for a FIFO,
as whenever there isn’t a stall the payload placer is requesting a new line from the
payload FIFO. The packet length and the shift value are also forwarded if they are
valid. Otherwise they will be discarded. The valid line for the Packet Shifter is
also forwarded.

Figure 4.7 shows the diagram of the Payload Reader. It is simply a register for
the payload line, a register for the instruction signals for the Payload Placer and
some control circuit for the flow control management.

4.2.3 Build Sequencer
As we have previously seen, both the Payload Reader and the Payload Placer have
to be controlled. The Payload Placer has N+1 two to one multiplexers to be con-
trolled. The output validity bit also has to be determined. On the other hand, the
Payload Reader has to know whether to read or not to read the payload frame.
The task of generating these control signals is performed by the sub-component
called Build Sequencer. This block gathers data from the Instruction Computer
and processes or forwards such information to the Payload Reader and the Pay-
load Placer. It is the control core of the Packet Builder as it generates most of the

66

4.2 – Packet Builder

Figure 4.6. Payload Reader diagram

signals needed in most cases.

There are several ways to design this component. Since it is a control unit, we
have to choose between the most common practices that deal with control units.
In the architectures of pipelined processors, there are two main ways to create a
control unit. One is through the use of a Finite State Machine (FSM): states are
defined and have outputs depending on the state and on the instructions arriving
from the memory. The other way is to create micro-instructions which will control
directly each stage of the pipeline. Our case is slightly different from the one of
a standard pipelined processor, as in our case there aren’t any feedbacks between
different pipeline stages. This avoids a lot of problems regarding hazards, as ex-
plained in Section 2.4. From a system perspective, the control machines have been
distributed, and each component has its control logic and its flow control logic.
This is a partial view about the control machines, as there is in fact only one con-
trol machine, this one. Most of the control in the other components is dedicated
instead to flow control.

When choosing which type of control unit to develop, we have chosen to use
a micro-architecture approach, as we have two components that have distinct sig-
nals to manage and many cases to handle. However, this is a partial view of this
component. If we look at micro-instruction oriented control units inside standard
pipelined processors, they have in a way a finite state machine to handle the se-
quential circuit. The point is that a micro-instruction oriented control unit has
a very simple and small finite state machine, which basically only increments the
memory address and thus is not classified as a finite state machine control unit,
but as a micro-architecture control unit. In our case, we have a more sophisticated

67

4 – Implementation of the Packet Decoder components

temporal logic, and therefore the control unit is modeled also as a finite state ma-
chine. Our approach is to treat the output signals as micro-instructions and the
overall component as a finite state machine.

At each clock cycle the Build Sequencer will send a packet of instruction sig-
nals (without considering flow control) to the Payload Placer and Payload Reader.
These instructions behave effectively as outputs of a Mealy finite state machine, as
in fact they are composted from a register which holds the current state, a register
that holds the next state and a combinational circuit that will compute the output
signals of each instruction depending also on the inputs of the Packet Builder.

There are two types of instructions we have to distinguish:

• First type: in this clock cycle we are going to build a new packet

• Second type: in this clock cycle we are going to compute a packet that needs
to be built in more than one clock cycle, and this clock cycle isn’t the first
one for this packet

These instruction, which are the outputs of our FSM will be discussed in the next
subsection.

As we have said this sub-component behaves like a Mealy finite state machine;
Figure 4.8 shows the machine for max(N) = 4. The max(N) value which has
been defined in Section 3.1 is the maximum number of payload lines a packet
can be distributed over. Each packet has therefore its relative N value, which is
described in Equation 3.1, and from now on will be referred as the Used Lines
variable. The maximum number of Used Lines (max(N)) is the core parameter for
this machine, and the Used Lines variable (N) is an input of this machine. The
Instruction Computer has to continuously provide this value to the Packet Builder.

Each machine has a number of states equal to the maximum number of Used
Lines. It has a state whose output are first type instructions and max(N)−1 states
whose outputs are second type instructions. Depending on the Used Lines value,
the machine goes from the first state to one of the remaining states, and at the
end of each second type instruction state the machine goes back to its initial state,
which is the first type of instruction state. In the diagram, not all the outputs have
been shown. It is only shown which register has to be selected. By this we mean
that the chosen register selects its input from the payload line, and all the other
registers don’t. This means that the first step register in the case it’s not selected
will choose the Cache Register as input. The signals regarding the payload read
for the Payload Reader, the validity of the packet at the output of the Payload

68

4.2 – Packet Builder

Placer, and the signal controlling the Cache Register multiplexer are shown in each
transition. The inputs of this machine are basically three:

• Valid Build-instruction / not valid Build-instruction.

• Used Lines equal to 1,2,3 or 4.

• Zero shift equal to 1 or equal to 0.

Zero shift means that the incoming shift value is equal to Zero. Used Lines equal
to 1,2,3 or 4 means that the Packet is distributed on 1,2,3 or 4 lines of payload.
It has to be noted that the Step Registers are controlled by a word which uses a
One-Hot encoding. We could have encoded this information with a binary number
on two bits in this case, but since the Payload Placer requires a One-Hot encoding
to pilot the multiplexers, any other encoding is considered redundant. Valid /not
valid Build-instruction means that the input signals are not valid. This is a flow
control signal, but it is handled in this machine as well. The remaining flow control
is handled separately and will be discussed in the end of this section.

4.2.4 First type instructions
The first type of instructions, which are the outputs of the state zero (S0) of the
FSM, have the complex task to manage all the cases when the used lines are equal
to one or two, thus controlling the first step register, the second step register and
the Cache Register. It has also to determine whether to read or not the payload
frame, the validity of the output line and if there is a need to go to a second type
instruction state. This type of instructions behave like the outputs of a Mealy
state machine. Consequently the outputs have to be determined considering the
inputs of the machine.

We have in total four output signals and the register word to manage. The
register word is encoded with the One-Hot encoding, and whenever a step register
has to be enabled, the bit controlling its multiplexer will be set to one, thus selecting
the payload line as input of the step register. The remaining signal will determine
:

• If we have to read or not a payload line.

• Whether the first step register has to read from the cache or not.

• If the built packet is valid or not.

• If we need a second type of instruction or not.

69

4 – Implementation of the Packet Decoder components

Figure 4.7. State diagram when the maximum number of Used Lines is 4

The signal that determines whether to read from the payload line is the same that
enables the Cache Register. This means that whenever the payload frame is read
and the incoming payload line is valid the Cache Register will automatically store
the new payload line. The line that determines whether to read the cache or to
read the payload for the first step register is apparently in conflict with the register
word, as they both control the input multiplexer of the first step register. However,
the register word has higher priority, and when it isn’t set, the register won’t read
any input. When it is set, depending on the other line of the multiplexer, the first
step register will select the Cache Register or the payload line. here is a table
resuming the cases of the multiplexer of the first step register.

Registers word[0]\Cache select 0 1
0 Keep previous value Keep previous value
1 Read payload line Read Cache Register

70

4.2 – Packet Builder

There is a total of six cases that have to be determined in this type of instruc-
tion, and to determine these cases we need the following input signals:

• Used lines equal to One

• Used Lines equal to Two

• Shift value equal to Zero

Used Lines equal to one or two means that a target packet is completely stored
inside only one or two lines of payload. Zero shift means the the shift value is
equal to zero, and therefore that the packet exactly begins at the beginning of the
first payload line it is stored in. Therefore, the first type instructions control six
different cases:

• All the needed payload bits are inside a new payload line, not in the Cache
Register

• All the needed payload bits are inside the Cache Register

• Part of the needed bits are inside the Cache Register, part come from a single
new line

• We need two new payload lines without the use of a Cache Register

• We need more than one new line with the use of the Cache Register

• We need more than two new payload lines without the use of a Cache Register

The first case happens when the packet is smaller than the memory line and
it is completely held inside the memory line; plus it means that it starts exactly
at the beginning of the corresponding line of payload. Therefore, the line inside
the Cache Register doesn’t hold the packet and the first step register has thus to
read the payload line. The Payload Reader has therefore to ask for a new line from
the payload frame and to store it both in the first step register and in the Cache
Register of the Payload Placer. The remaining step registers don’t have to store
any new line, and will hold their respective previous values. Since the packet ends
in this payload line, there aren’t going to be transitions to second type instruction
states, and the next state is going to be a first instruction state. The signals values
that determine this case are: Zero shift active, Used Lines equal one active and
Used Lines equal to two not active. The corresponding output signals are: Read
payload line, first step register read from payload, and all the other signals hold
the previous value. Table 4.1 contains the signal values for all the cases explained
in this subsection

71

4 – Implementation of the Packet Decoder components

The second case happens when the packet is completely held inside a payload
line and this payload line is already stored inside the Cache Register. This happens
each time the packet it is completely held inside exactly one memory line but it
doesn’t start at the beginning of the line of payload. In this case the cache already
contains the packet we are going to need and therefore we will not need a new line
of payload. The difference between this case and the previous one is that we do
not need a new payload line but instead we have to use the value inside the Cache
Register. Furthermore, the first step register will read from the Cache Register,
not from the payload line. As in the previous case, there is no transition to second
type of instructions states.

The third case happens when we have a packet that belongs to two lines, and
one of them is already inside the cache. This means that we cannot discard the
cache and that we need to ask for a payload line. The line asked is going into the
second step register only, the first step register is going to read the cache value.
The Cache Register is going to read the payload line, as every time the payload is
read the cache will automatically store the payload line read. Both the first and
the second step registers are enabled. As a packet is decoded in one clock cycle,
we do not need extra instructions of the second type.

The fourth case is the same as the first case, but with two lines of payload. The
packet starts exactly at the beginning of the payload line and it ends in the second
line of payload. This means that we are going to ask for a new payload, but the
first step register won’t read from the cache but from the payload line. Also we are
going to generate a second type instruction in the next clock cycle. It has to be
noticed that this case is equal to a case where a packet is placed inside more than
two lines, which is the sixth case listed, as the difference is that the next state is
going to be corresponding second type of instruction state different from N=2.

The fifth case happens when we have a packet that is partially held inside the
cache and the rest is distributed among more lines of payload. The cache is selected
as input for the first step register, and the payload is requested and stored inside
second step register. This means, as Case 3, that both the first and the second step
registers are enabled. The next state is going to be a second type instructions state.

We have to notice that in this state we handle also the Used Lines equal two
case. This may seem redundant as the second type of instruction handles all the
cases when Used Lines is greater than one. There is also a state dedicated to the
Used Line equal two state. However the difference between the Used Lines equal
to two and the remaining number of Used Lines stands in the third case of the
ones listed above. In that specific case the Used Lines are equal to two, but the
payload line to ask is only one. This means that the packet is built in just a clock

72

4.2 – Packet Builder

Table 4.1. First type of instruction inputs and outputs

Case Inputs
Zshift Ule1 Ule2

C1 1 1 0
C2 0 1 0
C3 0 0 1
C4 1 0 1
C5 0 0 0
C6 1 0 0

Case Outputs
Payload read Cache select Registers word Valid packet Second type instruction

C1 1 0 1000 1 0
C2 0 1 1000 1 0
C3 1 1 1100 1 0
C4 1 0 1000 0 1
C5 1 1 1100 0 1
C6 1 0 1000 0 1

cycle, and thus it is a first type instruction. In case four instead, we have to go
to another state even if the Used Lines are two because we need another payload
line, just like with every other number of Used Lines.

4.2.5 Second type instructions
The second type instructions are needed after cases four, five and six of the first
type instruction. When this situation happens we have to deal with the states that
follow the first type instruction state until the packet is completely built.

The second type of instructions is represented in the state machine by all the
states except for the first, which is the one described above. All these cases behave
similarly: The state to go is determined by the number of lines the packet is
distributed in the frame (Used Lines), which is an input, and by the Zshift value.
As we have seen in the previous section, the Zshift value determines whether we
use two or one step registers in the first type instruction state. Therefore, having
the Zshift line set means that the state number has to be Used lines minus 2,
otherwise the state number will be Used Lines minus 1. The register word is going
to be incremented at each transaction. In the transaction from S0 to a generic
SN state, as explained in the previous subsection, the active register will be only
the first in the case Zshift is set, and the register to be activated in the following
transition has to be the second. Otherwise, both the first and the second registers
will be activated, and thus the register to be activated in the following transition

73

4 – Implementation of the Packet Decoder components

Figure 4.8. N state diagram

has to be the third, and so on for the next stages. This number is encoded with the
One-Hot encoding (4 is going to be 0001, 3 is going to be 0010 etc...). The valid
line is inactive, as the packet is completely built only if all the registers contain
their relative lines, and this happens only during the first type instruction state,
which is state S0. The payload frame has to be read and the next state is going
to be the N-1 state, where N is the number of the state. N = 0 means that the
next state is S0 which corresponds to a first type instruction. Figure 4.8 shows the
details of a generic N state. This diagram is not valid for the Smax(N) state and
the S1 state, as the Smax(N) state has only one input transition (only if Zshift is
set), and the S1 state has a different output transition as the packet is valid in the
final transition to the S0 state.

4.2.6 Packet Builder scenario
In this subsection is presented how the payload frame proposed in Chapter 2 is
processed by this component. Figure 4.9 shows the behaviour of the Payload Placer
and some output signal of the Build Sequencer. Each horizontal line represents one

74

4.2 – Packet Builder

clock cycle, the first clock cycle is at the top of the figure and the last clock cycle is
at the bottom of the figure. In this scenario the frame is supposed to start at the
beginning of the reported payload frame and to finish at the end of the reported
paylaod frame.

On top of Figure 4.9 is shown the payload frame. This frame, however, is not
temporally related to the built frame as there are clock cycles when the Packet
Builder doesn’t ask the payload frame any new line. On the figure above is re-
ported the temporal visualization of the content of the Payload Placer. On the
left of Figure 4.9 there is the Cache Register. We see that whenever the payload
request line is active, it automatically stores the input payload line. On the center
of the figure it is reported the content of the step registers. Only three of the four
registers are reported in Figure 4.9 (packet 5 can possibly be stored on four payload
lines) as in this frame the fourth step register is never used and thus it is redundant
to show it on Figure 4.9. On the right there are reported some signals generated
by the Build Sequencer, and on the foremost right are reported the cases of the
Build Sequencer. It has to be noticed that the payload request value is correct for
every case, but since in the pipeline of the circuit the Payload Reader is one stage
before the Payload Placer, the payload request happens one cycle before it is re-
ported on the relative line. Instead, since the payload request line also controls the
input multiplexer of the Cache Register, the Cache Register is enabled in the same
clock cycle the payload request line is reported. It is also reported which packet is
built whenever a built line is valid. If a step register is disabled, the rectangle is
reported as white. It means that it holds the value held in the previous clock cycle.

In this scenario proposed in Figure 4.9 there are reported four out of six cases
of the first type instruction and one second type instruction. The first line is a
case 1 of the first type instruction. The packet to be built is packet 1 and it be-
gins exactly at the beginning of the payload line. This means that Ule1 = 1 and
Zshift = 1. The payload is requested, and the line is therefore automatically put
in the Cache Register and also in the first step register. All the other registers are
disabled. The packet is valid and thus sent to the Packet Shifter.

The second line is instead a case 3 of the first type instruction. In this case the
packet is partially hold in the Cache Register and partially on the next payload.
This means that a payload line is requested, and then put both in the Cache Reg-
ister and in the second step register. The first step register instead reads from the
Cache Register. The packet is valid.

The third line is a case 2 of the first type instruction. Since packet 3 is com-
pletely held inside the Cache Register, there is no need to ask for a new payload
line. The first step register reads from the Cache Register and the built line is valid.

75

4 – Implementation of the Packet Decoder components

Figure 4.9. Packet Builder scenario

The fifth line is a case 5 of the first type instruction. The packet 5 is held in
three different lines, and part of the packet is inside the Cache Register. What
happens is that the first step register reads from the Cache Register, the second
step register and the Cache Register read the payload line, and there is a transition
to a second type instruction state, which referring to Figure 4.7 would be S1. The
output is therefore not valid.

The sixth line is a second type instruction, and in particular is the transition
from S1 to S0. This means that the third step register stores the payload line, the

76

4.2 – Packet Builder

payload is read and therefore also the Cache Register stores the payload line. The
packet is valid and it is the packet number 5. All the other lines are cases of the
one previously listed, so they are not reported.

If we compare Figure 4.9 to to Figure 3.2, there are some differences. The first
difference is that not all the registers are always full of valid data. For instance
in the first line of the step registers of Figure 4.9 only the first step register holds
useful data. Figure 4.9 also is more accurate than Figure 3.2 as there are reported
also clock cycles with invalid data and clock cycles with repeated lines referring
to different packets. It also may seem that there isn’t any coarse grained shift,
but in reality it happens each time the first step register reads from the Cache
Register (except after case 2 and case 1). In this scenario it happens six times.
The main difference here is that the packets are built in a reverse order from the
coarse grained shift. Instead of shifting payload lines from the right to the left, the
packets are built from the left to the right and the lines are eventually shifted only
at the end of the building of a packet.

4.2.7 Instruction Computer interface
While in the Payload Reader we have addressed the interface with the payload
frame, The Build sequencer also interfaces with the Instruction Computer. The
Build Sequencer component requires a series of data related with each packet being
decoded. These data are computed outside the Build Sequencer in order not to
slow down the execution, as it would cost too much in terms of performance if they
were obtained inside the Build Sequencer itself. The information required includes

• Used Lines

• Used Lines equal to one.

• Used Lines equal to two.

• Packet starts at the beginning of the memory line

• Packet length is equal to zero

Used Lines describes the number of memory lines the packet is spread over. If
it ends or begins at the exact end of a line, the final or beginning line counts as
one. This information is needed in order to determine to which state the machine
has to transition. It has also to be computed when the used lines are equal to
one or two as this influences the way we use the cache and also the way we switch
between first and second type of instructions. We also have to know whether the
packet starts at the beginning of the memory line, as this influences the way we use
the Cache Register. The case when the packet length is equal to zero is needed in

77

4 – Implementation of the Packet Decoder components

order to produce a useless instruction. It could be computed also inside the Build
Sequencer, but it was preferred not to do it in order to keep the design simple.
All this information is provided by the Instruction Computer. As this component
will behave as all the others using the the flow control technique, the data arriving
can be valid or invalid and the Build Sequencer can stop the Instruction Computer
with a stall line if it cannot take any new instruction.

4.2.8 Flow control management
This component has by three pipeline stages: one for the Build Sequencer, one
for the Payload Reader, and one for the Payload Placer. As with every other
component, the flow control technique is implemented by means of stall lines and
valid lines. In this case, the component has an incoming stall line from the Packet
Shifter, a valid line coming from the payload frame and a valid line coming from
the Instruction Computer. It also has to signal the stall to the payload frame and
to the Instruction Computer.

By implementing the streaming architecture, this component complies with its
specification. It’s optimized through pipelining, every feedback is kept inside a
pipeline stage (in this case it is the Build Sequencer) and the flow control is also
implemented. In this case, it uses an elastic approach. If a stall occurs, each
pipeline stage checks whether the incoming line is valid or not. If it is valid it
processes and stores the value. Otherwise it discards it and it will not signal a
stall until a valid line occurs. The concept is the same already explained inside
the Packet Shifter section: the registers are enabled if the stall line is not active
and all the previous stages don’t signal any stall and if the line being processed is
not valid. This means that each component has to provide to the next the validity
of its output. In the case of the Payload Reader, which has two input interfaces
the output stall signals are treated independently. The one going to the payload
frame signals a stall if the Payload Reader’s register has a valid payload line and if
the Payload Placer is signalling a stall. The stall line going to the Build Sequencer
set active if the stall line coming from the Payload Placer is active and if the
instruction coming from the Build Sequencer is valid (control signals, shift value
and packet’s length value). This means that the Build Sequencer has to signal the
validity of each instruction computed as well.

In the Build Sequencer the flow control is treated independently from the finite
state machine described above, as mixing both would complicate the design. It is
instead made as simple as in the other two stages: if the stall line coming from
the Payload Reader is active, the Build Sequencer generates the same instruction
of the previous state and signals the stall to the Instruction Computer. If the

78

4.3 – Instruction Computer

incoming line from the Instruction Computer is not valid, if the Build Sequencer
is in S0, it performs a transition to S0 where it doesn’t ask for payload lines but
it asks only for Instruction Computer lines and disables all the step registers. If
it is not in state S0 and an invalid line from the Instruction Computer occurs,
it will continue the transitions down to S0 as it doesn’t need any line from the
Instruction Computer. In all the other cases, when the Build Sequencer is in S0,
it keeps asking for instructions to the Instruction Computer.

4.3 Instruction Computer
In the previous sections we have seen how the packets coming from the memory
have to be decoded. However, both the Packet Builder and the Packet Shifter
need some additional information to work. This information has to be provided at
execution time otherwise the whole system cannot work. The information needed
by the remaining parts of the system includes

• Build instruction information for the Packet Builder: Used Lines, Used Lines
equal to one and two, when a packet begins or ends at the beginning of the
memory line, when a packet length is equal to zero

• Effective shift values: the number of bits each packet built by the Packet
Builder has to be shifted by the Packet Shifter

• Header: the FPGA internal memory requires information about the length
of each packet

This information has to be given to both the Packet Builder and the Packet Shifter
in one way or another. As this information is not directly related to the lines of
packets, it has to be extracted from the lines of headers. In Section 3.1 we have
explained that payload lines and header lines can be treated independently. This
means that the header lines will be sent to the system in a way that is exactly
equal to the way we send lines of payloads to the system. This means that we have
to treat these data as if they where coming from a FIFO memory, and thus that
we have to keep the streaming architecture concept of flow control, pipelining, and
loop reduction. Also performance optimization and portability are required.

4.3.1 Information analysis
There is more than one way to achieve this result. In Section 2.6, we arrived to a
configuration of the encoded data where we have both lines of payload and lines
of headers. The information to be provided to the components described above
is directly obtained from the headers or by elaborating the information inside the

79

4 – Implementation of the Packet Decoder components

headers. There are, therefore, two ways to go to define the contents of the head-
ers. One is to directly decode the information encoded inside the header into the
required format. Another way is to store inside the headers partial data about the
packets and then to transform them into the required information.

The first approach may seem the simplest one, as the only thing to do is to
encode the headers to keep them compact and to decode each one of them in the
relative build instruction information and effective shift and header. This, how-
ever, is an impossible design. While some kind of encoding-decoding of the header
is required to optimize the size the headers are going to occupy inside the memory,
both the effective shift and the build instruction information haven’t a one-to-one
relationship to the corresponding packet.

Let’s start with the effective shift which is the value the Packet Shifter needs
in order to shift correctly the built packet. In this case, we assume a bus width
equal to a power of two. In this way, the effective shift value is exactly equal to the
corresponding unsigned value, as explained in Section 4.1.3. If we take a series of
built packets like the one shown in the bottom part of Figure 3.2, we notice that
each packet needs to be shifted a value that doesn’t depend on the packet itself,
but on the previous sequence of packets. The shift value to be computed is equal to

Shift value = (Length of the previous packet + Previous shift value)

mod Bus width

Symbols are assigned to each value in order to make a more compact formula:
Xi = shifted value referring to packet number i; Li = length of the i packet ; B =
bus width. Therefore the equation is going to be the recursive formula shown in
4.6

Xi = (Li−1 + Xi−1) mod B (4.6)

Since the first packet starts at the beginning of the line the initial condition is

X0 = 0 (4.7)

As it can be seen the shift value does not depend directly to the related packet,
but it depends on the payload frame. We cannot decode directly this value from
the relative header because as we have explained in Section 2.6 we cannot hold all
the information about the sequence of the packets inside the FPGA as it would
require too much area. Instead, what we get from the header frame is a series
of headers, that we assume that report the length of each packet. Equation 4.6
could be optimized if we would have an ordered sequence of packets, but this is
not the case. We have to grant that our system works for any random sequence of
packets that have lengths belonging to the configuration file shown in Section 3.4.

80

4.3 – Instruction Computer

This fact has been explained in Section 3.1: while the packets on average decrease
in size in the frame due to the structure of the unstructured meshes, we cannot
assume that all the frame is ordered in terms of packet lengths.

The same concept is applied to the Used Lines value. We cannot directly
compute how many lines a packet will occupy, since we have to assume that a
packet can start in any position in a memory line. By looking at the payload
frame we can see that each packet will be stored into different lines depending on
the length of the single packet, on the number of bits between the beginning of the
packet and the beginning of the line, and on the width of the memory bus. If we
look at the bottom part of Figure 3.2, we see that the number of lines the packet
2 is stored in is more than one even if its length is smaller than the width of the
memory bus. It is stored inside two lines of payload. Packet 1 is instead stored
inside only one line of payload as it exactly begins at the beginning of the frame.
Overall the formula describing the behaviour of this value is:

Ui = çXi + Li

B
è (4.8)

Ui refers to the number of used lines. The approximation is by excess as each
packet, even a zero length packet, is stored inside at least one memory line. This
component is therefore going to compute these values starting from data that have
a one-to-one correspondence to each packet and that will be decoded from the
header values. These values will be determined at the end of the next section.

4.3.2 Equation optimization
The core point of this design is that it has to be optimized in terms of performance.
This concept applies as well for this component, and while, in theory, we could just
use the formulas declared in the previous subsection, this would necessary lead to
reductions in performance as the direct implementation of the equations shown
above doesn’t lead to the use of simple multiplexers or logic gates, but instead
it leads to the use of mathematical operators, which are more complex and time
consuming. The previous equations have therefore to be transformed in a way that
they don’t include complex operations, so the optimization by means of pipelining
can be achieved in a simple way.

Equation 4.6 shows how the shift value has to be computed. We can see that
there are some problems related to this formula. First of all, it is recursive. This
implies that a loop is needed in order to compute this value, as each recursive
algorithm can have an iterative implementation. This is contrary to the paradigms
of the streaming architecture. However since this algorithm is necessary to our
design, we have to be sure that a complete iteration is performed within two stages

81

4 – Implementation of the Packet Decoder components

of the pipeline. The second problem is that there is division in Equation 4.6. The
division is a very expensive operation, as it would have to be implemented di-
rectly on the FPGA using LUTs and FFs, leading to a large area and long delays.
This two problems come from the data we are using as starting point to compute
Equation 4.6. While the loop is unavoidable, the use of the division can be avoided.

The core change from the Equation 4.6 is to eliminate the division from the
algorithm. This means instead of getting the length of each packet from the head-
ers, we decode directly from the headers the result of a division. In this way the
division is not performed on the FPGA but on the host computer at configuration
time. Instead of providing only the value about the length of each packet we are
going to give to the FPGA the value regarding Li mod B. With this value avail-
able we can compute again the Xi value. Equation 4.6 thus becomes Equation 4.9.
Their equivalence is demonstrated in Appendix A.1

Xi = (Li−1 mod B + Xi−1 mod B) mod B (4.9)

We still have two module operations, that would look like a worsening of the
problem. However, this two module operations will result to be redundant or
easily to compute. The Xi mod B operation is in fact redundant, as the Xi value
is always less than B. This fact is granted by the behaviour of the Packet Builder.
It grants that each packet built begins in the first line of the extended register, as
it performs a coarse grained shift on each packet larger than B. This is explained
in Section 3.1, and the reason it performs it is also to simplify this algorithm. So
since Xi is always less than B

0 ≤ X mod B < B ∀X ∈ N, B ∈ N − {0} (4.10)

Th validity of the above inequality is demonstrated in Appendix A.2 Equation 4.9
becomes

Xi = (Li−1 mod B + Xi−1) mod B (4.11)

The second module operation has to be performed, as the sum of Li mod B +
Xi can be more than the B itself. However, it can be computed avoiding the
use of a divisor and it will be transformed into an algorithm that will use only
adders/subtractors and multiplexers. Equation 4.12 is composed by the two terms:
Li−1 mod B and Xi−1. This two terms are by the property of the module opera-
tion shown in Inequality 4.10 always less than B. This means that

Li−1 mod B + Xi−1 < [max (Li−1 mod B)] + [max Xi−1] = 2B (4.12)

Since the module operation doesn’t depend on the quotient of the division but on
the product of the dividend and the approximation by defect of the quotient (see
A.1) this means that the module operation can be written as a simple subtraction

82

4.3 – Instruction Computer

between the dividend and a multiple of the divisor if we know in which range the
dividend is

A mod B = A − kB

if kB < A < (k + 1)B
∀A ∈ N, B ∈ N − {0}, k ∈ N

This equivalence is demonstrated in Appendix A.3. Since we know that the divi-
dend is inside a range that is exactly [0; 2B[we can perform the operation of the
module by using multiplexers and subtractors as Equation 4.11 can only result into
two different cases: If

Li−1 mod B + Xi−1 < B

the result is equal to
Xi = Li−1 mod B + Xi−1

Otherwise it is going to be

Xi = Li−1 mod B + Xi−1 − B

Therefore we can have the solution in terms of Li mod B without using any mul-
tiplication or division. The solution to this problem is therefore

Xi =


Li−1 mod B + Xi−1 if Li−1 mod B + Xi−1 < B

Li−1 mod B + Xi−1 − B if Li−1 mod B + Xi−1 ≥ B

0 if i = 0
(4.13)

In this way we can solve the problem only using adders, subtractors and multi-
plexers since the values Li mod B are given by the host computer at configuration
time as they have a one-to-one correspondence with the length of the packets. A
problem that arises from this version of the equation is that we have to perform
a comparison between Li−1 mod B + Xi−1 and B. This may seem an expensive
operation, but in reality there is a simple way to do this comparison, as it is ex-
plained next.

The value Xi is an integer unsigned number as it is always greater or equal to
0. This value can be used directly by the Packet Shifter only if the bus has a width
equal to a power of two. In all the other cases, we have to transform this value in
order to make it compatible with the design of the shifter, that has an additional
stage that can shift the value shown in Equation 4.3. The way to go to transform
the unsigned value of Xi to a value that can be used by the Packet Shifter starts
form the Subtraction 4.3. We have a stage of the shifter that can only perform a
single shift equal to

B − 2ålog2 Bæ (4.14)

83

4 – Implementation of the Packet Decoder components

while the remaining part of the shifter can perform any shift in the range

0 ≤ x < 2ålog2 Bæ (4.15)

For simplicity we are going to call k to the value 2ålog2 Bæ. So there are two possi-
bilities. The first oneis that x < k, in this case we have to use the part of the shifter
that can perform the shift inside the range shown in Equation 4.16; otherwise the
word has to be split in two different parts : k and x − k. This means that the k
value will be transmitted through a single line to the first stage of the shifter, and
the remaining part will communicate the additional shift to the bottom layers of
the shifter. The word that is composed by this two terms doesn’t represent the
Xi value in the form of an unsigned integer. Therefore the Xi value has to be
transformed into a new format.

The first layer of the shifter has been made to perform only a k shift, while
the remaining layers of the shifter have been made to perform the x − k shift.
Therefore, the Xi value computed in Equation 4.13 is transformed into a new word
that behaves like this

Xreali =
I

Xi if Xi − k < 0
Xi − k if Xi − k ≥ 0

(4.16)

Klinei =
I

0 if Xi − k < 0
1 if Xi − k ≥ 0

(4.17)

The width of the Xreali word is equal to ålog2 Bæ bits while the Klinei value only
has one bit. The k value will be computed once again at configuration time at the
host so we aren’t going to perform any base 2 logarithm operation in our system.

With these equations we have solved the problem of feeding correctly the Packet
Shifter. However the build instruction information still has to be sent to the
Packet Builder and therefore it has to be computed. We have to compute how
many payload lines does a packet occupy. This value has been already seen in
the previous subsection in Equation 4.8. Once again, we fall into the problem of
performing a division inside the FPGA. This is a problem that can also be avoided
in a similar way we did for the values needed by the shifter. In this case, we are
adding the additional information of

åLi

B
æ (4.18)

to the information to be decoded from the headers. This information will also
we computed at configuration time by a host computer, and therefore it isn’t a

84

4.3 – Instruction Computer

problem anymore. Equation 4.8 becomes Equation 4.21 since we are using an
approximation by defect. The module value of Li mod B is needed as

Li

B
= åLi

B
æ + Li mod B

B
(4.19)

Ui = çXi

B
+ åLi

B
æ + Li mod B

B
è (4.20)

Ui = çXi + Li mod B

B
è + åLi

B
æ (4.21)

This equation transforms into the next one since we are going to use an approxi-
mation by defect of the division in Equation 4.20 The problem now is how do we
compute the value of

Ji = çXi + Li mod B

B
è

This expression can take only three values: 1 in case Xi + Li mod B is less or
equal than B and 2 if Xi + Li mod B is greater than B, 0 if Xi + Li mod B is
equal to zero. Therefore, the value Ui translates into this equation:

Ui =


å Li

B æ if Xi + Li mod B = 0
å Li

B æ + 1 if 0 < Xi + Li mod B ≤ B

å Li

B æ + 2 if B < Xi + Li mod B < 2B

(4.22)

This can be easily achieved with the use of adders and multiplexers as the division
is already done by the computer at configuration time. The last information we
have to decode is the one required by the FPGA memory: the length of the packet.
Since we already have the quotient and the module of the length of the packet,
with the bus width we could obtain this value by computing

Li = åLi

B
æ ∗ B + Li mod B

However, this would imply the use of a multiplier that is considerably slower than
any other operator we are using inside this component. Since the length of a packet
has a one-to-one correspondence with the packet, each packet’s length is going to
be decoded directly from the header and then it will be forwarded to the next
components.

4.3.3 Implementation and schematic
The data needed by the Packet Shifter and by the Packet Builder are obtained
from with three different data :

85

4 – Implementation of the Packet Decoder components

• Li, or the length of each packet

• Li mod B, or the reminder of the division between the length of each packet
and the width of the memory bus

• å Li

B æ, or the quotient of the division between the length of each packet and
the width of the memory bus

These data are going to be processed in the way explained in the previous sub-
section in order to obtain the data required by the components. For the Packet
Builder :

• Ui, the number of memory lines packet i occupies

• Ui = 1, we need a line that tells when the used lines are equal to one

• Ui = 2, we need a line that tells when the used lines are equal to two

• Xi = 0, we also need to communicate when the shift value is equal to 0

• Li = 0, we finally need to communicate when the length of the packet is
equal to 0

For the Packet Shifter

• Xreali and Klinei, the Packet Shifter needs to know what kind of shift it
has to perform

For the FPGA memory

• Li, the FPGA memory needs to know the length of each packet as each
packet is presented in a line of bits greater or equal to the packet i length.

All these data have to be computed starting from the data listed at the beginning
of this section.

Let’s start with the most complex values that are Xreali and Klinei. In order
to compute these values, as explained in the previous section we need to compute
the Xi value, that is the actual shift, represented by an unsigned integer number,
to be performed by the Packet Shifter.

Xi is obtained using Equation 4.13. This equation is indeed easy to implement
without using complex elements that would slow down the computation. In fact,
we basically have to decide between two options; the i = 0 case is solved by the
reset signal. Since the reset signal sets all the registers to zero, the first Xi value
is going to be zero. We have to signal this by activating the valid line one clock

86

4.3 – Instruction Computer

cycle before our system is going to be fed with values. This approach also helps
us for the remaining part of this computation, since we do need to compute the
Xi value based on the previous values (Li−1 mod B and Xi−1) by simply setting
the valid bit one clock cycle before we grant that the sequence is correct from the
beginning, and we do not have to insert stalls in this part.

Figure 4.10. Non-optimized and optimized circuit to obtain Xi

Figure 4.10 shows the DFG related to this part. Firstly we compute Li−1 − B.
Then we make two additions in parallel, one is Li−1 − B + Xi−1 and the other is
Li−1 + Xi−1. In order to decide which one is the correct one for the actual value
we have to see if Li−1 + Xi−1 is less than B or not. The simplest way to decide
this is to look at the Li−1 − B + Xi−1 addition. If this sum is less than zero the
most significant bit of the result is going to be 1, as the result will be negative since
signed numbers are represented on a Two’s Complement representation. This bit
line is going to be inserted inside a multiplexer that consequently will choose which
result is the correct one. This means that we need to perform this operation on a
word that is going to be one bit larger than the actual unsigned result.

As we can clearly see there is a loop in this operation. This is an unavoidable
loop, as this operation is recursive. However this isn’t a problem as long as we do
not insert any pipeline stage inside the loop, as explained in Section 2.4 Without
any optimization the critical path of this operation, is the one that goes through

87

4 – Implementation of the Packet Decoder components

the subtractor, adder and multiplexer. This can be optimized as the subtraction
operation can be done before the loop itself. In this way we reduce the loop to
just two adders in parallel and a multiplexer. Figure 4.10 shows on the right the
optimized version of this part of the component that computes Xi

Figure 4.11. Non-optimized and optimized circuit to obtain Xreali and Klinei

The next circuit is the one that computes Xreali. The Packet Shifter needs
a particular format for the shift value. as explained in Equations 4.16 and 4.17.
We have a line that tells the shifter to shift by k and the remaining lines will tell
to the shifter to perform a shift in the range described in Equation 4.16; This is
simply achieved by subtracting to the Xi vaule the k value. If the result is greater
than zero, this data will be put in the Xreali line, and the Klinei is set active.
Otherwise, the Klinei is going to be 0 and the Xreali line is going to be Xi.
Figure 4.11 shows on the left the DAG corresponding to this operation. As we
see we still represent the result of the subtraction with one additional bit, as we
need the most significant bit (msb) of the result to control the multiplexer, as it
represents whether the result is greater than zero or not. This circuit doesn’t have
any loop and therefore is described by a DAG. We can optimize this design more
easily than the previous one by just adding pipeline stages between each operator.
This is implemented on the right part of Figure 4.11

The last computations to be performed are the ones related to the Ui value.

88

4.3 – Instruction Computer

Figure 4.12. Non-optimized and optimized circuit to obtain Ui

The way to compute this value is shown by Equation 4.22. Since the å Li

B æ value
is provided by the Header Decoder, the computation of the Ui value is simple.
Figure 4.12 shows on the left the circuit that computes this value, and on the
right the optimized pipelined version of the same circuit. The way this circuit is
made stems from the analysis of Equation 4.22. In Equation 4.22 we have three
distinct cases which lead to three distinct results. The way to go to implement this
three conditions is to use a three to one multiplexer. A three to one multiplexer
has to be controlled by two control lines. In Figure 4.12 we can see that we have
two cascaded multiplexers, one with as input a 0 and the output of the previous
multiplexer, and the other with as inputs the numbers 2 and 1 represented as un-
signed integers. Those values will be then added through an adder to the å Li

B æ
value. The way we have to compute the values of the lines controlling the two
multiplexers is explained in the conditions of Equation 4.22. The first condition
to be met is that when the value Xi + Li mod B is equal 0, then the output of
the multiplexer has to be zero. This value is composed by two terms, Xi and Li

mod B. If both those two values are equal to zero, then the result has to be zero

89

4 – Implementation of the Packet Decoder components

as well. We can check if the first term is zero by doing an equality check to the Xi

value. We can see instead if the Li mod B is equal to zero by doing an equality
check to the Xi+1 value. If this value, which is the Xi value for the next packet, is
equal to zero means that the packet ends exactly at the end of a memory line, and
thus that also the Li mod B value is also equal to 0. By joining this two values
with an AND gate we can control the second multiplexer shown in Figure 4.12 and
thus accomplish the first term of Equation 4.22. In the remaining cases we have
to check whether Xi + Li mod B is less or equal than B. The line that tells us
if Xi + Li mod B is less than B is the MSB signal of the adder in the loop that
performs the Xi +Li mod B −B sum. This has already been used inside the loop
multiplexer. It is set to 1 when the result is less than zero, and it is set to 0 if
the result is greater or equal than zero. It has to be noticed that the adder inside
the loop actually computes the Xi−1 + Li−1 mod B − B, so the MSB line has to
skip a pipeline stage to represent the MSB of the Xi + Li mod B − B addition.
Since the Equation 4.22 tells that the input of the adder has to be one in the case
that Xi + Li mod B is lesser or equal than B, we have to add to this signal the
case when the Xi + Li mod B is equal to B. This happen in the following case:
The packet ends exactly at the end of a memory line, but it doesn’t begin at the
beginning of a memory line. Thus the correct way to pilot the multiplexer is to use
an OR gate between the equality check of the Xi+1 value and the MSB value. If
the result is 1 the multiplexer will select 1, otherwise it will select 2. This is shown
in Figure 4.12 which shows on the left the DAG and on the right the optimized
version of the circuit.

Figure 4.13. Ule1, Ule2, Zlen and Zshift computing

We further have to tell to the Packet Shifter when Ui is equal to 1 and when Ui

is equal to 2, and also when the packet’s length is equal to 0. This is performed in a
different pipeline stage as we need the result of Ui to determine these values. There

90

4.3 – Instruction Computer

are specific operators to perform the equality check, that is as computationally
expensive as a subtraction. All these operations are performed in parallel in the
same pipeline stage as shown in Figure 4.13

4.3.4 Complete component and critical path
The previous section has shown all the parts of this component. By joining them
appropriately we obtain the component shown in Figure 4.14. We see that it has a
fixed number of seven pipeline stages. In order to know which is the critical path
of this component we have to analyze all the combinational circuits between two
pipeline stages.

The first stage is the subtractor for the Xi computation. This value will have a
delay that depends on the number of bits of the subtractor. This is valid for ripple
carry adders, that may or may not be the way this operators is implemented in
the FPGA. The first subtractor has

W1 = çlog2 Bè + 1

bits as it depends on the value B. The next adders are the ones inside the loop.
Both have the same width of the previous subtractor, so they will perform at the
same speed. The adder on the left is going to have one bit less as it doesn’t need
to know the sign of the result. The multiplexer delay has to be added, as the last
bit of the adder on the right is the select line of the multiplexer. The multiplexer
is implemented with W1 LUTs in parallel, so the critical path of this stage is the
delay of one W1 adder plus the multiplexer delay. It happens that in no other part
of the circuit there is a longer path. Examining the other components, for example
the adder that computes the Ui value, it has

W2 = çlog2 çLmax

B
èè + 1

bits,which may or may not be smaller than the first subtractor. Since the equality
checkers at the bottom use this same number of bits but have a more optimized
circuit, they are going to be more efficient and won’t be part of the critical path.
The equality checkers for the Zero shift are going to have the same number of bits
than Xi, which is W1 − 1, and for the same reason are going to be more efficient
than the adders inside the loop.

The way flow control is implemented is rigid. We see that the stall line goes
up to the previous component and stalls at the same time all the registers. This
implementation has been chosen because this component doesn’t allows invalid
lines, as each invalid incoming header is discarded. In this way, it takes seven clock

91

4 – Implementation of the Packet Decoder components

Figure 4.14. Complete Instruction Computer

92

4.3 – Instruction Computer

cycles for the Instruction Computer to provide useful information. This may be
a problem, but it happens only once at the beginning of each frame, so it can be
tolerated. The invalid headers have to be discarded necessarily, as an incorrect Li

mod B value would create an invalid Xi value and thus would cause the system to
malfunction.

93

4 – Implementation of the Packet Decoder components

4.4 Header Decoder
In the previous section, the Instruction Computer obtained all the information
required by the Packet Shifter and by the Packet Builder starting from three values:

• Li, the length of each packet

• Li mod B, the reminder of the division between the length of each packet
and the width of the memory port

• å Li

B æ, the quotient of the division between the length of each packet and the
width of the memory port

These values have to arrive somehow to the Instruction Computer. This depends
on the way we encode the data in the external memory and on the way we write
the configuration program, since we are not going to compute any division on the
FPGA.

In Section 2.6 we have seen some ways to encode the data packets. We arrived
to the conclusion that we need to transfer headers of packets to the system if we do
not want to have a huge memory space in the FPGA holding all the Ui and Xi val-
ues. These headers have a one-to-one relationship with every kind of packet, as we
do know that packets can only have some predetermined lengths. This one-to-one
relationship applies also to the data the Instruction Computer needs. These data
are therefore provided during the transmission of the data frame. By the way the
header frame is made, header data has to be stored on the FPGA and consequently
decoded into the desired format. The purpose of this component is to store and
decode the headers. As it is a component of the Packet Decoder it has to support
the streaming architecture. This means it will support flow control, loop reduction
and optimization through pipelining.

In Section 2.6 we have seen some of the problems arising from the use of head-
ers inside the encoding. This problems happen mainly because our decoder has
to distinguish which line is a header and which line isn’t. It has been chosen to
adopt the approach with lines of headers and lines of payloads also due to the
simplicity and easy adaptation to the streaming architecture. We have chosen this
approach mainly because this component. With lines of headers this component
is easily adapted to the streaming architecture. When a line of header arrives, a
FIFO component gets filled with all the headers of a header line, one header per
every FIFO stage. In this way we can read the headers in a fast and efficient way.

The key point of this component is that it will expect from the memory a header
line only when it has no headers left inside the FIFO component, and therefore it

94

4.4 – Header Decoder

will not expect header lines at each clock cycle as it can hold this many headers:

H = åHeader width

Bus width
æ

This actually means that we have to grant that the size of the headers is the
smallest possible, as the bigger is the header dimension, the more frequently this
component is going to expect headers from the memory, thus interrupting the flow
of payload lines to the Packet Builder. This would translate into less performance
of the Packet Decoder.

The way this component is related to the encoding depends on the way header
lines are stored in the frame. If we do perfectly anticipate when our header reg-
ister is going to be empty, then we do not need even have to distinguish between
payload and headers lines, as we would rely on the capability of the frame encoder
to ensure that when we need a line of headers the line coming from memory is
going to be a header line. This, however, is hard to predict as this component
doesn’t behave in a fully predictable way. What we can know is an approximate
timing of the header lines. For example, we can say that a packet that will use
three lines of payload will at least require tree clock cycles to be computed. This,
however, isn’t necessarily true as it depends on where the packet will start and end
inside the lines of payload. Furthermore, the header has to be processed by the
Instruction Computer, and this makes the predictability more complicated and less
deterministic. We have to grant a small flexibility in this terms to our component.

The solution adopted to address this problem consists to simply use a bit line
of the bus to distinguish between payload lines and headers lines. This will reduce
the width of the bus, and since it is the bottleneck of the system this solution isn’t
considered optimal in our case. However, this way is the most simple and effective
because if the Header Decoder runs out of valid headers it will wait until a header
line appear in the bus and when this happens it can easily read it as it is signaled
by a bit. The system can still continue to work for at least five clock cycles after
the Header FIFO is empty, as the Instruction Computer is still filled with valid
headers (the first two stages of the Instruction Computer will stall if an invalid
header arrives). This means that in the frame encoding, in the case H is greater
or equal to 7, we have to ensure that the first line of the data line is a header
line, the second header line is placed after H − 7 packets and before H − 2 packets
and that every other line of headers has to be placed exactly after H packets and
before H + 5 packets. In the case H is less than 7 we need a sequence of ç 7

H è lines
of headers at he beginning of the data frame, and the next line of header should
be placed after 7 + 7 mod H packets and before 12 + 7 mod H packets. For the
header lines after the ç 7

H è + 1 header line, the behaviour in the case H is less than
7 is the same as if H is greater than 7.

95

4 – Implementation of the Packet Decoder components

In the case a header line is placed after the higher limit of number of packets,
the Packet Builder will stop requesting payload lines and it is impossible to replen-
ish the header decoder with new headers, interrupting the Packet Decoder without
possibility to recover before the end of the data frame. In the case a header line
is placed before the lower limit of number of packets, at least one header will be
discarded from the FIFO and so the Instruction Computer will fail to process the
Xi value and consequently the whole decoding process will fail. If the header line
isn’t placed exactly when the Header FIFO is empty but still before the five pack-
ets limit there are going to be a number of clock cycles of invalid headers (which
translate into a series of invalid packets sent to the FPGA) equal to the number of
packets between the Hth packet and the line of headers. Overall a correct sequence
of Header line would be: header line in the first data line, header line after H − 2
packets, all the other header lines H packets after the previous header line. In this
case there wouldn’t be stalls and it also would be possible to remove the extra bit
as it would be possible to determine the exact clock cycle when the Header decoder
has to read the data frame.

This component has to interface with the memory and the Instruction Com-
puter using the flow control technique. This means that this component will have a
stall line going to the memory and a valid line coming from the memory, a stall line
coming from the Instruction Computer and a valid line going to the Instruction
Computer. The valid line coming from the memory for this component is the extra
bit inside the frame. The stall line has instead to be computed and then merged
with an OR gate to the payload request signal coming from the Packet Builder.
The stall signal has to be generated by this component, and it is equal to the valid
bit going to the Instruction Computer. There are more approaches to generate the
stall signal. One approach consists of filling the FIFO with ones or zeros as every
header is sent to the Instruction Computer. When all the FIFO is filled with the
respective number, it will signal the memory that it is ready to accept a new line
of headers, thus setting the stall line to not active. This is a simple and reliable
way to perform this control action, however it has a drawback, that is that we need
to reserve a header case, that is or all zero headers or all one headers. This is not
a problem unless the number of possible packet lengths is exactly a power of two.
In this case, the header is going to be one bit larger and thus the perfomance will
lower. Another way, that is the way we adopted, is to use a countdown counter.
This counter is set to the H value whenever it is replenished with headers, and
each time the Instruction Computer will ask for a header, the counter will decrease.
When the counter reaches zero, this component will both signal the memory that
we are ready to accept a new header line, and both the Instruction Computer that
now until the Header Decoder is replenished the headers will not be valid. Fur-
thermore, the stall signal coming from the Instruction Computer will also stall this

96

4.4 – Header Decoder

component in a rigid way and it will also affect the stall signal going to the memory.

In this way we have assured that this component actually behaves like all the
other components of the streaming architecture: it has flow control, no loops and
it is optimized. Figure 8.1 shows the implementation of the Header Decoder.

Figure 4.15. Header Decoder and decoder

The Header Decoder has also to perform the task to decode the headers into the
data required by the Instruction Computer. This happens because as previously
said the headers have to be encoded in order to optimize the header frame. This

97

4 – Implementation of the Packet Decoder components

task if performed by a small ROM memory. This memory is written during the
configuration of the Packet Decoder. This memory contains the Li value, the Li

mod B value and the å Li

B æ value for each possible length of the packets. This is
possible as the configuration file (see Section 3.4) holds all the possible lengths and
the memory port width. The way we fill the content of this memory is by using the
configuration program to compute all the requested values and to directly write
the VHDL file each time the configuration program is executed. In this way we
achieve the goal of computing all the divisions on the host.

4.5 Configuration program
The configuration program has two main tasks: to write the header decoder directly
on a VHDL file and to compute all the parameters necessary to the components
and write them on a VHDL packet file. The first task has been described in the
previous section. The program perform the Li mod B and å Li

B æ for every possi-
ble packet length inside the configuration program and writes the results on the
corresponding VHDL file in the form of unsigned binary numbers.

The second task the configuration program has to perform is to compute all
the parameters necessary to the components. These parameters are the width of
the ports of each component and of the Packet Decoder, the k value and the B
value for the Instruction Computer (see Subsection 4.3.3). However, most of the
port widths depend on some basic values. It is not necessary to compute all the
necessary widths, but it is necessary to compute and write only the basic values
from which the others can be computed in the VHDL during the compilation of
the design. As reported in Section 3.5, this part is necessary as in this way we
avoid that the user inserts incorrect generic values during the compilation of the
design.

The values necessary to be computed and written by the configuration program
are:

• The memory bus width, B.

• The maximum length of a packet, max(Li).

• The base 2 logarithm of the number of possible packet lengths.

• The maximum number of Used Lines, max(Ui).

• The base 2 logarithm of the memory bus width, k.

98

4.5 – Configuration program

The first parameter doesn’t need to be computed, as it is written inside the
configuration file. However, it is necessary for the design as the Packet Shifter,
the Packet Builder and also the Packet Decoder as module need this information.
The Instruction Computer also needs this information as an input for the first
subtractor (see Figure 4.14). The maximum length of a packet, together with
the bus width determine the width of the output port of the Packet Shifter and
of the Packet Decoder. The logarithm of the number of possible packet lengths
determines the width of the headers, which is necessary to determine the width
of the Header Decoder. The maximum number of Used Lines is necessary for the
Packet Builder as it determines the number of states of the Build Sequencer and
the number of step registers of the Payload Placer. The k value is requested by
the Instruction Computer to compute the Xreali and Klinei values and also by
the Packet Shifter to determine its number of stages.

99

100

Chapter 5

Testing and results

The system described in the previous chapter complies with the specifications pre-
sented in Chapter 2. In this chapter it is going to be described how the Packet
Decoder’s implementation has been tested and verified in order to check if the
design supports all the points addressed in the specifications. There are two main
tests to be performed: one is the functionality test, which is a logic verification of
the system. It ensures that our system works correctly in every possible scenario.
The second test is the area and performance test. This test has been performed to
provide an estimation of the performance and the resource utilization of the Packet
Decoder.

5.1 Functionality test analysis
The first test is the functionality test. The way to go to run this test is to pro-
duce testbenches which will provide the logical verification of the system. The
testbenches have the primary purpose to simulate the behaviour of the external
modules the Packet Decoder is going to interface with. This two modules are going
to be

• The external memory

• The FPGA memory

This two modules will be modeled, as explained in Chapter 3, as FIFO modules.
The external memory is going to hold the data frame in the format explained in
Chapter 2. The FPGA memory will consist of two FIFOs, one for packets and the
other for the packets lengths; both will have the same stall line and the same valid

101

5 – Testing and results

line.

With these testbenches we have to ensure that our system would work in every
possible scenario and with every possible frame. The user interface has two input
main parameters: the width of the bus and the number of possible lengths the
packets can have in the frame. All the possible cases to be tested are therefore
described as ranges of numbers for these values.

The core variable to be tested is the width of the bus. From this variable all
the components assume different behaviours. For example, the number of stages
of the Packet Shifter depends on the logarithm of this value, and therefore also
the Instruction Computer has to adapt to this configuration of the Packet Shifter.
The Packet Builder will change structure depending on the maximum Used Lines
value: the number of step registers inside the Payload Placer and the number of
states of the Build Sequencer depend on this number. The maximum Used Lines
value depends on the maximum length of a packet and on the width of the bus.
This value will not however produce drastic changes in the design. As explained in
Section 4.2.5, every state beyond the first two works in the same way. Therefore, it
is redundant to make a test for each one of those possible configurations. Instead
it is interesting to see how the design may change when the maximum number of
Used Lines is greater than two or less or equal to two. However, it is even more
important to create various frame scenarios to test the functionality of the Packet
Builder. The different possible lengths aren’t pivotal cases as in fact they will
mostly impact the Header Decoder, as the number of possible cases determines the
width of a header, and the port width of many components, just like the biggest
packet will determine the width of the Packet Shifter, and therefore also the width
of the Packet Builder. This, in a way, isn’t as problematic as the width of the bus,
since it doesn’t affect the Instruction Computer, or any particular control logic.

The testbenches have also to ensure that every frame generated from a single
configuration can be decoded correctly. In every frame there are possible corner
cases that will test both the Instruction Computer and the Packet Builder. This
corner cases depend strictly on the way the Packet Builder has been implemented
and also on the Instruction Computer.

The functionality testbenches have the purpose to ensure that the system works
for every possible memory port width and for every possible payload frame. To
achieve this goal we have decided to make tests for two cases in particular, as
there are two cases where the system is structured in a significantly different way
depending on the memory bus width. These cases are :

• Bus width equal to a power of two

• Bus width different from a power of two

102

5.1 – Functionality test analysis

The first case mostly influences both the Packet Shifter and the Instruction Com-
puter. The Packet Shifter in this case doesn’t have a first shifting stage as explained
in Section 4.1.3. Therefore, the Instruction Computer doesn’t have to compute the
Xreali value shown in Section 4.3.2, as it just has to forward the Xi value.

The generated testbenches provide the verification of the system for this bus
widths :

• Bus width equal to 44 bits

• Bus width equal to 128 bits

These values have been chosen because they represent two realistic port width sce-
narios of the FPGA’s port width. By looking at the IP cores of the FIFOs provided
by Quartus, these two values are inside the set of possibles port widths.

The other core parameters of these testbenches are: For the 44 bits port width
testbench

• Maximum packet length = 151 bits

• Number of possible packet lengths = 19

• Maximum Used Lines = 4

For the 128 bits port width testbench

• Maximum Packet length = 293

• Number of possible packet lengths = 19

• Maximum Used lines = 3

This data can be extrapolated from the configuration files, which are included in
Sections B.3 and B.4 of Appendix B, where the numbers are reported in hexadec-
imal format.

In order to simulate correctly the system we have to simulate the behaviour of
the external modules the Packet Decoder has to interface with, that is the external
memory and the FPGA memory As we are supporting the streaming architecture
concept, the way to represent these modules is to model them with FIFOs, as ex-
plained in Section 3.3. The first FIFO is the one containing the input frame, and
will have a data structure written inside as the one described in Chapter 2. The
FPGA memory, on the other hand, will have to get both the lengths of the packets
and the decoded packets, that should have a structure like the one shown at the

103

5 – Testing and results

bottom of Figure 3.3.

The results of the simulation are in Appendix B. Section B.1 shows the re-
sults for a simulation with a 44-bit port width; Section B.2 shows the results for
a simulation with a port width of 128 bits. As it can be seen, the input data are
encoded like shown in Chapter 2: each input line has an additional bit at the end
of the frame that tells the Packet Decoder whether the line is made of payload
data or header data. With payload data the final bit is equal to 1 and with header
data the final bit is equal to 0. The headers are encoded. Both testbenches have
header widths of five bits, (çlog219è = 5) The payload data are generated in a way
that is clearly detectable where a packet begins and where a packet ends. Each
packet starts with a sequence of three consecutive ones, and ends with a sequence
of a one and a zero. The in-between bits are all zeros. If we take a look at the
output of the simulations we see that each decoded packet begins with three ones,
and if we want to count the number of bits between the beginning and the end
of each packet, we see that it is always the number shown at the beginning of
the decoded packet, which stands for the packet length. This doesn’t apply for
0 length packets as the information necessary is already inside the packet length.
At the end of both frames there is a sequence of zero packets which stands for
the external limit of the mesh. The output width of each output frame is equal
to Maximum packet length + Memory port width − 1. In the first case is
44 + 151 − 1 = 194 bits. In the second case is 128 + 293 − 1 = 420 bits. The data
shown in the appendixes have been obtained with the VHDL textio package by
writing the content of the FIFO on a file at the end of the simulations. It has to
be noticed that the FIFOs gather lines only when the valid line is active.

If we look at the frame configurations of the two testbenches we see that there
are some corner cases taken into consideration. In the first frame, there is a packet
which starts exactly at the beginning of a new line. This packet stands inside two
lines of payload, and it is 82 bits long. This packet would stand inside case four
of the first type instruction of the Packet Builder. There are also packets smaller
than the memory line which stand on more than one payload line. In the 44 bits
frame this case is represented by the second packet, whose length is 18 bits. This
case is peculiar as the Instruction Computer will have to choose inside the loop a
Xi value coming from the Xi−1 + Li−1 − B adder. It is also representative of the
third case of the first instruction type in the Packet Builder. The second case of
the first instruction type in the Packet Builder is represented by the sixth packet
in the first frame, whose length is equal to 7. The fifth case of the first instruction
type of the Packet Builder is also represented inside the test frames by each packet
which extends over more than two payload lines. An example is the third packet
of the first frame, which extends ever three payload lines and it is 102 bits long.
This also goes inside the second type of instruction states as it is distributed on

104

5.1 – Functionality test analysis

more than two payload lines.

Figure 5.1 shows the result of the RTL simulation made with a memory port
width of 44 bits on Modelsim. We see that there are only three header lines, two
stalls, one lasts 8 clock cycles and another 7 clock cycles. Due to the elastic design
of the Packet Shifter, after the stalls there is a sequence of consecutive decoded
packets, that lasts exactly 7 clock cycles, the depth of the Packet Shifter. After
this sequence there is a sequence of large packets which take more time to be de-
coded. Overall there are 15 packets to be decoded and the total simulation lasts
141 clock cycles, from the end of the reset line to the last packet decoded. It is also
interesting to see that the request payload line isn’t always active. This happens
because the frame has a lot of cases where the packet spreads on more than three
lines of payload, thus going inside the second type of instruction of the Packet
Builder, where the payload request is not active. The payload request line func-
tions also as header request line. The frame decoded is shown in the Appendix B.1.

Figure 5.2 shows the result of the Instruction Computer loop for the same
simulation of the first 8 packets. The result of the operation is the top line of
the chronogram. The line below shows the result of the adder which performs
the Xi−1 + Li−1 addition and the third line shows the result of the adder which
performs the Xi−1 + Li−1 − B addition. The results of these operations are shown
as unsigned decimal numbers for the first line and as signed decimal numbers for
the second and third lines. By analyzing the payload frame of the 44-bit port
testbench, we can see that the results are correct. The first value is zero (not
shown), the second value is 27, which is equal to (0 + 72 mod 44), the third value
is equal to (27+18 mod 44−44) = 1, the fourth value is equal to(1+102 mod 44)
which is equal to 15 and so on. It is interesting to see that each time the third line
is less than zero, the result of the operation is the second line. Otherwise the result
is the third line itself. It is also interesting to notice than there are cases where the
first adder has a result higher than B -the second value in the chronogram- which
should be impossible by the structure of the Packet Builder. In this cases, the
other adder always has a positive number. This happens because the quantization
of the adder in this case is equal to çlog244è + 1 = 7 bits and this number of bits is
enough to represent signed decimal values up to 63. If we also compare the results
of the operation with the frame shown in Appendix B, if we count the bits from
the beginning of each line where a packet begins up to the beginning of the packet
we see that the result of the loop corresponds to the Xi value of the first 8 packets.

105

5 – Testing and results

Figure 5.1. Packet Decoder simulation for 44 bits bus

Figure 5.2. Loop simulation for the 44 bits bus

5.2 Performance and area tests
In the previous section, we have proven that this system works correctly in all
the corner cases of the inputs, and this ensures that the Packet Decoder complies
with the requirement of decoding the packets, being portable for multiple kinds of
FPGAs and functioning correctly for every possible frame.

What is also required from the specification is that the system is optimized in
terms of performance, and also that the amount of used resources isn’t too high.
In order to test the performance of the Packet Decoder, a timing analysis for a
specific FPGA has to be performed. In our case, we have chose the Stratix 10
FPGA, which is one of the two FPGAs where the Packet Decoder is going to be
implemented. The way to go for this test is to add, as in the previous test, two
FIFOs at the beginning and at the end of the system, but while in the previous test
the only purpose was to test the logical functionality, in this test there is a need
to consider the physical delays of every circuit. The synthesis and implementation
of the design on the FPGA are therefore also required.

The three FIFOs at the beginning and at the end of the system need to have
two different clocks for the input and the output. The input of the FPGA FIFO
and the output of the external memory FIFO have to have the same clock as
the memory decoder, while the output of the FPGA memory and the input of
the external memory FIFO have to be different from the one of the FPGA. To
grant this, after the generation of the clock we added a PLL that changes the fre-
quency of the clock, and then we connected the clocks to their correspondent ports.

106

5.2 – Performance and area tests

The synthesis and implementation also has an influence on the test, as depend-
ing on where the components are placed inside the FPGA, there may be some
additional delays in the system. Since the synthesis tool cannot be customized
completely for our system, what has been done is to set the syntheses tool for
maximum performance optimization. The width of the ports have been set to 44
bits at the input and 194 bits at the output for the first test, like in the one used in
the previous section. For the second test we used 128 bits at the input and 420 bits
at the output, once again like the case used in the previous section. The frequency
of the clock has been set to 800 MHz and 300 MHz for the input and output FIFOs.

The results are shown in Table 5.1. Inside the table it is reported the maxi-
mum clock frequency, in Megahertz, the critical path, the resources occupied by
each component and in total, in the form of ALUTs (Asynchronous Look-Up Ta-
bles) and LRs (Logic Registers). The ALUTs represent the combinational logic
resources, while the LRs represent the sequential logic resources. We firstly see
that our system has as critical path the stall line. This was predictable as it has
to go from the output FIFO straight up to the input FIFO passing through all
the logic gates to grant the elasticity of both the Packet Builder and the Packet
Shifter, plus the extra logic for joining the header and payload FIFO. The fre-
quency obtained is therfore higher for the smaller design, and lower for the bigger
design. Nevertheless, frequencies are above 400 MHZ in both cases. The resources
occupied by the modules are 1379 ALUTs and 1798 logic registers for the 44 bits
implementation and 3319 ALUTs and 4097 logic registers for the 128 bit imple-
mentation. Considering that a Stratix 10 GX 400 has 378000 logic elements [7],
the larger design with the 128 port width would occupy 0,878% of the overall logic
resources. As expected, the largest component is the Packet Shifter, followed by
the Packet Builder, and then the Header Decoder . The Instruction Computer is
the smallest component. In all components except the Instruction Computer the
components are larger in the 128-bit port design than in the 44-bit port design.
The decrease of used ALUTs in the Instruction Computer may happen due to the
fact that the maximum Li

B value is lower in the 128-bit port design than the 44-bit
port design.

By taking a look at Table 5.1 we can see that the resource occupation results
are consistent with the design. We see that the biggest component is the Packet
Shifter. From this component, we know that the width of each register in the case
of the 128-bit input port Packet Decoder is equal to the output port of the Packet
Decoder, which in this case is 420 bits. Since the Packet Shifter number of pipeline
stages is equal to log2B, in this case it is equal to 7. It is expected, therefore, to
have 7 registers of 420 bits each, occupying therefore at least 2940 logic elements,
which is very close to the results shown in the Table 5.1, which also includes the

107

5 – Testing and results

registers for the header and the valid bits. The same reasoning can be applied to
the Packet Builder, where the Payload Placer has an extended register of 128*3 =
384 bits, and the Payload Reader has a 128-bit width for the paylaod lines. The
Packet Builder should also occupy at least 512 Logic registers, without considering
the Build Sequencer and the flow control, the header and the shift value registers.
In fact, we see that the value for the Packet Builder is larger than the computed
value, making the Packet Builder the second largest component of the system.

Table 5.1. Performance evaluation and resource occupation of a 44 bits input
port width Packet Decoder and of a 128 bits input port width Packet Decoder

44 bits input port width 194 bits output port width
Maximum frequency 450,65 MHZ
Critical path Stall line
Component’s resources # of ALUTs % # of LRs %
Packet Builder 94 6,81% 364 20,24%
Packet Shifter 1170 84,84% 1233 68,57%
Instruction Computer 57 4,13% 147 8,17%
Header Decoder 56 4,06% 44 2,44%
Total 1379 100% 1798 100%

128 bits input port width 420 bits output port width
Maximum frequency 426,99 MHZ
Critical Path Stall line
Component’s resources # of ALUTs % # of LRs %
Packet Builder 180 5,42% 764 18,64%
Packet Shifter 2947 88,79% 3031 73,98%
Instruction Computer 47 1,41% 163 3,97%
Header Decoder 143 4,30% 139 3,39%
Total 3319 100% 4097 100%

Our final performance issue to consider is the actual gain that the approach
taken in the design of the Packet Decoder might provide. The common approach
for a high-performance implementation that has to deal with irregular data (vari-
able length packet in our case) is try to achieve a uniform processing of the irregular
data. In our case, this would translate into transforming the stream of irregular
packets into a stream where all packets have the same length, namely the length
of the largest irregular packet. This would allow uniform, and therefore, simple
processing of all packets.

108

5.2 – Performance and area tests

However, the Packet Decoder presented here targets specific applications (for
example CFD algorithms) whose FPGA implementation is clearly memory-bound.
This means that, despite a lot of processing has to be performed in the FPGA,
a deeply pipelined implementation supported by elastic interfaces will allow high
frequency clocks. Consequently, the bottleneck of the system is not the processing
in the FPGA, but rather the transfer of the data from external memory to the
FPGA. Thus the memory-bound descriptor for this type of applications.

In this context, transforming a stream of irregular data into a stream of uni-
form data packets has negative consequences in terms of performance, as the overall
computation time is basically determined by the time it takes to transfer data from
memory to the FPGA. This is why a novel approach has been taken in the design
of the Packet Decoder, where the whole design aims at dealing with streams of
irregular data packets.

In order to determine the gain provided by this novel approach, it is clear that
complete systems with irregular and regular data should be implemented so their
performance (including real stall cycles) could be computed for a relevant amount
of datasets. Naturally, this falls out the scope of this thesis. However, it is still
possible to have an estimation of such gain by considering basic analytic models of
both implementations.

Let’s consider frames with N packets decoded in the 44-bit and 128-bit imple-
mentations considered so far. If uniform length packets are forced, the maximum
packet lengths of 151 and 193 bit, respectively, must be considered. The simplest
uniform approach is to assume that a packet takes three cycles to be issued from
memory to the FPGA, as this is what it takes to send the largest packet in both
cases. So, assuming that decoding is simple and perfect and no stalls are chased
by the decoder, the time it takes to trim for and decode the frame can be approx-
imated to 3N cycles.

On the other hand, if the proposed implementation is evaluated, some assump-
tion must be made. First, as flow control supports elastic interfaces, it is assumed
that any stall caused by packets using more than one bus line are compensated
by situations where several packets fit in a single line, so overall the assumption
is that no stalls propagate to the inputs of the decoder. Therefore, the processing
time only depends on the length of the data frame. The second assumption relates
to the numbers of packets of each size considering the sizes listed in the configura-
tion files included in Appendix B which have the structure described in Section3.4.
Even though large sizes tend to be rare in a real CFD mesh, we consider the pes-
simistic approximation of considering that there is the same amount of packets of
each size. Since there are 19+1 (zero length) = 20 different sizes in both designs,

109

5 – Testing and results

there are N
20

19q
0

sizes bits. This value must be divided by the bus width (44 or 128)

to determine the cycles required to transfer and decode the frame. In particular,
for the 44-bit port width design, this value is 1095N

20∗44 = 1,24N and for the 128-bit
port width design is 2049N

20∗128 = 0,79N . Therefore, the proposed approach estimated
speedups are 2,42 and 3,80 respectively.

110

Chapter 6

Conclusions

6.1 Overall conclusions

This thesis has as main purposes to create a frame encoding capable of optimizing
the stream of packets of variable lengths, and to design a high performing Packet
Decoder capable of decoding the encoded frame. These two parts have to comply
with additional requirements: the frame has to be optimized, and has to provide
the decoder all the necessary information to decode the packets. The Packet De-
coder has to function for every possible frame, be high performing, be portable for
multiple FPGAs, it has to comply with the streaming architecture paradigms, and
doesn’t have to use excessive resources. An additional objective is to define clearly
the specification of the Packet Decoder and of all its components. All this points
have been proposed in Section 1.2.

The Frame design proposed in Chapter 2 complies with its main objectives,
which are the optimization of the density of the payload frame and the fast decod-
ing of the packets. The payload encoding is optimized so each packet inside the
paylaod lines begins exactly at the end of the previous packet. Therefore no bits
are wasted in this regard. The header encoding is also optimized so each header oc-
cupies Log2# of possible packet lengths bits thanks to the binary encoding. The
fast decoding of the packets is granted by the division of the payload and header
lines and by the additional bit in each line.

The decoder design also complies with its specification as demonstrated in the
previous chapter. It decodes every possible packet inside the values declared in the
configuration file. This means that the Packet Decoder can decode every possible
unstructured mesh. The Packet Decoder also grants high performance. This is

111

6 – Conclusions

shown in the previous chapter, as the versions with 128-bit input port and 44-bit
input port have maximum operating frequencies above 400 MHz. It does so using
limited resources, as these versions occupy only the 0,878% (128-bit input port)
and the 0,365% (44-bit input port) of the logic elements of a Stratix 10 GX 400.
The design has been made also portable for different bus widths. This is demon-
strated by the two tests made in the previous chapter, where we proved that the
system works for two different input port widths. The system also complies with
the streaming architecture. Each component has its flow control and there aren’t
any feedbacks between different pipeline stages. It is also deeply pipelined as for
the 128-bit input port version the design has 17 pipeline stages.

This system is, therefore, an example of how the FPGAs can be used to im-
plement high performance algorithms that process irregular data. The streaming
architecture for FPGAs has been proven to be effective for the decoding of packets
of variable lengths, and thus capable of accelerating CFD algorithms based on un-
structured meshes. We have seen how starting from a complex and fuzzy definition
of the problem we have slowly refined the specification and the requirements of this
system, and how from a problem related to fluid dynamics we have arrived to a
solution abstracted and related to general FPGA design and digital design. The
core problem of unstructured meshes, that is to process a mesh where every vertex
has a variable number of neighbouring vertices using FPGAs, requires the use of
a decoder capable of handling at high speed the data frame describing a mesh like
the one presented here.

The most common practice to accelerate algorithms using FPGAs is to regu-
larize every information possible in order to increase the performance. If we take
a look at the Header datapath, this is the approach taken with headers that have
fixed lengths. This allows us to have a more simple and straight forward design
with respect to the packet’s datapath. The headers are stored inside the Header
Decoder, and then they are directly processed without any further operations, and
their optimization inside the frame is granted by their encoding. On the other
hand, the packets we are decoding require this whole module to make their com-
pression and optimization inside the frame viable. The fact that packets are not
fixed in length is the core issue when optimizing algorithms that use unstructured
meshes using FPGAs, but with this thesis we have shown that this problem can
be addressed and can be proven to be effective and high performing.

6.2 Further improvements
In Chapter 5 we have presented the performance report of the timing analysis.
This analysis has shown that the critical path goes through the stall line, as it is

112

6.2 – Further improvements

the only line that cannot be pipelinend as it goes in the opposite direction with
respect to the dataflow. This problem gets critical when using deep pipelining,
such as in our case.

There is, however, a solution to this apparently insolvable problem. The issue
when pipelining the stall line is that we inherently loose a whole line of data held
inside a pipeline stage when the stall happens, as all the previous sections of the
design will continue to work for that clock cycle wasted to pipeline the stall line,
and thus exactly one complete line of data is lost for each pipeline stage we add to
the stall line when a stall occurs. The way to go to address this problem is therefore
to store all the information of a pipeline stage inside a cache line whenever we want
to add a pipeline stage to the stall line. In this way, when a stall occurs the flow of
data will still continue for that one clock cycle, but our cache line will grant that
the data previously computed aren’t lost. Figure 6.1 shows the implementation of
this concept in the Packet Shifter. We see that for that exact stage there is an
added multiplexer for every incoming data. This multiplexer should be controlled
by a specific bit that depends on the stall line and on the valid line.

Figure 6.1. Pipeline stage for the stall line of a rigid Packet Shifter

The drawback of this approach is that we add a complete line of registers to
the design, and this may prove to be expensive if we want to add several pipeline
stages to the stall line. This means that the stall line shouldn’t be pipelined too
much, otherwise the design would become too big. The number of pipeline stages
of the design should be larger than the number of pipeline stages of the stall line, or
it would be uselessly redundant. Also it is more clever to place this stage in places
of the pipeline where the registers are small; in this design would be clever to put

113

6 – Conclusions

them in the Instruction Computer, or inside the Packet Builder. Furthermore, the
addition of a multiplexer at the end of a stage may decrease the performance of
the component locally.

Apart from improving the design of the stall line to support a design with many
pipeline stages and achieve even higher frequencies, the next phases of this project
would be to actually implement it inside the FPGA and to test it inside the com-
plete CFD design. For this, it would be necessary to include the implementation
of the actual CFD algorithm. Although this design is being performed in the LSI
research group and it is in its final stages, it is still not yet available. Therefore,
the testing of the complete system will be finished in the near future.

114

Appendix A

Demonstration of modulus
operation properties

A.1 Demonstration of modulus property 1
This demonstration gives the proofs of the equivalence of Equations 4.7 and 4.9.
What we want to demonstrate is that

(A + B) mod D = (A mod D + B mod D) mod D

∀A, B ∈ N; D ∈ N − {0}

First, by the definition of the module operation [6]

A mod D = A − å A

D
æ ∗ D (A.1)

The equation becomes

(A + B) mod D = A + B − åA + B

D
æ ∗ D (A.2)

Since the division has the distributive property

(A + B) mod D = A + B − å A

D
+ B

D
æ ∗ D

A and B can be rewritten like in Equation A.1

(A+B) mod D = A mod D + å A

D
æ∗D +B mod D + å B

D
æ∗D −å A

D
+ B

D
æ∗D

(A.3)

115

A – Demonstration of modulus operation properties

The term
A

D

can be rewritten as the next formula for the definition of module In Equation A.1

å A

D
æ + A mod D

D

Thus the term
å A

D
+ B

D
æ ∗ D

becomes
åå A

D
æ + A mod D

D
+ å B

D
æ + B mod D

D
æ ∗ D

since the approximation of a number already approximated is redundant, the pre-
vious term is equal to

å A

D
æ ∗ D + å B

D
æ ∗ D + åA mod D

D
+ B mod D

D
æ ∗ D

Eqation A.3 thus becomes

A mod D+å A

D
æ∗D+B mod D+å B

D
æ∗D−(å A

D
æ∗D+å B

D
æ∗D+åA mod D

D
+B mod D

D
æ∗D)

and therefore

A mod D + B mod D − åA mod D + B mod D

D
æ ∗ D

that is equal to Equation A.2 with A mod D as the first term (A) and B mod D
as the second term (B). By substitution, the previous operation is equal to

(A mod D + B mod D) mod D

Thus the thesis is demonstrated

A.2 Demonstration of modulus property 2
The second demonstration we want to proof the inequality

0 ≤ A mod D < D ∀A ∈ N, D ∈ N − {0} (A.4)

First we start from the properties of approximation by defect and excess [6]:

çAè ≥ A ≥ åAæ ∀A ∈ R+ (A.5)

116

A.2 – Demonstration of modulus property 2

We have asserted that for the properties of the approximations that

çAè − åAæ = 1 ∀A ∈ R+ − N (A.6)

and that
çAè − åAæ = 0 ∀A ∈ N (A.7)

Here there are two properties of the division that will be used later

A

D
∈ R+ − N ∀A /= kD; A ∈ R+; D ∈ R+ − {0}; k ∈ N

A

D
∈ N ∀A = kD; A ∈ R+; D ∈ R+ − {0}; k ∈ N

Therefore applying this to Equation A.5

ç A

D
è >

A

D
> å A

D
æ ∀A /= kD; A ∈ R+; D ∈ R+ − {0}; k ∈ N (A.8)

and
ç A

D
è = A

D
= å A

D
æ ∀A = kD; A ∈ R+; D ∈ R+ − {0}; k ∈ N (A.9)

We can transform the Equation A.9 in a similar way we did to the Equation A.1 :
we see that

A

D
− åX

D
æ = 0 (A.10)

and thus

A mod D = 0 ∀A = kD; A ∈ R+; D ∈ R+ − {0}; k ∈ N (A.11)

In all the other cases the Expression A.8 is valid. This means that

ç A

D
è >

A

D
∀A /= kD; A ∈ R+; D ∈ R+ − {0}; k ∈ N

applying Equation A.6 we get

å A

D
æ + 1 >

A

D

thus
å A

D
æ − A

D
> −1

thus
A

D
− å A

D
æ < 1

117

A – Demonstration of modulus operation properties

and finally
A − å A

D
æ ∗ D < D

That from the definition of the reminder (Equation A.1) operation means

A mod D < D ∀A /= kD; A ∈ R+; D ∈ R+ − {0}; k ∈ N (A.12)

The same procedure can be applied to the remaining part of Equation A.8

A

D
> å A

D
æ ∀A /= kD; A ∈ R+; D ∈ R+ − {0}; k ∈ N

This means that
A − å A

D
æ > 0

and thus
A − å A

D
æ ∗ D > 0

From the definition of reminder (Equation A.1) this becomes

A mod D > 0 ∀A /= kD; A ∈ R+; D ∈ R+ − {0}; k ∈ N (A.13)

By adding to the dominion all the cases when A is equal to kD we get according
to Equations A.11, A.12 and A.13 we get

0 ≤ A mod D < D ∀A ∈ R+, D ∈ R+ − {0} (A.14)

Since the natural dominion of numbers is a subset of the positive real dominion of
numbers, the property is demonstrated.

A.3 Demonstration of modulus property 3
This section includes demonstration of the property of the module shown in section
4.3.3, which is:

A mod D = A − kD

if kD ≤ A < (k + 1)D
∀A ∈ N, D ∈ N − {0}, k ∈ N

First of all let’s set once again the definition of the module operation, as already
done in Section A.1

A mod D = A − å A

D
æ ∗ D (A.15)

118

A.3 – Demonstration of modulus property 3

To this definition, we will add and delete from the dividend of the division the
term kD, with both k and D belonging to the natural numbers

A mod D = A − åkD + A − kD

D
æ ∗ D (A.16)

Since k is a natural number, the approximation by defect of k is equal to k itself.
This wouldn’t be the case if k was a rational number and in fact this property only
applies if k is an integer number, which it is by definition. So the Equation A.16
becomes

A mod D = A − kD − åA − kD

D
æ ∗ D (A.17)

From the definition in the hypothesis A is inside the range shown below

kD ≤ A < (k + 1)D (A.18)

If we subtract kD from the first and the second unequation the A − kD term is
inside the range shown below

0 ≤ A − kD < D (A.19)

This means that the division of this term by D is in the range below, since B is a
natural number greater than 0

0 ≤ A − kD

D
< 1 (A.20)

And since this operation is always between 0 and 1, the approximation by defect
of the above division is going to be always equal to 0.

åA − kD

D
æ = 0 (A.21)

The division term of Equation A.17 can be deleted, and the remaining part of
Equation A.17 is

A mod D = A − kD (A.22)

And thus the property is demonstrated. This property only applies if k is a natural
number and if A is inside the range in Equation A.18 , which it is in our case.

119

120

Appendix B

Testbench results

B.1 Input and output frames for 44 bit memory
port width testbench

In this section are reported the results of the RTL simulation for the testbench
of the 44-bit port design defined in Chapter 5. The first frame represents the in-
put frame stored inside the external memory before the execution of the Packet
Decoder. The input frame is composed by header lines and payload lines, which
are distinguished by the last bit of every line: 0 means a header line, 1 means a
payload line. The extra bit at the end of the packet makes the port width of 45
bits. However, for the way the Packet Decoder is made it is more important to
point out the width of the line with useful information, which is 44 bits. Headers
are encoded and have a fixed length of 5 bits. Packets are readable: the first bits
of every packet are equal to three ones, followed by a sequence of zeros, and it ends
with a sequence of a one and a zero or with a sequence of two ones and two zeros.
The packet that starts at the beginning of a payload line is at the 17th line.

000010101001101001110000011110110100101000100
1110001
000000000000000000000000010111000000000000011
0111001
000101010011011011100100011101000110001000110
001
000000000000010111000000000000000101110000001
000000000000000000000000101110010111000000001
000000000000000000000000000000000000000101111

121

B – Testbench results

000010111000000000000000000000000000000000001
001
000000000000000000000000000000000011001110001
001
000
000000000000000110011100000000000000000000001
0011001
1110001
000000000000000000000000000000000011001110011
11001
001
000000000110011100000000000000000000000000001
001
001

Here is reported the output frame of the 44-bit port testbench. At the beginning of
each packet is reported the length of each packet in the form of a decimal number.
Then there is the output line which is spread over 194 bits. We see that every
packet starts with the sequence of three ones, and thus each packet is decoded
correctly.

71
1110010111
0000000000000100
00
18
111000000000000010111000
00
00
102
111000
00000000000000000000000000101110000000000000001011100000000000000000000000
00
20
11100000000000000010111000
00000000000010111000000000000000101110000000000000000000000000000000000000
00
35
11100000000000000000000000000000010111001011100000000000000000000010111000

122

B.1 – Input and output frames for 44 bit memory port width testbench

00000000000010111000
00
7
11100101110000000000000000000000000000000010111001011100000000000000000000
0101110000000000000001011100
00
52
111000101110000000000000101110
0000000000000010111000
00
9
1110000101110010111000000000
00000010111000
00
120
111000
0011001110000000000000000000000000
00
69
11100110011100
00
00
69
11100110000000
00000000001100111000
00
82
111000
00001100111001000000000000000110011100000000000000000000000000000000000000
000
7
11100100000000000000000000000000000000001100111001000000000000000110011100
00
00
0
10000000000000000000000000000000000110011100100000000000000011001110000000
00
00
102
111000
0000000000000000000000001100111000
00

123

B – Testbench results

101
111000
0011001110000000000000
00
0
00
000110011100000000000000000000000000
00
0
00
000110011100000000000000000000000000
00
0
00
000110011100000000000000000000000000
00
0
00
000110011100000000000000000000000000
00

B.2 Input and output frames for 128 bit memory
port width testbench

Here is presented the input and output frames of the 128-bit port testbench. The
packet format is the same of the previous testbench and the last bit determines the
difference between payload lines and header lines. In this case, the last bit makes
the port width be equal to 129 bits, but as said previously the behaviour of the
Packet Decoder depends on the width of the line with only useful bits (payload
and header related bits), and thus 128 bits are considered.

00111000110111100001001001
0000001111000110000100000111111000001100011100011000010
111000
001
00
001
00000000000000000000000000000000011001110000000000000000000000000000000000
0000000001100111000000000000000000000000000000000000001

124

B.2 – Input and output frames for 128 bit memory port width testbench

00
001
00
0000000001100111000000000000000000000000000000000000001
00
0000000000000000000000000110011100000000000000000000001
00
001
00000110011100
001
00011001110000000000
001
00
0000000000000000000000000000000000011001111011000111001
00
001
00
0001100111001
00
001
0001100111000000000000001100111000
001
00
001
00
0000000000000000000000000001100111000000000000000000001
00
001
0000000110011100011001110000000000
001
00
001
00
001
00
001
00
001
00
001
00
001

125

B – Testbench results

00
001
00
001
00
001
00
001
00
001

Here is presented the output of the 128-bit port testbench. The output port is
equal to 420 bits. At the beginning of each packet there is a number defining the
length of each decoded packet. All the packets begin with a sequence of three ones,
and thus the packets are all correctly decoded.

293
111000
00
00
0001100111
0001100111000000000000000000000000
00
50
1110001100111000000000000000000000
00
00
00000000000000000000000000000011001110000000000000000000000000000000000000
0000001100111000
00
256
111000
00
00
00000000000000000000000000000011001110000000000000000000000000000000000000
00
00
144
111000

126

B.2 – Input and output frames for 128 bit memory port width testbench

0011001110
00
00000000000000000000000000000011001110000000000000000000000000000000000000
00
00
0
00
00110011100000000000000000
00
000000000000001100111000
00
00
162
111000
00
00000000001100111000
00
00
00
180
111000
00
00000000000000000000000000001100111000000000000000000000000000000000000000
00000000000000000000000000000011001110000000000000000000000000000000000000
00
00
180
111000
00
00000000000000000000000000001100111101100011100000001100111000000000000000
00
00
00
10
1111011000111000
00110011110110001110000000
1100111000
00
00
00
256
111000

127

B – Testbench results

00
00
00000000000000000000000000000011001110000000000000000000000000000000000000
00
00
180
111000
00
00000000000000000000000000001100111000000000000001100111000000000000000000
00
00
00
21
11100000000000000110011100
00
00
00000000000000000000000000000011001110000000000000011001110000000000000000
00
00
293
111000
00
00
0001100111
00
00
162
111000
00
0000000000110011100011001110000000
00
00
00
50
1110001100111000000000000000000000
00
00
00000000000000000000000000000011001110000000000000000000000000000000000000
0000001100111000
00
256
111000

128

B.3 – Configuration file of the 44 bits port width testbench

00
00
00
00
00
0
111000
00
00
00
00
00
0
111000
00
00
00
00
00
0
111000
00
00
00
00
00
0
111000
00
00
00
00
00

B.3 Configuration file of the 44 bits port width
testbench

In this section is presented the configuration file of the 44 bit testbench. Each
number is written as an hexadecimal number. The first number represents the

129

B – Testbench results

memory port width, while all the other numbers are the possible packet lengths of
the frame. In this case there are 19 possible lengths, the maximum packet length
is 151 bits and the memory port width is 44 bits.

2C 0 58 47 78 5 12 34 51 23 65 97 29 66 52 14 45 7 8 9

B.4 Configuration file of the 128 bits port width
testbench

In this section is reported the configuration file for the 128 bit testbench. As the
previous configuration file the numbers are represented as hexadecimal numbers,
the first number represents the memory port width, and the remaining number
represent the possible packet lengths. The memory port width is 128, the maxi-
mum packet length is 293 bits, and there are 19 possible lengths.

80 0 125 46 32 15 7B 90 100 DE 1A 88 81 7D 12 33 A2 B4 A D

130

Bibliography

[1] C. Carreras, J.A. Lopez, R. Sierra, R. Jevtic, P. Barrio, E. Sedano and J.A.
Fernandez , “Performance Evaluation of 2D-Euler in the Optimized Hardware
Platform and Conclusions. Update on the Design Methodology and Tools ”,
Deliverable 4, project DOVRES/FUSIM-E, December 2010

[2] F. Manso Rodriguez, “ Design of FPGA interfaces for DDR Memory and PCI-
Express D”, Trabajo fin de grado, Universidad Politécnica de Madrid, 2018.

[3] P. Barrio, C. Carreras J. A. Lopez, O. Robles, R. Jevtic, R. Sierra, in “Mem-
ory Optimization in FPGA-accelerated scientific codes based on nstructured
meshes”, Journal of Systems Architecture, vol. 6, issue 7, pp 579-591, Elsevier,
June 2014.

[4] K. K. Parhi, “VLSI Signal Processing Systems, Design and implementation”,
John Wiley and Sons, December 1999.

[5] Sun Microsystems, Inc., “OpenSPARC T2 Core Microarchitecture Specifi-
cation”, URL https://www.oracle.com/technetwork/systems/opensparc/
t2-06-opensparct2-core-microarch-1537749.html, December 2007.

[6] D. Knuth, “The art of Computer Programming, 3rd edition”, Addison-Wesley,
1999.

[7] Intel®, “Stratix 10 GX/SX Device Overview”, URL https://www.intel.com/
content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/
s10-overview.pdf, August 2018.

[8] GiDEL PROCstar III, https://www.gidel.com/PROCstar%20III. html
[9] Intel®, Quartus 16.2 User Guide, URL https://www.intel.com/content/

www/us/en/programmable/documentation/sbv1513989262284.html
[10] Mentor Grafics, ModelSim® Userâs Manual ,URL https://www.microsemi.

com/document-portal/doc_view/131619-modelsim-user
[11] Pyhton, 3.6.5 release, https://www.python.org/downloads/release/

python-365/

131

https://www.oracle.com/technetwork/systems/opensparc/t2-06-opensparct2-core-microarch-1537749.html
https://www.oracle.com/technetwork/systems/opensparc/t2-06-opensparct2-core-microarch-1537749.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf
https://www.gidel.com/PROCstar%20III
https://www.intel.com/content/www/us/en/programmable/documentation/sbv1513989262284.html
https://www.intel.com/content/www/us/en/programmable/documentation/sbv1513989262284.html
https://www.microsemi.com/document-portal/doc_view/131619-modelsim-user
https://www.microsemi.com/document-portal/doc_view/131619-modelsim-user
https://www.python.org/downloads/release/python-365/
https://www.python.org/downloads/release/python-365/

	Introduction
	Background
	Objectives of this thesis
	Thesis structure

	Data encoding for stream processing
	Computational Fluid Dynamics
	System description
	Memory bottleneck
	Streaming architecture implementation techniques
	Summary of the key issues in the design of the Packet Decoder
	Data frame optimization
	Header before the payload
	Lines of headers and lines of payloads
	Others versions

	Unavoidable performance overheads and relative solutions
	Specification summary

	Architecture of the Packet Decoder
	Specification of the module components
	Module schematic
	External interfaces
	Design techniques
	Generics
	VHDL style

	Implementation of the Packet Decoder components
	Packet Shifter
	Background
	Critical issues
	Implementation and block diagram
	Elasticity

	Packet Builder
	Payload Placer
	Payload Reader
	Build Sequencer
	First type instructions
	Second type instructions
	Packet Builder scenario
	Instruction Computer interface
	Flow control management

	Instruction Computer
	Information analysis
	Equation optimization
	Implementation and schematic
	Complete component and critical path

	Header Decoder
	Configuration program

	Testing and results
	Functionality test analysis
	Performance and area tests

	Conclusions
	Overall conclusions
	Further improvements

	Demonstration of modulus operation properties
	Demonstration of modulus property 1
	Demonstration of modulus property 2
	Demonstration of modulus property 3

	Testbench results
	Input and output frames for 44 bit memory port width testbench
	Input and output frames for 128 bit memory port width testbench
	Configuration file of the 44 bits port width testbench
	Configuration file of the 128 bits port width testbench

	Bibliography

