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Abstract

Multibody systems are mechanisms of interconnected bodies with application in

many areas of engineering. There is a need to optimize such systems for, among

others, the minimization of the torque demand of the system motion, and also for

maximization of the velocity of the systems. The integration of lightweight flexi-

ble bodies in multibody systems makes sense as the lower weight would imply an

overall lighter systems and faster system; but this also comes with vibrations that

in turn affect the system dynamics. It is necessary to have a control system for the

motion of the system such that the torque and velocity targets are met and keeping

vibrations low. This work focuses on a four-bar linkage multibody system. More-

over, the four-bar linkage system in this case includes two extra links in the middle

of the structure symmetrically dividing the system. This architecture is based on

the horizontal-to-vertical and vertical-to-horizontal target motion of the system’s

coupler link. For the study, different configurations of lightweight flexible body

integration are modeled and observed for nature of t he system performance in

terms of the speed, torque and vibration. From the foregoing, a most suitable con-

figuration is selected and following this, a control architecture is proposed for the

system such that the torque demand is kept below the set limit, link vibrations are

lowered and the system is fast. In this work, Matlab/SimscapeMultibody is used

to model and study the system. Using the Simulink environment, the controller is

designed to satisfy the performance requirement and to follow the reference motion

path. Simulation results are presented, which show that the controller can control

the system motion and keep vibrations low. The dynamic modeling and control

approach presented can be applied to other cases of multibody systems other than

the four-bar linkage mechanism.
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Chapter 1

Introduction

Multibody systems in the most basic words consists of interconnected bodies.

The system can be comprised of the only rigid bodies, only flexible bodies, or a

mix of rigid and flexible bodies. Multibody systems applies to many engineering

fields and largely seen in such areas as robotics, aeronoutics,etc. To handle these

systems it is required to study how the respective bodies link to and affect each

other and in turn affect the overall system composition. This is an analysis of the

movement and force dynamics of the system. In another breadth, however still

in the same light, multibody systems represents a formalism used to model the

dynamic behaviour of interconnected rigid or flexible bodies, each of which may

undergo large rotational and translational displacements.

Nowadays there is need for light and high-speed mechanisms and one that

consumes the least amount of energy as possible. In this light, in the application

of the multibody systems such as the n-bar linkage mechanism (where n represents

the number links that make up the system), there is need for such mechanisms that

adhere to the aforementioned demand; to reduce inertia forces and driving torque

requirement. Hence, research have been made with regard to the inclusion of

flexible materials in the mechanical system with different works involving different

levels of flexibility inclusion; from a single flexible link to cases of an all-link-flexible

system.

Multibody systems undergoing motion, which is the focus in this work, of

course have a different and more complex behaviour than single-body setups. The

8



1 – Introduction

Dynamic Modeling and control of multibody systems is somewhat of intertwined

process which simply implies respectively first the engineering study of the motion

of the multibody system in question to understand the behaviour of the system

and consequently designing of a control protocol, based on some set requirements,

to have the system run in a desired manner. In engineering mechanics, while kine-

matic study of systems, or simply ’kinematics’, deals with the motion of bodies or

systems without considering forces responsible, ’dynamics’, deals with the connec-

tion between body or system motion and the responsible forces acting on it. As

would be expected, the complexity of the multibody system, affected by factors

such as number of links, size, shape, etc, proportionally affects the complexity of

the modeling process. The design of multibody systems is needed to be efficient.

Essentially the system has to be well designed and the design engineer has to un-

derstand the kinemnatic and dynamic behaviour of the system beforehand so the

system motion runs according to the design intent.

Several approaches have been taken toward the study of the dynamics of

multibody systems amounting to formalisms such as Newton and Euler’s and La-

grange’s. The mathematical equations for these multibody system formalisms may

differ in appearance but the physics concept behind them all remains the same.

Solving multibody system dynamics problems using analytical methods is dif-

ficult. Fundamentally, the dynamics of a system implies the formulation of the

equations of motion and there are methods and principles such as Newtons’s law,

principle of conservation of motion, etc. Usually, in the process of solving these

systems, the equations of motion are too complex to solve by hand. As a result of

the nature of multibody system dynamics there is no singular method so powerful

and general such that it would be always applied to the resolution of multibody

dynamics tasks in general. This is the basis for the turn to physical modeling of

these systems using computer-aided approach where the such laws as Newton’s

equations of motion is employed to model the multibody system in a uniform and

consistent manner and where the powerful computational ability of the computer

is harnessed to solve the equations using the numerical methods implemented on

computers. A number of computer programs exist for solving multibody systems

with preferences made in a case by case basis and with regard to the respective

ability and flexibility of each package. In [10] co-simulation is presented where
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1 – Introduction

CAD application is used for dynamics solving. The dynamic model is then ex-

ported to a control design software for the development of the anticipated control

law. In most cases, an ’external’ application, different from the control design one

is used for dynamics modeling. In this work, the application for modeling and

control design is somewhat integrated; SimScape MultibodyTM (formerly aliased

’SimMechanics’) and SimulinkTM , both of the Mathworks platform are employed

for the dynamic modeling and control architecture design respectively.

1.0.1 Dynamics of flexible-link multibody systems

Light bodies have been required in the implementation of systems for the iner-

tial implications but come with deflection of the body under the application of a

force or torque. To utilize these bodies properly and accurately, they need to be

modelled appropriately for use in the light of application of controls. Works have

investigated the modeling of multibody systems with flexible parts/links. The dy-

namics of flexible multibody sytems was analyzed in [1] and [2] by a finite segement

approach. The work presented a theoritical basis for the modeling approach based

on Kane’s equation modeling flexibility using spring and dampers at the joints of

the system. In [3], the geometric constraint at the end of a flexible link was derived

and introduced into Hamiltons principle to formulate the governing equations of

the connecting rod which is modelled by Timoshenko beam theory. In [5], finite

element analysis was used for a high-speed manipulator while in one of his earlier

works, Giovagnoni [6] used the finite element approach for dynamics modelling of

flexible planar linkages with 1 d.o.f. and treating elastic and rigid body degree of

freedom in identical manner, and obtained an equilibrium equation involving all

the mechanisms members by means of sensitivity coefficients. A detailed review

of the dynamic analysis of flexible links is presented in the work of Santosha et

al [4], detailing the methods of assumed mode, finite element method and lumped

parameter methods applied to single-link multibody system in the form of manip-

ulators, as well as two-link manipulators and flexible link manipulators. [8] and[9]

also presents developments in flexible multibody dynamics.

10



1 – Introduction

1.0.2 Control of flexible-link multibody systems

In the actuation of the linkage system, different works have featured different

utilization of actuation. Some case have feautured two actuators on the fixed bar,

others have used a single actuator. In [11],[12] an innovative actuation approach

is adopted including a link connected centrally to the default coupler link of a

four-bar linkage system and incorporating only one actuator. This novel approach

handles the problems of interference while minimizing system complexity. Many

bar linkage mechanism literature have focused on area of trajectory algorithm

optimization and dynamic balancing. A review on this is in the work of [11].

The use of lightweight flexible links to reduce torque and increase speed in-

troduces elastodynamic issues. There is need for control systems for the flexible

four-bar linkage system to suppress vibrations, maintain as low as possible torque

with a fast system speed. Zhang et al [13] investigated the control of a high-speed

flexible linkage mechanism by a H∞ active vibration controller, using a pair of

piezoelectric sensor and actuator on each link. The controller presented was to

provide robustness, handling uncertainty at high frequencies. In [14], a similar

approach was employed to a different kind of structure but showing H∞-based

control’s able to handle various vibration modes demonstrating robustness to up

to 5th mode. In [15] an inverse dynamics controller is proposed for four bar link-

age system with a single flexible link. Using a zero dynamics stabilizer it tracked

tip trajectory for the link system. However, the exact approach presented is not

practical for elastic coordinates and speeds because an observer would be needed

to get the state of the dynamic model.

Essentially, to apply control theory to systems, they have to be linear systems.

The dynamic model of the flexible four-bar linkage mechanism is non-linear. Thus,

there is need to linearise the system for the applying control laws. In [16], and in

[17], is presented a modelling of a flexible-link planar mechanism based on finite

element method (FEM) and decomposing the overall motion using equivalent rigid

link system (ERLS) into rigid body motion and elastic motion. Gasparetto [17]

synthesized a non-linear model, linearised it about an equilibrium point. Both

models were compared showing the linear model as a good model approximation
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1 – Introduction

of the non-linear model. Caracciolo and Trevisani [18] using similar approach, pre-

sented a simultaneous rigid-body motion PID controller and proportional vibration

controller. Wang et al. [19] from the FEM method presented an LQR controller

for simultaneous motion and vibration control of a multi flexible-link system. The

controller used a strain rate feedback, used an adaptive disturbance estimator and

Luenberger observer to estimate state variables. Trevisani [20] also presented a

feedback control for flexible four-bar linkages that featured a position and vibra-

tion controller working simultaneously; PID control for position and P-control for

vibration. Incorporating a gravity compensator the controller suppresses ampli-

tude of link oscillation associated with first natural frequencies. Boscariol et al.[21]

showed that a model-based predictive control approach can be applied to systems

with non-linear and fast-changing dynamics. Implemented on a single-link mech-

anism, the control approach estimated the nodal displacements and allowed the

reduction of spring-back effects.

Trevisani and Valcher [22] remarking that the complexity of fully coupled an-

alytical methods makes real-time model-basd control a difficult task, proposed an

energy-based control using simple PD controllers and proportional controllers, and

showed that applying the proposed control law, the resulting control system is sta-

ble. Caracciolo et al [23] presented delayed reference control (DRC) which reduces

link deformation by suitably shaping the time history of the position reference

on the basis of sensed link strains. A mixed-norm approach was introduced in

[24]. It proposed a synthesis of mixed H2/H∞ regulators for position and vibra-

tion control of flexible link mechanisms. Rong et al. [25] utilising piezoelectric

actuators and strain gauge sensors presented a control scheme for flexible four-bar

linkage modelling dynamics via a discrete time transfer matrix method of multi-

body system (MS-DTTMM) and then proposed a non-linear fuzzy neural network

controller to suppress vibration. Shawky et al [26] used state dependent Riccatti

equation (SDRE) technique to present a control strategy for a flexible link ma-

nipulator requiring only measurements of the link’s free-end displacement. In [27]

Ulbrich and Von Stein proposed a feedforward-feedback combination control strat-

egy to improve the dynamics of a flexible mechanism. Defining a regulation and

a tracking problem, a control law was derived that mitigated deviations of a link

system’s tracer point. In [28], Hill presented a modified Kane’s equation of motion

12



1 – Introduction

approach to controlling the motion of a rigid and flexible four bar coupler. Lya-

punov methods was used to derive a control law to provide tracking and vibration

damping of the coupler.

A four-bar system developed by Giovanni [11] which includes two centrally

positioned links is used in the study. A physical model of the system is made using

Matlab Simscape Multibody and control system is applied. In the physical model

it is convenient to make quick changes and observe effects. Lumped parameter

approach is used for the flexible body modeling. In the foregoing review, research

have sort to incorporate flexible bodies to effect lower energy consumption and

thus implying smaller actuators and also higher speed of the mechanical system.

On the basis of the aforementioned four-bar linkage, this work aims at dynamic

modelling and control approach for the minimization of torque, maximizing of

speed and suppression of vibration. Different flexible link incorporation are made

in the four-bar linkage mechanism, in each case investigating the impact on the

torque, speed, and vibrations. A proposed control scheme is presented for the

mechanism. The PD-LQR control structure is presented and the Linear quadratic

optimal control structure is presented. Numerical simulations are performed using

Matlab Simulink.

1.0.3 Thesis Organization

The rest of the thesis is structured as follows. Chapter two deals with the analytical

model of multibody systems with flexible links focusing on the four-bar linkage

mechanism used for the body and implementing a good formulation for analysis.

In chapter three physical modeling approach is discussed and the analysis that

can be done thereby is presented. Chapter four focuses on the control design and

presents the important ’sub-steps’ that are involved in the designing of a controller

for the modelled multibody system. Chapter five presents the simulation of the

system and the results. The last chapter presents the conclusion.

13



Chapter 2

Analytical Modeling of

Flexible-link Multibody Systems

The analytical modeling of the multibody systems with flexible links can take

different approaches. The Finite element approach has been choosen to model

the body and the analysis is presented in this section. In this section the finite

element method (FEM) is application to a multibody system is presented with

the sample four-bar linkage mechanism. Flexibility is decomposed into rigid body

motions and elastic deformations in the light of the concept of equivalent rigid link

system (ERLS), and with the ensuing mathematical analysis a state-space model

of the system is obtained. As this approach is not the main focus of the work, it

would not be completely elaborated but would still be clear enough. However it is

interesting to observe the cumbersome-ness as compared to the adopted physical

modeling process presented in the following chapter.

2.0.1 Dynamic Model based on FEM method and ERLS

The dynamic model of the flexible-link multibody system is modelled by beam ele-

ments following the finite element method, decomposing the motion of the system

into a rigid body motion of an equivalent rigid link system (ERLS) and an elastic

deformation. Next, the motion equations of the mechanism is written through

the application of the principle of virtual work. The virtual work principle leads

to the system of equations providing accelerations of the free coordinates of the

14



2 – Analytical Modeling of Flexible-link Multibody Systems

mechanism and the accelerations at the nodes.

The model outcome is a non-linear one as would be shown due the quadratic

components existing in the differential equation relating the node accelerations and

the free coordinates velocities. A linearization process for the model is necessary as

the system theory requires linear models for application. The linearization is made

about an operating point and the linear model outcome can be used to represent

the state-space form of the system for instance and thus control structures can

be applied on it. [?] shows that the for a planar flexible-link mechanism the

linearization is valid. In Fig.1, u is the nodal displacement, r is the position of

Figure 2.1. Dynamic system model

the nodes, both in the ERLS; p is the vector of position of the generic point of

the finite element obtained by adding the vector of the corresponding point in the

ERLS, w to the elastic displacement, v:

pi = wi + vi. (2.1)

The sum of the ERLS position and the elastic displacements, give the displace-

ments and the rotations at the nodes:

bi = ui + ri. (2.2)

15



2 – Analytical Modeling of Flexible-link Multibody Systems

i representing the ith finite element. Each finite element has a local co-ordinate

following the ERLS. A transformation matrix Ti(q) and Ri(q) are needed respec-

tively for transformations from the global co-ordinate frame to the local co-ordinate

frame and vice-versa.Using these matrices, equation 2.0.1 can be written as

pi = wi +Ri(q)Ni(xi, yi, zi)Ti(q)ui, (2.3)

where Ni(xi, yi, zi) is the shape function for the interpolation of the ith finite

element in the local co-ordinate frame. We can then have

δpi = δwi + δvi (2.4)

where

δwi = Ri(q)Ni(xi, yi, zi)Ti(q)δri (2.5)

Considering virtual nodal displacements δui and virtual displacements δ(q) of

Figure 2.2. nodes of the four-bar linkage system

16



2 – Analytical Modeling of Flexible-link Multibody Systems

the generalized co-ordinaes, the virtual displacement in the fixed reference frame

becomes

δpi = Ri(q)Ni(xi, yi, zi)Ti(q)δri + δRi(q)Ni(xi, yi, zi)Ti(q)ui

+Ri(q)Ni(xi, yi, zi)δTi(q)ui +Ri(q)Ni(xi, yi, zi)Ti(q)δui (2.6)

Focusing on only higher order magnitudes, equation 2.6 simplifies to

deltapi = Ri(q)Ni(xi, yi, zi)Tiδri +Ri(q)Ni(xi, yi, zi)Ti(q)δui (2.7)

To obtain the related acceleration we have to differentiate equation 2.7 three times.

This is the acceleration of a generic point in the ith finite element. Thus:

p̈i = Ri(q)Ni(xi, yi, zi)Ti(q)δr̈i +Ri(q)Ni(xi, yi, zi)Ti(q)üi

+ 2(Ṙi(q)Ni(xi, yi, zi)Ti(q) +Ri(q)Ni(xi, yi, zi)Ṫi(q))u̇i

+ ( ¨Ri(q)Ni(xi, yi, zi)Ti(q) + 2Ṙi(q)Ni(xi, yi, zi)Ṫi(q)

+Ri(q)Ni(xi, yi, zi)T̈i(q))ui (2.8)

Focusing on the higher order of magnitude as above, a simplified expression be-

comes

p̈ = RiNi(xi, yi, zi)Tir̈i +RiNi(xi, yi, zi)Tiüi

+ 2(ṘiNi(xi, yi, zi)Ti +RiNi(xi, yi, zi)Ṫi)u̇i (2.9)

Now by grouping all the kinematic entities of every finite element in the system

into a vector, equation 2.2 differentiated will be

db = du+ dr. (2.10)

Position, velocity and acceleration of ERLS depend on the generalized co-ordinate(s)

17



2 – Analytical Modeling of Flexible-link Multibody Systems

and are expressed as thus:

dr = S(q)dq, (2.11)

ṙ = S(q)q̇, (2.12)

r̈ = S(q)q̈ + Ṡ(q, q̇)q̇ = S(q)q̈ +

(
σkq̇k

∂S

∂qk

)
, (2.13)

where S(q) represents the sensitivity coefficients matrix for all nodes. This ma-

trix’s elements represent the rigid-body velocities at the nodes per unit velocity of

the generalized co-ordinates of the ERLS. Substituting equation 2.11 into equation

2.10, it is obtained thus

db =
[
I S

] [du
dq

]
(2.14)

In equation 2.14, a square coefficient matrix is necessary such that when db has

a minute nodal displacement, it does not imply many sets of increments of the

generalized co-ordinates of the system. As suggested in [?], the easiest way to

eliminate this redundancy is to force to zero a number of elements of du equal to

the number of generalized co-ordinates of the ERLS. Partitioning du and S are

partitioned into independent and zeroed parts, signified by subscripts in and 0

respectively, the element forced to zero could be eliminated as thus

db =

[
I Sin

0 S0

][
duin

dq

]
(2.15)

In the coefficient matrix, S0 should have a non-zero determinant so that the matrix

is non-singular; and the generalized coordinates of the ERLS should be chosen such

that singularities are not in the motion of the system. Following the kinematic

definitions, the principle of virtual work is applied to obtain the dynamic equations:

dW inertia + dW elastic + dW external = 0 (2.16)
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2 – Analytical Modeling of Flexible-link Multibody Systems

expressing it explicitly,

∑
i

∫
vi

P T
i p̈iρidv +

∑
i

∫
vi

δεTi Diεidv =
∑
i

∫
vi

δpTi gpidv + (δuT + δrT )f, (2.17)

where the first and second terms on the left hand side respectively are δW inertia and

δW elastic, and the right hand side is −δWexternal. Di, εi, ρi respectively signify

stress-strain matrix, strain vector, and mass density for the ith element. g, f are

gravity acceleration vector and external forces and torques vector, respectively. vi

is the ith element volume. The following terms can be introduced,∫
vi

T T
i N

T
i RiNiTiρdv = Mi, (2.18)∫

vi

T T
i B

T
i DiBiTidv = Ki, (2.19)∫

vi

T T
i N

T
i R

T
i gρidv = fg, (2.20)∫

vi

T T
i N

T
i R

T
i ṘiNiTiρidv = MG1i, (2.21)∫

vi

T T
i N

T
i R

T
i RiNiṪiρidv = MG2i, (2.22)

δT T
i = δφiT

T
i , (2.23)

The the virtual work equation above can be put in the form

∑
i

δuTi Mi(r̈i + üi) + 2
∑
i

δuTi (MG1i

+MG2i)u̇i +
∑
i

δrTi Mi(r̈i + üi) + 2
∑
i

δrTi (MG1i +MG2i)u̇i

+
∑
i

δuTi Kiui +
∑
i

uTi δφiKiui =∑
i

(δuTi + δrTi )fgi + (δuT + δrT )f. (2.24)

From the foregoing is obtained two dynamic equations for the motion of the node

19



2 – Analytical Modeling of Flexible-link Multibody Systems

and the elastic displacement:

duTM(r̈ + ü) + 2duTMGu̇+ duTKu = duT (fg + f) (2.25)

drTM(r̈ + ü) + 2drTMGu̇+ duTKu = drT (fg + f) (2.26)

where M is the mass matrix, MG = MG1 + MG2 represents the Coriolis matrix,

K the stiffness matrix of the system; fg is the gravity vector and f represents the

vector of external loads applied to the system. The infinitesimal displacements of

the ERLS can be expressed by means of the sensitivity coefficient matrix, so that

δu’s and δr’s can be eliminated from equations (2.25) and (2.26). Moreover, simple

Rayleigh damping could be introduced, so that the following system of differential

equations is obtained:

M(r̈ + ü) + 2MGu̇+ αMu̇+ βKu̇+Ku = fg + f (2.27)

STM(r̈ + ü) + 2STMGu̇+ αSTMu̇ = ST (fg + f) (2.28)

Equations (2.27) and (2.28) can be rearranged in matrix form discarding the equa-

tions of the elastic DOF’s forced to zero in order to get an explicit integration

scheme: [
M MS

STM STMS

][
ü

q̈

]
=

[
t(u, u̇, q, q̇)

ST t(u, u̇, q, q̇)

]
. (2.29)

2.0.2 Model Linearization

The nonlinear model above needs to be linearized to get a state-space linear model

capable of reproducing the dynamic behaviour of a flexible link mechanism about

an equilibrium point[17] so that system theory can be applied to it. Defining the

state vector of the system as x =
[
u̇ q̇ u q

]T
, the system dynamic equation
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model (2.29) can be put into the following state space representation:
M MS 0 0

STM STMS 0 0

0 0 I 0

0 0 0 I



ü

q̈

u̇

q̇

 =


−2MG − α− βK −MṠ −K 0

ST (−2MG − αM) STMS 0 0

I 0 0 0

0 I 0 0



u̇

q̇

u

q



+


M I

STM ST

0 0

0 0


[
fg

f

]
. (2.30)

In a more compact form:

A(x)ẋ = B(x)x+ C(x)v. (2.31)

Matrices A,B, and C depend on x, while the state vector x and the input v

depend on time. The system of differential equations showed in (2.30) is nonlinear

due to the quadratic term in S matrix (q̇2). Linearization is done choosing an

equilibrium point such that x = xe, v = ve and ẋe = 0, and we can write:

x(t) = xe+∆x(t), v(t) = ve+∆v(t). Adopting the approximation A(xe+∆x)∆ẋ ∼=
A(xe)∆ẋ, Equation (2.31) becomes:

A(xe)∆ẋ = B(xe + ∆x)(xe + ∆x) + C(xe + ∆x)(ve + ∆v). (2.32)

Considering the ith row,

n∑
j=1

Ai,j(xe1 + ∆x1, xe2 + ∆x2, ..., xen + ∆xn) ∗∆ẋj

=
n∑

j=1

Ai,j(xe1, xe2, ..., xen) ∗∆ẋj +
n∑

k=1

[ n∑
j=1

∂Ai,j

∂xk

∣∣
x=xe

∆xk∆ẋj
]

=
n∑

j=1

Ai,j(xe1, xe2, ..., xen) ∗∆ẋj (2.33)

21



2 – Analytical Modeling of Flexible-link Multibody Systems

where the higher order term
n∑

k=1

[
n∑

j=1

∂Ai,j

∂xk

∣∣
x=xe

∆xk∆ẋj] is negligible. Similar con-

siderations is applied to the right hand side terms of 2.32 relating to Bi and Ci.

For Bi-related term, a more detailed expression is obtained as

n∑
k=1

[ n∑
j=1

∂Bi,j

∂xk

∣∣
x=xe

xej

]
∆xk =

[
n∑

j=1

∂Bi,j

∂x1

∣∣
x=xe

xej · · ·
n∑

j=1

∂Bi,j

∂xn

∣∣
x=xe

xej

]∆x1

· · ·
∆xn



=

[[∂Bi,1

∂x1
· · · ∂Bi,n

∂x1

]
x=xe

xe1· · ·
xen

 · · · [∂Bi,1

∂xn
· · · ∂Bi,n

∂xn

]xe1· · ·
xen


x=xe

]∆x1

· · ·
∆xn



=

[[∂Bi,1
∂x1

· · · ∂Bi,n

∂x1

]
· · ·

[
∂Bi,1
∂xn

· · · ∂Bi,n

∂xn

]]
x=xe
⊗

xe1· · ·
xen



∆x1

· · ·
∆xn


(2.34)

A similar way is taken to explicitly express also the Ci-related term. As equilibrium

point implies

B(xe)Se + C(xe)ve = A(xe)ẋe = 0, (2.35)

After some algebra it is obtained:

A(xe)∆ẋ =

[
B(xe) + (

∂B

∂x
|x=xe ⊗ xe) + (

∂C

∂x
|x=xe ⊗ ve)

]
∆x+ C(Xe)∆v

= B̃(xe, ve)∆x+ C(xe)∆v, (2.36)

where the symbol ”⊗” indicates the inner product of [∂Bi,1/∂xj . . . ∂Bi,n/∂xj]x=xe ]

and [∂Ci,1/∂xj . . . ∂Ci,n/∂xj]x=xe ] with, respectively, xe and ve, for all the sub-

scripts ’i’ and ’j’. After setting an operating point xe, the matrices A(xe), B(xe)

and C(xe) are calculated and the terms(
∂B

∂x

∣∣∣∣∣
x=xe

⊗ xe

)
and

(
∂C

∂x

∣∣∣∣∣
x=xe

⊗ ve

)
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By setting F = A−1B̃ and G = A−1C a standard form for the linearized equation

can be written as:

∆ẋ = F∆x+G∆v. (2.37)
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Chapter 3

Physical Modeling and Analysis

Pbysical Modeling is a method of modeling systems with the use real physical

components. Physical modeling allows for effective faster design and testing of

engineering systems more than before. The physical modeling approach allows one

to describe the physical structure of a system instead of the inherent mathematics.

Moreover, in some cases, the analytical equations modeling is cumbersome and

thus physical modeling could be very pertinent in this case.

Physical models of systems can be implemented to study system dynamics

and for control system design. The physical model represents the system under

study with respect to its physical parts and assembles these different parts to

form the complete system; then the system behaviour is simulated. A number

of packages exist that are equipped for physical modeling of systems. In this

work, the Mathworks package is choosen and used. Specifically, the Simscape

MultibodyTM toolbox is used since what is dealt with in the work is multibody

systems. Mathworks Simscape Multibody, formerly SimMechanics, is used for

physical modeling of systems. It is also flexible as it allows the import of CAD

designs in an external software into the Simscape environment for cases where the

user prefers to make a CAD design on another platform or also to avoid repetition

of the modeling process if it happens that the user already has a CAD model. The

modeled system can be integrated with control systems design in SimulinkTM .

In this section, the physical modeling process of the case study four-bar linkage

system with Simscape, building part dimensions and assembling them to form a
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3 – Physical Modeling and Analysis

unit, is presented. Moreover, the main focus is on the flexibility modeling with

regard to the flexible-links of multibody systems.

Mathworks physical modeling tools enables to:

� Assemble system-level models that span multiple physical domains and in-

clude the control system in a single environment.

� Create reusable models of physical system with physical ports, in addition

to input and output signals.

� Model custom physical components (mechanical, electrical, and other phys-

ical domains) using a MATLAB based physical modeling language.

� Extend analysis with 3D visualization and additional simulation methods.

[31]

3.0.1 Multibody Physical Modeling in Simscape

The dynamic modeling of a multibody system by a Simscape physical model in-

volves the description of the actual physical characteristics of the system from

which the full 3-dimensional body is built as it would appear in reality. At this

level, the description of the 2-D section of individual bodies of the system are made

with a Matlab code and stored as a script. In figure 3.1, a snippet of the matlab

description of a physical body’s dimensions is shown alongside the import of this

description to Simscape to shape a generic body mass, called general extrusion,

into the exact parameters contained in the description. After the coding of the

body dimension, it is observed using a plot to verify the correctness of the design.

Figure 3.2 shows a sample plot of a curved beam section with finite segements. In

figure 3.3 the two 2-D dimension is imported to shape a general extrusion mass

block to define the final body. The material properties are also set by inserting

the density of the choice material, for instance Aluminum, the mass and moment

properties are updated. This process is repeated for the other individual bodies

that make-up the multibody system. In the end, the bodies are connected using

appropriate joints as necessary.
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Figure 3.1. Physical model sample code snippet

Figure 3.2. Beam section plot

3.0.2 Modeling Flexible Bodies in SimMechanics and Simulink

Rigid-body motion as well as flexible body motion is simulated combining Simscape

and Simulink forming an efficient tool for control systems applications. SimMe-

chanics simulates flexibility with a fidelity that is sufficient for many applications

such as control design. Two most common method for flexible beam modeling

are: lumped-parameter method and Finite-element import method. Both capture
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Figure 3.3. cross section build

deformations that are small, linear and elastic.[33]

Lumped-parameter method treat the flexible body as a collection of discrete

flexible units. Each flexible unit comprises two or more rigid mass elements cou-

pled by joints with internal springs and dampers. The joints provide the degrees

of freedom required for deoformation to occur. The mass, spring, and damper

elements provide the inertial, restorative, and dissipative forces that collectively

account for deformation.

Finite-element import method treat the flexible body as the superposition of

distinct rigid-body and deformation models. The rigid-body model captures the

motion of the body as though it were incapable of deforming. The deformation

model captures the deflections with the body as though it were fixed in place. The

process here involves the use of an external finite-element analysis software to to

perform finite-element analysis and then the results are imported into Simulink-

Simscape.

A detailed description for both methods can be seen in [29]. For the work

presented, the lumped-parameter method (LPM) is used. Some description, there-

fore, is provided about the modeling using this method. The lumped-parameter

method is suited for bodies with slender geometries, such as rods and beams.[29]

This method approximates a flexible body as a collection of interconnected dis-

crete flexible units; with each unit comprising two mass elements coupled by a

joint having internal springs and dampers. The deformation modes of the flexible
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unit are captured by the joint degrees of freedom while the stiffness and damping

characteristics are captured by the springs and dampers. Figure (3.4) shows the

element discretization according to the lumped-parameter method. In each flexi-

ble beam unit, there are two mass elements (m), spring (k), and damper (b). The

Figure 3.4. Lumped-parameter method structure for flexible body

derivation of the parameters for the system blocks used in the LPM is shown in

the following. Consider a generic beam under longitudinal forces. With one trans-

lational degree of freedom, a flexible beam follows a damped harmonic oscillator

motion with the motion equation:

mü+ bT u̇+ kTu = f, (3.1)

where f is the net external force action on the translating mass element and u is the

translational offset of the mass element from its equilibrium position. m,bT , and

KT are mass of a mass element, joint translational damping coefficient, and joint

translational spring coefficient. If the translational degree of freedom is replaced

with a rotational one, the equation becomes

Iθ̈ + bRθ +KRθ = τ, (3.2)

where τ is the net external torque acting on the rotating mass element and θ is the

rotational offset of the element equilibrium position. I, bR, and kR are the moment
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of inertia of a mass element about the rotation axis, the rotational damping coef-

ficient of the joint, and the rotational spring coefficient of the joint, respectively.

In terms of damping ratio (ζ) and natural frequency (w), the rotational equation

is,

I(θ̈ + 2ζwθ̇ + w2θ) = τ, (3.3)

where

ζ =
br

2
√
IkR

and w =

√
kR
I

(3.4)

In a beam such as the cantilever beam, subjected to bending, spring coefficient

follows from the equality between the spring torque at the joint and the bending

moment on a continuous version of the flexible beam. From Hooke’s law,

τk = krθ, (3.5)

where τk is the spring torque, kR is the rotational spring constant, and θ is the

deflection angle. The bending moment on a continuous beam unit is

M =
EIA
R

, (3.6)

where M is the bending moment, E is Young’s modulus of elasticity, IA is the

second moment of area, and R is the bending radius of curvature. For small

deflections, θ reduces to l/R, where l is the undeformed length of a flexible beam,

thus spring coefficient is

kR =
EIA
l
. (3.7)

For split beam with N flexible beam units and length L, l is then

l =
L

N
(3.8)

In figure (3.5) is shown the radius of curvature (R) due to bending and angle

(θ); and mass element is half the length of the flexible beam. To define damping

coefficient, it is assumed that damping is linear and bound by a constitutive law

τb = bRθ̇ (3.9)
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Figure 3.5. Geometry of flexible beam unit with one rotational degree of freedom

with τk as the magnitude of the damping torque between the two mass elements

coupled by a rotational degree of freedom. As a first-order approximation, the

damping coefficient is taken to be proportional to the spring coefficient:

bR = αkR (3.10)

The proportionality constant (α) is an empirically set damping factor. The damp-

ing factor can be set by matching the lumped-parameter deformations to reliable

benchmark data.[29][34] The discretization level of the beam scales the damping

coefficient.

3.0.3 Model of Four-bar Linkage System

The Simscape model of the FBL system starts with the defining and creating the

cross-sections of the different parts of the system and then connection the system

with joints. Figure (3.6) shows the model of the system. For each link in the system

a flexible beam equivalent is created for different simulation configuration studies.

The parts (rigid and flexible) are modeled in the FBL system. In figure (3.8),

the LPM modeling flexible beam is shown. The parameters for the mass elements

and couplings are defined. For the LPM, the number of mass elements affect the

quality of the approximation of the material flexibility behaviour. However, at a
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Figure 3.6. FBL plant model

certain amount, the effect of increasing the mass element does not make changes

or improvement.[33] For the longest length beams, the number of mass element

was increased to 20, with the lowest being 16; except for the shortest beam, link

r, the actuated link, which had 10 mass elements. As referenced also in following

section, the stiffness of the flexible beam was reduced to study the impact of flexible
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Figure 3.7. Model Simscape 3D Visualization

beam.png

Figure 3.8. Flexible beam model

beams for the novel FBL system design. Each link is made up of two mass element
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and a joint. This implies that there is in effect 40 discretized mass elements for

instance for the the longest beams. 3.10 shows the mass element definition. The

beam2.png

Figure 3.9. Flexible beam model

revolute joint that connects each of the mass element couple is parameterized with

the result of the calculated damping coefficient and stiffness values based on the

number of the mass element and material property used. To observe the deflections

Figure 3.10. Flexible beam model

of the flexible links the transform sensor3.11 block is used. In the block properties

of the transform sensor, the axis to is desired to be recorded are selected and

thus the block provides output channels to record them. The simulink signals are
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not the same as the physical signals directly measured from the physical model

and therefore in every case the physical signals have to be converted with signal

transform block. The signal transform block is of two modes. One is the PS-

Figure 3.11. Flexible beam model

Simulink block, and the other is Simulink-PS block. Respectively they are used to

convert physical signals directly from physical modeling blocks to format that can

connected to Simulink, and to convert Simulink signals to physical model signals.

It is crucial to use this block and to configure each blocks unit specification with

respect to the signal connected. For linear analysis process as shown in the later

part, the signals selected for input and output must be Simulink signals and not

physical signals.

Actuator model

Figure (3.12) shows the actuator model integrated to the FBL system model.

In Simulink, the parameters of the actuator can be set and used to represent the

transfer function; but also another option is to use Simscape to make an equivalent

physical model of the plant. The later is implemented, driven by a PWM signal

and H-bridge.
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Figure 3.12. integrated actuator model

3.0.4 Visualization

The Simscape tool is equipped with a 3D visualization medium, the mechanics

explorer. Simscape Multibody is based on Simulink hence graphs are available for

simulation outcomes but these graphs are rather abstract. With the animation

property it could help to interpret the results faster and understand them better.

The visualization property gets even more interesting with the increase in the

complexity of the modeled system.

3.0.5 Pre-control Analysis

Having a physical model of the dynamic behaviour of the multibody system, de-

sired analysis can be performed through the simulation of the system. At this

point, a control system has not been designed and connected. The modelled sys-

tem can be analysed to observe visually (through the ’mechanics explorer’ feature

of Simscape) or by signal plots the behaviour of the system. For example, it could

be desired or observe the effect of gravity on the four-bar linkage mechanism with

the purpose to gain insight into the torque requirements to balance gravity force,

etc. To get an idea of the torque demand of the mechanism in order to choose the
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appropriate actuator system, a simple reverse analysis is performed where the an-

gle of the actuator is system input and the torque required to make the demanded

transition is recorded. For analysis like the trimming of the model, forward dynam-

ics is performed where external torques and forces are applied and the formulation

and integration of the equations of motion and solution for the system motion is

made.
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Chapter 4

Control Design

For multibody systems and systems in general, different control architectures could

be used as seen in the literature review. With a physical model approach to the

dynamic model, the control of flexible link multibody systems is not limited to any

method(s) of control. In this section, it is presented the control of the multibody

system of the FBL mechanism via two schemes.

Proportional-Integral-Derivative (PID) Control

Here the intent is to use ’PID ’ to represent not just the literal PID system but

the other combination structures namely P , PI, PD, and PID. For the FBL

mechanism, the different structures are tested to choose the best-performing. PID

controllers are largely in use today. It is interesting to note that most indus-

trial controllers in use today are PID controllers or modified PID controllers.

The usefulness of PID controls lies in their general applicability to most control

systems.[35]. The error signal which is difference between desired state and the

feedback state is passed through, as the configuration case may be, a proportional

action, an integral action and/or derivative action, with the sum of the effect(s)

producing the control signal then feed to the plant system[37].
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Figure 4.1. Generic PID architecture

Linear Quadratic Optimal Control

Linear quadratic optimal control is a feedback controller that provides an algorithm

to minimize a quadratic cost function - such that dynamic system controlled op-

erates at a minimum cost as specified by the cost function. For a system with the

dynamics ẋ = Ax + Bu, the Linear quadratic (LQ) scheme calculates an optimal

control gain matrix, K, such that the state feedback law u = −Kx minimizes the

quadratic cost function

J(u) =

∫ ∞
0

(xTQx+ uTRu+ 2XTNu)dt (4.1)

where Q and N are symmetric positive semi-definite nxn matrices, R is a sym-

metric positive definite mxm matrix.

Kalman Estimator

Given the state-space model of the system and the process and measurement

noise covariance data, the Kalman estimator provides an optimal solution to the

continuous-time or discrete-time estimation problems. In this case we look at the
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LQ control system
y

vw

u

r

Figure 4.2. LQ control architecture

continuous-time estimation. Given the system equations for state and output

ẋ = Ax+Bu+Gp (4.2)

y = Cx+Du+Hp+m (4.3)

with inputs u known, and measurement noise, m and process noise, p white and

such that it has zero mean, E(p) = E(m) = 0 and we also have variance and

covariance E(ppT ) = Q,E(mmT ) = R,E(pmT ) = N and it is to be constructed a

state estimate x̂(t) such that minimizes covariance of steady-state error

P = lim
t→∞

E(x− x̂x− x̂T ) (4.4)

The optimal solution is the Kalman filter with equations

x̂ = Ax̂+Bu+K(y − Cx̂−Du) (4.5)[
ŷ

x̂

]
=

[
C

I

]
x̂+

[
D

0

]
u (4.6)

The filter gain K is determined by solving the algebraic Riccati equation

K = (PCT + N̄)R̄−1 (4.7)
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where

R̄ = R +HN +NTHT +HQHT (4.8)

N̄ = G(QHT +N) (4.9)

The output estimate ŷ and state estimate x̂ are generated. As may be required

the output estimate can be corrected using the actual plant output. In figure 4.3,

v1 and v2 the white process and measurement noises.

Figure 4.3. Kalman estimator

4.0.1 Control of the FBL System

PID scheme

The control system for the FBL system is shown in (4.4). The use of flexible, light,

materials imply an overall lighter mechanism which can thus run at faster speed

and take less torque. A PD-based closed-loop control is implemented. The close-

loop feedback is the the position of the coupler link which is the angle it makes

with the horizontal. With regard the intention of the novel FBL architecture,

the coupler link moves from a horizontal to vertical position and vice-versa while

the mechanism is mounted on an second structure like a robot to pick and place
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Figure 4.4. PD Control System

bottles. The controller includes a compensator for the gravity effect. The plant is

linearized for control selecting linear analysis points of ’input perturbation’ from

the reference input and ’output measurement’ from actuator position. If the error

signal eq is equal to qref − q, where qref is the reference input and q is the coupler

position feedback, the control law is

Tp = Kp.eq +Kd.eq.
N

1 + N
s

(4.10)
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where Kp, Kd, N are proportional gain, derivative gain, and derivative filter coef-

ficient.

The overall control action, adds a gravity compensation

T = Tp + g (4.11)

where T is the actuator torque, and g is the compensation with regard to gravity

action.

Figure (4.5) shows the convention used in calculating the gravity compen-

sation torque. The reference frame chosen for the link angles measurement is

the vertical frame as shown. Tmg here is defined as the torque due to gravity,

Ma,Mb,Mc,M1,M2 are links loads, Pa, Pb, Pc, Pd are joints loads, a, b, r, r1 are link

lengths, q, θ1, θ2, θ3, θ4 are the angles between the reference frame and the links or

the equivalent rigid link system. Thus

Tmg = r
[(M1

2
+ y8

)
sin q + A

sin θ4
cos θ4

cos q
]
, (4.12)

where

y8 = Pa + Pb + Pc + Pd +Ma +Mb +Mc +M2, and, (4.13)

A = Pa + Pb + Pc +Ma +Mb +Mc + 3M2/2 (4.14)

Measuring angles at crank and follower joints, angles θ2, θ4 are calculated as

θ2 = asin
[(a cos θ3 − a cos θ1)

b

]
, and, (4.15)

θ4 = acos
[(a cos θ3 − b/2 cos θ2 − r cos q)

r1

]
(4.16)

In inverse dynamics, a reference path is simulated and the torques are observed.

LQR scheme

The LQR control scheme is shown in 5.5 consisting of the optimal feedback gain

Klqr multiply the input action and in positive feedback to generate the final input

to the plant. The the LQR optimal control implementation anticipates that all
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Figure 4.5. convention used to calculate Tmg

states are measured. However, practically, all the states of the system cannot be

measured. Thus the is need for an observer to estimate the states of the system.

The observer implemented is a Kalman observer as presented previously. The

Kalman filter takes the input signal and the recorded output to and predicts the

states.
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Numerical Example Simulations

The dimensions used for building the physical model and the material properties

used are as shown in table 5.1.

Table 5.1. Specifications for model

link a link b link c link r link r1 link 0 (base)
Link lengths (m)

0.231 0.135 0.231 0.135 0.068 0.270
Link masses(kg)

0.060 0.036 0.060 0.021 0.039
Number of mass element

20 16 20 16 10 16
Link width: 0.02m

link thickness: 0.005m
Material density: 2700 kg/m
Elastic modulus: 70e9 N/m2

Table 5.2 shows the characteristics used as actuator

Table 5.2. Actuator properties

kt: 18.4e−3Nm/A; Kv: 520rpm/V; La:1.2e−5; Ra=1Ω;
J: 1e−6gcm−2; time constant: 6.07e−3s; Max. torque: 0.45Nm
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The torque saturation reported on different actuator data sheet sources varied, but

the value reported in table 5.2 was selected. After setting up the model, ode23t

being the best for the type of mechanism modeled, is selected as the Simulink

solver.

The control system for the modeled system was simulated using Matlab Simulink

software. The physical modeling in the plant requires that for integration with

simulink control design, there is inserted a signal interface to adapt simulink sig-

nals to physical model signals and vice-versa. Moreover, the mechanical systems

and electrical systems do not also connect directly, hence an interface to connect

the two domains, with regard to the actuator and the linkage structure, is used

to make sure the system interacts seamlessly and properly. This is done using the

Matlab Multiphysics Library package. For the case here, the rotational simscape

interface is used as the actuator is a rotational mechanical device.

5.0.1 configuration analysis and selection

First, in the open loop structure of the physical model, reverse dynamics was used

to observe the behaviour of the system with respect to different configuration of

flexible link inclusion. Each link was made flexible while the others remained rigid

and the torque and vibration was observed. Figure 5.1 shows the result for the

configurations. (Naming syntax: link a, link b, link c, -link r, link r1-. eg. con-

figuration RFR-RR-; where R is rigid and F is flexible). The FBL structure used

in this study incorporates a spring in link r1. While this was implemented, it

is observed that appropriate values for stiffness and damping coefficient was im-

portant to avoid increase in vibration during the motion of the system, and an

exclusion of the spring connection, disrupted system from running because it sim-

ulates a near-singularity situation. The value of the spring stiffness and damping

are set to 10e7N/m and 10e5N/m/s for good performance.. From the observation,

configuration F,F,R,-RR-, also being among the two longest links, was selected

and used for the control system implementation. The vibrations/torques in open

loop or with same ’test’ control system shows that the coupler vibrated relatively

highly and same with the mid link crank. Of the two beams at the two sides

the one opposite the direction of the motion of the FBL vibrated least. However,
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Config. FRR-RR- Config. RFR-RR-

Config. RRF-RR- Config. RRR-FR-

Config. RRR-RF-

Figure 5.1. Torques for different arrangement of crank, coupler, follower and
middle links[Y-axis in ’Nm’, X-axis in ’seconds’

the two side beams made flexible, is selected because the trade-off between weight
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contribution and vibrations effect is best as they have the longest lengths and thus

largest mass in the mechanism.

5.0.2 PD with gravity compensation

As a first step, a control system with a closed-loop feedback directly from the

actuator joint was implemented, using PID and PD controls. The result showed

that the system could not really affect the link vibration, but only to track reference

motion just for the crank connected to the actuation point. This is one example

where physical modeling helps to quickly understand the problem with designs

and implementations. It is observed that the FBL design implied a somewhat

disconnected system such that at the crank position 0degrees the actuator has

no control over the rest part of the structure. The effect of the return torque

causes the system of the side beams and the coupler to go into oscillation while

the crank is static. Thus a different design like the LQR is to be integrated to

handle vibrations.

However, a changed PD control approach can affect the vibrations if the ref-

erence feedback point was altered from the direct actuator angle to the coupler

link angle. This is with regard to the target behaviour of the FBL used in the

study. For other FBL/multibody structure, this idea could be followed. For this

therefore, the reference input is designed with respect to the movement of link b

(the coupler) θ2(q) instead of q. In this setup, while the motion for mechanism was

followed, the link vibration was reduced also. Figure 5.2 compares the deflection

measurement of the two control systems. Moreover, for the novel FBL mechanism

that incorporates a spring in link r1, the design contributes to some vibration in

downward motion of the mechanism to return the coupler to the horizontal plane.

This is evident in the feedback of q. The change of feedback reference also atten-

uates this effect. The PD control was tuned to the parameters, Kp = 20e−1, Kd

= 6.67e−2, and N = 100. Increasing the parameters for Kp and and tuning Kd ac-

cordingly, the system is more aggressive, torque increases and a continued increase

leads to an erratic behaviour for example at Kp = 100e−1 while Kd is unchanged

from value above; or takingkd down to 0.1e−1 while Kp has initial value above.

In general, tuning the values downward leads to slowing down of the system and
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Deflection in link a: with/without coupler PD control

Actuator torque: with/without coupler PD control

Figure 5.2. Torque and deflection using coupler PD control vs with no control

inability to follow the reference.

5.0.3 PD-LQR Control

Linear analysis and generation of SS equation

The LQR section requires a state space structure. In the modeling approach

the FBL plant has to be linearized about a suitable operating point. The trim

command/tool is used to obtain the operating point from analysis. However, in

Simscape Multibody latest release as of the time of this work, this feature fails

because the indexing of the states of the physical model uses a dot notation while at

the time only slash”/” notation is supported. The operating point has to selected
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and set manually from analysing various points of the system and with respect to

the input signal. Figure 5.3 shows the linear analysis and the step plot

Figure 5.3. Linear analysis

Model Reduction

A state space model is generated with 84 states. This number of states is high and

leads to high computational demand. Moreover, it is possible to reduce the order of

the model and retain the response of the system. The balanced reduction approach

is used as it produces the best result. First, the hankel single value diagram is

plotted to see the contribution of the states to the system, figure 5.4. Then the

balred command is used to perform the system order reduction based on the hankel

diagram in the command line format ”reducedmodel = balred(model,ORDER)”,

where the ’order’ is the new order as informed by the hankel diagram. In this

case, the system can be reduced to 4th order since the orders above 4 does not

make significant contribution to the dynamics. A 4-states state space model is

thus obtained which is used subsequently for the LQ design and the Kalman filter.
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Figure 5.4. Hankel single values plot

PD-LQR Setup

The setup of the PD-LQR design is shown below. The PD loop is the outer loop

and it is for the reference tracking while the LQR-loop is the inner loop and for

the vibration suppression. The LQ loop takes the deflection ouptut and provides

an optimal gain that attenuates vibration based on the value of the respective

weighting factors. The vibration of the system is checked for a transition of the

mechanism for qref from 0.0rad to 1.57rad and vice-versa. A two-step reference

input is created by the signal builder block. The size of the matrix Q and matrix

R 4, are respectively [length(A)X length(A)] and [length(B)X length(B)] - square

matrices, where length(A),length(B) are lengths of the A and B state-space ma-

trices, equal to the number of states and number of inputs - in this case 4 and 1

respectively. Q is an identity matrix with the principle diagonal as the weights.

Increasing the values of the Q, a reduction in the vibrations is seen. Figure 5.6

shows the plots for the value of the diagonal elements of Q set to 100 and the value

for R is set to 1. The torque saturation takes into account the limitation of the

actuator chosen for the plant. Thus a continued increase of the matrix weights
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Figure 5.5. LQR controller scheme

does not necessarily imply a continued decrease of vibrations. The lowpass filter

is used to avoid large torque spikes. As seen in the figure, the controller consider-

ably suppresses vibration after about 0.06s. For the time response of plant with

regard to the reference radian angle, figure 5.7 shows a good response with a rise

time of 0.1s and a settling time of 0.2s. There is no overshoot.
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Figure 5.6. Vibration suppression in horizontal deflection

Figure 5.7. Time response plot
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Chapter 6

Conclusion

6.0.1 Summary

Multibody systems in the most basic words consists of interconnected bodies. The

system can be comprised of the only rigid bodies, only flexible bodies, or a mix of

rigid and flexible bodies. Multibody systems applies to many engineering fields and

largely seen in such areas as robotics, aeronoutics,etc. To handle these systems it

is required to study how the respective bodies link to and affect each other and in

turn affect the overall system composition. This is an analysis of the movement and

force dynamics of the system. There is need for light and high-speed mechanisms

and one that consumes the least amount of energy as possible. In this light, in the

application of the multibody systems such as the bar-linkage mechanism , there

is need for such mechanisms that adhere to the aforementioned demand; reduced

inertia forces and driving torque requirement and fast operation.

This work presents the dynamic modelling and control of multibody systems

with flexible links. The integration of flexible parts in multibody systems con-

tributes to a lighter system and in view of high speed operation. The dynamics of

the such systems is complex and a it’s modelling is important for effective control.

The approach of dynamic modelling of a multibody system have been presented

using Mathworks SimScape Multibody and using the lumped parameter method.

The methodology is presented with a four-bar linkage system with a different ar-

chitecture - incorporates a centrally-placed crank which symmetrically divides the
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mechanism. With the presented method, the dynamic behaviour of the flexible-

link system have been investigated considering the integration architecture of the

flexible link(s). The deflection of the links in open loop configuration is analysed

such that a chosen configuration is best with regard to ratio of the relative mass

of the link(s) and the vibrations in the absence of control; thus the control effort

demand is lowest.

Matlab/Simulink is used to implement a proposed control strategy of the bar-

linkage multibody system modelled in SimScape, in this case with two flexible links

for the two longest links in the mechanism. The method allows direct control of

the physical model of the system and good analysis of the system behaviour.

Light weight links reduce the inertial force that the system actuator has to

deal with. The use of light weights link materials come with a change in dynamics

as the weights deform unlike the heavier rigid types. To model the dynamics

of the system, SimScape physical modeling is used and with the finite segment

method which models the flexible links with the mass element discretization of the

links and springs and dampers with rotational degree of freedom. Higher number

of discretized mass elements better model the flexibility dynamics and a modal

analysis could be used to analyze and plot the mode shapes of the links.

In the numerical simulation in Matlab/Simulink, PD control with the feedback

of the actuator position is investigated and showed that the feedback of the target

link’s position is better than directly of the actuator position. The numerical

simulations in the modeling approach helps to understand this behaviour and thus

choose a a good control scheme. In this light, the PD-LQR control method is

presented and with better results. The PD loop handled the reference tracking

while the LQR loop handled vibration control. For a step change in reference

input, which represents the typical transition of the mechanism, the rise time is in

0.1 second and the settling time, 0.2 second.

The methodology presented can be applied to other kinds of flexible-link multi-

body systems to analyse the dynamics and control the plant.
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Appendix A

Matlab code

Below is the matlab code for four-bar linkage mechanism used in the study:

1

2 %% Conf i gura t i ons f o r Simscape/ Simulink

3 close al l , clear v a r i a b l e s , clc

4 %% d e f a u l t s

5 l b a s e = 270 ;

6 sp =20;

7 Bmax=300;

8 Bmax=Bmax + 20 ;

9 b = lba s e /2 ;% mm rod length

10 d = b /2 ;

11 t h e t a 2 i = pi /2 ; %rad

12 the ta2 f 1 = pi ; %rad

13 the ta2 f 2 = 0 ;% rad

14 A=80; %A = A max ; mm l a r g e r s i z e% B = B max ; mm l a r g e r s i z e% C = C

max ; mm l a r g e r s i z e

15 C=120;

16 e = 95 ;

17 Cq = 100 ;% mm q u a d r i l a t e r a l width

18 t h e t a 1 i = atan ( ( lbase−b) /( l ba s e+b) ) ; %rad i n i t i a l ang le between the

crank and the v e r t i c a l when the rod b i s h o r i z o n t a l ( t h e t a 2 i = pi

/ 2)

19 thetap = t h e t a 1 i ; %rad value o f the ang le between rod b and r1

between 0 and theta1 . To minimize the moment o f the actuator ,

e q u a l i t y i s r equ i r ed

20 a = lba s e /( sin ( t h e t a 1 i )+cos ( t h e t a 1 i ) ) ; % mmcrank length
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21 t h e t a 1 i = t h e t a 1 i * (180/pi ) ; %degree s

22 b1 = 2*( a*cos ( t h e t a 1 i )−(Bmax/2) ) ; % mm

23 d1 = lbase −(A/2)−(a* sin ( t h e t a 1 i ) ) ; % mm

24 e1 = C/2 + sp ; %

25 the ta1 f 1 = asin ( ( lbase−b) /(2* a ) ) ;

26 the ta1 f11 = the ta1 f 1 *(180/pi ) ;%

27 r1 = b*( a* cosd ( t h e t a 1 i )−(b/2) ) ;

28 r1=r1 /( ( b*( sin ( thetap )+cos ( thetap ) ) ) − (2* a* cosd ( t h e t a 1 i ) ) *( cos (

thetap )−1) ) ;

29 r = ( a* cosd ( t h e t a 1 i ) ) − r1 ;

30 the ta r = atan ( ( ( r1 * sin ( thetap ) ) + b/2) / ( ( a*cos ( t h e t a 1 i ) )−(r1 *cos (

thetap ) )−b/2) ) ;

31 the ta r r 1 = the ta r *(180/pi ) ;

32 thetap1 = thetap *(180/pi ) ;

33 cent r = a* sin ( the ta1 f 1 ) + d ;

34 %% New c o n f i g s .

35 % c o r r e c t i o n s f o r curved crank and f o l l o w e r r1 , r r=b /2 ;

36 % r1=(a* cos ( thetap ) )−r ; % adj=(r+r1 ) *0 . 96375 ; r1=adj−r ;

37 % adj=(r+r1 ) *0 .982000 ; r1=adj−r ;

38 r=b /2 ; r1=(a*cos ( thetap ) )−r ;

39 %%

40 y=lba s e /10 ;

41 w = 2 ;

42 d = 0 . 8 ;

43 %% Crank Rigid ** ( hole , peg ) (O===[])

44 l a=sqrt ( ( ( a /10) ˆ2) /2) ;

45 A = linspace (pi /2 . 2 , −pi /2 . 2 , 10) ’ ;

46 B = linspace (pi /2 , 3*pi /2 , 10) ’ ;

47 C = linspace (5*pi /2 , pi /2 , 20) ’ ;

48 D = linspace(−pi /2 , 0 , 20) ’ ;

49 E = linspace (0 , −pi /2 , 20) ’ ;

50 csRight = [w/2* sin (A) l a + w/2*cos (A) ] ;

51 c s L e f t = [− l a + w/2*cos (B) ( (w/2* sin (B) ) +1) ] ;

52 c sLe f tHo l e = [− l a + d/2*cos (C) ( ( d/2* sin (C) ) +1) ] ;

53 csConnLine1 = [−( la−w/2)+l a *cos (D) l a+l a * sin (D) ] ;

54 csConnLine2 = [−( la−w/2)+(la−w) *cos (E) ( la−w) * sin (E)+l a ] ;

55 connX = [−( l a /0.98−w/2) ,w; −la ,w ] ;

56 cscb2 = [ c s L e f t ; csConnLine1 ; csRight ; csConnLine2 ; connX ; c sLe f tHo l e

] ;
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57 % f i g u r e ; hold on ; a x i s equal ; g r i d on ; p l o t ( cscb2 ( : , 1 ) ,

58 % cscb2 ( : , 2 ) , ’ Color ’ , [ 0 . 6 0 . 6 0 . 6 ] , ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize ’ ,

59 % 9 , ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ;

60 %% Rocker Rigid ** ( hole , peg ) (O===[])

61 A = linspace (pi /2 .001 , −pi /2 .001 , 10) ’ ;

62 B = linspace (pi /2 , 3*pi /2 , 10) ’ ;

63 C = linspace (4*pi /2 , 0 , 20) ’ ;

64 D = linspace(−pi /2 , 0 , 20) ’ ;

65 E = linspace (0 , −pi /2 , 20) ’ ;

66 csRight = [w/2* sin (A) l a + w/2*cos (A) ] ;

67 c s L e f t = [− l a + w/2*cos (B) ( (w/2* sin (B) ) +1) ] ;

68 csRightHole = [ d/2*cos (C) l a + (d/2* sin (C) ) ] ;

69 csConnLine1 = [−( la−w/2)+l a *cos (D) l a+l a * sin (D) ] ;

70 csConnLine2 = [−( la−w/2)+(la−w) *cos (E) ( la−w) * sin (E)+l a ] ;

71 connX = [−( l a /0.98−w/2) ,w; −l a /0 . 1 ,w ] ;

72 cscb3 = [ csRightHole ; csRight ; csConnLine2 ; c s L e f t ; csConnLine1 ] ;

73 % f i g u r e ; hold on ; a x i s equal ; g r i d on ; p l o t ( cscb3 ( : , 1 ) ,

74 % cscb3 ( : , 2 ) , ’ Color ’ , [ 0 . 6 0 . 6 0 . 6 ] , ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize ’ ,

9 ,

75 % ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ;

76 %% r Link , r i g i d

77 l 5=r /10 ;

78 Aaa = linspace(−pi /2 , pi /2 , 10) ’ ; % r i g h t edge (nb : column vecto r )

79 Bbb = linspace (pi /2 , 3*pi /2 , 10) ’ ; % l e f t s i d e edge

80 Ccc = linspace (3*pi /2 , −pi /2 , 20) ’ ; % f u l l c i r c l e ( touching the

connect ion l i n e )

81 csR22= [ l 5 /2+w/2*cos (Aaa) , w/2* sin (Aaa) ] ;

82 csL22= [− l 5 /2+w/2*cos (Bbb) , w/2* sin (Bbb) ] ;

83 csLH22= [− l 5 /2 + d/2*cos ( Ccc ) d/2* sin ( Ccc ) ] ;

84 csCL22= [− l 5 /2 −w/2 ; 0 −w/ 2 ] ;

85 c s r2 = [ csR22 ; csL22 ; csLH22 ; csCL22 ] ;

86 % f i g u r e ; hold on ; a x i s equal ; g r i d on ; p l o t ( c s r2 ( : , 1 ) ,

87 % csr2 ( : , 2 ) , ’ Color ’ , . . . [ 0 . 6 0 . 6 0 . 6 ] , ’ Marker ’ , ’ . ’ , ’ MarkerSize ’ , 9 ,

88 % ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ;

89 %% r Link , F l e x i b l e

90 l 5=r /10 ;

91 nr =16;

92 l 5 f=l 5 /nr ;

93 Aaa = linspace(−pi /2 , pi /2 , 10) ’ ; % r i g h t edge (nb : column vecto r )
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94 Bbb = linspace (pi /2 , 3*pi /2 , 10) ’ ; % l e f t s i d e edge

95 Ccc = linspace (3*pi /2 , −pi /2 , 20) ’ ; % f u l l c i r c l e ( touching the

connect ion l i n e )

96 csR22= [w/2*cos (Aaa) , w/2* sin (Aaa) ] ;

97 csL22= [w/2*cos (Bbb) , w/2* sin (Bbb) ] ;

98 csLH22= [ d/2*cos ( Ccc ) , d/2* sin ( Ccc ) ] ;

99 c s r f {1}= [ csR22 ; − l 5 f w/2 ; − l 5 f −w/ 2 ] ;

100 c s r f {6}= [ csL22 ; csLH22 ; 0 −w/2 ; l 5 f −w/2 ; l 5 f w/ 2 ] ;

101 c s r f {2} = [ 0 −w/2 ; l 5 f −w/2 ; l 5 f w/2 ; 0 w/ 2 ] ;

102 % f i g u r e ; hold on ; a x i s equal ; g r i d on ; p l o t ( c s r f {1} ( : , 1 ) ,

103 % c s r f {1} ( : , 2 ) , ’ Color ’ , [ 0 . 6 0 .6 0 . 6 ] , ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize

’ ,

104 % 9 , ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ; f i g u r e ; hold on ; a x i s equal ; g r i d on

;

105 % plo t ( c s r f {6} ( : , 1 ) , c s r f {6} ( : , 2 ) , ’ Color ’ , [ 0 . 6 0 .6 0 . 6 ] , ’ Marker

’ , ’ . ’ , . . .

106 % ’ MarkerSize ’ , 9 , ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ; f i g u r e ; hold on ; a x i s

equal ;

107 % gr id on ; p l o t ( c s r f {2} ( : , 1 ) , c s r f {2} ( : , 2 ) , ’ Color ’ , [ 0 . 6 0 .6 0 . 6 ] ,

108 % ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize ’ , 9 , ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ;

109 %% r1 Link Rigid

110 r0=r1 /10 ;

111 r3 =0.5*( r0 ) ;

112 r4=(r0 )−2*r3 ;

113 rn=r0−r3 ;

114 ar = linspace(−pi /2 , pi /2 , 10) ’ ; % r i g h t edge (nb : column vecto r )

115 br = linspace (pi /2 , 3*pi /2 , 10) ’ ; % l e f t s i d e edge

116 cr = linspace (3*pi /2 , −pi /2 , 20) ’ ; % f u l l c i r c l e ( touching the

connect ion l i n e )

117 csRr= [w/2*cos ( ar ) , w/2* sin ( ar ) ] ;

118 csLr= [w/2*cos ( br ) , w/2* sin ( br ) ] ;

119 csLHr= [ d/2*cos ( cr ) d/2* sin ( cr ) ] ;

120 csCLnh= [ 0 w/2 ; −r3 , w/2 ; −r3 −w/2 ; 0 −w/ 2 ] ;

121 csCLh= [ 0 −w/2 ; r3 −w/2 ; r3 w/2 ; 0 . 1 w/ 2 ] ;

122 c s r1a = [ csRr ; csCLnh ] ;

123 csr1b = [ csLHr ; csCLh ; csLr ] ;

124 % f i g u r e ; hold on ; a x i s equal ; subp lot ( 1 , 2 , 2 ) ; p l o t ( c s r1a ( : , 1 ) , c s r1a

( : , 2 ) ,

125 % ’ Color ’ , [ 0 . 6 0 .6 0 . 6 ] , ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize ’ , 9 ,
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126 % ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ; subp lot ( 1 , 2 , 1 ) ; p l o t ( csr1b ( : , 1 ) , c s r1b

( : , 2 ) ,

127 % ’ Color ’ , [ 0 . 6 0 .6 0 . 6 ] , ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize ’ , 9 ,

128 % ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ;

129 %% r1 Link F l e x i b l e

130 r0=r1 /10 ;

131 r3 =0.5*( r0 ) ;

132 % r4=(r0 )−2*r3 ; % d e l e t e l i n e and r e p l a c e r4 in s imul ink with 0 rn=r0

−r3 ;

133 % % rn = r3 −− d e l e t e and update s imul ink

134 ar = linspace(−pi /2 , pi /2 , 10) ’ ; % r i g h t edge (nb : column vecto r )

135 br = linspace (pi /2 , 3*pi /2 , 10) ’ ; % l e f t s i d e edge

136 cr = linspace (3*pi /2 , −pi /2 , 20) ’ ; % f u l l c i r c l e ( touching the

connect ion l i n e )

137 csRr= [w/2*cos ( ar ) , w/2* sin ( ar ) ] ;

138 csLr= [w/2*cos ( br ) , w/2* sin ( br ) ] ;

139 csLHr= [ d/2*cos ( cr ) d/2* sin ( cr ) ] ;

140 nr1 =16*2;

141 re = r0 /nr1 ;

142 c s r1e1 = [ csRr ; −re w/2 ; −re −w/ 2 ] ;

143 c s r1e2 = [ 0 w/2 ; 0 −w/2 ; re −w/2 ; re w/ 2 ] ;

144 c s r1e4 = [ csLr ; csLHr ; 0 −w/2 ; re −w/2 ; re w/ 2 ] ;

145 % f i g u r e ; hold on ; a x i s equal ; subp lot ( 1 , 2 , 2 ) ; p l o t ( c s r1e1 ( : , 1 ) ,

146 % csr1e1 ( : , 2 ) , ’ Color ’ , [ 0 . 6 0 . 6 0 . 6 ] , ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize

’ , 9 ,

147 % ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ; subp lot ( 1 , 2 , 1 ) ; p l o t ( c s r1e4 ( : , 1 ) ,

148 % csr1e4 ( : , 2 ) , ’ Color ’ , [ 0 . 6 0 . 6 0 . 6 ] , ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize

’ , 9 ,

149 % ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ;

150 %% Coupler r i g i d ( hole , hole , ho l e )

151 l=b /10 ;

152 l t=l ;

153 A = linspace(−pi /2 , pi /2 , 10) ’ ; % r i g h t edge (nb : column vecto r )

154 B = linspace (pi /2 , 3*pi /2 , 10) ’ ; % l e f t s i d e edge

155 C = linspace (3*pi /2 , −pi /2 , 20) ’ ; % f u l l c i r c l e ( touching the

connect ion l i n e )

156 c s L e f t = [− l /2 + w/2*cos (B) w/2* sin (B) ] ;

157 csRight = [ l /2 + w/2*cos (A) w/2* sin (A) ] ;

158 c sLe f tHo l e = [− l /2 + d/2*cos (C) d/2* sin (C) ] ;
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159 csMidHole = [ d/2*cos (C) d/2* sin (C) ] ;

160 csRightHole = [ l /2 + d/2*cos (C) d/2* sin (C) ] ;

161 csConnLine1 = [− l /2 −w/2 ; 0 −w/ 2 ] ;

162 csConnLine2 = [ 0 −w/2 ; l /2 −w/ 2 ] ;

163 csb = [ csRight ; c s L e f t ; c sLe f tHo l e ; csConnLine1 ; csMidHole ; . . .

164 csConnLine2 ; csRightHole ] ;

165 % f i g u r e ; hold on ; a x i s equal ; g r i d on ; p l o t ( cscb3 ( : , 1 ) , cscb3 ( : , 2 ) ,

166 % ’ Color ’ , [ 0 . 6 0 .6 0 . 6 ] , ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize ’ , 9 ,

167 % ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ;

168 %% Coupler F l e x i b l e ( hole , hole , ho l e )

169 nco =16*2;

170 l c=l /nco ;

171 A = linspace(−pi /2 , pi /2 , 10) ’ ; % r i g h t edge (nb : column vecto r )

172 B = linspace (pi /2 , 3*pi /2 , 10) ’ ; % l e f t s i d e edge

173 C = linspace (3*pi /2 , pi /2 , 20) ’ ; % f u l l c i r c l e ( touching the

connect ion l i n e )

174 C2 = linspace (pi /2 , −pi /2 , 20) ’ ;

175 c s L e f t = [w/2*cos (B) w/2* sin (B) ] ;

176 csRight = [w/2*cos (A) w/2* sin (A) ] ;

177 c sLe f tHo l e = [ d/2*cos (C) d/2* sin (C) ] ;

178 csLeftHoleM = [ l c+d/2*cos (C) d/2* sin (C) ] ;

179 c sLe f tHo le2 = [ d/2*cos (C2) d/2* sin (C2) ] ;

180 csb1 = [ c sLe f tHo l e ; c s L e f t ] ;

181 csb2 = [ c sLe f tHo le2 ; 0,−w/2 ; l c ,−w/2 ; l c ,w/2 ; 0 ,w/ 2 ] ;

182 csb3 = [0 ,−w/2 ; l c ,−w/2 ; l c ,w/2 ; 0 ,w/ 2 ] ;

183 csb5 = [0 ,−w/2 ; l c ,−w/2 ; csLeftHoleM ; lc ,w/2 ; 0 ,w/ 2 ] ;

184 csb6 = csb2 ;

185 csb9 = csb5 ;

186 csb10 = [ c sLe f tHo le2 ; csRight ] ;

187 % f i g u r e ; hold on ; a x i s equal ; g r i d on ; p l o t ( csb12 ( : , 1 ) , csb12 ( : , 2 ) ,

188 % ’ Color ’ , [ 0 . 6 0 .6 0 . 6 ] , ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize ’ , 9 ,

189 % ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ;

190 %% Crank F l e x i b l e

191 l a2=l a *1 . 0 5 ;

192 A = linspace (pi /2 , −pi /2 , 10) ’ ; % r i g h t edge

193 B = linspace (pi /2 , 3*pi /2 , 10) ’ ; % l e f t edge

194 C = linspace (3*pi /2 , pi /2 , 10) ’ ; % ho le

195 C2 = linspace (pi /2 , −pi /2 , 10) ’ ; % ho le

196 csRight = [w/2* sin (A) w/2*cos (A) ] ;
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197 c s L e f t = [w/2*cos (B) w/2* sin (B) ] ;

198 c sLe f tHo l e = [ d/2*cos (C) d/2* sin (C) ] ;

199 c sLe f tHo le2 = [ d/2*cos (C2) −( la2−w/2)+d/2* sin (C2) ] ;

200 ncr= 20*2 ;

201 deg (1 ) = −pi /2 ;

202 i n c = deg (1 ) / ncr ;

203 for i =2: ncr+1

204 deg ( i )=deg ( i −1) − i n c ;

205 D = linspace ( deg ( i −1) , deg ( i ) , 20) ’ ;

206 csCL{ i−1} = [ la2 *cos (D) la2 * sin (D) ] ;

207 E = linspace ( deg ( i ) , deg ( i −1) , 10) ’ ;

208 csCL2{ i−1} = [ ( la2−w) *cos (E) ( la2−w) * sin (E) ] ;

209 end

210 l 2 f=la2 / ncr ;

211 %matr i ce s

212 cscba1 = [ c s L e f t ; c sLe f tHo l e ] ;

213 cscba2 = [ c sLe f tHo le2 ; csCL {1} ; csCL2 { 1 } ] ;

214 for i =3: ncr+1

215 cscba { i }=[csCL{ i −1}; csCL2{ i −1} ] ;

216 end

217 cscba {42} = csRight ;

218 % ang l e s & p o s i t i o n s f o r r e f e r e n c e frames

219 for i =1: ncr

220 ang ( i )=(pi /2) *( i /10) ;

221 yax ( i )=( la2−w/2) *cos ( ang ( i ) ) ;

222 xax ( i )=( la2−w/2) * sin ( ang ( i ) ) ;

223 end

224 % f i g u r e ; hold on ; a x i s equal ; g r i d on ; p l o t ( cscba1 ( : , 1 ) ,

225 % cscba1 ( : , 2 ) , ’ Color ’ , [ 0 . 6 0 . 6 0 . 6 ] , ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize ’ ,

226 % 9 , ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ; % f i g u r e ; hold on ; a x i s equal ; g r i d

on ;

227 % plo t ( cscba2 ( : , 1 ) , cscba2 ( : , 2 ) , ’ Color ’ , [ 0 . 6 0 . 6 0 . 6 ] , ’ Marker ’ ,

’ . ’ , . . .

228 % ’ MarkerSize ’ , 9 , ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ; f o r i =3: ncr+1

229 % plo t ( cscba { i } ( : , 1 ) , cscba { i } ( : , 2 ) , ’ Color ’ , [ 0 . 6 0 .6 0 . 6 ] , ’ Marker

’ ,

230 % ’ . ’ , . . . ’ MarkerSize ’ , 9 , ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ; end

231 % plo t ( cscba {4 2} ( : , 1 ) +0.1* la , cscba {4 2} ( : , 2 ) +0.1* la , ’ Color ’ , [ 0 . 6

0 .6

61



A – Matlab code

232 % 0 . 6 ] , ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize ’ , 9 , ’ MarkerEdgeColor ’ , [ 1 0

0 ] ) ;

233 %% Rocker F l e x i b l e

234 % same as coup l e r except f o r two ends a l t e r n a t e d

235 A = linspace (pi /2 , −pi /2 , 10) ’ ; % r i g h t edge

236 B = linspace (pi /2 , 3*pi /2 , 10) ’ ; % l e f t edge

237 C = linspace (pi , 0 , 20) ’ ; % ho le

238 C2 = linspace (0 , −pi , 10) ’ ; % ho le

239 csRight = [w/2* sin (A) w/2*cos (A) ] ;

240 c s L e f t = [w/2*cos (B) w/2* sin (B) ] ;

241 csRightHole = [ d/2*cos (C) d/2* sin (C) ] ;

242 csRightHole2 = [ ( la2−w/2)+d/2*cos (C2) d/2* sin (C2) ] ;

243 cscba1r = c s L e f t ;

244 cscba2r = [ csCL {1} ; csCL2 { 1 } ] ;

245 cscba21r = [ csCL {20} ; csRightHole2 ; csCL2 {2 0} ] ;

246 cscba22r = [ csRightHole ; csRight ] ;

247 % f i g u r e ; p l o t ( cscba21r ( : , 1 ) , c scba21r ( : , 2 ) , ’ Color ’ , [ 0 . 6 0 .6 0 . 6 ] ,

248 % ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize ’ , 9 , ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ;

249 %% s t r a i g h t beam c o n f i g . :

250 %% Crank or Rocker : Rigid ( s t r a i g h t beam)

251 l 5 s=a /10 ;

252 Aaas = linspace(−pi /2 , pi /2 , 10) ’ ; % r i g h t edge (nb : column vecto r )

253 Bbbs = linspace (pi /2 , 3*pi /2 , 10) ’ ; % l e f t s i d e edge

254 Cccs = linspace (3*pi /2 , −pi /2 , 20) ’ ; % f u l l c i r c l e ( touching the

connect ion l i n e )

255 csR22s= [ l 5 s /2+w/2*cos ( Aaas ) , w/2* sin ( Aaas ) ] ;

256 csL22s= [− l 5 s /2+w/2*cos ( Bbbs ) , w/2* sin ( Bbbs ) ] ;

257 csLH22s= [− l 5 s /2 + d/2*cos ( Cccs ) d/2* sin ( Cccs ) ] ;

258 csCL22s= [− l 5 s /2 −w/2 ; 0 −w/ 2 ] ;

259 c s r 2 s = [ csR22s ; csL22s ; csLH22s ; csCL22s ] ;

260 % f i g u r e ; hold on ; a x i s equal ; g r i d on ; p l o t ( c s r 2 s ( : , 1 ) , c s r 2 s ( : , 2 ) ,

261 % ’ Color ’ , [ 0 . 6 0 .6 0 . 6 ] , ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize ’ , 9 ,

262 % ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ;

263 %% Crank or Rocker : F l e x i b l e ( s t r a i g h t beam)

264 l 5 s=a /10 ;

265 nsb =10*2;

266 l f=l 5 s /(2* nsb ) ;

267 Aaas = linspace(−pi /2 , pi /2 , 10) ’ ; % r i g h t edge (nb : column vecto r )

268 Bbbs = linspace (pi /2 , 3*pi /2 , 10) ’ ; % l e f t s i d e edge
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269 Cccs = linspace (3*pi /2 , −pi /2 , 20) ’ ; % f u l l c i r c l e ( touching the

connect ion l i n e )

270 csR22s= [w/2*cos ( Aaas ) , w/2* sin ( Aaas ) ] ;

271 csL22s= [w/2*cos ( Bbbs ) , w/2* sin ( Bbbs ) ] ;

272 csLH22s= [ d/2*cos ( Cccs ) d/2* sin ( Cccs ) ] ;

273 c s s {1}= [ csR22 ; − l f w/2 ; − l f −w/ 2 ] ;

274 c s s {6}= [ csL22 ; csLH22 ; 0 −w/2 ; l f −w/2 ; l f w/ 2 ] ;

275 c s s {2} = [ 0 −w/2 ; l f −w/2 ; l f w/2 ; 0 w/ 2 ] ;

276 % f i g u r e ; hold on ; a x i s equal ; g r i d on ; p l o t ( c s s {2} ( : , 1 ) , c s s {2} ( : , 2 )

,

277 % ’ Color ’ , [ 0 . 6 0 .6 0 . 6 ] , ’ Marker ’ , ’ . ’ , . . . ’ MarkerSize ’ , 9 ,

278 % ’ MarkerEdgeColor ’ , [ 1 0 0 ] ) ;

279 %% F l e x i b l e Links Params .

280 beam thickness =0.5 ; % a l l beams ( in cm)

281 T=beam thickness ;

282 p e g t h i c k n e s s =0.5 ;

283 Pt=p e g t h i c k n e s s ;

284 peg th i ckne s s2 =1;

285 wm=beam thickness *1e−2;

286 dm = d*10ˆ−2; % a l l beams ho le diameter ( in m)

287 mate r i a l . aluminum . rho = 2770 ; % kg/mˆ3 ; Density

288 rho=mate r i a l . aluminum . rho ;

289 mate r i a l . aluminum .E = 70 e9 ; % N/mˆ2 ; Young ’ s Modulus %(modi f i ed )

290 mate r i a l . aluminum .G = 27 e9 ; % N/mˆ2 ; Shear Modulus%

291 E = mate r i a l . aluminum .E;

292 % mater i a l . s t e e l . rho = 7800 ;

293 %mater i a l . s t e e l .E = 200 e9 ; mate r i a l . s t e e l .G = 77 .2 e9 ;

294 rho2=rho ;

295 %% LPM J o i n t s S t i f f n e s s & Damping

296 % Link/Length/Width/ Thickness / Density /Youngs Mod/SecondMomentofArea

. . .

297 % Link/Length ( per N) −−−−−−−−−−−−−−−−−−−−−−−
298 dc =2.5781e−05; % approx . damping p r o p o r t i o n a l i t y constant

299 % assumpt . : damping be l i n e a r and bound by a c o n s t i t u t i v e type law (

source :

300 % By S . Mi l l e r , T. Soares , Y. Van Weddingen , and J . Wendlandt , 2017)

301 % −−−−−−−−−−−−−−−−−−−−−−−
302 %% Crank/Rocker

303 lam = l a *10ˆ−2; % hinge to hinge l ength ( in m)
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304 N = ncr ; % number o f i n d i v i d u a l e lements

305 L = 2*pi* lam /4 ; % e f f e c t i v e l ength

306 l x = L/N; % length o f each e lements

307 rx2 =lam+wm/2 ; rx1 = lam−wm/2 ; % bar e f f e c t i v e xsec

308 Ia = (pi /16) *( rx2ˆ4−rx1 ˆ4) ; % SecondMomentofArea

309 K. crank = (E* Ia ) / lx ; % S t i f f n e s s [Nm/rad ]

310 Z . crank = dc * K. crank ; % Damping [Nm/( rad/ s ) ]

311 %% Coupler

312 N = nco ;

313 L = l *10ˆ−2;

314 l x = L/N;

315 Ia = L*(wmˆ3) /12 ;

316 K. coup l e r = (E* Ia ) / lx ;

317 Z . coup l e r = dc * K. coup l e r ;

318 %% r l i n k

319 N = nr ;

320 L = l 5 *10ˆ−2;

321 Ia = L*(wmˆ3) /12 ;

322 l x = L/N;

323 K. r l i n k = (E* Ia ) / lx ;

324 Z . r l i n k = dc * K. r l i n k ;

325 %% r1 l i n k

326 N = nr1 ;

327 L = r0 *10ˆ−2;

328 Ia = L*(wmˆ3) /12 ;

329 l x = L/N;

330 K. r 1 l i n k = (E* Ia ) / lx ;

331 Z . r 1 l i n k = dc * K. r 1 l i n k ;

332 %% Crank/Rocker s t r a i g h t

333 L = l 5 s *10ˆ−2; % hinge to hinge l ength ( in m)

334 N = nsb ; % number o f i n d i v i d u a l e lements

335 Ia = L*(wmˆ3) /12 ;

336 l x = L/N;

337 K. sb = (E* Ia ) / lx ;

338 Z . sb = dc * K. sb ;

339 %% motor props

340 Tmax = 0 . 4 5 ; % max cont inuous torq = 15 .4 e−3 Nm

341 l p f = 6 .07 e−3;%0 . 0 1 ; % motort imeconstant =6.07e−3; % low pass f i l t e r

c o e f f i c i e n t s
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342 q s t a r t = 0 ; % i n t i a l q output

343 Kt = 18 .4 e−3; % N*m/A

344 Kv = 0 ; % 520rpm/V

345 WpT = 104 ; % speed / torque grad i en t rpm/mNm

346 La = 1 .2 e−5; % 0.231 e−3 H

347 Ra = 1 ; % 3.69 ohm

348 J = 1e−6; % ( 5 . 5 5 gcmˆ2) ro to r i n e r t i a

349 B = 0 ; % (Nm/( rad/ s ) r o to r damping

350 Pwr= 24 ; % Watts

351 Spd = 18000 ; %(rpm) max perm . s b l e speed

352 Gear ra t i o = 21/1 ;

353 %% Gravity comp .

354 %weights o f beams , kg %(* g r a v i t a t i o n a l a c c e l e r a t i o n ) Fol lower=crank

355 g =9.81;

356 % Ma=0.0650708; Mc=Ma; % Crank . curved

357 %%

358 Ma= 0.061852* g ; Mc=Ma; % Crank . s t r a i g h t

359 Mb=0.0370443*g ; % coup l e r

360 Mr = 0.0214228* g ; % r l i n k

361 Mr1= 0.0386* g ; % r1 l i n k

362 % j o i n t s

363 M1=0.0015664*g ; M3=M1; M4=M1;

364 Pa=M1; Pc=M1; Pd=M1;

365 % joint @pump % longe r dimension than other j o i n t s

366 M2=0.0109648*g ;

367 Pb=M2;

368 y8=Pa+Pb+Pc+Pd+Ma+Mb+Mc+Mr1 ;

369 A N=Pa+Pb+Pc+Ma+Mb+Mc+(3*Mr1/2) ;

370 r f=pi /2 ;

371 %% LQR

372 load ( ’ l i n e a r a n a l y s i s . mat ’ )

373 H=l i n s y s 1 ( : , : , 2 ) ;

374 hsvd (H)

375 Hb1=bal red (H, 4 ) ;

376 Hb2=bal red (H, 6 ) ;

377 figure , s t ep (H) , figure , s t ep (Hb1) , figure , s t ep (Hb2)

378 MM=Hb1 ;

379 Aa = MM.A;

380 Bb = MM.B;
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381 Cc = MM.C;

382 Dd = MM.D;

383 Q=(1e2 ) *eye ( length (Aa) ) ;

384 R= 1 ;

385 N = 0 ;

386 [ Klqr , Slqr , e l q r ]= l q r (Aa , Bb ,Q,R,N) ;

387 mSYS=ss (Aa , Bb , Cc ,Dd) ;

388 %% kalman

389 % M = [C D; z e ro s (1 , 12 ) 1 ] ; % [ y ; u ] = M * [ x ; u ]

390 % QWV = blkd iag (B*B’ , 1 e−2) ;

391 % QXU = M’* diag ( [ 1 1e−3])*M;

392 Qn=1;

393 Rn=0.01*eye ( length (Dd) ) ;

394 Nn=0;

395 [ kest , L ,P] = kalman (mSYS,Qn,Rn,Nn) ;

396 n=length ( Klqr ) ;

397 AA=Aa − Bb * Klqr ;

398 for i =1:n

399 BB( i , : )=Bb( i ) * Klqr ( i ) ;

400 end

401 CC=Cc ;

402 DD=Dd;

403 % f o r i =1:n

404 % sys ( : , i )=s s (AA,BB( : , i ) ,CC,DD) ;

405 % end

406 % subplot (312)

407 % step ( sys ( : , 1 ) )

408 % subplot (313)

409 % step ( sys ( : , 2 ) )
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