
POLITECNICO DI TORINO

MASTER THESIS

Blockchain for Education
Case Study on Hyperledger Fabric

Author:
Sara GIAMMUSSO

Academic Supervisor(s):
Prof. Paolo GARZA

Prof. Elia PETROS

Internship Supervisor:
Carlos Ernesto CANALES

A thesis submitted in fulfillment of the requirements
for the Master of Science MSc in Computer Engineering

in the

Control and Computer Engineering Department

16th April 2019

http://www.polito.it
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
www.ciao.com
http://www.dauin.polito.it/it/

iii

To my mother Silvana, my father Totò and my brothers Davide
and Simone, for their love and endless support and for always

being there where I need it.

v

“Every person that you meet knows something you don’t; learn from them.”

H. Jackson Brown Jr.

vii

Abstract

Evoke is an award-winning online educational experience, which uses storytelling
and game mechanics to prepare young people to become social innovators who cre-
ate solutions that address global “grand challenges” (e.g. poverty, hunger, water
scarcity). Evoke enables students to demonstrate their learning by submitting “ev-
idence” of their activities and provides incentives, rewarding students through to-
kens that can be used in the platform marketplace.

The goal of this thesis is to design a prototype to test the applicability of blockchain
within this use case, designing a solution that can make the project scale across dif-
ferent countries, and trace the distribution of donor funds.

A demo video of the PoC can be found here.

Sommario

Evoke è una piattaforma didattica online pluripremiata, che utilizza la narrazione
e le meccaniche di gioco per preparare i giovani a diventare innovatori sociali ca-
paci di creare soluzioni che risolvono le “grandi sfide” globali (ad esempio povertà,
fame nel mondo, crisi idriche). Evoke consente agli studenti di dimostrare il loro
apprendimento inviando “prove” delle loro attività e fornisce incentivi economici,
ricompensando gli studenti attraverso token che possono essere utilizzati nel market
place della piattaforma.

L’obiettivo di questa tesi è di progettare un prototipo per testare l’applicabilità
delle blockchain in questo caso d’uso, definendo una soluzione che possa permettere
al progetto di scalare in diversi paesi e allo stesso tempo tracciare la distribuzione
dei fondi dei donatori.

Un video demo del prototipo puo’ essere trovato qui.

Résumé

Evoke est une expérience éducative en ligne primée qui utilise des mécanismes de
narration et de jeu pour préparer les jeunes à devenir des innovateurs sociaux qui
créent des solutions qui répondent aux “grands défis” mondiaux (par exemple, pau-
vreté, faim, pénurie d’eau). Evoke permet aux étudiants de démontrer leur savoir
en soumettant des “preuve” de leurs activités et fournit des encouragements, récom-
pensant les étudiants par des jetons qui peuvent être utilisés sur le market place de
la plate-forme.

Cette thèse a pour objectif de concevoir un prototype permettant de tester l’applica-
bilité de la blockchain dans ce cas d’utilisation, de définir une solution qui permet
au projet de grandir en différents pays et au même temps de suivre la répartition des
fonds des donateurs.

Une vidéo de démonstration du prototype peut être trouvée ici.

https://drive.google.com/file/d/1FGqj0MO8CLhE9otqwJzFdZBk1FViLkY8/view?usp=sharing
https://drive.google.com/file/d/1FGqj0MO8CLhE9otqwJzFdZBk1FViLkY8/view?usp=sharing
https://drive.google.com/file/d/1FGqj0MO8CLhE9otqwJzFdZBk1FViLkY8/view?usp=sharing

ix

Acknowledgements
I have to thank first of all the World Bank Group ITS Technology and Innovation
team who introduced me to the world of blockchain and gave me the opportunity
to work on this interesting topic. I am very grateful to Carlos Ernesto Canales and
Maria Vargas for their help on the requirements definition and for their very impor-
tant moral support when I needed it.
I also want to thank Paola D’Alessandro who has been the closest thing to a mom in
the United States.

A special thanks goes to my professors and supervisors Paolo Garza from Po-
litecnico di Torino and Elia Petros from EURECOM Campus of Télécom ParisTech
which gave me several advises about this work.

Thanks to Collegio Einaudi, to have made Turin a second home, and particularly
my Turin family: Giampaolo, Luca and Marco, I would never have obtained this
results without their help and support. Moreover, I have to thank my girlfriends
Alessia, Claudia, Giuliana, Roberta and Simona, for 10 years of standing by my side
and giving me reasons to cheer.

Finally, last but not least I have to thank my mother Silvana and my father Sal-
vatore, whose support, both moral and economical has made my education career
possible, and to my brothers Davide and Simone who have always pushed me to do
my best in everything.

xi

Contents

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Evoke: an overview . 1

1.1.1 System design . 1
1.1.2 The challenges . 1

1.2 Blockchain for education: Related works 2
1.3 This Master Thesis . 3

1.3.1 Research Questions . 3
1.3.2 Outline . 3

2 Theoretical Background 5
2.1 Blockchain Technology . 5

2.1.1 Hash functions . 7
2.1.2 Consensus protocols . 8

Proof of Work . 9
Proof of Stake . 13

2.1.3 Public Key Infrastructure . 13
2.1.4 Hyperledger Fabric and Ethereum: A Comparison 16

2.2 Hyperledger Fabric . 17
2.2.1 Fabric network architecture . 18
2.2.2 Types of peers . 24
2.2.3 Identity . 24
2.2.4 Basic transactions work flow . 25
2.2.5 Ledger . 28

2.3 Hyperledger Composer . 31
2.3.1 Business Network Definition . 32

3 Proposed Solution 35
3.1 Business Network Definition . 35

3.1.1 Model . 35
3.1.2 Limitations . 39
3.1.3 Logic . 39
3.1.4 Access Control List . 43
3.1.5 Queries . 46

3.2 Business Network Deployment . 47
3.2.1 Starting Hyperledger Fabric . 47

3.3 Business network administrators . 47
3.3.1 Composer REST Server . 48

4 Conclusions and Future Works 55

xii

A Business Network Definition Code 57
A.1 model.cto . 57
A.2 logic.js . 60
A.3 permissions.acl . 71
A.4 queries.qry . 79

Bibliography 83

xiii

List of Figures

2.1 Chain of blocks . 5
2.2 Single block example . 6
2.3 Block 1 and block 2 linked together . 6
2.4 Block 1, block 2 and block 3 linked together 7
2.5 Block 1 has been altered, Damian supposedly sent 500 Bitcoin to George

instead of 100 Bitcoin . 7
2.6 A sample networks with 11 participants 9
2.7 Susan does the first transaction. The transaction is added to her mem-

pool . 9
2.8 Bitcoin transaction flow: step 1 . 10
2.9 Other participants do more transactions 11
2.10 Bitcoin transaction flow: step 2 . 11
2.11 Bitcoin transaction flow: step 3 . 12
2.12 X.509 Certificate example . 14
2.13 A party signs the message using her private key. The signature, then,

can be verified by anyone using her public key. 15
2.14 A Certificate Authority produces certificates for different actors in the

network. Every certificate is digitally signed by the CA and bound to
the actor with the actor’s public key. If a party trusts the CA, it can
trust every certificate emitted by that CA. 15

2.15 Thanks to the CRL a party can check whether a certificate is still valid. 16
2.16 A complete Fabric sample network . 18
2.17 Step 1: Create the Fabric sample network 19
2.18 Step 2: Add network administrators . 20
2.19 Step 3: Define a consortium . 20
2.20 Step 4: Create a channel . 21
2.21 Step 5: Adding peers and ledgers . 21
2.22 Step 6: Adding client applications and smart contracts 22
2.23 Step 7: Completing the network . 22
2.24 Ordering service: a de-centralized example 23
2.25 IBM Insurance application work-flow 24
2.26 PKI and MSPs have a complementary role, PKI provides identities

while MSP defines which of these identities are members of the Fabric
network. 25

2.27 Thanks to Peer P1, application A can invoke the smart contract S1 for a
given transaction. S1 produces a simulation of the transaction and P1
sends back to A the transaction proposal responses. A ledger-query
ends here, while for a ledger-update A sends the transaction together
with the transaction proposal responses to O1, that after creating a
new block, sends the block to every committing peer in the network. . 26

2.28 Transaction work-flow: Phase 1 . 26
2.29 Transaction work-flow: Phase 2 . 27

xiv

2.30 Transaction work-flow: Phase 3 . 27
2.31 Transaction work-flow . 28
2.32 Ledger L is made of blockchain B and World State W. Blockchain B

implicitly defines the World State W. 29
2.33 Two examples of world state. 29
2.34 Blockchain B is made of blocks B0, B1, B2, B3, where B0 is the genesis

block. 30
2.35 Transaction T4 is made of the header, the signature, the proposal, the

response and the endorsments. 31
2.36 Hyperledger Composer solution design 32

3.1 Business Network Architecture . 35
3.2 Google OAUTH2.0 Client Authentication Overview 49
3.3 The first time a new participant wants to register to the platform he

interacts with the unauthenticated REST server, which creates a new
user and issues a business network card for him. Thanks to business
network card, the user can now interact with the authenticated REST
server and performs all the operation that card has the rights to. 50

xv

List of Abbreviations

PoC Proof of Concept
B4E Blockchain 4for Education
DLT Distributed Ledger Technology
WBG World Bank Group
ITSTI Information Technology Services Technology Innovation
PoW Proof of Work PoS
Proof of Stake PKI Public Key Infrastructure
A Client Application
S Smart Contract
CA Certificate Authority
P Peer
L Ledger
O Orderer
CP Channel Policy
NP Network Policy
CRL Certificate Revocation List

1

Chapter 1

Introduction

1.1 Evoke: an overview

The world of work is changing dramatically, and how education is designed and
delivered needs to change just as dramatically. Nearly 85% of the world’s young
people live in lower-income countries and fragile states. The probability to be un-
employed for young people is 4 times higher than for adults.

To engage young people where they spend their time - reading graphic novels,
engaged in social networks, immersed in game environments, the World Bank cre-
ated and deployed Evoke, an award-winning social networking game that empow-
ers young people to think about and collaborate with their peers locally and glob-
ally to solve the world’s most urgent social problems (e.g., displacement, hunger,
poverty,water scarcity)[2]. (See the original Evoke trailer at this link)

The Evoke project is designed to help young people developing an understand-
ing of these complex challenges, acquire 21st century skills (e.g., creativity, collabora-
tion, critical reflection), socio-emotional skills (e.g., curiosity, empathy, generosity),
and gain the confidence to experiment, collaborate, and create innovative solutions.

1.1.1 System design

The primary target audience of the game is young people, defined as ages 17-25.
This spans the upper secondary level and university populations, as well as out-of-
school and working youth.

Evoke involves 5 different participants:

• Donors - they add funds to the overall Evoke trust fund;

• Vendors - they participate in the Evoke marketplace by accepting tokens in
exchange for their goods and/or services;

• Students - they engage with Evoke missions submitting evidences of their
work thus earning tokens they can spend in the Evoke marketplace;

• Mentors - they engage with students reviewing, commenting and evaluating
their evidences, thus earning tokens they can spend in the Evoke marketplace;

• Campaigns - they create new content to support learning objectives.

1.1.2 The challenges

The original iteration of EVOKE, URGENT EVOKE, launched at the TED confer-
ence in early 2010 by co-creator and noted game designer Jane McGonigal, gener-
ating much media interest, it ran as a 10-week “crash course in saving the world"

https://vimeo.com/9094186

2 Chapter 1. Introduction

from February through May. Geared for students across Africa, this first version of
EVOKE was in English. It won a top award at the 8th Annual Games For Change
Festival [5].

Evoke had other four iteration but it encountered different challenges.
Currently, Evoke is a standalone, in-country effort led by a not for profit agency in
partnership with an academic institution. Over a period of 12 weeks, students play
Evoke in a team to complete their class project. They receive new missions each
week on the website, and submit a blog post as evidence of completion to receive
their incentive. These incentives can be bus passes or telephone minutes.

Every time a game is to be launched in a country, the complete system set-up is
repeated creating an obstacle and persistent challenges.
Additionally, tracing the impact and distribution of donor funds is a global chal-
lenge. The time taken from when donor funds are received when the donation re-
ports can be sent back to the donors can range anywhere between a few months to a
year.

The WBG ITSTI Team has been engaged to re-design Evoke using emerging tech-
nologies, developing a prototype focused on two key Evoke concepts that could be
potentially transformed by deploying a blockchain platform:

1. Transparent funding - Donors can decide to allocate funds to a given campaign.
After the donation they must be able to observe how donations have been
spent. Traceability could be reported in real-time.

2. Token economy - Students and mentors complete pre-assigned tasks. On provid-
ing evidence of the completion of the tasks, these agents are allowed to collect
their incentives, i.e., coins that can be used in the game marketplace. These
coins cannot be exchanges for fiat currency in the real world.

1.2 Blockchain for education: Related works

Due to its ability to increase transparency and trust blockchain has already been
largely used in the education field. Since transactions are secured and linked to
each other in a chain of blocks, data are very hard to tamper or erased. Therefore,
blockchain have been largely used in validating identity management, specifically
to verify that we are who we claim to be.

In a always more competitive employment world, always more qualifications
are needed and a lot of people started lying about the certification owned. However,
thanks to the ability of blockchain to provide a tool to verify people’s education
background and validate candidate’s CV, universities such as MIT already started to
issue diplomas in a digital format together with the paper-based copy.

New apps, such as Blockcerts Wallet, provide to students the possibility to share
a verifiable and tamper-proof digital version of their diplomas with employers or
other institutions.

Another example is Gradbase, which has already been used from University Col-
lege London to issue degree certificates for some courses. Students are provided
with a QR code that they can share directly on LinkedIn. Employers can then easily
verify the educational credentials through the app.

Sony Global Education instead, is bulding a blockchain network based on Hyper-
ledger Fabric to create an online depository of education records. The system put

1.3. This Master Thesis 3

together data from different universities, thus creating a one stop education pro-
file.[4]

Opet Foundation’s product is an education companion chatbot app that aims to pro-
vide users with lessons to help them prepare for examinations. Apart from answer-
ing student queries, the app is designed to recommend worksheets and problems for
users to solve. It will then create education profiles for users, tracking their learn-
ing speed and grades. This information will be placed on the blockchain, allowing
institutions to evaluate students based on their progress.

Opet Foundation can help bridge the class divide that limits opportunities for
students. Indeed, everyone takes the same national or matriculation examination,
but people who are underprivileged or don’t have the access to the right kind of
finances, end up falling behind or having to struggle a lot in admissions.

For example, a student who is adept at advanced mathematics could be expected
to fare well in engineering. Opet’s app can recommend students with related apti-
tudes to academic institutions that offer courses that they might excel in. Finally,
Opet can recommend students to universities based on their education profile. [10]

1.3 This Master Thesis

This work has been carried out during a 6-months university internship at the World
Bank Group ITS Technology and Innovation Team (Washington D.C., US) under the
supervision of Carlos E. Canales (WBG), professor Elia Petros (EURECOM Campus
of Téléecom ParisTech) and professor Paolo Garza (Polytechnic of Turin).

Aim of this Master Thesis is to study how can Blockchain impact transparency
and scalability of Evoke, a World Bank project aimed to inspire youth around the
world to develop a passionate curiosity for learning and to produce a Proof of Con-
cept that shows how Evoke architecture can be re-designed using blockchains.
The chosen blockchain framework, Hyperledger Fabric, is an open source enterprise-
grade permissioned distributed ledger technology (DLT) platform, established un-
der the Linux Foundation.

During this period of Master Thesis, the author has deeply explored from a the-
oretic point of view the Hyperledger Fabric architecture, then she has designed the
PoC back-end using Hyperledger Composer, a set of JavaScript-based tools that sim-
plify and expedite the creation of Hyperledger Fabric blockchain applications, as
well as the PoC front-end, implementing an Angular application.

A link to the demo can be found here.

1.3.1 Research Questions

This Master Thesis addressed two key research questions:

Research Question 1: How can B4E ensure donated funds are properly main-
tained and manages (i.e. 100% of designated funds flow to educational pur-
poses)?

Research Question 2: How can B4E scale in as many countries as possible mini-
mizing the duplication effort?

1.3.2 Outline

This Master Thesis is organized as follows:

https://drive.google.com/file/d/1FGqj0MO8CLhE9otqwJzFdZBk1FViLkY8/view?usp=sharing

4 Chapter 1. Introduction

Chapter 1 The introduction to the Master Thesis, providing a brief overview on
the WBG Evoke project, including an excursion into the current situation and
challenges; an overview on the main blockchain frameworks; an overview on
the main requirements of the PoC, which is the topic this Thesis is focun on;
together with the outline of the Master Thesis itself;

Chapter 2 A deep description of the the basic theoretical knowledge about
blockchain, Hyperledger Fabric and Hyperledger Composer;

Chapter 3 A description of the proposed solution, including the business net-
work definition together with the chosen network architecture;

Chapter 4 The conclusion of the Thesis, presenting future works and final re-
marks.

5

Chapter 2

Theoretical Background

2.1 Blockchain Technology

Blockchain is a shared, replicated transaction system which is updated via smart
contracts and kept consistently synchronized though a collaborative process called
consensus.

Blockchains are a form of distributed ledger technology (DLT), digital ledgers
shared across multiple locations. The main feature of distributed ledgers is the ab-
sence of a central administrator or a central data storage. Due to the lack of a trusted
third party DLTs use consensus algorithms to ensure the correct replication of data
across nodes.

The blockchain concept finds its origin in the paper “How to time-stamp a digital
document” by Haber and Stornetta [6]. They did not necessarily coined the term
“blockchain”, but they aimed to certify when a document was created or changed
in a secure and immutable way, impossible to forge even with the collusion of the
time-stamping service.

However the blockchain concept became much more famous after the publica-
tion of the paper “Bitcoin: A Peer-To-Peer Electronic Cash System” [9] whose author
is known by the pseudonym, Satoshi Nakamoto. Originally devised for the digital
currency, Bitcoin, the tech community is now finding other potential uses for the
technology.

In order to explain how a blockchain work let’s use Bitcoin as example.
In a blockchain data comes in blocks. Blocks are linked together in a chain, thus

making difficult to tamper data.
Suppose to have different blocks of transaction data, as in Fig. 2.1.

FIGURE 2.1: Chain of blocks

In order to link the blocks, every block gets a unique signature, generally ob-
tained through a hash function, that corresponds to exactly the string of data in that

6 Chapter 2. Theoretical Background

block. If anything inside the block changes, even just a single bit, the signature will
be completely different.

Let’s say that block 1 registers two transactions, transaction 1 (T1) and transac-
tion 2 (T2), and let’s say the signature for this block is “X32”, as shown in Fig. 2.2.

FIGURE 2.2: Single block example

Adding the block 1 signature to block 2, the two blocks are now not only linked
together, but also in some way connected since the block 2 signature now depends
also on the signature of block 1.

FIGURE 2.3: Block 1 and block 2 linked together

It is thanks to the signature that we can link blocks together. Let’s now suppose
to add block 3.

2.1. Blockchain Technology 7

FIGURE 2.4: Block 1, block 2 and block 3 linked together

If we now tamper data in block 1, for example we alter the transaction between
George and Damian and Damian now supposedly sent 500 Bitcoin to George instead
of 100 Bitcoin, the string of data in block 1 will drastically change, and so will do
block 1 signature, e.g. the signature will now change from “X32” to “W10”.

FIGURE 2.5: Block 1 has been altered, Damian supposedly sent 500
Bitcoin to George instead of 100 Bitcoin

The two blocks are no longer linked, and this allows the other node to avoid
trusting that block. However, there is a chance for the attacker to stay undetected,
if and only if the entire chain keep linked together, meaning that all the signatures
from that block keep being linked. This is considered to be very hard to achieve, and
the explanation really needs to understand how the signatures are created.

In blockhain, the signature is created by a cryptographic hash function. Hash func-
tions are explained in more details in the following section. The process of adding a
new block to the chain does not only involve the creation of the signature, but also
the consensus protocol. Indeed, all the nodes participating to the blockchain must
agree on the content and on the transaction order of a new block in the blockchain.

2.1.1 Hash functions

“A hash function is any function that can be used to map data of arbitrary size to data
of a fixed size. The values returned by a hash function are called hash values, hash
codes, digests, or simply hashes" [7]. Mathematically a hash function is a function
h : X → Y, |X| > |Y|, where |X| is the cardinality of the set X.

Cryptographic hash algorithms must fulfill at least 5 requirements:

8 Chapter 2. Theoretical Background

1. Pre-image resistance: given a message digest y, it is computationally infeasible
to find a message x such that h(x) = y;

2. Deterministic: given two messages x and x0, h(x) = h(x0), ∀x = x0;

3. Ease to compute: for any message x, h(x) is very quick to compute;

4. The avalanche effect: even a small change in a message x will reflect a huge
change in the digest h(x);

5. Collision resistant: it is computationally infeasible to find two messages x and
x0 such that x0 6= x and h(x0) = h(x).

2.1.2 Consensus protocols

Consensus is the process of synchronizing the ledger transactions across the net-
work’s nodes to make sure that the different copies of the ledger are updated only
when transactions are actually approved.

Transactions must be written to every copy of the ledger in the same order. This
step requires the order of transactions to be established.

Consensus is a very researched area of computed science, and there are many
ways to achieve it, each with different trade-offs. One example is the Practical Byzan-
tine Fault Tolerance (PBFT) that provides a synchronization mechanism to keep each
copy of the ledger consistent, even in the event of corruption. In Bitcoin, instead,
transactions order is established through a process called mining where competing
computers race to solve a cryptographic puzzle. The winner defines the order of the
transactions in the ledger.

The biggest problem in reaching a consensus is known as “Byzantine Generals
Problem”.

The Byzantine Generals Problem Imagine that a group of Byzantine generals
want to attack a city. They are facing three very distinct problems:

1. The generals and their armies are very far from each other thus making a cen-
tralized communication very difficult;

2. The messengers used by the generals are not reliable;

3. The city can be defeated if and only if the entire army is used to attack.

To coordinate the attack, a messenger is sent from the armies on the right of the
castle to the one on the left of the castle, saying for example “ATTACK TUESDAY”.
However, it is possible that the armies on the left of the castle don’t want to attack
on Tuesday, because they prefer to do that on Wednesday, so they send a messenger
saying “NO. ATTACK WEDNESDAY”.

This is where we face a problem. Million of things can happen to that messenger,
leading the army to an uncoordinated attack that will defeat.

Some consensus mechanism which can solve the Byzantine Generals problem
are: Proof of Work (currently used in Bitcoin and Ethereum) and Proof of Stake
(planned to be used in Ethereum in the future).

2.1. Blockchain Technology 9

Proof of Work

Proof of work consensus protocol has been invented by Satoshi Nakamoto, Bitcoin’s
creator. In order to explain Proof of Work protocol let’s now analyze the transaction
flow in the case of Bitcoin blockchain.

Suppose to have a network of participants, called nodes. Nodes can be miners, as
well as just people who want to transact on the network to send each other bitcoins
or any other cryptocurrency. Fig. 2.6 describes a sample networks with 11 nodes: 4
miners and 7 people.

FIGURE 2.6: A sample networks with 11 participants

Every participant keeps a copy of the ledger, together with a local memory called
mempool that acts as a staging area for transactions. In the case of Bitcoin blockchain
blocks are added at a certain regularity, i.e. almost 10 minutes, but of course people
transact with each other more frequently so the mempool is a staging area where
transactions go before they are added to a block.

Let’s now suppose that Susan wants to do a transaction.

FIGURE 2.7: Susan does the first transaction. The transaction is added
to her mempool

As explained in Fig. 2.7 the transaction is added to her mempool and then broad-
casted across the network. She sends the transaction to her closest nodes, including

10 Chapter 2. Theoretical Background

the miners. Every node conducts some checks to verify that the transaction is valid,
if so, it adds the transaction to its mempool, and forward it to its neighbors so that
the transaction gets added to every single mempool in the network. These steps are
described in Fig. 2.8.

(A) Susan broadcasts the transaction to her closest nodes

(B) After validation, each node forwards the transaction to its neighbors

(C) The transaction is replicated in every mempool in the network

FIGURE 2.8: Bitcoin transaction flow: step 1

Now imagine that other participants (including the miners) do other transac-
tions. As described in Fig. 2.9 the different mempool will contain more or less the
same transactions but maybe in different orders.

2.1. Blockchain Technology 11

FIGURE 2.9: Other participants do more transactions

The miners will try to mine a new block once their mempool size reaches a certain
threshold. The miner who succeed in creating a new block will be rewarded through
some bitcoin. This is the reason why people are encouraged to participate in the Bit-
coin blockchain. Now each miner has to create the block, adding some transactions
as block data. In the case of Bitcoin, the criteria with which the miner chooses the
transactions to add to a block is maximizing the bitcoin reward, that consists in the
sum of the fees that the participant decided to pay for doing that transaction. This
process is represented in Fig. 2.10.

FIGURE 2.10: Bitcoin transaction flow: step 2

Now, miners must simply hash the block, however the hash must respect some
rules, e.g. start with a certain number of zeros. Each block has a nonce field. The
miner, after deciding which transactions to put in the block, selects a nonce, and tries
to hash the block. If the hash does not respect the rule, the miner changes the nonce
and tries again. The first miner who will find a hash starting with the right number
of zeros will be the winner. This step is very computationally expensive and this
is the reason why in the Bitcoin blockchain a block is mined more or less after 10
minutes.

Deciding the number of zeros allows to define the probability to have the right
nonce. The higher the number of leading zeros, the smallest the probability that a
miner will find the right hash, as explained in Fig. 2.11.

12 Chapter 2. Theoretical Background

FIGURE 2.11: Bitcoin transaction flow: step 3

Once the miner finds the right nonce, it forwards the new block to its closest
neighbors, and they do the same with their neighbors. Each participant, after vali-
dating the block, adds the block to his copy of the ledger. The validation is a really
simple step, each participant must check that that block, with that nonce, gives a
hash that respects the rule of the number of leading zeros.

Since hash function are never 100% collision free it is possible that two miners
mine two blocks at almost the same time, so some parts of the network receive one
block (or even more than one), and other parts another block. In this way, different
part of the network may have different versions of the ledger. The PoW solves this
conflict deciding that the longest chain wins and that the transactions of the rejected
block go to the mempools again. That is the reason why, with the PoW, it is highly
suggested to wait for at least other six blocks after the block containing the transac-
tion, before considering that transaction valid.

Proof of Work solves the Byzantine Generals problem in the following way.
Suppose the army on the left send the message “ATTACK MONDAY” to the

army on the right. Before sending the message they:

1. Append a random hexadecimal nonce to the original text;

2. Hash the text together with the nonce and the send the message only if the hash
complies with some rules (e.g. it starts with 6 zero), otherwise they change the
nonce and retry.

These two steps are very computationally expensive. Indeed, accepting only the
hash starting with a given number of zeros allows to reduce or increase the proba-
bility that an hash will be accepted.

If something happens to the messenger and the message is tampered with, the
hash will change too. If the generals on the right side see an hashed message that is
not starting with the chosen amount of zeros they can simply cancel the attack.

It is possible that the message has been tampered with and the hash still starts
with the right amount of zeros. To solve this issue the generals on the left send more
than one message instead than one.
They append a random nonce to every message and hash it, and when all the mes-
sages’ hashes are acceptable they append another nonce to the resulting hash and
hash the cumulative message again.

2.1. Blockchain Technology 13

If the messenger does get caught by the city, in the amount of time that they will
tamper one of the message inside the cumulative message and find the correct nonce
for the tampered message and the correct nonce for the cumulative message, the city
will be already attacked and destroyed.

In contrast, the generals on the right side just need to append the messages with
the given nonces, hash them, and see whether the hash matches or not. Hashing a
string is a very easy operation.

Even if PoW solve the Byzantine General’s Problem it has a bunch of draws-back:

• It is extremely inefficient because of the huge amount of electricity needed to
compute all the hashes until it respects the number of leading zeros rule;

• People and organizations that can afford faster and more powerful hash com-
putations have better chance of mining than the other.

Proof of Stake

In Proof of Stake, the creator of a new block is chosen in a deterministic way, de-
pending on its wealth, also defined as stake.
The miners, here called validators, will:

• Choose an amount of their coins as initial stake;

• Bet part of their stake in the blocks they think are more likely to be validated;

• If the chosen block gets appended, the miner wins a reward proportional to
the initial bet.

The PoS protocol comes with a major draws-back. In the event of a fork, validators
can simply put their money in the forked chain without any fear of repercussion at
all. No matter what happens, the validator is the only one betting for that chain, so
he will always win and have nothing to lose, despite how malicious the actions may
be (e.g. a double spending action).

PoW avoided this problem because a malicious node will always mine less blocks
compared to the miners in the rest of the network, and if a fork happen, the longest
chain will always be chosen, so it is not profitable for a miner to waste so much
resource on a block that will be rejected by the network anyway.

This problem is called “Nothing at Stake” and it is solved by the Casper protocol,
that is a PoS variant that punishes malicious actors taking all their stakes.

2.1.3 Public Key Infrastructure

A public key infrastructure (PKI) is a set of technologies and solutions that grants
secure communications in a network.
The four main elements to PKI are:

Digital Certificates

Public and Private Keys

Certificate Authorities

Certificate Revocation Lists

14 Chapter 2. Theoretical Background

Digital Certificates A digital certificate is a file that keeps a set of properties re-
lated to the holder of the certificate. One of the most common type of certificate is
the one compliant with the X.509 standard.
Fig. 2.12 provides an example of X.509 certificate: Mary Morris in the Manufactur-
ing Division of Mitchell Cars in Detroit, Michigan might have a digital certificate
with a SUBJECT attribute of C=US, ST=Michigan, L=Detroit, O=Mithcell
Cars, OU=Manufacturing, CN=Mary morris /UID=123456. A digital cer-
tificate has a role similar to the an identity card: it provides information and key
facts about the holder.

FIGURE 2.12: X.509 Certificate example

An important feature of digital certificates is that they are recorded using cryp-
tography, in a way that any tampering operations will make the certificated invali-
dated. As long as the other parties trust the certificate issues, known as Certificate
Authority (CA), the holder can prove her identity.

Public and Private keys Two key concepts in secure communications are Authen-
tication and message integrity. Authentication means being sure about the identity
that wrote a specific message. “Integrity” instead, means that the message cannot
have been modified during its transmission.

An important tool to reach authentication are digital signatures that not only allow
the sender to digitally sign its messages, but also provide the integrity of the signed
message.

To exploit the digital signature mechanism each party must hold two cryptographi-
cally connected keys: a private key that is used to create digital signatures on mes-
sages and a public key that is available to everybody in the network and works as
authentication anchor. The origin and integrity of a message can be verified by mak-
ing sure that the digital signature is valid according to the public key of the sender.

The cryptographic relationship between the public and the private key of a party
makes sure that the signature obtained using a given private key on a message is
such that it can only match the corresponding public key and only the same message,
as shown in Fig. 2.13.

2.1. Blockchain Technology 15

FIGURE 2.13: A party signs the message using her private key. The
signature, then, can be verified by anyone using her public key.

Certificate Authorities Certificate Authorities are a common part of internet secu-
rity protocols. Some of the more popular ones are Symantec, GeoTrust, DigiCert,
GoDaddy, and Comodo, among others. As explained in Fig. 2.14, the main role of
Certificate Authorities is to dispense certificates to different actors in the network.

FIGURE 2.14: A Certificate Authority produces certificates for differ-
ent actors in the network. Every certificate is digitally signed by the
CA and bound to the actor with the actor’s public key. If a party trusts

the CA, it can trust every certificate emitted by that CA.

Certificate Revocation Lists A Certificate Revocation List (CRL) is a list of certifi-
cates that a CA has revoked for one reason or another.

As illustrated in Fig. 2.15, when a party wishes to verify another party’s identity
it can first look the CRL list, to be sure about the validity of that certificate and about
the fact that the certificate has not been revoked.

16 Chapter 2. Theoretical Background

FIGURE 2.15: Thanks to the CRL a party can check whether a certifi-
cate is still valid.

2.1.4 Hyperledger Fabric and Ethereum: A Comparison

At time of writing this Thesis the two most mature and famous blockchain frame-
works are Ethereum and Hyperledger Fabric. Hyperledger Fabric provide a modular
and extendable architecture that can be employed in various industries, from bank-
ing and health care over to supply chains. While Ethereum also presents itself as
utterly independent of any specific field of application, its components are not plug-
gable. [8]
The most remarkable differences can be summerized in the following points:

Participation of peers:
With respect to participating to consensus, there are two modes of operation:
permissionless and permissioned. If participation is permissionless, anybody is
allowed to participate in the network. This mode is true for Ethereum as a
public blockchain. On the other hand, if participation is permissioned, partic-
ipants are selected in advance and access to the network is restricted to these
only. This is true for Fabric.

Consensus:
In the current implementation of Ethereum, the consensus mechanism is estab-
lished by mining based on the proof-of-work (PoW) scheme. All participants
have to agree upon a common ledger and all participants have access to all
entries ever recorded. The consequences are that PoW unfavorably affects the
performance of transactions processing. Concerning the data stored on the
ledger, even though records are anonymized, they are nevertheless accessible
to all participants, which is problematic for applications that require a higher
degree of privacy.
Fabric’s understanding of consensus is broad and encompasses the whole trans-
action flow, starting from proposing a transaction to the network to committing
it to the ledger. Furthermore, nodes assume different roles and tasks in the pro-
cess of reaching consensus. This contrasts to Ethereum where roles and tasks
of nodes participating in reaching consensus are identical.
With Fabric, the algorithm employed is “pluggable”, meaning that depending
on application-specific requirements various algorithms can be used.

Smart Contracts:
Smart Contracts can be written in Go or Java for Fabric and in Solidity for

2.2. Hyperledger Fabric 17

Ethereum. This means the Fabric offers widespread programming languages
while Ethereum requires developers to learn Solidity.

Built-in currency:
Another difference lies on the fact that Ethereum has a build-in cryptocurrency
called Ether, that is used to pay the transaction fees and to reward the miners.
Fabric does not require a build-in cryptocurrency as consensus is not reached
via mining.

To sum up they both are highly flexible, but in different aspects.
Ethereum’s powerful smart contracts engine makes it a generic platform for lit-

erally any kind of application. However, Ethereum’s permissionless mode of op-
eration and its total transparency comes at the cost of performance scalability and
privacy. Fabric solves performance scalability and privacy issues by permissioned
mode of operation. Further, the modular architecture allows Fabric to be customized
to a multitude of applications.

2.2 Hyperledger Fabric

This section provides a summary of the Hyperldeger Fabric official documentation
[1]. Hyperledger Fabric is a framework for distributed ledger solutions under the
Linux Foundation license.

Hyperledger Fabric provides the following blockchain network functionalities:

Identity management Differently from any other blockchain system Hyperledger
Fabric is private and permissioned. Differently from an open permissionless sys-
tem where everybody can participate in the network (requiring protocols like “proof
of work” to validate transactions and secure the network), Hyperledger Fabric en-
rolls new members of the network through a trusted Membership Service Provider
(MSP).

Hyperledger Fabric uses public Key Infrastructure to produce cryptographic cer-
tificates which are tied to organizations, network components, and end users or
client applications. Moreover, an access control lists can be provided to add ad-
ditional layers of permission.

Efficient processing In Hyperledger Fabric every node has one or more roles. To
enhance concurrency and parallelism on the network, transaction commitment and
transaction execution are kept separated.

Chaincode functionality External application that needs to interact with the ledger
can invoke Hyperledger Fabric smart contracts, also called chaincode. Smart con-
tracts can be written in different programming languages, such as Go and Node.

Privacy and confidentiality Hyperledger Fabric also provides the opportunity to
create channels. A ledger exists in the scope of a channel. In this way a group of
participants can create a separate ledger of transactions.

Modular design Hyperledger Fabric architecture offers several pluggable options
for what concerning consensus protocols and formats.

18 Chapter 2. Theoretical Background

2.2.1 Fabric network architecture

A Hyperledger Fabric network consists of:

Peer nodes

Ordering service(s)

Channel(s)

Fabric Certificate Authorities

Ledgers (one per channel - comprised of the blockchain and the state database)

Smart contract(s) (aka chaincode)

The users of the network services are:

• Clients of Blockchain network administrators

• Client applications owned by organizations

Fig 2.16 represents a possible final state of a Hyperledger Fabric network.

FIGURE 2.16: A complete Fabric sample network

Suppose that four organizations, R1, R2, R3 and R4 want to set up a Hyperledger
Fabric network and R4 has been chosen as the organization with the power to set
up the first version of the network. R4 does not want to make transactions on this
network, while R1 and R2 need a private channel between them, as well as R2 and
R3.
Organization R1 owns an application to interact with the network and make trans-
actions within channel C1.
Similarly, R2 can perform transactions both in channel C1 and C2, while R3 can do
the same on channel C2.
Peer node P1 keeps a copy of the ledger L1 bound to the channel C1 and a chaincode
S5 can be invoked from P1, so that client application A1 can read and update the
ledger through peer node P1.

Peer node P2 has both a copy of the ledger L1 and a copy of ledger L2, while P3
just keeps a copy of the ledger L2.

The network follows the policy rules defined in the network configuration NC4,
chosen by R1 and R4.
Channel C1 follows the policy rules defined in the channel configuration CC1 chosen
by R1 and R2.

2.2. Hyperledger Fabric 19

Channel C2 follows the policy rules defined in channel configuration CC2 chosen by
R2 and R3.

Moreover, an ordering service O4 orders the transactions made in the channels
C1 and C2, into blocks for distribution. Every organizations owns a Certificate Au-
thority.

Creating the network As shown in Fig 2.17, the first step to form a network is to
start an orderer. In this sample network N, the ordering service includes just one
node, O4, following the policy described in the network configuration NC4. Certifi-
cate Authority CA4 creates identities to the nodes of the organization R4. Certificates
made by CAs are very important, since they are used to produce digital signatures
in the transactions to represent that an organization endorses the transaction result.
Since CAs are very important, Hyperledger Fabric provides with a built-in one (called
Fabric-CA, though organizations will choose to use their own CA.

FIGURE 2.17: Step 1: Create the Fabric sample network

Adding Network Administrators Initially only R4 had the administrative rights
on NC4. Now, organization R4 can add organization R1 as another administrator.
At this point R1 and R4 have the same rights over the network configuration.
Certificate authority CA1 must now be added to issue certificates for users from the
organization R1.

20 Chapter 2. Theoretical Background

FIGURE 2.18: Step 2: Add network administrators

Defining a consortium Figure 2.19 shows R1 and R2 creating a new consortium X1
between each other. A consortium between different organizations must be created
every time those organization need to transact with one another. CA2 must now be
added to issue certificates for users from R2.

FIGURE 2.19: Step 3: Define a consortium

Creating a channel for a consortium If the organizations of a consortium need to
communicate to each other, a channel must be created. A network can host multiple
channels.
In this sample R1 and R2 (consortium X1) share a channel C1. The channel is under
the channel configuration CC1, managed by R1 and R2 who have equal rights over
C1.

Using channels allows to share the network infrastructure while maintaining
data and communications privacy.

2.2. Hyperledger Fabric 21

FIGURE 2.20: Step 4: Create a channel

Peers and Ledgers As showns in fig. 2.21 two new components,a peer node P1
and a ledger L1 are now added to the sample network.
P1 is now part of the channel C1 and holds a copy of the ledger L1.
L1 is physically hosted on P1, but logically hosted on the channel C1.

FIGURE 2.21: Step 5: Adding peers and ledgers

Applications and Smart Contracts Now, client applications can interact with the
ledger for query and/or update transactions.
As shown in fig. 2.22, thanks to the smart contract S5, installed on P1, client applica-
tion A1 can access the ledger through peer node P1.
It may look like A1 can directly access L1, however, the ledger can be accesses
only through a program called a smart contract chaincode, S5 that provides a well-
defined set of ways by which the ledger L1 can be queried or updated.
Smart contracts must have been installed and instantiated.

S5 must be installed not only on P1, but also on the channel C1 so that all the
other components connected to channel C1 becomes aware of it.

22 Chapter 2. Theoretical Background

Components in the channel, are still unable to see S5 program logic. This remains
private to those nodes who have installed it, in this case P1.

FIGURE 2.22: Step 6: Adding client applications and smart contracts

Complete the network Fig. 2.23 shows the next phase of network developments:
adding organization R2 to the network. R2 added peer node P2, which hosts a copy
of ledger L1, and chaincode S5. Thanks to application A2, P2 can now join channel
C1. Similarly to A1, also A2 can now interact with the ledger L1.

At this point, the two organizations R1 and R2 can fully transact with each other
through channel C1.

FIGURE 2.23: Step 7: Completing the network

Since also R2 and R3 need to transact each other, a network administrator (from
R1 or R4) must define a new consortium, X2, made of R2 and R3 and a new channel
C2 for the new consortium, together with a channel configuration CC2. This archi-
tecture is described in Fig. 2.16. Peer P3, representing the organization R3, must be
added. P3 clients can use the application A3 to interact with the ledger L2.

Peer node P2 is both a member of channel C1 and channel C2, so it must have
installed both smart contract S5 and smart contract S6. This is a very powerful fea-
ture of Hyperledger Fabric - thanks to channels organizations can share the same

2.2. Hyperledger Fabric 23

network architecture, and communicate privately at the same time.

It is also possible to have more than one Ordering service, as described in Fig.
2.24.

FIGURE 2.24: Ordering service: a de-centralized example

A blockchain application example, provided by IBM [3] is a web-based blockchain
insurance application. The app will have four participants, or peers:

Shop

Repair shop

Insurance

Police

The Shop peer sells a product to a consumer, that can buy additional insurance ser-
vices thanks to the insurance peer, i.e., the organization that provides the insurance
services for a product, and that is responsible for receiving the claims. The Police
participates to the network with a peer responsible for validating the accident or
theft claims. Once the accident has been verified, a Repair shop peer is responsible
for repairs of the product. Fig. 2.25 better defines the network architecture.

24 Chapter 2. Theoretical Background

FIGURE 2.25: IBM Insurance application work-flow

2.2.2 Types of peers

In Hyperledger Fabric peers can have different roles:

Committing peer. It is a peer that is in charge of committing blocks of validated
transactions. Every peer that has a copy of the ledger in a channel is a commit-
ting peer.

Endorsing peer. It is defined by policy as specific node that executes smart con-
tract transactions in simulation and returns a proposal response (endorsement)
to the client application.
Defining the endorsement policy for a smart contract means defining the orga-
nizations whose peers are required to digitally sign a transaction before com-
mitting it to the ledger.

2.2.3 Identity

Actors in a blockchain network can be orderers, peers, administrators, client appli-
cations and more. Every actor must have a digital identity in an X.509 digital cer-
tificate. The identities define the permissions over resources of every actors in the
blockchain network.

The built-in Fabric Certificate Authority — known as Fabric CA manages digital
identities of Fabric members that have the form of X.509 certificates.

Membership Service Provider (MSP) Suppose that at the checkout in a store only
some cards are accepted, e.g. Mastercard and Visa. You may have another card, for
example American Express, that is valid and that contains sufficient money, however
that card type is not accepted.

2.2. Hyperledger Fabric 25

FIGURE 2.26: PKI and MSPs have a complementary role, PKI pro-
vides identities while MSP defines which of these identities are mem-

bers of the Fabric network.

As described in Fig. 2.26 PKI and MSPs work together in a complementary way.
A PKI issues many different types of verifiable identities. While the MSP, defines
which of these identities are the trusted participants of the store payment network.
MSPs turn verifiable identities into the members of a blockchain network.

The Membership Service Provider defines which Root CAs and Intermediate
CAs are trusted to define the participants of a given network.

Local and Channel MSPs There are two places in which MSPs appears within a
blockchain network: channel configuration (channel MSPs), and locally on the actor
itself (local MSP). Local MSPs (present in users, peers and orderes) describes the
rights for that node.

Channel MSPs, instead, describes administrative and participatory rights at the
channel level.

2.2.4 Basic transactions work flow

There are two main type of transactions:

Ledger-query: they involve a simple three-step dialogue between an application
and a peer.

Ledger-update: They require two extra steps.

26 Chapter 2. Theoretical Background

FIGURE 2.27: Thanks to Peer P1, application A can invoke the smart
contract S1 for a given transaction. S1 produces a simulation of
the transaction and P1 sends back to A the transaction proposal re-
sponses. A ledger-query ends here, while for a ledger-update A sends
the transaction together with the transaction proposal responses to
O1, that after creating a new block, sends the block to every commit-

ting peer in the network.

Phase 1: Proposal Phase 1 of the transaction work-flow only involve peers, not
orderers. In phase 1, applications send a transaction proposal to every peer included
in the endorsment policy. Each of these peers independently executes the transaction
and sends back to the application a transaction proposal response. These peers do
not apply any update to the ledger, they just simulate the transaction to compute
the read and write set. Phase 1 ends with the application having all the transaction
proposal responses required by the endorsment policy.

In the case in which peers send back to the application different and inconsis-
tent transaction proposal responses, the application just asks for a more up-to-date
response.

FIGURE 2.28: Transaction work-flow: Phase 1

Phase 2: Packaging Phase 2 of the transaction work-flow, the packaging, mainly
involves the orderer. Once the application has all the required transaction proposal
responses, it sends the transaction proposal together with all the endorsments to the

2.2. Hyperledger Fabric 27

orderer. Once the orderer collects many transactions, it orders them and create a
block ready to be sent back to all the committing peers.

FIGURE 2.29: Transaction work-flow: Phase 2

The order in which the orderer sort the transactions may not be the same as the
arrival order. What is important is that there is an order, and that the order will be
the same for every commmitting peer, instead of what the order is.

Phase 3: Validation In phase 3, the validation, the orderer sends the prepared
block to every committing peer in the network. Each peer, independently process
every transaction in the block, checking if the transaction owns all the required en-
dorsments and applies the update to the ledger.

FIGURE 2.30: Transaction work-flow: Phase 3

The overall Hyperledger Fabric transaction flow is shown in Fig. 2.31.

28 Chapter 2. Theoretical Background

FIGURE 2.31: Transaction work-flow

In all three phases: endorsment, ordering and validation Hyperledger Fabric
supports pluggable consensus service.

Multiple ordering plugins are being developed currently, including BFT Smart,
Simplified Byzantine Fault Tolerance (SBFT), Honey Badger of BFT, etc. For Fabric
v1, Apache Kafka is provided out-of-the-box as a reference implementation. The
application use-cases and its fault tolerance model should determine which plugin
to use.

2.2.5 Ledger

A blockchain ledger is made of two different parts:

The world state - usually defined as key-value pairs, it contains the current
values of the database.

The blockchain - a read-append-only transaction log.

2.2. Hyperledger Fabric 29

FIGURE 2.32: Ledger L is made of blockchain B and World State W.
Blockchain B implicitly defines the World State W.

World State The world state contains the current values of each record in the
database.
The world state can be currently implemented as LevelDB and CouchDB. As de-
scribed id Fig. ?? a state also includes a version number. The version number of
a state is a very important feature. Indeed it is incremented every time the state
changes, so that whenever an update must be applied to the state - we can check if
the version matches the version of when the transaction was created.

FIGURE 2.33: Two examples of world state.

Blockchain The blockchain is a transaction log, made of linked blocks. Blocks are
made of batches of transactions, each of which can be a ledger-query or a ledger-
update.

Each block’s header contains the hash of the block together with the hash of the
previous block, so that each block is linked to the previous one.

The Blockchain is usually implement as a file. This is a quite obvious design
choice since update operation are very unusual while append operations are the
most frequent ones.

30 Chapter 2. Theoretical Background

FIGURE 2.34: Blockchain B is made of blocks B0, B1, B2, B3, where B0
is the genesis block.

The above diagram shows that the first block does not contain any transaction.
Instead, it containts a configuration and initial state of the channel.

Blocks Each block has three main sections:

• Block Header
A section that includes three different fields:

– Previous Block Hash: The hash of the previous block in the chain

– Block number: a sequence number for the blocks

– Current Block Hash: The hash of the current block

• Block Data
This section includes a list of ordered transactions

• Block Metadata
This section includes metadata such as: a timestamp of when the block was
written, the certificate, public key and signature of the block writer.

Transactions The block data section includes a set of ordered transactions.

2.3. Hyperledger Composer 31

FIGURE 2.35: Transaction T4 is made of the header, the signature, the
proposal, the response and the endorsments.

The mains fields in a transaction are:

• Header
The header includes some metadata such as chaincode name and version.

• Signature
The signature is generated using the application’s private key to generate it,
and works as a proof that the transaction has not been tampered.

• Proposal
The proposal contains the list of input parameters given by the application to
execute a given transaction in the chaincode

• Response
The response includes the output of the chaincode, made of a Read Write set
(RW-set).

• Endorsements
The endorsments are a list of transaction proposal responses computes from
the peers included in the endorsment policy.

2.3 Hyperledger Composer

Hyperledger Composer is an open-source project under the Linux Foundation um-
brella. Hyperledger Composer enables architects and developers to quickly create
Blockchain solutions with REST APIs that expose the business logic to web or mo-
bile applications, as well as integrating blockchain with existing enterprise systems
of record.
Hyperledger Composer supports the existing Hyperledger Fabric blockchain infras-
tructure and runtime.

Hyperledger Composer consists of:

• A modelling language called CTO (an homage to the original project name,
Concerto);

32 Chapter 2. Theoretical Background

• A user interface called Hyperledger Composer Playground for rapid configu-
ration, deployment, and testing of a business network;

• Command-Line Interface (CLI) tools for integrating business networks mod-
eled using Hyperledger Composer with a running instance of the Hyperledger
Fabric blockchain network.

Hyperledger Composer allows to quickly model a business network made of assets
and transactions related to them. Assets are tangible or intangible goods, services,
or property. Transactions interact with assets. Business networks also include the
participants who interact with them, each of which can be associated with a unique
identity.

Hyperledger Composer allows to define queries within a business network. Queries
are used to return data about the blockchain world-state and can include variable
parameters for simple customization.

2.3.1 Business Network Definition

The Business Network Definition is a key concept of the Hyperledger Composer
programming model.
Business Network Definitions are composed of:

• A set of model files;

• A set of JavaScript files;

• An Access Control file.

The model files define the business domain for a business network. They contain
the definitions of assets, participants and transactions.
The JavaScript files contain transaction processor functions that can run on top of a
Hyperledger Fabric blockchain network.
The permissions for the business network are expressed in an optional permissions.acl
file. Once defined, a Business Network Definition can be packaged into a business
network archive file (.bna). This process is explained in Fig. 2.36.

FIGURE 2.36: Hyperledger Composer solution design

2.3. Hyperledger Composer 33

Once the .bna file is ready, it can be deployed to the Hyperledger Fabric blockchain.

35

Chapter 3

Proposed Solution

3.1 Business Network Definition

3.1.1 Model

The proposed solution has been developed according to the architecture described
in the Figure 3.1. Five different type of participants have been defined: campaign,
donor, student, mentor and vendor.

FIGURE 3.1: Business Network Architecture

Since they have a lot of attributes in common, an abstract Business class
has been defined. All the other participants inherit the common attributes from it.

1 /*
2 * An abstract participant type in this business network
3 */
4 abstract participant Business identified by email {
5 o String email
6 o String firstName
7 o String lastName
8 o Address address optional
9 o Integer educoinBalance default=0 optional

10 }
11 /*
12 A campaign is also a participant, since it can transfer and own educoins
13 */
14 participant Campaign extends Business {
15 o String campaignName
16 o String campaignDescription

36 Chapter 3. Proposed Solution

17 o Integer fundingGoal default=0
18 o Boolean funded // this means that the funding goal has been reached
19 o Boolean completed // this means that all the activities have been added
20 }
21 /**
22 * A donor is a type of participant in the network
23 */
24 participant Donor extends Business {
25 }
26 /**
27 * A student is a type of participant in the network
28 */
29 participant Student extends Business {
30 }
31 /**
32 * A mentor is a type of participant in the network
33 */
34 participant Mentor extends Business {
35 o Double reviewSum default=0.0 optional
36 o Double reviewCount default=0.0 optional
37 o Review[] reviews optional
38 }
39 /**
40 * A vendor is a type of participant in the network
41 */
42 participant Vendor extends Business {
43 }

As soon as a Campaign is created, it can start defining its missions. A mission is a
set of education activities that a Student can decide to engage with.

1 /**
2 * The activities to be completed inside a mission
3 */
4 concept Activity{
5 o String name
6 o String description
7 o Integer educoin default = 0
8 }
9 /**

10 * A mission to be complete from mentors/students to earn EduCoin
11 */
12 asset Mission identified by missionId {
13 o String missionId
14 o String missionName
15 o DateTime dueDate
16 o String missionDescription optional
17 o Integer educoin default = 0 // = to the sum of the educoin for each

assignment
18 o Integer bonusEducoin
19 o Integer maxStudents
20 o Integer mentorFare
21 o Integer currentStudents default=0
22 o Activity[] activities
23 --> Campaign campaign
24 }

Every mission can host a maximum number of students (maxStudents) and
must be completed by a certain dueDate.

3.1. Business Network Definition 37

What a Campaign expects from a student is to correctly address and complete at
least one of the mission activities and to submit at least one document containing
the result produced by the student.

For the Campaign to start it must define a funding goal, i.e. the total amount of
Educoin (EDC) needed to start and complete the campaign.
In the definition of the funding goal three main assumptions have been made:

1. The first student who successfully completes all the activities of a mission re-
ceive an extra Educoin bonus.

2. Every student can ask for a review from one of the mentors registered to the
platform. Mentors are rewarded for every review they do through Educoin.

3. For the sake of simplicity, for a given mission the student can ask for a review
by the mentor just once.

Following these assumptions the founding goal for a given Campaign is computed
as:

∑
m∈M

[maxSm ∗ (∑
a∈A

ea + m fm) + bm]

where:

M = set of missions for a given campaign;

A = set of activities for a given mission;

maxSm = max number of students for mission m;

ea = educoin earned by completing activity a;

m fm = mentor fare for mission m;

bonusm = bonus educoin earned for mission m;

Once all the missions have been defined, the funding goal can be computed and the
Campaign is ready to be funded.

As soon as the Campaign receives all the required fund, it can officially start and
students will be able to enroll the missions offered by that campaign.
The contract between a Student and Mission is recorded in a MissionContract.

1 asset MissionContract identified by missionContractId {
2 o String missionContractId
3 o Boolean completed default=false
4 o Boolean mentorUsed default=false
5 o DateTime dueDate
6 o DateTime reviewDate optional
7 o DateTime mentorSubmissionDate optional
8 o DateTime submissionDate optional
9 o Integer earnedEducoin default=0

10 o Boolean winner default=false
11 o Boolean[] completedActivities optional
12 o String[] filenames optional
13 o String[] attachments optional
14 --> Mission mission
15 --> Student student
16 --> Mentor mentor optional
17 }

38 Chapter 3. Proposed Solution

The mission contract represents the contract between the Student student and the
Mission mission. The mission contract records not only whether or not the mentor
has already been used through the boolean variable mentorUsed but also which
mentor has been chosen. This information allows the smart contract to reward also
the mentor once the review has been completed.

The mission contract keeps track of four different dates:

dueDate: the date by which the contract is valid. If the student completes the
mission after this data he will not be rewarded.

submissionDate: the date in which the Student has submitted the final doc-
ument to the Mission.

mentorSubmissionDate: the date in which the Student has submitted the
document to the Mentor.

reviewDate: the date in which the Campaign has reviewed the document
submitted by the student and decided which activities have been successfully
completed.

The mission contract also records the educoin earned by the Student (earnedEducoin)
and whether or not the Student was the winner for that mission.

Once the due date passed, the Campaign can evaluate the student’s work and de-
cide which activities have been successfully completed; the mission contract records
this information in completedActivities. Finally the mission contract keeps
track of all the attachments (both the ones submitted by the student and the ones
submitted by the mentor) together with their file names.

Once the student uses the mentor review service she has the possibility to leave a
review to the mentor. This is a classic review, where she can describe how the men-
tor behaved, whether or not his corrections have been useful, etc. and finally give
him a score, so that other students can benefit from this information.
Indeed, before choosing a mentor, students can access a list of mentors together with
their reviews and their average score.

1 concept Review {
2 o String title
3 o String description
4 o Double score
5 }

Last but not least, a Vendor can upload the items’ descriptions to the B4E Market
Place, so that students and mentors can buy them using their Educoins. The Educoin
price must be previously agreed with the platform responsible (that in this case can
be the Education Global Practice inside the World Bank Group). Currently, for the
sake of simplicity, only a network administrator can upload items to the market
place.

1 /**
2 * Items to be sold in the market place
3 */
4 asset Item identified by itemId{
5 o String itemId
6 o String name

3.1. Business Network Definition 39

7 o String description
8 o Integer cost
9 --> Business owner

10 }

An Item contains simple attributes such as the name, the description, the cost and
the owner. We can notice that the owner type is Business. However the access
control list ensures that only a Student, a Mentor or a Vendor can own an item, thus
preventing donors or campaigns to perform transactions inside the market place.

The complete model.cto file can be found in Appendix A.1.

3.1.2 Limitations

Since Hyperledger Fabric has not a built-in currency, cryptocurrency transactions
are not as straightforward as they would have been using Ethereum. The Educoin
balance of each participant (Campaign, Student, Mentor, Donor and Vendor) is reg-
istered exactly as an attribute in a table of a database.

When a donor wants to fund a campaign he is already supposed to have Educoin,
but how can a donor buy Educoin, e.g. exchanging USD dollars for them? In a
similar way, when the vendor sells his items, he receives Educoin, but sooner or
later he may wish to exchange them for the local currency.

Since Educoin is not properly a cryptocurrency, but more an attribute in a table,
payments from donors to the platform and from the platform to the vendors must
be managed off-chain, e.g. through Paypal or other payments method. However,
payment receipts can of course be saved on the blockchain.

You may notice that also students and mentors may wish to exchange the Educoins
for the FIAT currency, but since, differently to donors and vendors, they can use their
coins inside the marketplace, the FIAT exchange is not a real requirement.

3.1.3 Logic

The different transactions that can be performed by the participants inside the B4E
network are:

AddMissionToCampaign: allows a Campaign to define and add a new Mis-
sion in its missions list.

FundCampaign: allows a Donor to fund a chosen Campaign of a given amount.

EnrollStudentToMission: allows a Student to engage with a given mis-
sion. Here is when the MissionContract between the Student and the Mis-
sion is created.

StudentAskForMentor: allows the Student to select a mentor from the list
and ask for his help. The student must submit at least one document which
will be visible to the mentor. The mentor is now added to the MissionContract.

MentorReivew: allows the Mentor to submit a new document. It can be both
the same document upload by the student, with some modifications or a com-
pletely new document.

StudentLeaveReview: allows the Student to leave a review to the Mentor
she used, describing and evaluating his work and behavior.

40 Chapter 3. Proposed Solution

StudentSubmitMission: allows the Student to submit the final document
to the Mission. She can do more than one submission before the due date, but
in the final evaluation the Campaign will just consider the last one.

StudentCompleteMission: allows the Campaign to record which activities
have been successfully completed. The amount of educoin earned by the stu-
dent will be automatically computed accordingly.

AddItem: allows a Vendor to create and add a new item to the market place.

BuyItem: allows a Student or a Mentor to buy an item from the market place.

AddMissionToCampaign When a Campaign logs into the platform it can start
defining its own missions. Every time a new mission is created the Campaign must
specify whether this is the last mission or not (completeCampaign = true). This
information allows the system to know when the funding goal can be computed and
the campaign can start to be funded from the donors.

There are also other information required by a AddMissionToCampaign trans-
action: the name (missionName), a brief description (missionDescription), the
date by which it must be completed by the students (dueDate), the bonus that the
first student who completes all the activities of the mission will earn (bonusEducoin).
The Campaign must also specify the list of activities that students can complete
(activities), together with their names, descriptions and Educoin prizes, the
maximum number of students that can engage with this mission (maxStudents)
and the mentor fare for this mission, i.e. the amount of Educoin that a mentor will
earn by doing a review for a student in this mission (mentorFare).

1 transaction AddMissionToCampaign {
2 o String missionName
3 o String missionDescription
4 o DateTime dueDate
5 o Boolean completeCampaign
6 o Integer bonusEducoin
7 o Integer maxStudents
8 o Integer mentorFare
9 o Activity[] activities

10 }

FundCampaign Once the Campaign is completely defined, i.e., all the missions
have been added, it can start being funded by the donors. This transaction allows
the Donor donor to choose a given amount of Educoin (educoinAmount) and do-
nate them to the Campaign campaign.

1 /**
2 A donor can give Educoin to a campaign (funding)
3 */
4 transaction FundCampaign{
5 o Integer educoinAmount
6 --> Campaign campaign
7 --> Donor donor
8 }

3.1. Business Network Definition 41

EnrollStudentToMission When a Campaign is completely funded, students
can start enrolling its missions. This transaction allows the current participant (that
the access control list forces to be a Student) to engage with the Mission mission.
If the transaction completes successfully a new mission contract between Student
and Mission will be created.

1 /**
2 A student enroll to an Activity
3 */
4 transaction EnrollStudentToMission {
5 --> Mission mission
6 }

StudentAskForMentor After enrolling a mission, the student can ask for a re-
view from the chosen Mentor (mentor). For the transaction to complete successfully
at least one document must be submitted. The mission contract between Student and
Mission will be updated accordingly.

1 transaction StudentAskForMentor {
2 --> MissionContract missionContract
3 o String[] attachments
4 o String[] filenames
5 --> Mentor mentor
6 }

MentorReview If a mentor has been chosen by a student to review his documen-
tation, he cannot decline to make a review. A review is said to be done when the
mentor has submitted at least one document to the system. The mission contract
between Student, Campaign and Mentor will be updated accordingly.

1 transaction MentorReview {
2 --> MissionContract missionContract
3 o String[] attachments
4 o String[] filenames
5 }

StudentLeaveReview Once the student benefit of the mentor services, she can
decide to leave a review to the mentor, sharing its experience with the whole plat-
form. A student can only review the mentor that reviews his documentation. The
transaction requires the mission contract between Student, Campaign and Mentor
in order to select the right mentor, and the content of the review.
Reviews are anonymous.

1 transaction StudentLeaveReview {
2 --> MissionContract missionContract
3 o Review review
4 }

42 Chapter 3. Proposed Solution

StudentSubmitMission When the student feels ready, she can submit the pro-
duced documentation to the campaign. The provided files (attachments) will be
added the right contract between Student and Mission. If the Campaign has already
evaluated his work, the student cannot submit documentation anymore.

1 transaction StudentSubmitMission {
2 --> MissionContract missionContract
3 o String[] attachments
4 o String[] filenames
5 }

StudentCompleteMission Once the student submitted his documentation the
Campaign can start the evaluation. For each activity of the mission, the Campaign
can decide whether the documentation submitted by the student completes it or
not. The Campaign must provide the transaction with an array of boolean whose
indices correspond to the indices of the array of activities (activities) declared
in the mission. This means completedActivities[0] = true represents that
the activities contained in activities[0] has been successfully completed.

1 transaction StudentCompleteMission {
2 -->MissionContract missionContract
3 o Boolean[] completedActivities
4 }

AddItem Once the vendor agrees the price with a platform administrator he can
add an item to the market place. This part currently presents a few limitations,
indeed, it is out of the scope of this PoC defining how exactly the platform adminis-
trator and the vendor agree the items (and relative prices) to be added to the market
place.

1 /*
2 * A vendor can create a new item
3 */
4 transaction AddItem {
5 o String name
6 o String description
7 o String cost
8 }

BuyItem The only types of participants that are allowed to buy from the market
place are Student and Mentor.

1 transaction BuyItem {
2 --> Item item
3 }

The complete logic.js file can be found in Appendix A.2.

3.1. Business Network Definition 43

3.1.4 Access Control List

Hyperledger Composer allows to define a set of access rules inside an Access Control
List file (.acl). Every rule contains the following fields:

Description: a string describing the goal of the rule.

Participant: the participant class that is the subject of the rule.

Operation: the type of operation (CREATE, READ, UPDATE, DELETE, all)

Resource: the resource class to which the operation refers.

Condition: a simple condition under which the rule counts.

Action: the final decision of the rule (ALLOW, DENY).

As an example, the rule student R1 states that the participant of type Student can
READ the other participants of type Student if and only if their identifier is the same.
This basically means that a Student can read only its own record. It perfectly makes
sense since for privacy reasons we don’t want a student having access to the all the
other students’ records.

1 rule student_R1 {
2 description: "Students can read their record only"
3 participant(p): "org.bfore.Student"
4 operation: READ
5 resource(r): "org.bfore.Student"
6 condition: (p.getIdentifier() == r.getIdentifier())
7 action: ALLOW
8 }

Instead of showing all the rules (more than 60), for the sake of brevity I prefer to
summarize what every participant can do.
Campaigns can:

• Read all the campaigns;

• Create their own missions but only in the context of the AddMissionToCampaign
transaction;

• Read all the mission contracts related to one of their missions;

• Create the AddMissionToCampaign transaction;

• Update its own record but only in the context of a AddMissionToCampaign
transaction. Indeed the funding goal is computed and updated every time a
new mission is added;

• Create the StudentCompleteMission transaction;

• Read and update students’ records but only in the context of a StudentCompleteMission
transaction. Indeed, the chaincode needs to update student balance to add the
earned Educoin;

• Update their own record but only in the context of a StudentCompleteMission
transaction. Indeed the Campaign must also upload its own Educoin balance;

44 Chapter 3. Proposed Solution

• Read all the missions;

• Update the mission contracts but only inside the StudentCompleteMission
transaction. Indeed, the mission contract must be recorded as completed, and
the total amount of Educoin earned by the student must be saved;

• Read all the items;

Students can:

• Read their own record;

• Read their own mission contracts;

• Read all the missions;

• Create the transaction EnrollStudentToMission;

• Read all the campaigns;

• Read and update the records of the Vendor but only in the context of a BuyItem
transaction. This makes sure that the chaincode can correctly update the Educoin
balance of the student and of the vendor;

• Update its own record but only in the context of a BuyItem transaction, so
that the chaincode can correctly update the student balance.

• Read all the items;

• Create the BuyItem transaction;

• Create the StudentSubmitMission transaction;

• Create a MissionContract but only in the context of a EnrollStudentToMission
transaction;

• Update their own MissionContract but only in the context of a StudentSubmitMission
transaction;

• Update a mission but only in the context of a EnrollStudentToMission
transaction. This is necessary because the current number of students (currentStudents)
must be updated;

• Update an Item but only in the context of a BuyItem transaction. This is
needed because the chaincode needs to modify the owner;

• Create the StudentAskForMentor transaction;

• Create the StudentLeaveReview transaction;

• Update a mentor record but only in the context of a StudentLeaveReview
transaction. This is needed because the review must be added to the mentor
record;

• Read all the mentors;

• Update a mission contract record but only in the context of a StudentAskForMentor
transaction. Indeed, the mentor object must be added to the contract.

3.1. Business Network Definition 45

Mentors can:

• Read all the mentors;

• Create the MentorReview transaction;

• Read and upadte a mission contract but only in the context of a MentorReview
transaction. Indeed the chaincode needs to add the new attachments to the
mission contract;

• Read all the missions;

• Read all the campaigns;

• Read all the items;

• Read all the mission contract;

• Update a Campaign but only in the context of a MentorReview transaction.
Indeed, the chaincode needs to modify the Educoin balance of the campaign;

• Update his own record but only in the context of a MentorReview transaction;

• Create the BuyItem transaction;

• Read and update a Vendor but only in the context of a BuyItem transaction;

• Update his own record but only in the context of a BuyItem transaction;

• Update an item but only in the context of a BuyItem transaction.

Donors can:

• Read their own record;

• Read all the campaigns;

• Read all the missions;

• Read a FundCampaign transaction but only if they are the donor who created
it;

• Update their own record but only in the context of a FundCampaign transac-
tion;

• Update a campaign record but only in the context of a FundCampaign trans-
action;

• Read all the items. A donor can read them, but cannot buy a item.

• Read all the mission contracts. This is needed to grant transparency. A donor
can see how the campaign he funded is spending the money.

Vendors can:

• Read their own record;

• Create the AddItem transaction;

• Create an item for which they are the owner but only in the context of an
AddItem transaction;

46 Chapter 3. Proposed Solution

• Read all the mission;

• Read all the campaigns;

• Read all the items.

The complete permissions.acl file can be found in Appendix A.3.

3.1.5 Queries

Hyperldeger Composer also allows to define simple queries inside a .qry file. This
feature adds more flexibility. Indeed, instead of just reading the entire resource reg-
istry, it makes possible to define some filters.

An Hyperldger Composer query is made of:

description: a string describing the query goal;

statement: a SQL-like statement defining the content of the query.

As an example, the query Q1, given a student and a mission return the mission
contract (if any).

1 query Q1 {
2 description: "Given student and mission return the Mission Contract (if

any)"
3 statement:
4 SELECT org.bfore.MissionContract
5 WHERE(_$mission == mission AND _$student == student)
6 }

In this PoC 9 different queries have been defined. They allow to:

1. Return the mission contract (if any) between a given student and a given mis-
sion;

2. Given a missionId check if there is already a winner, i.e, if a student already
completed all the activities of that mission;

3. Return all the completed campaigns, where completed means that all the mis-
sions have been defined and that the campaign’s funding goal is well-defined;

4. Given a student return all his mission contracts;

5. Given a participant, return all his items (if any);

6. Given a donor, return all the FundCampaign transactions he has done;

7. Get all the missions of a given campaign;

8. Get all the mission contracts of a given missions;

9. Given a mentor, return all his mission contracts.

The complete queries.qry file can be found in Appendix A.4.

3.2. Business Network Deployment 47

3.2 Business Network Deployment

3.2.1 Starting Hyperledger Fabric

Hyperledger Fabric can be easily installed following these commands:

1 mkdir ~/fabric-dev-servers
2 cd ~/fabric-dev-servers
3 curl -O

https://raw.githubusercontent.com/hyperledger/composer-tools/master\
/packages/fabric-dev-servers/fabric-dev-servers.tar.gz

4 tar -xvf fabric-dev-servers.tar.gz
5 export FABRIC_VERSION=hlfv11
6 ./downloadFabric.sh
7 ./startFabric.sh
8 ./createPeerAdminCard.sh

Once installed, Hyperledger Fabric can be started running the script startFabric.sh.
The script will leverages different Docker images to quickly bootstrap a Hyperledger
Fabric network comprised of one Orderer organization OrdererOrg and one Peer
oragnization Org1. The default orderer implementation is solo. Two default orderer
implementations can be used: solo and kafka. However solo must never be used in
production.

Four different docker containers will be started:

ordered.example.com - Running the image hyperledger/fabric-orderer

ca.org1.example.com - Running the image hyperledger/fabric-ca

peer0.org1.example.com - Running the image hyperledger/fabric-peer

couchdb - Running the image hyperledger/fabric-couchdb

All these details can be found in the file docker-compose.yml.
For the sake of the PoC this file has not been changed. However, in production

this file should the entire network architecture, including at least:

• One organization for each university or school that wants to allow their stu-
dents and their professors to participate to the B4E platform;

• One organization for each country that wants to run the project, or alterna-
tively just one for entire world.

In Hyperledger Fabric v1.1, a peer can be an administrator or just a member.
However only administrator can install Hypereldger Fabric chaincode onto peers so
in order to deploy a business network to a set of peers, an identity with administra-
tive rights to all of those peers must be created.

The script ./createPeerAdminCard.sh creates a Peer Admin business net-
work card using the certificate and private key associated with the peer admin iden-
tity for that peer. The peer administrator for the network is called PeerAdmin and
the identity is automatically imported by the script.

3.3 Business network administrators

Only a Business Network Archive (.bna) file can be deployed on top of a Hyper-
ledger Fabric network so the four files (model, logic, query and permissions) must be

48 Chapter 3. Proposed Solution

packaged into a Business Network Archive (.bna) file, using the composer archive
create command.

Once we obtain the business network archive file we can deploy it to Hyper-
ledger Fabric. To do that the composer network install command followed
by a composer network start command must be used.

1 composer archive create -t dir -n .
2

3 composer network install -a b4e-network@0.0.1.bna -c PeerAdmin@hlfv1
4

5 composer network start --networkName b4e-network --networkVersion 0.0.1
--networkAdmin admin --networkAdminEnrollSecret adminpw --card
PeerAdmin@hlfv1

6

7 composer card import --file admin@b4e-network.card

In a deployed business network, the access control rules (defined in the .acl file)
enforce rights and permissions. In every business network at least one participant,
with a valid identity, is required to allow client application to interact with the busi-
ness network.

In particular, every organization that participates to the business network must
have its own business network administrator. This participant type is in charge of
configuring the business network for its organization and on-boarding other partic-
ipants from their organization.

Hyperledger Composer offers a built-in participant type, org.hyperledger.composer.system.NetworkAdmin,
for this reason.

By default, during deployment a business network administrator participant will
be created by Hyperledger Composer, that will also bind to it the identity that has
been used for deploying the business network.

Thanks to the additional options of the composer network start command,
the business network administrators that should be created during the deployment
can be specified.

3.3.1 Composer REST Server

Hyperledger Composer includes a standalone Node.js process that exposes a busi-
ness network as a REST API. This feature is extremely useful, indeed it allows a web
application to easily interact with the business network.

Moreover the business network, and so the REST server, need to distinguish be-
tween the different types of participants in order to authorize access to resources
and allow end users of the blockchain network to interact with the deployed busi-
ness network. That’s why an authentication strategy is needed.
Hyperledger Composer REST server is compatible with a lot of passport strategies,
in this PoC the Google+ API has been chosen as the authentication provider as its
very easy to setup a Google account.

Google OAUTH2.0 is an “authorization protocol” that can also be used as a “del-
egated authentication scheme”.

As explained in Fig. 3.2 the Composer REST server has been built to provide
access to business network resources, while Google+ API Oauth2.0’s role is to protect
the resources. The resource owner is the Google+ API user account. On requests, the
Google+ server requests consent of the resource owner and issues access tokens to
REST clients (e.g. web client apps) to allow them to access the protected resources.

3.3. Business network administrators 49

FIGURE 3.2: Google OAUTH2.0 Client Authentication Overview

The access the APIs protected by OAuth2.0 is granted through tokens that are
stored in the local storage of the user’s web browser, so that they must be requested
just once, and the following times the token will be retrieved from the cookie and
then validated.

The REST Server itself is configured to persist the business network cards (re-
quired to connect to the network) using the MongoDB store.

Here comes an issue. The user is supposed to ask for a business card through the
REST API, but at the same time he needs a business card to access the REST API. To
solve this loop a second Composer REST Server is needed. The second Composer
REST Server will not require authentication, so that the first time an user register to
the web application he can ask for a business network card. After obtaining a busi-
ness network card the user can authenticate to the first REST Server and perform all
the operations needed.

However, with an unauthenticated REST server available anybody could poten-
tially perform operations and interact with the business network in a malicious way,
so the unauthenticated REST server must have only the rights restricted to the ones
needed to create a new user and issue a business network card for him.

The process is explained in Fig. 3.3.

50 Chapter 3. Proposed Solution

FIGURE 3.3: The first time a new participant wants to register to the
platform he interacts with the unauthenticated REST server, which
creates a new user and issues a business network card for him.
Thanks to business network card, the user can now interact with the
authenticated REST server and performs all the operation that card

has the rights to.

Since we need two Composer REST servers and we need the unauthenticated
one to have limited rights, we need two different cards to associate to the servers.
The unauthenticated REST server needs to be able to issue new business network
cards, and the only card that has this right is the one we created before admin@b4e-network
that is bound to the Hyperledger Fabric Peer administrator. This card will be the one
with limited rights in all the other operations. For what concerning the authenticated
REST Server another card is needed. That is the reason why we will create a new
participant:

1 composer participant add -c admin@b4e-network -d
’{"$class":"org.hyperledger.composer.system.NetworkAdmin",
"participantId":"restadmin"}’

2

3 composer identity issue -c admin@b4e-network -f restadmin.card -u
restadmin -a
"resource:org.hyperledger.composer.system.NetworkAdmin#restadmin"

4

5 composer card import -f restadmin.card
6

7 composer network ping -c restadmin@b4e-network

To prevent the unauthenticated REST Server from allowing malicious operations, in
the permissions.acl file we specify:

1 rule rule1 {
2 description: "The NetworkAdmin must be able to create a new

participant"
3 participant: "org.hyperledger.composer.system.NetworkAdmin"
4 operation: CREATE, READ
5 resource: "org.bfore.Business"
6 action: ALLOW
7 }
8

9 rule NetworkAdminUser {

3.3. Business network administrators 51

10 description: "Grant business network administrators full access to
user resources"

11 participant(p): "org.hyperledger.composer.system.NetworkAdmin"
12 operation: ALL
13 resource(r): "**"
14 condition: (p.getIdentifier() != "admin")
15 action: ALLOW
16 }

The READ operation in rule1 is needed since the participant is read from the par-
ticipant registry before issuing the card, to be sure that participant really exists.

As mentioned before, the authenticated REST Server is configured to persist the
business network cards using the MongoDB store. With the command:

1 docker run -d --name mongo --network composer_default -p 27017:27017 mongo

an instance of the MongoDB docker container will be started.
We also need to pull the Docker image located at /hyperledger/composer-rest-server
and additionally install two more npm modules:

• loopback-connector-mongodb: this module allows the REST server to use
MongoDB as a data source.

• passport-google-oauth2 - this module allows to authenticate to the REST
server using a Google+ account.

1 cd $HOME ; mkdir dockertmp
2

3 cd dockertmp
4

5 FROM hyperledger/composer-rest-server
6 RUN npm install --production loopback-connector-mongodb

passport-google-oauth2 && \
7 npm cache clean --force && \
8 ln -s node_modules .node_modules > Dockerfile
9

10 docker build -t myorg/composer-rest-server .

The parameter given the -t flags is the name for this Docker image.
The Composer REST Server needs to be configured through some environment vari-
ables. Having a Google+ account allows to create an OAUTH2.0 authentication ser-
vice for authenticating client application. At the end of the configuration Google
provides a clientID and a client secret. With this information it is now possible to
create a file called envars.txt and configure the authenticated Composer REST
Server.

1 COMPOSER_CARD=restadmin@b4e-network
2 COMPOSER_NAMESPACES=never
3 COMPOSER_AUTHENTICATION=true
4 COMPOSER_MULTIUSER=true
5 COMPOSER_PROVIDERS=’{
6 "google": {
7 "provider": "google",
8 "module": "passport-google-oauth2",

52 Chapter 3. Proposed Solution

9 "clientID":
"4626139684-jc70cj9f8nl49n6jtfresqkmst2nfouv.apps.googleusercontent.com",

10 "clientSecret": "5IQKO88YZGiwUeuXFJUu4sYB",
11 "authPath": "/auth/google",
12 "callbackURL": "/auth/google/callback",
13 "scope": "https://www.googleapis.com/auth/plus.login",
14 "successRedirect":

"http://localhost:4201/register?authenticated=true",
15 "failureRedirect": "/"
16

17 }
18 }’
19 COMPOSER_DATASOURCES=’{
20 "db": {
21 "name": "db",
22 "connector": "mongodb",
23 "host": "mongo"
24 }
25 }’
26

27 source envars.txt

The environment variables defined will indicate that we are willing to start a multi-
user server with authentication using Google OAuth2 along with MongoDB as the
persistent data source.

Last but not least, given that we are using Docker containers, ’localhost’ address
must be changed with docker hostnames and create a new connection.json
which goes into the card of the REST administrator (restadmin).

1 sed -e ’s/localhost:7051/peer0.org1.example.com:7051/’ -e
’s/localhost:7053/peer0.org1.example.com:7053/’ -e
’s/localhost:7054/ca.org1.example.com:7054/’ -e
’s/localhost:7050/orderer.example.com:7050/’ <
$HOME/.composer/cards/restadmin@b4e-network/connection.json >
/tmp/connection.json && cp -p /tmp/connection.json
$HOME/.composer/cards/restadmin@b4e-network/

It is now possible to run the REST server instance:

1 docker run \
2 -d \
3 -e COMPOSER_CARD=${COMPOSER_CARD} \
4 -e COMPOSER_NAMESPACES=${COMPOSER_NAMESPACES} \
5 -e COMPOSER_AUTHENTICATION=${COMPOSER_AUTHENTICATION} \
6 -e COMPOSER_MULTIUSER=${COMPOSER_MULTIUSER} \
7 -e COMPOSER_PROVIDERS="${COMPOSER_PROVIDERS}" \
8 -e COMPOSER_DATASOURCES="${COMPOSER_DATASOURCES}" \
9 -v ~/.composer:/home/composer/.composer \

10 --name rest \
11 --network composer_default \
12 -p 3000:3000 \
13 myorg/composer-rest-server

This REST server instance will be listening at localhost:3000.
We now need to run the second, unauthenticated REST server. To do this, we can
create a file called envars2.txt and configure the unauthenticated REST server.

3.3. Business network administrators 53

1 COMPOSER_CARD=admin@b4e-network
2 COMPOSER_NAMESPACES=never
3 COMPOSER_AUTHENTICATION=false
4 COMPOSER_MULTIUSER=false

and finally

1 source envars2.txt

We will now run a Docker container with this REST server instance in the port 3001.

1 sed -e ’s/localhost:7051/peer0.org1.example.com:7051/’ -e
’s/localhost:7053/peer0.org1.example.com:7053/’ -e
’s/localhost:7054/ca.org1.example.com:7054/’ -e
’s/localhost:7050/orderer.example.com:7050/’ <
$HOME/.composer/cards/admin@b4e-network/connection.json >
/tmp/connection.json && cp -p /tmp/connection.json
$HOME/.composer/cards/admin@b4e-network/

2

3 docker run -d -e COMPOSER_CARD=${COMPOSER_CARD} -e
COMPOSER_NAMESPACES=${COMPOSER_NAMESPACES} -e
COMPOSER_AUTHENTICATION=${COMPOSER_AUTHENTICATION} -e
COMPOSER_MULTIUSER=${COMPOSER_MULTIUSER} -e
COMPOSER_PROVIDERS="${COMPOSER_PROVIDERS}" -e
COMPOSER_DATASOURCES="${COMPOSER_DATASOURCES}" -v
~/.composer:/home/composer/.composer --name rest2 --network
composer_default -p 3001:3000 myorg/composer-rest-server

This REST server instance will now be listening at localhost:3001.

55

Chapter 4

Conclusions and Future Works

This Master Thesis provides a study about how can Blockchain impact transparency
and scalability of Evoke, a World Bank project aimed to inspire youth around the
world to develop a passionate curiosity for learning and to produce a Proof of Con-
cept that shows how Evoke architecture can be re-designed using blockchains.

The chosen blockchain framework, Hyperledger Fabric, is an open source enterprise-
grade permissioned distributed ledger technology (DLT) platform, established un-
der the Linux Foundation.

Aims of this Master Thesis has been to answer two main research questions:

Research Question 1: How can B4E ensure donated funds are properly main-
tained and manages (i.e. 100% of designated funds flow to educational pur-
poses)?

Research Question 2: How can B4E scale in as many countries as possible mini-
mizing the duplication effort?

This Master Thesis proved how a blockchain framework such as Hyperledger Fab-
ric can grant a complete visibility to donors who want to fund campaigns inside the
B4E platform. Donors can track the missions as well as the activities that each cam-
paign created, together with all the contracts made between campaigns, students
and mentors.

Blockchain solves one of the main challenge of Evoke: the time taken from when
donor funds are received when the donation reports can be sent back to the donors
used to range anywhere between a few months to a year, thus discouraging dona-
tions. Now, not only donors can have a donation report in real time, but also they
can have a complete visibility on the activities created by the campaigns.

Following the network architecture explained in Section 3.2, every new univer-
sity that wants to allow its students and professors to participate to the B4E network
just have to ask the network administrator to add a server (property of the univer-
sity) as a new peer representing that university.

Currently, Evoke is a standalone, in-country effort led by a not for profit agency
in partnership with an academic institution. This basically means that different
countries run different versions of Evoke and every time a game is to be launched in
a country, the complete system set-up is repeated creating an obstacle and persistent
challenges. However, following the new architecture, Evoke can be a world project
with campaigns from all over the world. Every new university that wants to allow
its students and professors to join the B4E network, just have to buy a server and ask
the network administrator to add the server to the network.

The new architecture not only minimize the duplication effort, but also provides
to students and professors an international environment, thus increasing competi-
tion and motivation. A link to the PoC video demo can be found here.

https://drive.google.com/file/d/1FGqj0MO8CLhE9otqwJzFdZBk1FViLkY8/view?usp=sharing

57

Appendix A

Business Network Definition Code

A.1 model.cto

1 namespace org.bfore
2

3 asset MissionContract identified by missionContractId {
4 o String missionContractId
5 o Boolean completed default=false
6 o Boolean mentorUsed default=false
7 o DateTime dueDate
8 o DateTime reviewDate optional
9 o DateTime mentorSubmissionDate optional

10 o DateTime submissionDate optional
11 o Integer earnedEducoin default=0
12 o Boolean winner default=false
13 o Boolean[] completedActivities optional
14 o String[] filenames optional
15 o String[] attachments optional
16 --> Mission mission
17 --> Student student
18 --> Mentor mentor optional
19 }
20

21 /**
22 * The activities to be completed inside a mission
23 */
24 concept Activity{
25 o String name
26 o String description
27 o Integer educoin default = 0
28 }
29

30 concept Review {
31 o String title
32 o String description
33 o Double score
34 }
35

36 /**
37 * A mission to be complete from students to earn EduCoin
38 */
39 asset Mission identified by missionId {
40 o String missionId
41 o String missionName
42 o DateTime dueDate
43 o String missionDescription optional
44 o Integer educoin default = 0 // = to the sum of the educoin for each

assignment
45 o Integer bonusEducoin

58 Appendix A. Business Network Definition Code

46 o Integer maxStudents
47 o Integer mentorFare
48 o Integer currentStudents default=0
49 o Activity[] activities
50 --> Campaign campaign
51 }
52

53 /**
54 * Items to be sold in the market place
55 */
56 asset Item identified by itemId{
57 o String itemId
58 o String name
59 o String description
60 o Integer cost
61 --> Business owner
62 }
63

64 /**
65 * A concept for a simple street address
66 */
67 concept Address {
68 o String city
69 o String country
70 o String street
71 o String zip
72 }
73

74 /**
75 * An abstract participant type in this business network
76 */
77 abstract participant Business identified by email {
78 o String email
79 o String firstName
80 o String lastName
81 o Address address optional
82 o Integer educoinBalance default=0 optional
83 }
84

85 /**
86 * A student is a type of participant in the network
87 */
88 participant Student extends Business {
89 }
90

91 /**
92 * A mentor is a type of participant in the network
93 */
94 participant Mentor extends Business {
95 o Double reviewSum default=0.0 optional
96 o Double reviewCount default=0.0 optional
97 o Review[] reviews optional
98 }
99

100 /**
101 * A donor is a type of participant in the network
102 */
103 participant Donor extends Business {
104 }
105

106 /**
107 * A vendor is a type of participant in the network
108 */

A.1. model.cto 59

109 participant Vendor extends Business {
110 }
111

112 /**
113 A campaign is also a participant, since it can transfer and own educoins.
114 */
115 participant Campaign extends Business {
116 o String campaignName
117 o String campaignDescription
118 o Integer fundingGoal default=0
119 o Boolean funded // this means that the funding goal has been reached
120 o Boolean completed // this means that all the activities have been added
121 }
122

123 /**
124 A donor can give Educoin to a campaign (funding)
125 */
126 transaction FundCampaign{
127 o Integer educoinAmount
128 o Integer realAmount optional
129 --> Campaign campaign
130 --> Donor donor
131 }
132

133 /**
134 A student enroll to Mission
135 */
136 transaction EnrollStudentToMission {
137 --> Mission mission
138 }
139

140 transaction AddMissionToCampaign {
141 o String missionName
142 o String missionDescription
143 o DateTime dueDate
144 o Boolean completeCampaign
145 o Integer bonusEducoin
146 o Integer maxStudents
147 o Integer mentorFare
148 o Activity[] activities
149 }
150

151 /**
152 A student complete a mission
153 */
154 transaction StudentCompleteMission {
155 -->MissionContract missionContract
156 o Boolean[] completedActivities
157 }
158

159 transaction StudentSubmitMission {
160 --> MissionContract missionContract
161 o String[] attachments
162 o String[] filenames
163 }
164

165 transaction StudentAskForMentor {
166 --> MissionContract missionContract
167 o String[] attachments
168 o String[] filenames
169 --> Mentor mentor
170 }
171

60 Appendix A. Business Network Definition Code

172 transaction MentorReview {
173 --> MissionContract missionContract
174 o String[] attachments
175 o String[] filenames
176 }
177

178 transaction StudentLeaveReview {
179 --> MissionContract missionContract
180 o Review review
181 }
182

183 /**
184 A student buy an item
185 */
186 transaction BuyItem {
187 --> Item item
188 }
189

190 /*
191 * A vendor can create a new item
192 */
193 transaction AddItem {
194 o String name
195 o String description
196 o String cost
197 }
198

199 /**
200 Just for initializing a Demo
201 */
202 transaction SetupDemo {
203 }

A.2 logic.js

1 /**
2 * Initialize some test assets and participants useful for running a demo.
3 * @param {org.bfore.SetupDemo} setupDemo - the SetupDemo transaction
4 * @transaction
5 */
6 async function setupDemo(setupDemo){
7 const factory = getFactory();
8 const NS = ’org.bfore’;
9

10 //create a student
11 const student = factory.newResource(NS,

’Student’,’studentA@email.com’);
12 student.firstName = ’Student’;
13 student.lastName = ’A’;
14 const studentAddress = factory.newConcept(NS,’Address’);
15 studentAddress.city = ’Washington DC’;
16 studentAddress.country = ’USA’;
17 studentAddress.street = ’3222 Northampton Street’;
18 studentAddress.zip = ’20015’;
19 student.address = studentAddress;
20 student.educoinBalance = 0;
21

22 const studentRegistry = await getParticipantRegistry(NS + ’.Student’);

A.2. logic.js 61

23 await studentRegistry.addAll([student]) ;
24 var counter = 0;
25 var act_counter = 0;
26 var campaignNames = [’Social Innovation and Development’,

’Entrepreneurship and New Venture’];
27 var campaignDescriptions = [’The goal of the program to help students

build changemaking skills’, ’Entrepreneurship education benefits
students from all socioeconomic backgrounds because it teaches kids
to think outside the box’];

28

29 var missionNames = [’Fight World Hunger’, ’You Create’];
30 var missionDescriptions = [’For students interested in exploring

innovative ways to tackle the world s most pressing social
challenges and improving livelihoods for low-income populations
domestically and internationally.’, ’Think about a product that
they would love to invent and review some of the basics of the
invention process.’];

31

32

33 var activityDescriptions = [’Write a research paper with topic: Where
does our food come from? And more importantly, why does it travel so
far to reach us?’, ’Design a product and develop a business plan’];

34

35 // create 2 campaigns
36 const campaignRegistry = await getParticipantRegistry(NS +

’.Campaign’);
37 for(var i = 0; i<2; i++) {
38 const campaign = factory.newResource(NS,’Campaign’, ’campaign’ + i

+ ’@email.com’);
39 campaign.firstName = ’Sara’;
40 campaign.lastName = ’Giammusso’;
41 campaign.campaignName = campaignNames[i];
42 campaign.campaignDescription = campaignDescriptions[i];
43 campaign.educoinBalance = 0;
44 campaign.fundingGoal = 0;
45

46

47 for (var j=0; j<1; j++) {
48 const missionRegistry = await getAssetRegistry(NS + ’.Mission’);
49

50 const mission = factory.newResource(NS,’Mission’, String(counter));
51

52 mission.missionName = missionNames[counter];
53 mission.missionDescription = missionDescriptions[counter];
54 mission.bonusEducoin = 2;
55 mission.maxStudents = 3;
56 mission.mentorFare = 4;
57 mission.currentStudents = 0;
58 mission.campaign = campaign;
59 mission.dueDate = new Date(2018, 12, 31, 12, 0, 0, 0);
60 counter++;
61 var totalEducoin = 0;
62 mission.activities = [];
63 for(k=0; k<1; k++){
64 var activity = factory.newConcept(NS,’Activity’);
65 activity.name = "Activity " + k;
66 activity.description = activityDescriptions[act_counter++];
67 activity.educoin = 3;
68 mission.activities[k] = activity;
69 totalEducoin += activity[’educoin’];
70 }
71 mission.educoin = totalEducoin;
72 await missionRegistry.add(mission);

62 Appendix A. Business Network Definition Code

73 }
74 campaign.fundingGoal = 23;
75 campaign.completed = true;
76 campaign.funded = false;
77 await campaignRegistry.addAll([campaign]) ;
78 }
79

80

81

82 // create a donor
83 const donor = factory.newResource(NS,’Donor’, ’donor@email.com’);
84 donor.firstName =’Donor’;
85 donor.lastName = ’A’;
86 const donorAddress = factory.newConcept(NS,’Address’);
87 donorAddress.city = ’Washington DC’;
88 donorAddress.country = ’USA’;
89 donorAddress.street = ’1234 Donor Street’;
90 donorAddress.zip = ’20015’;
91 donor.address = donorAddress;
92 donor.educoinBalance = 100;
93

94 const donorRegistry = await getParticipantRegistry(NS + ’.Donor’);
95 await donorRegistry.addAll([donor]) ;
96

97 // create 2 mentors
98 const mentor = factory.newResource(NS, ’Mentor’,’mentor1@email.com’);
99 mentor.firstName = ’Prof. Joanie’;

100 mentor.lastName =’Bedore’;
101 mentor.reviews = [];
102 const review1 = factory.newConcept(NS,’Review’);
103 review1.title = ’Awesome’;
104 review1.description = ’Dr. Bedore hands down is the best mentor I have

ever had, she is very kind hearted and pure spirited. Very
attentive, caring and understanding’;

105 review1.score = 5;
106 const review2 = factory.newConcept(NS,’Review’);
107 review2.title = ’Nice mentor’;
108 review2.description = ’Amazing. She is a great mentor and helps you no

matter what the situation.’;
109 review2.score = 4;
110 mentor.reviews[0] = review1;
111 mentor.reviews[1] = review2;
112 mentor.reviewCount = 2;
113 mentor.reviewSum = 9;
114 mentor.educoinBalance = 0;
115

116 const mentorRegistry = await getParticipantRegistry(NS + ’.Mentor’);
117 await mentorRegistry.addAll([mentor]) ;
118

119 const mentor2 = factory.newResource(NS, ’Mentor’,’mentor2@email.com’);
120 mentor2.firstName = ’Prof. Andrew’;
121 mentor2.lastName =’Finn’;
122 mentor2.reviews = [];
123 const review3 = factory.newConcept(NS,’Review’);
124 review3.title = ’Not that good’;
125 review3.description = ’He is very disorganized, rude and he does not

really care about the students. ’;
126 review3.score = 2;
127 const review4 = factory.newConcept(NS,’Review’);
128 review4.title = ’Average’;
129 review4.description = ’Dr. Finn is a good mentor. However, his

feedbacks are not that detailed. ’;
130 review4.score = 3;

A.2. logic.js 63

131 mentor2.reviews[0] = review3;
132 mentor2.reviews[1] = review4;
133 mentor2.reviewCount = 2;
134 mentor2.reviewSum = 5;
135 mentor2.educoinBalance = 0;
136

137

138 await mentorRegistry.addAll([mentor2]) ;
139

140

141 // create a vendor
142 const vendor = factory.newResource(NS, ’Vendor’,’vendor@email.com’);
143 vendor.firstName = ’Vendor’;
144 vendor.lastName =’1’;
145 const vendorAddress = factory.newConcept(NS,’Address’);
146 vendorAddress.city = ’Washington DC’;
147 vendorAddress.country = ’USA’;
148 vendorAddress.street = ’1234 Vendor Street’;
149 vendorAddress.zip = ’20015’;
150 vendor.address = vendorAddress;
151 vendor.educoinBalance = 0;
152

153 const vendorRegistry = await getParticipantRegistry(NS + ’.Vendor’);
154 await vendorRegistry.addAll([vendor]) ;
155

156 var itemNames = [’The Official Cambridge Guide to IELTS’, ’TOPS
1-Subject Notebooks’, ’Arteza Highlighters Set of 60, Bulk Pack of
Colored Markers’];

157 var itemDescriptions = [’Perfect for students at band 4.0 and above,
this study guide has EVERYTHING you need to prepare for IELTS’,
’Spiral, 8" x 10-1/2", College Rule, Color Assortment May Vary, 70
Sheets, 6 Pack’, ’Wide and Narrow Chisel Tips, 6 Assorted Neon
Colors, for Adults & Kids’];

158

159 // create an item
160 for(var i=0; i<3; i++) {
161 const item = factory.newResource(NS, ’Item’, String(i));
162 item.owner = vendor;
163 item.name = itemNames[i];
164 item.description = itemDescriptions[i];
165 item.cost = 3;
166

167 const itemRegistry = await getAssetRegistry(NS + ’.Item’);
168 await itemRegistry.addAll([item]);
169 }
170

171 }
172

173

174 /**
175 * When a student wants to buy an item from the market place
176 * @param {org.bfore.BuyItem} BuyItem - the BuyItem transaction
177 * @transaction
178 */
179 async function BuyItem(buyItem){
180 const NS = ’org.bfore’;
181 var currentParticipant = getCurrentParticipant();
182 if(buyItem.item.owner.getType() != "Vendor")
183 throw new Error(’Owner is not a vendor’);
184 // 1st check: can the student afford it?
185 if (currentParticipant.educoinBalance >= buyItem.item.cost){
186 // the vendor get the money
187 buyItem.item.owner.educoinBalance += buyItem.item.cost;

64 Appendix A. Business Network Definition Code

188 const vendorRegistry = await getParticipantRegistry(NS + ’.Vendor’);
189 await vendorRegistry.update(buyItem.item.owner);
190 // the owner changes
191 buyItem.item.owner = currentParticipant;
192 const itemRegistry = await getAssetRegistry(NS + ’.Item’);
193 await itemRegistry.update(buyItem.item);
194 // the student spent the money
195 currentParticipant.educoinBalance -= buyItem.item.cost;
196 const studentRegistry = await getParticipantRegistry(NS +

’.Student’);
197 await studentRegistry.update(currentParticipant);
198 }
199 else
200 throw new Error(’Not enough money’);
201 }
202

203 /**
204 * When a mentor review student documents
205 * @param {org.bfore.MentorReview} MentorReview - the MentorReview

transaction
206 * @transaction
207 */
208 async function MentorReview(mentorReview){
209 const NS = ’org.bfore’;
210 if(mentorReview.missionContract.mentorUsed == true)
211 throw new Error(’Mentor already used’);
212

213 var len = mentorReview.missionContract.attachments.length;
214 for(var i = 0 ; i < mentorReview.attachments.length ; i++){
215 mentorReview.missionContract.attachments[len] =

mentorReview.attachments[i];
216 mentorReview.missionContract.filenames[len] =

mentorReview.filenames[i];
217 len++;
218 }
219 var today = new Date();
220 mentorReview.missionContract.mentorUsed = true;
221 const missionContractRegistry = await getAssetRegistry(NS +

’.MissionContract’);
222 // Update mission Contract registry
223 await missionContractRegistry.update(mentorReview.missionContract);
224 // Update mentor balance
225 mentorReview.missionContract.mentor.educoinBalance +=

mentorReview.missionContract.mission.mentorFare;
226 mentorReview.missionContract.mission.campaign.educoinBalance -=

mentorReview.missionContract.mission.mentorFare;
227 const mentorRegistry = await getParticipantRegistry(NS + ’.Mentor’);
228 await mentorRegistry.update(mentorReview.missionContract.mentor);
229 // Update campaign balance
230 const campaignRegistry = await getParticipantRegistry(NS + ’.Campaign’);
231 await

campaignRegistry.update(mentorReview.missionContract.mission.campaign);
232 }
233

234

235 /**
236 * When a student submit a mission
237 * @param {org.bfore.StudentSubmitMission} StudentSubmitMission - the

StudentSubmitMission transaction
238 * @transaction
239 */
240 async function StudentSubmitMission(studentSubmitMission){
241 const NS = ’org.bfore’;

A.2. logic.js 65

242 if(studentSubmitMission.reviewDate == null) {
243 const missionContractRegistry = await getAssetRegistry(NS +

’.MissionContract’);
244 var today = new Date();
245 var len = studentSubmitMission.missionContract.attachments.length ;
246 studentSubmitMission.missionContract.submissionDate = today;
247 for(var i = 0 ; i < studentSubmitMission.attachments.length ; i++){
248 studentSubmitMission.missionContract.attachments[len] =

studentSubmitMission.attachments[i];
249 studentSubmitMission.missionContract.filenames[len] =

studentSubmitMission.filenames[i];
250 len++;
251 }
252 // Update mission Contract registry
253 await

missionContractRegistry.update(studentSubmitMission.missionContract);
254 }
255 else
256 throw new Error(’Mission already evalued’);
257 }
258

259 /**
260 * When a student ask for the mentor to review his attachments
261 * @param {org.bfore.StudentAskForMentor} StudentAskForMentor - the

StudentAskForMentor transaction
262 * @transaction
263 */
264 async function StudentAskForMentor(studentAskForMentor){
265 const NS = ’org.bfore’;
266 if(studentAskForMentor.missionContract.reviewDate == null &&

studentAskForMentor.missionContract.mentorUsed == false) {
267 const missionContractRegistry = await getAssetRegistry(NS +

’.MissionContract’);
268 var today = new Date();
269 studentAskForMentor.missionContract.attachments = [];
270 studentAskForMentor.missionContract.filenames = [];
271 studentAskForMentor.missionContract.mentorSubmissionDate = today;
272 for(var i = 0 ; i < studentAskForMentor.attachments.length ; i++){
273 studentAskForMentor.missionContract.attachments[i] =

studentAskForMentor.attachments[i];
274 studentAskForMentor.missionContract.filenames[i] =

studentAskForMentor.filenames[i];
275 }
276 // From this moment this is the mentor for this mission contract
277 studentAskForMentor.missionContract.mentor =

studentAskForMentor.mentor;
278

279 // Update mission Contract registry
280 await

missionContractRegistry.update(studentAskForMentor.missionContract);
281 }
282 else
283 throw new Error(’Mission already evalued or mentor already used’);
284 }
285

286 /**
287 * When the student leaves a review for the mentor
288 * @param {org.bfore.StudentLeaveReview} StudentLeaveReview - the

StudentLeaveReview transaction
289 * @transaction
290 */
291 async function StudentLeaveReview(studentLeaveReview){
292 const NS = ’org.bfore’;

66 Appendix A. Business Network Definition Code

293 const mentorRegistry = await getParticipantRegistry(NS + ’.Mentor’);
294 studentLeaveReview.missionContract.mentor.reviews.push(studentLeaveReview.review);
295 studentLeaveReview.missionContract.mentor.reviewSum +=

studentLeaveReview.review.score;
296 studentLeaveReview.missionContract.mentor.reviewCount++;
297 await mentorRegistry.update(studentLeaveReview.missionContract.mentor);
298 }
299

300

301

302 /**
303 * When a student complete a mission
304 * @param {org.bfore.StudentCompleteMission} StudentCompleteMission - the

StudentCompleteMission transaction
305 * @transaction
306 */
307 async function StudentCompleteMission(studentCompleteMission){
308

309 const NS = ’org.bfore’;
310 if(studentCompleteMission.missionContract.completed == true)
311 throw new Error(’Mission already completed’);
312

313 /* The goal here is to compute the final earnedEducoin based on the
contract and on the result of the mission

314 and to assign this amount to the student */
315 var earnedEducoin = 0;
316

317

318 if(studentCompleteMission.completedActivities.length !=
studentCompleteMission.missionContract.mission.activities.length)

319 throw new Error(’Not enough activities specified’);
320

321 // 1st check: the activity must have been completed in time
322 if(studentCompleteMission.missionContract.dueDate.getTime()
323 >= studentCompleteMission.missionContract.submissionDate.getTime()){
324

325 // 2nd check: is s/he the winner?
326 // 2a: are there already other winners?
327 let result = await query(’Q2’,
328 {
329 mission:

‘resource:${NS}.Mission#${studentCompleteMission.missionContract.mission}‘
330 });
331

332 // 2b: did s/he completed all the activities?
333 var allDone = true;
334 var bonusEducoin = 0;
335 // Now let’s also count the earnedEducoin based on the completed

activities
336 for(i=0; i< studentCompleteMission.completedActivities.length; i++){
337 studentCompleteMission.missionContract.completedActivities[i] =

studentCompleteMission.completedActivities[i];
338 if

(!studentCompleteMission.missionContract.completedActivities[i])
339 allDone = false;
340 else
341 earnedEducoin +=

studentCompleteMission.missionContract.mission.activities[i].educoin;
342 }
343

344 if (result.length == 0 && allDone == true){
345 studentCompleteMission.missionContract.winner = true;

A.2. logic.js 67

346 bonusEducoin =
studentCompleteMission.missionContract.mission.bonusEducoin;

347 }
348

349 studentCompleteMission.missionContract.earnedEducoin =
earnedEducoin + bonusEducoin;

350 // so that students cannot complete this mission twice
351 studentCompleteMission.missionContract.completed = true;
352 var today = new Date();
353 studentCompleteMission.missionContract.reviewDate = today;
354 // update MissionContract registry
355 const missionContractRegistry = await getAssetRegistry(NS +

’.MissionContract’);
356 await

missionContractRegistry.update(studentCompleteMission.missionContract);
357

358 // update Student registry
359 studentCompleteMission.missionContract.student.educoinBalance +=

earnedEducoin;
360 studentCompleteMission.missionContract.student.educoinBalance +=

bonusEducoin;
361 const studentRegistry = await getParticipantRegistry(NS +

’.Student’);
362 await

studentRegistry.update(studentCompleteMission.missionContract.student);
363

364 // update Campaign balance
365 studentCompleteMission.missionContract.mission.campaign.educoinBalance

-= earnedEducoin;
366 studentCompleteMission.missionContract.mission.campaign.educoinBalance

-= bonusEducoin;
367 const campaignRegistry = await getParticipantRegistry(NS +

’.Campaign’);
368 await

campaignRegistry.update(studentCompleteMission.missionContract.mission.campaign);
369 }
370 else
371 throw new Error(’Due date expired’);
372 }
373

374

375 /**
376 * Allows to enroll a student to a mission
377 * @param {org.bfore.EnrollStudentToMission} enrollStudentToMission - the

EnrollStudentToMission transaction
378 * @transaction
379 */
380 async function EnrollStudentToMission(enrollStudentToMission){
381 const NS = ’org.bfore’;
382 const factory = getFactory();
383 var currentParticipant = getCurrentParticipant();
384 // 1st check: Students can start only the missions whose campaigns
385 // are already completed and funded
386 // Also there must be still availability for that mission
387 if(enrollStudentToMission.mission.campaign.funded == true &&
388 enrollStudentToMission.mission.currentStudents <

enrollStudentToMission.mission.maxStudents){
389 // 2nd check: Students cannot enroll the same mission twice
390 let result = await query(’Q1’,
391 {student:

‘resource:${NS}.Student#${currentParticipant.email}‘,
392 mission:

‘resource:${NS}.Mission#${enrollStudentToMission.mission.missionId}‘,

68 Appendix A. Business Network Definition Code

393 });
394

395 if (result.length == 0){
396 const missionContractRegistry = await getAssetRegistry(NS +

’.MissionContract’);
397 let existingAssets = await missionContractRegistry.getAll();
398

399 let numberOfAssets = 0;
400 await existingAssets .forEach(function (asset) {
401 numberOfAssets ++;
402 });
403

404 let missionContractId = String(numberOfAssets +1);
405 const missionContract =

factory.newResource(NS,’MissionContract’, missionContractId);
406 missionContract.dueDate = enrollStudentToMission.mission.dueDate;
407 missionContract.mission = enrollStudentToMission.mission;
408 missionContract.student = currentParticipant;
409 missionContract.completedActivities = [];
410 missionContract.completed = false;
411 // update MissionContract registry
412

413 await missionContractRegistry.add(missionContract);
414

415 enrollStudentToMission.mission.currentStudents += 1;
416 // update Mission registry
417 const missionRegistry = await getAssetRegistry(NS + ’.Mission’);
418 await missionRegistry.update(enrollStudentToMission.mission);
419 }
420 else throw new Error(’Student cannot enroll the same mission

twice’);
421 }
422 else throw new Error(’Campaign not available’);
423

424 }
425

426

427

428 /**
429 * Allows to a create a mission and add it to a campaign
430 * @param {org.bfore.AddMissionToCampaign} addMissionToCampaign - the

AddMissionToCampaign transaction
431 * @transaction
432 */
433 async function addMissionToCampaign(addMissionToCampaign){
434 const NS = ’org.bfore’;
435 var currentParticipant = getCurrentParticipant();
436 // A mission can be added only if the campaign is not already completed
437 if (currentParticipant.completed == false){
438 // MissionID creation
439 const missionRegistry = await getAssetRegistry(NS + ’.Mission’);
440 let existingAssets = await missionRegistry.getAll();
441

442 let numberOfAssets = 0;
443 await existingAssets .forEach(function (asset) {
444 numberOfAssets ++;
445 });
446

447 let missionId = String(numberOfAssets +1);
448 const factory = getFactory();
449 const mission = factory.newResource(NS,’Mission’, missionId);
450 mission.missionName = addMissionToCampaign.missionName;

A.2. logic.js 69

451 mission.missionDescription =
addMissionToCampaign.missionDescription;

452 mission.bonusEducoin = addMissionToCampaign.bonusEducoin;
453 mission.maxStudents = addMissionToCampaign.maxStudents;
454 mission.mentorFare = addMissionToCampaign.mentorFare;
455 mission.dueDate = addMissionToCampaign.dueDate;
456 mission.currentStudents = 0;
457 mission.activities = [];
458 var totalEducoin = 0;
459 for(i=0; i<addMissionToCampaign.activities.length; i++){
460 mission.activities[i] = addMissionToCampaign.activities[i];
461 totalEducoin += addMissionToCampaign.activities[i].educoin;
462 }
463 mission.educoin = totalEducoin;
464

465 //activity.activityType = addActivityToCampaign.activityType;
466

467

468 mission.campaign = currentParticipant;
469 // MAX Money needed = each mission can be done by a maximum number

of students per mission, and the winner also earn a bonus
470 currentParticipant.fundingGoal += mission.educoin *

mission.maxStudents;
471 currentParticipant.fundingGoal += mission.bonusEducoin;
472 currentParticipant.fundingGoal += mission.mentorFare *

mission.maxStudents;
473 // This may be the last mission for that campaign...
474 if (addMissionToCampaign.completeCampaign == true){
475 currentParticipant.completed = true;
476 }
477

478 // update Mission registry
479

480 await missionRegistry.add(mission);
481 // update Campaign registry
482 const campaignRegistry = await getParticipantRegistry(NS +

’.Campaign’);
483 await campaignRegistry.update(currentParticipant);
484 }
485 else throw new Error(’Campaign already completed’);
486 }
487

488

489

490 /**
491 * Allows to a donor to fund a chosen campaign
492 * @param {org.bfore.FundCampaign} fundCampaign - the FundCampaign

transaction
493 * @transaction
494 */
495 async function fundCampaign(fundCampaign){
496 const NS = ’org.bfore’;
497 var currentParticipant = getCurrentParticipant();
498 // Check if the campaign can be funded
499 // Campaign can be funded if it hasn’t reach the funding goal yet and

if it is complete
500 // i.e. all the missions have been added.
501 if (fundCampaign.campaign.funded == false &&

fundCampaign.campaign.completed == true &&
fundCampaign.educoinAmount > 0){

502 if (fundCampaign.educoinAmount > fundCampaign.campaign.fundingGoal
- fundCampaign.campaign.educoinBalance)

70 Appendix A. Business Network Definition Code

503 amount = fundCampaign.campaign.fundingGoal -
fundCampaign.campaign.educoinBalance;

504 else
505 amount = fundCampaign.educoinAmount;
506 fundCampaign.realAmount = amount;
507

508 //Check if the donor has enough money
509 if (currentParticipant.educoinBalance < amount){
510 throw new Error(’Not enough money’);
511 }
512

513 //Check if now the campaign is totally funded
514 if (fundCampaign.campaign.educoinBalance + amount ==

fundCampaign.campaign.fundingGoal){
515 fundCampaign.campaign.funded = true;
516 }
517

518

519 fundCampaign.campaign.educoinBalance += amount;
520 currentParticipant.educoinBalance -= amount;
521

522 // update Campaign registry
523 const campaignRegistry = await getParticipantRegistry(NS +

’.Campaign’);
524 await campaignRegistry.update(fundCampaign.campaign);
525 // update Donor
526 const donorRegistry = await getParticipantRegistry(NS + ’.Donor’);
527 await donorRegistry.update(currentParticipant);
528 }
529 else throw new Error(’Error’);
530

531 }
532

533 /**
534 * Allows to a vendor to create a new item
535 * @param {org.bfore.AddItem} addItem - the AddItem transaction
536 * @transaction
537 */
538 async function addItem(addItem){
539 const NS = ’org.bfore’;
540 var currentParticipant = getCurrentParticipant();
541 const factory = getFactory();
542

543 // ItemID creation
544 const itemRegistry = await getAssetRegistry(NS + ’.Item’);
545 let existingAssets = await itemRegistry.getAll();
546

547 let numberOfAssets = 0;
548 await existingAssets .forEach(function (asset) {
549 numberOfAssets ++;
550 });
551

552 let itemId = String(numberOfAssets +1);
553

554 const item = factory.newResource(NS,’Item’, itemId);
555 item.name = addItem.name;
556 item.description = addItem.description;
557 item.cost = addItem.cost;
558 item.owner = currentParticipant;
559

560 // update Item registry
561

562 await itemRegistry.add(item);

A.3. permissions.acl 71

563

564 }

A.3 permissions.acl

1 // Students: 20 rules
2 rule student_R1 {
3 description: "Students can read their record only"
4 participant(p): "org.bfore.Student"
5 operation: READ
6 resource(r): "org.bfore.Student"
7 condition: (p.getIdentifier() == r.getIdentifier())
8 action: ALLOW
9 }

10

11 rule student_R2 {
12 description: "Students can read only their MissionContract"
13 participant(p): "org.bfore.Student"
14 operation: READ
15 resource(r): "org.bfore.MissionContract"
16 condition: (p.getIdentifier() == r.student.getIdentifier())
17 action: ALLOW
18 }
19

20 rule student_R3 {
21 description: "Students can read all the missions"
22 participant: "org.bfore.Student"
23 operation: READ
24 resource: "org.bfore.Mission"
25 action: ALLOW
26 }
27

28 rule student_R4{
29 description: "Students can make the transaction enroll to mission"
30 participant: "org.bfore.Student"
31 operation: CREATE
32 resource: "org.bfore.EnrollStudentToMission"
33 action: ALLOW
34 }
35

36 // Also without this Student cannot do the transaction
EnrollStudentToActivity

37 rule student_R5{
38 description: "Students can read the campaign"
39 participant: "org.bfore.Student"
40 operation: READ
41 resource: "org.bfore.Campaign"
42 action: ALLOW
43 }
44

45 rule student_R6 {
46 description: "Students can read and update vendors balance in the

BuyItem transaction"
47 participant: "org.bfore.Student"
48 operation: READ, UPDATE
49 resource: "org.bfore.Vendor"
50 transaction: "org.bfore.BuyItem"
51 action: ALLOW

72 Appendix A. Business Network Definition Code

52 }
53

54 rule student_R7 {
55 description: "Students can read items"
56 participant: "org.bfore.Student"
57 operation: READ
58 resource: "org.bfore.Item"
59 action: ALLOW
60 }
61

62 rule student_R8 {
63 description: "Students can make the BuyItem transaction"
64 participant: "org.bfore.Student"
65 operation: CREATE
66 resource: "org.bfore.BuyItem"
67 action: ALLOW
68 }
69

70

71 rule student_R10 {
72 description: "Student can make a StudentSubmitMission transaction"
73 participant: "org.bfore.Student"
74 operation: CREATE
75 resource: "org.bfore.StudentSubmitMission"
76 action: ALLOW
77 }
78

79 rule student_R11 {
80 description: "Students can update their record only in the context of

the BuyItem transaction"
81 participant(p): "org.bfore.Student"
82 operation: UPDATE
83 resource(r): "org.bfore.Student"
84 transaction(tx): "org.bfore.BuyItem"
85 condition: (p.getIdentifier() == r.getIdentifier())
86 action: ALLOW
87 }
88

89 rule student_R12 {
90 description: "Students can create a MissionContract in the

EnrollStudentToMissiontransaction"
91 participant: "org.bfore.Student"
92 operation: CREATE
93 resource: "org.bfore.MissionContract"
94 transaction: "org.bfore.EnrollStudentToMission"
95 action: ALLOW
96 }
97

98 rule student_R13 {
99 description: "Students can update their MissionContract in the

StudentSubmitMission transaction"
100 participant(p): "org.bfore.Student"
101 operation: UPDATE
102 resource(r): "org.bfore.MissionContract"
103 transaction(tx): "org.bfore.StudentSubmitMission"
104 condition: (p.getIdentifier() == r.student.getIdentifier())
105 action: ALLOW
106 }
107

108 rule student_R14 {
109 description: "Students can update the missions in the

EnrollStudentToMission transaction, to modify currentStudents"
110 participant: "org.bfore.Student"

A.3. permissions.acl 73

111 operation: UPDATE
112 resource: "org.bfore.Mission"
113 transaction: "org.bfore.EnrollStudentToMission"
114 action: ALLOW
115 }
116

117 rule student_R15{
118 description: "Students can modify items owner in the BuyItem transaction"
119 participant: "org.bfore.Student"
120 operation: UPDATE
121 resource: "org.bfore.Item"
122 transaction: "org.bfore.BuyItem"
123 action: ALLOW
124 }
125

126 rule student_R16 {
127 description: "Students can read all the missions contracts"
128 participant: "org.bfore.Student"
129 operation: READ
130 resource: "org.bfore.MissionContract"
131 action: ALLOW
132 }
133

134 rule student_R17 {
135 description: "Students can make the StudentAskForMentor tx"
136 participant: "org.bfore.Student"
137 operation: CREATE
138 resource: "org.bfore.StudentAskForMentor"
139 action: ALLOW
140 }
141 rule student_R18 {
142 description: "Students can make the StudentLeaveReview tx"
143 participant: "org.bfore.Student"
144 operation: CREATE
145 resource: "org.bfore.StudentLeaveReview"
146 action: ALLOW
147 }
148 rule student_R19 {
149 description: "Students can update the mentor record in the

StudentLeaveReview tx"
150 participant: "org.bfore.Student"
151 operation: UPDATE
152 resource: "org.bfore.Mentor"
153 transaction: "org.bfore.StudentLeaveReview"
154 action: ALLOW
155 }
156 rule student_R20 {
157 description: "Students can update the mission contract record in the

StudentAskForMentor tx"
158 participant: "org.bfore.Student"
159 operation: UPDATE
160 resource: "org.bfore.MissionContract"
161 transaction: "org.bfore.StudentAskForMentor"
162 action: ALLOW
163 }
164 rule student_R21 {
165 description: "Student can read all the mentors"
166 participant: "org.bfore.Student"
167 operation: READ
168 resource: "org.bfore.Mentor"
169 action: ALLOW
170 }
171

74 Appendix A. Business Network Definition Code

172

173 /**
174 * CAMPAIGN’S RULES
175 */
176 // Campaign: 10 Rules
177 rule campaign_R1 {
178 description: "Campaigns can read other campaigns"
179 participant: "org.bfore.Campaign"
180 operation: READ
181 resource: "org.bfore.Campaign"
182 action: ALLOW
183 }
184

185 rule campaign_R2 {
186 description: "Campaigns can create their missions"
187 participant(p): "org.bfore.Campaign"
188 operation: CREATE
189 resource(r): "org.bfore.Mission"
190 transaction: "org.bfore.AddMissionToCampaign"
191 condition: (p.getIdentifier() == r.campaign.getIdentifier())
192 action: ALLOW
193 }
194

195 rule campaign_R3 {
196 description: "Campaigns can read all the mission contracts for their

missions"
197 participant(p): "org.bfore.Campaign"
198 operation: READ
199 resource(r): "org.bfore.MissionContract"
200 condition: (p.getIdentifier() == r.mission.campaign.getIdentifier())
201 action: ALLOW
202 }
203

204 rule campaign_R4 {
205 description: "Campaign can make the AddMissionToCampaign tx"
206 participant: "org.bfore.Campaign"
207 operation: CREATE
208 resource: "org.bfore.AddMissionToCampaign"
209 action: ALLOW
210 }
211

212 rule campaign_R5 {
213 description: "Campaign can make the StudentompleteMission tx"
214 participant(p): "org.bfore.Campaign"
215 operation: CREATE
216 resource(r): "org.bfore.StudentCompleteMission"
217 condition: (p.getIdentifier() ==

r.missionContract.mission.campaign.getIdentifier())
218 action: ALLOW
219 }
220

221 rule campaign_R6 {
222 description: "Campaign can read and update student balance in the

StudentCompleteMission tx"
223 participant: "org.bfore.Campaign"
224 operation: READ, UPDATE
225 resource: "org.bfore.Student"
226 transaction: "org.bfore.StudentCompleteMission"
227 action: ALLOW
228 }
229

230 rule campaign_R7 {

A.3. permissions.acl 75

231 description: "Campaigns can update their record in the
StudentCompleteMission tx"

232 participant(p): "org.bfore.Campaign"
233 operation: UPDATE
234 resource(r): "org.bfore.Campaign"
235 transaction(tx): "org.bfore.StudentCompleteMission"
236 condition: (p.getIdentifier() == r.getIdentifier())
237 action: ALLOW
238 }
239

240 rule campaign_R8 {
241 description: "Campaigns can read all the missions"
242 participant: "org.bfore.Campaign"
243 operation: READ
244 resource: "org.bfore.Mission"
245 action: ALLOW
246 }
247

248 rule campaign_R9 {
249 description: "Campaigns can update the mission contracts for their

missions in the StudentCompleteMission tx"
250 participant(p): "org.bfore.Campaign"
251 operation: UPDATE
252 resource(r): "org.bfore.MissionContract"
253 transaction(tx): "org.bfore.StudentCompleteMission"
254 condition: (p.getIdentifier() == r.mission.campaign.getIdentifier())
255 action: ALLOW
256 }
257

258 rule campaign_R10 {
259 description: "Campaign can read all the items"
260 participant: "org.bfore.Campaign"
261 operation: READ
262 resource: "org.bfore.Item"
263 action: ALLOW
264 }
265

266 rule campaign_R11 {
267 description: "Campaign can update themselves in the AddMissionToCampaign

tx"
268 participant: "org.bfore.Campaign"
269 operation: UPDATE
270 resource: "org.bfore.Campaign"
271 transaction: "org.bfore.AddMissionToCampaign"
272 action: ALLOW
273 }
274

275 /**
276 * DONOR’S RULES
277 */
278 // Donor: 7 rules
279 rule donor_R1 {
280 description: "Donors can read their record only"
281 participant(p): "org.bfore.Donor"
282 operation: READ
283 resource(r): "org.bfore.Donor"
284 condition: (p.getIdentifier() == r.getIdentifier())
285 action: ALLOW
286 }
287

288 rule donor_R2 {
289 description: "Donors can read all the campaigns"
290 participant: "org.bfore.Donor"

76 Appendix A. Business Network Definition Code

291 operation: READ
292 resource: "org.bfore.Campaign"
293 action: ALLOW
294 }
295

296 rule donor_R3 {
297 description: "Donors can read all the missions"
298 participant: "org.bfore.Donor"
299 operation: READ
300 resource: "org.bfore.Mission"
301 action: ALLOW
302 }
303

304 rule donor_R4 {
305 description: "Donors can make and read the FundCampaign tx"
306 participant: "org.bfore.Donor"
307 operation: CREATE, READ
308 resource: "org.bfore.FundCampaign"
309 action: ALLOW
310 }
311

312 rule donor_R5 {
313 description: "Donors can update their record in the FundCampaign tx"
314 participant(p): "org.bfore.Donor"
315 operation: UPDATE
316 resource(r): "org.bfore.Donor"
317 transaction(tx): "org.bfore.FundCampaign"
318 condition: (p.getIdentifier() == r.getIdentifier())
319 action: ALLOW
320 }
321

322 rule donor_R6 {
323 description: "Donors can update the campaigns in the FundCampaign tx"
324 participant: "org.bfore.Donor"
325 operation: UPDATE
326 resource: "org.bfore.Campaign"
327 transaction: "org.bfore.FundCampaign"
328 action: ALLOW
329 }
330

331 rule donor_R7 {
332 description: "Donors can read all the items"
333 participant: "org.bfore.Donor"
334 operation: READ
335 resource: "org.bfore.Item"
336 action: ALLOW
337 }
338 rule donor_R8 {
339 description: "Donors can read all the mission contracts"
340 participant: "org.bfore.Donor"
341 operation: READ
342 resource: "org.bfore.MissionContract"
343 action: ALLOW
344 }
345

346 /**
347 * MENTOR’S RULES
348 */
349 rule mentor_R1 {
350 description: "Mentor can make the MentorReview tx"
351 participant: "org.bfore.Mentor"
352 operation: CREATE
353 resource: "org.bfore.MentorReview"

A.3. permissions.acl 77

354 action: ALLOW
355 }
356 rule mentor_R2 {
357 description: "Mentor can read and update the MissionContract in the

MentorReview tx"
358 participant: "org.bfore.Mentor"
359 operation: READ,UPDATE
360 resource: "org.bfore.MissionContract"
361 transaction: "org.bfore.MentorReview"
362 action: ALLOW
363 }
364 rule mentor_R3 {
365 description: "Mentor can read all the missions"
366 participant: "org.bfore.Mentor"
367 operation: READ
368 resource: "org.bfore.Mission"
369 action: ALLOW
370 }
371 rule mentor_R4 {
372 description: "Mentor can read all the campaigns"
373 participant: "org.bfore.Mentor"
374 operation: READ
375 resource: "org.bfore.Campaign"
376 action: ALLOW
377 }
378 rule mentor_R5 {
379 description: "Mentor can read all the items"
380 participant: "org.bfore.Mentor"
381 operation: READ
382 resource: "org.bfore.Item"
383 action: ALLOW
384 }
385 rule mentor_R6 {
386 description: "Mentor can read all the missions contracts"
387 participant: "org.bfore.Mentor"
388 operation: READ
389 resource: "org.bfore.MissionContract"
390 action: ALLOW
391 }
392

393 rule mentor_R8 {
394 description: "Mentor can update Campaign Balance in the MentorReview tx"
395 participant: "org.bfore.Mentor"
396 operation: UPDATE
397 resource: "org.bfore.Campaign"
398 transaction: "org.bfore.MentorReview"
399 action: ALLOW
400 }
401 rule mentor_R9 {
402 description: "Mentor can update its own record in the mentor review tx"
403 participant(p): "org.bfore.Mentor"
404 operation: UPDATE
405 resource(r): "org.bfore.Mentor"
406 transaction: "org.bfore.MentorReview"
407 condition: (p.getIdentifier() == r.getIdentifier())
408 action: ALLOW
409 }
410

411 rule mentor_R10 {
412 description: "Mentor can make the buyItem transaction"
413 participant: "org.bfore.Mentor"
414 operation: CREATE
415 resource: "org.bfore.BuyItem"

78 Appendix A. Business Network Definition Code

416 action: ALLOW
417 }
418

419 rule mentor_R11 {
420 description: "Mentor can read and update vendors balance in the BuyItem

transaction"
421 participant: "org.bfore.Mentor"
422 operation: READ, UPDATE
423 resource: "org.bfore.Vendor"
424 transaction: "org.bfore.BuyItem"
425 action: ALLOW
426 }
427

428 rule mentor_R12 {
429 description: "Mentor can update their record only in the context of the

BuyItem transaction"
430 participant(p): "org.bfore.Mentor"
431 operation: UPDATE
432 resource(r): "org.bfore.Mentor"
433 transaction(tx): "org.bfore.BuyItem"
434 condition: (p.getIdentifier() == r.getIdentifier())
435 action: ALLOW
436 }
437

438 rule mentor_R14{
439 description: "Mentors can modify items owner in the BuyItem transaction"
440 participant: "org.bfore.Mentor"
441 operation: UPDATE
442 resource: "org.bfore.Item"
443 transaction: "org.bfore.BuyItem"
444 action: ALLOW
445 }
446

447 /**
448 * VENDOR’S RULES
449 */
450 // Vendor: 5 Rules
451 rule vendor_R1 {
452 description: "Vendor can read their record only"
453 participant(p): "org.bfore.Vendor"
454 operation: READ
455 resource(r): "org.bfore.Vendor"
456 condition: (p.getIdentifier() == r.getIdentifier())
457 action: ALLOW
458 }
459

460 rule vendor_R2 {
461 description: "Vendor can create items for which they are the owners"
462 participant(p): "org.bfore.Vendor"
463 operation: CREATE
464 resource(r): "org.bfore.Item"
465 transaction: "org.bfore.AddItem"
466 condition: (p.getIdentifier() == r.owner.getIdentifier())
467 action: ALLOW
468 }
469

470 rule vendor_R3 {
471 description: "Vendor can read all the campaigns"
472 participant: "org.bfore.Vendor"
473 operation: READ
474 resource: "org.bfore.Campaign"
475 action: ALLOW
476 }

A.4. queries.qry 79

477

478 rule vendor_R4 {
479 description: "Vendor can read all the missions"
480 participant: "org.bfore.Vendor"
481 operation: READ
482 resource: "org.bfore.Mission"
483 action: ALLOW
484 }
485

486 rule vendor_R5 {
487 description: "Vendor can read all the items"
488 participant: "org.bfore.Vendor"
489 operation: READ
490 resource: "org.bfore.Item"
491 action: ALLOW
492 }
493

494 rule SystemACL {
495 description: "System ACL to permit all access"
496 participant: "org.hyperledger.composer.system.Participant"
497 operation: ALL
498 resource: "org.hyperledger.composer.system.**"
499 action: ALLOW
500 }
501

502 rule rule1 {
503 description: "Grant business network administrators full access to

user resources"
504 participant: "org.hyperledger.composer.system.NetworkAdmin"
505 operation: CREATE, READ
506 resource: "org.bfore.Business"
507 action: ALLOW
508 }
509

510

511 rule NetworkAdminUser {
512 description: "Grant business network administrators full access to

user resources"
513 participant(p): "org.hyperledger.composer.system.NetworkAdmin"
514 operation: ALL
515 resource(r): "**"
516 condition: (p.getIdentifier() != "admin")
517 action: ALLOW
518 }
519

520 rule NetworkAdminSystem {
521 description: "Grant business network administrators full access to

system resources"
522 participant: "org.hyperledger.composer.system.NetworkAdmin"
523 operation: ALL
524 resource: "org.hyperledger.composer.system.**"
525 action: ALLOW
526 }

A.4 queries.qry

1 query Q1 {
2 description: "Given student and mission return the Mission Contract (if

any)"

80 Appendix A. Business Network Definition Code

3 statement:
4 SELECT org.bfore.MissionContract
5 WHERE(_$mission == mission AND _$student == student)
6 }
7

8 query Q2 {
9 description: "Given a missionID check if there is already a winner"

10 statement:
11 SELECT org.bfore.MissionContract
12 WHERE(_$mission == mission AND winner == true)
13 }
14

15 query Q3 {
16 description: "Get completed campaigns"
17 statement:
18 SELECT org.bfore.Campaign
19 WHERE(completed == true)
20 }
21

22

23 query Q5 {
24 description: "Get the missions of a student"
25 statement:
26 SELECT org.bfore.MissionContract
27 WHERE(_$student == student)
28

29 }
30

31 query Q6 {
32 description: "Get items by ownerID"
33 statement:
34 SELECT org.bfore.Item
35 WHERE(_$owner == owner)
36 }
37

38 query Q7 {
39 description: "Get FundCampaign transaction by donor"
40 statement:
41 SELECT org.bfore.FundCampaign
42 WHERE(_$donor == donor)
43 }
44

45 query Q8 {
46 description: "Get all the missions of a given campaign"
47 statement:
48 SELECT org.bfore.Mission
49 WHERE(_$campaign == campaign)
50 }
51

52 query Q9 {
53 description: "Get the mission contrats of a given mission"
54 statement:
55 SELECT org.bfore.MissionContract
56 WHERE(_$mission == mission)
57

58 }
59

60 query Q10 {
61 description: "Get the missions of a mentor"
62 statement:
63 SELECT org.bfore.MissionContract
64 WHERE(_$mentor == mentor)
65

A.4. queries.qry 81

66 }

83

Bibliography

[1] “A Blockchain Platform for the Enterprise”. In: Hyperledger Fabric Documenta-
tion (2018). URL: https://hyperledger-fabric.readthedocs.io/
en/release-1.3/.

[2] Robert Hawkins Barbara Freeman. “Developing Skills in Youth to Solve the
World’s Most Complex Problems: The Social Innovators’ Framework”. In: (2017).
URL: https://openknowledge.worldbank.org/bitstream/handle/
10986/26106/112721-WP-EVOKESocialInnovatorsFrameworkSABERICTno-
PUBLIC.pdf?sequence=1&isAllowed=y.

[3] “Build a blockchain insurance app”. In: IBM developer (2017). URL: https://
developer.ibm.com/patterns/build-a-blockchain-insurance-
app/.

[4] “Creating a Trusted Experience with Blockchain”. In: Sony Global Education
(2018). URL: https://blockchain.sonyged.com.

[5] “EVOKE - An online alternate reality game supporting social innovation among
young people around the world”. In: (2017). URL: http://www.worldbank.
org/en/topic/edutech/brief/evoke-an-online-alternate-
reality-game-supporting-social-innovation-among-young-
people-around-the-world.

[6] Stuart Haber and W. Scott Stornetta. “How to time-stamp a digital document”.
In: Journal of Cryptology 3 (Jan. 1991), pp. 99–111. URL: https : / / link .
springer.com/article/10.1007/BF00196791.

[7] “Hash Functions”. In: Wikipedia (2018). URL: https://en.wikipedia.
org/wiki/Hash_function.

[8] P. Sandner M. Valenta. “Comparison of Ethereum, Hyperledger Fabric and
Corda”. In: (2017). URL: http://explore-ip.com/2017_Comparison-
of-Ethereum-Hyperledger-Corda.pdf.

[9] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In: (2008).
URL: https://bitcoin.org/bitcoin.pdf.

[10] “Opet Foundation”. In: Opet Foundation (2018). URL: https://opetfoundation.
com.

https://hyperledger-fabric.readthedocs.io/en/release-1.3/
https://hyperledger-fabric.readthedocs.io/en/release-1.3/
https://openknowledge.worldbank.org/bitstream/handle/10986/26106/112721-WP-EVOKESocialInnovatorsFrameworkSABERICTno-PUBLIC.pdf?sequence=1&isAllowed=y
https://openknowledge.worldbank.org/bitstream/handle/10986/26106/112721-WP-EVOKESocialInnovatorsFrameworkSABERICTno-PUBLIC.pdf?sequence=1&isAllowed=y
https://openknowledge.worldbank.org/bitstream/handle/10986/26106/112721-WP-EVOKESocialInnovatorsFrameworkSABERICTno-PUBLIC.pdf?sequence=1&isAllowed=y
https://developer.ibm.com/patterns/build-a-blockchain-insurance-app/
https://developer.ibm.com/patterns/build-a-blockchain-insurance-app/
https://developer.ibm.com/patterns/build-a-blockchain-insurance-app/
https://blockchain.sonyged.com
http://www.worldbank.org/en/topic/edutech/brief/evoke-an-online-alternate-reality-game-supporting-social-innovation-among-young-people-around-the-world
http://www.worldbank.org/en/topic/edutech/brief/evoke-an-online-alternate-reality-game-supporting-social-innovation-among-young-people-around-the-world
http://www.worldbank.org/en/topic/edutech/brief/evoke-an-online-alternate-reality-game-supporting-social-innovation-among-young-people-around-the-world
http://www.worldbank.org/en/topic/edutech/brief/evoke-an-online-alternate-reality-game-supporting-social-innovation-among-young-people-around-the-world
https://link.springer.com/article/10.1007/BF00196791
https://link.springer.com/article/10.1007/BF00196791
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Hash_function
http://explore-ip.com/2017_Comparison-of-Ethereum-Hyperledger-Corda.pdf
http://explore-ip.com/2017_Comparison-of-Ethereum-Hyperledger-Corda.pdf
https://bitcoin.org/bitcoin.pdf
https://opetfoundation.com
https://opetfoundation.com

	Abstract
	Acknowledgements
	Introduction
	Evoke: an overview
	System design
	The challenges

	Blockchain for education: Related works
	This Master Thesis
	Research Questions
	Outline

	Theoretical Background
	Blockchain Technology
	Hash functions
	Consensus protocols
	Proof of Work
	Proof of Stake

	Public Key Infrastructure
	Hyperledger Fabric and Ethereum: A Comparison

	Hyperledger Fabric
	Fabric network architecture
	Types of peers
	Identity
	Basic transactions work flow
	Ledger

	Hyperledger Composer
	Business Network Definition

	Proposed Solution
	Business Network Definition
	Model
	Limitations
	Logic
	Access Control List
	Queries

	Business Network Deployment
	Starting Hyperledger Fabric

	Business network administrators
	Composer REST Server

	Conclusions and Future Works
	Business Network Definition Code
	model.cto
	logic.js
	permissions.acl
	queries.qry

	Bibliography

