
POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Informatica

Tesi di Laurea

Providing trust to multi-cloud
storage platforms through the

blockchain

Relatore
Cataldo Basile

Claudia Fiore

Aprile 2019

To my grandparents

Summary

Cloud storage services are currently a commodity that allows users to store data per-
sistently, access the data from everywhere, and share it with friends or co-workers.
The number of cloud services is growing rapidly but with low interoperability be-
tween them; consequently, managing and sharing files between users of different
cloud storage is very difficult. To address this problem, specialized cloud aggrega-
tor systems emerged that provide users a global view of all files in their accounts
and enable file sharing between users from different clouds. To remove the need
to trust the cloud providers, Crypto Cloud solution provides the full encryption of
stored data, allowing to use multiple cloud storage providers to securely store files.

However, in Crypto Cloud, there is a central server which is responsible for
managing metadata about users, clouds, files, and permission. The general prob-
lem is that if the server is attacked, the integrity of files and public keys can be
compromised. The Crypto Cloud system was created with the assumption that the
server does not act maliciously. In this dissertation, we propose a solution that,
through the use of the blockchain, is able to provide integrity of metadata without
relying on the server. This is achieved by extending Crypto Cloud with secure
metadata management using the blockchain. We focused on the management of
the users’ identities and how to provide metadata integrity without relying on the
central server. We built a prototype and tested it with real use cases such as the
addition of a user, or creation/reading of files. While more complex, the new client
removes the trust from the central server and is, therefore, a step towards more
decentralized and secure cloud storage systems.

4

Acknowledgements

First and foremost, I would like to express my genuine gratitude to my academic
supervisors Cataldo Basile, Ricardo Chaves and Miguel Matos for giving me the
opportunity to work on this project and for the continuous support and guidance
throughout this research. Their patience, motivation and immense knowledge pro-
vided me the proper guidance during the research and writing of this thesis.

I would like to thank my parents and my sister for their deep and unconditionally
love and in particular for the support in this Erasmus experience. Finally, I would
like to express my gratitude to my friends Andrea, Camilla and Cristina for their
support and constant presence during these months spent in Lisbon.

5

Contents

1 Introduction 9
1.1 Motivation . 9
1.2 Thesis Outline . 10

2 Related work 12
2.1 Storekeeper . 12

2.1.1 Identity Management . 13
2.1.2 Access Control Model . 13

2.2 Crypto Cloud . 13
2.2.1 Crypto Cloud Client Application 14
2.2.2 Crypto Cloud Directory Server 15
2.2.3 Key Management Server and PKI infrastructure 16
2.2.4 Cloud Stores . 16
2.2.5 Base algorithm . 17
2.2.6 File Update . 18
2.2.7 File Sharing . 19

2.3 Summary . 19

3 Background 21
3.1 Distributed Ledger Technology and Blockchain 21

3.1.1 Security Characterstics . 23
3.2 Transactions . 23
3.3 Blocks . 24
3.4 Classification of a blockchain system 25
3.5 Consensus protocols . 26

3.5.1 Proof of work . 26
3.5.2 Proof of stake . 27
3.5.3 Practical Byzantine Fault Tolerance 27
3.5.4 Conclusions . 28

4 Blockchain: State of the Art 29
4.1 Hyperledger Fabric . 29

4.1.1 Identity . 31
4.1.2 Membership Service Provider 31
4.1.3 Consensus . 32
4.1.4 Smart Contract . 32
4.1.5 The ledger and the World State Database 33
4.1.6 Security analysis . 34

6

4.2 Ethereum (Public) . 35
4.2.1 Accounts and Addresses . 36
4.2.2 Transactions . 36
4.2.3 Smart contract . 37
4.2.4 Mining . 37
4.2.5 Security Analysis . 38
4.2.6 Ethereum Parity (Private) 38

4.3 Filecoin . 40
4.3.1 The network and the participants 40
4.3.2 Consensus . 40
4.3.3 Participants . 41
4.3.4 Security Analysis . 41

4.4 Summary . 42
4.5 Security risks . 43
4.6 Performance . 44
4.7 Hyperledger Fabric vs Ethereum . 44

4.7.1 Ethereum blockchain network 45
4.7.2 Hyperledger blockchain network 45
4.7.3 Performance and Security 45

4.8 Conclusions . 45

5 Design 47
5.1 Overview . 48
5.2 Architecture . 49

5.2.1 Crypto Cloud Client Application 49
5.2.2 Crypto Cloud Directory Server 50
5.2.3 Hyperledger Fabric Network 52

5.3 Models . 52
5.3.1 Trust model . 52
5.3.2 Threat model . 53

5.4 Metadata on the blockchain . 53
5.5 Management of identities . 55

5.5.1 Attack example . 57
5.6 Access Control List Integrity . 58
5.7 Version control and integrity . 60
5.8 From a centralized system to the blockchain 61
5.9 Summary . 62

6 Implementation 64
6.1 Overview . 64
6.2 Create the Hyperledger Network . 65

6.2.1 Chaincode . 66
6.2.2 Dimensions analysis . 67

6.3 Fabric API . 68
6.4 Modified protocols . 68

6.4.1 Example of basic algorithm 70
6.4.2 Example of sharing operation 72

6.5 Summary . 74

7

7 Evaluation 76
7.1 Performance Evaluation . 76
7.2 Crypto Cloud Performance . 77
7.3 Security Analysis . 80
7.4 Summary . 80

8 Conclusion 82
8.1 Future Work . 83

Bibliography 84

8

Chapter 1

Introduction

In recent years the use of cloud storage services such as Dropbox or Google Drive
has increased exponentially. These services offer a remote storage space on which it
is possible to save important data, accessible at any time. The use of cloud storage
services also allows to drastically reduce the risk of data loss, in fact, the cloud
provider periodically creates backup copies in a completely transparent way for the
end user. Moreover, Cloud Storage Services provide new features to manage files,
such as file sharing, file versioning, concurrent access or disaster recovery. However,
the interoperability between providers and platforms is very low. To address this
problem, specialized cloud aggregator systems emerged that provide users a global
view of all files in their accounts and enable file sharing between users from different
clouds. Such systems, however, have limited security: not only they fail to provide
end-to-end privacy from cloud providers, they also require users to grant full access
privileges to individual cloud storage accounts.

In this work, we focus on Crypto Cloud [1], a privacy-preserving cloud aggre-
gation service. It allows for using multiple cloud providers without renouncing
privacy, guaranteeing the confidentiality and integrity of managed files. Crypto
Cloud enables file sharing on multi-user multi-cloud storage platforms. The Crypto
Cloud application relies on a central server which manages all the information
(metadata) related to users, files, permission and cloud storage. In Crypto Cloud,
there is the assumption that the server does not modify the metadata actively. He
could access them, but it acts honestly. If malicious users attack the server, the
integrity of metadata could be compromised. Therefore, the goal of this thesis is to
extend Crypto Cloud with metadata management that ensures that security sen-
sitive operation can be performed only on trusted client endpoints. The resulting
system should leverage blockchain technology to enforce decentralized metadata
management securely; it manages the integrity of metadata and management of
users’ identities through the blockchain.

1.1 Motivation

Blockchain technology offers new tools that prevent the need for central adminis-
trators. Storing blocks of information across the network, the blockchain cannot
be controlled by any single entity and has no single point of failure. Whatever is
on the blockchain is not modifiable.

9

1 – Introduction

Moreover, the use of a distributed architecture implies performance advantages
compared to a centralized solution, including greater scalability and availability.
The main components of Crypto Cloud are: the Client Application, the Directory
Server and the Cloud Stores. The Crypto Cloud Directory Server acts as a metadata
repository of users, clouds, files and permission information. As an assumption, this
server is considered “honest but curious”. It means that the server can listen to
the exchanged messages but follows the system’s protocol and does not launch
active attacks [1]. The server can read the metadata but does not modify them. In
order not to trust the server anymore, we must provide a mechanism to protect the
metadata integrity. This functionality can be delivered with the blockchain, whose
main property is the integrity of the stored information. In this research project,
we explore the potentiality of the blockchain technology to reduce the trust on
the central server of the application Crypto Cloud. By integrating this technology
with Crypto Cloud, it is possible to implement authentication and provide integrity
of the metadata without relying on the server. There will be no central point of
failure, and the assumption of the trustworthy server will not be longer necessary
because with the blockchain we do not need to trust in any third party.

The main goal of this thesis is to extend Crypto Cloud with metadata man-
agement that ensures security sensitive operation relying on the blockchain and
develop a Proof of Concept to prove the feasibility of the designed solution. The
actual implementation of Crypto Cloud Application manages the user’s crypto-
graphic keys and their certification relying on an external service. It is possible to
modify this functionality, managing the users’ identities both with the blockchain
and adding an application logic on the client; in this way we can achieve a robust
identity management but in a decentralized and secure way. Moreover, Crypto
Cloud guarantees the integrity and versioning of files but, as mentioned before, the
integrity of the metadata is not guaranteed. The hash of files, the versions, and
the Access Control Lists are critical metadata to provide validity of files, so we
must protect them from tampering. Moving that metadata to the blockchain we
can ensure integrity and freshness of that information. In addition, we developed
a control on the client in which, every time an operation is performed, there is a
check between the server’s metadata and the blockchain’s metadata; in this way,
we guarantee the system correctness.

The new version of Crypto Cloud should have the same functionality as before.
It must also provide the following functionalities:

1. the system must provide integrity of the metadata without trusting the server;

2. the system must provide a mechanism to validate the public keys and associ-
ated identities of the users.

1.2 Thesis Outline

The rest of this document is organized as follows:

• Chapter 2 describes the current Crypto Cloud system;

• Chapter 3 presents background about blockchains and its main characteris-
tics;

10

1 – Introduction

• Chapter 4 presents an overview of the blockchain state of the art and the
choice of the blockchain system to use in our Proof of Concept;

• Chapter 5 describes the proposed solution, detailing its architecture and
security models;

• Chapter 6 describes the implementation details of the Proof of Concept;

• Chapter 7 presents the evaluation of the proposed solution and the analysis
of the obtained results from performance and security perspectives;

• Chapter 8 concludes this document, summarizing the developed work and
presenting improvements that should be taken into account for future work.

11

Chapter 2

Related work

In this chapter, we detail the Crypto Cloud system, a privacy-preserving cloud
aggregation service that enables file sharing on multi-user multi-cloud storage plat-
forms [1]. The Crypto Cloud application is based on Storekeeper’s approach [2] and
extends it by introducing new management of users’ identities, authentication and
integrity protection over files. The goal of this thesis is to integrate Crypto Cloud
with the blockchain. Therefore, it is essential to provide an overview of the system
to understand its functionalities.

2.1 Storekeeper

Storekeeper [2] is a cloud storage aggregator that guarantees data confidentiality
without compromising the user’s credentials. Storekeeper presents the different
cloud stores as a single storage workspace and enables secure file sharing between
users without requiring individual cloud accounts. Figure 2.1 depicts the applica-
tion architecture.

Alice account 1

Alice account 2

Bob account 1

Storekeeper
Directory Server

(SDS)

Hosting Company

Alice’s laptop

Storekeeper
Client

Cache

Bob’s desktop

Storekeeper
Client

Cache

SDS
Administrator

Cloud-backed Stores

Figure 1. System overview.

cloud accounts hosted by cloud services such as Dropbox
or Google Drive. These cloud accounts are provided by the
user. The SDS is the heart of Storekeeper. This component
runs on a dedicated server and manages the meta-data
associated with users, files, and stores. Files themselves are
not stored in the SDS, but on stores provided by users.

Figure 1 illustrates the architecture of the system using
a simple deployment scenario. Alice and Bob are faculty
members of a university, which runs Storekeeper in its
premises in order to foster internal collaboration. A ded-
icated administrator is responsible for managing the SDS
server and registering users in the system. Alice and Bob
can log into the system using a username and a secret
password, and register their personal cloud accounts. In this
usage scenario, Alice has two accounts in Dropbox and Bob
has one account in Google Drive. Storekeeper will interpret
them as stores allowing Alice to see a unified view of files
in accounts 1 and 2, and Bob to see all files from account 1.
This unified view, seen by each user, is named workspace.
Each user can thus share files with each other, independently
of whether or not they have accounts on the same cloud
provider. Access to cloud stores is performed at the client
side only, ensuring that users retain exclusive control of their
accounts. Files are encrypted at the client endpoint.

C. A Global File Namespace

We now describe the design of Storekeeper in more detail
starting with its file namespace. In a cloud aggregator service
like Storekeeper, it is necessary to define how files physically
dispersed across various cloud-backed stores are presented
to the user under a uniform file naming scheme. Figure 2
helps illustrate the file naming organization of Storekeeper
considering the usage scenario introduced in Section II-B.
It represents (1) aggregated cloud files (workspace) seen by
Alice and Bob mounted on the local filesystem, on the left,
(2) the actual location of these files on the users’ cloud
accounts (stores) on the right, and (3) mapping between

/sds.uni.edu)
))/data)
))))/6385f2123ead1311e539ce935e5517507c66)
))))/1622c28e3b5ff3411e3aef23331fadf61a70)
))/staged)

Alice account 1

/sds.uni.edu)
))/data)
))))/733a497e359a73443e397ee3caa481027afb)
))/staged)

Alice account 2

/sds.uni.edu)
))/data)
))))/c1b2e97c3e4aa340e8399d53aaf82014ef6b)
))))/8b54e0f53e3c8341603af6d3d8e018cdeba6)
))/staged)

Bob account 1

/sds.uni.edu)))))
))/file1.doc)
))/file2.doc)
))/file3.doc)

Alice workspace

/sds.uni.edu)
))/file3.doc)
))/img1.jpg)
))/img2.jpg)

Bob workspace

Figure 2. File name mapping in Storekeeper.

workspace file names and file locations, represented by the
arrows.

Since there can be multiple independent instances of the
Storekeeper service, every SDS server defines a unique
domain name to avoid name collision. The domain name
is set up by the SDS administrator and may correspond to
the DNS name of the SDS server (e.g., sds.uni.edu). The
Storekeeper domain name will give the name to both (1)
a root folder on the user’s workspace under which the user
files of that domain will be mounted, and (2) a root folder on
each cloud store in which user files and pending updates are
persistently saved. Files in the cloud stores are given globally
unique file identifiers (FIDs) and accessible to clients via a
service-dependent URL (the arrows in Figure 2). If a file is
shared with a user whose workspace contains a file with a
similar name, Storekeeper resolves this naming conflict by
adding the prefix “shared-” to the shared file.

D. Securing User Credentials

Storekeeper depends on specific user credentials that must
be properly secured: access tokens and user keys.

a. Access tokens: In order to access a cloud store through
the respective API, a typical third-party application (in-
cluding the Storekeeper client) needs to authenticate itself
towards the cloud service by providing a specific credential
named access token (AT). Access tokens preclude the need
for the user to interactively input username and password.
Since access tokens allow for unrestricted access to users’
stores, Storekeeper needs to maintain them securely.

b. User keys: To provide end-to-end confidentiality, files
must be encrypted at the client side with a symmetric key
– a file encryption key (KF) – before storing them on the
cloud. For this, a symmetric file encryption key (KF) is
used, as further discussed in Sections II-G and II-H. The
considered approach to protect this key, while assuring that
the file owner alone can access it, is to use a public-key
pair that represents a user key (KU) and use this key to

Figure 2.1: Storekeeper Architecture [2]

12

2 – Related work

Storekeeper is composed of two main components: a client application and the
Storekeeper Directory Server (SDS). The client application is installed on the user’s
device and is responsible for accessing the cloud and maintaining a local cache of
the user files. The server is responsible for managing metadata, users, files and
cloud services. The Storekeeper Directory Server (SDS) is assumed to be “honest
but curious” [2]. Therefore, the server can listen to messages and learn information,
but follows the protocol and does not launch active attacks. So, it does not access
cloud storage spaces, nor store user files.

The Storekeeper system does not preserve data integrity and availability but,
in terms of consistency semantics, the system allows file versioning.

2.1.1 Identity Management

The system generates and associates a pair of RSA asymmetric keys to the user,
used in data protection mechanisms. The user’s correspondent private-key pair is
protected with a cryptographically secure password (or key) that is only known to
the user. This encrypted credential is then stored at the SDS.

2.1.2 Access Control Model

Storekeeper implements an access control mechanism based on ACLs where users
can have three privileges over a file: read, write, and share. Read privileges only
allow the user to read the file. Write privileges allow both read and write operations
such as create, update and delete the file. Share privileges allow reading, writing
and sharing a file with other users and change permissions of the file. Exceptionally,
the file’s owner has full access privileges. The SDS will do Access Control List
(ACL) checks on every request to enforce access control policies.

The system guarantees end-to-end confidentiality by encrypting files at the client
side with an encryption key (KF). KF is then encrypted using the owner’s public-
key pair of RSA asymmetric keys. In this way, Storekeeper assures that only the
owner can access the file. The file sharing service is implemented by following
a simple protocol: when a file owner wants to share a file with another user, a
symmetric key Read Key is generated and used to encrypt KF. The Read Key is
then encrypted using the other user’s public key, allowing the user to decrypt Read
Key (RK) and KF, and consequently decrypt the file’s content.

Whenever a writer submits a file update, a new file encryption key is generated
and used to encrypt the new content of the file. This key is then encrypted with the
current RK and distributed among the group’s users using their private key. Every
time a revocation occurs, a new Read Key has to be generated and distributed
among the new set of users using their public keys; a revoked user will not be able
to read future updates. The system also has to update the ACLs at the SDS on
every file’s group members change.

2.2 Crypto Cloud

Crypto Cloud is a distributed system that provides a secure cloud aggregation
service for multi-user multi-cloud storage platforms [1].

13

2 – Related work

Crypto Cloud users register their individual cloud storage accounts from Dropbox
or Google Drive. Through a unified file namespace, users can seamlessly browse
files across different cloud accounts and share files with other users. Crypto Cloud
includes mechanisms to handle user identities from different cloud providers and
provides key management and storage solutions that are easy to use by users. The
system provides adequate security model and enforcement mechanisms that mask
the diversity of file permission models across the cloud provider. It enables secure
read and write operations to shared files located in different cloud accounts.

The Crypto Cloud system architecture is depicted in Figure 2.2. In the following
sections we explain the components of the platform.

Figure 2.2: Crypto Cloud Architecture [1]

2.2.1 Crypto Cloud Client Application

The Crypto Cloud (CC) Client Application is the central component of the sys-
tem. This component manages the user’s files, and it interacts with all the other
components of the system. The application provides the following services:

• upload and download the files of the authenticated users;

• allows performing special operations, such as the generation and replacement
of the cryptographic key pair of the user;

• request for the registration of new users, requiring the permission to the
administrators.

The client is composed of different modules. The first module is the Session Man-
ager which preserves the local state of the app, after the correct login of the user.
It maintains info about the user (username, cloud account, etc.) and the man-
aged user’s file (filename, version, share revision, etc). Moreover, there is the
Communication Manager which communicate with the Crypto Cloud Directory
Server (CCDS). During the login, it requires the server to authenticate the user
and receives from it the access token to future access.

14

2 – Related work

Another module is the Key Manager which controls the key pair of the users, collab-
orating with Key Management Interoperability Protocol (KMIP) Client Application
Programing Interface (API) to access to the cryptographic key and to execute the
cryptographic operations. Finally, the File Manager maintains the workspace which
contains the local copy of the user’s files. This module is capable of creating, reading
and writing files. It also manages two temporary directories: one for the temporary
files (e.g., downloading files) and one for conflicts (like name conflicts or versioning
conflict).

2.2.2 Crypto Cloud Directory Server

The CCDS serves the client application. As an assumption, the CCDS server do
not act maliciously.

It is possible to summarize the main features of the CCDS in:

• Metadata management. The metadata associated with: users, files, shares,
and clouds;

• Access Control Model based on authentication;

• Version control and Integrity of files.

Its main function is maintaining the metadata to manage the files, keeping track of
them on cloud stores. All the metadata are stored in a database shown in Figure
2.3.

Figure 2.3: Database of Crypto Cloud Directory Server [1]

The server also implements an Access Control Model, storing an Access Control
List that contains a unique binding user-resource (file), the permission granted and
the wrapped Read Key, which was wrapped using the user’s public key during

15

2 – Related work

sharing algorithm execution. The access control mechanism is verified at every
request.

One of the most important aspects of Crypto Cloud is the protection of managed
files, which guarantees the confidentiality and integrity of users’ sensitive files on
public clouds. This mechanism is implemented relying on a Message Authentication
Code (MAC) function. It is calculated using a symmetric key, called Integrity key
(IK), over the content of the plaintext file, producing a fixed-size hash result. The
produced result is stored concatenated in plaintext alongside with the ciphered
content, taking the firsts bytes of the encrypted file. Every time a user reads a file,
the HMAC is recalculated and verified with the one retrieved from the server.

Finally, the central server also implements a Version Control Mechanism, which
relies on two metadata elements: the file content hash and the file version. The file
content hash represents the hash result of the content of the file before encryption.
This result is calculated by the client’s application and sent to the CCDS. The
file version is a number managed by the CCDS, which is incremented every time a
user performs an update operation over the respective file. The association of both
these elements ensures that a certain file’s content represents a specific file version.

2.2.3 Key Management Server and PKI infrastructure

The Key Management Server is responsible for the access and protection of the
cryptographic keys of the users. It follows the KMIP Protocol [3], allowing the
users to generate, obtain and destroy the keys. The KMIP Server is responsible
for managing cryptographic keys, which must be deployed in a secure environ-
ment. When performing the operations’ actions, this component interacts with the
HSM and database components to perform cryptographic operations and access
persistent data. The HSM component is responsible for performing cryptographic
operations (e.g., generate/export cryptographic keys and cipher/decipher data).
We also have the KMIP Client, which consists of a simple component that provides
access to the remote cryptographic resources from the KMIP server.

The Crypto Cloud Application also includes a Public Key Infrastructure. It is a
third trust party which manages (emits, execute binding and revoke) digital X.509
certificates to validate the public key of the users. It also maintains a CRL to keep
track of the revoked certificates. The certificates are signed with the public key of
the infrastructure, becoming trusted certificates.

The Key Management Server and the Public Key Infrastructure are responsible
for implementing the Key Management Interoperability Protocol (KMIP) standard,
which allows the remote access and management of user’s cryptographic keys, and
certification of the users’ identity, guaranteeing proper authentication while pro-
tecting and sharing sensitive files.

2.2.4 Cloud Stores

They represent the cloud account registered on the system by the users. They are
passive stores, meaning that they store the files without executing any application
logic. The Client App authenticates the user to the cloud systems, receiving an
access token for the future accesses.

16

2 – Related work

2.2.5 Base algorithm

This Section explains the basic algorithm implemented by the system. The func-
tional process involves the management and protection of users’ files. Consider only
read and write operations, and not the sharing operations.

Figure 2.4 depicts the steps executed when a user wants to write a file. There-
fore, the application does the following steps:

1. generates a new symmetric cryptographic key, called File Key (FK) and an-
other symmetric cryptographic key, called Integrity Key (IK);

2. performs the encryption of the user’s file, using the previously generated FK;

3. use IK to perform a Hash-based Message Authentication Code (HMAC) cal-
culation over the content of the plaintext file, producing a fixed-size hash
result;

4. store the HMAC in plaintext alongside with the ciphered content;

5. upload the encrypted file to the user’s cloud storage and its metadata to the
CCDS. FK and IK are wrapped using the user’s public key and the wrapping
result stored at the CCDS.

ServerClient Cloud Provider

1. Generate the new file’s keys. Encrypt
the file.

2. Upload new encrypted file

3. Update metadata

4. FileID, Version Number, Share Revision

5. Update the application’s internal
state.

Figure 2.4: Write operation

As depicted in Figure 2.5, if a user wants to read that file the user’s client:

1. downloads the encrypted file and retrieves the HMAC;

2. fetches the wrapped FK and IK from the CCDS;

3. obtains FK and IK by unwrapping them using his PK;

4. decrypts the content of the encrypted file using the obtained FK;

5. the application performs the HMAC calculation over the decrypted content,
using the obtained IK and compared it with the retrieved result from the
CCDS. If both results match, it is considered that the file was uncorrupted.
Otherwise, it means that the content of the file was tampered and compro-
mised.

17

2 – Related work

ServerClient Cloud Provider

1. Operation request with FileID

2. ACL{FileID;Client;read-permission}?
3. File’s metadata

4. Check if a local copy exists. If exists,
compare the version of the local copy
with the obtained metadata 5. Request the file using the URL

6. File

7. Unwrap keys; retrieve HMAC; de-
cipher the content of file and check its
integrity.
Update the application internal state.

Figure 2.5: Read operation

2.2.6 File Update

This Section describes how the CC Application works in case of file update.

ServerClient Cloud Provider

1. Check if the file is already managed
by the system. 2. Rquest for file with FileID

3. ACL{FileID;Client;write-permission}?

4. File metadata

5. Renew the file’s keys (FK, IV, IK).
Protect the new version of the file.

6. Upload file

7. Upload file’s metadata

8. FileID, Version Number, Share Revision

9. Update the application’s internal
state.

Figure 2.6: Update operation

To perform a file update (see Figure 2.6), the client Application does the fol-
lowing:

1. checks if the system already manages the file;

2. consults the ACLs’ entries related to the user and checks if the user has
permission to update the file;

3. obtains the file’s metadata from the CCDS;

4. renews the file’s keys, which comprises the FK, its IV, and the IK;

5. protects the new version of the file using the keys generated on the previous
steps;

6. uploads the newly encrypted file to the cloud storage and update the corre-
sponding metadata on the CCDS and updates the application’s internal state
with the new file’s metadata.

18

2 – Related work

2.2.7 File Sharing

In addition to the basic algorithm, the Crypto Cloud application provides the shar-
ing functionality. The share operation allows a user to share a certain file with
another user, called grantee user. Figure 2.7 depicts this mechanism.

ServerClient

1. Operation request with fileID

2. ACL{FileID;Client;share-permission}?
3. Grantee’s public certificate

4. Check the validity of the obtained cer-
tificate. Encrypt the file’s Read Key with
the public key of the grantee user.

5. Request to update ACL and RK

Figure 2.7: Share operation

When a user wants to share a file with another user, the user’s client:

1. sends a request to the CCDS that accesses the ACLs entries and verifies if
the user has, at least, share permissions on the selected file;

2. obtains the grantee user’s public certificate from the CCDS;

3. checks the validity of the grantee’s digital certificate;

4. encrypts the file’s current Read Key (RK), using the public key obtained from
the grantee’s certificate;

5. updates the file’s ACL, creating a new entry for the grantee user, with the
assigned permission and previously encrypted RK.

2.3 Summary

Table 2.1 summarizes the features of the previous presented approaches. These
systems are compared based on their data and metadata protection properties,
sharing and file versioning mechanisms.

System Data Data Data Data Metadata Metadata
Sharing Confidentiality Integrity Versioning Confidentiality Integrity

Storekeeper 3 3 7 3 7 7

Crypto Cloud 3 3 3 3 7 7

Table 2.1: Comparison of existing solutions for secure cloud systems.

Storekeeper [2] supports multiple cloud providers and is supported by a direc-
tory server to store metadata. It is assumed that this server does not launch active
attacks, thus metadata protection was not part of the project’s scope.

19

2 – Related work

The system guarantees data confidentiality using symmetric keys, that are dis-
tributed to users using public-key pairs. The approach also provides sharing and
access control mechanisms. However, this approach does not consider data in-
tegrity and employs an inefficient key management mechanism that performs an
extensive number of requests to the SDS, resulting in a decrease in the application’s
performance.

Crypto Cloud system consists of an augmented version of Storekeeper, a system
capable of providing cloud’s features without trusting on its providers [1]. In ad-
dition to the Storekeepers functionalities, the Crypto Cloud system guarantees the
integrity of files and provides robust key management. To address the key man-
agement, Crypto Cloud implements the KMIP protocol, which provides remote
management of the users’ cryptographic keys. Moreover, Crypto Cloud guarantees
proper certification of the users’ keys and assures their identity when accessing
the managed files relying on a Public Key Infrastructure, which acts as a trusted
third-party entity.

20

Chapter 3

Background

This chapter presents the required background on blockchains. It introduces the
most important concepts of the blockchain, which are essential for its applications.
In Section 3.1 we present what is the Distributed Ledger Technology and the the
definition of the blockchain. Section 3.2 and Section 3.3 present the basic concepts
involved in the blockchain, such as blocks and transactions. Then, in Section 3.4,
there is the classification of the blockchain systems. Finally, Section 3.5 shows the
main existing consensus mechanisms.

3.1 Distributed Ledger Technology and Blockchain

The Ledger is the fundamental basis of accounting [4]. It can be said that the
Ledgers represent one of the foundations of our civilization and of our way of
interpreting and managing relationships and transactions between people and or-
ganizations. Therefore, a ledger can be defined as a register used to record assets,
which can be financial, physical or electronic. It allows establishing a historical
memory, to check, verify, manage the transactions and exchanges that have been
carried out. The ledgers became digitized with the rise of computers in the late
20th century, although computerized ledgers generally mirrored what once existed
on paper. For a long time the ledgers were interpreted with the same centralized
logic that characterized the paper. There was someone who managed the systems
and someone who centrally managed the extraction and processing of data.

21st-century technology has enabled the next step in record-keeping with cryp-
tography, stronger compute power and near-ubiquitous computational power, mak-
ing the distributed ledger an increasingly viable form of record-keeping. Therefore,
it is possible to create digitally distributed ledgers that can be shared across a
network of multiple sites, geographies or institution. In other words, a distributed
ledger is a database that exists across several locations and among multiple par-
ticipants. All participants within the network can have their identical copy of the
ledger. This technology is used to process, validate and authenticate transactions.
The records are only ever stored in the ledger when a consensus has been reached
by the parties involved. All the participants on the distributed ledger can view all
of the records in question. DLTs drastically reduce the cost of trust, in fact, the
main feature of this technology is that the ledger is not maintained by any central
authority.

21

3 – Background

A blockchain is a form of Distributed Ledger Technology. Data on the blockchain
are grouped and organized in blocks, which are linked one to the other and secured
using cryptography (see Figure 3.1). Every block holds a complete list of transaction
records. Distributed Ledgers do not require to have a data structure in blocks, and
this is why the blockchain is a type of DLT and not the same thing. In other
words, all blockchains are distributed ledgers, but not all distributed ledgers are
blockchains.

Figure 3.1: The blockchain [5]

The blockchain has the following main characteristics [6]:

• Immutability. The hash guarantees that the blocks are linked to each other,
but it also guarantees the integrity of the blockchain. If one block is altered,
the hash on the block that follows it stops matching the blocks;

• Transparency. Anyone can view the records and verify the authenticity of the
data;

• Decentralization. Rather than relying on a central authority to securely trans-
act with other users, blockchain utilizes innovative consensus protocols across
a network of nodes to validate transactions and record data in a manner that
is incorruptible.

In a blockchain network, generally, there are three types of nodes: miners, full
nodes and light nodes. The nodes specialized in creating blocks are called miners
and the activity of creating blocks is the “mining” operation. Instead, the task of
a full node is to pass data to other nodes and check that the new blocks added
are valid. This consists in verifying transactions, checking that the hash exists
at the previous block, checking that the hashes of the new block are correct and
other similar operations. Usually, altough not mandatory, a full node keeps a copy
of the entire blockchain locally [7]. Light nodes are typically devices with limited
resources, such as smartphones or devices of the Internet of Things. These nodes do
not have the copy of the entire blockchain, and the data for processing are passed
to the main nodes.

Nowadays most of the new blockchain technologies allow implementing real
programs called “smart contracts”. A smart contract is composed of code and
data. Basically, it is a program that resides in a specific address of the blockchain.

22

3 – Background

From another point of view, it can be considered a contract between different parts,
managed automatically, that specifies the conditions under which a transaction can
be made. It is a computer protocol that facilities the transfer of digital assets
between parties under the agreed-upon stipulations or terms. A smart contract
is similar to a traditional contract in most ways including the definition of rules
and penalties around the agreement except for the fact that it can also enforce the
agreed-upon obligations automatically [8].

3.1.1 Security Characterstics

This section discusses the most important security properties in a blockchain sys-
tem:

• Integrity: for a message to have integrity it means that cannot have been
modified during its transmission. Traditional authentication mechanisms rely
on digital signatures that allow a party to digitally sign its messages. Digital
signatures also provide guarantees on the integrity of the signed message.

• Authentication: it requires that parties who exchange messages are assured
of the identity that created a specific message so to be sure you’re communi-
cating with the real person rather than an impersonator;

• Authenticity: it is the assurance that a message, transaction, or other ex-
change of information is from the source it claims to be from. Authenticity
involves proof of identity.

• Confidentiality: it means limiting the access to information. In other words,
the only authorized person can access the information;

• Privacy: it means that the identities of participating nodes are protected.

3.2 Transactions

One of the purpose of transactions in a blockchain is to transfer ownership of a
digital asset from one person/part to another person/party without the need for
validation by a third party (a government or an external authority). Transactions
are not encrypted, so it is possible to browse and view every transaction ever
collected into a block. Once transactions are confirmed, they can be considered
irreversible. To confirm a transaction it is necessary to verify that who sends a
certain amount of asset must be able to prove that only he/she has control over that.
A transaction changes the state of the agreed-correct blockchain. In a transaction
there is the address of who sends and the other of who receives assets. Usually, the
address is derived from the public key. Using this kind of mechanism, the system
guarantees what is called pseudo-anonymity: in the first instance we do not know
whom an address belongs to, but by analyzing the traces left on the network it is
possible to trace back to the user who used that address. Figure 3.2 depicts the
structure of typical transactions. Transactions contain an input that is a reference
to an output from a previous transaction (a hash of the previous transaction).

23

3 – Background

Figure 3.2: Structure of transactions [9]

In the input, there are also a signature and a public key. The public key must
match the hash given in the script of the redeemed output. The public key is used
to verify the redeemers signature, which is the second component that proves the
transaction was created by the real owner of the asset in question. This continual
pointer of inputs to previous transactions outputs allows for an uninterrupted,
verifiable stream of value amongst addresses. Transactions contain also an output
that specifies an amount and an address. Transactions are bundled and delivered to
each node in the form of a block. As new transactions are distributed throughout
the network, they are independently verified and “processed” by each node.

3.3 Blocks

Using the concept of the distributed ledger, it is possible to see a block as a page
of this accounting register, in which transactions are marked, step by step, during
a certain period of time. Each block contains, in addition to transaction data, a
header with metadata namely time stamp and the hash of the previous block, as
shown in Figure 3.3.

The block header is the metadata that helps verify the validity of a block. Each
block has its “fingerprint” represented by the hash of the data it contains. The
next block contains this hash: it is this “backward” reference that creates the chain
of blocks. This order is very useful for verifying the internal consistency of the
chain. If someone wanted to change the details of a transaction within a block,
he/she would change the hash, so he/she would then need to recalculate a valid
hash for the next block. This mechanism is necessary because the hash of the
next block is based on the original hash of the previous block. By changing the
hash of the current block and the one of the next block, every block after them is
instantly invalid. It would need to recalculate every hash to consider the change
valid. Every block’s state of validation depends on all the blocks before it. This
mechanism determines the immutable character of the blockchains [11].

24

3 – Background

Figure 3.3: General block structure[10]

The longer the blockchain gets, the harder it is to change.

3.4 Classification of a blockchain system

There are various categorizations of blockchain types, according to whether autho-
rization is required for network nodes which act as verifiers, and whether access
to the blockchain data itself is public or private. Permission refers to the autho-
rization for verification, and anybody can join the network to be a verifier without
obtaining any prior permission to perform such network tasks [12].

The first distinction is between Permissionless and Permissioned blockchains:

• Permissionless blockchains are systems in which anyone can participate in
the verification process. No prior authorization is required, and a user can
contribute his/her computational power, usually in return for a monetary
reward;

• Permissioned blockchains are systems in which the miner nodes are prese-
lected by a central authority or consortium.

For the second categorization we have:

• Public blockchains, in which anyone can read and submit transactions to the
blockchain

• Private blockchains in which the permission of read/write is restricted to users
within an organization or group of organizations

25

3 – Background

The distinction between public and private blockchain is related to who is allowed
to participate in the network, execute the consensus protocol and maintain the
shared ledger. One of the drawbacks is the openness of the public blockchain,
which implies no privacy for transactions. A private blockchain network requires an
invitation according to a set of rules put in place by an administrator. In a private
blockchain, there are restrictions on who is allowed to participate in the network
and transactions. A regulatory authority issues licenses for participation. Once an
entity has joined the network, it will play a role in maintaining the blockchain in a
decentralized manner.

In conclusion, it can be noticed that most permissionless blockchains feature
public access, while most permissioned blockchains intend to restrict data access to
the company or consortium of companies that operate the blockchain.

3.5 Consensus protocols

To ensure that only legitimate transactions are recorded into a blockchain, the
network confirms that new transactions are valid, given the history of transactions
recorded in previous blocks. A new block of data will be appended to the end
of the blockchain only after the nodes on the network reach consensus as to the
validity of all the transactions that constitute it. Thus the transaction only becomes
valid (’confirmed’) once it is included in a block and published to the network. In
this way the blockchain protocols can ensure that transactions on a blockchain are
valid and never recorded more than once, enabling people to coordinate individual
transactions in a decentralized way, without the need to rely on a trusted authority
[12]. The blockchain and its data exist in a peer-to-peer network, and as such, it is
stored and extended by the nodes of the network, which form a topology between
them. All the nodes, if they are not malicious and actively attempting to change
the contents of the chain, contain the same blockchain structure and information,
as they all agree on its contents through the consensus algorithm [13]. The main
Consensus Protocols are described below.

3.5.1 Proof of work

PoW is the consensus used in the Bitcoin and Ethereum network [14]. To submit
new transactions they are bundled together into a block and the miners calculates a
hash value of the block header. Figure 3.4 depicts how Proof of Work (PoW) works.
The block header contains a nonce and miners would change the nonce frequently
to get different hash values. The consensus requires that the calculated value must
be equal to or smaller than a certain given value (“target” value). When one node
reaches the target value, it will broadcast the block to other nodes, and all other
nodes must mutually confirm the correctness of the hash value. All the network
miners compete to be the first to find the solution because the first miner who
solves each blocks problem earn a reward. If the block is validated, other miners
will append this new block to their blockchains.

In the decentralized network, valid blocks might be generated simultaneously
when multiple nodes find the suitable nonce virtually at the same time. As a
result, forks may be produced. However, it is unlikely that two competing forks

26

3 – Background

will generate the next block simultaneously. In the case of a fork, the rule is that
the longest chain wins: after a certain period of time, the block that has the largest
number of other blocks subsequently hooked is accepted. The other chains, with the
other concurrently created blocks, are discarded, and their miners are not rewarded.

Figure 3.4: How PoW works [15]

3.5.2 Proof of stake

PoS is an energy-saving alternative to PoW [14]. Miners in PoS have to prove the
ownership of the amount of currency, the “stake”. It is believed that people with
more currencies would be less likely to attack the network [16]. The selection based
on account balance is quite unfair because the single richest person is bound to be
dominant in the network. Therefore, the Proof of Stake attributes mining power to
the proportion of coins held by a miner. This way a PoS miner is limited to mining
a percentage of transactions that is reflective of his or her ownership stake. The
creator of a new block is chosen in a semi-random, two-part process, depending on
its wealth (stake). In the PoS system there is no block reward, so, the miners take
only the transaction fees.

3.5.3 Practical Byzantine Fault Tolerance

PBFT is a replication algorithm to tolerate Byzantine faults [17]. The Byzantine
Generals’ Problem is a situation where involved parties must agree on a single
strategy to avoid complete failure. However, it assumes some of the involved par-
ties might be corrupt or otherwise unreliable [17]. The Practical Byzantine Fault
Tolerance (PBFT) protocol guarantees the ability of a distributed computer net-
work to correctly reach a sufficient consensus despite malicious nodes in the system
failing or sending out incorrect information. The goal of PBFT is to protect against
catastrophic system failures by reducing the influence of these malicious nodes.

In private networks, where the participants are whitelisted, costly consensus
mechanisms such as proof-of-work are not needed, practically removing the need
for an economic incentive for mining.

PBFT focuses on providing a practical Byzantine state machine replication that
tolerates Byzantine faults (i.e., malicious nodes) by assuming there are independent

27

3 – Background

node failures and manipulated messages sent through specific nodes. Nodes in a
PBFT system are sequentially ordered with one node being the leader, and others
referred to as backup nodes. All nodes in the network communicate with one
another with the goal being that all honest nodes will come to an agreement of the
state of the system using a majority rule. Communication between nodes has two
functions: nodes must prove that messages came from a specific peer node, and
they must verify that the message was not modified during transmission. For the
PBFT system to function, the number of malicious nodes must not equal or exceed
one-third of all nodes in the system. The more nodes there are in a PBFT network,
the more secure it becomes.

PBFT requires that every node is known to the network. The consensus rounds
are four [18]:

1. A client sends a request to the leader node to invoke a service operation;

2. The leading node broadcasts the request to the backup nodes;

3. The nodes execute the request, then send a reply to the client;

4. The client awaits f+1 replies from different nodes with the same result, where
f represents the maximum number of potentially faulty nodes.

In each phase, a node would enter the next phase if it has received votes from
over 2/3 of all nodes. The leading node is changed during every view and can be
replaced with a protocol called a view change if a certain amount of time has passed
without the leading node broadcasting the request. Also, a supermajority of honest
nodes can determine when a leader is faulty and replace them with the next leader
in line.

Hyperledger Fabric uses the PBFT since it can handle up to 1/3 malicious
byzantine replicas. Hyperledger Fabric is permissioned blockchain which is private
and operated by invite with known identities which means that there is no need of
algorithms like PoW.

3.5.4 Conclusions

Using consensus mechanism like PBFT, temporary forks in blockchain are not pos-
sible. In private blockchain which uses consensus algorithms like PBFT the problem
of forks is avoided [13]. It is possible to highlight the main differences among the
protocols. The first is the node identity management: PBFT needs to know the
identity of each miner to select a primary in every round, while in PoW and PoS
nodes could join the network freely. Moreover, it can be noticed that there is a big
difference from the energy consumption point of view: in PoW, miners hash the
block header continuously to reach the target value. As a result, the amount of
electricity required to process has reached an immense scale [13].

28

Chapter 4

Blockchain: State of the Art

In this chapter, we analyze three different blockchain systems: Hyperledger Fabric,
Ethereum, and Filecoin. We choose Hyperledger Fabric that implements a private
blockchain, and Ethereum and Filecoin which implement a public blockchain. This
chapter discusses the main characteristics of these three different systems, their
architecture and their features from a security point of view. Section 4.1 explains
Hyperledger Fabric, Section 4.2 describes the Ethereum platform, and Section 4.3
presents Filecoin. After that, Section 4.4 summarize the main characteristics of
the analyzed systems and Section 4.5 explains the security issues which could ex-
ist in blockchains. Section 4.6 shows the main parameters used to evaluate the
performance of a blockchain system. In Section 4.7 there is a comparison between
Hyperledger and Ethereum both from the performance and security point of view,
with a final discussion of the advantages and disadvantages of each approach. Fi-
nally, Section 4.8 explains why we chose Hyperledger Fabric as blockchain platform.

4.1 Hyperledger Fabric

Hyperledger is an open-source project hosted by The Linux Foundation, which
aims to improve the concept of blockchain further in many different contexts [19].
The Hyperledger platform is an open source framework to build permissioned
blockchains usable in business. Hyperledger Fabric can leverage consensus pro-
tocols that do not require a native cryptocurrency to implement costly mining.
Avoidance of a cryptocurrency reduces some significant risk/attack vectors, and
the absence of cryptographic mining operations means that the platform can be
deployed with roughly the same operational cost as any other distributed system.
Figure 4.1 depicts the Hyperledger Fabric network. The Hyperledger Fabric net-
work is formed by a set of nodes. Nodes are the communication entities of the
blockchain. Nodes are grouped in trust domains and associated to logical entities
that control them.

There are three types of nodes:

1. Client: network entity that submits a transaction-invocation to the en-
dorsers, and broadcasts transaction-proposals to the ordering service. It
stands between the network and the end-user. It must connect to a Peer
to communicate with the blockchain.

29

4 – Blockchain: State of the Art

Figure 4.1: A complete Fabric network [20]

2. Peer node: network entity that maintains a ledger and runs chaincode con-
tainers to perform read/write operations to the ledger. Peers can be:

• Endorsing Peer: it is a node that simulates smart contract transactions
and returns a proposal response endorsement to the client. The en-
dorsement policy specifies the set of Peers that need to simulate the
transaction and endorse or digitally sign the execution results;

• Committing Peer: it validates blocks of ordered transactions and ap-
pends the blocks to its local copy of the ledger;

• Anchor Peer: it is the first Peer that will be discovered on the network
by other organizations within a channel. Anchors Peers enable commu-
nication between Peers of different organizations and allow discovering
all active participants of the channel;

• Leading Peer: is a node which takes responsibility for distributing trans-
actions from the Orderer to the other committing Peers in the organiza-
tion.

A Peer can be a committing Peer, endorsing Peer, leader Peer and anchor
Peer all at the same time. Only the anchor Peer is optional. There must
always be a leader Peer and at least one endorsing Peer and at least one
committing Peer.

3. Ordering Service node or orderer: a node running the communication
service that implements a delivery guarantee, such as atomic or total order
broadcast. The Ordering Service ensures totally ordering of the delivered
blocks on one channel. The hash chain imposes the total order of blocks in
a ledger, and each block contains an array of totally ordered transactions.
The Ordering Service provides a shared communication channel to clients
and Peers, ordering a broadcast service for messages containing transactions.

30

4 – Blockchain: State of the Art

Clients connect to the channel and may broadcast messages which are then
delivered to all Peers.

The Ordering Service API consists of two basic asynchronous events:

• broadcast(blob): a client calls this function to broadcast an arbitrary
message blob for dissemination over the channel;

• deliver(seqno, prevhash, blob): the ordering service calls this function
on the Peer to deliver the message.

The ledger contains all data output by the ordering service. It is a sequence
of deliver events, which form a hash chain according to the computation of
the previous hash. The Ordering Service will group the blobs and output
blocks within a single deliver event. The Ordering Service guarantees liveness
delivery and safety consistency.

Two or more network members communicate through a channel which allows
private and confidential transactions. A channel is defined by members, anchor
Peers per member, shared ledger, chaincode applications and ordering service nodes.
Each transaction on the network is executed on a channel, where each party must
be authenticated and authorized to transact. Even if anchor Peers can belong to
multiple channels and maintain multiple ledgers, no ledger data can pass from one
channel to another.

4.1.1 Identity

Peers, Orderers, Client, and administrators are active network elements able to
consume services. All these entities have a digital identity encapsulated in an
X.509 digital certificate [21]. These identities determine the exact permissions over
resources and access to information that actors have in a blockchain network. A
digital identity also has some additional attributes used to determine permissions;
the union of identity and attributes is called “principal”. Principals can include
a wide range of properties of an actor’s identity, such as the actor’s organization,
organizational unit, role or even the actor’s specific identity [22]. A verifiable
identity must come from a trusted authority: the Membership Service Provider.

4.1.2 Membership Service Provider

The Membership Service Provider (MSP) identifies specific roles an actor might
play within the scope of the organization the Membership Service Provider (MSP)
represents (e.g., admins, or as members of a sub-organization group), and sets the
basis for defining access privileges in the context of a network and channel (e.g.,
channel admins, readers, writers).

The Membership Service Provider identifies which Root CAs and Intermediate
CAs are trusted to define the members of a trust domain, e.g., an organization,
either by listing the identities of their members, or by identifying which CAs are
authorized to issue valid identities for their members, or through a combination of
both. An organization is a managed group of members and is often divided into
multiple organizational units, each of which has a set of responsibilities [23].

31

4 – Blockchain: State of the Art

The default MSP implementation in Fabric uses X.509 certificates as identities,
adopting a traditional Public Key Infrastructure hierarchical model.

MSPs are mandatory at every level of administration: they must be defined for
the network, channel, Peer, Orderer, and users.

• Network MSP: defines who are the members in the network as well as which of
these members are authorized to perform administrative tasks (e.g., creating
a channel);

• Channel MSP: define who can participate in certain activities on the channel;

• Peer MSP: is defined on the file system of each Peer and there is a single
MSP instance for each Peer;

• Orderer MSP: is also defined in the file system of the node and only applies
to that node. Orderers are owned by a single organization and therefore have
a single MSP to list the actors or nodes it trusts.

4.1.3 Consensus

Hyperledger Fabric introduces a new architecture for transactions called execute-
order-validate. Peers execute a transaction and check its correctness thereby en-
dorsing it. Then, the Orderer Service order transactions via a consensus protocol
and validate transactions against an application-specific endorsement policy before
committing them to the ledger. The workflow of the consensus, shown in Figure
4.2, operates as follows:

1. the client transmits the transaction to the endorser nodes;

2. the endorser nodes simulate the transaction and choose whether they endorse
it or not. If they do, they sign the transaction and send the endorsement
back to the client;

3. the client broadcasts the endorsement to the Ordering Service;

4. the Ordering Service gathers incoming transactions, sorts them into blocks
and then broadcasts the transactions by order to all the Peers (Orderers
and committers). The Peers then validate the transactions and verify their
endorsements, applying only the transactions which fulfill the endorsement
policy.

4.1.4 Smart Contract

A smart contract, known in Fabric as chaincode, is code invoked by a client appli-
cation external to the blockchain network. It manages access and modifications to
a set of key-value pairs in the World State (the current values of all ledger states)
[24]. The chaincode is installed into Peer nodes and instantiated to one or more
channels. Users can use chaincode (for business rules) and membership service (for
digital tokens) to design assets, as well as the logic that manages them. Fabric
supports smart contracts written in general-purpose programming languages such
as Java, Go and Node.js.

32

4 – Blockchain: State of the Art

Figure 4.2: Transaction flow [23]

4.1.5 The ledger and the World State Database

The ledger is the sequenced, tamper-resistant record of all state transitions (see
Figure 4.3). State transitions are a result of chaincode invocations (transactions)
submitted by participating parties. Each transaction results in a set of asset key-
value pairs that are committed to the ledger as creates, updates, or deletes. There
is one ledger per channel. Each Peer maintains a copy of the ledger for each channel
of which they are a member.

Figure 4.3: Ledger structure in Hyperledger [23]

Hyperledger Fabric has a ledger subsystem comprising two components: the
World State and the transaction log. The World State component describes the
state of the ledger at a given point in time, as depicted in Figure 4.4. It is the
database of the ledger. The transaction log component records all transactions
which have resulted in the current value of the World State. The ledger, then, is a
combination of the world state database and the transaction log history. The ledger

33

4 – Blockchain: State of the Art

Figure 4.4: Example of world database in Hyperledger (the assets are cars)[23]

has a replaceable data store for the World State. By default, this is a LevelDB key-
value store database. The transaction log does not need to be pluggable. It simply
records the before and after values of the ledger database used by the blockchain
network. The World State represents the current values of all ledger states; states
have a key and a value. Physically, the World State is implemented as a database
and provides a rich set of operators for the efficient storage and retrieval of states.
In Hyperledger Fabric only transactions that are signed by a set of endorsing or-
ganizations will result in an update of the world state. The version number of a
state is incremented every time the state changes. Because any transaction which
represents a valid change to World State is recorded on the blockchain, it means
that the World State can be re-generated from the blockchain at any time.

4.1.6 Security analysis

The authentication mechanism relies on digital signatures that allow a party to sign
its messages digitally. Digital signatures also provide guarantees on the integrity
of the signed message. Digital signature mechanisms require each party to hold
two cryptographically connected keys: a public key that is made widely available
and acts as authentication anchor, and a private key that is used to produce digital
signatures on messages. Recipients of digitally signed messages can verify the origin
and integrity of a received message by checking that the attached signature is valid
under the public key of the sender.

In Hyperledger Fabric there is the possibility to create the signatures created
with the Identity Mixer Protocol [25]. The Identity Mixer is a cryptographic proto-
col suite for privacy-preserving authentication and transfer of certified attributes.
It allows user authentication without divulging any personal data. Thus, no per-
sonal data is collected that needs to be protected, managed, and treated according
to complex legal regulations. Nevertheless, service providers can rest assured that
their access restrictions are fully satisfied. These zero-knowledge proofs prove that
the signature on some attributes is valid and the user owns the corresponding cre-
dential secret key. Only the user who knows the credential secret key can generate
the proofs about the credential and attributes. This mechanism provides strong

34

4 – Blockchain: State of the Art

authentication.
There are different confidentiality mechanisms to accommodate degrees of man-

aging privacy, depending on the use case:

• Segregate the network into channels, where each channel represents a subset
of participants that are authorized to see the data for the chaincodes deployed
to that channel;

• Visibility setting: used to determine whether input and output chaincode
data is included in the submitted transaction, versus just output data;

• Use private-data to keep ledger data private from other organizations on the
channel. A private data collection allows a defined subset of organizations
on a channel the ability to endorse, commit, or query private data without
having to create a separate channel. Other participants on the channel receive
only a hash of the data;

• Hash or encrypt the data in the client app before calling chaincode.

• Access Control into the chaincode logic to restrict data access

• Ledger data at rest can be encrypted via file system encryption on the Peer,
and data in transit is encrypted via TLS;

• Use the Identity Mixer to provide no linkability. Using the default MSP
implementation with X.509 certificates, all attributes have to be revealed
to verify the certificate signature: this implies that all certificate usages for
signing transactions are linkable. To avoid linkability, fresh X.509 certificates
need to be used every time, which results in complex key management and
communication and storage overhead. Identity Mixer avoids linkability for
both the CA and verifiers since even the CA is not able to link presentation
tokens to the original credential. Neither the CA, no a verifier can tell if two
presentation tokens were derived from the same or two different credentials.

4.2 Ethereum (Public)

Ethereum is a blockchain platform to create decentralized applications. It is built
on a public blockchain in which users, network nodes, currency, and markets are
free to enjoy the network [26]. In Ethereum there are three types of nodes:

• Full nodes are entities that verify the blocks; they have the full copy of the
blockchain;

• Light Nodes download block headers by default and verifies only a small
portion of what needs to be verified;

• Miners are nodes that validate the new blocks by solving a crypto problem.

Full nodes verify block that is broadcast onto the network. They ensure that
the transactions contained in the blocks, and the blocks themselves, follow the
rules defined in the Ethereum specifications. They maintain the current state of

35

4 – Blockchain: State of the Art

the network. Transactions and blocks that do not follow the rules are not used to
determine the current state of the Ethereum network. For example, if A tries to
send 100 ether to B but A has 0 Ethers, and a block includes this transaction, the
full nodes will realize this does not follow the rules of Ethereum and reject that
block as invalid. In particular, the execution of smart contracts is an example of
a transaction. Whenever a smart contract is used in a transaction (e.g., sending
ERC-20 tokens), all full nodes will have to run all the instructions to ensure that
they arrive at the correct, agreed-upon next state of the blockchain. Full nodes
that preserve the entire history of transactions are known as full archiving nodes.

Light nodes, in contrast, do not verify every block or transaction and may not
have a copy of the current blockchain state. They rely on full nodes to provide
them with missing detail. The advantage of light nodes is that they can get up
and running much more quickly and can run on more computationally/memory
constrained devices. Instead of downloading and storing the full chain and executing
all of the transactions, light nodes download only the chain of headers, from the
genesis block to the current head, without executing any transactions or retrieving
any associated state. On the downside, there is an element of trust in other nodes (it
varies based on client, and probabilistic methods/heuristics can be used to reduce
risk). Some full clients include features to have faster syncs.

4.2.1 Accounts and Addresses

The global “shared-state” of Ethereum is comprised of many small objects (“ac-
counts”) that can interact with one another through a message-passing framework.
Every account is defined by a pair of keys, a private key, and a public key. Accounts
are indexed by their address which corresponds to the last 20 bytes of the public
key.

Every User has an Account which can be Externally Owend account or Contract
account. Externally Owned Accounts perform all the actions in the blockchain.
They are controlled by private keys and have no code associated with them. Con-
tract accounts are smart contracts, in fact, they are controlled by their contract
code.

Any action that occurs on the Ethereum blockchain is always set in motion
by transactions fired from externally controlled accounts. An externally owned
account can send messages to other Externally Owned Accounts or other contract
accounts by creating and signing a transaction using its private key; on the other
hand, contract accounts cannot initiate new transactions on their own.

4.2.2 Transactions

The Ethereum blockchain has a native currency called Ether. One fundamental
concept in Ethereum is the concept of fees. Every computation that occurs as a
result of a transaction on the Ethereum network incurs a fee. For every executed
operation there is a specified cost, expressed in a number of gas units.

Gas is the name for the execution fee that senders of transactions need to pay for
every operation made on an Ethereum blockchain. Gas is purchased for Ether from
the miners that execute the code. Gas and ether are decoupled deliberately since
units of gas align with computation units having a natural cost, while the price of

36

4 – Blockchain: State of the Art

ether generally fluctuates as a result of market forces. The price of gas is decided
by the miners, who can refuse to process a transaction with a lower gas price than
their minimum limit. The Ethereum protocol charges a fee per computational step
that is executed in a contract or transaction to prevent deliberate attacks and abuse
on the Ethereum network.

In the most basic sense, a transaction is a cryptographically signed piece of
instruction that is generated by an externally owned account, serialized, and then
submitted to the blockchain. With every transaction, a sender sets a gas limit and
gas price. The product of gas price and gas limit represents the maximum amount
of Wei that the sender is willing to pay for executing a transaction. The Wei is
the base unit of Ether [27]. A Transaction contains the recipient of the message,
the signature of the sender, the VALUE field which represents the amount of Wei
to transfer, an optional data field, the “start gas” and “gas price”. The start gas
parameter represents the maximum number of computational steps the transaction
execution is allowed to take, while the gas price represents the fee the sender is will-
ing to pay for gas. The total ether cost of a transaction is: Total cost = gasUsed
* gasPrice.

4.2.3 Smart contract

A contract is a collection of codes and data that resides at a specific address on
the Ethereum blockchain. They are stored in a binary format: Ethereum Virtual
Machine bytecode. The Ethereum Virtual Machine executes the contract code on
each node participating in the network as part of their verification of new blocks.
Contracts are typically written in Solidity and then compiled into bytecode to be
uploaded on the blockchain. Contracts can send messages to other contracts which
are virtual objects that are never serialized and exist only in the Ethereum execution
environment. A message is like a transaction, except it is produced by a contract
and not by an external actor.

4.2.4 Mining

Mining is the way to secure the network by creating, verifying, publishing and
propagating blocks in the blockchain. Ethereum uses an incentive-driven model
of security. The consensus is based on choosing the block with the highest total
difficulty, which is used to enforce consistency in the time it takes to validate blocks.
The difficulty parameter is a scalar value corresponding to the difficulty level applied
during the nonce discovering of this block. It defines the mining target, which can
be calculated from the previous block’s difficulty level and the timestamp. The
higher the difficulty, the statistically more calculations a miner must perform to
discover a valid block. This value is used to control the block generation time of a
blockchain, keeping the block generation frequency within a target range.

Miners produce blocks which the others check for validity. Among other well-
formeness criteria, a block is only valid if it contains proof of work of a given
difficulty. Generating this Proof of Work is known as mining. The Proof of Work
consensus used is called Ethash and involves finding a nonce input so that the result
is below a certain difficulty threshold. Any node participating in the network can

37

4 – Blockchain: State of the Art

be a miner, and their expected revenue from mining will be directly proportional
to their mining power or hash rate, i.e., the number of nonces tried per second
normalized by the total hash rate of the network. Generating this proof of work
does not itself require executing the transactions; miners can connect to a full node
and get the work to be completed which is only dependent on the contents of the
block to be added to the blockchain, not the execution of the contents. Each block
represents a snapshot in time. Because there is often short-term disagreement
(soft forks) as to what the current state of the blockchain is, after a transaction is
confirmed in a block, it is often recommended to wait for a few more blocks to be
built on top of that block before assuming that the transaction is final. The longest
chain is the agreed upon state of the chain. The more blocks that have been added
after a particular block, the less likely it is that the block will be “undone”. The
purpose of choosing the longest chain to add blocks to the blockchain is to arrive
at the consensus. The reason why mining is necessary at the moment is so that
there is a cost to extend the chain. Miners earn block rewards and transaction fees
paid by people who wish to have their transactions added to the blockchain.

4.2.5 Security Analysis

Every account is defined by a pair of keys, a private key, and public key; Authentica-
tion and Integrity of messages rely on digital signatures. There is no Confidentiality
and Privacy : data and contracts on the Ethereum network are encoded, but not
encrypted. Everyone can audit the behavior of the contracts and the data sent to
them. However, it always possible to encrypt data locally before broadcasting it to
the network to preserve the confidentiality of data.

4.2.6 Ethereum Parity (Private)

Parity is an Ethereum client. Parity supports private chain and private network
configuration via Chain specification files [28].

In addition to the Ethereum Public components the system contains:

• A public contract containing the encrypted code of a private contract;

• Secret Store nodes: used to create and provide access to the encryption key
used to encrypt the state of the private contract and any message exchanged
between the nodes. The exact Secret Store URL is specified for every Parity
node participating in a private transaction system. A permissioning contract
may be used to describes which account has access to which contract’s key.

Parity supports state snapshotting which reduces sync-times and database pruning
which reduces disk requirements. Snapshotting allows for a fast synchronization
that skips almost all of the block processing, simply injecting the appropriate data
directly into the database. It is also possible to prune the Parity’s database to
maintain only a small journal overlay reducing the disk space required.

Pluggable Consensus

Parity supports different consensus engines. The main one is the Ethash Proof of
Work [29] but the most interesting is Proof-of-Authority consensus (e.g., Aura, in

38

4 – Blockchain: State of the Art

which each validator gets an assigned time-slot, determined by the system clock of
the validator, in which it can release a block). It can be used for private chain setups
and uses a set of “authorities” which are nodes that are explicitly allowed to create
new blocks and secure the blockchain. For each consensus engine, there are two
main varieties of permissioned validation: Proof-of-Authority and Proof-of-Stake.
In Proof-of-Authority, validators typically represent some real-world entities, which
prevents Sybil attacks. These authorities can be added and removed according to
a set of rules, such as via a voting process. The rules are specified in a smart
contract on the blockchain. Proof-of-Stake, on the other hand, relies on security
deposits. This means that validators are added after submitting a sufficient amount
of valuable tokens, which can be taken away in the case of misbehavior.

The validator set is a group of accounts allowed to participate in the consensus;
they validate the transactions and blocks. It can be defined statically in an im-
mutable list or a contract. They validate the transactions and blocks to later sign
messages about them. The chain has to be signed by the majority of authorities,
in which case it becomes a part of the permanent record. This makes it easier to
maintain a private chain and keep the block issuers accountable.

Private contracts and transactions

This feature allows storing encrypted data on the Ethereum blockchain. It is possi-
ble to create private contracts which are stored encrypted inside a public contract.
The public contract specifies the accounts allowed reading and modifying the pri-
vate contract’s state. Only a validator account can allow changing the state of a
private contract; the list of the validator is specified during the public contract’s
deployment. A private transaction is a message that contains encrypted data and
can modify the state of the private contract; it requires the signature of all the
validators.

Permissioning

Parity, differently to Ethereum, allows the network participants to different permis-
sion aspects of the blockchain. All permissioning is based on blockchain accounts,
which means that permissions always correspond to an address. It is possible to
introduce permissions at different layers such as:

• network: which nodes can connect to the network and communicate with the
others;

• transaction: the ability to execute transaction types can be defined in a con-
tract which implements a special interface;

• validation set: which parties can create new blocks and append them to the
blockchain;

• gas price: it possible to create a whitelist of accounts for zero price transac-
tions.

39

4 – Blockchain: State of the Art

Security Analysis

The Authentication and Integrity are the same as in Ethereum. The main difference
is about Confidentiality which is guaranteed by the encryption of Transactions and
Contracts. There are still the same issues about Privacy as in Ethereum.

4.3 Filecoin

Filecoin is a decentralized storage network based on the blockchain. It is intended
to be a cooperative digital storage and data retrieval method [30]. Filecoin’s net-
work is permissionless: it admits any aspiring participant without verification or
centralized approval. It provides a system for guarantees based on the engineered
incentives: Filecoin was designed with the goal that the most profitable choice of
every participant is to act to improve the quality of service for the network.

4.3.1 The network and the participants

Filecoin is a decentralized storage network that turns cloud storage into an algo-
rithmic market. The market runs on a blockchain with a native protocol token,
which miners earn by providing storage to clients. The Filecoin Decentralized
Storage Network (DSN) is auditable, publicly verifiable and designed on incentive.
It aggregates storage offered by multiple independent storage providers and pro-
vides data storage and data retrieval to clients. Coordination is decentralized and
does not require trusted parties: the secure operation of these systems is achieved
through protocols that coordinate and verify operations carried out by individual
parties.

Clients spend Filecoin hiring miners to store or distribute data. Filecoin miners
compete to mine blocks with sizable rewards. Filecoin mining power is proportional
to active storage, which directly provides a useful service to clients. This creates a
powerful incentive for miners to amass as much storage as they can, and rent it out
to clients. The protocol weaves these amassed resources into a self-healing storage
network that anybody in the world can rely on. The network achieves robustness
by replicating and dispersing content, while automatically detecting and repairing
replica failures. Clients can select replication parameters to protect against different
threat models.

4.3.2 Consensus

In the Filecoin protocol [30], storage providers must convince their clients that they
stored the data they were paid to store; storage providers will generate Proofs-of-
Storage that the blockchain network (or the clients themselves) verifies.

Proof-of-Storage schemes allow a user to check if a storage provider is storing
the data at the time of the challenge. A verifier can check if a prover is storing
her/his data for a range of time.

Proof-of-Replication is a Proof-of-Storage which allows the prover P to convince
the verifier V that some data D has been replicated to its own uniquely dedicated
physical storage. The prover P convinces the verifier V that P is indeed storing
each of the replicas via a challenge/response protocol.

40

4 – Blockchain: State of the Art

Proof-of-Spacetime is a scheme in which a verifier can check if a prover is storing
her/his outsourced data for a range of time. The prover must generate sequential
Proofs-of-Storage and has to compose the executions to generate short proofs re-
cursively. The Filecoin protocol employs Proof-of-Spacetime to audit the storage
offered by miners.

4.3.3 Participants

Any user can participate as a Client, a Storage Miner, and a Retrieval Miner:

• Clients pay to store data and to retrieve data in the Decentralized Storage
Network;

• Storage Miners provide data storage to the network. Storage Miners partici-
pate in Filecoin by offering their disk space. To become Storage Miners, users
must pledge their storage by depositing collateral proportional to it. Storage
Miners store the client’s data for a specified time. Storage Miners generate
Proofs-of-Spacetime and submit them to the blockchain to prove to the net-
work that they are storing the data through time. In case of invalid or missing
proofs, Storage Miners are penalized and lose part of their collateral. Storage
Miners can mine new blocks and receive the mining reward for creating a
block and transaction fees for the transactions included in the block;

• Retrieval Miners provide data retrieval to the network. Retrieval Miners
participate in Filecoin by serving data that users request via Get.

The Storage Market is a verifiable market which allows clients to request storage
for their data and Storage Miners to offer their storage, and the Retrieval Market.
The Retrieval Market enables clients to request retrieval of a specific piece and
Retrieval Miners to serve it. Unlike Storage Miners, Retrieval Miners are not re-
quired to store pieces through time or generate Proofs of Storage. Any user in the
network can become a Retrieval Miner by serving pieces in exchange for Filecoin
tokens. Retrieval Miners can obtain pieces by receiving them directly from clients,
by acquiring them from the Retrieval Market, or by storing them from being a
Storage Miner. Clients and miners set the prices for the services they request or
provide by submitting orders to the respective markets. The exchanges provide a
way for clients and miners to see matching offers and initiate deals.

To request storage/retrieval of data in the markets and validate storage proofs,
there are used the smart contracts, which enable users of Filecoin to write stateful
programs that can spend tokens. Users can interact with the smart contracts by
sending transactions to the ledger that trigger function calls in the contract.

4.3.4 Security Analysis

Filecoin blockchain provides Integrity : pieces are named after their cryptographic
hash. After a request, clients only need to store this hash to retrieve the data and to
verify the integrity of the content received. The Authentication is assured verifying
that every request is signed by clients and miners. A digital signature might be
required as part of Proof of Replication, to prove identity. Authentication can

41

4 – Blockchain: State of the Art

help make schemes non-outsourceable since a prover would have to reveal secret
identifying information (e.g., their private key) to the outsourced provider. The
Confidentiality is not guaranteed; clients that desire for their data to be stored
privately must encrypt their data before submitting them to the network. Moreover,
the Privacy of the issuers of transactions is not guaranteed because their identities
are public.

4.4 Summary

Given the discussion made so far, it is possible to summarize the main character-
istics of the systems. Table 4.1 summarizes the features of the previous presented
blockchain systems and Table 4.2 shows how the considered blockchain platforms
implement the security properties described in Section 3.1.1.

Security property Hyperledger Ethereum Ethereum Filecoin
property Fabric (Public) (Private)

Blockchain
type

private public supports
private
chain and
private
network

public

Network
nodes

Clients,
Peers, Or-
derers

Full nodes,
Light
nodes,
Miners

Full nodes,
Light
nodes,
Miners

Clients, Stor-
age miners,
Retrieval
miners

Consensus PBFT PoW PoW, PoS,
Proof of
Authority

Proof of
Replica-
tion, Proof
of Spacetime

Native no yes yes yes
cryptocurrency

Table 4.1: Main characteristics

Security property Hyperledger Ethereum Ethereum Filecoin
property Fabric (Public) (Private)

Authentication X 7 7 7

Privacy X 7 7 7

Confidentiality 7 7 X 7

Integrity X X X X

Table 4.2: Security properties

42

4 – Blockchain: State of the Art

4.5 Security risks

So far, blockchains have received great attention in different areas. However, there
are some security problems and challenges. The following sections describe the
main security risks of public and private blockchain such as respectively, Ethereum
and Hyperledger Fabric.

A common issue of which the public blockchain system may suffer is the Double
spending problem. It means spending the same money twice that can be possible
because a digital token consists of a digital file that can be duplicated or falsified.
Such double-spending leads to inflation by creating a new amount of fraudulent
currency that did not previously exist [31]. Ethereum solves this issue adjusting
the difficulty dynamically, in such a way that on average one block is produced by
the entire network every 15 seconds [32].

Another known attack is Sybil attack, which is an attack against identity in
which an individual entity masquerades as multiple simultaneous identities [33].
Ethereum manages this problem using the Proof of Work consensus. To create a
new block on the network, a user needs a node with processing power. This attaches
a significant cost to adding hundreds or thousands of pseudonymous nodes that
might be able to influence the adoption of a fork or other blockchain vote.

The Selfish mining problem is an attack in which the selfish miner exploits the
variance in block generation by partially withholding blocks. In Ethereum it could
be possible to create a selfish attack, but the probability of success is very low.

There is also a problem related with the PoW consensus mechanism, used in
most of the public blockchain platforms, which is the Majority attack, also called
51% attack. The blockchain relies on the distributed consensus mechanism to estab-
lish mutual trust. However, the consensus mechanism itself has 51% vulnerability,
which can be exploited by attackers to control the entire blockchain. In PoW-based
blockchains, if a single miner’s hashing power accounts for more than 50% of the
total hashing power of the entire blockchain, then the 51% attack may be launched.

As mentioned in Chapter 3, blockchain systems which use the PoW consensus,
suffers the problem of Versioning and Hard Forks. Updates in the main protocols
may lead to versioning or hard forks if all the blockchain community does not have
the consensus of the new update.

Moreover, Ethereum avoids frivolous or malicious computational tasks, like
DDoS attacks or infinite loops making users pay small transaction fees to the net-
work.

On the other hand, private blockchains could have a security issue related to
the PBFT consensus that is widely used in private blockchain systems. There is
the threat of the Control of 2/3rds of the validator set [34]. A possible attack
vector at this point for overtaking a permissioned blockchain is thieving (or brute
forcing) of 2/3rds of the private keys for the validator set. The only attack vector
on PBFT’s safety is controlling a fraction of at least a third of all replicas. To
prevent the adversary from controlling a big fraction of replicas, PBFT requires
an additional protection mechanism. This mechanism can take various forms, such
as an access control scheme based on a Certificate Authority, a mechanism able to
identify Sybil identities, or requiring participants to dispose of important amounts
of a scarce resource.

43

4 – Blockchain: State of the Art

In a private environment there could also be a Replay attack during the en-
dorsement of a transaction. In Hyperledger Fabric an attacker should not be able
to replay blockchain transactions and affecting system state through transaction
nonces. The endorsing Peers always verify that the transaction proposal has not
been submitted already in the past, checking the nonce.

However, Hyperledger Fabric suffers from another threat. If a malicious user
holds a valid certificate, he/she can mount a Denial of Service attack on the
blockchain. On the other hand, Hyperledger Fabric is a permissioned blockchain
platform. It means that the node of the system can be restricted to known identi-
ties. A party that mounts a DOS on the system can have their access revoked, and
more importantly, since they are known identities rather than anonymous, can be
held to account for their actions (or inaction, in the case they were hacked).

4.6 Performance

The blockchain system offers fault tolerance, data integrity, and authenticity. How-
ever, there are several parameters to take into account in the evaluation of the
performance of a blockchain platform. The main factors to take into account are
the following:

• scalability: time spent to put a transaction in the block and with the time
necessary to reach a consensus. The restriction on scalability is due to the
decentralized nature of the blockchain, in which every node on the network
processes every transaction and maintains a copy of the entire state of the
ledger;

• latency: the time required to submit a transaction;

• throughput: the number of transactions included in block per second;

• usability: different blockchains follow different programming languages for
development; there is no standard available for developing the Application
Programming Interface (API);

• block size: blockchain uses different block size.

4.7 Hyperledger Fabric vs Ethereum

Given the general discussion made in the previous section, it is possible to choose
the blockchain platform which follows our requirements. The choice is between
Hyperledger Fabric and Ethereum. Filecoin is still in the implementation phase,
and Ethereum Parity is only an Ethereum Client, so even if it gives the possibility
to setup private network, it shares the same issues with Ethereum. To better
understand how to implement the blockchain network it is necessary to define the
scenarios of our application. In the simplest scenario, there are N clients, belonging
to one University, which uses the Crypto Cloud Application. While, in the extended
scenario there are N clients, belonging to more than one University.

44

4 – Blockchain: State of the Art

4.7.1 Ethereum blockchain network

Considering Ethereum, in the simplest scenario, there should be a client which is
connected to a full node. The full node communicates with a miner node to append
blocks to the blockchain. If there is more than one University, it will be necessary
to run a node per provider. In Ethereum every operation has a gas price. Also
for read-only operations of the state, which does not have network cost, gas price
still is computed; it provides an upper bound to the complexity of the operation.
Actual gas price is about 0.2 - 0.5 dollars to submit a transaction.

4.7.2 Hyperledger blockchain network

Using Hyperledger Fabric, in the simplest scenario, there will be one Organization
(one University). An organization is a member who can join the network by adding
its Membership Service Provider (MSP). Therefore, there must be an instance of
the Membership Service Provider that defines how other members of the network
may verify that signatures were generated by a valid identity of the organization.
There must also be a Certificate Authority that creates X.509 certificates to feed
the MSP configuration. The transaction endpoint of an Organization is a Peer.
So it is necessary to have a Peer in our blockchain network. The Peer holds the
chaincodes. There must also be an Ordering Service that creates the blocks and a
Channel that allows communication between the entities. If there is more than one
University, it will be possible to add an Organization. Therefore, if we have more
than one University, there will be N Peers, N Channels, N Certificate Authorities
where N is the number of Organizations.

4.7.3 Performance and Security

The Filecoin’s network is still in the implementation phase [35], so we still have no
information about the performance of the system. Therefore, we highlight the per-
formance and security characteristics of Hyperledger Fabric and Ethereum, which
are the candidate systems for this work. Table 4.3 shows the performance of both
the system, highlighting the pros and cons and Table 4.4 shows their security issues.

4.8 Conclusions

From the analysis presented in Table 4.3, Hyperledger performs consistently better
than Ethereum. Ethereum incurs large overhead in terms of memory and disk
usage because of Proof of Work consensus protocol. From [19] Ethereum execution
engine is also less efficient than that of Hyperledger, and the Hyperledger’s data
model is low level, and its flexibility enables customized optimization for analytical
queries of the blockchain data. From Table 4.4 emerges that the Fabric platform
suffers from fewer security issues than Ethereum mainly because of its permissioned
nature. Given this analysis, of both the performance and security of the systems,
it is possible to conclude that Hyperledger Fabric is the most suitable platform for
this work. It is permissioned, guarantees privacy, and there is no economic cost on
transactions and, generally, performs better than Ethereum.

45

4 – Blockchain: State of the Art

Ethereum Hyperledger
Scalability High node scalability Solves performance scalability

and privacy issues by permis-
sioned mode of operation and
fine-grained access control. Fur-
ther, the modular architecture
allows Hyperledger to be cus-
tomized to a multitude of appli-
cations [36].

Throughput About 20 transactions per sec-
ond

About 3500 transaction per
second

Latency 10 to 15 seconds Less then 1 second
Size To limit the size of the block it

is used the gas limit
The max size can be config-

ured through the BatchTimeout
and BatchSize [37] parameters.
The default batch size is 98MB.

Energy con-
sumption

Ethereum is the second largest
electricity consumer blockchain
system (PoW consensus)

Low waste of energy (PBFT
consensus)

Usability Programmers must learn Solid-
ity to write Smart Contracts

Easy to program smart con-
tracts (Go, Java, Node.js)

Table 4.3: Performance Pros and Cons

Ethereum Hyperledger
Does not provide any kind of privacy: ev-

erything is public (transactions, transac-
tors)

Strong authentication and authorization
provided by the MSP. Privacy is preserved,
providing no linkability on the transactions
(Anonymous transactions).

No confidentiality No confidentiality, but the data are acces-
sible only inside the organization.

High security based on economic incen-
tive to mine and protect the integrity of
data (PoW Consensus). Resilient to node
failures.

Nodes can be restricted to known identi-
ties. If a party mounts a DOS on the sys-
tem, his/her access will be revoked.

Forks on the Ethereum blockchain are
possible

Forks in blockchain are not possible.

Sybil attacks are possible because autho-
rization is only based on the possession of
key pair (private, public key)

Centralized identity management protects
against Sybil attacks (MSP)

Majority attack is possible (PoW Consen-
sus)

The network can be attacked if the mali-
cious users are more than 1/3 (PBFT Con-
sensus)

PoW waste a lot of resources PBFT is less expensive than PoW from
an energy point of view

Table 4.4: Security Pros and Cons

46

Chapter 5

Design

The goal of this thesis is to extend the Crypto Cloud Application with an adequate
metadata management in order to ensure the security of sensitive operation without
relying on the central server. Herein, we propose to achieve this goal with the use of
a blockchain system. The blockchain technology guarantees integrity, immutability,
freshness, and authenticity of the stored information, without relying on any third
party. In Chapter 4, three different blockchain systems were analyzed: Hyperledger
Fabric, Ethereum, and Filecoin. It discussed the main characteristics of each one,
the pros and cons and why Hyperledger Fabric is the best system for this work. Its
Fabric platform is modular, scalable, guarantees integrity, authentication, privacy
and, in general, performs better than the other technologies. In Crypto Cloud,
we have files and metadata associated with them. We could consider putting the
files on the blockchain. In this case, we would need to change the whole system
and removing the cloud part. However, traditional blockchain platforms are not
meant for data storage but rather to store cryptographic proofs such that anyone
retrieving the file can verify that the file is valid. Blockchain systems like Filecoin
can provide file storage functionality, but it is still in the implementation phase.
Therefore, we are not focusing on the files themselves but on the metadata. Crypto
Cloud metadata are associated with users, clouds, files, and permission. Moving
such metadata, we can eliminate the server but, or at least remove the assumption
that it needs to be “honest but curious”.

We start by presenting an overview of our proposed solution (Section 5.1). Then,
we present the proposed architecture, detailing each of its components (Section
5.2). Following this, we describe the security models that are considered during
the design phase (Section 5.3). Then, Section 5.4 provides the decisions about the
metadata which will be on the blockchain. Section 5.5 details the new identity
mechanism, Section 5.6 describes how to provide integrity to the Access Control
List and Section 5.7 describes how to provide integrity to the files.

Section 5.8 discusses the advantages of passing from a database to the blockchain
and what issues could be present if we open the CCDS database to simulate an
“open” environment like a blockchain. We also compare the security issues which
could exist in both the systems. Finally, in Section 5.9 there are the conclusions.

47

5 – Design

5.1 Overview

This section presents an overview of the proposed solution for a secure cloud system.
We propose an alternative version of the Crypto Cloud application, which modifies
some of the CCDS functionalities, integrating the system with the Hyperledger
Fabric blockchain.

Crypto Cloud manages the identities relying on a key management server and
a Public Key Infrastructure (PKI) infrastructure. In this way, it guarantees proper
authentication while protecting and sharing sensitive files. Each of the Crypto
Cloud’s user holds a unique asymmetric key pair, which includes a private key and
its corresponding public key. They protect (i.e., wrap) the symmetric keys used to
secure the Crypto Cloud’s files. This solution modifies the key management. We
change the identity management to use the blockchain plus a control logic on the
client. In the beginning, the client enrolls the user to the Fabric Certificate Author-
ity. Then, the mapping between the username, Hyperledger identity, and Crypto
Cloud identity is done to submit a transaction which contains that information.
The transactions are signed with the Hyperledger users’ private keys. We will call
this type of transaction Enrollment Transaction. The critical metadata are the
hash along with the version of the file and the Access Control List. Therefore, we
will publish them in two types of transaction File Metadata transaction, which
contains the metadata that guarantees the integrity of files, while Share Metadata
transaction includes the hash of the Access Control List. In the resulting system,
in every operation that deals with files, there will be the check of integrity between
CCDS’ metadata and the metadata stored on the blockchain. It results that, now,
we do not need to trust the server anymore. Figure 5.1 represents the creation
of the Enrollment transaction (1) when the user registers to the CC system, then
the creation of a File Metadata transaction (2) and Share Metadata transaction
(3.1) when the user uploads a new file and finally the creation of a Share Metadata
transaction (3.2) when the user shares the file with other users.

1. ENROLLMENT TRANSACTION: username, RSAPublicKey, signature(username)

2. FILE METADATA TRANSACTION: username, filename, hash(file), version

3.1 SHARE METADATA TRANSACTION: hash(ACL)

3.2 SHARE METADATA TRANSACTION: hash(ACL),
hash(newACL)

Figure 5.1: Crypto Cloud Transactions overview

48

5 – Design

Consequently, some of the algorithms are modified. In this solution, we redefine
the basic algorithm, to provide integrity protection over metadata without relying
on the CCDS. The hash and the version of the file are permanently memorized
on the Hyperledger Fabric blockchain. In this way, it is possible to guarantee the
integrity and freshness of that information. The sharing algorithm is modified with
the check of the validity of the users’ certificates before triggering the sharing mech-
anism, retrieving the identity of users from Fabric ledger. Moreover, to guarantee
the validity of the ACL, we put a cryptographic proof of it, on the blockchain (a
hash of the list). When the sharing mechanism is triggered, the list and its hash
will be updated.

Briefly, the functionality of the server is still the same. The only difference is
that we do not suppose that the server is “honest”. So we must guarantee that
only valid user can act on the system and that the files’ metadata on the server is
always valid. We can achieve these two goals with the blockchain.

5.2 Architecture

This section presents an overview of the new Crypto Cloud’s architecture, illus-
trated in Figure 5.2. The system consists of four components: the client applica-
tion, responsible for the system’s main functionality. The Crypto Cloud Directory
Server (CCDS), which manages the system’s metadata, the Hyperledger Fabric
network, and the Cloud Stores, which are responsible for providing users’ storage
space.

Figure 5.2: New Crypto Cloud Architecture

5.2.1 Crypto Cloud Client Application

The client application is the central component of the system. It is responsible for
managing the user’s files and interacting with all other Crypto Cloud’s components.

49

5 – Design

The application allows authenticated users to upload and download files, as well
as to manage their access permission. It is also possible to perform special oper-
ations, such as the generation of a replacement pair for the user’s cryptographic
key pair, or the request for registration of new users, requiring the approval from
the administrators. In this new version, the client also communicates with the
blockchain network. The communication is made using the Fabric API. This API
is used to put and retrieve identities and files’ metadata on the blockchain. Then,
this information is retrieved and compared with the ones stored on the server. This
mechanism is added to verify the consistency of the CCDS metadata. In this new
version, the key pair is generated by the client and stored on its device. There-
fore, the cryptographic operations are performed locally on the device. The other
modules are equal to the previous version of the client.

5.2.2 Crypto Cloud Directory Server

The Crypto Cloud Directory Server serves the client application. Its functionalities
remain the same as the previous version of Crypto Cloud. This component acts as
a metadata repository, responsible for the system’s metadata associated with users,
files, shares, and clouds. Therefore, we can divide the metadata into five groups,
based on their function.

The first group is formed by the metadata of the users, which contains:

• a unique username;

• a hash result of the user’s password;

• the user’s cryptographic information: the identifier of his/her private key,
the user’s public certificate, wrapped User Key, and User IV used for the
cryptographic algorithm. The User Key is used to wrap and read-protect the
access token provided by the cloud supplier from the CCDS;

• a boolean variable that represents the status of the account (enabled/dis-
abled).

The second group includes information about the users’ Cloud Stores. It is
composed of:

• owner of the cloud (i.e., user);

• cloud supplier;

• workspace path for the cloud account;

• encrypted token used to access the cloud resources through the provider’s
API;

• info field, which contains the email associated with that cloud account.

The third group is formed by the metadata used to keep track of files that
were deleted from the system but still occupy storage space in certain Cloud Stores
(“ghost files”). It stores information about:

50

5 – Design

• file’s remote name, which identifies a file inside the cloud space;

• cloud store where data are stored.

The fourth group includes the metadata used to implement the Access Control
mechanism. The server stores:

• permission granted;

• wrapped read key, which is wrapped using the user’s public key.

Finally, it possible to identify the fifth group: the metadata related to the
managed files. It includes the file name, the current version, the share revision of
the files, the cryptographic material, and the metadata to access files.

1. metadata to access files :

• file key (KF): a symmetric key to encrypt the file, generated with AES-
256 algorithm. Every “ writes” on the file generates a new file key;

• read key (KR): intermediate symmetric key, generated with AES-256 al-
gorithm, used for encrypting the file key KF (to avoid file re-encryption).
This key is then encrypted with the readers’ public key and added to
the ACL. Revocation of permission generates a new read key;

• integrity Key (IK): used to calculate the Hash-based Message Authenti-
cation Code (HMAC) of the plaintext to guarantee integrity;

• key pair (public key, private key), generate with RSA-2048;

• HMAC: it is used to provide the integrity and authenticity of the ex-
changed message. The receiver performs the same MAC calculation over
the received message and compares the result with the received MAC
result. To calculate it, Crypto Cloud uses HMAC SHA-256 with AES-
256;

• contenthash: the hash result of the file’s content. It is used to check the
integrity of the data by comparing a stored hash value with the hash
value of the actual data. It is generated with SHA512;

2. metadata to address files :

• file’s Uniform Resource Locator (URL);

• file’s remote-id;

• file’s remote name.

These three parameters are acquired through the providers’ APIs and allow
the client application to read, update and delete files from Cloud Stores.

51

5 – Design

5.2.3 Hyperledger Fabric Network

Our Hyperledger network is composed of Organizations, Ordering Service, channels,
Certificate Authorities, smart contracts, and Peers. The implementation details will
be explained in Chapter 6. Every entity in the network refers to the Membership
Service Provider, which provides cryptographic keys and certificates. The client
application can submit a transaction-invocation to the endorsers, and broadcasts
transaction-proposals to the ordering service. Therefore, we create an API that
allows communicating with the Hyperledger Fabric network. The API provides
the necessary methods to enroll the administrator and users to the Certificate
Authorities and generates and submits transactions to the ledger.

5.3 Models

This section describes the models considered during the designing of our solution.
We start by defining the solution’s trust model (Section 5.3.1), where we state the
considered assumptions. Then, we identify possible threats and vulnerabilities of
our solution (Section 5.3.2).

5.3.1 Trust model

Each component described in the system’s architecture runs in distinct environ-
ments: the client application executes in the user’s device, the CCDS and the
Hyperledger Fabric network run in the host’s organization. To better understand
these different environments and how these components should work, it is neces-
sary to establish a satisfactory trust model. The trust model helps us recognize the
special characteristics of the system and how the various entities are expected to
behave. The following analyzes the assumptions taken into account to define the
trust model of the proposed solution:

• the client’s device is trustworthy: the software and hardware where the client
application runs is reliable and not compromised;

• the CCDS can act maliciously: the CCDS can listen to the exchanged mes-
sages and can modify the data;

• the Cloud Providers can act maliciously: the cloud environment can have
malicious insiders, so potentially the providers can act maliciously and try to
read or change the content of hosted files;

• the private keys are securely stored and cannot be manipulated by agents
external to the client application: these keys can only be accessed by their
owners, and they cannot use them outside of the Crypto Cloud’s client appli-
cation;

• the cryptographic algorithms used are sound: the used cryptographic algo-
rithms are considered secure and not broken.

• the filenames and the usernames are unique in the entire system

52

5 – Design

5.3.2 Threat model

A threat model identifies potential threats and vulnerabilities of the system. Its
analysis provides a way to design better defenses against attackers and possible
countermeasures, increasing the security of the system.

• Spoofing Identity:

1. an attacker may try to replace a user’s certificate with his certificate;

2. a malicious user or application may provide fake information to persuade
users to consider him as a trustworthy certification entity.

• Tampering with Data:

1. a malicious cloud provider may modify the users’ files.

• Repudiation:

1. users can claim that they did not modify a file from the system.

• Information Disclosure:

1. a malicious user can use the information on the blockchain to modify
the files.

• Denial of Service:

1. a malicious user can re-upload old versions of files to destroy recent
updates;

2. a malicious user can spam repeated requests to degrade the service.

• Elevation of Privilege:

1. a malicious user can perform unauthorized operations (e.g., delete) on
resources (e.g., files, keys or others) that are owned by other users.

5.4 Metadata on the blockchain

This Section provides the decision and motivation about what metadata can be
stored on the blockchain, to avoid the necessity of trust the CCDS. As discussed in
the previous Chapter 2, the main functions of the Crypto Cloud Directory Server are
the identity management, which relies on the KMIP service plus PKI infrastructure,
the metadata management, the Access Control Model based on authentication and
the version control and integrity of files. In Figure 5.3 there is an overview of all
the metadata. The ones in bold are the candidate metadata to be moved on the
Hyperledger blockchain.

53

5 – Design

GROUP 1 GROUP 2 GROUP 3 GROUP 4 GROUP 5

Unique username
Hash(password)
Identifier of
private key
Public certificate
Wrapped UK
User IV

Encrypted token
Info
Type
Workspace
Owner

File remote
name
File’s cloud

User
File
Permission
List of
authorized
users

Original filename
Hash of the file content
Current version
Share revision
URL
Remote ID
File remote name
Wrapped FK
Wrapped IK
IVs used

Figure 5.3: CCDS Metadata

We do not want to trust the server, so we should put the metadata associated
with each functionality both on the blockchain and the CCDS. In addition, it is
also necessary to add a control logic on the client to verify the authenticity of what
the server holds.

Crypto Cloud keeps the identities of users to assure their validities when access-
ing the managed files. Replacing the management means eliminating the KMS
server and the external PKI infrastructure. The identity in Crypto Cloud corre-
sponds to the public key from Group 1. In Hyperledger Fabric the Membership
Service Provider is responsible for performing the authentication of the users who
participate in the system, creating an identity for each user. Fabric maintains its
Certificate Authorities and PKI infrastructure. Putting the Crypto Cloud identity
of users on the Fabric ledger, it is possible to modify the first CCDS functionality
as will be discussed in Section 5.5.

Group 2 contains the information about the Cloud Stores so moving it on the
blockchain can lead to an exposure of data. It provides data such as the email
associated with the cloud account or the workspace path of the account.

Group 3 contains the metadata used to keep track of files that were deleted
from the system but still occupy storage space in certain Cloud Store. We are not
interested in this mechanism.

Group 4 metadata is used to manage the access control on resources. These
metadata, as said before, have this structure: (resource - user - list of authorized
users). It derives that, if we do not trust the server, the list of the authorized
users could be modified by a malicious user. An attacker who does not have the
right permission could add users to the list. Therefore, we should guarantee that
the server always holds a valid version of that metadata that means to assure its
integrity. We calculate the hash of the list and put it on the blockchain. When a
Crypto Cloud user operates, the client verifies that the hash of the server list is the

54

5 – Design

same as the one retrieved from the blockchain. When a user executes the “share”
operation, the client creates a new transaction with both the hash of the old ACL
and the hash of the new ACL. This mechanism is explained in detail in Section
5.6.

Group 5 includes metadata associated with the managed files. We could think of
moving that metadata on the blockchain. The file content hash and version are used
to provide version control and integrity of files. Exposing them on the blockchain,
we do not risk any attack because that metadata does not contain any sensitive
information. When the client operates, it checks if the metadata maintained by the
server is the same as the metadata on the blockchain. In this way, we guarantee
their integrity without losing confidentiality. Instead, the confidentiality of the
metadata used to address the file would not be preserved. This is because the
metadata used to address the files, lead to files’ link; in Hyperledger even though
data are protected across channels, in the channel itself the ledger is public. A
malicious user who holds a valid Hyperledger identity could read these metadata.
If they send many read requests, it will lead to a DoS attack. So we do not put the
fileId, file URL and others on the blockchain. So we have to focus on the crypto
material. Section 5.7 details the resulting mechanism.

5.5 Management of identities

A key concept in the Crypto Cloud system is the identity. The identity is the
mapping between a User and his/her public key. The Crypto Cloud application
uses a Key Management Server and a Public Key Infrastructure (PKI). These
components are responsible for implementing the Key Management Interoperabil-
ity Protocol (KMIP) standard, which allows the remote access and management
of user’s cryptographic keys, and certification of the users’ identity, guaranteeing
proper authentication while protecting and sharing sensitive files. So, the KMIP
service generates the RSA key pairs: a public key and a private key. The sys-
tem uses the generated keys to encrypt/decrypt the other cryptographic keys. To
guarantee proper certification of the users’ keys and to ensure their identity when
accessing the managed files, the system relies on a Public Key Infrastructure, which
acts as a trusted third-party entity. There is the concept of identity also in Hy-
perledger Fabric; every member of the network has its own identity represented by
the entity’s public key. The Fabric system generates the key pair using the elliptic
curve cryptography. These keys are used to sign and verify transactions. In the
blockchain everything is public, signed and stored in an immutable way. Therefore,
we could develop a mechanism to manage the identities taking advantage of the
Fabric platform. In this way, we can avoid the use of the KMIP and PKI external
service. Moreover, adding an application logic on the client, it is always possi-
ble to verify the validity of identities. It results that we can follow two different
approaches:

1. The key pair used in Crypto Cloud is the same used in the Hyperledger Fabric;

2. The Crypto Cloud identity differs from the Hyperledger Fabric identity.

55

5 – Design

By choosing the first strategy, we leave the responsibility for generating crypto-
graphic keys to the Hyperledger Fabric. Therefore, the client only updates its local
state with this informations. Using the same key pair, we could explicitly publish
the public key when a user enrolls in the system. In this way, the identity would be
explicitly associated with every action (transaction) performed by a specific user.
Another way could be based on the principle that in the blockchain the transactions
are signed, so implicitly the user who sends the transaction provides information
about his/her identity. The signature is done with the private key of a user and is
checked with the associated public key. We can assume that the first transaction
a user makes in the blockchain shows the identity. In this way, it is possible to
avoid publishing the public key on the blockchain. If a user wanted to find another
Fabric’s identity, it would only be necessary to contact the membership service
provider [23].

Using the same key pair is not the best approach for our system because, as
already mentioned, the current version of Crypto Cloud uses RSA key pair to wrap
symmetric keys, but Hyperledger Fabric generates the cryptographic key pair with
EC cryptographic algorithm [38]. Furthermore, using the same keys for signing and
encrypting is considered bad practice: it is better to avoid it.

Therefore, we have a problem of incompatibility of keys which we overcome by
following the second approach: we use two different identities for each user. Using
two different key pairs, we need to be sure that every file-related transaction is
executed from an authentic identity. It is reasonable to publish the public key
of users on the blockchain: in this way, everyone can verify that a user has that
specific identity. No one can change the content of a transaction published on the
blockchain, so the identity and public key relationship are permanently registered
and accessible by everyone. When a user performs the first registration to Crypto
Cloud, a transaction will be created that contains the binding between Crypto
Cloud identity and Hyperledger identity. However, this is not enough; a malicious
user could publish a transaction, which represents his identity, in which he puts
the public key of another valid user. He can now retrieve and access transactions
related to files without the permission to do so. To avoid this problem, we also
put the signature of the transactor, done with the RSA Private Key of Crypto
Cloud. Briefly, when a user enrolls to the system, the client creates an Enrollment
transaction that contains {username, RSAPublicKey, signature(username)}. Every
time a user reads transactions from the blockchain, the client verifies that the
signature in the transaction is valid.

It is possible to summarize the user enrollment operation in the following steps:

1. the client generates the key RSA key pair locally: a private key and a public
key. The public key is the Crypto Cloud identity;

2. the user submits a transaction which contains: {username, RSAPublicKey,
signature(username)};

3. the user’s Crypto Cloud identity is now associated with the Hyperledger Fab-
ric identity because the transaction is signed with the Hyperledger private
key.

When file-related transactions are performed, the client will verify that the identity
of the transactor is valid. It is assumed that the user’s identity corresponds to the

56

5 – Design

first transaction on the blockchain corresponding to a specific username. It follows
that when a user wants to read his/her files, the client:

1. sends a request to Hyperledger Fabric using the filename;

2. retrieve the username of who made this transaction; then, sends a request to
Fabric to obtain his/her Enrollment transaction;

3. obtains the public key of the user and the signature of the username;

4. verifies the signature using the public key;

5. verifies if the public key on the server corresponds to the public key retrieved
from the blockchain;

6. verifies if the ACL of that file contains the public key.

Each transaction is then validated so even if a malicious user holds the public key
of a valid user, he/she will not be able to verify the signature because he/she does
not hold the private key of the valid user. Furthermore, even if the public keys are
the same, the Hyperledger identities will be different.

5.5.1 Attack example

We are now going to describe a possible attack on the system and how we solve this
problem. Assume to have a trusted user Alice and a malicious user Eve. Suppose
Eve holds Alice’s public key and the Read Key which is necessary to access the
file. Alice is already enrolled in Crypto Cloud and Hyperledger with her public key.
Eve registers to Hyperledger Fabric using the public key of Alice. On Hyperledger
blockchain now we have two Enrollment transaction, as depicted in Figure 5.4.

username=alice

publickey=RSAPublicKey

Alice

signature=signature(alice)

T0

username=eve

publickey=RSAPublicKey

Alice

signature= signature(eve)

T1

Figure 5.4: Alice and Eve identities stored on the blockchain

Alice creates a file file.txt. Eve has access to the file but she is not on the
list of allowed users. Eve wants to upload the file, so she submits a new transaction
which contains the new information of file.txt. Now we have two File Metadata
transactions on the blockchain, represented in the Figure 5.5.

57

5 – Design

username=alice

filename=file.txt

hash(file.txt)

version=0

T2

username=eve

filename=file.txt

hash(file.txt)

version=1

T3

Figure 5.5: Transactions related with file.txt

When Alice or other users, who have access to the file, want to read it, they:

1. retrieve the last transaction referred to filename=file.txt from the blockchain
T3;

2. find that Eve created it;

3. find the identity of Eve from the blockchain, obtaining the content of trans-
action T1;

4. verify the signature on transaction T1 using the correspondent public key;

5. the signature is not verified because Eve does not hold the private key corre-
sponding to Alice’s public key.

So this transaction is considered invalid, and it is ignored. The logic of the appli-
cation continues finding the previous version of the transaction which is considered
valid. The previous transaction about file file.txt is T2; then the client applies
the same “algorithm” mentioned before, and it finds that this transaction is valid:
the signature of Alice is verified.

5.6 Access Control List Integrity

Another function of the CCDS is Access Control. The server maintains metadata
which allows doing an access control over files. For each file of each user there
is a list of authorized users who can access/write/share the file: {KR}PublicKey1,
{KR}PublicKey2,..., {KR}PublicKeyN . The CCDS access control follows a simple logic:
when the server receives a request, it checks if the sender is on the list and if he/she
has the permission to operate. For example, if the operation is share, the server
checks if the user has “share” authorization and if he/she is on the list of allowed
users. If the check succeeds, the user will be able to update the list. The same
checks are done in case of file update; a user can update a file if he/she has write
permission or is the owner and if he/she is on the list of authorized users.

If we do not want to trust the server, we must guarantee the integrity of the
Access Control List. This is necessary because we have to ensure that users can
not update it, adding entries of malicious users, if they are not on the list. When
the file is created, the list of identities who can access the file is generated. The

58

5 – Design

problem arises when a user has the Read Key (KR), so he/she can access the file,
but he/she is not in the list of authorized users. Crypto Cloud assumes that the
server is honest but curious. If we do not trust the server anymore, it could tamper
with the Access Control List. Therefore he could add an entry corresponding to
{KR}PublicKeyServer. Now it can modify the list, adding users even if it does not
have the permission to do that. So it is necessary to check if the list is also valid
and not just the file.

To solve this problem, we calculate the hash of the access list and publish it
on the blockchain. Every time a user reads a file, the client calculates the hash
of the ACL retrieved from the server and check if it is equal to the one retrieved
from the blockchain. In this way, integrity is always confirmed. We must update
the ACL when a user performs a share operation. To do this, we put both the
hash of the old version of the list and the hash of the new version. In this way, we
can always verify the validity of the old version and create a correspondence with
the actual one. In other words, when a user adds a new file, the client creates a
Share Metadata transaction that contains: {hash(ACL)}. When a user updates
an existing file, the client calls the Fabric API to create a new Share Metadata
transaction that contains {hash(ACL), hash(newACL)}.

To summarize, the share operation involves the following steps:

• clients have access to the information of all the state;

• clients obtain the last version of the transaction related to the file on which
the user is interested;

• the identity of the transactor is checked, retrieving the identity transaction
from the blockchain;

• clients verify the integrity of the ACL retrieved from the server checking it
with the one obtained from the blockchain;

• the identity of the grantee user is obtained from the blockchain;

• if the check succeeds and the client is on the list of allowed users, a new
transaction is submitted with: hash(ACL)oldversion, hash(ACL)newversion.

As an example, assume that Alice wants to share file.txt with Bob.

1. Alice’s client reads the most recent version of the blockchain. It looks to
the state of the blockchain and finds the last valid transaction related to
file.txt;

2. the client retrieves the identity of Alice from the blockchain and verifies it;

3. the client calculates the hash of {KR}PublicKeyAlice retrieved from the server
and compares it with the hash(ACL) in the transaction;

4. checks if the ACL related with file.txt contains Alice’s public key;

5. if the check succeeds, the client queries the blockchain to obtain Bob’s public
key;

59

5 – Design

6. updates the list. The resulting list will be: {KR}PublicKeyAlice, {KR}PublicKeyBob;

7. submits a file transaction to Hyperledger Fabric which contains hash({KR}PublicKeyAlice),
hash({KR}PublicKeyAlice, {KR}PublicKeyBob); send the request of sharing to the
CCDS and changes the local client state.

When Bob accesses the Crypto Cloud system, the client retrieves file.txt and
verifies the information contained in the last transaction of file.txt.

It is possible to optimize these operations by having clients cache of the veri-
fied identities. Every time it is necessary to check the validity of an identity, the
client looks into the local state, otherwise contacts the blockchain to obtain the
Enrollment transaction associated with the user.

5.7 Version control and integrity

The Crypto Cloud Directory Server (CCDS) also manages integrity and versioning
of files. It guarantees the integrity of the files using three metadata values: the
content hash of the file, the version, and HMAC. The file content hash represents
the hash result of the content of the file in plaintext. This result is calculated by
the client application and sent to the CCDS. A file version is a number managed
by the server, which is incremented every time a user performs an update operation
on the file. The association of both these elements ensures that a particular file’s
content represents a specific version. To avoid that an attacker or a malicious
cloud provider can change the uploaded file’s content without a user noticing it,
Crypto Cloud used the HMAC using a symmetric key called Integrity Key; it is
calculated over the content of the plaintext and produces a fixed-size hash result.
The generated result is stored concatenated with plaintext alongside the ciphered
content. When a user tries to read a file, the application performs the reverse
operation. Then, the result of this operation is compared with the retrieved result
from the previous one. If both results match, the file is untouched. Otherwise, it
means that the content of the file was tampered and compromised.

In Crypto Cloud, there is the assumption that the CCDS is trustworthy which
means that it is expected that the server acts honestly, but there is the possibility
that a malicious user can tamper with the metadata in case of attack. So in the
actual system using the HMAC combined with hash and version of the file, there
is the guarantee of the integrity and versioning of files. In the blockchain, it is
not necessary to adopt that mechanism because everything is published on the
ledger is signed, and no one can change the content of transactions. Managing
the HMAC will result in a more complex operation because we have to manage
also the symmetric key associated with it, so it is not useful. In fact, given the
discussion made in Chapter 3, one of the main characteristics of the blockchain
is the guarantee of integrity. It is possible to put the content hash of the file
and version on a transaction, gaining the certainty that no one can change its
content once published. Therefore every time the user wants to read a file, the
application checks the correspondence between CCDS’ metadata and File Metadata
transaction. In this way, we are sure that what is on the server is valid.

To summarize, when a user reads his/her file, the client checks:

60

5 – Design

1. if the hash of the file on the CCDS is equal to the hash of the file on the
blockchain

2. if the version of the file on CCDS is equal to the version on the blockchain

3. if the hash of the ACL got from the server is equal to the hash of the ACL
from the blockchain

If all the checks pass, we obtain the last version of files, with the guarantee of
freshness and integrity.

5.8 From a centralized system to the blockchain

The following section discusses the advantages of moving from a central database
to the blockchain. A database is a collection of data, running on a secure server in
a central location, with limited user access. It is a central ledger entity that needs
the trust of the administrator to manage it. On the other hand, the blockchain is
a disintermediating technology, where each transaction is cryptographically signed,
and always appended to an immutable ledger; it is visible to all members and
distributed across the network [39]. Moreover while in a traditional database a
client can perform four functions on data such as create, read, update, and delete,
the blockchain is designed to be an append-only structure. A user can only add
more data, in the form of additional blocks. All previous data are permanently
stored and cannot be altered. Because traditional databases are centralized in
nature, their maintenance is easy, and their performance is high, but this brings
in the drawback of the risk of the single point of failure which is represented by
the central server. Anybody with sufficient access to a centralized database could
destroy or corrupt the data within it.

To fully understand the advantages of using a blockchain system instead of a
traditional database, it is possible to imagine breaking the access of the database
of the Crypto Cloud Directory Server, as depicted in Figure 2.3. Let us analyze
the main issues which are possible if we open that database; open meaning that
everyone could access and write data.

The cryptographic material, such as keys, HMAC and other, will be more ex-
posed but, if that data is encrypted with robust algorithms, it will not be an issue.
Only the user who holds the private key associated with the public one can access
it. Therefore the confidentiality of these metadata will be preserved. While, if a
malicious user held the file identifier (fileID), they would access the file, because
the fileID leads to the recent version of the file link. So the fileID leads to the
URL which could lead to a Denial of Service attack; a malicious attacker could
send many read requests, making the file inaccessible to the valid users. Generally,
a DoS attack will happen when a malicious user can spam repeated requests to
degrade the service.

If the database is accessible to everyone, the system will lose the Access Control
mechanism. If the write operation was available for all the users of the system,
a malicious user could perform unauthorized actions on resources (files, keys or
others) that are owned by other users. If a malicious user held the fileID, he could
access it, performs updates and sharing operations because there is no access control

61

5 – Design

on the activities. Therefore we have the problem of tampering with data in which
an attacker could modify users’ files. There is also the problem about versioning,
such as a malicious user can re-upload old versions of records to destroy recent
updates which can lead to a DoS attack. An attacker could also change the link
from the correct file to another one. There are mechanisms to protect the files
integrity, such as content hash, version, and HMAC. However, a malicious user
could change the link to the valid file, also changing the hash and the version, and
upload a new version of HMAC with a new IK, and no one will be able to notice
it.

With a private blockchain, it is possible to avoid the loss of authentication. In
Hyperledger Fabric there is the Membership Service Provider which is responsible
for performing the authentication of the users who participate in the system, and
using the mechanism explained in Section 5.5 we guarantee the validity of the iden-
tities. Verifying the identity of who made the transactions, we can check if the user
is not allowed to make that requests. If his/her public key is associated with an in-
valid identity, he/she cannot perform such operations because he/she is not able to
verify the signature with the correspondent public key. The integrity and freshness
of files are provided with the mechanism described in Section 5.7. DoS attacks are
possible when users with valid certificates send many read requests, but this is al-
ways possible, so we have to live with that. Finally, adopting the blockchain system,
we can still have the Access Control Model mechanism as discussed previously.

After the discussion, it is possible to summarise the security threats of tradi-
tional database and blockchain in Table 5.1.

Security issue Open
database

Private
Blockchain

DoS attack Yes, possible Yes, limited
Access Control Model No Yes
Replay attack No Yes
Authentication No Yes
Tampering message No Yes
Confidentiality of metadata to
address the file

No No

Confidentiality of metadata to
read the file

Yes Yes

Privacy No Yes

Table 5.1: Security issues in open database vs private blockchain

5.9 Summary

In this chapter we introduced a new version of the Crypto Cloud system, which
integrates Crypto Cloud [1] with the Hyperledger Fabric blockchain system.

In the proposed solution the assumption that the server is honest but curious
is overcome, so we do not need to trust the server anymore. We introduced the
Fabric network in the CC architecture, and use it to provide metadata integrity. In

62

5 – Design

this way, we are sure that even in case of an attack, the server must provide valid
metadata. Otherwise, the attack is detected.

The new Crypto Cloud system provides users’ identity management and assures
the validity of metadata without relying on the CCDS. The Enrollment transactions
represent the identity of the users. File Metadata transactions contain the files’
metadata. Finally, Share Metadata transactions store the hash of ACLs on the
blockchain.

Enrollment transactions contain the user’s public key and its signature. The
first time a user registers to the system, an Enrollment transaction is created.
Every time the user issues an operation, the client checks the signature, verifies if
the user’s public key on the server corresponds to the public key on the transaction
and checks if that public key is also in the ACL. In this way, the validity of the
users’ metadata held by the server is guaranteed.

File Metadata transactions contain the metadata that represents the “integrity”,
namely: the file: the file content hash and its version. Every time a user wants to
read his/her files, the client verifies, for each file, the correspondence between the
server’s metadata and the blockchain metadata. In doing so, the client will always
be capable of detecting if the metadata was tampered with.

Share Metadata transactions represents the integrity of the Access Control List.
Every time a user creates a file, a new transaction is submitted, containing the hash
of the ACL. Moreover, when users issue a “share” operation, clients submit a new
Share Metadata transaction that includes the hash of both the old version of the
ACL and the updated one. When clients read files, they verify the integrity of the
server’s ACL by referring to the Share Metadata transactions.

63

Chapter 6

Implementation

This chapter describes the implementation of the proposed Crypto Cloud system
with Hyperledger Fabric. In the the implementation we consider a simplified version
of the design, not considering the Access Control List integrity because of time
constraints. The focus of this work is not to implement all the functionalities
explained in the previous Chapter 5 but to create a Proof of Concept used to
demonstrate the feasibility and practical potential of the proposed approach.

In Section 6.1, we present an overview of the developed implementation. Section
6.2 describes the structure of the Hyperledger Fabric network, necessary to create
the blockchain infrastructure. Section 6.3 details the application interface developed
to communicate with the Fabric network. Section 6.4 details the changes in the
protocols responsible for the most relevant Crypto Cloud’s operations. Finally,
Section 6.5 concludes this chapter, summarizing all aspects of the implementation.

6.1 Overview

This section presents an overview view of what was implemented. We start by
defining the scenarios in which the application can be executed. In the simplest
scenario, there are N clients, belonging to one University, which uses the Crypto
Cloud Application and communicate with the Crypto Cloud Directory Server. The
University represents our Hyperledger Fabric Organization, so we need a ledger
that contains all the transactions related with the users’ metadata. While, in the
extended scenario there are N clients, belonging to more than one University, which
use the Crypto Cloud Application. Adding Universities means adding Organiza-
tions, so we will have more than one Peer and more than one ledger. The Anchor
Peers enable the communication between different Organizations and they hold the
copy of the ledgers of the connected Organizations. It is possible to suppose for
simplicity that we are in the first scenario.

The first implementation step is the creation of the Hyperledger Fabric network.
A Fabric permissioned blockchain network is a technical infrastructure that provides
ledger services to application consumers and administrators. A network consists of
ledgers, one per channel comprised of the blockchain and the state database, smart
contracts, peer nodes, ordering services, channels and Fabric Certificate Authorities.
In the simplest scenario we build an infrastructure which allows creating a complete
blockchain environment and test its potentiality. Therefore, we create a Peer, an

64

6 – Implementation

Ordering Node and a Certificate Authority. If another University uses the Crypto
Cloud Application, it will be necessary to add a Peer per University. To implement
the functionalities described in Chapter 5 two chaincodes are necessary. They
represent identities and files’ metadata and provide functionality to access and
write them on the Fabric ledger.

Once the network is created, it is necessary to develop a program which allows
interacting with the Fabric entities. We implement a basic Fabric API, which
communicates with the Fabric infrastructure. It is written in Java, as the Crypto
Cloud Prototype, and makes available all the operations which are possible in the
Fabric blockchain. Afterwards, it is possible to modify the Crypto Cloud Client
in order to communicate with the Fabric API. Figure 6.1 depcits the resulting
Hyperledger Fabric infrastructure.

Crypto Cloud
Application

Orderer

Peer : {Endorser Peer}
Identity Chaincode

File Metadata Chaincode

FABRIC NETWORK

CHANNEL 1

Certificate
Authority

FABRIC API

Figure 6.1: Crypto Cloud Fabric Network

6.2 Create the Hyperledger Network

This section describes the environment necessary to implement a Fabric blockchain
system. To create the network, it is necessary to define validating peers, the or-
dering service, organizations and generate certificates and keys. The basic pattern
provides a Hyperledger Fabric network which consists of one organization (in this
work our University), one Peer Node, a Certificate Authority, and a solo Ordering
Service. The Peer node is responsible for performing validation of the transaction
and submits them to the Orderer node. The Orderer sorts the transaction and
creates blocks. Then, it sends the blocks to the Peer which will add them to the
ledger. Every entity in the Fabric network must be enrolled to the Membership
Service Provider which provides the certificates and key necessary to be identified
in the network. Only valid entities can act into the network where valid means

65

6 – Implementation

identities with a certificate issued by a Certificate Authority of the Fabric PKI.
Fabric provides the cryptogen tool which generates the cryptographic material
such as X-509 certificates and signing keys which define identity of the users. Ev-
ery Organization has one root certificate which allows the binding between Peers,
Orderers, and Organizations. The transactions are signed with the Private Key of
the user and they are verified with the corresponding public key. It also provides
the configtxgen tool which creates the orderer genesis block, the channel configu-
ration transaction and the anchor peer transactions, one for each peer organization.
It consumes a file which contains the definition of the network.

Every entity can be run either natively on the operative system or can be created
through Docker containers. In Fabric, Docker consumes the docker-compose.yaml
file which defines the blockchain network topology. We deploy the network with
Docker which facilitates the management of the different entities needed to create
the network and because there is a detailed explanation on the official Hyperledger
Documentation [23]. Once the network is created, it is possible to create and
initialize the channel, create the chaincode, register and enroll the users, invoke and
query to test the network. We create one channel, which allows the communication
between the Peer, the Orderer, the Certification Authority and the client app.

6.2.1 Chaincode

To obtain the desired functionality, two smart contracts must be implemented to
encode the rules of the system. The chaincode is used to specify assets, as well
as the logic that manages them. We want to represent two assets: identities and
files’ metadata. Towards this, we decided to develop the chaincode using the Go
language, referring to the examples on the documentation [23]. Every chaincode
program must implement the “Chaincode” interface [24] whose methods are called
as a response to the received transactions. In particular, the init method is called
when a chaincode receives an instantiate or upgrade transaction so that it may
perform any necessary initialization, including initialization of application state.
The invoke method is called in response to receiving an invoke transaction to
process transaction proposals. The other interface implemented in the chaincode
is the ChaincodeStubInterface [24] which is used to access and modify the ledger,
and to make invocations between chaincodes. We developed two chaincodes:

1. Identity Chaincode: put/get identities;

2. File Metadata Chaincode: put/get metadata of the managed files.

In the first, we defined the structure Identity which contains the username, the
RSA Crypto Cloud public key and the signature of the username, done with the
RSA private key of the CC user. It provides two functions: create identity function
and query identity function which allows submitting transactions. When creating
a new identity, it is necessary to put an entry, an identity, on the World State
database. Then, it can be regenerated from the chain at any time. The state
database will automatically get recovered (or generated if needed) upon peer startup
before transactions are accepted. For the key of the state database, it was decided
to use the username to identify the transactions uniquely. To retrieve an identity,

66

6 – Implementation

the Fabric API provides a function that allows obtaining the value of the specified
asset key (the key used is the username).

In the second chaincode the FileMetadata structure is defined, which is formed
by the file name, the content hash, the version of the file and the username of
the transactor. To submit transactions the chaincode provides the invoke method
which is called as a result of an application request to run the smart contract.
When creating a new identity, it is necessary to put an entry on the state database
corresponding to the file’s metadata. We use as the key of the state database the
filename, in order to uniquelyidentify the transaction related with the file, since the
filename is unique in the whole system (see the assumptions on Section 5.3.1). The
query function allows retrieving the value of the specified filename.

After the smart contracts have been developed, an administrator in the Orga-
nization must install it onto the Peer node. After it has occurred, the Peer has
full knowledge of the chaincode. However, the other components connected to the
channel are unaware of it, so it must be instantiated on the channel. After instan-
tiation, every component on the channel is aware of the existence of the chaincode,
meaning that the client application can now invoke it.

6.2.2 Dimensions analysis

As discussed, two types of transaction can be sumbitted on the blockchain: En-
rollment transactions and File Metadata transactions. It is possible to analyze the
dimension of these two transactions to give an idea about the dimension of what we
put onto the blockchain. The File Metadata transaction is represented in Table 6.1
and, regardless of the uploaded size, contains about 2KB. The Enrollment trans-
action metadata, represented in Table 6.2, takes less than 1KB per transaction.

Metadata Dimension
Username size in bytes of String
Filename size in bytes of String
Content Hash 64 bytes
Version 1 byte
TOTAL <1KB

Table 6.1: File Metadata Transaction

Metadata Dimension
Username size in bytes of String
User’s public key 2048 bytes
Signature of user public key 64 bytes
TOTAL about 2KB

Table 6.2: Enrollment Transaction

67

6 – Implementation

6.3 Fabric API

Once the Hyperledger network is created, we need to develop a client node which can
communicate with it. The Hyperledger Fabric makes available a Fabric SDK Java to
facilitate Java applications to manage the lifecycle of Hyperledger channels and user
chaincode. The SDK provides a means to execute user chaincode, query blocks and
transactions on the channel, and monitor events. Our Fabric API allows interacting
with a Certificate Authority and generating enrollment certificates. These identities
are used to sign and verify transactions. When we launched our network, an admin
user was registered with our Certificate Authority. We then use this admin object
to subsequently register and enroll new users. Then, the program will invoke a
certificate signing request and ultimately output an Enrollment Certificate (eCert)
and key material. Our application will then look to this location when they need
to create or load the identity objects for our various users. These identities will be
used when a user wants to query and update the ledger.

As said before, we can issue Enrollment transaction and File Metadata trans-
action. So the Fabric API must provide the methods which allows to create an
identity and create a new file metadata transaction.

Finally, the Fabric API provides queries to retrieve data from the ledger. The
data are stored as a series of key-value pairs, and it is possible to query for the
value of a single key, multiple keys, or, if the ledger is written in a rich data storage
format like JSON, perform complex searches against it (looking for all assets that
contain certain keywords, for example). Every query is signed with Hyperledger
identity which submits the request.

6.4 Modified protocols

This section describes the implementation details of the protocols responsible for
performing the Crypto Cloud’s operations which interact with the blockchain.

In the implementation of the Crypto Cloud application, the communication with
the KMIP client is made on the client side. We want to substitute the management
of the identities, so it makes sense to add the communication with the Hyperledger
Fabric network on the client. Moreover, when all the features mentioned in the
previous chapter will be moved on the blockchain, it will be possible to shutdown
the server. The client module provided an API capable of interacting with a service
endpoint using the KMIP protocol which is used to manage the cryptographic keys.
So the first class changed was the implementation of the KeyManager. The RSA
key pair generation is now done locally rather than using the KMIP mechanism.

The system must provide a mechanism to validate the public keys and associated
identities of users. When a new user joins the system, it is necessary to generate
the keys which represents his/her identity. As discussed in the previous chapter, we
cannot use the identity generated by Hyperledger without changing the whole key
management; so we use two different identities. In our solution, when a user wants
to subscribe to the system, the client registers the user to the CCDS and enrolls
him/her to Hyperledger Fabric Membership Service Provider. The subscription to
the Certificate Authority returns the Hyperledger Fabric identity of the user. Then,
the application creates a transaction which contains the Crypto Cloud identity

68

6 – Implementation

calling the corresponding function of the Fabric API; it contains the username,
the Crypto Cloud RSA public key of the user and a signature of the username
made with the RSA private key. This guarantees the binding between Hyperledger
identity and Crypto Cloud identity. Thanks to the assumption on Section 5.3.1, we
can say that the identity of a specific user U is stored on the first occurrence of his
username in the transactions. If another user subscribes with the same username,
it will not be considered.

The read operation consists of updating a local file with the most recent version
available from the cloud stores. During this operation, the Client Application
obtains the file’s metadata from the CCDS using the file’s identifier. Moreover, it
retrieves the hash and the version querying the File Metadata Chaincode through
the Fabric API. Upon receiving the file’s metadata both from the server and the
blockchain, the Client Application checks if the file exists in the local workspace or
if it is obsolete. If it is obsolete, the application accesses the file’s URL to retrieve
its content. The client receives the file and unwraps the file’s keys using the user’s
private key and deciphers its content. The client must check if the information
on the server corresponds to the ones on the retrieved transaction. Therefore, it
checks the identity of the user who creates/update the file: it invokes the query
identity function of the Identity Chaincode, passing the username of who made
the transaction related with the file. Then, it retrieves the public key of the user
and verifies the signature contained in the transaction with the associated public
key. The client compares the hash of the file and the version obtained from the
server with the one retrieved from Hyperledger. If the controls succeeded, the client
verifies if the public key of the user is equal to the one on the server and if it is on
the list of the authorized users. This means that it can read the file.

The write protocol consists of uploading a local copy of a file to a registered
cloud store. To create a new file in the Crypto Cloud system, the Client Application
generates the file’s keys and IVs and performs the cryptographic operations, guar-
anteeing the confidentiality and integrity of the file. After that, the protected file is
uploaded to the cloud store using the Cloud Provider’s API. After uploading, the
Client Application sends a request to the CCDS with the new file’s metadata and a
request to the blockchain using our Fabric API. We invoke the create file function,
passing as arguments the username, the file name, the public key, the hash and
the version of the file. The CCDS verifies if the file is unique and does not conflict
with other files in the user’s workspace. After registering the new file, the CCDS
answers the client with the new file’s id, version number, and share revision. The
Client Application stores the received metadata in the user’s session.

To perform a file update, the Client Application requests the CCDS for the
file’s metadata using the file’s id and checks if the user maintains the most recent
updated version of the file. It also requests the last transaction related to the
file calling the File Metadata chaincode. Then, it verifies its validity checking the
corresponding identity retrieved from the blockchain. Now the client verifies if the
hash of the retrieved file is equal to the hash of the file on the blockchain, if the
public key is the same as the one on the server and if the user is on the access list.
Finally, the Client Application renews the file’s keys and submits a new transaction
which contains the update information of the file.

The share operation allows a user to share a specific file with another user, called
grantee user. When performing this operation, the user queries the blockchain,

69

6 – Implementation

calling the Fabric API, and retrieves the last transaction related with the desired
file; if the identity of the transactor is already verified it is not necessary to redo
the verifications, otherwise the identity is retrieved from Hyperledger calling query
identity function; if the signature is verifiable with the corresponding public key the
operation continues. Now the client verifies if the hash of the retrieved file is equal
to the hash of the file on the blockchain and if the public key of the user is on the
access list. Then, the client finds the grantee user’s public key from the blockchain
calling the query identity function of Fabric API. Then, it adds the user to the
access list, adding {KR}PublicKeyUser and send a request to the CCDS with the
updated information. In this operation the control of the ACL integrity is missing;
it should be a mechanism which checks and updates the list of authorized users
every time a sharing operation is issued. This mechanism is described in Section
5.6.

6.4.1 Example of basic algorithm

This Section explains the basic algorithm implemented by the system. The func-
tional process involves the management and protection of users’ files. We consider
only read and write operations, and not the sharing operation. Alice registers
into the system, so the client enrolls Alice to the CCDS (1) and to Hyperledger
blockchain through the Fabric API (3).

CCDS
1. addUser(alice, enabled, password,
encryptredSharedKey, UserIV)

3. createIdentity(alice, PublicKeyRSAalice, signature(alice))

2. alice’s metadata

4. {alice, PublicKeyRSAalice, signature(alice)}

Figure 6.2: Alice’s registration

Alice upload a file file.txt. Alice’s client uploads the new file’s metadata both
on the server (5) and on Hyperledger Fabric (7).

70

6 – Implementation

CCDS
5. uploadFile(file.txt, CloudNumber)

6. {fileID, share rev}

7.. createFile(alice,file.txt,hash(file.txt), 0)

8. {alice,file.txt,hash(file.txt), 0}

Figure 6.3: Uploading of the file

Alice retrieves her files (9). For each file, Alice’s client retrieve the File Metadata
transaction associated with the file (11) and retrieve the identity of the transactor
using the username contained in (12). The client verifies that the files are uploaded
by valid users. This is done verifying the signature of the identity retrieved from
Hyperledger (16), checking if the user public key on the CCDS is the same as the
identity transaction (19) and if it is in the ACL (22). In this way authenticity of
transactions is guaranteed. Therefore, Alice reads the files (in this case there is
only file.txt). The client checks the integrity of the metadata retrieved from the
CCDS (23, 24).

14. queryIdentity(alice)

12. {alice, file.txt, hash(file.txt), 0}

11. queryFile(file.txt)

13. Check if Alice’s identity is
already verified otherwise
sends request to Hyperledger

15.{alice, RSAPublicKeyAlice, signature(alice)}

9. readFile(file.txt)

10. {file.txt, URL, EncryptedFileKey, CloudID,
RemoteName,..}

CCDS

16. Verify Alice’s
identity and update the
local state

71

6 – Implementation

17. getUserPublicKey(alice)

18. RSAPublicKeyAlice

CCDS

19. Verify if Public Key
Alice retrieved from
Hyperledger is the

same as CCDS Alice
Public Key

CCDS

20. getACL(file.txt)

21. {RK}RSAPublicKeyAlice +
22. Verify if RSAPublicKeyAlice

is in the ACL
23. Check if hash from server is
equal to hash from blockchain

24. Check if version from server
is equal to version from

blockchain

Figure 6.4: Alice’s client reads files

6.4.2 Example of sharing operation

This Section explains an example of share operation implemented by the system.
The share operation allows a user to share a certain file with another user, called
grantee user. Assuming Alice is already enrolled to the system. Bob signs up to
the system (1), (3).

CCDS
1. addUser(bob, enabled, password, encryptredSharedKey,
UserIV)

3. createIdentity(bob, PublicKeyRSABob, signature(bob))

2. bob’s metadata

4. {bob, PublicKeyRSABob, signature(bob)}

Figure 6.5: Bob’s registration

72

6 – Implementation

Alice shares file.txt with Bob (5). The share operation controls the integrity,
freshness and authenticity of files following the same operation as depicted in Figure
6.4. In addition, Alice’s client retrieves Bob’s identity from the ledger (8) and uses
it to update the ACL (11).

5. readFile(file.txt)

6. {file.txt, URL, EncryptedFileKey, CloudID,
RemoteName,..}

CCDS

7. Check if Bob’s identity is
already verified otherwise
sends request to Hyperledger

10. Verify Bob’s
identity and
update the local state

8. queryIdentity(bob)

9.{bob, RSAPublicKeyBob, signature(bob)}

CCDS

11. {bob, read, [{KR}PublicKeyAlice, {KR}PublicKeyBob]}

12. OK

Figure 6.6: Sharing between Alice and Bob

Finally, Bob retrieves his files finding file.txt (13). The client application
retrieves the last transaction related to the file from the blockchain (15). Then the
client finds that it was made by Alice and checks the authenticity of the identity
(20, 23, 26). Therefore, the client checks the integrity of the files (27, 28).

18. queryIdentity(alice)

16. {alice, file.txt, hash(file.txt), 0}

15. queryFile(file.txt)

17. Check if Alice’s identity is
already verified otherwise

sends request to Hyperledger

19.{alice, RSAPublicKeyAlice, signature(alice)}

13. readFile(file.txt)

14. {file.txt, URL, EncryptedFileKey, CloudID,
RemoteName,..}

CCDS

20. Verify Alice’s
identity and update the

local state

73

6 – Implementation

18. queryIdentity(alice)

16. {alice, file.txt, hash(file.txt), 0}

15. queryFile(file.txt)

17. Check if Alice’s identity is
already verified otherwise

sends request to Hyperledger

19.{alice, RSAPublicKeyAlice, signature(alice)}

13. readFile(file.txt)

14. {file.txt, URL, EncryptedFileKey, CloudID,
RemoteName,..}

CCDS

20. Verify Alice’s
identity and update the

local state

21. getUserPublicKey(alice)

22. RSAPublicKeyAlice

CCDS

23. Verify if Public Key
Alice retrieved from
Hyperledger is the

same as CCDS Alice
Public Key

CCDS

24. getACL(file.txt)

25. {RK}RSAPublicKeyAlice +
26. Verify if RSAPublicKeyAlice

is in the ACL
27. Check if hash from server is
equal to hash from blockchain

28. Check if version from server
is equal to version from

blockchain

Figure 6.7: Bob’s client retrieves files

6.5 Summary

In this chapter, we described the selected technologies and the implementation de-
tails for the proposed solution. The proposed Crypto Cloud modifications includes
the management of the users’ identities and the control of the integrity of files’
metadata.

74

6 – Implementation

Regarding the management of the identities we proposed an implementation
which combines the blockchain and the client application; we create an Enrollment
Transaction that maps the user with his/her public key and we submit it on the
Hyperledger blockchain. Then, every time a user performs a read/share operation,
the client get the File Metadata Transactions related with files and verifies its
authenticity. It means that the identity of the last transaction associated with the
file in which the client is interested in must be done by a valid identity. To check
the identity the client retrieves the Enrollment Transaction of the transactor and
check if the signature is verifiable with the correspondent public key. Moreover we
check the correspondence CCDS RSA public key - Hyperledger RSA public key and
we verify if that key is on the Access Control List. All these mechanisms guarantee
the authenticity and validity of the operations.

The other implemented functionality is the integrity mechanism. First of all we
developed a control logic on the client side that submits the File Metadata transac-
tion when creating files. Every time the application retrieve files, in addition of get
files’ metadata from the CCDS, it submits a query to the Fabric API getting the
last File Metadata Transaction related with the file. Then, the content hash (which
guarantees integrity) and the version retrieved from the blockchain are compared
with the ones retrieved from the Client. If all checks pass, we can be sure about
the validity of the metadata on the server.

The mechanism which guarantees the integrity of the Access Control List was
not implemented because of time constraints.

75

Chapter 7

Evaluation

This chapter presents the evaluation of the proposed Crypto Cloud Proof of Con-
cept. We start this evaluation by presenting the overall performance of Crypto
Cloud with Hyperledger (CC-HL), describing the followed methodology and com-
paring the obtained results with the Crypto Cloud previous version (CC) (Section
7.2). In Section 7.3, we provide a security analysis of our solution, describing
the countermeasures applied to mitigate the previously identified threats. Lastly,
in Section 7.4, we summarize the main aspects of the evaluation of the proposed
solution.

7.1 Performance Evaluation

To evaluate the performance of our solution, several benchmark tests were carried
out. The latencies measured from benchmarks were obtained using a profiler soft-
ware, called JProfiler v10.0 [40], which performs the instrumentation of the running
code on a Java Virtual Machine (JVM) and traces its information. This technique
has a relatively low overhead associated [40]. The experiments have been performed
over an Intel(R) Core(TM) i7 3230M CPU running at 2,5 GHz with TurboBoost
technology enabled, with 16GB of DDR3 memory running at 2133MHz, and 256GB
of SSD. The OS used was macOs Mojave 10.14.2 (x64) running standard services.
For all experiments, the Client Application, the CCDS, the Fabric Network and the
PostgreSQL databases were deployed in the same machine as the benchmarks. The
Fabric instance consists of one Peer, one Ordering Node, a Certification Authority,
a Couch database and the two chaincodes discussed in Section 6.2.1. Every in-
stance of these entities runs in a Docker container. The benchmark tests consist of
the Client Application performing several operation requests to the system. These
operations includes: reading a file from the cloud, writing a new file to the cloud,
update an existing file and sharing a file with a user. Additionally, we also ran the
same benchmarks using the existing Crypto Cloud prototype [1], in order to com-
pare the obtained results with the original Crypto Cloud solution. We modified the
previous version of the Crypto Cloud application in order to generate and consume
local RSA key pairs; so we do not use the KMIP protocol.

All performed benchmarks measured the latency times of each operation on our
system. These operations were executed individually 30 times, with approximately
10 seconds of interval between them, and its mean time and standard deviation

76

7 – Evaluation

were analyzed. The experiments took place on January, 2019.

7.2 Crypto Cloud Performance

In order to evaluate the performance of the Crypto Cloud system, we obtained
latency measures for each of the Crypto Cloud operations using different file sizes:
100KB, 1MB and 10MB. During these benchmarks, we did not considered the
latency times resulting from the Cloud upload and download operations, since
these operations are performed outside of our controlled environment and we cannot
guarantee that all cloud operations are performed under the same conditions (e.g.
the packets follow same network routes and use same provider’s nodes). The values
depicted below represent the latency measurements obtained from the performed
operations.

The first operation of our interest is the addition of a user. As shown in Figure
7.1 in CC-HL the operation takes 25% more time than the same operation executed
in CC. This is because when a user registers the first time to the system, he/she is
both enrolled to the Hyperledger Membership Service Provider and to the CCDS.
Moreover, the application puts the identity of the user on the ledger, submitting
a transaction to the blockchain; this is done calling our Fabric API. The identity
contains also the signature of the username of the transactor, so there is also an
additional time due to the calculation of the signature.

Tabella 1

With blockchain Wihout blockchain

Add user 424 424

Create identity 67
Enroll user 33
Signature 8

Ti
m

e[
m

s]

0

150

300

450

600

Add new user

CC-HL CC

Add user Create identity Enroll user Signature

�1

Figure 7.1: Crypto Cloud’s mean latency of add user

As stated in Section 6.4, the read operation consists of getting the file’s content
and metadata both from the CCDS and Hyperledger blockchain; then, the applica-
tion unwraps the file’s keys, decipher the content and checks its integrity. From the
obtained results, depicted in Figure 7.2, we can observe that the computation time
of this operation increases with the rise of the file size parameter. This is true for
both the system and can be explained by the increase in the time during the deci-
pher process. We can observe that the CC-HL read of files took 20% to 40% more
time than the same operation in CC. Analyzing the time spent in each read call, we
found that the query blockchain function consumes a high percentage on the total
time spent. Moreover, the application contacts the blockchain also to verify the

77

7 – Evaluation

authenticity of the transactions (retrieves the identity and checks the signature) if
the identity was not already checked. In addition, in the new version, we retrieve
the ACL and the public key of the user who made the transaction from the CCDS.
These operations are necessary to check that the consistency of the metadata held
by server matches the ones on the blockchain, resulting in the increase of time of
the read operation. Finally the client checks the integrity of the content hash and
the version both from the server and Hyperledger.

Ti
m

e
[m

s]

0

2250

4500

6750

9000

Upload existing file
100K 1M 10M

CC-HL CC

Ti
m

e[
m

s]

0

500

1000

1500

2000

Read

100K 1M 10M

CC-HL CC

Ti
m

e[
m

s]

0

1250

2500

3750

5000

Upload new file

100K 1M 10M

CC-HL CC

�2

Figure 7.2: Crypto Cloud’s mean latency of read files

Ti
m

e
[m

s]

0

2250

4500

6750

9000

Upload existing file
100K 1M 10M

CC-HL CC

Ti
m

e[
m

s]

0

500

1000

1500

2000

Read

100K 1M 10M

CC-HL CC

Ti
m

e[
m

s]

0

1250

2500

3750

5000

Upload new file

100K 1M 10M

CC-HL CC

�2

Figure 7.3: Crypto Cloud’s mean latency of upload new files

Similar to the read operation, the write operation also depends on the file size
parameter. As depicted in Figure 7.3, when performing the write of new files,

78

7 – Evaluation

CC-HL took 20% to 25% more than the Crypto Cloud’s time. The time is higher
because every time a file upload operation is issued, the application submits a
transaction on the blockchain containing the content hash, the version of the file,
the filename and the username of the transactor.

Figure 7.4 depicts the result of uploading of existing files (the file is modified
every time). In the case of upload of an existing file, our Proof of Concept took
10% to 20% more than the CC time. This operation is different from the upload
of a new file because the application also finds the last valid transaction on the
blockchain. This is necessary to check the integrity of the metadata held by the
server. Moreover, the application verifies the identity of the transactor, which must
be valid. To retrieve the public key and the ACL from the server, additional calls
were done. All these operations contribute to the increase in the overall time.

Ti
m

e
[m

s]

0

2250

4500

6750

9000

Upload existing file
100K 1M 10M

CC-HL CC

Ti
m

e[
m

s]

0

500

1000

1500

2000

Read

100K 1M 10M

CC-HL CC

Ti
m

e[
m

s]

0

1250

2500

3750

5000

Upload new file

100K 1M 10M

CC-HL CC

�2

Figure 7.4: Crypto Cloud’s mean latency of upload existing files

The share operation consists of wrapping the file’s Read Key (RK) with another
user’s public key. This operation only involves the file’s metadata and does not deal
with the file content, which results in similar latency times for different file sizes.
When comparing the obtained results with Crypto Cloud, we can observe a high
increase in the operation time. The results differs in an order of magnitude: in
the previous version of Crypto Cloud, the time is expressed in microseconds while
in the version with Crypto Cloud it is measured in milliseconds. Because of this
significant difference, it does not make sense to create a graph of the results.

In the share of the new CC, in addition to the operations done in old CC, we
call three times the Fabric API: one to retrieve the file metadata, one to retrieve
the identity of transactor, and one to retrieve the identity of grantee user.

79

7 – Evaluation

7.3 Security Analysis

The gain of using the Hyperledger Fabric blockchain can be summarized in terms
of integrity, authenticity and authentication and not trusting the server. The im-
plementation of Crypto Cloud follows different mechanisms in order to mitigate the
previously identified threats, in Section 5.3.2.

The Spoofing Identity threats consist of the violation of the system’s authen-
tication properties, where a malicious entity poses as an authorized one. Crypto
Cloud verifies the identity of the users every time an operation is issued; only the
users that can demonstrate to hold a specific identity could do operations. The
verification is done relying on the blockchain and checking the signature contained
in the transactions. This guarantees the authenticity of the data on the blockchain.

Regarding threats that involve Tampering with Data, violating integrity prop-
erties of the system, an attacker (e.g. malicious cloud) may try to modify users’
files. Our solution deals with this by implementing an integrity mechanism that
relies on the blockchain; every time a file is read, the application checks the content
hash and the version retrieved from the blockchain with the ones obtained from
the server. In this way, integrity and freshness of files is always guaranteed. This
prevents users from denying that they performed modifications to the files.

In order to mitigate Repudiation threats, where a user denies performing an
action over a file, our implementation counters this threats by recording the meta-
data related with creation and upload of files on the blockchain. This prevents
users from denying that they performed modifications to the files.

Regarding Information Disclosure on the blockchain, the confidentiality of the
metadata stored on the blockchain is guaranteed because the hash and the version
of the files do not expose sensible information. Also the public key and signature
do not expose sensitive information of the users.

The Denial of Service threats are still possible, as in the previous version of
Crypto Cloud.

Regarding the Elevation of Privilege threats, our solution deals with this prob-
lem by implementing strict access control mechanisms based on ACLs that verify
user’s permission over the files on every request. But in the implementation we do
not check the integrity of the ACL and this would expose the system a potential
tampering of ACL. This represents a weakness of this work.

7.4 Summary

In this chapter, we evaluated the solution based on performance and security. In
terms of performance, we evaluated the modified operations and compared the
obtained results with the results of the previous version of Crypto Cloud. All the
operations add an overhead due to the communication with blockchain.

Regarding security, our solution implemented different mechanisms to mitigate
the previously identified threats. Our solution guarantees the confidentiality and in-
tegrity of stored files without trusting the Crypto Cloud Directory Server by relying
instead on the blockchain. Even if the attacker compromises clouds’ infrastructures
or the server’s metadata, the users’ files remain secure. Crypto Cloud also imple-
ments authentication and authorization mechanisms to prevent illicit access. The

80

7 – Evaluation

users’ identities, the integrity and validity of files are verified using the blockchain
environment.

With the proposed solution we increased the global consumption on the client
side but with the gain of having not to trust the server anymore. Through the
assessment of the Crypto Cloud solution and based on its design and implemen-
tation details, we can conclude that our Proof of Concept solution meets all the
previously established requirements except the integrity of the ACL. The remaining
mechanisms described in the design can be easily implemented in future work.

81

Chapter 8

Conclusion

The Crypto Cloud system allows using multiple cloud providers without renounc-
ing privacy, guaranteeing the confidentiality and integrity of managed files. We
extended this system using blockchain technology, since it delivers trust, trans-
parency, neutrality, security, and immutability without having to trust the Crypto
Cloud central server. By using the blockchain, we prevent the loss of integrity of
the metadata held by the server; so we created a tamper-proof system.

We started by analyzing different blockchain implementations, such as Hyper-
ledger Fabric, Ethereum, and Filecoin; we compared them and illustrated the ben-
efits/disadvantages of each technology. We chose Hyperledger Fabric because it
is a permissioned blockchain which guarantees the authentication, integrity, and
privacy of the stored data.

In this work, the integration of Crypto Cloud with Hyperledger Fabric blockchain
was successfully implemented, except delivering the integrity of the Access Control
List due to time constraints. The new system provides a mechanism to validate the
public keys and associated identities of the users, using the blockchain to provide
authenticity of the public keys and using the client to verify it. A new component
was added to the CC architecture which is the Hyperledger Fabric network. We
created two smart contracts which represent, respectively, users’ identities and files’
metadata. To interact with such smart contracts, we implemented an API using
Hyperledger Fabric Java SDK [41]. In addition, the protection of the stored files is
enhanced by using the blockchain. We added the metadata which guarantees the
integrity of files on the blockchain; every time a user wants to read his/her files, the
client application verifies the consistency between the metadata on the server and
the ones on the blockchain. In this way, if the server contains tampered metadata,
it will be detected and discarded. Regarding performance, the new Crypto Cloud
adds an overhead to the creation and reading of files, taking about 20% to 40%
more time than the previous version. Nevertheless, we gain the advantage of not
having to trust the server anymore, always guaranteeing that the metadata held by
the server is not compromised.

The major implementation difficulties were in the implementation of the blockchain.
This occurs because, even if the Hyperledger technology is well documented, there
are some aspects that are not so clear, due to its “young” nature; in particular,
there are very few examples (and very few really works) about how to use the
Hyperledger Fabric Java SDK. This slowed the implementation significantly.

Finally, it is possible to affirm we have seen a great increase in the interest

82

8 – Conclusion

about the blockchain technology in the last years. The blockchain has gained much
attention because it ensures security and immutability of the data stored. What
can be deduced from this research is that with the blockchain the point of view
of how an application is developed completely changes. Not relying anymore on
a single entity or a third party is a real revolution both regarding security and
availability. This simplifies many types of application that require the involvement
of several third parties. Breaking down the burden of trusting external entities is
a step forward to innovation. In our case, it is translated into having no longer
to worry about the server, that can manipulate sensitive informations. With our
Proof of Concept, we gained security control without trusting neither the central
server nor the cloud providers. However, the panorama in this area is huge, and
this is just a small drop in the ocean of the future.

8.1 Future Work

The solution herein proposed was properly implemented and achieves its proposed
goals except the implementation of the Access Control List integrity. Therefore,
there are few improvements that can be taken into account in future versions of
this work, such as:

• Integrity of the Access Control List: the hash of the ACL must be stored
on the blockchain to prevent that malicious users could modify it without the
right permissions. The mechanism is explained in detail on Section 5.6;

• Removal of the server: all the most important metadata were moved on
the blockchain, so it will be possible to eliminate the server. The remaining
metadata could be maintained on the client side.

• Create a distributed storage, based on blockchain technology: there
are technologies like Filecoin, which allows users to sell and buy remote stor-
age space for backing up their data. Adopting a technology as Filecoin, it
will be possible to substitute the cloud providers with the Filecoin Decentral-
ized Storage Network (see Section 4.3). In addition, it is possible to integrate
the functionalities discussed in Chapter 5 guaranteeing authenticity, integrity,
and freshness of the files.

83

Bibliography

[1] F. D. B. Custodio, “Crypto cloud”, master thesis in information systems and
computer engineering, Instituto Superior Tecnico, 2017

[2] S. Pereira, A. Alves, N. Santos, and R. Chaves, “Storekeeper: A security-
enhanced cloud storage aggregation service”, Reliable Distributed Systems
(SRDS), 2016 IEEE 35th Symposium on, 2016

[3] OASIS, “Key management interoperability protocol technical committee.”
Available: https://www.oasis-open.org/committees/kmip/

[4] S. Goldfeder, H. Kalodner, D. Reisman, and A. Narayanan, “When the cookie
meets the blockchain: Privacy risks of web payments via cryptocurrencies”,
Proceedings on Privacy Enhancing Technologies, 2018

[5] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of blockchain
technology: Architecture, consensus, and future trends”, Big Data (BigData
Congress), 2017 IEEE International Congress on, 2017

[6] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain challenges
and opportunities: A survey”, International Journal of Web and Grid Services,
2018

[7] Deloitte, “When (and if) income is realized from bitcoin chain-splits”, 2017

[8] Techopedia, “Smart contract.” Available: https://www.techopedia.com/

definition/32499/smart-contract

[9] E. T. from the arXiv, “Bitcoin transactions are not as anonymous as ev-
eryone hoped.” Available: https://www.technologyreview.com/s/608716/

bitcoin-transactions-arent-as-anonymous-as-everyone-hoped

[10] Plusalsight, “Blockchain architecture.” Available: https://www.

pluralsight.com/guides/blockchain-architecture

[11] A. Lewis, “A gentle introduction to blockchain technology”, Bits on Blocks,
2015

[12] G. W. Peters and E. Panayi, “Understanding modern banking ledgers through
blockchain technologies: Future of transaction processing and smart contracts
on the internet of money”, Banking Beyond Banks and Money, 2016

[13] P. M. L. Costa, “Supply chain management with blockchain technologies”,
2018

[14] Z. Zheng, S. Xie, H.-N. Dai, and H. Wang, “Blockchain challenges and oppor-
tunities: A survey”, Work Pap.–2016, 2016

[15] A. Tar, “Proof-of-work.” Available: https://it.cointelegraph.com/explained/proof-
of-work-explained

[16] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain challenges
and opportunities: A survey”, International Journal of Web and Grid Services,
2018

84

https://www. oasis-open.org/committees/kmip/
https://www.techopedia.com/definition/32499/smart-contract
https://www.techopedia.com/definition/32499/smart-contract
https://www.technologyreview.com/s/608716/bitcoin-transactions-arent-as-anonymous-as-everyone-hoped
https://www.technologyreview.com/s/608716/bitcoin-transactions-arent-as-anonymous-as-everyone-hoped
https://www.pluralsight.com/guides/blockchain-architecture
https://www.pluralsight.com/guides/blockchain-architecture
h

Bibliography

[17] M. Castro, B. Liskov, et al., “Practical byzantine fault tolerance”, OSDI, 1999
[18] “What is practical byzantine fault tolerance?.” Available: https://

crushcrypto.com/what-is-practical-byzantine-fault-tolerance/

[19] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan, “Block-
bench: A framework for analyzing private blockchains”, Proceedings of the
2017 ACM International Conference on Management of Data, 2017

[20] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al., “Hyperledger fabric:
a distributed operating system for permissioned blockchains”, Proceedings of
the Thirteenth EuroSys Conference, 2018

[21] P. Yee, “Updates to the internet x. 509 public key infrastructure certificate
and certificate revocation list (crl) profile”, 2013

[22] IBM, “Identity, hyperledger fabric docs.” Available: https:

//hyperledger-fabric.readthedocs.io/en/release-1.3/identity/

identity.html?highlight=digital%20identity

[23] Hyperledger Fabric documentation, Available: https://

hyperledger-fabric.readthedocs.io/en/release-1.3/

[24] IBM, “Chaincode, hyperledger fabric docs.” Available: https://

hyperledger-fabric.readthedocs.io/en/release-1.3/smartcontract.

html?highlight=chaincode

[25] IBM, “Identity mixer.” Available: https://www.zurich.ibm.com/identity_
mixer/

[26] H. D. Initiative et al., “What is ethereum?”, tech. rep. Available: http:

//ethdocs.org/en/latest/introduction/what-is-ethereum.html

[27] G. Wood, “Ethereum: a secure decentralised generalised transaction ledger.
ethereum project yellow paper 151 (2014)”, 2014

[28] Ethereum, “Parity ethereum documentation.” Available: https://wiki.

parity.io/Parity-Ethereum

[29] T. Tiwari, D. Starobinski, and A. Trachtenberg, “Distributed web mining of
ethereum”, International Symposium on Cyber Security Cryptography and
Machine Learning, 2018

[30] P. Labs, “Filecoin: A decentralized storage network”, 2017
[31] U. Chohan, “The double spending problem and cryptocurrencies”, 2017
[32] V. B. on the Future of Ethereum, Available: https://hackernoon.com/

vitalik-buterin-on-the-future-of-ethereum-d3577317b0cf

[33] B. N. Levine, C. Shields, and N. B. Margolin, “A survey of solutions to the
sybil attack”, University of Massachusetts Amherst, Amherst, MA, 2006

[34] X. L. Amanda Davenport, Sachin Shetty, “Attack surface analysis of permis-
sioned blockchain platforms for smart cities”, 2017

[35] J. B. P. Labs, “Filecoin research roadmap for 2017”, 2017, Available: https:

//filecoin.io/research-roadmap-2017.pdf

[36] M. Valenta and P. Sandner, “Comparison of ethereum, hyperledger fabric and
corda”, tech. rep., FSBC Working Paper, 2017

[37] IBM, “Hyperledger fabric.” Available: https://github.com/hyperledger/

fabric/blob/13447bf5ead693f07285ce63a1903c5d0d25f096/common/

tools/configtxgen/localconfig/config.go

[38] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature
algorithm (ecdsa)”, International journal of information security, 2001

85

https://crushcrypto.com/what-is-practical-byzantine-fault-tolerance/
https://crushcrypto.com/what-is-practical-byzantine-fault-tolerance/
https://hyperledger-fabric.readthedocs.io/en/release-1.3/identity/identity.html?highlight=digital%20identity
https://hyperledger-fabric.readthedocs.io/en/release-1.3/identity/identity.html?highlight=digital%20identity
https://hyperledger-fabric.readthedocs.io/en/release-1.3/identity/identity.html?highlight=digital%20identity
https://hyperledger-fabric.readthedocs.io/en/release-1.3/
https://hyperledger-fabric.readthedocs.io/en/release-1.3/
https://hyperledger-fabric.readthedocs.io/en/release-1.3/smartcontract.html?highlight=chaincode
https://hyperledger-fabric.readthedocs.io/en/release-1.3/smartcontract.html?highlight=chaincode
https://hyperledger-fabric.readthedocs.io/en/release-1.3/smartcontract.html?highlight=chaincode
https://www.zurich.ibm.com/identity_mixer/
https://www.zurich.ibm.com/identity_mixer/
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
https://wiki.parity.io/Parity-Ethereum
https://wiki.parity.io/Parity-Ethereum
https://hackernoon.com/vitalik-buterin-on-the-future-of-ethereum-d3577317b0cf
https://hackernoon.com/vitalik-buterin-on-the-future-of-ethereum-d3577317b0cf
https://filecoin.io/research-roadmap-2017.pdf
https://filecoin.io/research-roadmap-2017.pdf
https://github.com/hyperledger/fabric/blob/13447bf5ead693f07285ce63a1903c5d0d25f096/common/tools/configtxgen/localconfig/config.go
https://github.com/hyperledger/fabric/blob/13447bf5ead693f07285ce63a1903c5d0d25f096/common/tools/configtxgen/localconfig/config.go
https://github.com/hyperledger/fabric/blob/13447bf5ead693f07285ce63a1903c5d0d25f096/common/tools/configtxgen/localconfig/config.go

Bibliography

[39] J. S. Perry, “Blockchain:why can not this be done with a
database?.” Available: https://developer.ibm.com/code/2018/04/

16/blockchain-vs-or-database-better/

[40] E. Technologies, “Java profiler - jprofiler.” Available: https://www.

ej-technologies.com/products/jprofiler/

[41] “Java sdk for hyperledger fabric 2.0.” Available: https://github.com/

hyperledger/fabric-sdk-java

86

https://developer.ibm.com/code/2018/04/16/blockchain-vs-or-database-better/
https://developer.ibm.com/code/2018/04/16/blockchain-vs-or-database-better/
https://www.ej-technologies.com/products/jprofiler/
https://www.ej-technologies.com/products/jprofiler/
https://github.com/hyperledger/fabric-sdk-java
https://github.com/hyperledger/fabric-sdk-java

List of Abbreviations

CC Crypto Cloud

CCDS Crypto Cloud Directory Server

ACL Access Control List

MSP Membership Service Provider

RK Read Key

SDS Storekeeper Directory Server

API Application Programing Interface

KMIP Key Management Interoperability Protocol

URL Uniform Resource Locator

PKI Public Key Infrastructure

HMAC Hash-based Message Authentication Code

PoW Proof of Work

PBFT Practical Byzantine Fault Tolerance

87

	Introduction
	Motivation
	Thesis Outline

	Related work
	Storekeeper
	Identity Management
	Access Control Model

	Crypto Cloud
	Crypto Cloud Client Application
	Crypto Cloud Directory Server
	Key Management Server and PKI infrastructure
	Cloud Stores
	Base algorithm
	File Update
	File Sharing

	Summary

	Background
	Distributed Ledger Technology and Blockchain
	Security Characterstics

	Transactions
	Blocks
	Classification of a blockchain system
	Consensus protocols
	Proof of work
	Proof of stake
	Practical Byzantine Fault Tolerance
	Conclusions

	Blockchain: State of the Art
	Hyperledger Fabric
	Identity
	Membership Service Provider
	Consensus
	Smart Contract
	The ledger and the World State Database
	Security analysis

	Ethereum (Public)
	Accounts and Addresses
	Transactions
	Smart contract
	Mining
	Security Analysis
	Ethereum Parity (Private)

	Filecoin
	The network and the participants
	Consensus
	Participants
	Security Analysis

	Summary
	Security risks
	Performance
	Hyperledger Fabric vs Ethereum
	Ethereum blockchain network
	Hyperledger blockchain network
	Performance and Security

	Conclusions

	Design
	Overview
	Architecture
	Crypto Cloud Client Application
	Crypto Cloud Directory Server
	Hyperledger Fabric Network

	Models
	Trust model
	Threat model

	Metadata on the blockchain
	Management of identities
	Attack example

	Access Control List Integrity
	Version control and integrity
	From a centralized system to the blockchain
	Summary

	Implementation
	Overview
	Create the Hyperledger Network
	Chaincode
	Dimensions analysis

	Fabric API
	Modified protocols
	Example of basic algorithm
	Example of sharing operation

	Summary

	Evaluation
	Performance Evaluation
	Crypto Cloud Performance
	Security Analysis
	Summary

	Conclusion
	Future Work

	Bibliography

