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Abstract

A common task in processing of medical records is the assignment of standardized
codes for diagnoses and procedures to free-text documents such as clinical notes.
With the rising popularity of electronic health records (EHRs) systems for the au-
tomated reading of the clinical notes and codes assignment have been proposed in
the recent years. This is a hard natural language processing task that requires
parsing long documents written in a domain-specific language and selecting a set of
appropriate codes among the thousands existent.

We present a hierarhical neural model for automated coding of clinical notes
composed by an embedding layer, a recurrent layer and a convolutional layer, with
attentional layers at word and sentence level. The sentence level attentional match-
ing is computed using embedded representation of the codes based on their textual
descriptions.

Our proposed model outperforms the previous state of the art model (Mullenbach
et al. , 2018) according to several quantitative metrics. We provide a qualitative
evaluation of the results, which provides some insight on what parts of the text
are identified as most relevant for each code by the attention mechanism. Finally
through this evaluation we show the strengths and the limits of this family of models
and we provide suggestions for future improvements based on our observations.
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Chapter 1

Introduction

The International Classification of Diseases (ICD) is a healthcare classification sys-
tem maintained by the World Health Organization. It provides a set of diagnostic
codes for classifying diseases (including a wide range of signs, symptoms and ex-
ternal causes of injury or disease) and surgical procedures. ICD codes are used for
a number of different tasks, such as reporting health conditions and carrying out
medical billing.

The standard coding procedure consists in assigning one or more ICD codes to
a patient’s hospital visit: this operation is performed by medical coders, who read
and review the clinical notes written by physicians and then assign the appropriate
ICD codes according to the coding guidelines. This process can be time consuming
and error-prone.

With the rising popularity of electronic health records (EHRs) systems for the
automated reading of the clinical notes and codes assignment have been proposed
in the recent years.

In this work we present a hierarhical neural model for automated coding of
clinical notes. The architecture is composed by an embedding layer, a recurrent
layer and a convolutional layer, with attentional layers at word and sentence level.
The sentence level attentional matching is computed using embedded representation
of the codes based on their textual descriptions.

Our proposed model outperforms the previous state of the art model (Mullenbach
et al. , 2018) according to several quantitative metrics. We provide a qualitative
evaluation of the results by examining the n-grams highlighted by the attention
mechanism for each label, which provide some insight on what parts of the text are
most relevant for each code. Finally through this evaluation we show the strengths
and the limits of this family of models and we provide suggestions for future im-
provements based on our observations.
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Chapter 2

ICD coding system

In order to assign the correct ICD codes to a patient’s hospital stay medical coders
must read the clinical notes written by physicians and then select the appropriate
codes according to the guidelines. Such guidelines differ from country to country.
In this study we refer to the guidelines dictated by the United States government
for ICD-9-CM, a related classification system based on the ICD which provides
additional morbidity detail. ICD9-CM was updated annually until 2015, when it
was officially deprecated in favor of its successor ICD-10.

There are 3 volumes of ICD-9 published each year. Volume 1 is a tabular index
with a numerical list of disease code numbers, Volume 2 is an alphabetical index to
diseases entries, Volume 3 provides an alphabetic index and a tabular list for surgical,
diagnostic and therapeutic procedures. Furthermore there are five appendices to
Volume 1: Appendix A – Morphology of Neoplasms, Appendix B – Glossary of
Mental Disorders, Appendix C – Classification of Drugs, Appendix D – Classification
of Industrial Accidents, Appendix E – Listing of 3-digit codes.

ICD-9-CM diagnosis codes are composed of 3, 4, or 5 characters. The three-
characters codes are included in ICD-9-CM as headings of a category of codes that
might be further subdivided by the use of a fourth and/or fifth digits, which pro-
vided greater detail (E codes have four-characters headings, subdivided by a fifth
character). The coarser codes must be used only when no further subdivision is
present, otherwise where fourth-digit sub-categories or fifth-digit sub-classifications
are provided, they must be assigned.

Procedure codes are organized in a similar way, but are composed of either 3
or 4 characters. The two-digit codes are the headings of a category of codes that
might be further subdivided by the use of third and fourth characters, which provide
greater detail. As for diagnosis codes, the most specific procedure codes available
must be assigned.

Given the ICD-9-CM structure the codes headings can be further aggregated
into groups of codes in order to form a hierarchy tree, where top level categories

3



2 – ICD coding system

refer to generic concepts and lower level codes indicate specific conditions or pro-
cedures. Information on the hierarchy is retrieved from an ontology available on
NCBO BioPortal 1. The codes contained in the ontology are ICD-9-CM version
2012.

The hierarchy is based on semantics (codes related to similar concepts are grouped
together), but the granularity of these groupings varies from case to case. For ex-
ample at level 3 diseases are grouped according as intervals of code headers (e.g.
001-009), while procedures are not grouped and nodes represent single codes of 3
characters. Moreover, the hierarchy tree is imbalanced: considering the ”Diseases
and injuries” node, some of its children have an additional level of granularity with
respect to their siblings. A sample of the hierarchy tree is shown in Figure2.1.

To assign the codes for a patient, a coder must first identify the reason for the
patient’s visit by looking at signs, symptoms, diagnosis and conditions reported in
the physician’s notes. Conditions that are referred to as ”possible” must not be
coded and only defined symptoms and illnesses must be taken into account. One
the reason for a patient’s visit is identified, Volume 2 index is used to look up
the relevant terms. Once the appropriate code in the Volume 2 is identified then
Volume 1 is used to review that code. In particular, Volume 2 provides only generic
codes, Volume 1 must be used to select the related code with the highest level of
specificity. Volume 1 provides also additional coding instructions specific to a code,
such as precedence (”code first”) or co-occurrence (”code also”). For example, for a
patient with severe sepsis, code 995.92 states ”code first the underlying infection”.

level # nodes

0 1
1 4
2 73
3 526
4 3585
5 10038
6 7313
7 867

Table 2.1: Number of codes by level in the ICD-9-CM hierarchy

1https://bioportal.bioontology.org/ontologies/ICD9CM
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2 – ICD coding system

Figure 2.1: A sample from the ICD-9-CM hierarchy tree
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Chapter 3

Natural language processing for
document classification

Document classification is a natural language processing task whose purpose is to
automatically classify text documents into one or more defined categories. Some
examples of text classification are audience sentiment analysis from social media,
spam detection, categorization of news articles into topics.

Text Classification is an example of supervised machine learning task since a
labelled dataset containing text documents and their labels is used for train a clas-
sifier.

An end-to-end text classification pipeline consists of the following stages:

• Document preprocessing and tokenization

• Document vectorization

• Model training

• Model validation

In the following sections we present the main text vectorization approaches and
the most common models used for document classification.

3.1 Text vectorization

Machine learning algorithms take numeric feature vectors as input. Thus, when
working with text documents, each document must be transformed into a numeric
vector. This process is known as text vectorization and can be performed using
different techniques.

7



3 – Natural language processing for document classification

3.1.1 Bag-of-words models

In the bag-of-words (BOW) vectorization approach, every document in the corpus is
represented as a vector whose length is equal to the vocabulary of the corpus. The
value of each element of the document vector is computed according to the BOW
model chosen. In the next sections we will show the most common models of this
family, each of which extends or modifies the base model to describe semantic space
in a different way.

We will use the following dictionary for our examples.

0 and 1000000
1 bird 0100000
2 cat 0010000
3 dog 0001000
4 eats 0000100
5 play 0000010
6 the 0000001

Frequency vector

The simplest encoding model consists in filling the vector index corresponding to
each token in the vocabulary with the frequency of that word in the document.

the cat and the dog play =⇒ 1011012

Frequency vectors represent similarity at the document level, but information on
word order is lost and since all word vectors are orthogonal they don’t provide any
information on similarity between words.

One-Hot Encoding

Because frequency-based encoding methods disregard grammar and word order in
documents, they suffer from the long tail, or Zipfian, distribution: tokens that occur
very frequently are orders of magnitude greater than the less frequent ones. This
can have a significant impact on models that expect normally distributed features.

A solution to this problem is one-hot encoding, which represents a document as a
binary vector: the index of this vector corresponding to each token in the vocabulary
is set to a value that indicates either the presence (1) or absence (0) of that token
in the document.

An example of one-hot encoding is shown below.

the cat and the dog play =⇒ 1011011

8



3.1 – Text vectorization

One-hot encoding reduces the imbalance in the tokens distribution and is most
effective for very small documents that don’t contain very many repeated elements.

TF-IDF Transform

The bag-of-words models listed above only describe a document without taking into
account the context of the whole corpus. TF-IDF considers the relative frequency
of tokens in the document against their frequency in other documents of the corpus.
The intuition is that terms that are frequent in a document but rare in the corpus
are more meaningful than the ones that are frequent across the whole corpus.

TF–IDF (term frequency–inverse document frequency) encoding normalizes the
frequency of tokens in a document with respect to the their frequency in the rest of
the corpus. This approach puts emphasis on tokens that are relevant to a specific
instance of the corpus.

TF–IDF is computed on per-token, such that the relevance of a token to a
document is measured by the scaled frequency of the appearance of the term in
the document, normalized by the inverse of the scaled of its frequency in the entire
corpus.

TF-IDF is the product of two statistics, term frequency tf and inverse document
frequency idf . The term frequency of a token t given a document d, tf(t, d), can be
the boolean frequency (as in one-hot encoding, 1 if t is present in d, 0 otherwise),
or the raw count. Generally term frequency is scaled logarithmically to prevent
bias caused by longer documents or terms that appear much more frequently with
respect to other terms: tf(t, d) = 1 + log(ft,d).

Similarly, the inverse document frequency of a term given the set of documents
D is logarithmically scaled and is computed as idf(t,D) = log 1 + N

nt
, where N is

the number of documents and nt is the number of occurrences of the term t in the
corpus. TF–IDF is then computed as

tf − idf(t, d,D) = tf(t, d) · idf(t,D) (3.1)

An example of one-hot encoding is shown below.

the cat and the dog play
the cat eats the bird

=⇒ 0.42 0.00 0.30 0.42 0.00 0.42 0.60
0.00 0.47 0.33 0.00 0.47 0.00 0.67

The TF–IDF score is always in the range [0,1]. The closer the TF–IDF score of
a token is to 1, the more informative that term is to that document. The closer the
score to zero, the less informative the token.

3.1.2 Distributed models

Bag-of-words models have a very high dimensionality, resulting in an extremely
sparse space. Word order, grammar, and other structural features are not repre-
sented. When using these encodings no meaningful comparison can be computed

9



3 – Natural language processing for document classification

between word vectors other than equality testing.
The distributed representation models overcome these issues by training a model

that maps each word of the vocabulary to a vector of fixed size: each vector identifies
a point in the representation space, allowing to use to use vector arithmetic on words
to determine their semantic properties and relationships. Formally, for an arbitrary
word w in the dictionary D a real number vector ew with fixed size de is assigned,
called the word vector of w.

In order to deduce the meaning of words, their use in language can be analyzed:
this is a fundamental idea of distributional semantics called the ”distributional hy-
pothesis”. This intuition was first captured by John Rupert Firth, an English lin-
guist working on language patterns in the 1950s, who said:

You shall know a word by the company it keeps

Firth was referring to the principle that the meaning of a word is captured by
its use with the surrounding words, that is to say the context for any word is useful
to define the meaning of that word. This is the concept behind many models for
learning word vectors, also called word embeddings.

As shown in Figure3.1 when word vectors are trained with distributed models
similar words converge to similar locations in the representation space. Similarity
between two word vectors can be defined as Euclidean distance (the actual distance
between points in space), or cosine similarity (the angle between two vectors in
space).

Figure 3.1: Natural clustering exhibited by word vectors

A direct effect of this property is that word vectors can effectively capture the
semantic relationships of the words. For instance, words that are synonyms tend
to have similar vectors in terms of cosine similarity and antonyms tend to have
dissimilar vectors. Furthermore, word vectors tend to obey the laws of analogy.
For example, for the analogy ”woman is to queen as man is to king” the following
equality holds

10



3.1 – Text vectorization

vman − vwoman ≈ vking − vqueen
where vman, vwoman, vking and vqueen are the word vectors for man, woman, king

and queen respectively. These observations strongly suggest that word vectors en-
code valuable semantic information about the words that they represent.

Figure 3.2: Analogies representation with word vectors

In the following sections we illustrate two of the main models used to train word
embeddings: Word2ved and GloVe.

Word2vec

Word2Vec, introduced by Mikolov et al. (2013), is based on a shallow, two-layer
neural network that is trained to reconstruct linguistic contexts of words. After the
training the weight matrices of the network are used to build the word vectors.

There are two main word2vec models: Continuous Bag of Words (CBOW) and
Skip-Gram. In the CBOW model, we predict a word given a context window. Skip-
Gram is the opposite: the context is predicted given an input word.

In the model CBOW model, shown in Figure3.5, the input layer x is a vector of
one-hot encoded words x = {x1, ..., xC}, xi ∈ RV , where C is the context window
size and V is the vocabulary size. The input vectors are connected to the hidden
layer h ∈ RN through a weight matrix W ∈ RV×N . The output layer is output
word y in the training example which is also one-hot encoded. The hidden layer is
connected to the output layer through a weight matrix W′ ∈ RN×V .

The first step is to evaluate the output of the hidden layer h, computed by

h =
1

C
(
C∑
i=1

xi)W (3.2)

This operation takes the rows of W corresponding to the vocabulary indexes of
the words in the context window (this is a property of the one-hot encoding of x)
and averages them.

Next the inputs to each node in the output layer are computed

uj = hv′wj
(3.3)

11



3 – Natural language processing for document classification

Figure 3.3: Word2vec CBOW model

where v′wj
is the j -th column of the matrix W′. The final output yj is computed

by passing uj through the softmax function.

yj = p(wyj |w1, ..., wC) =
exp(uj)∑V
j′=1 exp(uj′)

(3.4)

The training objective is to maximize equation 3.9, the conditional probability
of observing the word wO (its index in the output layer is denoted with j∗) given
the input context wI . Therefore the loss function to minimize will be

L = − log(p(wO|wI)) (3.5)

= −uj∗ − log(
V∑
j′=1

exp(uj′)) (3.6)

The Skip-Gram model, shown in Figure 3.4 is the opposite of CBOW; in the
former we predict the context C given an input word, where in the latter we predict
the word from C.

The hidden layer is simply computed as

h = xW (3.7)

while the inputs to each node in the output layer are computed as

uc,j = uc = hv′wj
∀j ∈ {1,2, ..., C} (3.8)

12



3.1 – Text vectorization

Figure 3.4: Word2vec skipgram model

At the output layer, instead of one multinomial distribution, C multinomial
distributions are outputted.

yc,j = p(wcj = wO,c|wI) =
exp(uc,j)∑V
j′=1 exp(uj′)

(3.9)

The loss function is changed to

L = − log(p(wO,1, ..., wO,C |wI)) (3.10)

= −
C∑
c=1

uc,j∗c + C log(
V∑
j′=1

exp(uj′)) (3.11)

GloVe

Context window-based models such as Word2vec have the disadvantage of ignoring
the global corpus statistics. As a result, repetition and large-scale patterns may not
be learned during training.

For example, words ”the” and ”cat” might be used often together, but word2vec
doesn’t know if this is because ”the” is a common word or if this is because the
words ”the” and ”cat” have a strong linkage.

GloVe, introduced by Pennington et al. (2014), is a distributed model that
takes into account both local context and global corpus information when training
the word vectors.

13



3 – Natural language processing for document classification

The first step is to build a co-occurrence matrix. Local context is taken into
account by computing the matrix using a fixed window size (words are co-occurrent
when they appear together within the same window). For example, the sentence
”The cat sat on the mat” with a context window size of 4 (2 words to the left and
two to the right of the central word) is converted to the following co-occurrence
matrix

the cat sat on mat
the 0 1 2 1 1
cat 1 0 1 1 0
sat 2 1 0 1 0
on 1 1 1 0 1

mat 1 0 0 1 0

The underlying principle behind GloVe is that the co-occurrence ratios between
two words in a context are strongly correlated to their meaning.

The relation between the ratios can be expressed with the following equation:

F (wi, wj, w̃k) ≈
Pij
Pjk

(3.12)

Pij denotes the probability of the word j to appear in the context of i, and can
be computed as

Pij =
Xij

Xi

(3.13)

whereX denotes the co-occurrence matrix, Xij denotes the i, jth element in X
(equal to the number of times word j appears in the context of word i) and Xi =∑

lXil is the total number of words that have appeared in the context of i.
F is some function that takes the embeddings for the words i, k, j as input. Since

one of the goals of GloVe is to create word vectors that express meaning using simple
arithmetic (vector addition and subtraction), a function F must be chosen so that
the resulting vectors meet this property.

Since it’s desirable for arithmetic between the vectors to have meaning, the input
to the function F can be formulated as the result of arithmetic between vectors. The
simplest way to do this is to compute the input to F as the difference between the
compared vectors:

F (wi − wj, w̃k) ≈
Pij
Pjk

(3.14)

Now, a linear relation between wi − wj and w̃k must be created. This can be
achieved by using the dot product:

14



3.2 – Attention Mechanisms

F ((wi − wj) · w̃k) ≈
Pij
Pjk

(3.15)

By taking the logarithm of the probability ratios the ratio can be converted into
a subtraction between probabilities, and a bias term is for to each word to take into
account the fact that some words occur more frequently than others.

The result of these operations is the following equation:

(wi − wj) · w̃k + bi − bj = log(Pik)− log(Pjk) (3.16)

This equation can be converted into an equation over a single entry in the co-
occurrence matrix.

wi · w̃k + bi = log(Pik) = log(Xik)− log(Xi) (3.17)

By absorbing the term − log(Xi) on the right-hand side into the bias term bi,
and adding an output bias b̃k for symmetry, the final equation is obtained:

wi · w̃k + bi + b̃k = log(Xik) (3.18)

The model is trained by minimizing an objective function J , which evaluates the
sum of all squared errors based on Equation 3.18, weighted by a function f

J =
V∑
i=1

V∑
k=1

f(Xik)(wi · w̃k + bi + b̃k − log(Xik))
2 (3.19)

An f must be chosen such that it helps in preventing common word pairs (i.e.
those with large Xij values) from skewing excessively the objective function. The
authors of the paper found the following function to perform well:

f(Xik) = min

(
1,

(
Xik

xmax

)α)
(3.20)

This function cuts the output of extremely common word pairs (where Xij >
xmax) and simply returns 1. For all other word pairs, some weight is returned in the
range [0,1], where the distribution of weights in this range is determined by α.

3.2 Attention Mechanisms

Originally Attention Mechanisms were used primarily in the field of computer vision,
beginning in the 1990s. However, they weren’t widely adopted until Mnih et al.
(2014) applied Attention Mechanisms to an RNN model for image classification.
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3 – Natural language processing for document classification

Figure 3.5: Weighting function f with α = 3/4

Later on, researchers experimented with Attention Mechanisms for machine
translation tasks. Bahdanau et al. (2014) used this method to perform transla-
tions concurrently. Their work was the first to apply Attention Mechanisms to
the field of Natural Language Processing. After this study Attention Mechanisms
became common in NLP tasks based on neural networks such as RNN and CNN.

Attention Mechanisms are an approximation of the human sight mechanism.
According to the task at hand human visual attention allows us to focus on a specific
region and then adjust the focal point accordingly rather then scanning the entire
scene end to end. That is, we pay attention to a certain area given the features we
detect in that area. Similarly for language, we can discern between patterns that
are informative for our task and attend to them, while giving less importance to the
other detected patterns.

Attention in deep learning models can be interpreted as a vector of importance
weights: in order to infer one element, such as a pixel in an image or a word in a
sentence, the attention vector is used to estimate how strongly it is correlated with
the input feature vectors and take the sum of their values weighted by the attention
vector to obtain a final representation of the input.

Figure 3.6: Attention heatmap for an image detection task

Formally, attention is computed as a function of the input as a set of key-value

16



3.3 – Hierarchical Attention Networks

pairs K,V and of a query vector Q. First, similarity between each key Ki and the
query is computed through a function f to obtain a weight. A typical similarity
function used is dot product, but other functions can be used as well. A softmax
function is then used to normalize these weights. Finally the attention weights are
used to compute a weighted sum of the values and obtain the final representation.
In current NLP work, the key and value are often the same, therefore K = V .

f(Q,Ki) =


Q>Ki dot product

Q>WaKi generalized dot product

Wa[Q,Ki] concatenation

v>a tanh(WaQ+ UaKi) perceptron

ai = softmax(f(Q,Ki)) =
exp(f(Q,Ki))∑
j exp(f(Q,Kj))

Attention(Q,K, V ) =
∑
i

aiVi

Figure 3.7: Diagram for attention computation

3.3 Hierarchical Attention Networks

This model, introduced by Yang et al. (2016), is based on the assumption that
textual documents have a hierarchical structure: words form sentences, sentences
form a document. The goal is to represent sentence meaning from the words and then
represent the meaning of the document from the sentences. However not all parts of
a document are equally relevant: different words and sentences in a document have
different level of informativeness. Therefore an attention mechanism is used so that
the model can focus on important words and sentences.

Determining the relevant sections however involves modeling the interaction be-
tween the words, not just their presence in isolation: the importance of a document
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3 – Natural language processing for document classification

section is highly context dependent, i.e. the same word or sentence can have different
meanings in different contexts.

Figure3.9 shows the attention allocated at word level (blue) and sentence level
(red) for a sentiment analysis task on a review from Yelp. The highlighted sentences
are more meaningful compared to the others, while words such as delicious and
amazing are relevant in attributing the positive sentiment expressed by the review.

Figure 3.8: A classification example on a review from the Yelp dataset

3.3.1 Model characteristics

The model consists of two main components: recurrent bidirectional layers and
attention layers. A first recurrent bidirectional layer learns the meaning of the words
forming each sentence and returns a vector for each word in the input sentence.
Then an attention layer gets the weights corresponding to each word and scale
each word vector according to its corresponding weight. Then it aggregates the
words representations into a sentence representation by doing a sum of the weighted
vectors.

The same procedure is applied to sentence vectors, using another recurrent bidi-
rectional layer and another attention layer, in order to generate a final vector that
represents the whole document.

3.3.2 Basic component: Gated Recurrent Unit (GRU)

A Gated Recurrent Unit (Cho et al. , 2014) is a type of gated Recurrent Neural
Network, a variation of the standard RNN model. This family of models is designed
to produce a representation of a sequential input by maintaining an internal status
s which is updated at every step t. The general formula of a recurrent network is
shown below:

ht = f(xt, ht−1 : θ) (3.21)
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With respect to simple RNNs Gated Recurrent Units are designed to address
the problem of long-term dependencies in documents. Two gates control how infor-
mation is updated at the state at each step t.

• Update gate zt ∈ [0,1] decides how much of the new information to add

• Reset gate rt ∈ [0,1] decides how much of the past information to retain

At each step t the state ht is updated as follows

zt = σ(Wzxt + Uzht−1) (3.22a)

rt = σ(Wrxt + Urht−1) (3.22b)

ĥ = tanh(Wxt + rt � (Uht−1)) (3.22c)

ht = (1− zt)� ht−1 + zt � ĥt (3.22d)

Figure 3.9: Hierarchical attention network overview

3.3.3 Model overview

A document D has L sentences si, with each sentence containing Ti words. wit, i ∈
[1, L], t ∈ [1, T i] represents the tth words in the ith sentence.

1. Word embeddings Each word wit is mapped to a vector through an embed-
ding matrix We

xit = Wewit (3.23)

19



3 – Natural language processing for document classification

2. Word encoder A bidirectional GRU summarizes information from both di-
rections for words, therefore incorporating the contextual information in the
representation

hfwit = GRU fw(xit), t ∈ [1, T ] (3.24)

hbwit = GRU bw(xit), t ∈ [T,1] (3.25)

hit = [hfwit , h
bw
it ] (3.26)

3. Word attention Each word representation hit goes through a fully connected
layer and a non-linear activation function

uit = tanh(Wwhit + bw) (3.27)

The importance of each word uit is measured through its similarity with a
vector uw normalized through a softmax function, obtaining the normalized
importance weight αit.

uw can be interpreted as a high level representation of a highly informative
word, it’s initialized randomly and jointly learned during the training

αit =
exp(u>ituw)∑T
τ exp(u

>
iτuw)

(3.28)

Each sentence embedding si is calculated as a weighted sum of the word rep-
resentations scaled by their attention weights

si =
T∑
t

αithit (3.29)

4. Sentence encoder

A second bidirectional GRU summarizes information from both directions for
sentences

hfwi = GRU fw(si), i ∈ [1, L] (3.30)

hbwi = GRU bw(si), i ∈ [L,1] (3.31)

hi = [hfwi , hbwi ] (3.32)
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5. Sentence attention Attention is computed for sentences representations in
the same way as words representations

ui = tanh(Wshi + bs) (3.33)

αi =
exp(u>i us)∑L
l exp(u

>
l us)

(3.34)

v =
L∑
i

αihi (3.35)

6. Document classification

The document vector v is a high level representation of the document and can
be used as features vector for the document classification task by feeding it to
a fully connected layer and a final non-linear activation function f .

p = f(Wcv + bc) (3.36)

3.4 Convolutional Neural Networks

Convolutional Neural Networks (LeCun et al. , 1998) are a class of deep, feed-forward
artificial neural networks and use a variation of multilayer perceptrons designed to
require minimal preprocessing. These models are inspired by animal visual cortex.

CNNs were conceived to be used computer vision, however they’ve recently been
applied to various NLP tasks with promising results. When a CNN is applied on text
data the result of each convolution will fire when a linguistic pattern is detected. By
varying the size of the kernels and concatenating their outputs, patterns of multiples
sizes can be detected. The patterns are word n-grams (with n equal to the filter
size) that can be detected everywhere in the document regardless of their position.

A strong argument in favour of CNNs is that they are fast, as convolutions are a
fundamental operation in computer graphics and they implemented on a hardware
level on GPUs. As a consequence CNNs are usually faster to train than other models
commonly used for NLP such as RNNs.

Instead of image pixels, the input to most NLP tasks are sentences or documents
represented as a matrix. Each row of the matrix corresponds to one token. Typically,
the row vectors are word embeddings trained with word2vec or GloVe, but they
could also be one-hot encoded vectors. For example, for a 10 word document using
a 100-dimensional embedding, the corresponding input would be a 10x100 matrix.

Figure 3.11 shows an example of Convolutional Neural Network for sentence
classification, taken from Zhang & Wallace (2015). This model uses three filter
region sizes: 2, 3 and 4, each of which has 2 filters. Every filter performs convolution
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3 – Natural language processing for document classification

Figure 3.10: Illustration of a CNN architecture for document classification

on the sentence matrix and generates variable-length feature maps. Max pooling is
then performed over each map and the resulting 6 features are concatenated to form
a feature vector (the sentence representation). The final softmax layer then receives
this feature vector as input and uses it to classify the document.

A key element of Convolutional Neural Networks are pooling layers, typically
applied after the convolutional layers. Pooling layers subsample their input. The
most common way to do pooling is to apply a max operation on the output of each
filter. Pooling can be performed over the complete matrix or over a window. In
NLP pooling is typically applied over the complete output, in order to yield a fixed
size output matrix regardless of the filters size, which is usually a requirement for
classification.

Pooling also reduces the output dimensionality but keeps the most salient in-
formation. By performing the max operation only the most important features are
sampled: as a result global information about locality (where in a sentence a pat-
tern was detected) is lost, but local information captured by the filters (features
produced by the convolutions with high values) are preserved.

The most natural fit for CNNs are classifications tasks, such as Sentiment Anal-
ysis, Spam Detection or Topic Categorization. Because convolutions and pooling
operations lose information about the local order of words sequence tagging as in
PoS Tagging or Entity Extraction is a harder to perform with a CNN architecture.

Kim (2014) evaluates a CNN architecture on various classification datasets,
mostly comprised of Sentiment Analysis and Topic Categorization tasks. The CNN
architecture achieved very good performance across datasets, and set a new state-of-
the-art on a few. The input is a sentence matrix where the rows are word2vec word
embeddings. That’s followed by a convolutional layer with multiple filters, then a
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Figure 3.11: Convolutional Neural Networks for sentence classification (Kim, 2014)

max-pooling layer, and finally a softmax classifier.
Alternatively, an attention layer can be used instead of pooling to perform di-

mensionality reduction after a convolution.
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Chapter 4

Related Work

Recently there has been significant work on the topic of automated coding of clinical
notes (Perotte et al. , 2013; Kavuluru et al. , 2015; Shi et al. , 2017; Baumel et al.
, 2017; Karmakar, 2018; Escudié et al. , 2018; Mullenbach et al. , 2018). We review
some of the recent work.

Perotte et al. (2013) experimented with flat and hierarchical SVMs using tf-
idf features on the MIMIC-II dataset. The hierarchical classifier exploit the ICD-9
hierarchy and makes a prediction only on the child codes with positively predicted
parents.

The flat SVM treats each label as an independent binary decision. One disctinct
linear SVM classifier is created for each possible ICD9 code, excluding the root,
which is always positive. All documents in the training set labeled with that ICD9
code are considered positive, and all others are considered negative. Ancestors of a
positive ICD9 code must also be positive, and descendants of a negative ICD9 code
must also be negative. This relationship is taken into consideration only during
testing setups where single predictions are augmented to include all ancestors.

The hierarchical SVM takes into consideration the structure of the ICD9 code
tree also during training. An augmented dataset is created, where each document
is labeled with codes from the whole tree, not just the leaf nodes. During training
many SVM classifiers are created and trained, one for each code of the hierarchy
excluding the root. The classifier associated with a given code in the hierarchy
is applied only if its parent code has been classified as positive. Therefore, only
documents whit a positive parent code are fed to the child classifier. Whereas in
the flat SVM each classifier has the same amount of training data, in the hierarchy-
based SVM some classifiers could have a very small amount of training examples.
The classifiers are applied from the root downward until a child node is classified
as negative. This procedure is repeated for all paths from the root to all possible
leaves, resulting in a tree of multi-label positive predictions for a given document.

The results show that the hierarchy-based SVM predicts ICD9 codes with a
higher F-measure than the flat SVM (29.3% vs 21.1%), with an improved recall
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(23.3% vs 13.0%) but a lower precision (39.4% vs 56.2%). These metrics are com-
puted considering only non-augmented labels as target predictions.

Kavuluru et al. (2015) built classifiers for ICD-9 diagnosis codes over three
datasets: a dataset of 71,463 EMRs corresponding to in-patient visits from the
University of Kentucky (UKY) Medical Center, a smaller subset of this dataset and
a third gold standard dataset of radiology reports. They performed feature selection
and used a variety of methods such as SVM, naive Bayes, and logistic regression for
this problem. They achieved a micro F-score of 0.48 over all codes with at least 50
training examples and a micro F-score of 0.54 on the set of codes that occur at least
in 1% of the UKY dataset.

Shi et al. (2017) uses a character-aware neural language model to generate hid-
den representations of the documents and ICD codes, with an attention mechanism
to match the documents and the codes descriptions. The model is trained on a
subset of MIMIC-III and the ICD coding target is restricted to the 50 most fre-
quent codes. The architecture consists of four modules, which are used for encoding
the input documents, encoding the ICD codes based on their textual descriptions,
matching encoded documents with encoded ICD descriptions, and assigning the ICD
codes. The overall architecture is illustrated in Figure 4.1.

The documents encoder is based on a long short-term memory (LSTM) recurrent
network. For each input document, a character-level LSTM and word-level LSTM
are used to obtain its hidden representation. Each input document is represented as
a sequence words, where every word is a matrix composed of character embeddings.
Each word matrix is fed to the fisrt LSTM and the hidden state of the network
at the last time step is taken as the hidden representation of the word. In the
word-level LSTM the input is the sequence of sentence matrices, each obtained by
concatenating the word representations outputted by the previous layer. The last
hidden state is the representation of each sentence.

For the ICD codes descriptions embedding, the same two-level LSTM architec-
ture is adopted to obtain the hidden representations. The parameters of the layers
for the codes descriptions encoder and the document encoder are independent, in
order to better adapt to the different language styles contained in each of the two
sets of texts.

The attentional matching mechanism performs the cosine similarity between the
hidden representations of each ICD code and the input documents, to extract the
most relevant features for each code independently before feeding the obtained vec-
tors (one per code) to the final softmax classifier.

The best model achieves a micro-F1 score of 0.53, however, given the restricted
prediction target, this work is not directly comparable to the results of the other
studies presented here.

Baumel et al. (2017) experimented with both MIMIC-II and MIMIC-III datasets
and proposed a model based on hierarchical attention networks (Yang et al. , 2016)
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Figure 4.1: Model Architecture by Shi et al. (2017)

with per-label attention matching to be able to handle multi-label classification. A
hierarchical model with two levels of bidirectional GRU encoders is applied. The
first bidirectional GRU operates over tokens and encodes sentences. The second
bidirectional GRU encodes the document, applied over all the encoded sentences.
In this architecture, each GRU is applied to a much shorter sequence compared
with a single GRU. To take advantage of the property that each label is referred
to from different parts of the text, an attention mechanism over the second GRU
with different weights for each label is used. This allows the model to focus on the
relevant sentences for each label (Choi et al. , 2016). Attention is also applied over
the first GRU using shared weights for all the labels. Each sentence in the input
text is encoded to a fixed length vector by applying an embedding layer over all the
inputs, applying a bidirectional GRU layer on the embedded words, and using an
attention mechanism to encode the bidirectional GRU outputs. After the sentences
are encoded into a fixed length vector, a second bidirectional GRU layer over the
sentences using different attention layers to generate an encoding specified to each
class. Finally a fully connected layer with softmax is applied for each classifier to
determine if the corresponding label should be assigned to the document.

To test the impact of training size, both the MIMIC II and MIMIC III datasets
were used. The authors created two training sets, one based on MIMIC II and
the other based on MIMIC III, and a common test-set comprising summaries of
unseen patients. This model achieved a micro-F1 score of 40.52% when trained on
MIMIC-III.

Mullenbach et al. (2018) presented a model composed of an embedding and a
CNN layer and an individual attention layer for each code. They also proposed
adding regularization to this model using textual code descriptions. In the embed-
ding layer pre-trained word vectors for each token in the document are concatenated
to form a document matrix. This input matrix is then fed to a convolutional layer
which performs a 1D convolution with unitary stride and is composed by filters
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having all the same width, so that the result of the convolution is a matrix ob-
tained by concatenating the vectors generated by each filter. Additionally the input
matrix is padded so that the output matrix has the same length of the input doc-
ument. After the convolution, the matrix is reduced to a vector by the attention
layer. Similarly to Baumel et al. (2017) a per-label attention mechanism is applied
in order to select the most informative features for each code independently before
feeding the obtained vectors (one per code) to the final softmax classifier. Their
best model on MIMIC-III obtained a micro F1-score of 52.1%, which was achieved
by the convolutional model without regularization.

The survey of previous work indicates the essential role of the attention layer
to obtain good performance. Moreover the hierarchical attention model used by
Baumel et al. (2017), which achieves state of the art performance in the most
common document classification benchmarks, is outperformed by the much simpler
convolutional model by Mullenbach et al. (2018), which achieves the best results
on this specific task and therefore represents the baseline for our study. The poor
performance of the recurrent models compared to convolutional models is probably
caused by the considerable length of the input documents: recurrent models are
unable to effectively track very long-term temporal dependencies, whereas convolu-
tional architectures don’t suffer from this problem as they only detect pattern across
adjacent areas of the input data.
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Methodology

The task of predicting ICD codes from clinical notes can be modeled as a multi-
task binary classification problem: for each hospital admission every ICD-9 code
can be present (labeled 1) or absent (labeled 0). For each code the models outputs
the likelihood (in the range 0-1) for that code to be associated to the input docu-
ment. Output values greater than 0.5 are assigned as present (1), the other ones are
assigned as absent (0).

In the present work we present a neural model that yields state of the art results
for the MIMIC-III dataset, outperforming the previous best result of the model that
currently achieves the best results on the MIMIC-III dataset (Mullenbach et al. ,
2018). We achieve these results through different enhancements.

We initialize the embedding layer with word vectors pre-trained on an external
common English corpus instead of the MIMIC corpus. We investigate the problem
of preprocessing of tokenization of the input documents and we propose an approach
that handles more accurately common medical expressions and the protected health
information tokens.

We then experiment with a model similar to the one used by Baumel et al.
(2017), with hierarchical representations on words and sentences and a label-dependend
attention layer (also used by Mullenbach et al. (2018)). However, their model uses
GRU based encoders while ours uses a GRU for the word-level encoder and a CNN
for the sentence-level encoder.

Finally, Mullenbach et al. (2018) used code descriptions to regularize their
model, without improvements in the prediction of the full codes. Similarly to Shi
et al. (2017) we embed the codes description through a recurrent encoder and we
use the obtained representations as context vector to compute the label-dependent
attention.
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5.1 Preprocessing

As mentioned previously clinical notes contained in EHRs exhibit some textual
constructs that make preprocessing necessary in order to perform an effective to-
kenization. The reason is that the language used in the notes is medical English,
which differs from common English for the presence of expressions such as abbre-
viations, vital signs transcriptions and drugs dispensing reports. Also these notes
contains a high amount of misspellings, likely a result of being written by doctors
while being under pressure. Moreover the clinical notes contained in the MIMIC
dataset contain de-identified protected health information (PHI): elements of the
text such as names, dates, locations are replaced by anonymized tokens in the form
of generic information enclosed between special symbols ([* ... **]). For example, a
patient’s name becomes [**Known lastname 101054**]. The number at the end is
a unique identifier associated to the information that’s being anonymized, so every
occurrence of that information in the dataset (e.g. a person’s name) will have the
same numerical identifier.

In the previous studies the preprocessing approach taken was to tokenize the
input text and then convert all non-alphabetical characters to pseudo-tokens (e.g.
”11/2/1986” to ”dd/d/dddd”) (Baumel et al. , 2017) or to remove tokens that don’t
contain any alphabetic characters (e.g. removing ”500” but keeping ”250mg”) and
to split the tokens on symbols and spaces (Mullenbach et al. , 2018).

In our approach we use the spaCy 1 library to tokenize the text, using custom
rules to handle correctly the most frequent medical abbreviations, as those are often
splitted incorrectly by the tokenizer. Then we remove tokens that don’t contain any
alphabetic characters: this rule removes the numbers and spurious tokens entirely
made of symbols, but it retains words that contain numbers. We also take spacial
care of the anonymized expressions, that would otherwise be split in several tokens:
we map them to special tokens, e.g. [**Last Name 1234**] becomes ”lastname-
token”. This mapping preserves the structure of the text, is easily interpretable
when reading the processed notes and allows correct tokenization of these expres-
sions. We also performed experiments with the numerical identifiers associated to
the anonymized tokens: we tried to preserve the identifiers, e.g. mapping [**Last
Name 1234**] to ”lastnametoken 1234”. We observed that this approach caused a
noticeable growth of the number of unique tokens in the corpus and this led to worse
results.

The vocabulary is built by taking all the tokens that appear at least 3 times
in the training set; any out-of-vocabulary word is replaced by a special token that
represents unknown words. We also tried to map every unknown word to the word
in the vocabulary with the shortest Levenshtein distance (similar to the approach

1https://spacy.io
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taken by Baumel et al. (2017)) but this approach didn’t yield any performance
improvement.

Here is show a sample of clinical note before and after our preprocessing and to-
kenization. This example illustrates several of the tokenization problems discussed
above: anonymized date and name tokens, numbered lists, drug dispensing informa-
tion, vital signs, etc. The processed note, formatted with one sentence per line, is
overall clearer and we can observe how the majority of the problematic expressions
are handled correctly. The main remaining issue is the sentence boundary detection,
with many sentences incorrectly split int two or more smaller sentences.
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History of Present Illness:
44 yo female with a h/o left frontal AVM in the supplementary
motor area. The AVM was treated with stereotactic radiosurgery
(Gamma Knife)in [∗∗2114∗∗]. In [∗∗2116∗∗], the patient developed a seizure
disorder. [∗∗2118−5−27∗∗] she developed
headaches and after an MRI and a digital angiogram showed no
residual pathological vessels, a contrast enhancing lesion
with massive focal residual edema was diagnosed− very
likely represents radionecrosis. The patient had midline
shift and mass effect. On [∗∗2118−8−10∗∗] she had a left craniotomy for
resection of the radionecrosis. She then presented to the office
in [∗∗2118−8−27∗∗] with increased left facial swelling and incision
drainage, she was taken to the OR for a wound washout and
craniectomy. She now returns for a cranioplasty after a long
course of outpatient IV antibiotic therapy.

sic

[∗∗2118−12−7∗∗] 03:13PM WBC−13.8∗# RBC−4.76 HGB−12.8 HCT−37.6 MCV−79∗
MCH−27.0 MCHC−34.2 RDW−14.4
[∗∗2118−12−7∗∗] 03:13PM PLT COUNT−555∗
[∗∗2118−12−7∗∗] 03:13PM CALCIUM−9.2 PHOSPHATE−3.4 MAGNESIUM−2.3
[∗∗2118−12−7∗∗] 03:13PM estGFR−Using this
[∗∗2118−12−7∗∗] 03:13PM GLUCOSE−128∗ CREAT−0.9 SODIUM−141
POTASSIUM−4.1 CHLORIDE−102 TOTAL CO2−30 ANION GAP−13

Discharge Medications:
1. Acetaminophen 325 mg Tablet Sig: 1−2 Tablets PO Q4H (every 4
hours) as needed for pain/t>100/HA.
2. Bisacodyl 5 mg Tablet, Delayed Release (E.C.) Sig: Two (2)
Tablet, Delayed Release (E.C.) PO DAILY (Daily) as needed for
constipation.
3. Docusate Sodium 100 mg Capsule Sig: One (1) Capsule PO BID (2
times a day).
Disp:∗60 Capsule(s)∗ Refills:∗2∗
4. Hydromorphone 2 mg Tablet Sig: 1−2 Tablets PO Q4H (every 4
hours) as needed for pain.
Disp:∗30 Tablet(s)∗ Refills:∗0∗
5. Venlafaxine 25 mg Tablet Sig: Two (2) Tablet PO BID (2 times
a day).
6. Fluticasone 50 mcg/Actuation Spray, Suspension Sig: Two (2)
Spray Nasal DAILY (Daily) as needed for nasal congestion.
7. Dexamethasone 2 mg Tablet Sig: One (1) Tablet PO Q6H (every 6
hours) for 6 days: Take 2mg Q6hrs [∗∗Date range (1) 1855∗∗], take 2mg Q12
[∗∗Date range (1) 1856∗∗], Take 2mg Q24 [∗∗12−14∗∗], then stop.
Disp:∗16 Tablet(s)∗ Refills:∗0∗
8. Levetiracetam 500 mg Tablet Sig: 2.5 Tablets PO BID (2 times
a day).

sic

?????? Have a friend/family member check your incision daily for
signs of infection.
?????? Take your pain medicine as prescribed.
?????? Exercise should be limited to walking; no lifting, straining,
or excessive bending.
?????? You may wash your hair only after sutures and/or staples have
been removed.
?????? You may shower before this time using a shower cap to cover
your head.
?????? Increase your intake of fluids and fiber, as narcotic pain
medicine can cause constipation. We generally recommend taking
an over the counter stool softener, such as Docusate (Colace)
while taking narcotic pain medication.
?????? Unless directed by your doctor, do not take any
anti−inflammatory medicines such as Motrin, Aspirin, Advil, and
Ibuprofen etc.
?????? Clearance to drive and return to work will be addressed at
your post−operative office visit.

Listing 5.1: A sample from a discharge summary from MIMIC-III
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history of present illness
yo female with a h/o left frontal avm in the supplementary motor area
the avm was treated with stereotactic radiosurgery
gamma knife in
in the patient developed a seizure disorder
may
she developed headaches and after an mri and a digital angiogram showed no residual pathological vessels a contrast enhancing

lesion with massive focal residual edema was diagnosed very likely represents radionecrosis
the patient had midline shift and mass effect
on august
she had a left craniotomy for resection of the radionecrosis
she then presented to the office in
august with increased left facial swelling and incision drainage she was taken to the or for a wound washout and craniectomy
she now returns for a cranioplasty after a long course of outpatient iv antibiotic therapy

sic

december
13pm wbc
rbc
hgb hct mcv
mch mchc rdw
december
13pm plt count
december
13pm calcium phosphate magnesium
december
13pm
estgfr using this
december
13pm
glucose creat sodium
potassium chloride total co2 anion gap discharge medications
acetaminophen mg tablet sig
tablets po q4h every hours as needed for pain t ha
bisacodyl mg tablet delayed release e.c. sig
two tablet delayed release e.c.
po daily daily as needed for constipation
docusate sodium mg capsule sig
one capsule po bid times a day

disp

capsule s
refills hydromorphone mg tablet sig tablets po q4h every hours as needed for pain
disp
tablet s refills
venlafaxine mg tablet sig
two tablet po bid times a day
fluticasone mcg actuation spray suspension sig
two spray nasal daily daily as needed for nasal congestion
dexamethasone mg tablet sig one tablet po
q6h every hours for days
take mg q6hrs
daterangetoken
take mg q12
daterangetoken
take mg q24
december
then stop
disp
tablet s refills
levetiracetam mg tablet sig tablets po bid times a day

sic

have a friend family member check your incision daily for signs of infection
take your pain medicine as prescribed
exercise should be limited to walking no lifting straining or excessive bending
you may wash your hair only after sutures and/or staples have been removed
you may shower before this time using a shower cap to cover your head
increase your intake of fluids and fiber as narcotic pain
medicine can cause constipation
we generally recommend taking an over the counter stool softener such as docusate colace while taking narcotic pain medication
unless directed by your doctor do not take any anti inflammatory medicines such as motrin aspirin advil and ibuprofen etc
clearance to drive and return to work will be addressed at your post operative office visit

Listing 5.2: The sample after preprocessing and tokenization
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5.2 Word embeddings

The first layer of our network maps words to their continuous embedding space.
Each word w ∈ Rv is mapped to x ∈ Re using the embedding weight We ∈ Rv×e,
where v is the vocab size and e is the embedding dimensionality.

Both Baumel et al. (2017) and Mullenbach et al. (2018) used word vectors pre-
trained on the MIMIC dataset using the continuous bag-of-words (CBOW) word2vec
model (Mikolov et al. , 2013). We swap them with word embeddings pre-trained on
an external English corpus using the GloVe model (Pennington et al. , 2014). The
intuition is that we initialize the embedding layer using vectors trained on common
English and then we fine-tune them on medical English during training. Vocabulary
words not covered by the pre-trained vectors are initialized randomly. For e = 100
we use word embeddings trained on Wikipedia, for e = 300 we use word embeddings
trained on CommonCrawl, which is a larger corpus and thus has a larger coverage
(vectors of dimension 100 pre-trained CommonCrawl are not publicly available).

Mullenbach et al. (2018) normalizes the word vectors upon initialization of the
embedding layer. We don’t perform any normalization as in our experiments we
found that it causes a decrease in performance with our chosen vectors.

5.3 Hierarchical model

We propose a hierarchical model conceptually similar to the one used by Baumel
et al. (2017). The layers architecture remain similar, with the hierarchical segmen-
tation in sentences and words and the double attention layer. However, because
the documents contained in MIMIC are composed of a considerable number of sen-
tences (300-400), bidirectional GRUs are unable to handle effectively the resulting
long-term temporal dependencies. Because of this, we swap the encoder of the
sentence-level layer with a convolutional encoder, since CNNs have been proven to
be very effective for this task by Mullenbach et al. (2018). We retain the recurrent
encoder in the word-level layer since sentences are very short (a few dozens of tokens
at most), thus recurrent networks are most effective at detecting temporal patterns
inside them.

A document D has L sentences si, with each sentence containing Ti words.
wti, t ∈ [1, Ti], i ∈ [1, L] represents the tth word in the ith sentence.

1. Embedding layer Each word wti is mapped to a vector through an embedding
matrix We

xit = Wewit (5.1)

2. Word encoder The document is segmented in sentences. Each sentence is the
input sequence for a bidirectional Gated Recurrent Unit, which summarizes
information from both directions at word level, incorporating the contextual
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5.3 – Hierarchical model

information in the representation. As output we take the sequence of hidden
states of the GRU at each time step, where the tth hidden state represents the
tth input word. We obtain hi, an embedded representation of the ith sentence
of the input document.

hfwit = GRU fw(xit) (5.2)

hbwit = GRU bw(xit) (5.3)

h∗it = [hfwit , h
bw
it ] (5.4)

hit = tanh(Wwh
∗
it) (5.5)

3. Word attention The importance of each word hi is measured through its dot-
product similarity with a vector uw, normalized through a softmax function,
obtaining the importance weight αit.

uw can be interpreted as a high level representation of a highly informative
word for the coding task. It’s initialized randomly and jointly learned during
the training.

αi =
exp(H>i uw)∑T
t exp(h

>
tiuw)

(5.6)

Each sentence embedding si is computed as a weighted sum of the word rep-
resentations scaled by their attention weights.

si =
T∑
t

αithit (5.7)

4. Sentence encoder A convolutional layer combines the adjacent sentences in
the matrix S, formed by concatenating the sentence vectors si: the filters are
all of the same size and the stride is set to 1, so that with appropriate input
padding the output is a matrix with a length equal to the length of the input.
For every step n we compute

H ′ = tanh(Ws ∗ S + bs) (5.8)

5. Code-dependent sentence attention The attention at sentence level is
computed in a similar way as the word level attention. In this case however
we compute an attention vector for each label ` by the product between H ′

and ul, where ul is the context vector for label l. The resulting vector is passed
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through the softmax function, obtaining a the normalized attention vector for
label l.

α` =
exp(H ′>u`)∑L
i exp(h

′>
i u`)

(5.9)

v` =
L∑
i

α`ih
′
i (5.10)

6. Document classification

The document vector v` is a high level representation of the document with
respect to label ` and can be used as features vector for the classification
task by feeding it to a fully connected layer and a final sigmoid function σ to
compute the likelihood for each label `.

y` = σ(W>
` v` + b`) (5.11)

7. Training

The binary cross-entropy loss is computed on the output of the last layer. The
model is then trained to minimize this loss function.

LBCE(y, ŷ) = −
L∑
`=1

y` log(ŷ`) + (1− y`) log(1− ŷ`) (5.12)

5.4 Labels embeddings

Similarly to Shi et al. (2017) we embed the codes description through an encoder
and we use the obtained representations as context vector to compute the label-
dependent attention. However instead of multilayer recurrent network we use a
single bidirectional Gated Recurrent Unit, using its last hidden state as embedded
representation of each code.

The embedded code description of each code obtained through the recurrent
encoder is a representation of that code. That representation is then used as context
vector for the attentional matching for that code.

The embedding matrix We is shared with the document encoder, while the pa-
rameters of the encoder are independent, in order to fit the different language styles
of the two input sets.

Formally for every code `, given its description d`, the corresponding context
vector u` is computed from its description dl as follows
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5.4 – Labels embeddings

X` = d`We (5.13)

hfw` = GRU fw(X`) (5.14)

hbw` = GRU bw(X`) (5.15)

h` = [hfw` , hbw` ] (5.16)

u` = tanh(Wah`) (5.17)

where X` is the sentence matrix of word vectors for description d` and h∗` denotes
the hidden state of a GRU cell at the last time step.

We apply label embeddings to both the CAML model by Mullenbach et al.
(2018) and our hierarchical model. For the attentional matching we compute the
similarity with a code representation, which is actually a sentence embedding (the
code description): however in CAML we are computing we are comparing the code
embedding with a word of the document, while in the hierarchical model we are
computing the similarity with a sentence in the document.
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Chapter 6

Experimental Setup

6.1 MIMIC-III dataset

We rely on the publicly available MIMIC-III dataset (Johnson et al. , 2016), which
contains de-identified EHRs of 58,976 patient visits at the Beth Israel Deaconess
Medical Center from 2001 to 2012. MIMIC-III includes raw notes for each hos-
pital stay in different categories—discharge summary report, discharge summary
addendum, radiology note, nursing notes, etc. Following Baumel et al. (2017) and
Mullenbach et al. (2018) we retain only discharge summaries and their addenda,
which contain the most informative diagnostical information. Sometimes there is
more than one discharge summary for each patient admission as addenda are in-
correctly tagged as discharge summaries reports. The timestamp of the documents
gives us the correct reading order for the patient admission. Also, some of the hos-
pital stays do not have discharge summaries: following previous studies, we only
consider those that do (Perotte et al. , 2013; Baumel et al. , 2017; Mullenbach et al.
, 2018).

The dataset includes 8,929 unique ICD codes (2,011 procedures, 6,918 diagnoses)
for the patients who have discharge summaries. However 5 codes are invalid, hence
we ignore them and we evaluate on 8,924 codes. Codes are structured hierarchically,
where top level categories and more generic and lower level codes indicate specific
diseases. It is worth noting that the codes representation through a hierarchy is only
for convenience purposes: the only valid codes for diagnoses and billing are the leaf
nodes, which represent the full codes. MIMIC-III doesn’t contain any information
on the codes hierarchy, only full codes are assigned to the nodes.

The codes in the dataset are distributed such that a minority of the codes makes
up the majority of the distribution of label occurrencies. Because of the high number
of labels their unbalanced distribution the predictive power of the models will be
severely diminished for the rare codes. The distribution is showed in Figure6.1.

We follow the train, test, and development splits publicly shared by Mullenbach
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et al. (2018). These splits are patient independent. The statistical properties of
all the sets are shown in table 6.2. As shown in Figure 6.3a, 6.3b and 6.3c, the
frequency distribution of the codes is similar between the splits.

The discharge summaries can be very long, and this can cause issues as any
architecture which relies on temporal dependencies will suffer without long-term
memory. The mean number of words per note is 1505, with a standard deviation
of 775. The quantile function of the number of words per note is represented in ??.
Discharge summaries exhibit a fixed structure: the note is usually divided into sec-
tions such as ”history of present illness”, ”past medical history”, ”hospital course”,
”social history”, ”family history”, ”discharge diagnosis”, ”discharge medications”.
Some sections of the documents are more relevant than others for the classification
task, the most important of all being the diagnosis part. However every section
can hold relevant information: for example the patient history section is important
as some codes are related to past conditions or procedures (e.g. ”personal history
of malignant neoplasm of prostate” or ”personal history of venous thrombosis and
embolism”). Finally the notes can be hard for the models to classify as they are writ-
ten in medical English, which has a number of differences with respect to common
English used in other corpora, and misspellings are frequent.

level #
nodes

total
count

min
count

max
count

coverage mean std dev

0 1 891094 891094 891094 1.00 891094.00 0.00
1 4 891094 22544 553750 1.00 222773.50 207280.98
2 73 891094 0 140257 1.00 12206.77 23305.51
3 526 891094 0 53211 1.00 1694.10 5105.10
4 3585 887782 0 23412 1.00 247.64 1272.01
5 10038 768131 0 20703 0.99 76.52 538.27
6 7313 249010 0 12891 0.98 34.05 301.07
7 867 10304 0 812 0.96 11.88 48.88

Table 6.1: Statistics about codes distribution in MIMIC-III in relation to the the
ICD-9 hierarchy

6.2 Implementation details

We implemented the code for our experiments using PyTorch. As optimizer we use
Adam (Kingma & Ba, 2014) with an initial learning rate of 0.0001. We train the
models with early stopping, using precision@8 on the development set as stopping
criterion with a patience of 10 epochs. We apply a dropout before each layer to
reduce overfitting. We also perform layer normalization (Ba et al. , 2016) at the
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6.2 – Implementation details

set # admis-
sion
ids

#
patients

# unique
codes

# total
codes

# admis-
sions per
patient

# codes
per

admission

full 52726 41127 8929 848688 1.28 16.10
train 47723 36998 8692 758212 1.29 15.89
dev 1631 1374 3012 28897 1.19 17.72
test 3372 2755 4085 61579 1.22 18.26

Table 6.2: The statistics of the different splits of the dataset

Figure 6.1: Frequency of distribution of ICD-9 codes in MIMIC-III dataset

output of each layer: normalization considerably improved convergence speed and
was crucial for the performance of the hierarchical model.

To optimize the hyperparameters of our models we perform a grid search on the
word embeddings size de, the features size for the GRU hidden state dw, the number
of channels c and the kernel size k of the convolutional layers and on the dropout
probability pw, ps.

All models were trained with a batch size of 8.
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code description

401.9 unspecified essential hypertension
38.93 venous catheterization not elsewhere classified
428.0 congestive heart failure unspecified
427.31 atrial fibrillation
414.01 coronary atherosclerosis of native coronary artery
96.04 insertion of endotracheal tube
96.6 enteral infusion of concentrated nutritional substances
584.9 acute kidney failure unspecified
250.00 diabetes mellitus without mention of complication type ii or

unspecified type not stated as uncontrolled
96.71 continuous invasive mechanical ventilation for less than 96 consecutive

hours
272.4 other and unspecified hyperlipidemia
518.81 acute respiratory failure
99.04 transfusion of packed cells
39.61 extracorporeal circulation auxiliary to open heart surgery
599.0 urinary tract infection site not specified
530.81 esophageal reflux
96.72 continuous invasive mechanical ventilation for 96 consecutive hours or

more
272.0 pure hypercholesterolemia
285.9 anemia unspecified
88.56 coronary arteriography using two catheters
244.9 unspecified acquired hypothyroidism
486 pneumonia organism unspecified

38.91 arterial catheterization
285.1 acute posthemorrhagic anemia
36.15 single internal mammary coronary artery bypass
276.2 acidosis
496 chronic airway obstruction not elsewhere classified

99.15 parenteral infusion of concentrated nutritional substances
995.92 severe sepsis
V58.61 long term current use of anticoagulants

Table 6.3: Top 30 codes in MIMIC-III
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6.2 – Implementation details

Figure 6.2: Frequency of distribution of ICD-9 header codes in MIMIC-III dataset

candidates Mullenbach et al. (2018) Our

de 100, 300 300 300
c 50, 100, 125, 200 125 100
dw 100, 200 - 200
k 3, 5, 9, 10, 15 9 3
pw 0.2, 0.5 0.2 0.5
ps 0.5, 0.5 - 0.5

Table 6.4: Hyperparameter candidates for each model and optimal values selected
by grid search
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(a) Training

(b) Development

(c) Validation

Figure 6.3: Frequency of distribution of ICD-9 codes for the three splits of the
dataset
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Chapter 7

Evaluation metrics

To directly compare the results of our experiments with the prior work for our
evaluation we focus on the micro-averaged and macro-averaged F1 and area under
the ROC curve (AUC).

F1-score is a harmonic mean of precision and recall. It is widely used to eval-
uate the performance of a binary classifier on imbalanced data. The AUC score is
computed as the area under the ROC curve, obtained by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various threshold settings. Intu-
itively, the ROC AUC score measures the probability that the model assigns higher
score for a positive instance than negative one. The lower bound is 0.5, which is the
score obtained by a classifier that classifies the samples as positives with probability
0.5 (a random classifier). Since ROC AUC measures the true negatives, which are
extremely frequent for this problem, it tends to yield very high scores (above 0.9),
so we must take into account this factor during the evaluation of the models.

Micro-averaged values are calculated by treating each text, code pair as a sep-
arate prediction, while macro-averaged values are calculated by averaging metrics
computed per-label. As a result the macro-averaged metrics put the same emphasis
on every label prediction, while micro-averaged metrics balance the difference in
number of occurrences between the labels.

Considering that ICD code assignment is generally sparse, with most codes la-
beled as false and only a few as true, we give more weight to the micro-averaged
scores for our evaluation, as they are more informative quantitative metrics for the
task at hand.
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Chapter 8

Results

Table 8.1 provides the evaluation of our models and the chosen baseline CAML, by
Mullenbach et al. (2018). We show the differences in performance over the chosen
evaluation metrics in terms of chosen model, preprocessing and tokenization and
word vectors initialization.

First we observe a general improvement in performance when initializing the
embedding matrix with word vectors pre-trained on a general external corpus using
Glove with respect to word vectors pre-trained on MIMIC using word2Vec. It’s
worth noting that the improvement is remarkable even with a restricted vocabulary
coverage of (50% for the Wikipedia corpus), meaning that the network is able to
effectively train the remaining randomly initialized vectors.

With respect to our preprocessing and tokenization, we measure its impact on
CAML using word embeddings pretrained on Wikipedia. We mainly observe that
there is a increase in micro-precision, at the cost of a decrease in micro-recall that
overall yields a comparable micro-F1 score.

We then swap CAML with our hierarchical model, while retaining our embedding
layer and preprocessing. We observe that the overall performance of this model is
similar to the CAML performance. However, as opposed to CAML, we didn’t fine-
tune the hyperparameters for this model, so there is still a margin for performance
improvement.

Moreover, as we will show in the qualitative evaluation of the results, the sen-
tence level attention mechanism yields more meaningful and interpretable results
compared to the word-level attention mechanism of the original model.

A considerable improvement in performance is brought by embedding the code
for the attentional matching. This mechanism is beneficial for both CAML and
our model: in both cases we observe an improvement of more than 1% in micro-F1
(0.5409 vs 0.5522 for GRU+CNN, 0.5461 vs 0.5581 for CAML) and an improvement
of more than 5% in macro-AUC (0.8793 vs 0.9392, 0.8949 vs for CAML 0.9474).

We also evaluate our models using relaxed metrics: we discount errors at the
deeper level of the hierarchy tree by considering as prediction target only the ICD
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codes headers. For example, for ground truth code 401.9 (”unspecified essential
hypertension”), if instead the code 401.1 (”benign essential hypertension”) is pre-
dicted, this is not considered an error, but failing to predict any code that’s a child
of code 401 (”essential hypertension”) is considered an error.

With this setup the target space is considerably smaller, with only 1168 labels.
As expected the relaxed metrics are significantly higher. The macro-averaged met-
rics also become more relevant, given the lower labels cardinality and the more
balanced distribution (shown in Figure 6.2).
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Chapter 9

Qualitative evaluation

In the medical domain interpretability of the results is of fundamental importance.
For the automated ICD coding task the system should be able to explain why it
predicted each code.

A way to provide insight into the decisional process of the model is to examine
which parts of the text were considered as most relevant to each code. Since the
labeled-dependent attention mechanism used by current models assigns an impor-
tance value to the tokens in the input document, examining attention cores assigned
to different parts of the documents can show the linguistic patterns used by the
model to make the predictions for each code.

We perform a human evaluation of the quality of the explanations provided by
the attention mechanism by examining a set of randomly sampled documents labeled
with the 10 most frequent codes in the dataset.

We examine the results produced by CAML and by our hierarchical model. In
both cases we embed the codes descriptions for the attentional matching. By choos-
ing these two models we can examine the differences in quality and interpretability
for the attention allocated at word level (CAML) and at sentence level (GRU+CNN
model).

Figure 9.1, 9.2, 9.3 show the CAML behaviour. In 9.1 the model highlights sig-
nificant tokens, while in 9.3 we see that even if the document was classified correctly
the tokens selected weren’t meaningful. Figure 9.2 shows an intermediate scenario,
with a mix of relevant and non relevant tokens.

Figure 9.4, 9.5, 9.6 show the behaviour of the hierarchical model. Similarly
we show an example of good, mixed and poor attention allocation. However it
is observable that when attention is allocated at sentence level, the highlighted
portions of the text are more meaningful and more interpretable. Moreover, we
observed empirically that sentence with non relevant tokens are far less likely to be
highlighted by the hierarchical model than by CAML.

Finally, we generally observe that while the highlighted tokens are generally
health-related, they are often not directly related to the code examined. This is
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caused by the fact that the models learn indirectly comorbidity information, so to
classify a certain pathology they learn the correlation to diseases that are likely to
co-occur.
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Figure 9.1

Figure 9.2
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Figure 9.3

Figure 9.4

Figure 9.5

Figure 9.6
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Chapter 10

Conclusion and Future Work

In this work we introduced a hierarhical neural model for automated coding of
clinical notes. The architecture is composed by an embedding layer, a recurrent
layer and a convolutional layer, with attentional layers at word and sentence level.
The sentence level attentional matching is computed using embedded representation
of the codes based on their textual descriptions.

We evaluated our model on the MIMIC-III dataset, surpassing the previous
state of the art model according to several quantitative metrics. We also provided
a qualitative evaluation of the results by inspecting how the model distributes the
attention scores to different sections of documents when assigning a given code.

We performed a more accurate preprocessing of the input documents with re-
spect to previous studies, resulting in similar quantitative metrics but with improved
readability of the processed documents. We demonstrated that initializing the em-
bedding matrix with word vectors trained on an external common English corpus
and using textual decriptions of the codes for the attentional matching significantly
improve the performance of the model. We showed that while our proposed hierar-
chical model has comparable performance with respect to a single layer convolutional
model with a word level attentional matching, the results produced by the hierar-
chical model are more meaningful and interpretable upon qualitative evaluation.

We also evaluated our models using relaxed metrics, taking as target predictions
only the codes headers instead of the full codes, resulting in a much lower labels
cardinality.

The relaxed metrics show the potential use for these models as a support tool
for ICD coding, as they can guide manual coders close to the correct subtree of
the hierarchy, leaving to the operators the selection of the appropriate more specific
codes. Moreover, highlighted documents similar to the ones used for our qualitative
evaluation can be useful to reduce a physician’s reading burden, as he is able to
focus on the health related portion of the text.

This study shows the potential for real life applications in view of the high
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performance even on noisy formatted data such as the ones contained in MIMIC-
III. With more elaborate data preprocessing techniques and with more properly
formatted clinical notes, the automatic coding can be even more accurate. For
future work we plan to further improve the preprocessing stage of our pipeline, with
particular attention to the sentence segmentation, and to use other datasets for the
training and validation of our models.
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