
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Image raster to vector graphics: a
case study of a Robot based IoT
device able to manage physical

contents

Supervisor
prof.ssa Marina Indri

Candidate

Yuri Gaito

Scribit
Company Supervisor

dott. ing. Andrea Bulgarelli

April 2019

Contents

1 Introduction 4

1.1 Scribit . 6

1.1.1 Hardware and mechanics . 7

1.1.2 Software . 9

2 Background 11

2.1 The SVG format . 11

2.1.1 Coordinates system . 14

2.1.2 Basic shapes . 14

2.1.3 Irregular shapes: paths . 15

2.1.4 Style . 16

2.2 Gaussian Blur processing . 17

2.3 Clustering Algorithms . 18

2.3.1 K-means clustering . 19

2.3.2 Bisecting K-means . 21

2.3.3 Hierarchical clustering . 21

2.3.4 DBSCAN (Density-based Clustering) 23

2.3.5 Measures of Cluster Validity 23

2.4 Interpolation . 24

2.4.1 Linear interpolation . 25

2.4.2 Polynomial interpolation . 26

2.4.3 Quadratic spline interpolation 27

2.5 Edge contour representation . 30

2.5.1 Chain-code representation 30

2.5.2 Curve interpolation vs curve approximation 31

2.5.3 Least-square fit . 32

2.5.4 Robust regression fit . 33

2.5.5 Evaluating the goodness of fitting 34

2

3 Image rendering from any format to SVG format 36

3.1 Proposal . 36

3.2 Color Quantization . 39

3.2.1 Blur processing . 40

3.2.2 K-means clustering . 40

3.3 Layer Separation and Edge detection 42

3.4 Pathscan . 43

3.5 Interpolation . 47

3.6 Tracing and SVG coordinates generation 49

3.7 SVG - GCode conversion . 52

4 Results 54

4.1 Tests with SVG fill . 55

4.2 Tests without SVG fill . 63

4.3 Further tests: portraits and selfies 65

4.4 Benchmarking . 70

5 Conclusions 73

Bibliography 75

3

Chapter 1

Introduction

The idea of a vertical plotter is not new but has existed for a long time. One of
the first prototype was developed in 2001 by the VP Squared team from Cronell
University [1]. As mentioned in the official website, the basic idea is to use the
VP-space, a different way of representing space with respect to the Cartesian co-
ordinates system. This plotter uses two stepper motors and a keypad to control
the plotter; the marker is inserted in the centre of a small squared surface which is
supported by two cables. This project was a pioneer in this field and opened doors
to the implementation of new prototypes and artistic installations.

Nowadays, there is plenty of open source projects on the web to draw from, but
the basic structure is the same as the one introduced by the VP Squared team,
even if with some technological updates, i.e., keypad is replaced by different kinds
of keyboards, such as microcontrollers or single-board computer (e.g., Raspberry
Pi) to increase usability and improve functionalities.

In 2012, the first vertical plotter from Carlo Ratti Associati [2] presents this
approach, with small design changes required for the presentation of the OSARC
Manifesto (Open Source Architecture) [3].

In 2014, the prototype (both the software and the hardware part) is released as
the open source project Open Wall; it presents a new configuration by mounting
the two stepper motors inside the chassis attached to two pulleys, in which a cable is
wound, thus requiring the presence of only two nails at the ends of the wall to hang
up the plotter. The firmware is Arduino based and further software provides an
algorithm to convert vectorial files into NC1 instructions. Over the years, OpenWall
becomes the backbone of Scribit improving electronics, mechanics and adding new
features, such as new markers to support more colors, while the software remains
more or less the same.

Moreover, more or less all the prototypes of vertical plotters are able to draw
either on blackboards and canvases: in the first case it is possible to clean the black-
board and to rewrite it, in the second case the canvas can be used only once, it must
be replaced to rewrite. Scribit wants to overcome this problem and implements an

1Numerical Control is the automated control of machining tools by means of computers.

4

1 – Introduction

automated erasing system thanks to a ceramic disk that, with increasing temper-
ature, is able to evaporate a special water-based ink used in the stock markers
supplied with the starter kit of the robot.

The idea is to have a user-friendly product that allows any user to employ the
plotter without any prototyping skills. The aim is to extend the final target from
makers to common people, such as artists, designers etc., and to have a commercial
product.

This thesis is focused on a part of the front-end side of the software whose aim is
to render any image in any format to SVG files in order to support the back-end side
software, which expects as input only SVG files, making Scribit not very flexible.
The main objective is to create a general purpose rendering software to then move
on to a more specific goal: to use such a rendering process to get drawable SVG files,
i.e., files with clear, well defined and simple contours. The developed software is
JavaScript-based, a scripting object-oriented language widely used in Web, mobile
and server development. It is a very flexible and easy language, it is portable and
many frameworks, e.g., Angular and Ionic, are based on it or on a typed version of
it (TypeScript).

The main contribution of this thesis work, therefore, is the developed software,
which is based on a preliminary study phase. The rendering algorithms are part of
a branch of computer science called Computer vision.

“The goal of computer vision is to made useful decisions about real physical
objects and scenes based on sensed images”[4]. To make decisions about real objects,
it is necessary to build some descriptions or models of them from the image.

Computer vision’s critical issues are summarized as follows:

❼ Sensing: In which way are the images obtained? How do the images encode
information such as shape, illumination and spatial relationship?

❼ Encoded information: How are informations about the 3D world yield by
the images? How are objects identified?

❼ Representations: Which kind of representation should be used to store in-
formation, such as parts and properties, about the objects?

❼ Algorithms: Which are the approaches used to process the information to
obtain knowledge, and to built object from real world images?

These issues and others will be discussed in Chapter 2, which describes the
models, the algorithms and the representations studied and used for this thesis
work, i.e., all the theoretical knowledge needed to better understand the overall
work.

In particular, Section 2.1 shows which representation for the images is used,
Section 2.2 to Section 2.4 describe the different algorithms involved in the process,
and Section 2.5 introduces how information about contours is encoded.

Once the context and the tools are clear, Chapter 3 is aimed at describing in
detail the main contribution of this thesis work, in particular it is split in proposal
(Section 3.1) and implementation (Section 3.2 to Section 3.7).

5

1 – Introduction

Chapter 4 describes the tests that have been run to prove the validity of the
proposed solution. Different kinds of test are proposed to show different scenarios
and to highlight both the strength and the weakness of the proposal. At the very
end, a simple benchmarking analysis is shown.

Chapter 5 summarizes the results of this thesis work, and describes possible
future developments and improvements.

The following section describes the Scribit project and reports the new working
paradigm of the creative industry, prototyping and design thinking, showing the
functioning of the robot with particular attention to the software and the hardware.

1.1 Scribit

Scribit is the first vertical plotter robot in the world able to write and erase on any
vertical wall. The project was born at the MIT Senseable City Lab, thanks to the
intuition of the Turin director and architect Carlo Ratti and of the engineer Pietro
Leoni; the project was funded on KickStarter and IndieGogo with a crowdfunding
campaign that raised more than ✩2 million. The great interest in Scribit is due to
its ability to write and delete any content that does not depend on the format of the
files, nor even less from the surface: there are already several models of plotters and
vertical plotters that can be easily created starting from a programmable board like
the Arduino or ESP series, but the results are not comparable to the effectiveness
and versatility of Scribit, making it the best available vertical plotter.

Thanks to its technology, Scribit can safely draw, erase and re-draw new images
an infinite number of times and any vertical surface is a game: whiteboard, glass
or standard plaster. Scribit can operate 4 colors at a time, and with 15 pen colors,
the possibilities are endless. It is very easy to install: all that is needed are two
nails and a power plug. Scribit can place itself at any point with great precision
and uses markers to reproduce any type of content. Scribit is very easy to use:
users can select or drop any image, customize their content, and then it draws. It
uses G-code: a programming language that allows humans to control automated
machine tools. In the following sections the structure and the general functioning
of Scribit are described.

6

1 – Introduction

1.1.1 Hardware and mechanics

Scribit is an almost circular shaped robot and it consists of four main components:
the chassis, the drum, two stepper motors and the actual hardware. The mag-
nesium chassis has a diameter of 20 cm and it is drilled both at the bottom for
the power cable and at the centre to accommodate the drum and its motor (Figure
1.1 - left). Furthermore, it has a hole on the back-end side for the ceramic disk
in charge of erasing, and it is bend on both sides, on the upper part, to hold the
stepper motors (Figure 1.1 - right).

Figure 1.1. Scribit front and back details. (source: Scribit)

The two stepper motors are actually hosted on the two pulleys placed on both
sides of the chassis, and in each of them a cable is rolled. Cables are used to fix
Scribit to the wall with two nails, and they go through a cord tensioner whose
purpose is to keep the cable stretched and prevent it from breaking, but also to
keep Scribit as close as possible to the surface to avoid undesired movements during
drawing activities.

The central drum holds the 4 markers that can be directly inserted if they have
the correct size. In fact, each marker is hold by a penholder with an o-ring2 to
decide the diameter of the maker. It is possible to unscrew the penholder and
replace the o-ring inside it to accommodate any other lower-sized marker. The
central drum is also called desmodromic, since it is based on the stroke control
mechanism both in opening and closing; obviously, this mechanism does not deal
with managing the combustion of fuel as it does in desmo engines, rather it simul-
taneously assists the rotation of the drum with the insertion and the engagement

2An o-ring is a loop of elastomer with a round cross-section, designed to be seated in a groove
and compressed during assembly between two or more parts, creating a seal at the interface.

7

https://scribit.design/

1 – Introduction

of the markers. The desmodromic and deletion mechanisms have been patented by
the company. The holed surface containing markers is actually a toothed wheel: it
acts as the rack of a rack-pinion system where the pinion is controlled by the shaft
of the central stepper motor, which allows rotations and therefore the functioning
of the desmodromic system. A detailed view of the components is shown in Figure
1.2.

Figure 1.2. Scribit components’ details. (source: Scribit)

The ceramic heater has a diameter of 3 cm, and it is hold by a cylinder made
of insulating material that protrudes from the plotter of just 2 mm, to prevent
the ceramic to directly touch the wall. It is used only during erasing procedures,
according to precise rules, and it reaches very high temperature (̃150➦) to be sure
that erasing is successful, despite weather conditions that may alter the temperature
of the wall. The insulating material is used for heat dissipation to protect both the
chassis and the electronics. At the moment, erasing routine can be applied only to
normal stuccoed wall, usage on other kinds of surface is not recommended.

The main electronic board is on the upper part of the chassis, far from the
ceramic heater. It is customized on Scribit’s needs both in shape and composition.
It is based on two microprocessors: a SAMD (Arduino-based) used to drive the
plotter and all its components through Marlin firmware3 and an ESP32, used for
connectivity utilities and to control the status LED, integrated on the board and
visible from the outside, on the back. This LED is used as a reset button, too.

3Marlin is a open source firmware which runs on the 3D printer’s control board and manages
all of the machine’s real-time activities including movement through the stepper drivers, heaters,
sensors, lights, bed levelling, LCD displays and buttons.

8

https://scribit.design/

1 – Introduction

1.1.2 Software

Scribit is basically a vertical plotter and the whole process is managed through
a mobile application. The app is available either for Android and iOS devices;
and it is actually published both on Play Store and Apple Store. This is because
one of Scribit’s objectives is to be user-friendly, easily accessible and for everyone.
Nowadays with the smartphone it is possible to search, share and create contents,
but also to control IoT devices both remotely and locally.

Scribit is a server-based IoT device, and users can both use pre-defined or built-
in drawings, or create new contents accordingly to their creativity. Users can also
link their personal accounts to multiple Scribit installations, potentially everywhere
in the world. They can control each linked Scribit by means of the app.

On the app it is possible to view tutorials, and to read hints, e.g., for the
installation process. To use Scribit users must subscribe and create their personal
account on the app, and then they can link the robot(s) to their profiles through
a pairing process. It is very common in IoT universe: Scribit generates its own
access point and the user inserts its owns credentials. The communication is on
local network, and once pairing is completed the robot is ready to be used.

After installation, calibration is needed: the user chooses the type of the wall
(stuccoed, whiteboard or glass) and sets its width, then Scribit will move from the
centre of the wall making movements aimed at understanding, given the inclination
of the plotter, its position within the surface. At the end of the process it will go
to the lower left corner of the surface.

Now that Scribit is really ready to be used, the user can access the app and select
a design or a widget to print on the wall: except from the built-in drawings, it is
possible to customize dynamic templates. For example, it is possible to print the
daily weather forecast or for a week, the last 3 tweets published by a given user or
linked to a specific hashtag, write text to be printed choosing font and dimension,
or convert raster image into vectorial files (which is the focus of this thesis project).
At the moment, some of these functionalities are still in beta and to be further
tested. They will be available with the second and the third official releases of the
app, scheduled for summer 2019.

Scribit uses lambda functions on a Google Cloud platform through http re-
quests. The back-end infrastructure is NodeJS based, managed through micro
services, and it provides REST API used both to manage exchange of information
for drawing, such as user preferences and designs, and to manage communication
with all the linked plotters. Once the design is chosen, the lambda function is in-
voked and the preview of the drawing is returned, then shown on the app. In case
of built-in drawings, previews are already available on the app. Then the user can
decide the number of colors to use, one or more if the design allows it, the scale
factor (small, medium or large with respect to the drawable area), and whether to
mirror the drawings or not in case of a transparent wall. Markers are inserted in
the plotter, and finally an HTTP request is sent to the lambda function dedicated
to the SVG/g-code conversion that returns the NC listing for both printing and
erasing (if allowed), as well as useful information for the user, such as the estimated
time and the distance in meters that each marker will cover.

9

1 – Introduction

NC listing is forwarded, through the server, to Scribit via MQTT broker, which is
a standardized publish-subscribe based messaging protocol. When drawing starts,
the status of the plotter changes, and it is visible both on the LED, on the upper
part of the chassis, and on the app via a printing interface. It is possible either
to pause or to stop the drawing: the first case is very useful to replace markers
without postponing the drawing (when paused the state changes again and it is
communicated to the server always via the MQTT broker). When the process ends
Scribit returns in its initial position and the state changes again. Erasing routine
can be launched using the app, if the last print was done on stuccoed wall and
no other drawing was sent. If the user erased manually the drawing (the ink for
stuccoed walls is easily removable with water or heat) and sends another drawing,
the previous NC listing is deleted and replaced with the current one.

The aim of this thesis project is to show how customization is performed, i.e.,
how to go from any raster image to g-code. Conversion is divided into two main
steps: from raster image to SVG image and from SVG image to g-code. This work
is focused only on the first part while the other part has been developed by another
master’s candidate of the team.

10

Chapter 2

Background

2.1 The SVG format

The SVG (Scalable Vector Graphics) [6] is a technology whose purpose is to display
vector graphic objects and, therefore, to manage dimensionally scalable images [5].
In particular it is an XML-based language, i.e a widespread metalanguage 1 used
in web development. Moreover, SVG is an open standard developed by the World
Wide Web Consortium (W3C)2 since 1999.

SVG became a recognized standard in September 2001 after a rather hard pro-
cess: before the SVG standard the two main competitors, Macromedia and Mi-
crosoft and Adobe e Sun Microsystems, had their own format with their specific
features, so a good negotiation work was needed to find compromises between the
parties.

SVG allows to treat three types of graphic objects:

❼ geometric shapes, i.e., lines consisting of straight line segments, curves and
areas bounded by closed lines;

❼ images of raster graphics and digital images;

❼ explanatory texts, possibly clickable.

Graphic objects can be grouped into more comprehensive objects, equipped with
style attributes and they can also be added to other previously constructed and
visualized graphic objects. A text can be part of any XML namespace; this increases
the searchability and the accessibility of SVG images. The figures expressed using
the SVG format can be dynamic and interactive.

1In the logic and in the theory of formal languages metalanguage stands for a formally defined
language whose purpose is the definition of other artificial languages, defined objective languages
or object languages.

2The main international standards organization for the World Wide Web.

11

2 – Background

The potential of scalable vector graphics is remarkable:

❼ the geometry of each graphic element is mathematically defined (in terms of
vectors), instead of being treated by rigid pixel frames;

❼ it is possible to resize any graphic element maintaining its quality. More
specifically, when viewing a given graphic object on different devices (printer,
video, mobile screen, etc.), you are sure to always get the highest quality that
those supports can provide.

This potential affects all graphics applications that are not purely raster, i.e., based
on pixel maps (in practice images coming from cameras or scans). On the other
hand, the computational weight of a vector image is generally higher than that of
the raster graphics, since the computer processor must substantially regenerate the
image from scratch each time the display is resized. The difference between a raster
image and a vector image is shown in Figure 2.1.

Figure 2.1. Raster and vector images (source: wikipedia).

The advantage of SVG compared to other vector graphics formats is its open
standard nature: in this way, in principle, anyone who knows it is able to create
SVG pages without the need for a dedicated commercial development environment.
Being a format derived from XML, it inherits the ease of generation with automatic
means and programming languages.

In the following, a brief description of a generic SVG file (Figure 2.2) is given to
better understand how this standard language works.

As with an HTML file, an SVG file consists of a series of markers, called tags
and indicated between the angle brackets (<>), which are the basic elements of
an SVG image. It is possible to associate to each SVG tag a certain value or to
characterize its appearance and behaviour through the use of particular attributes.

12

https://it.wikipedia.org/wiki/Scalable_Vector_Graphics

2 – Background

<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>

<!DOCTYPE svg PUBLIC "-//W3C//Dtd SVG 1.1//EN"

"http://www.w3.org/Graphics/SVG/1.1/Dtd/svg11.dtd">

<svg width="300" height="200"

version="1.1" xmlns="http://www.w3.org/2000/svg">

<text x="10" y="100"

style="fill:red;font-family:times;font-size:18">

First SVG Example

</text>

</svg>

Figure 2.2. Basic SVG file

The fact that SVG, as mentioned before, is XML-based is clear from the first
line of the example above. In fact, in this line there is the declaration of an XML
file conforming to version 1.0.

In the second line of the example we find the declaration of the type of docu-
ment. Through this command we inform the program that will take care to visualize
our image that the SVG file has been written following the rules indicated in the
version 1.1 of the language.

In the third line we find the declaration of the main element of an SVG file.
As with the <html> tag, for web pages, which contains all the elements of the page,
the <svg> tag is the one that contains all the graphic elements of the image. For
this reason it is called root element of the document.

Now let’s look at the meaning of the <svg> tag attributes used in this example.
The width and height attributes indicate what will be the size of the image (in our
case it is an image of size 300 x 200 pixels), while the version attribute indicates the
version of SVG that is being used (in our case the version 1.1). The xmlns attribute
is used to indicate the namespace to which the SVG file tags refer. In general, the
namespace declaration, in an XML document, indicates to which language the tags
used in the file belong. In our case we have declared that all tags and their attributes
belong to the SVG syntax.

In the fourth line we find the declaration of the only graphic element that
contains our example image: a textual element. Our example will therefore contain
only the text First SVG Example and this writing, red, will be positioned with
the first letter at a distance of 10 pixels from the right edge of the image and at a
distance of 100 pixels from the top edge image. The position of the writing inside
the image is specified by the x and y attributes of the <text> tag, while the color,
the font of the writing and its size are indicated by the attribute style.

13

2 – Background

2.1.1 Coordinates system

All SVG elements are positioned within the drawing area called SVG Canvas.
SVG provides a virtually infinite canvas, but on a practical level only a rectangu-
lar area of finite dimension is available. This area is called SVG Viewport and
is defined through the width and height tags we have seen in the previous exam-
ple. Dimensions are typically expressed in pixels, however SVG allows you to use
different units of measurements such as em, ex, px, py, cm, mm, etc.

The graphic elements are placed within the drawing area by specifying their x
and y coordinates relative to the SVG image coordinate system where the origin is
the upper left corner. Figure 2.3 shows the coordinates system of our example.

Figure 2.3. Coordinates system.

It is possible to change and modify the coordinates system, when needed, by
using viewBox and preserveAspectratio attributes.

2.1.2 Basic shapes

The basic shapes of an SVG image are the line, the polyline, the circle, the polygon,
the rectangle and the ellipse.

❼ The line. To draw a line in SVG we can use the <line> tag and we must
specify both the two starting and ending coordinates.

❼ The polyline. The polyline identifies an area defined by a sequence of lines,
and the SVG tag to represent this sequence is <polyline>. It is possible to

14

2 – Background

specify the pairs of coordinates through which the sequence shall pass using
the points attribute.

❼ The circle. In SVG, a circle is drawn using the <circle> tag. The cx and
cy attributes indicate the coordinates of the centre of the circle, while the r
attribute indicates the size of the radius of the circumference.

❼ The polygon. A polygon in SVG is obtained by using the <polygon> tag.
Through the points attribute we can specify the coordinates of the edge points
of the polygon. Note that, unlike in the case of the <polyline> tag, the first
and last points of the attribute points will be connected so as to always form
a closed surface.

❼ The rectangle. To draw a rectangle in SVG we must use the <rect> tag.
The x and y attributes indicate the coordinates of the upper left corner of our
rectangle, and the width and height of the rectangle can be specified using the
width and height attributes. With a value greater than zero of the rx and ry
attributes, it is possible to draw a rectangle with rounded edges.

❼ The ellipse. The SVG tag by which you can draw an ellipse is the <ellipse>.
The cx and cy attributes express the coordinates of the centre of the ellipse,
while the rx and ry attributes respectively indicate the radius of the ellipse
along the X axis and along the Y axis.

2.1.3 Irregular shapes: paths

The path represents a closed or open geometrical figure, and consists of a sequence
of segments that can be either straight or curved. To each segment corresponds
a series of commands that allow to specify the characteristics of the segment in
question. The basic commands for drawing a path are:

❼ Moveto (M x, y): sets the origin of the path in the point x, y;

❼ Lineto (L x, y): draws a line that joins the current point with the point of
coordinates x, y;

❼ Closepath (Z): draws a line that connects the current point with the origin
of the path;

❼ Horizontal lineto (H x): draws a horizontal line that joins the current
point with the coordinate point x, leaving the y coordinate unchanged;

❼ Vertical lineto (V y): draws a vertical line that connects the current point
with the coordinate point y, leaving the coordinate x unchanged.

A segment can also be curved; to draw it the following curve commands must
be used:

❼ Curveto (C x1, y1 x2, y2 x, y): draws a cubic Bezier curve from the cur-
rent point up to the point of coordinates x, y using the points x1, y1 and x2,
y2 as control points at the beginning and at the end of the curve, respectively;

15

2 – Background

❼ Smooth Curveto (S x2, y2 x, y): draws a cubic Bezier curve that joins the
current point, with the coordinate point x, y. The point x2, y2 represents the
second control point while the first control point is expressed by the symmetric
of the second control point of the previous command, with respect to the
current point;

❼ Quadratic Bezier Curveto (Q x1, y1 x, y): draws a quadratic curve of
Bezier that joins the current point with the point of coordinates x, y, using
the point x1, y1 as control point.

❼ Smooth Quadratic Bezier Curveto (T x, y): draws a quadratic curve of
Bezier joining the current point with the coordinate point x, y. The control
point is the symmetric of the control point of the previous command with
respect to the current point.

All these commands can also be used in “relative”version. This allows you to
express the coordinates of the points relatively to the coordinates of the current
point. A relative command is indicated by writing the command itself in lower
case.

For example, the L (lineto) command, in the relative version, becomes l x,

y and in this case a line is drawn such that it joins the current point with a point
that is x pixels along the X axis and y pixels along the Y axis.

2.1.4 Style

To define the style, you can insert the attributes that define the display properties
within the single element, or use the attribute called style. The use of the style
attribute therefore allows to group the definition of the style of the element within
a single attribute.

The main attributes to define the style of an element are:

❼ fill: allows to indicate the fill color of the element. Colors can be expressed
by indicating their name or their coding in RGB format;

❼ opacity: indicates the level of opacity of the element. The value 1 indicates
the maximum opacity, while the value 0 indicates that the element is trans-
parent;

❼ fill-rule: determines how the element’s area will be filled. This attribute
is very useful in the case of presence of complex paths within the image, as
it establishes how the intersection areas will be filled. The possible values are
nonzero and evenodd;

❼ stroke: allows to specify the color of the line that constitutes the edge of the
element;

❼ stroke-width: indicates the measurement of the thickness of the line;

❼ stroke-dasharray: allows to specify the style of the line, for example normal
or dashed;

16

2 – Background

❼ stroke-linecap: defines how the extremes of the line will be drawn and the
possible values are butt, round, square;

❼ stroke-linejoin: defines the way in which the intersection between two lines
will be drawn and the possible values are miter, round, bevel;

❼ display: allows to control the visibility of an element. Assigning the value
to none, the element will not be displayed, while with the inline value the
element will be displayed.

2.2 Gaussian Blur processing

Blurring is used in image processing to reduce noise and details [4]. Gaussian blur
is the result of blurring an image by means of a Gaussian function. The result is a
smoother blur resembling of viewing the image through a glass. This technique is
widely used in image processing, in particular as a pre-processing phase in computer
vision algorithms.

The idea is to convolve the image with a Gaussian function and, since the Fourier
Transform of a Gaussian is a Gaussian itself, using Gaussian Blurring has the effect
of reducing the image’s high-frequency components, so it is a sort of low pass
filter.

In two dimensions, the Gaussian function is the product of two Gaussian func-
tions in one dimension:

G(x, y) =
1

2πσ2
e

x2+y2

2σ2 (2.1)

where x and y are the distance from the origin in the horizontal and vertical
axis, respectively, and σ is the standard deviation. The two-dimensional Gaussian
function is a surface whose contours are concentric circles with a Gaussian distribu-
tion. When convoluting the original image with this kind of function, each pixel’s
new value is set to a weighted average of that pixel’s neighbourhood, in such a way
that the pixel itself receives the highest weight, while its neighbouring pixels receive
as smaller weights as the distance from the original pixel increases. The result is
that this kind of blurring preserves boundaries and edges better than others. An
example is shown in Figure 2.4

Figure 2.4. Example of Gaussian Blurring.

17

2 – Background

Furthermore, since the two-dimensional Gaussian function is circularly symmet-
ric; it can be applied to two-dimensional image as two independent one-dimensional
calculations. In computational terms this is a useful property, since the calcu-
lation can be performed in O(wkerwimagehimage) + O(hkerwimagehimage) instead of
O(wkerhkerwimagehimage), where h is the height, w is the width and ker is the Gaus-
sian kernel.

2.3 Clustering Algorithms

The objective is to find groups of objects such that the objects in a group are similar
(or related) to one another and different from the objects in other groups. This
means that the intra-cluster distances are minimized, while inter-cluster distances
are maximized. Clustering techniques are explorative, they do not require any
knowledge on data, and the analysis to find out the properties of the different
groups is performed without any labels [7].

The applications of Cluster Analysis are typically understanding, to find out
related groups when a huge data set has to be analysed (in this way the analysis
considering related groups of data is simpler), or summarization through which
it is possible to reduce the size of large data sets choosing some significant samples
from the different groups.

A clustering is a set of clusters. It is possible to distinguish partitional clusters
and hierarchical clusters (Figure 2.5). In the first case, each object belongs
to at most one group (or subset), this means that groups are non-overlapped.
Hierarchical clusters are a set of nested clusters, organized as a hierarchical tree,
and subsets may be overlapped.

Figure 2.5. Difference between partitional and hierarchical clustering.
(source: QuantDare)

Clusterings are classified in different ways; they could be:

❼ Exclusive or non-exclusive: a clustering is exclusive if each point belongs
to one single cluster;

❼ Fuzzy or non-fuzzy: in fuzzy clustering a point belongs to every cluster with
some weight between 0 and 1 (the sum of weights is equal to 1);

18

https://quantdare.com/hierarchical-clustering/

2 – Background

❼ Partial or complete: a clustering is complete if each point belongs at least
to one cluster, partial if at least one point does not belong to any clusters;

❼ Heterogeneous or homogeneous: these measures are related to different
dimensions such as size, shape and density. For example, clustering is homo-
geneous with respect to the size if all the clusters have the same size.

Moreover, there are different types of clusters:

❼ Well-separated clusters: clusters are disjointed;

❼ Center-based: a cluster is a set of objects such that an object in a cluster
is closer to the centre of its cluster than to the centre of any other cluster.
The centre of a cluster is often a centroid, the average of all the points in the
cluster (it could be a point that is not in the data set), or a medoid, the most
representative point of a cluster (it is a point of the data set);

❼ Contiguous cluster: a cluster is a set of objects such that an object in a
cluster is closer to one or more other objects in the cluster than to any other
object not in the cluster;

❼ Density-based: clusters are defined by looking at the density degree of the
objects in the region. This approach is used when clusters are irregular;

❼ Conceptual-based: a cluster is a set of objects that share a common concept
or that have some common properties.

The most common clustering algorithms are: K-means, Hierarchical clustering and
Density-based clustering.

2.3.1 K-means clustering

It is a partitional complete clustering approach, this means that noise and outlier
points are not detected. Each cluster is associated with a centroid and each point
is assigned to the cluster with the closest centroid. This approach requires to
specify the number k of clusters to extract. The basic algorithm is very simple: at
the beginning k centroids are selected randomly, points are assigned to the closest
centroid, and then the centroid of each cluster is recomputed. The algorithm ends
after some iterations when the centroids do not change any more (Figure 2.6).

Due to randomly selection of initial centroid, the produced clusters vary from
one run to another, so the algorithm should be executed various times to find
the optimal solution. The algorithm converges in the first few iterations because
often the stop condition is changed, when complex data sets are computed: the
algorithm ends when relatively few points change clusters. Moreover, K-means
clustering requires a measure for the closeness (Euclidean distance, cosine similarity,
correlation etc.), and in order to compute it a common similarity measure should
be adopted (data should be normalized according to the chosen measure).

19

2 – Background

Figure 2.6. Example of K-means clustering. (source: mubaris)

To evaluate the output of the algorithm, in order to choose the best solution,
the most common measure is the Sum of Squared Error (SSE):

SSE =
k∑︂

i=1

∑︂
x∈Ci

dist2(mi, x) (2.2)

It is computed by taking into account the distance between the centroid (Ci) of
the cluster and its points. High value of SSE means that the cluster is not very
compact. After computing SSE for each solution, the best one is selected as the
one having the lowest SSE (clusters are more compact). Clearly, increasing k, SSE
reduces because clusters are smaller (the number of clusters is bigger), and so they
are more compact.

While SSE is used to choose the best solution, the Elbow Graph (Knee ap-
proach) helps to choose the best k (number of clusters). The graph plots the
quality measure trend (SSE) against k. The purpose is to identify the range of
k values for which there is a significant improvement of the performance (i.e., a
significant reduction of SSE). Sometimes, in the Elbow Graph increasing k the SSE
increases itself. This is because when k is too high a large number of initial cen-
troids must be selected, and it may happen that some of the centroids are chosen
far from the data set, and so they generate empty clusters. To avoid empty cluster
generation there are different strategies:

❼ Choose the point that contributes most to SEE, that is the farthest point from
the centroid;

❼ Choose a point from the cluster with the highest SSE, that is choosing the less
compact cluster;

❼ If there are several empty clusters, the above strategies can be repeated several
times.

20

https://mubaris.com/posts/kmeans-clustering/

2 – Background

2.3.2 Bisecting K-means

K-means clustering is very simple; in order to improve performance, it is possible
to pre-process data by eliminating outliers (they may cause a high value of SSE)
and normalizing the data (to properly compute the distances). Furthermore, in
post-processing it is possible to eliminate small clusters that may represent outliers,
or split clusters with relatively high SSE (which are less compact), or merge clusters
that are close and that have relatively low SSE (by merging them the resulting SSE
is more or less the same).

These techniques could be used during the clustering process, and this is the
strategy adopted by Bisecting K-means algorithm. It is a variant of K-means: at
each step a cluster is chosen and it is divided into two smallest clusters, this means
that Bisecting algorithm repeats different times the K-means algorithm using k=2,
until the number of clusters is reached. The cluster to split is chosen by considering
the one with the highest value of SSE. This version of the algorithm is better
than the previous one, because it includes the post-processing operation during
the computation of the clusters. Furthermore, because of the splitting, Bisecting
algorithm produces also hierarchical clustering.

K-means has problems when clusters are of differing sizes, densities or have non-
globular shapes. This is due to the fact that the algorithm tends to select globular
clusters (points close to centroid); to avoid these problems a solution is to choose a
higher value of k than the one really needed (in order to select more clusters), and
then to post-process them to obtain the best solution.

2.3.3 Hierarchical clustering

This type of clustering produces a set of nested clusters organized as a hierarchical
tree. The hierarchy can be visualized as a dendogram (Figure 2.7 - right), which
is a tree like diagram that records the sequences of merges or splits at each step (in
particular if at each step only one merge o split operation is recorded, the dendo-
gram is traditional, otherwise it is called non-traditional). Hierarchical clustering
could be agglomerative, if it starts with the points as individual clusters and at
each step it merges the closest pair of clusters until one cluster is left, or divisive,
if it starts with one cluster, including all points, and at each step it splits a cluster
until each cluster contains a single point.

This type of clustering does not require to set any particular number of clusters
(as it happens for K-means clustering), but any desired number of clusters can be
obtained by cutting the dendrogram at the proper level (each level contains a par-
ticular number of clusters obtained by splitting or merging operations). Traditional
hierarchical algorithms use a similarity or distance matrix.

The agglomerative clustering algorithm is the most used and it is very simple:
first of all the proximity matrix is computed, then at each step the two closest
clusters are merged and the proximity matrix is updated until one single cluster
remains. The key point of this algorithm is the computation of the proximity of
two clusters; the way the distance between two clusters is defined distinguishes the
different versions of the algorithm.

21

2 – Background

Inter-cluster similarity (proximity) is defined in different ways:

❼ MIN: for each pair of points of each cluster (all possible combinations are
considered) the distance is computed and then the minimum is selected;

❼ MAX: for each pair of points of each cluster (all possible combinations are
considered) the distance is computed and then the minimum is selected;

❼ GROUP AVERAGE: the average distance is computed;

❼ Distance between centroids;

❼ Other methods driven by an objective function (such as SSE)

Using MIN similarity allows handling non-elliptical shapes (or non-globular
shapes), but it is sensitive to noise and outliers: they are not detected and be-
cause of that some points are assigned erroneously. Instead, using MAX similarity
avoids the problems of noise and outliers: they are not detected but they are as-
signed to one single cluster, other points are correctly assigned. In this case the
limitation is that it tends to break large clusters, when the density is variable, into
globular clusters like K-means clustering.

Sometimes hierarchical clustering is used in conjunction with K-means cluster-
ing: dendogram is cut at a desired level, and the initial centroids of K-means are
selected using the most representative points of these clusters. The complexity of
hierarchical clustering is O(N2) in space, since it uses the proximity matrix and N
is the number of points, while O(N3) is the needed time in many cases, since there
are N steps and at each step the proximity matrix must be updated.

Figure 2.7. Hierarchical clustering (left) and its dendrogram (right)

22

2 – Background

2.3.4 DBSCAN (Density-based Clustering)

It is a partial clustering approach, this means that noise and outliers are detected
(none of the techniques shown above are able to do that).The density is defined as
the number of points within a specified radius (Eps). DBSCAN divides points into
three categories:

❼ Core point: if within Eps the number of points is greater than a specified
number of points (MinPts), chosen by the user;

❼ Border point: if it is not a core point but it is in the neighbourhood of one of
them (it is next to a core point).

❼ Noise point: if it is neither a core point nor a border point.

At the beginning, the algorithm eliminates noise points, then considering all core
points, each of them at a time, assigns them a label and analyses all the points
in the Eps-neighbourhood by assigning them the label of the current core point.
DBSCAN is resistant to noise and outliers, and can handle clusters of different
shapes and sizes, while problems occur when there is a varying density and a high
dimensional data: if eps is too high, clusters with higher density are not detected
and merged with other clusters, while if eps is too low, only clusters with higher
density are detected, while all the other ones are marked as outliers. To avoid
this problem, typically the algorithm is iterated twice: the first one to detect the
cluster with the higher density and the second one by clustering the ones that in
the previous iteration have been signed as outliers.

The critical point of DBSCAN is to choose the correct value of Eps. The idea is
that for points in a cluster, their k-th nearest neighbours are at roughly the same
distance while noise points have the k-th nearest neighbour at farther distance, so
plotting sorted distance of every point to its k-th nearest neighbour helps to choose
Eps: like elbow graph the knee must be checked. If the graph has more knees, it
means that there is a varying density, and so more iterations are needed.

2.3.5 Measures of Cluster Validity

The validation of clustering structure is the most difficult task; to evaluate the good-
ness of the resulting clusters, some numerical measures can be exploited. Measures
are classified into two main classes:

❼ External index: used to measure the extent to which cluster labels match exter-
nally supplied class labels, that is to measure the equality between clustering
algorithm and a priori knowledge;

❼ Internal index: used to measure the goodness of clustering structure without
respect to external information (no a priori knowledge).

In real cases, clustering techniques are used without a priori knowledge, so in-
ternal measures are more interesting. The most common used measure are cluster

23

2 – Background

cohesion and cluster separation; they are similar to SSE and the purpose is to
obtain a low value of cohesion (the points belonging to each cluster are similar) and
a high value of separation (clusters are disjointed). In real systems, the most used
measure is the silhouette, which takes into account both cohesion and separation.
Silhouette can be computed over all data of the dataset (how appropriately the
data has been clustered) or all over data of cluster (how tightly grouped all the
data in the cluster are).

2.4 Interpolation

In mathematics, and in particular in numerical analysis, interpolation is a method
to identify new points of the Cartesian plane starting from a finite set of data
points, assuming that all points can refer to a function f(x) of a given family of
functions of a real variable [8].

In scientific and technological activities, and generally in quantitative studies of
any phenomenon, it often happens that a certain number of points of the plan are
obtained with a sampling or with measurement equipment, and they are considered
good enough to identify a function that passes through all data points or at least
in their vicinity. This is the case of curve fitting, where the problem is the
approximation of a complicated function by a simple function. Suppose the formula
for some given function is known, but too complicated to evaluate efficiently. A
few data points from the original function can be interpolated to produce a simpler
function which is still fairly close to the original one. The resulting gain in simplicity
may outweigh the loss from interpolation error.

Let be given a sequence of n distinct real numbers xk called nodes, and for
each of them a second number yk is given. The aim is to identify a function f of a
certain family such that f(xk) = yk for k = 1,, n

The pair (xk, yk) is the given point and f is called interpolating function,
or simply interpolating, for data points. Sometimes the values yk, when the
interpolating function is a fairly defined function, are written as fk.

The interpolation problem is summarized as follows: note some pairs of data
(x, y), interpretable as points of a plane, the purpose is to find a function, called
interpolating function, which is able to describe the relationship that exists between
the set of values x and the set of values y.

There are many different methods of interpolation that differ from each other
for some specific properties such as: accuracy, cost, number of data points needed,
and smoothness of the resulting interpolating function. In the following, the data
set shown in Figure 2.8 is considered as testbed.

24

2 – Background

2.4.1 Linear interpolation

Linear interpolation is a numerical method for finding the roots of a function. It
requires the initial estimate of an interval (a, b), within which the root is calculated,
such that f(a)f(b) < 0. It is also a first order method and therefore provides a
slow convergence. Stability is thus guaranteed.

Figure 2.8. Plot of the data points considered as an example. (source: wikipedia)

Given the coordinates of the two known points, (x0, y0) and (x1, y1), the linear
interpolant is the straight line between these points, given by the equation of the
slopes derived geometrically:

y − y0
x− x0

=
y1 − y0
x1 − x0

(2.3)

Solving this equation for y:

y = y0 + (x− x0)
y1 − y0
x1 − x0

=
y0(x1 − x) + y1(x− x0)

x1 − x0

(2.4)

This formula can also be interpreted as a weighted average. The weights are
inversely related to the distance from the end points to the unknown point; a closer
point has more influence than a farther point. Thus, the weights are x−x0

x1−x0
and

x1−x
x1−x0

, which are normalized distances between the unknown point and each of the
end points. This is clearer rearranging Equation 2.4:

y = y0

(︃
x1 − x

x1 − x0

)︃
+ y1

(︃
x− x0

x1 − x0

)︃
(2.5)

The linear interpolation of the example above is shown in Figure 2.9.

25

https://en.wikipedia.org/wiki/Linear_interpolation

2 – Background

Figure 2.9. Plot of the data points with linear interpolation. (source: wikipedia)

The error estimate indicates that linear interpolation is not very precise: consider
g(x) as the interpolating function and suppose that x is between x1 and x0 and
that g(x) is twice differentiable. Then the error of linear interpolation is:

|f(x)− g(x)| ≤ C(x1 − x0)
2 where C =

1

8
max

y∈|x0,x1|
g′′(y) (2.6)

Thus, the error is proportional to the square of the distance between the data
points. The errors of some other methods, including the polynomial interpolation
and the spline interpolation, are proportional to powers greater than the distance
between the given points, and therefore are preferable. These methods also produce
smoother interpolating functions.

2.4.2 Polynomial interpolation

A problem that frequently occurs in applied mathematics is that of the approxi-
mation of functions, which consists in determining one function g, belonging to a
selected class of functions, which best approximates a given function f .

Polynomial interpolation is the interpolation of a series of values (for example,
experimental data) with a polynomial function that passes through the data points.
In particular, any set of n + 1 distinct points can always be interpolated by a
polynomial of degree n which assumes exactly the value given at the initial points.

The function g, which is meant to approximate the function f is a polynomial of
appropriate degree, whose coefficients are determined so that the approximation is
the best possible, compatibly with the data available. To make the expression the
best possible formally correct, it is necessary to define how to measure the distance

26

https://en.wikipedia.org/wiki/Linear_interpolation

2 – Background

between function f and function g. The function g will then be determined in order
to have the minimum possible distance from the function f . The distance between
f and g is measured by means of the vector r, defined as:

ri = f(xi)− g(xi), for i = 0, . . . , n (2.7)

The searched coefficients are those that make the Euclidean distance of the
vector r minimal. This method is called least squares.

Polynomial interpolation is a special case of polynomial approximation, where
the vector r, or the vector of the squares of the distance between the value given in
a point and the value of the approximate polynomial at that point, is zero. While
for polynomial approximation the aim is to find a polynomial (generally of a low
degree) that approximates the data points with a minimum error, with interpolation
the aim is to find the polynomial (potentially of high degree) that passes exactly
for those points.

An interpolation polynomial can be constructed by means of different methods,
for example by using the Vandermonde matrix or the Lagrange interpolation for-
mula. For example, according to the Lagrange interpolation formula, given a func-
tion f(x) and n+1 points a0, a1, a2, . . . , an, for which f(a0), f(a1), f(a2), . . . , f(an)
are known, the Lagrange interpolation polynomial of the function f is the polyno-
mial:

P (x) =
n∑︂

i=0

f(ai)
n∏︂

j /=i

x− aj
ai − aj

(2.8)

Although the interpolation polynomial assumes the exact value in the given
points, given the higher degree it will tend to oscillate more between one point and
the other, thus giving a prediction of the value in those areas that will be worse than
that given by a polynomial of lower degree that does not pass through all the data
points. However, the interpolation error is proportional to the distance between
the points given to power n. Moreover, this interpolant, being a polynomial, is
indefinitely differentiable. Thus the polynomial interpolation, in principle, solves all
the problems of linear interpolation, but on the other hand the computation of the
coefficients of the interpolating polynomial is very expensive (in terms of execution
time required by the computer and in terms of complexity of the elaborations). An
example of polynomial interpolation is shown in Figure 2.10.

2.4.3 Quadratic spline interpolation

Spline interpolation is a particular interpolation method based on spline functions.
It is a tool of numerical analysis used in many fields of application (for exam-
ple in physics or statistics). Unlike polynomial interpolation, which uses a single
polynomial to approximate the function over the entire definition interval, spline
interpolation is achieved by dividing the interval into multiple sub-intervals and
choosing for each of them a polynomial of degree k (usually small) [9]. It will then
be imposed that two successive polynomials are smoothly sealed, i.e., observing
the continuity of the first k-1s derivatives. The function that is obtained with a

27

2 – Background

Figure 2.10. Plot of the data points with polynomial interpolation.
(source: wikipedia)

procedure of this kind is called spline function. Linear interpolation, which uses
a linear function, i.e., a grade 1 polynomial, on each sub-interval can be considered
a special case of spline interpolation.

Suppose that n+ 1 points are known (knots) and that they satisfy the relation
a = x0 < x1 < · · · < xn = b. A spline function of degree k having knots
x0, x1, . . . , xn is a function S such that:

❼ On each interval [xi − 1, xi] is a polynomial of degree ≤ k;

❼ S has a continuous (k − 1)st derivative on [x0, xn].

A quadratic spline S2,n(x) has the following:

S2,n(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
p1(x) = a1 + b1x+ c1x

2, x ∈ [x0, x1],

p2(x) = a2 + b2x+ c2x
2, x ∈ [x1, x2],

...

pn(x) = an + bnx+ cnx
2, x ∈ [xn−1, xn]

(2.9)

S2,n(x) is thus continuous and has continuous first derivative everywhere in the
interval [a, b], in particular, at the knots. Also, to be an interpolatory quadratic
spline, it must interpolate the data, that is:

S2,n(xi) = fi, i = 0,1, . . . , n (2.10)

Note that the function S2,n(x) has two quadratic pieces incident at the interior
knot xi; to the left of xi, it is a quadratic pi(x), while to the right it is a quadratic

28

https://it.wikipedia.org/wiki/Interpolazione_polinomiale

2 – Background

pi+1(x). Thus, a necessary and sufficient condition for S2,n(x) to have continuous
first derivative is for these two quadratic polynomials incident at the interior knot
to match in first derivative value. So a set of smoothness conditions is given, at
each interior knot:

p′i(xi) = p′i+1, i = 1,2, . . . , n− 1 (2.11)

In addition, to interpolate data, a set of interpolation conditions is given, on the
i-th interval:

pi(xi−1) = fi−1, pi(xi) = fi i = 1,2, . . . , n (2.12)

The n quadratic splines have three unknown coefficients, so S2,n(x) involves
3n unknown coefficients. Interpolation imposes 2n linear constraints while the
continuity of the first derivative imposes (n− 1) linear constraints; hence there are
3n − 1 linear constraints against the 3n unknowns. One more linear constraint is
needed and it is typically chosen on the specific case.

The quadratic spline interpolation of the example above is shown in Figure 2.11.

Figure 2.11. Plot of the data points with quadratic spline interpolation.
(source: wikipedia)

The interpolating function obtained with spline interpolation is smoother than
those obtained with other methods (for example with the polynomial interpola-
tion), in the sense that it is the interpolating function with minimal mean cur-
vature. Furthermore, the spline interpolation is easier to evaluate than the high
degree polynomials required by the polynomial interpolation and does not suffer
from the Runge phenomenon3. However, if the data to be interpolated have par-
ticular conformations (for example, they form steps), the interpolating spline may

3It is a problem related to polynomial interpolation on equispaced nodes with high degree
polynomials. It consists in increasing the amplitude of the error near the extremes of the interval.

29

https://it.wikipedia.org/wiki/Interpolazione_spline

2 – Background

be subject to the Gibbs phenomenon4, wide oscillations near a step. To overcome
this problem, spline smoothing or spline tension are used.

2.5 Edge contour representation

When dealing with image processing or computer vision algorithms is essential to
handle shapes and region representations. Objects can be described through their
boundaries or contours, and the simplest representation of a contour is using an
ordered list of its edge points. This leads to edge detection, which is a fundamental
tool in image processing, particularly in the areas of feature detection and feature
extraction. The aim of edge detection is to identify points in a digital image at
which the image brightness changes sharply.

Edge contour representation, however, is not very compact and is not very effec-
tive for image analysis, although it is as accurate as the location estimates for the
edge points. A more powerful representation is the chain-code representation [10].

2.5.1 Chain-code representation

This kind of representation is quite simple:

❼ Each edge point along the contour is specified through one single direction;

❼ Once the starting edge is chosen, go clockwise around the contour;

❼ The direction towards the next edge point is given by means of one of the four
(or eight) directions.

Using this convention, it is possible to represent the shape of an object as a chain
code, that is, a set of directional codes, with one code following another like links
in a chain. Since chain codes provide an algorithm for representing the shape
of an object, it is possible to build a machine that is capable of encoding that
information. But algorithms cannot be implemented in a computer program using
just any coding system. It must be a language that the computer can recognize.
Since digital computers typically use a numerical system for storing information
(everything is coded in “O’s”and “1’s”) it will be a step in the right direction to
modify the directional system to a numerical system rather than a letter system.
Computer programmers who write chain codes based on an eight-way directional
system, typically represent those eight directions using a numbering scheme. Some
examples of chain-code representation using different numbering schemes are shown
in Figure 2.12.

4It is the peculiar manner in which the Fourier series of a piecewise continuously differentiable
periodic function behaves at a jump discontinuity.

30

2 – Background

Figure 2.12. Examples of chain-code representation. (source: Machine
vision by R.Jain et al.)

2.5.2 Curve interpolation vs curve approximation

A more powerful representation of contours is fitting an appropriate curve having
some analytical description, and this typically leads to curve fitting. It is closely
related to interpolation: a curve interpolates a list of points if it passes through the
points, instead a curve approximates a list of points if it passes close to the points.

When using curve interpolation, the assumption is that the edge points have
been extracted accurately, and the most common method used to obtain curve
interpolation is polygonal representation, based of course on polynomial interpo-
lation. In this case the contour is represented as a polygon and the edges are its
vertices. Edge points identify a sequence of segments and each of them is fitted
with a curve. There are three main ways to compute the polygonal approximation
of a contour: Split algorithm, Merge algorithm and Split and Merge algorithm.
The first approach is based on recursively splitting segments connecting edge nodes
until the fitting error is below a given threshold, while the second one is based on
least-squares and merges line segments by iteratively adding new edge points. To
improve accuracy, the last method is an hybrid approach.

Another remarkable method is based on circular arcs. The assumption is that
the edge list has been approximated by line segments, then subsequences of the
line segments can be replaced by circular arcs. This kind of approach uses spline
interpolation (typically it uses cubic splines, i.e., 3rd degree polynomials).

Curve approximation, instead, is meant to obtain a higher accuracy because the
curve is not forced to pass through particular edge points. Approximation-based
methods use all the edge points to find a good fit (in contrast to the previous
methods that use only the interpolated edge points). The two main methods to
approximate curves are Least-square fit and Robust regression fit. They depend
on the reliability with which the edge points can be grouped into contours; for

31

https://www.e-booksdirectory.com/details.php?ebook=4494
https://www.e-booksdirectory.com/details.php?ebook=4494

2 – Background

instance the least-square approach can be used only if it is certain that the edge
points grouped together belong to the same contour, instead the robust regression
fit is more accurate with some grouping errors.

2.5.3 Least-square fit

The method of least squares is an optimization technique (or regression) that allows
to find a function, represented by an optimal curve (or regression curve), which is
as close as possible to a data set (typically points in the plan). In particular,
the function found must be the one which minimizes the sum of the squares of
the distances between the observed data and those of the curve that represent the
function itself, also called residuals.

The mathematical formulation of the linear regression problem is summarized
as follows: given the measurement of n + 1 real variables y(t), u1(t), . . . , un(t)
over a time interval (e.g., for t = 1,2, . . . , N), find if possible the values of n real
parameters θ1, θ2, . . . , θn such that the following relationship holds:

y(t) = θ1u1(t) + . . .+ θnun(t) (2.13)

Thus, the least-square estimate is given by:

θ̂ = [ΦTΦ]−1 ΦTy (2.14)

where y is a vector whose i-th element is the i-th observation of the dependent
variable and Φ is the matrix whose ij element is the i-th observation of the j-th
independent variable.

An example of linear least-square fit is shown in Figure 2.13.

Figure 2.13. Random data points and their linear regression. (source: wikipedia)

32

https://en.wikipedia.org/wiki/Least_squares

2 – Background

2.5.4 Robust regression fit

When dealing with not small errors on the estimates and with outliers, i.e., obser-
vations which do not follow the pattern of the other observations, the least-squares
estimates are highly sensitive, so other fitting methods, such as robust regression,
must be exploited.

The idea is to find the relationship between one or more independent variables
and a dependent variable. Robust regression methods are designed to try various
subsets of the data points and to choose the subset that provides the best fit. The
iterative fitting works as follows:

1. Find the curve that fits the data set;

2. Remove the point(s) with the worst error;

3. If the curve parameters do not change significantly, the fitting finishes other-
wise repeat from step 1.

Other methods such as Least-median of squares, or Least trimmed square (LTS),
are more accurate and robust. In this case, the LTS method attempts to minimise
the sum of the squared residuals only over a subset k of the n considered points.
The unused n−k points do not influence the fit. A comparison between least-square
fit and robust fit on the same data-set is shown in Figure 2.14.

Figure 2.14. Random data points and comparison between least-square
and robust fitting.

33

2 – Background

2.5.5 Evaluating the goodness of fitting

To evaluate the goodness of a fitting method many metrics are available. In the
following the most common measures are listed:

❼ Maximum absolute error, which measures how much the points deviate
from the curve in the worst case

MAE = maxi|di| (2.15)

❼ Mean squared error, which gives an overall measure of the deviation of the
curve from the edge points, in particular it measures the average of the squares
of the errors, that is the average squared difference between the estimated
values and what is estimated

MSE =
1

n

n∑︂
i=1

d2i (2.16)

❼ Root-mean squared error, which is typically used instead of the Mean
squared error, and is simply given by the root of the MSE

RMSE =

⌜⃓⃓⎷ 1

n

n∑︂
i=1

d2i =
√
MSE (2.17)

❼ Normalized maximum absolute error, which is the ratio of the maximum
absolute error to the length of the curve

NMAE =
maxi|di|

L
=

MAE

L
(2.18)

Figure 2.15 shows the RMSE computed on the same data-set reported in Fig-
ure 2.14. This confirms that the robust fitting performs better than the least-
squares fitting in case of outliers.

34

2 – Background

Figure 2.15. RMSE evaluation of the previous example.

35

Chapter 3

Image rendering from any format

to SVG format

This chapter describes in details the main contribution of the thesis project. As
mentioned in Chapter 1, the aim is to make Scribit flexible and affordable for
everyone, not only for those who are able to handle and create images in vector
formats. This is why is offered the possibility to users to use images in any format.
This requires software support, i.e., a conversion from any format to SVG format,
since the expected input is an SVG file. This thesis project is focused on such a
rendering process.

3.1 Proposal

The overall process is based on the Marching squares algorithm [11]. It is a com-
puter graphics algorithm that generates contours for two-dimensional scalar fieldS.
In particular, the contours can be of two kinds: isolines, i.e., lines following a single
data level, or isobands, i.e., filled areas between isolines. The algorithm takes as
input an image grid and processes each cell in the grid independently; this is why
the algorithm is parallel and the computational overhead is not so high.

In this thesis project the algorithm is developed in JavaScript, a scripting object-
oriented language widely used in Web, mobile and server development. The output
is a collection of .js files which are part of a library, able to render any image into
the specific SVG format needed for the translation to g-code, which means that IT
is a slightly different SVG format, customized on Scribit’s needs. The rendering
process goes through 6 main steps: color quantization, layer separation and edge
detection, pathscan, interpolation, tracing and SVG coordinates rendering. Table
3.1 lists the main user friendly functions provided, in particular:

❼ imageToSVG loads an image from aN URL, calls the tracing routine when
loaded, and then executes callback with the scaled SVG string as argument

❼ imagedataToSVG traces imagedata, then returns the scaled svg string

36

3 – Image rendering from any format to SVG format

❼ imageToTracedata loads an image from aN URL, calls the tracing routine
when loaded, and then executes callback with tracedata as argument

❼ imagedataToTracedata traces imagedata, then returns tracedata (layers
with paths, palette, image size)

Function name Arguments Returns

imageToSVG
image url /*string*/ , callback /*function*/ ,
options /*optional object */

Nothing, callback will be executed

imagedataToSVG
imagedata /*object*/ ,
options /*optional object */

svgstring /*string*/

imageToTracedata
image url /*string*/ , callback /*function*/ ,
options /*optional object */

Nothing, callback will be executed

imagedataToTracedata
imagedata /*object*/ ,
options /*optional object */

tracedata /*object*/

Table 3.1. API table

The overall rendering process is performed by the imagedataToTracedata func-
tion, which calls the vectorizing functions. The objects involved are detailed in
each of the following sections, here is described only the options object needed
to better understand the rendering process. It is basically a JavaScript object and
Tables from 3.2 to 3.6 describe the parameters involved in the different steps of the
process.

Option name Default value Meaning

blurradius 0 Set this to 1..5 for selective Gaussian blur preprocessing

blurdelta 20 RGBA delta threshold for selective Gaussian blur preprocessing

Table 3.2. Blur processing options

Option name Default value Meaning

colorsampling 2

0: disabled, generating a palette;

1: random sampling;

2: deterministic sampling

numberofcolors 16
Number of colors to use on palette

if pal object is not defined

mincolorratio 0

Color quantization will randomize

a color if fewer pixels

than (total pixels*mincolorratio) has it

colorquantcycles 3 Color quantization will be repeated this many times

Table 3.3. Color quantization options

37

3 – Image rendering from any format to SVG format

Option value Default value Meaning

corsenabled false Enable or disable CORS Image loading

ltres 1 Error treshold for straight lines

qtres 1 Error treshold for quadratic splines

pathomit 8
Edge node paths shorter than this will be

discarded for noise reduction

rightangleenhance true Enhance right angle corners

Table 3.4. Tracing options

Option name Default value Meaning

layering 0 0: sequential ; 1: parallel

Table 3.5. Layering options

Option name Default value Meaning

strokewidth 1 SVG stroke-width

linefilter false Enable or disable line filter for noise reduction

scale 1
Every coordinate will be multiplied with this,

to scale the SVG

roundcoords 1

rounding coordinates to a given decimal place.

1 means rounded to 1 decimal place like 7.3;

3 means rounded to 3 places, like 7.356

viewbox false Enable or disable SVG viewBox

desc false Enable or disable SVG descriptions

Table 3.6. SVG rendering options

38

3 – Image rendering from any format to SVG format

3.2 Color Quantization

This is the first step of the overall process;the function colorquantization takes
as inputs two objects: options (described in the previous section) and imgdata,
i.e., an ImageData object [12]. It is used to manage images, and represents the
underlying pixel data of an area. In particular it has three properties:

❼ ImageData.data, which is a Uint8ClampedArray, i.e., a typed array of 8-
bit unsigned integers clamped to 0-255, representing a one-dimensional array
containing the data in the RGBA order;

❼ ImageData.height, which is an unsigned long representing the actual height,
in pixels, of the ImageData;

❼ ImageData.width, which is an unsigned long representing the actual width,
in pixels, of the ImageData.

In colorquantization, the palette is also involved. It is used to represent the
different colors of the image and the number of colors (different paths) of the final
SVG image. It is simply an array of color objects and can be accessed through
options.pal. A basic example of this object is shown in Figure 3.1.

pal = [

{r:0, g:0, b:0, a:255},

{r:23, g:55, b:127, a:255},

{r:255, g:255, b:255, a:255},

{r:15, g:15, b:21, a:255},

]

Figure 3.1. Example of pal object

The aim is to reduce the number of distinct colors of the image to have a simpler
representation. The idea is to obtain an indexed image: the color information is
split between an array of indices (one for each color), the palette mentioned before,
and a matrix, where each element is the index of the corresponding color in the
palette. This means that the image pixels do not contain the full information
but only indexes of the palette. This kind of approach is typically used to manage
digital images’ colors, because it is not memory consuming, and to save file storage.
An example of how indexed images work is shown in Figure 3.2.

The overall process is decomposed in two main phases: blur processing and
K-means clustering.

39

3 – Image rendering from any format to SVG format

Figure 3.2. Example of indexed image.

3.2.1 Blur processing

In this case, the Gaussian blur’s separable property is used to divide the blur process
into two steps: at the beginning a one-dimensional kernel is used to blur the image
in the horizontal direction only, then the vertical direction is processed using the
same kernel. Each pixel of imgd is multiplied by the Gaussian kernel value, so that
a blurred copy of the original indexed image is obtained.

Blurring is based on two parameters: BLURRADIUS, to define the number of
neighbours to consider, and BLURDELTA, to implement a selective blur, deciding
whether to consider the blurred pixel or not on the basis of RGBA1 distance. This
distance is used to compute the color similarity;given two pixels with RGBA values
(ri, gi, bi, ai) with i = 1,2, the RGBA distance d is computed as follows:

d = abs(r2 − r1) + abs(g2 − g1) + abs(b2 − b1) + abs(a2 − a1) (3.1)

If d is above BLURDELTA then the blurred pixel is discarded, at the very end the
blurred imgd is returned.

3.2.2 K-means clustering

In this work, a simplified variant of this algorithm is used: the number k of clusters
is defined a priori: it is the number of colors of the palette (palette’s length). At the
beginning of color quantization, in fact, the palette is chosen: customized on the
user’s needs, randomly or deterministically generated from the image or randomly
generated, and there are three different functions intended to do that. Moreover,
colorquantization is meant to be general purpose, but in this work the aim is
to render an actual image so, despite options.pal is optional in general, in this
case it is always an input. In particular, the open source project Color Thief [13]
by Lokesh Dhakar is used. This library is able to grab the color palette from an
image; an example of how it works is shown in Figure 3.3.

1RGBA stands for Red, Blue, Green and Alpha. It is an additive color model in which red,
green and blue colors are added together in various ways to reproduce a broad array of colors.
The alpha channel describes the degree of transparency/opacity of each pixel.

40

3 – Image rendering from any format to SVG format

Figure 3.3. Example of palette extraction using Color thief. (source: ColorThief)

The algorithm uses NUMBEROFCOLORS in place of k and, since it is pre-
defined, neither the Elbow Graph nor the SSE evaluation are needed. Clusters are
basically the colors and the dataset is the indexed matrix (pixels).

The closeness measure adopted is the Taxicab geometry or Rectilinear distance,
where the distance between two points is the sum of the absolute differences of their
Cartesian coordinates. In this case, the distance is computed using RGBA values
and at each iteration of the algorithm the closest color from the palette is chosen
as cluster. The clustering algorithm is repeated COLORQUANTCYCLES times
and at the very end both the averaged palette of colors and the indexed matrix are
returned. The image inf Figure 3.4 is considered as reference example.

Figure 3.4. Reference example.

41

https://lokeshdhakar.com/projects/color-thief/

3 – Image rendering from any format to SVG format

3.3 Layer Separation and Edge detection

The aim is to detect and separate as many layers as the number of colors of the
palette. Each layer is represented as a multi-dimensional array and is strictly linked
to one single color. The starting point is the indexed matrix and the objective is
to assign at each pixel an edge node type (Figure 3.6 - right) going through the
following steps:

1. Each pixel is considered as the lower right corner of a 4 pixels grid;

2. Each pixel of the 2x2 matrix has a given value (Figure 3.6 - left);

3. Walking around the cell in a clockwise direction, the edge node type is given
by the sum of the four values: the value itself if the pixel has the same color
as the inspected one, 0 otherwise.

In this way, each element of the layering matrix, representing the edge node type
of that pixel, can have 16 possible values in the range 0-15. Layering can be se-
quential (default) or parallel: in the first case a two-dimensional matrix is created
(one matrix for each color), while in the second case a unique cubic matrix is cal-
culated. Note that the indexed matrix produced by color quantization is oversized,
and it is such that the external contour is -1 to avoid out of memory indexing in
edge detection computation. The following snippet shows how fast and easy is to
compute edge node types:

// Looping through all pixels and calculating edge node type

// cnum is the current color

for(j=1; j<ah; j++){

for(i=1; i<aw; i++){

layer[j][i] =

(ii.array[j-1][i-1]===cnum ? 1 : 0) +

(ii.array[j-1][i]===cnum ? 2 : 0) +

(ii.array[j][i-1]===cnum ? 8 : 0) +

(ii.array[j][i]===cnum ? 4 : 0)

;

}

}

Figure 3.5. Edge node types calculation

Some examples of edge node types of the image shown in Figure 3.4 are listed in
Figure 3.7. At the end of this step, which takes imgd and options.pal as inputs,
two different outputs may be provided:

❼ layer[imgd.width][imgd.height], a bi-dimensional matrix, computed by
the layeringstep function, where each element is the edge node type with

42

3 – Image rendering from any format to SVG format

Figure 3.6. Pixel values (left) and Edge node types (right)

respect to the given color. It is used in case of sequential layering, so in this
case the function is called pal.length times;

❼ layers[k][imgd.width][imgd.height], where k is pal.length. It is a k-
dimensional matrix computed by the function layering, called only once in
case of parallel layering, and englobes the bi-dimensional matrices of each
color.

Figure 3.7. Edge node types examples

Considering the original image of Figure 3.2, the obtained layers for both red
and yellow colors are shown in Figure 3.8.

3.4 Pathscan

The aim is to find and save all paths for each color, starting from an edge corner
by finding chains of edge nodes (Figure 3.9 – red dots). In the following, the basic
idea of the algorithm is described:

1. Scanning is performed clockwise, so the only feasible starting points are edges
of type 4 or 11 and the default direction is right;

2. Directions are managed using the following notation: 0 stands for RIGHT, 1
stands for UP, 2 stands for LEFT, 3 stands for DOWN;

3. A pre-built lookup table is used to look for paths;

43

3 – Image rendering from any format to SVG format

Figure 3.8. Layers extraction examples

4. Using point’s coordinates it is possible to detect the end of a path (if coor-
dinates are equal to the starting point), and if it is a hole path or not (by
checking the bounding box coordinates).

Figure 3.9. Edge node types examples

A lookup table is an array that replaces runtime computation with a simpler
array indexing operation. The savings in terms of processing time can be significant,
since retrieving a value from memory is often faster than undergoing an expensive
computation or input/output operation. In this case the table has as many rows as
the number of edges, and as many columns as the number of directions. Moreover,
each column contains 4 values:

❼ next edge type (0-15);

❼ new direction (0-3);

❼ the increment of the coordinates of the next pixel (dx and dy).

so the overall table is a three-dimensional matrix. Each position of this table is in-
dexed by the couple (edge node type, direction): the first one selects the row,
the second one indicates the column , i.e., the corresponding quadruple. Moreover,
since edge node types 0 and 15 represent, respectively, an empty node and a full
node are invalid indices.

Considering the red layer of Figure 3.8, the main accesses to the lookup table of
the pathscan algorithm are listed in Figure 3.10:

44

3 – Image rendering from any format to SVG format

4 -> [0, 0, 1, 0] //dir = 0 - right

12 -> [0, 0, 1, 0] //dir = 0 - right

8 -> [0, 3, 0, 1] //dir = 3 - down

9 -> [0, 3, 0, 1] //dir = 3 - down

1 -> [0, 2, -1, 0] //dir = 2 - left

3 -> [0, 2, -1, 0] //dir = 2 - left

2 -> [0, 1, -1, 0] //dir = 1 - up

6 -> [0, 1, 0, -1] //dir = 1 - up

Figure 3.10. Example of the usage of the lookup table.

The algorithm is very simple: the first node, from which the path starts, is
node 4. Since it is the upper left node, and the default direction is right, the next
direction is still right, and as the movement continues along the positive x-axis of
the Cartesian system, only the x coordinate is increased. The path continues along
the upper border of the image, so edge node types 12 are met, and the behaviour
is the same as the edge node type 4 until the upper right corner is reached. In
this case the direction changes from right to down, and the movement is along
the positive y-axis of the Cartesian system, so only the y coordinate is increased.
Basically, when moving forward (right and down), coordinates are increased, while
when moving backward (left and up) coordinates are decreased.

This step of the process takes the layers as input and uses path object. It is a
quite complex object, with different properties, as shown in Figure 3.11.

Figure 3.11. Path object and point object structure.

45

3 – Image rendering from any format to SVG format

Each path object has the collection of all the points belonging to the path, the
coordinates of the upper left corner and the lower right corner, i.e., the bounding

box, the number of hole children (holechildren), and if the path has hole children,
i.e., isholepath is a boolean set to false only if holechildren is equal to 0. Each
point is an object as well, and it has three properties: x coordinate, y coordinate
and the edge node type t.

Considering the path generated from the red layer of Figure 3.8, the output is
reported in Figure 3.12.

path = [

boundingbox : [0, 0, 9, 9],

isholepath: false,

holechildren: 0,

points:[

{x=0, y=0, t=4},

{x=1, y=0, t=12},

{x=2, y=0, t=12},

{x=3, y=0, t=12},

{x=4, y=0, t=12},

{x=5, y=0, t=12},

{x=6, y=0, t=12},

{x=7, y=0, t=12},

{x=8, y=0, t=12},

{x=9, y=0, t=8},

.......

{x=9, y=9, t=1},

{x=8, y=9, t=3},

{x=7, y=9, t=3},

{x=6, y=9, t=3},

{x=5, y=9, t=3},

{x=4, y=9, t=3},

{x=3, y=9, t=3},

{x=2, y=9, t=3},

{x=1, y=9, t=3},

{x=0, y=9, t=2},

.......

]

]

Figure 3.12. Example of path object.

At the very end of this step an array of path objects, containing all the founded
paths for a given color, is returned. Paths shorter than PATHOMIT are neglected.

46

3 – Image rendering from any format to SVG format

3.5 Interpolation

The aim is to interpolate the obtained paths to make them smoother. Each line
segment in the path is associated to one of the 8 possible directions: North, South,
East, West, North-East, North-West, South-East, South-West, so the 8-directional
chain code representation is used (see Section 2.5.1). Each direction is represented
as a number from 0 to 7 and is computed considering the current pixel and its next.
The code snippet reported in Figure 3.13 shows how directions are calculated:

this.getdirection = function(x1, y1, x2, y2){

var val = 8;

if(x1 < x2){

if (y1 < y2){ val = 1; } // SouthEast

else if(y1 > y2){ val = 7; } // NE

else { val = 0; } // E

}else if(x1 > x2){

if (y1 < y2){ val = 3; } // SW

else if(y1 > y2){ val = 5; } // NW

else { val = 4; } // W

}else{

if (y1 < y2){ val = 2; } // S

else if(y1 > y2){ val = 6; } // N

else { val = 8; }// center, this should not happen

}

return val;

}

Figure 3.13. Example of path object.

At this level a very simple linear interpolation is used (based on pixels’ coordi-
nates), but right angles interpolation is thus enhanced to help the following steps.
To identify right angles 5 points are considered: both the two following and the two
preceding the current point and the current point itself. If a right angle is detected,
and RIGHTANGLEENHANCE option is true, the current point is neglected, then the
previous and the following points are interpolated using a median (Figure 3.14).

47

3 – Image rendering from any format to SVG format

Figure 3.14. Right angle enhanced.

Interpolation is also used to thicken points to have better accuracy in the final
result. So the overall purpose is to interpolate points and to assign at each line
segment one direction. The output is still a path object, but in this case there is
the linesegment type in place of the edge node type.

Considering the path generated from the red layer of Figure 3.8, and supposing
that RIGHTANGLEENHANCE = false, the interpolated path is as given in Figure 3.15.

path = [

boundingbox : [0, 0, 9, 9],

isholepath: false,

holechildren: 0,

points:[

{x=0.5, y=0, linesegment=0},

{x=1.5, y=0, linesegment=0},

{x=2.5, y=0, linesegment=0},

{x=3.5, y=0, linesegment=0},

.......

.......

.......

{x=2.5, y=9.5, linesegment=4},

{x=1.5, y=9.5, linesegment=4},

{x=0.5, y=9.5, linesegment=4},

.......

]

]

Figure 3.15. Example of interpolated path object

48

3 – Image rendering from any format to SVG format

3.6 Tracing and SVG coordinates generation

The aim of this step is to fit linear or quadratic spline segments on the 8 direction
inter-node paths, splitting the interpolated paths into sequences with only two
directions. The algorithm works as follows:

❼ Try to fit a straight line between the starting and ending points of the sequence;

❼ Calculate the distance between points belonging to the linear spline and the
actual sequence of points;

❼ Use LTRES as threshold to decide if the straight line is good enough or not,
i.e., evaluating if the error is below the threshold or not;

❼ If the straight line does not fit the sequence, select the point with the biggest
error;

❼ Fit a quadratic spline through the control point (project this to get the control
point), then measure errors on every point in the sequence;

❼ Use QTRES as threshold to decide if the quadratic spline fits or not the sequence;

❼ If the quadratic spline does not fit, find the point with the biggest error and
mark it as splitting point ;

❼ Split the sequence in two: starting point – splitting point and splitting point
– ending point;

❼ Recursively apply the fitting algorithm to each sub-sequence.

At the very end of the fitting algorithm each path is marked as straight or quadratic.
To help SVG string creation two different markdowns are used to create a segment-
type:

❼ L: straight line going from (xs, ys) to (xe, ye);

❼ Q: quadratic line going from (xs, ys) to (xe, ye) and passing through an inter-
mediate point, the splitting point, (xi, yi).

The fitting algorithm takes the path object, ltres, qtres and both the starting
and ending points, i.e., (xs, ys) and (xe, ye) as inputs. To evaluate the goodness of
the fitting sequence towards the threshold, RMSE is used as measure.

At the end of tracing step, involving the fitting algorithm for each of the pre-
viously computed paths, the path object is still returned, but it has an array of
segment-types in place of points. Considering the example of the interpolated
path shown in Figure 3.15, the path object returned at the very end of this step
would be as reported in Figure 3.16.

49

3 – Image rendering from any format to SVG format

path = [

boundingbox : [0, 0, 9, 9],

isholepath: false,

holechildren: 0,

segments:[

{type= "L", x1=0.5, y1=0, x2=9, y2= 0},

{type= "L", x1=9, y1=0.5, x2=8.5, y2= 9},

{type= "L", x1=8.5, y1=9, x2=0, y2= 7.5},

{type= "L", x1=0, y1=7.5, x2=0.5, y2= 0}

]

]

Figure 3.16. Example of traced path object.

At this point the original image has been divided into layers, one for each color.
For each of these layers a series of paths have been identified, and from each of
these paths a sequence of segments has been extracted. Finally, each segment has
information on its type, linear or curvilinear, and on the start and end points.

SVG coordinates, collected in the SVG file, are just a string obtained using the
syntax explained in Chapter 2.1:

❼ The string is initialized with <svg> tag;

❼ width and height properties are set;

❼ Each path starts with <path> tag;

❼ For each path fill, stroke and stroke-width properties are set using the
palette generated in the first steps;

❼ Each segment of the path is rendered using moveto (’M’), lineto (’L’) or
curveto (’C’) depending on the segment-type;

❼ Each path is closed with <Z> tag.

so the overall structure of the generated SVG file is as reported in Figure 3.17.

50

3 – Image rendering from any format to SVG format

<svg id="svg-image" width="214" height="213">

<g id="m1">

<path fill = "rgb(255,255,255)" stroke="rgb(255,126,126)"

stroke-width="1" opacity="1" d="M 194.5 18 L 194.5 19 L

194.5 18 Z "/>

<path fill = "rgb(255,255,255)" stroke="rgb(255,126,126)"

stroke-width="1" opacity="1" d="M 194.5 18 L 194.5 19 L

194.5 18 Z "/>

.......

</g>

<g id=m8">

<path fill = "rgb(255,255,255)" stroke="rgb(255,126,126)"

stroke-width="1" opacity="1" d="M 194.5 18 L 194.5 19 L

194.5 18 Z "/>

<path fill = "rgb(255,255,255)" stroke="rgb(255,126,126)"

stroke-width="1" opacity="1" d="M 194.5 18 L 194.5 19 L

194.5 18 Z "/>

.......

</g>

</svg>

Figure 3.17. General structure of the generated SVG file.

As mentioned before, the SVG file is customized on Scribit’s needs, in partic-
ular colors are grouped, i.e., one group for each color (layer), using the <g> tag.
Moreover, a unique id is associated to each group, representing the marker to use.
At the moment, Scribit does not support fills, i.e., the assumption is that only the
contours are to be drawn. This is due to back-end conversion in g-code but also for
timing reasons: right now drawing filled images requires too much time. To remove
fill, the fill property of the <path> is set equal to rgb(255,255,255), i.e. is set
to white. White fills are discarded by the conversion algorithm performed on the
back-end side.

Furthermore, it is possible to decide between straight line, dashed-line and
pointed-line. Thanks to the stroke properties, it is possible to render different
kinds of lines. The code snippet showing how it is done in this case is reported in
Figure 3.18.

51

3 – Image rendering from any format to SVG format

if (line == 0)

var add = "";

else if (line == 1)

var add = ’stroke-dasharray="10,10" ’;

else

var add = ’stroke-dasharray="1,5" stroke-linecap="round" ’;

Figure 3.18. Setting of the type of the line.

Here, line = 0 stands for straight, line = 1 stands for dashed and line = 2

stands for pointed. These properties are then added to the <path> tag.

3.7 SVG - GCode conversion

For the sake of completeness, in the following a brief description of the SVG/gcode
conversion, developed by the other master’s candidate, is provided.

The idea behind the conversion algorithm lies on some consideration about SVG
paths: each SVG file is made up by both shapes and paths and their coordinates
are directly accessible from their specific tags. The main difference between them is
essentially in the way in which the points are defined: shape has only the starting
point of the path (the upper left corner in case of lines and polygons), or the centre
in the case of circumferences and ellipses, while path has both the starting and end
points and the control point of the curves. The output file, i.e., the NC listing,
must contain discrete commands point by point, so first of all geometric shapes are
converted into paths and then only paths are considered when actual conversion is
performed.

The second step is to scale the working area to the desired size of the design on
the wall. These information are available in the <svg> tag, via width, height and
viewBox attributes. The scale factor is computed using the actual dimensions and
the desired ones, and is used to modify the width, the height and the viewBox

of the SVG file. After scaling, it is possible to further modify the file, if required
by the user, mirroring it with respect to the Y axis. This option has been made
available to users who want to print something on windows and transparent surfaces
in general. Scribit, in fact, is designed to work indoor, and a drawing that must be
appreciated and/or understood from the outside (e.g., in stores) will be mirrored if
printed on the inside of the wall.

Now it is possible to proceed with the extraction of the commands within the
paths, and consequently all the points: each instruction of each path must be
treated separately and translated into GCODE according to its meaning. For exam-
ple, all the commands related to the points (moveTo, lineTo etc.) will be translated
into G1 instructions: it is the instruction of a linear movements and takes as inputs
the Cartesian coordinates. It is essential to distinguish between absolute or relative
coordinates, because it is necessary to know at every instant the current point in

52

3 – Image rendering from any format to SVG format

which the marker is located to properly add the relative point to coordinates. A
separate case is represented by the curves, that exposing only the end point and
control points, need to be interpolated in several linear movement commands, di-
viding the curve into segments and their length (and consequently the total number
of them) represents the degree of approximation in inverse proportionality.

After GCode file generation, the script creates the file used for erasing, if re-
quested by the user. To erase a drawing, an SVG image is created containing only
horizontal and vertical segments that trace the scaled drawing.

53

Chapter 4

Results

The overall rendering algorithm is designed to be very efficient, i.e., to have a
rendered SVG image as close as possible to the original image, at least on paper.
Performance tests have been executed to measure how much good the proposed
solution is. They can be divided into two groups: tests with SVG fill and tests
without SVG fill.

Each test has been run considering two main parameters: the blurdelta and
the numberofcolors. Moreover, a “difference image”, i.e., a sort of negative1, is
used to compare the color similarity between the original image and the SVG image.
The difference image (dimgd) is built pixel by pixel considering the RGBA distance
between the original image (oimgd) and the rendered one (imgd), as reported in
Figure 4.1.

for(var j=0; j<imgd.height; j++){

for(var i=0; i<imgd.width; i++){

dimgd.data[idx] = Math.abs(oimgd.data[idx] -

imgd.data[idx]); //R

dimgd.data[idx+1] = Math.abs(oimgd.data[idx+1] -

imgd.data[idx+1]); //G

dimgd.data[idx+2] = Math.abs(oimgd.data[idx+2] -

imgd.data[idx+2]); //B

dimgd.data[idx+3] = Math.abs(oimgd.data[idx+3] -

imgd.data[idx+3]); //A

}

}

Figure 4.1. Difference image computation.

1In photography, a negative is an image in which the lightest areas of the photographed subject
appear darkest and the darkest areas appear lightest.

54

4 – Results

Since the RGBA values for black and white are, respectively, (0,0,0,0) and
(255,255,255,0), the more the RGBA distance is small, i.e., the color of the SVG
image is as similar as possible to the original one, the more the difference image
tends to black, and vice versa.

Furthermore, to better interpret the results some measures, such as tracing time,
rendering time and RGBA difference, are computed.

4.1 Tests with SVG fill

The first set of tests takes as reference image a very simple image, i.e., a cartoon
style image.

The first test (Figure 4.2) is run with blurdelta = 100 and numberofcolors=4.

Figure 4.2. Test 1

Since the image is very simple, blurring has no effect, and the rendered image
is quite good except the tongue and the beard (see Figure 4.2 - difference image).
This is because numberofcolors = 4, and the averaged palette colors (Chapter
3.2.2.) is yellow for the skin, blue for jeans, white for the shirt and grey for
shoes, so the beard and the tongue are clustered with the nearest color, in a RGBA
sense, i.e., the yellow.

55

4 – Results

For this reason, a second test has been run (Figure 4.3) with blurdelta =

10 and numberofcolors = 16. As expected, now the tongue and the beard are
correctly rendered since numberofcolors is higher than in the previous test (note
that blurdelta = 10 since blurring has no effect).

Figure 4.3. Test 2

As mentioned before, some numerical measures are computed to better interpret
and compare the tests. Table 4.1 and 4.2 show, respectively, the results for both
Test 1 and Test 2. On the one hand, since the second image is more accurate,
because of the tongue and the beard, the RGBA difference is lower, on the other
hand both the tracing and the rendering time are higher, i.e., higher accuracy is
more time consuming.

Tracing time (ms) Rendering time (ms) RGBA difference Nr. of paths

650 5 6.54 676

Table 4.1. Test 1 measures

56

4 – Results

Tracing time (ms) Rendering time (ms) RGBA difference Nr. of paths

995 17 2.86 676

Table 4.2. Test 2 measures

The second set of tests takes as reference image a more complex image, with
more colors and more details. The first test (Figure 4.4) is run with blurdelta =

10 and numberofcolors = 4; blurdelta = 10 to prevent loss of details, since the
image is quite complex.

Figure 4.4. Test 3

The resulting SVG image is quite complex as the original image, although some
details are lost because of the small size of the palette. The aim is to have as simple
as possible SVG images because the final target is the plotter, i.e., the clearer the
SVG image is, the better and the faster the plotting is. So, to simplify the image
a higher blurdelta can be used and Figure 4.5 shows the results of this test.

57

4 – Results

Figure 4.5. Test 4

In this case the SVG image is more smoothed and simple, but comparing Table
4.3 and Table 4.4 is clear that simpler image, i.e., lower rendering time and lower
number of paths, means higher RGBA difference.

Tracing time (ms) Rendering time (ms) RGBA difference Nr. of paths

680 33 20.9 1615

Table 4.3. Test 3 measures

Tracing time (ms) Rendering time (ms) RGBA difference Nr. of paths

715 5 22.34 103

Table 4.4. Test 4 measures

It is possible to reduce the RGBA distance by increasing the size of the palette.
So, another test is run with blurdelta = 1024 and numberofcolors = 16; Figure
4.6 shows the results.

58

4 – Results

Figure 4.6. Test 5

As Table 4.5 shows, the RGBA distance is halved but the SVG image is more
complex and both the tracing and the rendering time are increased.

Tracing time (ms) Rendering time (ms) RGBA difference Nr. of paths

910 15 11.9 360

Table 4.5. Test 5 measures

To try to find a good trade-off, one last test is run with blurdelta = 10 and
numberofcolors = 16.

Figure 4.7 shows that in this case the rendered SVG image is very realistic and
much closer to the original one, but Table 4.6 shows that both the tracing time and
the number of paths is very high, despite the RGBA difference is further decreased.

59

4 – Results

Figure 4.7. Test 6

Tracing time (ms) Rendering time (ms) RGBA difference Nr. of paths

1216 62 10.1 4032

Table 4.6. Test 6 measures

The last set of tests takes as reference image a more complex one.

To have the resulting SVG image as accurate as possible, the first test is run
with blurdelta = 10 and numberofcolors = 16. As expected, Figure 4.8 shows
that the result is very accurate and all the details are preserved. This is further
confirmed by Table 4.7, which shows a very low RGBA difference, although both the
tracing and the rendering time are very high, i.e., this test is more time consuming.

60

4 – Results

Figure 4.8. Test 7

Tracing time (ms) Rendering time (ms) RGBA difference Nr. of paths

1001 105 7.35 8619

Table 4.7. Test 7 measures

To reduce the complexity and the rendering time, it is possible to use a higher
blurdelta and a lower numberofcolors. So, the last test is run with blurdelta

= 100 and numberofcolors = 4. Table 4.8 shows that the RGBA difference is
increased but either the tracing and the rendering time are decreased, as desired.

61

4 – Results

Figure 4.9. Test 8

Tracing time (ms) Rendering time (ms) RGBA difference Nr. of paths

895 42 12.8 2168

Table 4.8. Test 8 measures

62

4 – Results

4.2 Tests without SVG fill

The rendering algorithm has been developed to be general purpose and to obtain
a traced image as close as possible to the original one. The tests shown so far
prove that it is possible to get different results, depending on the specific needs, by
finding the right trade-off between the involved parameters.

The context of this thesis work, on the other hand, is more specific. The ren-
dering algorithm must be used for a vertical plotter (Scribit), and therefore it is
necessary to customize it on Scribit’s needs. In particular, the goal of Scribit is
to draw images that are clear and recognizable, and in the shortest possible time.
For these reasons, at the moment fills are not supported, i.e., the gcode conversion
algorithm expects SVG images that have only the contours. Moreover, the central
drum (Chapter 1.1.1) can hold only 4 markers, i.e., the rendering algorithm should
consider only 4 colors.

In the following, the fill property of the path tag is set to (255,255,255,0),
i.e., white, and the numberofcolors is assumed to be always 4. The images of
the previous section are still used as reference images, and blurdelta is the only
involved parameter. For these tests the RGBA difference is useless, since the fills
are removed and the difference would be reasonably high.

The first test is run with blurdelta = 10 and Figure 4.10 shows the result.

Figure 4.10. Test 9

In this case the image is very simple and its contours are well defined so the
overall result is quite good. If a more complex image is considered, with less defined
contours, and with the same blurdelta, the result is slightly less good. This is the
case shown in Figure 4.11.

63

4 – Results

Figure 4.11. Test 10

The resulting SVG image is not well defined and too complex to be drawn. To
improve the result and to have a better defined contours, i.e., a simplified version
of the original image, it is possible to increase the blurdelta. Figure 4.12 shows
the result of the test run with blurdelta = 1024.

Figure 4.12. Test 11

It is quite evident that removing fills causes loss of details and the images are
not always fully recognizable. This is more clear by looking at Figure 4.13.

64

4 – Results

Figure 4.13. Test 12

In this case, either the image and its contours are very complex and despite a
quite low blurdelta is used, the rendered image is not recognizable at all.

4.3 Further tests: portraits and selfies

The previous section shows that, as a matter of fact, the proposed solution is not
very effective when images have complex contours. This is further confirmed when
the input image is a selfie or a portrait.

In this section, the picture of a famous actress, Angelina Jolie, is taken as a
reference. Figure 4.14 shows the result with and without the SVG fill property.

Figure 4.14. Portrait Test 1

It is clear that the SVG without the fill cannot be drawn, it is too complex and
not recognizable, although the render with the full fill is very remarkable. This
depends on the fact that a face has very detailed and complex features, and it
should be as simple as possible, without losing its recognizability, to be drawable.
This requires a very accurate edge-detection algorithm which is able to extract all
the details and to create smoothed, simple, and clear lines.

65

4 – Results

The need to render portraits, or better still selfies, comes from the kind of
experience that Scribit wants to offer its users: nowadays it is common practice to
take selfies, and it cannot be excluded that the ordinary user is fascinated by the
possibility of seeing his selfie drawn on the wall. For these reasons, the opportunity
of designing your own selfie was announced as one of the additional features to be
released soon.

To overcome the current limitations of the developed rendering algorithm, the
last part of this thesis work is focused on the research and the study of existing
solutions to draw faces and, generally, selfies, that are recognizable and with a
“Scribit style”.

There are plenty of solutions, but the ones that are more suited to Scribit’s
needs are Coherent Line Drawing [14] and Line Draw [15]. The first solution is
more methodological, has a mathematical approach to the problem, dealing with
vector fields, flows and gradients, and provides satisfactory results on paper (Figure
4.15).

Figure 4.15. Coherent Line Drawing example (source: Coherent Line Drawing)

However, the second solution was chosen because, although it is simpler and
technology based, it still provides good results. It is based on OpenCV [16], a
multi-platform software library for real-time computer vision. It is a free software
library originally developed by Intel, and, as the official website mention, it has
more than 47 thousand people of user community and estimated number of down-
loads exceeding 14 million. Usage ranges from interactive art, to mines inspection,
stitching maps on the web or through advanced robotics.

The linedraw algorithm is developed in python and it is basically based on the
Canny Edge Detector [17]. It was designed in 1986 by John F. Canny and it uses a
multi-stage calculation method to find the contours of many of the types normally
found in real images. Canny algorithm aims at satisfing three main criteria:

❼ Good recognition: the algorithm must identify as many contours as possible
in the image;

66

http://umsl.edu/mathcs/about/People/Faculty/HenryKang/coon.pdf/

4 – Results

❼ Good localization: the identified contours must be as close as possible to the
actual contours of the image;

❼ Minimum response: a given contour of the image must be marked only once,
and, if possible, the noise present in the image must not cause the recognition
of false contours.

To support the edge detection, the image is first transformed into black and
white, then a function is applied to correct the contrast so as to make the difference
between black and white clearer and more evident. Figure 4.16 shows this process.

Figure 4.16. Line Draw pre-processing

Figure 4.17 shows the final result, which is quite good with respect to the result
shown in Figure 4.14: the image is clear, recognizable and drawable.

Figure 4.17. Line Draw Test 1

So far, this approach seems to be suited to Scribit’s needs, but to further evaluate
the goodness of this algorithm another test has been run with a real selfie as input
image. As Figure 4.18 shows, the result is still good.

67

4 – Results

Figure 4.18. Line Draw Test 2

In this case either the background and the selfie itself are quite simple, so the
result is clear and recognizable. Conversely, if the background is complex the result
is not good as expected (Figure 4.19).

Figure 4.19. Line Draw Test 3

However, this algorithm provides a further feature that can be used to improve
the result: it is possible to insert a stylized filling using a hatching algorithm. It
consists in a series of horizontal lines that enhance the recognizability of the image,
as shown in Figure 4.20.

68

4 – Results

Figure 4.20. Line Draw Test 4

Obviously, the clearer the selfie the better the result. Nevertheless, hatching
adds complexity and the required time to draw the image increases significantly, so
the last effort of this thesis work focused on the optimization and the simplification
of the hatching algorithm.

The key concept arise from the black and white conversion: the python library
uses the ITU-R 601-2 luma transform [18], which encodes the RGBA values with
a single value L. In this case, the value 16 is used for black and 235 for white,
so to optimize the hatching algorithm it is possible to discard the background,
i.e., the pixels above a given threshold that are near to 235 (white). Moreover, to
simplify the hatching it is possible to decrease the number of lines. Figure 4.21
shows the final result of the optimization process. To be noticed that in this case a
non-uniform background was chosen to further test this algorithm, contrary to the
released guidelines.

Figure 4.21. Line Draw Test 5

69

4 – Results

4.4 Benchmarking

Benchmark means one or more tests specifically designed to evaluate the perfor-
mance of a device, or the effectiveness of a technical process, or a financial instru-
ment, with respect to a reference standard.

For software, benchmarking is not straightforward as it may seems, since too
many parameters are involved. For instance, software development is often based
on heuristics and programmers’ choices, and over years different rigorous method-
ologies have been developed to investigate the behaviour of the algorithms.

In the case of computer vision, there is no real reference standard, and typically
tests are based on comparing different approaches to the same problem. For this
reason, in this section the proposed solution is compared with two vectorizing tools:
Inkscape and Png or Jpg to SVG converter. Inkscape is a free and open source
vector graphic editor for Windows, Mac OS X and Linux, Png or Jpg to SVG
converter is one of the most used online converters, i.e., one of the first addressed
by Google.

The three images used in the previous tests are still taken as a reference. To
better highlight the differences between the different approaches, numberofcolors
is assumed to be always 16, and only the case of images with fills is considered.

The first comparison is with Inkscape, and it considers the cartoon style image
of Test 1 as example. Figure 4.22 shows that, except for the contours, the proposed
solution works better than Inkscape since the resulting image seems to be very
opaque, as if it had been blurred too much (it is not possible in Inkscape to chose
neither the type of blurring nor the radius).

Figure 4.22. Comparison 1

If considering the online converter (Figure 4.23) the result is in principle the
same, except for the beard which is correctly recognized only by this thesis ap-
proach.

70

4 – Results

Figure 4.23. Comparison 2

If considering the image of Test 3 as test image, there are very few differences
between this thesis approach and Inkscape (Figure 4.24).

Figure 4.24. Comparison 3

Instead, Figure 4.25 shows that in this case the result of the online converter is
slightly different but mostly for the palette, so the overall result is still good.

71

4 – Results

Figure 4.25. Comparison 4

The last comparison takes the image of Test 5 as example. In this case Fig-
ure 4.26 and Figure 4.27 show that the behaviour is similar to that of the first
comparison.

Figure 4.26. Comparison 5

Figure 4.27. Comparison 6

72

Chapter 5

Conclusions

The subject of this thesis has been challenging for a number of reasons.

Surely there are very efficient and accurate SVG rendering algorithms, but
Scribit wants the user experience to be the best possible, providing exactly what
is needed, without too many frills or complications. Using third-parties services
makes the user experience slower and more cumbersome, hence the need to have
custom solutions to offer a complete 360➦ experience.

The first result to highlight is the efficiency of the algorithm: both the tracing
and rendering time, as shown in the previous chapter, are in the order of millisec-
onds, regardless of the web browser used.

However, the main objective of this thesis work was never to have a rendering
algorithm as fast as possible, but to have the resulting SVG file as faithful as possible
to the original image. Indeed, the goodness of the overall rendering algorithm is
very remarkable: Chapter 4 shows clearly that the result is very accurate, either
with simple images or with complex images. The limitation is surely when fills are
removed: if the image is too complex, with not well defined contours, the result is
not clear and recognizable.

A viable solution would be to prefer a different edge-detection approach to have
more smoothed and clearer contours. An idea could be to take as an example the
python algorithm shown at the very end of Chapter 4: it is based on the Canny
edge detector, which is a well-known and open algorithm, so it would be possible to
provide a new implementation of this algorithm using JavaScript. In fact, the know
how and the experience gathered about edge detection during the development and
testing stages of this thesis work would be a good starting point.

Moreover, it would be interesting to exploit different color quantization ap-
proaches using other algorithms, e.g, octree. Color quantization could be further
improved because at the moment colors with few pixels are randomized. Besides,
other interpolation solutions, such as cubic splines or other curves, could be pre-
ferred.

Besides, it would be possible to play with the different parameters shown in
Chapter 3 to provide more interesting and creative filters to further enrich the user
experience.

73

5 – Conclusions

In conclusion, the main goal this thesis achieved is to prove that such a rendering
algorithm is not only possible, but also efficient, effective and usable. It also proved
that the overall process can be improved by showing its limitations and some real
solutions. Moreover, thanks to this thesis work there was the possibility to learn
the fundamental of computer vision, such as color quantization, blurring and edge
detection. This knowledge is very useful and it is the starting point for possible
future research work in different application field such as recognition, robotics,
autonomous driving and connectivity.

74

Bibliography

[1] VP Squared - Vertical plotting solutions
https://people.ece.cornell.edu/land/courses/ece4760/
FinalProjects/s2001/vp2/vp2miss.html

[2] Carlo Ratti Associati, https://carloratti.com
[3] Open Source Architecture, http://senseable.mit.edu/osarc
[4] L.Shapiro, G.Stockman, “Computer Vision”

Pearson College Div, 2001
[5] Scalable Vector Graphics (SVG), https://www.w3.org/Graphics/SVG/
[6] Guida SVG, https://www.html.it/guide/guida-svg/
[7] P. Tan, M. Steinbach, V. Kumar, “Introduction to Data Mining”

Pearson College Div., 2005
[8] R. Kress, “Numerical analysis”

Springer New York, 1998
[9] Interpolation by spline

https://www.math.uh.edu/ jingqiu/math4364/spline.pdf
[10] R. Jain, R. Kasturi, B. G. Schunck, “Machine Vision”

McGraw-Hill, 1995
[11] C. Maple, “Geometric design and space planning using the marching squares

and marching cube algorithms”
International Conference on Geometric Modeling and Graphics
London, July 2003

[12] MDN web docs
https://developer.mozilla.org/en-US/docs/Web/API/ImageData

[13] Color Thief, https://lokeshdhakar.com/projects/color-thief
[14] H. Kang, S. Lee, C. K. Chui, “Coherent Line Drawing”

http://umsl.edu/mathcs/about/People/Faculty/HenryKang/coon.pdf
[15] L. Dong, “Line Draw”, https://github.com/LingDong-/linedraw
[16] OpenCV, https://opencv.org/
[17] Canny Edge Detector

https://docs.opencv.org/2.4.13.7/doc/tutorials/imgproc/imgtrans/
canny detector/canny detector.html

[18] ITU-R 601-2 standard, https://en.wikipedia.org/wiki/Rec. 601

75

https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2001/vp2/vp2miss.html
https://people.ece.cornell.edu/land/courses/ece4760/FinalProjects/s2001/vp2/vp2miss.html
https://carloratti.com
http://senseable.mit.edu/osarc
https://www.w3.org/Graphics/SVG/
https://www.html.it/guide/guida-svg/
https://www.math.uh.edu/~jingqiu/math4364/spline.pdf
https://developer.mozilla.org/en-US/docs/Web/API/ImageData
https://lokeshdhakar.com/projects/color-thief
http://umsl.edu/mathcs/about/People/Faculty/HenryKang/coon.pdf
https://github.com/LingDong-/linedraw
https://opencv.org/
https://docs.opencv.org/2.4.13.7/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html
https://docs.opencv.org/2.4.13.7/doc/tutorials/imgproc/imgtrans/canny_detector/canny_detector.html
https://en.wikipedia.org/wiki/Rec._601

	Introduction
	Scribit
	Hardware and mechanics
	Software

	Background
	The SVG format
	Coordinates system
	Basic shapes
	Irregular shapes: paths
	Style

	Gaussian Blur processing
	Clustering Algorithms
	K-means clustering
	Bisecting K-means
	Hierarchical clustering
	DBSCAN (Density-based Clustering)
	Measures of Cluster Validity

	Interpolation
	Linear interpolation
	Polynomial interpolation
	Quadratic spline interpolation

	Edge contour representation
	Chain-code representation
	Curve interpolation vs curve approximation
	Least-square fit
	Robust regression fit
	Evaluating the goodness of fitting

	Image rendering from any format to SVG format
	Proposal
	Color Quantization
	Blur processing
	K-means clustering

	Layer Separation and Edge detection
	Pathscan
	Interpolation
	Tracing and SVG coordinates generation
	SVG - GCode conversion

	Results
	Tests with SVG fill
	Tests without SVG fill
	Further tests: portraits and selfies
	Benchmarking

	Conclusions
	Bibliography

