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Abstract

This Master’s Thesis presents the results obtained during the 6-months internship
at Amazon Web Services, a world-known company which provides on-demand cloud
computing platforms to individuals, companies and governments, on a paid sub-
scription basis.

The main focus of this work is to provide a scientific analysis and a description
of the implementation realised to develop a Deep Learning based general purpose
recommendation system. After having analysed the state of art for traditional rec-
ommendation systems, a few Deep Learning architectures are proposed to solve the
problem at hand, and the results obtained on several freely available datasets are
compared. Particular attention is given to collaborative filtering methods, based
on the history of interaction between user and item, and hybrid recommendation
system, which promise to solve some of the shortcoming faced with collaborative
filtering methods by enriching user-item interaction with other existing information,
in the form of either additional features or textual or graphical input.

Finally, a summary of the work done and of the future perspectives is given, with
hints regarding a possible implementation of such a system on the AWS platform.





Chapter 1

Introduction

We have 6.2 million customers; we
should have 6.2 million stores.
There should be the optimum store
for each and every customer.

Jeff Bezos,
CEO of Amazon.com, 1999

Recommender Systems have become increasingly relevant for companies provid-
ing any kind of service to the users. Examples include companies such as Amazon,
leader in the e-commerce world capable of recommending a small number of items
the user might enjoy based on current context and past behaviour across a cata-
logue of hundreds of millions of items, Spotify, most used music streaming service
providing a Discover playlist every week that adapts with the user tastes and lets her
discover new music all the time, and Netflix, top video streaming service worldwide
with its ever-growing subscription rate and hours spent binge watching series and
movies.

The value generated for these companies from Recommender Systems is not
negligible. According to a McKinsey study, up to 35% of Amazon.com revenue,
increasing their total sales by 29% to $136B in 2016 and $177.9B in 2017, and 75%
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1 – Introduction

of what Netflix views came from product recommendations based on algorithms and
predictive models that analyse transaction data and digital-media trends. Moreover,
Netflix executives Carlos A. Gomez-Uribe and Neil Hunt state that a combination of
personalization and recommendation from their own Recommender Systems saves
them more than $1B each year[9], with this number expected to be grown since the
publication of the paper in 2015. One factor that all of the above implementations of
Recommender Systems have in common is that user preferences are often difficult to
guess, especially when facing big customer basis and even bigger catalogues of prod-
ucts to recommend. The difficulty of this task is such that a company either needs
a group of expensive data scientist and engineers in order to develop and maintain
such systems, on needs to outsource its recommendation services, an example being
BBC.

With the increasing diversity and volume of data available, standard approaches
to Recommender Systems do not prove to be sufficient anymore, lacking the ability
to scale at the same pace as the user/catalogue base, as well as the flexibility of
learning from changing trends in data, without re-architecting the whole solution
from scratch.

That is why most of the most recent and most efficient Recommender System are
based on Machine Learning algorithms, attempting to understand the underlying
data patterns, and learning the mapping of some input to some output. Any ML
algorithm relies on data available for the training process, an algorithm (model),
and loss functions to optimize. By pre-processing data in a format which can be
appropriately learnt by the algorithm trying to minimize/maximize the objective
loss function, the model encodes the beliefs about data patterns and uses them
to make predictions about other data points. This process can be used to solve
many problems that traditional heuristics found too complex to tackle, including
classification, regression and clustering.

In the recent years, the sheer amount of data available and the complexity of
the patterns became such that classical ML algorithms were not sufficient to pro-
vide useful insights into the data. First, most of the Machine Learning algorithms
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need a very detailed domain expertise, capable of grasping features of the data that
were hidden in the original representation, process that became known as Feature
Extraction. This implies human intervention and therefore increasing costs for com-
panies which need to include in their team both domain experts and data scientists.
Furthermore, Machine Learning fails in solving complex problems such as image
classification, natural language processing (NLP), and automatic speech recognition
(ASR). Due to amazing performances when large amount of data is available, lack
of necessity of domain understanding for feature introspection therefore less need
for feature engineering, and ability to tackle problems previously thought to be un-
crackable, Deep Learning models have gathered attention and research investments
all over the world, both from companies and independent researchers.

The goal of this work is to investigate how Deep Learning models can be used
to effectively solve the Recommendation Problem, by proposing a few different ar-
chitectures and showing the results obtained on multiple datasets freely available
online. Most of the tests have been done on the MovieLens dataset, in its different
declinations: ml-100k, 100,000 ratings from 600 users on 9,000 movies, ml-1M, 1
million ratings from 6000 users on 4000 movies, ml-10M, 10 million ratings from
72,000 users on 10,000 movies, ml-latest-full, 27,000,000 ratings from 280,000 users
on 58,000 movies. Computations and training for the first two dataset have been
done on a personal MacBook Pro 2017, without dedicated GPU, while tests on
the bigger datasets required the use of instances on the AWS platform, namely
ml.p3.16xlarge instances available “as-a-service” thanks to Amazon SageMaker.

This master’s thesis is structured as follows:

• an Introduction, where the goals of this report and some hints to the conclu-
sions are reported;

• a State of the art chapter (Chapter 2), which gives a definition to the rec-
ommendation problem, and presents the possible approaches to solve said
problem; a quick overview about Machine Learning and Deep Learning is also
given, introducing some of the algorithms that have been historically used to
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1 – Introduction

build Recommendation systems;

• a Deep Recommender Systems chapter (Chapter 3), which discusses the pro-
posed implementations of deep neural networks and their results on the Movie-
Lens ml-latest-small;

• a Results chapter (Chapter 4) reviews the proposed algorithms and shows
the results obtained on multiple datasets, comparing them with a baseline
obtained by the state-of-the-art implementations;

• finally, a Conclusion and Future Work chapter (Chapter 5) summarises the
work done and describes how the system could possibly evolve, possibly ob-
taining better results.

4



Chapter 2

State of the Art

In order to properly understand how to implement a recommendation system, it is
important to correctly understand the recommendation problem itself, by providing
a proper mathematical definition (Section 2.1). Once the problem has been defined,
it is now possible to describe how the recommender problem has been approached
in the literature (Section 2.2: collaborative filtering, content-based recommendation
or hybrid recommendation. In particular, the most common implementation in
Machine Learning (Section 2.3) and Deep Learning (Section 2.4) are analyzed, after
going through the general concepts of these technologies and the reason why these
algorithms should be used to solve the recommendation problem.

2.1 The recommendation problem

A recommender system is a technology that is deployed in the environment where
items (products, movies, events, articles) are to be recommended to users (cus-
tomers, visitors, app users, readers) or the opposite. Typically, there are many items
and many users present in the environment making the problem hard and expensive
to solve. This problem, shown in figure 2.1, can be solved in three main phases:
information collection, learning, and inference (prediction or recommendation).
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2 – State of the Art

Figure 2.1: Diagram of the Recommendation problem

In the first phase, information retrieval, relevant information of users is collected
to generate a user profile or model for the prediction tasks including user’s attribute,
behaviors or content of the resources the user accesses. The system needs to know as
much as possible from the user in order to provide reasonable recommendation right
from the onset. Recommender systems rely on different types of input, either explicit
feedback, which includes explicit input by users regarding their interest in item, or
implicit feedback by inferring user preferences indirectly through observing user
behavior. A very common example of the first kind of feedback is the ratings given
by users to movies. Hybrid feedback can also be obtained through the combination
of both explicit and implicit feedback.

Once feedback is obtained and stored in the preferred way, the system applies a
learning algorithm to filter and exploit the user’s features from the feedback gathered
in information collection phase. According to the chosen algorithm, a pre-processing
phase might be needed in order to make sure that the data is in the proper format
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2.1 – The recommendation problem

requested by the algorithm.
With the data pattern discovered during the learning phase, the system is finally

able to infer about user preferences. The task here can be either a prediction or a
recommendation: the system can either predict a feedback from a user regarding a
certain item, and then use this information to decide whether to suggest said item to
the user, or try to rank the top N items in which the user might be interested. Most
of the results presented in this work adopt the prediction approach to the problem,
since it is the one that can be more easily quantified with standard metrics and the
same approach can be extended to solve the recommendation problem with trivial
development effort while building a complete solution.

A more mathematical definition of the recommendation problem and the recom-
mendation problem has been by Sarwar et al. in 2001 [32].

The prediction problem can be formalised as follows: let

U = u1, u2, ..., um

be the set of all users, and let

I = i1, i2, ..., in

be the set of all possible items that can be recommended. Each user ui has a list of
items Iui

. This list represents the items that the user has expressed her interests.
Note that Iui

⊆ I, and it is possible that Iui
= ∅ , such as in the case of new

subscription to a service. Then, the function, Puaij is the predicted likeliness of
item ij for the active user ua, such as ij /∈ Iui

.
The recommendation problem can be stated as obtaining a list of N items, Ir ⊂

I, that the user will like the most (i.e the ones with higher Puaij value). The
recommended list should not contain items from the user’s interests, therefore Ir ∩
Iui

= ∅. Both the set I of possible items and the set of users U can be very large.
In most recommender systems, the prediction function Puaij is usually represented
by a rating, which is given by the user either explicitly or implicitly through some
measures, e.g., by tracking if a movie is skipped in the first minutes of play. They
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2 – State of the Art

are represented as triplets < hu, i, ri > where r is the rating value assigned by the
user u to a particular item i. The value is usually a real number (e.g., from 0 to 1),
a value in a discrete range (e.g., from 1 to 5), or a binary variable (e.g., like/dislike).

For the rest of the work, the expression “recommendation problem” will be
mainly used, while still considering the “prediction problem” as the one to be solved.
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2.2 – Recommender Systems

2.2 Recommender Systems

Figure 2.2: Types of Recommender System

When implementing a recommender system, there are a few different techniques
to choose from with regards to exactly how the recommendations are made. Most of
today’s systems employ content-based filtering or collaborative filtering, or even a
mixture of the two, resulting in what we call hybrid systems. As in most Data Science
tasks, no single algorithm is the silver bullet for solving the recommendation problem
every time, regardless of the data or task. It is always better to try and implement
multiple solutions, and check which one of those delivers an output closer to the
expected metrics or results. This work goal is to implement multiple algorithms and
test the results on the MovieLens dataset.
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2 – State of the Art

2.2.1 Collaborative Filtering

Figure 2.3: Visualization of a Collaborative Filtering algorithm

The goal of a Collaborative Filtering (CF) algorithm is to suggest new items
or to predict the utility of a certain item for a particular user based on the user’s
previous likings and the opinions of other like-minded users[32]. CF algorithms,
regardless of the problem to solve, prediction or recommendation, work with the
entire mxn user-item data as a ratings matrix A, where each entry aij represents
the preference score (rating) of the i-th user on the j-th item.

Researchers have come up with multiple collaborative filtering algorithms, which
can be mostly grouped into two categories: Memory-based (user-based) and Model-
based (item-based) algorithms.

Memory-based algorithms utilize the entire ratings matrix to generate a predic-
tion. Most of these algorithms employ techniques based on statistical approaches
which find a set of users that share similar rating to the target user. This set of
users is known as neighbours of user i. Starting from the neighbourhood of user
i, it is possible to combine predictions of neighbours to produce a prediction or a
top-N recommendation for the active user. Several types of similarity measures[19]
are used to compute similarity between item/user. The two most popular similarity
measures are correlation-based, such as the Pearson Correlation Coefficient (PCC)
which measures the extent to which two variables linearly are related to each other,
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2.2 – Recommender Systems

and cosine-based, which measures the similarity between two n-dimensional vectors
based on the angle between them. Traditional Machine Learning approaches to solve
this problem include algorithms such as K-Nearest Neighbours.

Model-based algorithms exploit a probabilistic approach in order to provide the
expected value of a user prediction by first developing a model of user ratings, mean-
ing given her ratings on other items. Traditional Machine Learning algorithms to
obtain the model include Bayesian Networks, Clustering, Rule Mining approaches,
Matrix Factorization and Single Value Decomposition. Further analysis, in particu-
lar for Matrix Factorization algorithms, is provided later in this work.

Although collaborative filtering is currently one of the most used methods of
social–based recommender systems, the approach presents some drawbacks:

• data sparsity and high dimensionality[17], due to the nature of the dataset
itself being very large while the coverage of users’ ratings among the items;

• grey sheep[7] or outliers, referring to the problem of some users having
atypical tastes, meaning largely different from the norm, and therefore leading
to poor recommendations;

• cold-start, caused by the lack of ratings for new users

• early-rater, caused by the lack of rating for new items[3]

• popularity bias, caused by popular items being similar to lots of items and
therefore being more probable to be recommended[38]

2.2.2 Content-Based Filtering
In the Content–Based Filtering (CBF) approach, the recommender collects informa-
tion describing the items and then, based on the user’s preferences, it predicts which
items the user could like. It is therefore a technique which is domain-dependent and
emphasizes more on the analysis of the attributes of items in order to generate
predictions. The process of characterising the item data set can be automatic, for
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2 – State of the Art

example extracting features by analysing the content, based on manual annotations
by the domain experts, or even using the tags from the community of users [5][6].

Content-based filtering uses different algorithms to find similarity between items
in order to generate useful recommendations by exploiting more significative rep-
resentation of the data. Therefore this technique is not a social-based recom-
mender system, since it does not need other users ratings to infer a recommendation.
Content-based filtering technique can handle deviation in the tastes of the user, by
adjusting the recommendations within a very short period of time. The greatest
advantage of CBF is the ability to solve the previously described early-rater and
cold-start problem. By extracting a significative representation of the new item, it
is possible to recommend it to the appropriate users; the same is valid for new users,
which can be recommended other items seen by similar users.

A recommender system implementing the above described content-based filtering
technique need a well-defined architecture supporting multiple components with
well-defined tasks. Lops et Al. [22] proposed a high level architecture (Figure 2.4)
made of three main components:

• Content analyzer, which is the component responsible for "pre-processing"
the data, meaning to prepare item’s relevant information in a format suitable
to the rest of the recommendation process;

• Profile learner, which is the component responsible for modeling the user
profile from user preferences and interests thanks to statistical approaches or
Machine Learning algorithms [27];

• Filtering component, component responsible for the real recommendation
of new items starting from user information or provided queries.

Regarding Content-based filtering techniques, the main focus of this work will
be on the first two component, coherently with the definition of recommendation
problem given in Section 2.1 of this work.
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2.2 – Recommender Systems

Figure 2.4: Content-Based Recommender High Level Architecture [22]

As described before, Content-based filtering techniques are dependent on items’
metadata. The adoption of the content-based recommendation paradigm has several
advantages when compared to collaborative filtering:

• User independence, meaning that extracting information and predicting
ratings for the current active user only require information regarding the item
itself and the user profile;

• Transparency, since content features and descriptions can be explicitly listed
to explain why an item occurs in a list of recommendation

• Solution to cold-start, giving the capability to recommend new products
never before rated, or existing items to new users.
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However, CBF methods are not exempt from shortcomings:

• Limited Content Analysis[1], also known as the necessity of rich description
of items and very well organized user profile before any recommendation can
be made to users - a process which requires a lot of domain knowledge, given
by a team of domain experts which should assist Data Scientists that build
the Recommendation System.

• Content overspecialization[44] or serendipity, meaning the tendency of
the content-based systems to produce recommendations with a limited degree
of novelty, therefore users are restricted to getting recommendations similar
to items already defined in their profiles.

Implementation examples of Content-Based Filtering include Vector Space Mod-
els such as Term Frequency Inverse Document Frequency (TF/IDF) or Probabilistic
models such as Naïve Bayes Classifier, Decision Trees or Neural Networks. More
details are provided in section 2.3 of this work.
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2.3 – Machine Learning

2.3 Machine Learning
Producing recommendations involves applying statistical and knowledge discovery
techniques in a database of user data[32]. Machine Learning models have been thor-
oughly researched in the last decade, with many among them already available in
most of production environments dealing with the recommendation problem. De-
pending on the learning type of the applied algorithm, it can be classified into one of
four main categories[29]: supervised, unsupervised, semi-supervised, and reinforce-
ment learning.

Supervised learning is applied when algorithms are provided a training set with
input values that are mapped to “correct” answers, the labels; therefore training
set and labels are used to create a function that can map new input values to any
of the existing labels. Unsupervised learning algorithms need to learn from the
data set without actual labelling being provided. Semi-supervised algorithms use
incomplete training sets from which predictions are made. Reinforcement learning is
when learning algorithms predicts the label or generate predictions being driven by
an external feedback, either positive or negative feedback according to its behaviour,
and adjusts the parameters of the model accordingly.

In the following sections, some algorithms that have proved to be effective and
have been adopted in production by companies are discussed and described in more
detail. The chosen algorithms are: K-Nearest Neighbours (KNN), Decision Trees,
and Matrix Factorization (or Singular Value Decomposition). A brief excursus on
clustering methods applied to recommender systems is also provided.

2.3.1 Decision Trees

Decision tree learning[37] is among the most widely used and practical algorithm for
inductive inference[27]. The goal of the algorithm is to approximate a discrete-value
target function, where a decision tree represents the learned function. On a human
perspective, decision trees can also be seen as a set of if-then rules. By traversing the
tree from the root to a leaf node, it is possible to classify the instances: each node of
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the tree tests the attribute specified by the node and then moves down the until a
leaf node is reached, which represents the class of the instance. In general, decision
trees can be seen as a disjunction of conjunction of attribute values of instances,
where each path from the root is a conjunction of attribute tests and the tree itself
is a disjunction of these conjunctions[4]. Since no real implementation of Decision
Trees for Recommender Systems has been done in this work and a lot of research
and books is available online, no more technical details on the algorithm itself will
be provided.

Often, a decision tree is not enough to have a good accuracy. Ensemble methods
are used to build more than one tree and join the results. The bagging/bootstrap
technique build a set of M base model, by picking random samples with replacement
from a dataset of instances. In a nutshell, it generates M datasets in order to obtain
M different classifier models. This allows to build an ensemble of decision trees,
called random forest. After a phase of bagging, it builds random trees which only
use a random subset of the attributes. This combination of methods allows to
generate a very accurate model, which accuracy generally stands out with respect
to other more traditional ML algorithms.

A state-of-the-art implementation of the Random Forest algorithm for solving
the recommendation problem on the MovieLens 1M dataset is proposed in [2]. The
authors claim to have achieved an average MAE score of 0.81 and an average RMSE
score of around 1.02 for forests of T trees, where T = 10, 20, 50, 100.

2.3.2 K-Nearest Neighbours

The k-Nearest-Neighbours[36] (kNN) is a non-parametric classification method, which
is simple but effective in many cases[11]. For a data record t to be classified, its
k nearest neighbours are retrieved, and this forms a neighbourhood of t. Majority
voting among the data records in the neighbourhood is usually used to decide the
classification for t with or without consideration of distance-based weighting. A
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state-of-the-art implementation of the KNN algorithm for solving the recommenda-
tion problem on the MovieLens 1M dataset is proposed in [2]. The authors claim
to have achieved an average MAE score of 0.875 and an average RMSE score of
around 1.07 for k neighbours, where k = 10, 30, 50, 100.

2.3.3 Matrix Factorization

Matrix factorization[23] (MF) is a technique which computes a latent factor model
of a system based on user-item interaction. MF creates a user-defined number of
features N by breaking the original data features R (ratings), of dimension M × N ,
into the product of two matrices U (User Matrix of 2.5), of dimension M × D, and
V (Item Matrix of 2.5), of dimension D × N . MF uses an iterative approach to
modify the initial values of U and V so that the product approaches R. When the
approximation error converges or the user-defined number of iterations is reached,
MF terminates. This allows MF to obtain D features which goal is to try and de-
scribe better the relationship between the original data: in the case of the MovieLens
dataset, this can be seen as a way of combining a vector describing the user and
a vector describing the movies seen. From this then, it is possible to predict, via
simple regression, the ratings for unseen movies or cluster groups of similar users.

A state-of-the-art implementation of the Matrix Factorization algorithm for solv-
ing the recommendation problem on the MovieLens 10M dataset is proposed by
Ivarsson and Lingren[18]. The authors claim to have achieved an average RMSE
score of around 0.823 with 10 features extracted.

2.3.4 Clustering Methods

Clustering[8] is the distribution of a set of instances of examples into non-known
groups according to some common relations or affinities. This means that clustering
algorithms allow for classification of items into groups which are not known at
the beginning, cluster, according to some relations or affinities between the items
themselves. Given a set of instances I, a number of cluster K, an objective function
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Figure 2.5: Matrix Factorization Example

cost(C, I), a clustering algorithm computes a set C of instances with |C| = K

that minimizes the objective function cost(C, I) =
∑
x∈I

d2(x, C) where d(x, C) is the

distance function between x and C, and d2(x, C) is the distance from x to the nearest
point in C.

Examples of clustering applications are the market segmentation of customers,
social network communities analysis, and of course product recommendation. Among
the most known algorithms there are K-Means (or its variation K-Means++), DB-
Scan (and other Density Based methods) and BIRCH.

18
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2.4 Deep Learning

2.4.1 Deep Neural Networks: general concepts

An artificial Neural Network (ANN) is a nonlinear system inspired by biological neu-
ral networks, i.e. the brain. An artificial neural network allows to learn a mapping
from a given input space to a desired output space. The life of a typical ANN is
characterized by two phases: the training phase, which can be either supervised, un-
supervised or hybrid, and the prediction phase. The structure of an ANN is usually
composed of an input layer, an output layer and one or more hidden layers. Each
layer of an artificial neural network is composed of several neurons. Each neuron is
connected to every other neuron in the adjacent layer, that is: it takes as input the
outputs of the previous layer and combines them linearly to generate the stimulus
that feeds the activation function. Typical activation functions are sigmoid, hyper-
bolic tangent, Rectified Linear Unit (ReLU)[25]. The output of each neuron is thus
a number that will be the input of the neurons at the following layer.

Deep learning means using an artificial neural network with several layers be-
tween the input and the output. A deep architecture is applied in fields such as
computer vision, speech recognition, bioinformatics, audio recognition, etc. Deep
learning is a class of machine learning algorithms that uses a cascade of multiple
layers of nonlinear processing units for feature extraction and transformation to
solve a particular task.

When we talk about learning, what that is referring to is getting the computer
to find a valid setting of weights and biases so that it will actually solve the problem
at hand. To know which connection weights must be modified and by how much
to perform correctly the desired classification task we must use an algorithm that
efficiently modifies the different connection weights to minimize the errors at the out-
put. Optimization algorithms used for training deep models differ from traditional
optimization algorithms in several ways. Machine learning usually acts indirectly.
In most machine learning scenarios, we care about some performance measure P ,
that is defined with respect to the test set and may also be intractable. We therefore
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Figure 2.6: Artificial Neuron and mapping function

optimize P only indirectly. We reduce a different cost function L(Θ) in the hope
that doing so will improve P . This is in contrast to pure optimization, where mini-
mizing L(Θ) is a goal in and of itself. Typically, the cost function can be written as
an average over the training set.

One algorithm that has hugely contributed to neural network fame is the itera-
tive backpropagation algorithm. The backpropagation algorithm is a gradient-based
search method which allows finding a (local) minimum of the loss (or cost) function
that one wants to minimize. It works in three phases. In the forward propagation
phase, the input propagates through the network to produce an output that differs
from the actual target value by a quantity defined by the loss function. This error is
back-propagated through the network to the first hidden layer and a weight updating
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phase is now performed, aiming at minimizing the cost function. The backpropaga-
tion algorithm is iterated up to convergence. The convergence velocity depends on
the (1) the complexity of the considered classification problem (I/O relationship),
(2) complexity of the approximating function (i.e. number of weights and biases,
number of hidden layers) and (3) value of the learning rate, a parameter that can
be fixed or adaptively changed and indicates at which pace weights are updated.

Three different weight updating (training) strategies could be adopted: (1) train-
ing by pattern: for every observation, estimate the errors and update weights (one
example at a time is used) (2) batch training: optimization algorithms that use the
entire training set are called batch or deterministic methods because they process
all the training samples (3) stochastic (mini-batch) training: in Stochastic Gradient
Descent (SDG), each parameter update is computed with respect to few training
samples (the choice of the training samples introduces randomness), by subtracting
the gradient of the loss with respect to the parameter, scaled by the learning rate.
Stochastic optimization is preferred since (1) the algorithm converges much faster
in terms of total computation if they are allowed to rapidly compute approximate
estimates of the gradient rather than slowly computing the exact gradient (2) there
might be redundancy in the training set and we may find large number of examples
that all make very similar contributions to the gradient.

However, SDG can be sometimes slow and SDG variants have been used to
achieve state of the art performance. One of the most popular backpropagation
algorithms is Adam. The name Adam derives from the phrase “adaptive moments”.
It is an adaptive learning rate optimization algorithm and it is generally regarded
as being fairly robust to the choice of hyperparameters.

A deep learning models is usually trained with many epochs. One epoch is when
an entire dataset, divided into several smaller batches, is passed forward and back-
ward through the neural network once. The number of iterations is defined as the
number of batches needed to complete one epoch. More epochs are necessary because
the optimization methods are all iterative processes and updating the parameters
with one single pass is not enough and it could lead to underfitting. However, it is
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important not to tune excessively the network on the training samples so as to leave
room for a correct classification of novel patterns.

Figure 2.7: Visualization of underfitting, optimal fitting and overfitting

2.4.2 Deep Learning for Recommender Systems

Deep Learning has become a buzzword after a 2006 paper by Hinton[16], which
described how to train deep neural networks using unsupervised layer-wise train-
ing (Deep Belief Networks). Since then, there has been an immense amount of
research in the area with impressive results in areas such as computer vision, speech
recognition and natural language processing. Some researchers, and more generally
Deep Learning enthusiasts, believe that Deep Learning is the technology that will
bring us closer to the definition of General AI[28]. While waiting for General AI to
become a reality, a lot of investments has been put in place to industrialize Deep
Learning technology in other areas, including solving the Recommendation Problem.
However, is there a need for DL-based Recommender Systems?

From the previous definition of Deep Learning, it makes sense to adopt DL-based
algorithms when the problem is complex enough not to be easily solved by statistical
or ML-based approaches, or when the data available for learning is big enough to
allow exploitation via complex algorithms.
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When considering standard Collaborative Filtering Recommender Systems, one
might think that ML models are developed enough to be able to face the Recommen-
dation Problem without any particular issues - and one would be definitely correct
in its statement. However, along with the enormous production of data in the most
recent years, the variety of possible combinations in a recommendation problem has
increased exponentially, making the problem way more complex than it was before,
where virtually unlimited catalogs and ever-growing user bases were not a reality
that every company had to face. Machine Learning algorithms that could easily
generalize the problem at hand in reasonable computational time, could not han-
dle the vastity and diversity of databases of giants like Netflix or Amazon.com or
Spotify.

Contrary to traditional Machine Learning approaches, deep neural networks are
capable of modelling the non-linearity in data with nonlinear activations such as
relu, sigmoid, tanh, etc. This property makes it possible to capture the complex
and intricate user item interaction patterns, that were previously missed or needed
a manual feature extraction by a domain expert.

Deep neural networks proves to be even more useful in representation learning
in recommendation models. Even though abundant data is available in real-world
applications in the form of descriptive information about items and users, it is very
difficult to be exploited by machines, due to its nature of being expressed in a way
which is closer to our natural world. Making use of this information provides a way
to enhance our understanding of items and users, therefore resulting in a better
recommender. Similar results could be obtained in a traditional ML approach, but
would require once again more manual and complex feature engineering, provided
by a domain expert and that needs to be included in a pre-processing pipeline.

Over the last years, there have been multiple publications in the area of deep
learning for recommender systems. These works can be grouped into the following
categories:

• Feed-forward Networks and Autoencoders[33] [42], methods used mainly

23



2 – State of the Art

for Collaborative Filtering, since it allows the implementation of a Deep Learn-
ing equivalent of the Matrix Factorization previously described. One of such
algorithms is Deep Factorization Machines[10].

• Embedding methods, which tries to learn different representations called
embeddings of users, items[40] or both, in order to use them directly to pro-
vide recommendations or to use as input to other supervised learning methods
that provide recommendations. While Matrix Factorization or Singular Value
Decomposition (SVD) can be seen as an Embedding Method, 2Vec-type em-
bedding techniques[26] can prove more effective and flexible.

• Deep Feature extraction, methods that focus on using deep networks to
perform feature extraction on the item features. These features are then either
used in a hybrid collaborative filtering recommender system[13] or often the
feature extractor is part of a larger deep architecture that also models other
aspects of the data.

• Session-based Recommendation with Recurrent Neural Networks,
methods leveraging the concept of “sessions” of user interactions, such as mu-
sic listened consecutively, binge watching seasons of a series, shopping cart
filling. The best performing models for sequential data are Recurrent Neural
Networks, more in specific GRUs are used in these models as they seem to
perform equivalently to LSTMs with a slightly less memory usage[14][15].

In this work, a few of these solutions to the Recommendation Problem have been
re-implemented in a popular Deep Learning framework, Keras, comparing the results
obtained on the different datasets. Due to the number of different algorithms tested
during the redaction of this work, description of the Neural Network architectures
as well as other technical details have been collected and included in the following
section.
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2.4.3 Deep Learning for Embedding Learning

Embedding Learning has been introduced in section 2.4.2 of this work as a possible
application of Deep Learning to understand the representation of complex structures
in a more computable way. However, it would be best to dive further into the topic,
by providing technical details and possibly an example.

Let’s consider the case of a document. Analysing a document can be very chal-
lenging, for both size and structure. To do so, two different levels of representations
are being used: document-based representation, in which the whole document is rep-
resented as a vector, and word-based representation, in which a word is represented
as a vector.

A document can be considered as a bag of words[45]: the document can be rep-
resented by a vector made of the number of occurrences of the word w in document
d, removing stopwords and applying other filters where necessary. The algorithm is
pretty straightforward, consisting of loops over the different documents, and build-
ing a map of accepted words and their occurrences in the corpus. The corpus then
becomes a N x M term-document matrix, where N is the size of the vocabulary and
M is the size of the corpus; each cell represents the frequency of a word (column) in
a document (row). The term-document matrix can be very big for bigger datasets
with multiple and big documents, and requires to loop over the entire document set
while looking for every word in the map; moreover, it does not capture the order of
the terms in the document.

Another way to represent a document is TF-IDF [30] (term frequency - Inverse
Document Frequency). TF-IDF is a statistical measure used to evaluate the rep-
resentativeness of a word for a particular document in a collection of documents:
TF-IDF of a word gives a product of how frequent this word is in the document
multiplied by how unique the word is with respect to the entire corpus of docu-
ments. Words in the document with a high TF-IDF score occur frequently in the
document but not in all of the documents, therefore providing the most information
about that specific document. This value grows proportionally to the occurrences
of the word in the document (TF) but its effect is countered by the occurrences of
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the word in every other document (IDF). TF-IDF is computed as:

TF − IDF (w, d) = TFw,d ∗ log2(M/DFw)

where M is the number of documents, TF is the Term Frequency, either number of
occurrences of w in d or boolean value of presence, and DF is Document Frequency,
number of documents with the word w.

Word can be represented as vectors as well. The idea behind all of the word
embeddings is to capture with them as much of the semantical, morphological, con-
text, hierarchical, etc. information as possible. Word Embedding[26] is, in other
words, the vector used to represent the word, which embeds the semantic link be-
tween words and is computed from the word context. This is done by associating
a numeric vector to every word in a dictionary, such that the distance (e.g. L2
distance or more commonly cosine distance) between any two vectors would capture
part of the semantic relationship between the two associated words. The geometric
space formed by these vectors is called an embedding space. This can be done by
training a Neural Network on a big dataset, generating a dense vector v for each
word w from the vocabulary V of the dataset.

For example, two words occurring in a same context have high semantic proxim-
ity, therefore their vector will be similar. This vectorial representation proves to be
very useful for similarity computation, just by computing simple vectorial operations
in the embedding space:

Two possible Neural Network architectures have been proposed for word embed-
dings computation:

• CBOW (Continuous Bag Of Words): learns how to predict a word ac-
cording to its context, so it tries to assign weights so that given the context
as input, it predicts the target word; CBOW is better for smaller datasets, as
it is more resilient to distributional information by treating an entire context
as one observation;

• Skip-Gram: it’s the opposite of CBOW, meaning that it learns how to predict
a context given a word, so it tries to assign weights so that given the word as
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Figure 2.8: Distance between word vectors

input, it predicts the context; by treating each target-context pair as a new
observation, Skip-Gram is better for larger datasets.

It is possible to find pre-trained embeddings online, trained by multiple GPU-
powered nodes in a cluster on huge datasets. Examples freely available online are
GloVe, trained on Wikipedia texts, different crawls of the Internet and Twitter
tweets, and Facebook FastText, which provides pre-trained word embeddings for
157 different languages. For the sake of experimentation, in this paper the GloVe
word embeddings have been used for NLP operations.

In order to quantify similarity between vectorized items, it is possible to use
functions borrowed from statistics and related fields, among which the most com-
monly used cosime similarity, calculated as the dot product between two vectors
divided by their magnitudes.

sim(A, B) = cos(θ) = A · B

||A||||B||

Embedding vectors pointing in the same direction will receive high cosine similarity
scores, while vectors in opposite directions will receive a very low similarity score.
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Chapter 3

Deep Recommendation Systems

3.1 The Technique

3.1.1 The MovieLens Dataset

In this section of the work, the proposed algorithms are analyzed, discussed, im-
plemented and tested on multiple variations of the MovieLens dataset. These
datasets are a product of member activity in the MovieLens movie recommendation
system, an active research platform led by GroupLens Research, a human-computer
interaction research lab at the University of Minnesota, that has hosted many ex-
periments since its launch in 1997. The MovieLens datasets provide the rating data
sets collected from MovieLens website for research, counting 26,000,000 ratings and
750,000 tags applied to 45,000 movies by 270,000 users in its most complete form,
the dataset MovieLens-Latest. The MovieLens datasets are used widely used in ed-
ucation, research, and industry, for running experiments on recommender systems,
online communities, mobile and ubiquitious technologies, digital libraries, local ge-
ographic information systems[12].

The dataset files are written as comma-separated values files with a single header
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row, encoded in UTF-8. Columns that contain commas (,) are escaped using double-
quotes (").

The main file is ratings.csv. Each line of this file represents one rating of one
movie by one user, with format < userId, movieId, rating, timestamp > . The lines
within this file are ordered first by userId, then, within user, by movieId. Ratings are
made on a 5-star scale, with half-star increments (0.5 stars - 5.0 stars). Timestamps
represent seconds since midnight Coordinated Universal Time (UTC) of January 1,
1970.

Movie information is contained in the file movies.csv. Each line of this file rep-
resents one movie, with format < movieId, title, genres >. The movieId feature is
consistent with the one in ratings.csv, while the titles are entered manually or im-
ported from https://www.themoviedb.org/, and include the year of release in paren-
theses. The genres feature is a categorical feature which can assume up to 5 among
19 different values (Action, Adventure, Animation, Children, Comedy, Crime, Docu-
mentary, Drama, Fantasy, Film-Noir, Horror, Musical, Mystery, Romance, Sci-Fi,
Thriller, War, Western, (no genres listed)).

Movie identifiers are also contained in the file links.csv. Each line of this file
represents one movie, and contains matching movie identifiers that can be used to
link to other sources of movie data on other web portals such as IMDB and TMBD,
both well known data sources for movie-related information.

3.1.2 Implementation

The MovieLens dataset, in its most complete form, counts more than 20M lines.
Even when taking into account just the ratings file, which only has three features
(namely, < userId, movieId, timestamp >), the algorithms proved to be computa-
tionally intensive, taking longer time than needed when run on pure CPU of a Mac-
book Pro 2017. That’s why, for most of the computations on the bigger datasets, a
cloud-based instance has been used, provided by Amazon SageMaker.

Amazon SageMaker is a fully-managed platform enabling developers and data
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scientists to quickly and easily build, train, and deploy machine learning (ML) mod-
els at any scale. Amazon SageMaker helps to speed ML adoption with modules that
can be used together or separately in the build, train, and deployment processes
allowing scaling resources up and down dynamically, according to user needs. Ama-
zon SageMaker supports most major frameworks including TensorFlow, MXNet,
Keras, Gluon, PyTorch, Caffe2, Chainer, Torch, and Microsoft Cognitive Toolkit
(CNTK). Moreover, it is pre-configured and optimized for CUDA 9 library support
for NVIDIA GPUs. For the most compute-intensive tasks, instances of the ml.p3
family have been used, in particular ml.p3.16xlarge instances, with 64 vCPUs, 8
NVIDIA Tesla V100 GPUs and 128 GB of RAM. Furthermore, SageMaker exposes
to the user a scientist-friendly Jupyter Notebook, a very common tool for data
exploration as well as model testing.

SageMaker support, among others, TensorFlow. TensorFlow is an open-source
software library for dataflow and differentiable programming across a range of tasks.
It is currently one of the most used library for neural network development, despite
the recent spike in attention towards PyTorch, especially for computer vision tasks.
However, TensorFlow API is not what one would define as high-level, or easily read-
able by a human. Although it is without a doubt very powerful and versatile, the
learning curve for this library is steep and discourages many deep learning begin-
ners. In order to make this work available and understandable by the widest user
base, all of the algorithms have been implemented with the Keras framework, with
Tensorflow backend. Keras is a high-level neural networks API, written in Python
and capable of running on top of TensorFlow, CNTK, or Theano. Keras was devel-
oped with a focus on enabling fast experimentation since, according to its creator,
"being able to go from idea to result with the least possible delay is key to doing
good research". Moreover, Keras runs seamlessly on CPU and GPU, allowing a
very fast prototyping on a less powerful machine such as the MacBook, as well as
deployment on the p3.16xlarge, changing but one line of code. Keras has proved to
be very versatile and a key choice in order to achieve certain levels of modularity
and extensibility of some of the algorithms proposed in 3.4.
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Hyperparameters of the training jobs are shared among algorithms and coded
into an higher level class. They include:

• 20% of the dataset used for testing

• 25% of the training dataset used for validation

• 4096 instances per batch

• 250 epochs, with EarlyStopping set to 5 epochs

• latent features for the embeddings set to 64

All of the algorithms have been measured with MAE (Mean Average Error)
and RMSE (Root Mean Squared Error) rounded to the third decimal number,
via the implementation provided by the scikit-learn package, one of the most used
libraries for Data Science on Python.

Mean absolute error (MAE) is a measure of difference between two continuous
variables. MAE is the average absolute difference between the obtained output and
the target output. It is computed as:

MAE = 1
N

N∑
i=1

(pui − rui)

where pui is the predicted rating for user u and item i, rui the actual rating and
N the number of predictions.

Root Mean Squared Error (RMSE) is a statistical metric that represent the
standard deviation between a set of estimated values to the actual values. In rec-
ommender systems it has been used to measure how far from the true values a set
of predictions was[34]. The RMSE is calculated as follows:

RMSE =

√ 1
N

N∑
i=1

(pui − rui)2
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where pui is the predicted rating for user u and item i, rui the actual rating and
N the number of predictions. Both evaluation metrics have been used for the Netflix
prize as well as for a lot of research on the topic of recommender systems.

3.2 Collaborative Filtering

3.2.1 Deep Matrix Factorization

The first algorithm proposed in this work and implemented with the Keras frame-
work is the Deep Learning interpretation of the Factorization Machines proposed in
[31]. In this paper, the author presents a traditional ML approach to the recom-
mendation problem, which aims to learn feature interactions for recommendation. A
factorization machine is defined as a general-purpose supervised learning algorithm
that is designed to capture interactions between features within high dimensional
sparse datasets.

A factorization machine model estimates a function ŷ from a feature set xi to
a target domain, real-valued for regression and binary for classification. The fac-
torization machine model uses a factorized parametrization to capture the pairwise
feature interactions. A mathematical definition is the following:

y = w0 +
∑

i

wixi +
∑

i

∑
j>i

< vi, vj > xixj

where the w0 term represents the global bias, the wi linear terms model the
strength of the i-th variable, the < vi, vj > factorization terms model the pairwise
interaction between the i-th and j-th variable. The global bias and linear terms
are the same as in a linear model. The pairwise feature interactions are modeled
in the third term as the inner product of the corresponding factors learned for each
feature.

The factorization terms are therefore real-valued vectors of variables, which pair-
wise interaction is used to learn global interactions in the model, by means of an
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inner product operation.
Given the previous definition of the recommendation problem in Section 2.1,

it is correct to assume that most of the time the source of truth will be a con-
sumption/rating dataset formed by a collection of < user, item, rating > tuples.
According to the original implementation in the Factorization Machine paper, the
training data should be structured as one-hot encoded vectors. One-hot encoding
means transforming categorical features in multiple binary features. For examples,
a set of users U = [A, B, C] becomes:

[
A B C

]
=

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦
However, embeddings are another effective way of encoding real values to a con-

strained space of values, as discussed in a previous section of this work. Embeddings
are a fully connected layer that projects the sparse representation to a dense vector,
which can be used as the latent vector for user or item. It is therefore possible to use
Keras Embedding layer to reduce the dimensionality of the sparse data generated
by learning a latent space representation of the user-item interaction by comput-
ing the inner product (Keras Dot Layer) of the obtained embeddings and finally a
Dense layer composed of one neuron with activation function set to ReLu, since the
value to be predicted is real, in the range [1, 5]. Keras Embedding layers works by
encoding positive integers to dense vectors of fixed size; this proves extremely useful
with our definition of recommendation problem, since the rating dataset is already
in the form of triplets < user, item, rating > where user and item are integers,
which can be considered as the index in a one-hot encoded vector. The proposed
NN architecture would look like in Figure 3.1.

In the DeepMF architecture proposed above, no real constraints have been given
to the network regarding how to learn embeddings from the input data. How-
ever, some research[20] have shown that applying a non-negativity constraint to
the matrix factorization problem, and in this case to the learning of embeddings,
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Figure 3.1: Keras DeepMF model plotted in Jupyter Notebook

proves to be extremely useful and leads to improved results. Moreover, non-negative
matrix factorization popularity is also thanks to its ability to automatically ex-
tract sparse and easily interpretable factors. Successful application to non-negative
matrix factorization include image processing, text mining, computational biology,
clustering, music analysis, community detection, and most importantly collaborative
filtering[24]. While with the traditional ML approach a completely new algorithm
is needed to implement non-negativity in the factorization, for example the NMF
algorithm proposed in the sklearn.decomposition library, including this constraint
in Keras is as easy as changing a parameter in the Embedding layer. Therefore the
architecture does not change with respect to the one proposed previously, and the
results are directly comparable.

The algorithm DeepMF, without the non-negativity constraint, performed a nice
MAE of 0.726 and RMSE of 0.951 (Figure 3.3). The same algorithm, with the non-
negativity constraint enabled, performed improved evaluation metrics, with MAE
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Figure 3.2: Keras DeepMF loss plotted over 100 epochs

of 0.69 and RMSE of 0.893 (Figure 3.3).

3.2.2 DeepDenseNet

Matrix Factorization combines the learnt Embeddings via the inner product (or
Dot product), learning the pairwise interaction between variables. Nevertheless, the
inner product is a linear operation, which might cause missing some some of the
non-linear interactions between the < user, item > pairs. In order to learn high-
order non-linear feature interactions it is possible to use a deep feed-forward neural
network (a Deep Dense Network[43]). The user embedding and item embedding
are then fed into a multi-layer neural architecture to map the latent vectors to
prediction scores. Each layer of the neural CF layers can be customized to discover
certain latent structures of user–item interactions. The dimension of the last hidden
layer X determines the model’s capability. The final output layer is the predicted
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Figure 3.3: Keras Non-negative DeepMF loss plotted over 100 epochs

score ŷui, and training is performed by minimizing the mean average error between
ŷui and its target value yui. With three hidden layers in the dense section of the
architecture, ignoring the optional dropout layers, the new architecture would look
like as the one illustrated in Figure 3.4.

The algorithm DeepDenseNet behaves quite differently from the DeepMF. The
deep nature of its architecture allows it to converge to a minimum (possibly the
global one) in way less epochs with respect to the DeepMF algorithm. This can be
caused by an excessive number of neurons per layer, causing it to overfit. The algo-
rithm scores results comparable to the previous algorithm, with a MAE of 0.684 and
RMSE of 0.91. Comparable results with a similar model loss graph were obtained
with the non-negativity constraint enabled, achieving a MAE of 0.686 and RMSE
of 0.915.
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Figure 3.4: Keras DeepDenseNet model plotted in Jupyter Notebook

3.2.3 DeepWideNet

The first two proposed algorithms, DeepFM and DeepDenseNet, can be used at the
same time to try and provide better insight from the data. The idea is similar to
the one proposed in [10]. The goal of the presented paper is to propose a Neural
Network which maximizes CTR, Click-Through Rate, for recommender systems.
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Figure 3.5: Keras DeepDenseNet loss plotted over 50 epochs

CTR is defined as a ratio of number of clicks to number of impressions of an item
for a query or on a page[41].

A very similar approach can result valid in the Recommender Systems world
where, instead of optimizing the probability of a click-through (computed via a
final layer with a sigmoid as activation function), one can try to predict a rating
as in a standard regression problem. In addition, such an architecture is easily
extendable and parameterizable to include other features apart from the tuple <

userId, movieId > in order to extend the Collaborative filtering algorithm with
content information (more on this in the Hybrid Recommender Systems section).

The proposed architecture (Figure 3.6) has two components. The “Wide” com-
ponent is the DeepMF architecture: it computes the inner product of the the
computed embedding for user/item. The “Deep” component is instead the Deep-
DenseNet: after concatenating the embeddings, it runs them through a deep dense
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network. Finally, the two results are concatenated and run through a single 1-neuron
layer to compute the final result of the regression. The two components belong to
the same network so that the same embeddings are used during the training process.

The results obtained from this more complex network are better, as expected.
The network reaches convergence much quicker than the others tested previously
(figure 3.7), while achieving better metrics with respect to the single components:
MAE of 0.684 and RMSE of 0.908. Similar tests have been performed by including
a Dense layer right after the Dot product layer in the Wide component, however
results did not improve at all and in some cases even resulted in worse performances.

A variation to the proposed DeepWideNet is the one proposed in figure 3.8.
Here, instead of feeding to the Wide component the Dot product between the user
and item embedding, the two embeddings are concatenated along the smaller axis
and directly forwarded to the final Dense layer, which computes the regression for
the rating.

The proposed network performs very similarly to the previous DeepWideNet
model (figure 3.9), with MAE of 0.696 and RMSE of 0.924 .

3.3 Content-based Recommendation

As presented in Section 2.4.2 and 2.4.3 of this work, Deep Learning proves to be
extremely useful for Embedding Learning, allowing to represent and exploit un-
structured data as well as categorical (or, more generally, non scalar) features with
a vector of scalar values data for interaction learning. While continuous values are
easy enough to include in the network, due to their scalar nature, categorical or
even long textual features can prove to be quite more difficult to include without
the proper encoding. Scalar values can be directly digested by feed-forward neural
network and treated as input by the first layer. Examples of scalar features include
age, length of the movie, year of release of the movie, etc. Categorical features, such
as user profession, movie genre, movie category, have to be encoded before being fed
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Figure 3.6: Proposed architecture for DeepWideNet

to the embedding layer. Finally, a lot of information can be extracted from unstruc-
tured data such as review text, movie summary, user description. This textual data
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Figure 3.7: DeepWideNet Loss plot

must be processed before being fed to a deep neural network, extracting as much
knowledge and information as possible.

For the following implementation, once again the tests have been done on the
MovieLens dataset. Although the latest version of the MovieLens dataset does not
provide any additional information regarding the user base, probably due to privacy
concerns, multiple features regarding the movies are available and have been used to
test the effectiveness of the implementations. In particular, the MovieLens dataset
includes a mapping between movieId, the identifier present in the ratings file, and
imdbId, the identifier usable in "The Open Movie Database", which provides RESTful
web service to obtain movie information as well as artwork. By doing so, it is possible
to obtain most of the unstructured features that will be used for demonstration in
this section of the work as well as in Section 3.4 with the Hybrid Recommendation
System.

This work will foucs mainly on Recommendation via Text, using information
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Figure 3.8: Proposed architecture for a variation of DeepWideNet
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Figure 3.9: DeepWideNet variation Loss plot

such as reviews, movie summaries, description, etc. pre-processed with GloVe em-
beddings (freely available online); another possible approach is Recommendation
via Artwork, using high-level features extracted from a pre-trained Deep Neu-
ral Network (VGG16). This second approach has been tested with the MovieLens
Latest Small dataset, but it lead to sub-optimal results and very long runtime, es-
pecially on a MacBook Pro without dedicated GPU. Further analysis of the effect
of artwork-based recommendation, especially for products to be sold (such as the
products from BeerAdvocate dataset) is one of the possible Future Works presented
in Chapter 5 of this work.

3.3.1 Recommendation via Text

One of the most interesting piece of information available in the Open Movie Database
is the overview of the movie. It is generally a 3 to 5 lines summary of the movie,
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composed of multiple sentences. It is possible to transform the overviews into a
Term Frequency-Inverse Document Frequency (TF-IDF) representation. The TF-
IDF vectorizer in scikit-learn can be used to extract the most important words from
the overview, by a proper use of the transform and inverse_transform primitives of
the TF-IDF vectorizer class. All of the extracted words with TF-IDF form the vo-
cabulary. Once the most representative words are extracted from every overview,
it is possible to obtain the embeddings from the GloVe dataset associated to the
vocabulary, building an embedding matrix. This embedding matrix can then be
used in Keras Embedding layer as weight of the layer itself, setting the parameter
Trainable of the layer itself to False. By setting this property, the weights will not
be updated during the training process. A neural network built as such will output
directly the GloVe Embedding from this layer during inference, allowing them to be
used in combination with other layers for more complex architectures.

CBF-Average

The first architecture proposed according to the above described approach is CBF-
A illustrated in Figure 3.10. After having extracted with TF-IDF a set of words
of length n defined at compilation time, which best represent the summary of the
movie, these words are encoded and their GloVe embedding are extracted with the
Keras Embedding layer. Since every word is represented by an m-dimensional array
of scalar values, the Embedding layer returns a mxn matrix of scalar values; by
computing the average of these values along the first axis, it is possible to obtain an
n-dimensional array representing the "sense" of the overview matrix. The obtained
features, along with the Embedding for the User, is finally fed to a shorter version of
the DeepDenseNet proposed in Section 3.2.2, which terminates in a final layer with
a ReLu activation function. The performances are definitely acceptable, although
slightly worse than those obtained with Collaborative Filtering techniques: MAE of
0.719 and RMSE of 0.969.
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Figure 3.10: Proposed Architecture for CBF-Average

AMAR

Another proposed architecture for Content-Based Filtering is AMAR, also known
as Ask Me Any Rating[35]. This deep neural network exploits Recurrent Neural
Networks (RNNs) to jointly learn a representation for user preferences and items to
be recommended. The architecture is illustrated in Figure 3.12. Embedding of the
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Figure 3.11: CBF-Average Loss plot

words for the item description is fed through an LSTM network which generates a
user-defined latent representation for each of them. Once the word embedding is
obtained by the LSTM, a mean pooling layer averages the latent representations
to create an item embedding. The original implementation by Suglia and his team
includes a Logistic Regression output layer in order to predict whether an item can be
recommended to a user or not. In the Keras implementation presented in this work,
this final layer has been changed to a ReLu in order to solve the recommendation
problem as defined in Section 2.1. Although this Neural Network takes longer to
train, around 5 minutes (25 seconds per epoch, Figure 3.13) with respect to the 2
minutes of CBF-Average (6 second per epoch, Figure 3.11) proposed in Section 3.3.1,
the evaluation metrics are slightly better than those of CBF-A, scoring a MAE of
0.714 and a RMSE of 0.975.

This work proposes an additional variation to AMAR as proposed in [35]. Given
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Figure 3.12: Ask Me Any Rating - Keras implementation

the recent success on certain datasets with GRU units[21][39], an adaptation of
AMAR with GRU as Recurrent Neural Network has been tested. Although the
GRU variant performs much better with respect to the LSTM one, with MAE of
0.683 and RMSE of 0.904, the GRU AMAR takes about 5 times as long as the LSTM
AMAR, taking about 30 minutes to reach convergence in 83 epochs (22 seconds per
epoch, Figure 3.14).

3.4 Hybrid Recommendation

Summarizing the previously presented results, it is clear that, for the problem at
hand, Collaborative Filtering recommendation proves to be generally more effec-
tive, leading to relatively lower error. However, with new items/users (cold-start
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Figure 3.13: Ask Me Any Rating Loss plot

and early-rater problems), while Content-based approaches can provide some re-
sults, Collaborative Filtering algorithms fail completely, generating an Exception for
Out-of-Vector embedding. Researchers have shown that hybrid recommendation
systems can solve this problem, by combining the performances of collaborative fil-
tering and and the adaptability of content-based recommendation[1].

Both DeepWideNet, presented in Section 3.2.3, and AMAR, presented in Sec-
tion 3.3.1, are highly modular thanks to their Keras implementation, and therefore
can be easily extended to accept a variable number of encoded parameters, either
categorical or continuous, and use this information to enrich the prediction gener-
ated via standard collaborative-filtering methods, as well as generate one where the
CF method would normally fail. One-hot encoding has been chosen over label
encoding or others for encoding categorical features because of the “multi-class na-
ture” of some of the features: movies can belong to multiple genres for examples,
such as action/thriller or romantic/comedy movies. This characteristic can surely
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Figure 3.14: Ask Me Any Rating Loss plot - GRU Variation

be expressed with a new value in the encoding vocabulary, but that would cause
losing the information about belonging to two (or more) already existing genres.
On the negative side, a catalogue comprising hundreds of genres or categories would
imply some sparsity in the input to the network, which is anyhow more manageable
and preferable to the loss of information.

In particular, two extensions of the previously presented Deep neural networks
have been tested: the first one is an extension of DeepWideNet which includes cat-
egorical and textual information about the movies, extracted through the GloVe
embeddings freely available online (Section 3.4.1), while the other is a similar ex-
tension of AMAR, based on the LSTM variant (Section 3.4.2).
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3.4.1 DeepWideNet - NLP Extension

DeepWideNet, as proposed in Section 3.2.3, is a highly modular and scalable deep
neural network. It allows a variable number of input, each of fixed size, which are
fed to the Embedding layer of the network. Each feature generates its own embed-
ding, resulting in a nXm matrix of feature embedding, where m is the embedding
size chosen when defining the model, and n is the actual size of the input. For
exaple, with 19 different movie genres and each film belonging up to 5 genres, with
embedding size set to 50, the output of the embedding layer is a matrix [5x50].
Then, an average along the smaller axis is computed, obtaining the "average genre
of the movie". This feature is then fed to a concatenation layer, together with other
features processed in the same way. Long textual data is processed in a similar
fashion, extracting the GloVe embeddings and using them as weights in the Keras
Embedding layer. Finally, the concatenated tensor is fed to the deep and wide com-
ponents of the network, and a ReLu activation function is finally used to predict the
rating.

This extended version of DeepWideNet is illustrated in Figure 3.15. This deep
neural network generates the best results of the networks analysed up to this mo-
ment, scoring a MAE of 0.677 and a RMSE of 0.889 . The network converges slightly
slower than the standard DeepWideNet, however this behaviour is accepted due to
the increased number of features and parameters of the network.

3.4.2 AMAR Hybrid Recommender System

The architecture for AMAR proposed in Section 3.3.1 and implemented with the
Keras framework can be easily extended to process multiple encoded features. As
illustrated in Figure 3.17, the HRS of the AMAR architecture has been modularized
and extended to include other features provided in the MovieLens dataset, namely
the movie title, the movie genres, and the movie overview. In order to keep the
information obtained with the Collaborative Filtering approach, the movieId feature
has been also included. The same approach of averaging the result of the Embedding
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Figure 3.15: DeepWideNet - NLP Extension

layer on the same feature has been applied. LSTM is the chosen Recurrent Neural
Network to process the the Embedded movie summary. This architecture of Deep
Neural Network performs very similarly with respect to the extended DeepWideNet
presented in the previous section, still outperforming the respective CF and CBF
counterparts: AMAR HRS scores a MAE of 0.68 and a RMSE of 0.9 (Figure 3.18).
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Figure 3.16: DeepWideNet - NLP Extension - Plot Loss

Figure 3.17: AMAR HRS
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Figure 3.18: AMAR HRS - Plot Loss
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Chapter 4

Results

This chapter analyzes the results obtained with the implementations discussed in
Chapter 3 on multiple datasets. Along with the previously presented MovieLens
Latest Small, several variations of the same MovieLens dataset have been used, in-
cluding ML-1M (1 million reviews), ML-10M (10 million reviews), ML-Latest (27
million reviews), as well as another classical dataset for recommendation systems
BeerAdvocate (approximaley 1 million reviews). Every datasset has been split ran-
domly for training, validation and testing, assigning 60% of the data to the training
dataset, 20% to the validation dataset, and 20% to the testing dataset. The results
presented are an average on multiple runs with different random seeds. The datasets
do not have correlated entries, therefore shuffling before splitting is a good practice
to ensure randomicity of the data during training.

Due to the lack of mapping file between movieId and imdbId for the datasets
ML-1M and ML-10M, the results provided are obtained only by extracting infor-
mation from the movie title and movie genres. Furthermore, for the BeerAdvocate
dataset, no textual review was provided, therefore the features used are mostly scalar
and categorical. All of the used datasets are freely available online.

As explained in section 3.1.2, the chosen measures as MAE and RMSE. These
are industry standard metrics to measure performance of recommender systems
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which solve the regression problem, with lower values representing a lower error in
predicting the actual rating of the tuple < user, movie >. For example, a MAE of
0.5 means that, on average, the predicted score will deviate from the real score of
±0.5.

Dataset DeepMF Non-Negative
DeepMF DeepDenseNet Non-Negative

DeepDenseNet
Movielens
Latest Small

0.726
0.951

0.69
0.893

0.684
0.911

0.686
0.915

ML-1M 0.702
0.898

0.739
0.949

0.724
0.938

0.721
0.922

ML-10M 0.637
0.833

0.634
0.833

0.664
0.875

0.664
0.879

ML-Latest 0.626
0.832

0.626
0.835

0.658
0.883

0.658
0.887

BeerAdv 0.53
0.746

0.472
0.632

0.458
0.63

0.454
0.626

Table 4.1: MAE and RMSE Results - Part 1

As shown by the results in Tables 4.1 and 4.2, hybrid recommender systems
prove to perform better than their collaborative filtering and content-based filtering
counterparts for most of the datasets analysed in this work. This demonstrates how
important it is to try and extract as much knowledge as possible from the given
data, leading to better results and/or shorter convergence times.

In particular, both DeepWideNet + NLP and AMAR + NLP show comparable
results across all the analysed datasets. Both algorithms have been trained and
tested five times against all five datasets. Although never stable on a given value,
MAE and RMSE showed a variance of less than ±3%, with the average value shown
in the Tables. Furthermore, the error values become smaller and smaller with big-
ger datasets. This is to be expected with a Deep Learning approach which, at the
expenses of greater computational time, it is capable of better understanding the
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Dataset DeepWideNet CBF-A AMAR DeepWideNet
+ NLP

AMAR
+ NLP

Movielens
Latest Small

0.684
0.908

0.719
0.969

0.714
0.975

0.677
0.889

0.68
0.9

ML-1M 0.697
0.898

0.732
0.958

0.727
0.964

0.689
0.879

0.693
0.89

ML-10M 0.627
0.83

0.659
0.886

0.654
0.891

0.62
0.812

0.618
0.81

ML-Latest 0.620
0.832

0.651
0.887

0.647
0.893

0.613
0.814

0.620
0.825

BeerAdv 0.474
0.633

0.498
0.675

0.492
0.679

0.45
0.622

0.443
0.617

Table 4.2: MAE and RMSE Results - Part 2

patterns of the dataset. The risk of incurring into overfitting is solved by imple-
menting an early stopping policy.
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Chapter 5

Conclusions and Future Work

5.1 Summary

The science of Recommender Systems is one which has been studied for many years,
engaging researchers all over the world. Those systems have been adding value for
many companies, allowing them to predict the future preferences of users based on
their previous interactions or their tastes.

In the literature, there are many different techniques to approach this prob-
lem, such as neighbourhood based, machine-learning based and matrix-factorization
based methods.

In this work, multiple deep neural network architectures have been proposed,
trying to solve the recommendation problem implementing the different techniques
presented in Section 2.2. All of the presented architectures have been developed
with the Keras framework for Deep Learning, with a Tensorflow backend, and eval-
uated on well-known datasets such as MovieLens with MAE and RMSE, two
of the most commonly used evaluation metrics for regression problems. For the
collaborative-filtering (CF) approach, the first proposed architecture is a more
traditional implementation of the matrix-factorization algorithm via Deep Learn-
ing, called DeepMF. DeepMF aims to learn feature interactions of higher order
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by computing the inner product of the embedded < userId, itemId > pair. This
method has proven to be generally very effective as well as fast to predict the rating
of an item, according to the history of the interactions with other users. A second
approach proposed is DeepDenseNet, which exploits deep feed-forward neural
network to learn high order non-linear interaction from the concatenation of the
embedded < userId, itemId > pair. With smaller datasets, DeepDenseNet achieves
better results comparing to DeepMF. Finally, the last CF algorithm proposed is
DeepWideNet, which combines the other two previously discussed algorithms,
trying to use both level of extracted information from the data. As expected, the
DeepWideNet implementation proves to be more effective comparing to the respec-
tive single components, achieving better results for both evaluation metrics. Another
way to solve the recommendation problem is to adopt Content-Based Filtering
algorithms. Two deep neural networks have been proposed to study this approach.
The first one is CBF-Average, which uses a GloVe embedding based representa-
tion of information extracted from textual data such as movie summary/overview.
The Average component of the proposed architecture is a Mean Pooling layer which
computes the average of the embedding of the words - producing something which
is comparable to an embedding of the whole given text. The second proposed ar-
chitecture is AMAR, or Ask Me Any Rating, an architecture proposed by [35] but
adapted to solve a regression problem (the prediction of the rating) instead of a
logistic regression one. AMAR exploits RNNs to learn a hidden state represen-
tation of the information extracted from textual data, then uses these extracted
features to predict the rating for a specific user. Combining the strengths of the two
is techniques, as well as overcoming the shortcomings of both, is the role of Hy-
brid Recommender Systems. It is possible to extend both DeepWideNet and
AMAR by including in the inputs embedded information from other categorical and
textual features, embedded and averaged just like with CBF-Average. These two
variants prove to perform better than their collaborative filtering and content-based
filtering counterparts for most of the datasets analysed in this work. Moreover,
this approach solves the problem of new items or users without previous interaction
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(cold-start problem), while keeping the information regarding previous interactions.

5.2 Future Works
This work mostly exploited NLP to extract additional features regarding both user
and item in the used datasets. However, NLP-based techniques are not the only way
to enrich existing information regarding user-item interaction. An interesting possi-
ble future research can be Recommendation via Artwork. Both DeepWideNet
and AMAR can be easily extended to include features extracted from the artwork
related to the product to be recommended. These features can be obtained through
the second to last layer of a VGG-16 architecture trained on the ImageNet dataset,
a state-of-the-art deep neural network used worldwide for image classification and
object detection, or through a purpose-built neural network. Although feature ex-
traction and neighbourhood definition of a movie given its artwork has been briefly
tested with the MovieLens Latest Small dataset, the lack of image data for other
datasets and sub-optimal results for the neighbourhood of movies in the MovieLens
dataset have led to quit further investigation of this approach in this work. In par-
ticular, this approach could potentially be very successful for products to be sold
(such as the products from BeerAdvocate dataset).

Another interesting approach which has not been analyzed in this work due to
partial lack of dataset are Deep Semantic Similarity Model or DSSM for short.
DSSM is a Deep Neural Network (DNN) used to model semantic similarity between
a pair of strings, but can be extended to any number of pairs of strings. Embedding
extracted with the methods described in this work can be considered as strings,
and therefore used as inputs for the DSSM. DSSM networks have proven to be very
effective and fast, and could be an interesting point for further research on the topic
of recommender systems.
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