POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Informatica
Data Science LM-32

Tesi di Laurea Magistrale

INCENTIVE-COMPATIBLE &
PRIVACY-PRESERVING DATA ANALYTICS
SYSTEM

Enabled by Blockchain and Multiparty Computation

Relatore: Candidato:
Prof. Danilo Bazzanella Andrea Di Nenno
Mat. 234781

Correlatore

Dr. Guglielmo Morgari

Anno Accademico 2018-2019

this s my Robin Hood theory..
- Keith Edward Elam -

Abstract

Blockchain, the technology at the foundation of Bitcoin and other cryptocur-
rencies, is being praised as a major disruptive innovation with the poten-
tial to transform most industries. Yet, considering its base architecture, it
lacks some fundamental properties that are preventing a larger scale adop-
tion. Among the others, being the blockchain a public and shared ledger,
it doesn’t offer privacy of data, precluding its usage to many applications
that handle sensitive pieces of information. In this work, the blockchain is
integrated with Secure Multi-Party Computation (MPC), a cryptographic
tool that allows a number of parties to jointly compute a function over their
inputs, keeping them private and guaranteeing that the output (if returned)
is correct. Although the two might look apparently distant, they actually
address the same set of problems, the ones where mutually mistrusting par-
ties are involved without a trusted third party. Besides they cover different
aspects of such problems, thus being considered complementary technolo-
gies. Blockchain (by means of Smart Contracts) shapes the MPC system to
be incentive compatible, and just as Bitcoin’s miners that perform compu-
tational work to create valid new blocks in exchange of cryptocurrency, here
computing parties run arbitrary functions according to the MPC security
properties for the same reason. It also provides a single and incorruptible
source of truth of the entire system and, based only upon that, it enforces
the contract conditions like an automated trusted third party. The resulting
decentralized application (dApp) is implemented over a use-case belonging
to the medical domain, in a scenario where patients earn cryptocurrency af-
ter having provided their sensitive data under an MPC scheme, while larger
groups (i.e. research organizations) obtain aggregate data from arbitrary
functions executed by the MPC system. Hopefully, the union between these
two technologies could pave the way for a spectrum of new decentralized and
incentive compatible applications, for many use-cases never explored before.

Contents

1 State of the art 6
1.1 Blockchain o 6
1.1.1 Web3: the new Internet revolution 7

1.1.2 Definition 8

1.1.3 Consensus Protocols 9

1.1.4 Bitcoin 14

1.1.5 Ethereum L. 17

1.1.6 Security considerations 22

1.1.7 Do I need a Blockchain? 32

1.2 Secure Multiparty Computation 35
1.2.1 Security Definitions 35

1.2.2 Usecases s 37

2 Incentive Compatible and Privacy Preserving Data Analytics

System 40
2.1 Motivations 41
2.1.1 Incentive Compatibility 41
2.1.2 Complementary technologies 42
2.1.3 Use case: Medical Privacy 43

2.2 High-level overview, . 44
221 Actors 44
222 System 45
2.2.3 Protocols 46

2.3 Implementation L. 51
2.3.1 Blockchaino 51
2.3.2 Multiparty Computation 56
2.3.3 Decentralized Application 61

2.4 Application Snapshotso 64
2.4.1 Blockchain Explorer 64
2.4.2 Data Producer, 66
2.4.3 Data Consumer 67

2.5 Performances 70

2.5.1 Communication Model 70

252 Results. 71

2.6 Security Model 73

2.6.1 Assumptions. 73

2.6.2 Requirements oL 73

2.6.3 Solution 75

3 Conclusions 77

3.1 Related Works. 78
3.1.1 Decentralized Computation Platform with Guaranteed

Privacy 78

3.1.2 Secure infrastructure for data exchange 78

3.2 Future developments 79

3.2.1 Dishonest Parties Identification 79

3.2.2 Reputation System 79

3.3 Acknowledgements 80

Bibliography 80

List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19

A simple Bitcoin transaction 15
A flow chart to determine whether a blockchain is the appro-

priate technical solution to solve a problem 34
Sequence diagram of the Data Sharing protocol 47
Sequence diagram of the Data Consuming protocol 49
Sequence diagram of the Post-Computation Protocol 50
Class Diagram of the Solidity Smart Contract 53
Data Consumer Struct 54
Data Producer Struct L. 54
Computation Struct L 54
Decentralized Application Architecture 61
Event-based communication in the Data Consuming phase . . 62
Approved Data Producers and Data Consumers Public Keys . 64
Transactions history L. 65
A transaction in detail L. 66
Data Producer dashboard 67
Data Sharing transactions 67
Data Consumer dashboard 68
Data Consuming transactions (negative outcome) 69
Data Consuming transactions (positive outcome) 69
The total megabytes sent by the nominated player 72
The time in seconds of a chi square computation 72

List of Tables

2.1 Smart Contract functions cost on Ethereum
2.2 Estimation of operation costs on Ethereum

Chapter 1

State of the art

1.1 Blockchain

Blockchain, the technology at the foundation of Bitcoin and other cryptocur-
rencies, is being praised as a major disruptive innovation with the potential
to transform most industries [50]. The motivations behind such enthusi-
asm are pretty straightforward: they have allowed like never before mutually
mistrusting entities to perform financial payments without relying on a cen-
tral trusted third party while offering a transparent and integrity protected
data storage. Since then, blockchain as a technology has gained much atten-
tion beyond the purpose of financial transactions: distributed cloud storage,
smart property, Internet of Things, supply chain management, healthcare,
ownership and royalty distribution, and decentralized autonomous organiza-
tions just to name a few.

Even though young, the economic scale this phenomenon has reached cannot
be ignored: the total global market capital of blockchain based tokens and
cryptocurrencies in late 2018 floats around $130B [15], while having reached
$800B in its highest peak so far, occurred in January 2018 [43]. Clearly we
are at a crucial point in the evolution of blockchains. The major barrier to
their widespread adoption might be represented by the so called Blockchain
Trilemma [11], which states that blockchain systems can satisfy at most two
properties between decentralization, scalability and security. As it will be ex-
amined deeper, these properties are fundamentally related to the consensus
protocol, the core component of the blockchain, that inevitably has become
the real game changer for future developments.

1.1.1 Web3: the new Internet revolution

Over the last ten years internet-based services have been offered in a purely
centralized fashion. As the web matured over the years, the internet relied
more and more on few companies, making it easy for them to know the infor-
mation we search for, store our personal data, manage our digital identities
and our public and private communications. Google built the fastest search
engine, and has been rewarded with control over 74% of all search traffic [32].
Facebook built the most popular social network, and now controls the online
identities of 2.2 billion people [26].

In the meantime, a bunch of seemingly unrelated technologies are being
developed on the fringes of the tech industry. These range from financial
projects (cryptocurrencies), to basic communications technology (end to end
encrypted messaging), to mass consumer use-cases (open social networks and
p2p markets), to critical internet infrastructure (decentralized DNS) [22]. In
common they have the base vision: to create a new, "better” internet. An
internet where payments and money are natively digital, where decentralized
applications run against centralized ones, and where users have real control
over their data and identity.

Web3 is led much more by an ideological motivation than a technological one:
it isn’t about speed or performance, given that many Web3 applications are,
at least today, slower and less convenient than existing products. Instead, it
is radically about breaking the schemes that has been shaping the web lately,
which is the trade-off between convenience and control. We have become so
used to it, that is seems inevitable to be surveilled while using the internet,
or to have our personal data controlled by the service providers. How could
it be other way? Finally we could: we can have the benefits of the internet
without handing the majority of power to a minority of companies.

Digital Money While in the past the internet needed to rely on an offline
financial system, with cryptocurrencies in Web3 sending a payment does not
require interacting with some offline system, it only requires sending a mes-
sage over the internet. As an immediate implication, sending or receiving
payments will become something that any software could do, and by ex-
tension, something that could be done by any person just with an internet
connection and a phone.

Costs of transactions (also for micro payments) will likely be lowered, new
business models, before impractical, will be unlocked and available to massive
new markets (with people that weren’t able to enter the traditional financial
system); finally new kinds of money will be created and used to trade, such
as non-fungible digital assets [53]

Decentralized services The core rules that govern decentralized services
will be defined in an open-source protocol. Users will interact with that
protocol via a client-software of their choice. In other words, there could
be a variety of apps, all made by different developers, but all connected to
the same social network. These clients may offer different features from one
another, but all conform to the same shared protocol, analogous to the way
that email clients all use the same standard for sending and receiving emails.
This in few words will make a sustainable ecosystems of third party services
grow. App developers can build useful products on top of a decentralized
protocol without fear that someday their API access will be turned off, be-
cause there is no one company who can turn it off. The platform would
remain neutral, meaning that a larger network of developers will invest their
time and money into building businesses on top of it.

User control of data Web3 is as well laying the groundwork for personal
control of online identities, other than more generally of their app data.
Similarly to a wallet managing private keys for cryptocurrencies, any kind of
blockchain-based data could be stored securely in a personal wallet, including
one’s ID.

Being the users able to use their own identity, instead of one provided by a
third party, the possibility for such identity providers to capture user data
inside other applications will be nearly eliminated. Furthermore, in decen-
tralized services ideally there won’t be no central company being able to
collect user data.

Finally and more importantly, the described control gained by users over
their data, will make it easier to earn out of them. In Web3, users will be
able to sell their app data, and get paid entirely. The power that turned so-
cial media companies into billion dollar businesses will shift into user’s hand,
that will actually own a piece of the technology they use every day.

1.1.2 Definition

The blockchain is a decentralized, replicated and tamper-proof log: data on
the blockchain (public ones) cannot be deleted, and anyone can read data
from it and verify its correctness.

It is usually implemented as a linked list of blocks of data, in which the
pointer to the previous block is simply the cryptographic hash of it, that
serves as integrity code as well. This pattern resolves into a hash chain,
where each block implicitly verifies the entire chain before it, and so tamper-
ing with already written data gets necessarily detected.

A block can be seen as a set of transactions, that in turn specify some trans-
formation on the state of the blockchain. The state for instance can include
information like account balances, reputations, data pertaining to informa-
tion of the physical world; generally, anything that can currently be repre-
sented by a computer. Transactions then represent a wvalid arc between two
states. An invalid transaction is for example reducing an account balance
without an equal increase of another one.

Blockchains can be categorized in permissioned (private) and permissionless
(public) ones. The latter are fully decentralized, meaning that anyone can
setup a node and join the network. In permissioned blockchains instead all
the node identities are known and are controlled usually by a single author-
ity.

Either way, nodes in the network participate in a collaborative protocol, the
consensus protocol, where they agree on the next block to append to the
blockchain, and so validating all the state changes in it. The consensus pro-
tocol acts essentially as the engine of the blockchain, and so the performances
rely upon its efficiency. Indeed, as more extensively explained in the follow-
ing section, radically different protocols have already been formalized, all of
them designed to overcome the Bitcoin’s Proof of Work limitations.

1.1.3 Consensus Protocols

Consensus protocols, or atomic broadcast, in distributed systems have been
introduced because of the need to provide resilience against failures across
multiple nodes holding replicas of databases [38]. In this configuration, nodes
must receive the same set of messages in the same order. The broadcast is
named atomic because it either eventually completes correctly at all partic-
ipants, or all participants abort without side effects. Moreover, that partic-
ipants recovering from failure, must be able to learn and comply with the
agreed order.

Speaking about the properties a consensus protocol should follow in order to
consider the blockchain implementing it stable, Bonneau [9] in his thorough
and extensive analysis outlines five basic stability properties:

e Eventual consensus: at any time, all compliant nodes will agree
upon a prefix of what will become the eventual valid blockchain. This
won’t imply though that the longest chain at any moment is a prefix of
the eventual blockchain, given that blocks might as well be discarded
in the case of temporary forks;

e Exponential convergence: the probability of a fork of depth n
should have a complexity of O(27"). This gives high confidence that a

9

simple "k confirmations” rule will ensure that a transaction is perma-
nently included in a block;

e Liveness: new valid transactions will be included in blocks and blocks
will be added to the blockchain within a reasonable amount of time;

e Correctness: all blocks in the longest chain will only include valid
transactions;

e Fairness: a miner with a proportion « of the total computational
power will mine a proportion ~ « of blocks (assuming they choose
valid blocks to mine)

As Bonneau underlines, the blockchain is considered stable if holding cor-
rectly such properties, but on the other hand it is still unclear whether they
are all necessarily required. For example the Fairness property may be con-
sidered irrelevant from a user’s perspective, but its absence would lead many
miners to cease their participation, threatening the other properties.
Clearly we have that, in order to satisfy the cited conditions, the participants
must effectively agree on the order of receipt of the messages. A number of
extensions to consensus protocols includes a validation step, that ensures the
transactions accepted are necessarily valid. This implies that the validation
rules must be deterministic and uniformed across all nodes.

In the following, the two most relevant consensus protocol so far will be
described.

Proof of Work

In 2008, Bitcoin [50] was announced and a white paper signed by a pseudony-
mous author Satoshi Nakamoto was posted to the Cypherpunks mailing list,
along with the source code of the original client. Few months later, on
January 3rd, 2009, the genesis block was mined !. The pivotal innovation
was represented by its consensus protocol, a Proof of Work, later renamed
Nakamoto Consensus, that assured to reach a consensus in a permissionless,
fully decentralized network.

Yet the singular components forming his consensus model were studied and
formalised long before. Indeed the idea of PoW was introduced first in 1993,
by Dwork and Naor, as a technique to prevent spam mail: the sender needed
to find out the solution to a mathematical puzzle as a prove that some com-
putation was performed [21]. Nakamoto though took the main inspiration

Tronically it contains the string ” The Times 03/Jan/2009 Chancellor on brink of second
bailout for banks.”

10

from a later work, proposed in 1997 by Back and again for fighting spam,
under the name of Hashcash [3]. Here, the computational puzzle is finding
a SHA-1 hash of an header containing the email recipient’s address and the
current date, containing at least 20 bits of leading zeros.

Exploiting the hashing algorithm’s preimage resistance [59], the puzzle can
be solved only by including random nonces in the header, until the resulting
hash meets the formal constraint. Given the relevant amount of computa-
tional work required by these guesses, a valid hash is considered to be a
PoW. As one can guess, the work must be moderately difficult for the miner
to perform, but easy for the network to check.

Nakamoto consensus refined the Hashcash on two features. first, the single
SHA-1 hashing is replaced with two subsequent SHA-2 hashes. Secondly, an
hash is considered valid when its value is below a certain threshold ¢. This
innovation was crucial, because it made the Hashcash dynamic: just by de-
creasing t, the number of guesses, and so the computation, increases.

Nodes in the blockchain that generate hashes are called miners, and the
whole process is referred to as mining. In Bitcoin, miners compute hashes of
potential blocks of transactions to be appended to the blockchain, and are
rewarded with just minted coins if they are the first to produce a valid block.
The t value is calibrated automatically by the network, in order to keep the
inter-block interval approximately around 10 minutes.

Proof of Stake

One of the main criticism raised against the Bitcoin is that it relies on the
PoW that, as we have seen, essentially has no external utility (it is only
needed to select the winning miner), thus leading to wasteful computation,
other than being prone to centralization (in section 1.1.4, this and other as-
pects will be treated). Maybe because of the market opportunity many may
have seen in producing a much more efficient consensus protocol, a new class
of consensus protocols is born.

Proof of Stake as of today stands as the most bright PoW substitute. In-
stead of voting with their CPU power, as in PoW, here participants vote
for new blocks according to some weight, like the amount of currency held.
A common pattern between the different implementations of the PoS is to
randomly elect a leader among the stakeholders, to append a block to the
blockchain. It’s in fact based upon user’s wealth, or stake, that they get
selected.

In order to validate transactions and create blocks, a forger (miner in PoS)
first puts his own coins at stake: if they validate an invalid transaction, they
lose their holdings, as well as their rights to participate as a forger in the

11

future. Once the forger puts its amount at stake, he is eligible in the forg-
ing (mining) process, being in theory now incentivized to validate the right
transactions.

The election may be public, that is the leader is known to all the partici-
pants, or private, where each player check whether he’s the chosen one or
not, and after having all the other players able to verify it through public
information. This latter approach is resilient to DoS attacks, since players
get to know the leader only when he appended the block, at which point it
is too late to DoS or generally corrupt him.

Different big players in the industry are prone to adopt this kind of con-
sensus scheme. The Ethereum Foundation has been considering switching
from PoW to PoS since 2015, with the so called Casper protocol [12]. The
Algorand blockchain, instead, has been natively designed on a PoS defined
by them ”super fast and partition resilient” [47]. However, as the reader can
acknowledge in the following section, many concerns still are alive around
the PoS, because few but potentially detrimental attacks have been already
theorized.

Attacks and Mitigation As pointed out already in 2014 by Vitalik Bu-
terin [10] three new attacks have emerged against the new consensus scheme.
The first one is called Nothing at stake attack [27], and is a consequence of
the fact that in the PoS it’s computationally cheap to extend a chain. Thus
miners are incentivized at extending all possible chains so to maximize the
probability to be in the winning block and so rewarded. If this happened,
an attacker would be able to send a transaction in exchange for some digital
good, receive the good, then start a fork of the blockchain from one block
behind the transaction and send the money to himself instead. Even with 1%
of the total stake the attacker’s fork would win because everyone else would
be mining on both. A penalty mechanism may be good enough to prevent
such scenario: a miner producing blocks on different forks is penalized by
loosing part of its stake.

Another one is called Stake grindin attack, and require a very little amount
of currency. The attacker here goes through the history of the blockchain
in order to find blocks where his stake would have won. From that block
on, he modifies the next block header until his stake wins once again, until
his chain is the longest one. This attack requires a little bit of computation,
but isn’t impractical. The defence mechanism is straightforward: by means
of an unbiased source of randomness contributing to the leader election, an
attacker wouldn’t be able to choose himself.

The third attack is the Long range attack, where an attacker can bribe forg-

12

ers to sell him their private keys. If these keys had considerable value in the
past, then the adversary can mine previous blocks and re-write the entire his-
tory of the blockchain. This is technically possible because in the PoS based
blockchains, as already said, it is computationally irrelevant to mine a block.
The defense mechanism here is to consider only blocks with a certain range
of prior blocks to be disputable, while the rest are ultimately considered of
the main chain. Unfortunately though, as we can read from the Ethereum’s
Proof of Stake FAQ [28], this protocol would lead to something called Weak
Subjectivity.

Weak Subjectivity In Proof of Stake consensus, in order to be secure
against long range attacks, a revert limit - a rule that nodes must simply
refuse to change blocks that are prior to some time limit - must be introduced.
Though this causes the security model to change, with undefined behaviors
when a node comes online either for the first time or after a considerable
time span, because necessarily he will have to ask a trusted source what the
hash of the valid chain is.

Even though it completely undermines the trustless nature of blockchains,
as Vitalik writes, this is a problem only in the very limited case where a
majority of previous stakeholders from some point in time collude to attack
the network and create an alternate chain; most of the time we expect there
will only be one canonical chain to choose from.

Strengths If implemented correctly, the proof of stake presents three main
advantages over the PoW:

1. It doesn’t waste any significant amount of electricity. Considering that
as of November 2018 only 38 countries worldwide consume more energy
than the Bitcoin’s mining process [5], this is a significant advantage;

2. It arguably provides an higher level of security, since to conduct a 51%
attack, here one must own the 51% of the entire supply of the currency.

3. It possibly allows for much faster blockchains (i.e. NXT has one block
every few seconds).

Alternatives Bonneau [9] describe informal consensus protocols based on
PoS that have been proposed in the crypto community. As common de-
nominator, these systems require miners to hold or prove the ownership of
coins.

13

e Proof of deposit where miners lock a certain amount of coins, which
they cannot spend for the duration of their mining. This approach is
used in Tendermint [39], where a miner’s voting power is proportional
to the amount of coins he has locked;

e Proof of burn like in Slimcoin [55] miner’s voting power is propor-
tional to the amount of coins they have destroyed, by sending them to
a verifiably unspendable address.

e Proof of coin age where miner’s voting power is deduced from the
amount of coin weighted by their age, that is the time since they were
last moved. Peercoin uses this approach [58].

1.1.4 Bitcoin

Ideology A purely peer-to-peer version of electronic cash would allow on-
line payments to be sent directly from one party to another without going
through a financial institution. This is how the Bitcoin, through its whitepa-
per [50], was introduced in 2008 by Satoshi Nakamoto.

The main criticism pointed out against the current economical model was
that alone it wouldn’t be able to survive in a world with no trust. That
couldn’t be more true. The world is indeed characterized by a lack of trust,
and that’s why it relies exclusively on financial institutions serving as trusted
third parties to process electronic payments.

But everything comes at a price: the security offered by the trusted third
party resolved into higher transaction costs, impossibility to do small casual
transactions, and finally the possibility for a transaction to be reverted. With
this possibility always threatening sellers, they are forced to be wary of their
customers, requiring from them lot more information that the ones needed
for the selling. When brought to exaggeration, this process also known as
KYC(C has led customer to claim back their privacy, like a dog chasing his
own tail.

At the end of the introduction, he put the crystal clear solution on the table:
we propose a solution to the double-spending problem wusing a peer-to-peer
distributed timestamp server to generate computational proof of the chrono-
logical order of transactions.

Transactions The state of the world in Bitcoin is represented by a series
of messages called transactions. More precisely, transactions are the only
thing that exists in Bitcoin. All further higher-level concepts, such as user,
account, balances or identities exist as long as they can be inferred from the

14

transaction list, and as such they are not built-in features. A transaction
is a transfer of Bitcoin value that is broadcast to the network and collected
into blocks. A transaction is made of an array of inputs and another one of
outputs, and the ID is derived from its hash fingerprint.

Basic example The input in transaction reported in Figure 1.1 imports
50 BTC from output 0 in the previous transaction (f5d8...). Then the output
sends 50 BT'C (50.000.000 Satoshi) to a Bitcoin address (here in hexadecimal
4043...). When the recipient wants to spend this money, he will reference
output 0 of this transaction in an input of his own transaction [7].

Input:

Previous tx: £5d8ee39a430901c91a5917b9f2dc19d6dlale9cea205b009ca73dd04470b9%a6
Index: 0

scriptSig: 304502206e21798ad42faele854281labd38bacdlaced3ee3738d%9e1446618c4571d10
90db022100e2ac980643b0b82c0eB88ffdfecbbbdelebba3be7ba5£fdd7d5d6cc8d25¢c6b241501

Output:

Value: 5000000000

scriptPubKey: OP_DUP OP HASH160 404371705fa9%bd789a2fcd52d2c580b65d35549d
OP_EQUALVERIFY OP_CHECKSIG

Figure 1.1: A simple Bitcoin transaction

Input An input is a reference to an output from the previous transaction
in the chain. Since many inputs can be grouped in a single transaction, all
of them are added up, and the total (less any transaction fee) is the amount
of coin available to use by the outputs of this transaction. Previous tzr is a
hash of a previous transaction. Indez is the specific output in the referenced
transaction. ScriptSig is the first half of a script, that will be explained in a
specific paragraph here below.

Output An output contains instructions for sending bitcoin. Value is the
number of Satoshi (1 BTC = 100,000,000 Satoshi) that this output will be
worth when claimed in another transaction. ScriptPubKey is the second
half of a script (explained in the next paragraph). Nothing denies to create
multiple outputs, as long as their combined value doesn’t exceed the input’s
one.

Given this nature, that is an output from one transaction can only ever be
referenced once by an input of a subsequent transaction, the entire combined
input value needs to be sent in an output if you don’t want to lose it. If
the input is worth 50 BTC but you only want to send 25 BTC, Bitcoin will
create two outputs worth 25 BTC: one to the destination, and one back to

15

you (known as ”change”, though you send it to yourself). Any input not
redeemed in an output is considered a transaction fee; whoever mines the
block can claim it by inserting it into the coinbase transaction of that block.

Script The script contains two components, one in the input and one in
the output, that is a signature and a public key. The public key is used to
verify the redeemer’s signature, which is in turn an ECDSA signature over a
hash of a simplified version of the transaction. This is needed to prove that
the transaction was created by the real owner of the address in question.
Various flags define how the transaction is simplified and can be used to
create different types of payment.

Consensus Mechanism Bitcoin uses a Proof of Work consensus mecha-
nism, specifically renamed Nakamoto Consensus. For more details about it
please refer to section 1.1.3

Block confirmation The intrinsic nature of the Bitcoin’s consensus mech-
anism entails that before being sure that a transaction is permanently in-
cluded in the blockchain, one is supposed to wait for some amount of time,
that is blocks appended afterwards. This is because, during a fork for exam-
ple, users may see their transaction appended in one chain and not in the
other. Anyway, considering the majority of miners following the protocol,
users can infer that a transaction is going to increasingly likely end up on
the longest chain as more confirmations are sent over. Practically, in Bitcoin
a shared though not proven assumption is to wait for 6 confirmations before
accepting the transaction.

Mining rewards and fees The size of the block reward is determined by
a fixed schedule. Initially, each block created 50BTC, but it is scheduled to
halve roughly every four years until roughly 2140 at which point no new bit-
coins will be created. This implies that, without any other incentive scheme,
the system would gradually get abandoned with time. Because of this, min-
ers do not only profit from block rewards: they are also allowed to claim the
difference in value between all input and all output transactions in the block
they mine.

Bitcoin’s design makes it easy and efficient for the spender to specify how
much fee to pay, whereas it would be harder and less efficient for the recipient
to do so. The spender is then almost always solely responsible for paying all
necessary Bitcoin transaction fees, and it’s not an irrelevant parameter to
set: the so called fee-rate is perhaps the most important factor affecting how

16

fast a transaction gets confirmed. It is in fact pretty straightforward that a
miner would be more attracted to mine transactions which make him earn
more.

1.1.5 Ethereum

Motivations Satoshi Nakamoto’s development of Bitcoin in 2009 has of-
ten been hailed as a radical development in money and currency. That was
though just a spark that made an entire new world of researches and projects
explodes, because, apart from the Bitcoin use-case, the underlying blockchain
technology as a tools for distributed consensus was rapidly gaining attention.
Without any doubt Ethereum represents the second milestone in the blockchain’s
still short history. The futuristic vision that Vitalik Buterin, Ethereum’s
mastermind, had in mind, was about a blockchain with a built-in, Turing-
complete programming language. With such programming language, anyone
could create arbitrary code (defined as Smart Contract, section 1.1.5) and
decentralized applications, implementing arbitrary rules for ownership, trans-
action formats and state transition functions, simply by writing up the logic
in a few lines of code.

Architecture The Ethereum blockchain is quite similar to the Bitcoin’s
one, with few yet significant differences. As long as mining is concerned,
Ethereum like Bitcoin uses a Proof Of Work approach, but actually the de-
veloping team is planning to migrate towards Casper protocol [12], which is
going to implement a Proof of Stake consensus protocol.

On the other hand, Ethereum differs from Bitcoin mostly for the block struc-
ture. Indeed Ethereum blocks contain a copy of both the transaction list and
the most recent state, whereas in Bitcoin blocks contain only a copy of the
transaction list. This means that in Bitcoin, the entire blockchain history is
stored in each block, while in Ethereum ”only” the final state. Although this
latter approach might seem inefficient, in fact, can be calculated to provide
5-20 times savings in space with respect to Bitcoin [24]. This because the
state itself is represented in a tree structure, such that between two adjacent
blocks only a small part of it needs to be changes. Therefore data can be
stored once and referenced twice using pointers, like hashes of sub trees. The
most important components forming the Ethereum’s blockchain are the EVM
(Ethereum Virtual Machine), Miner, Transactions, Consensus algorithm, Ac-
counts, Smart contracts, Ether and Gas, and they will be expanded in the
following sections.

17

Ethereum Virtual Machine

The Ethereum Virtual Machine or EVM is the runtime environment for
Smart Contracts (section 1.1.5) in Ethereum. It is not only sandboxed but
actually completely isolated, which means that code running inside the EVM
has no access to network, filesystem or other processes. Smart contracts even
have limited access to other smart contracts.

Usually the EVM is hosted by a miner node, as the execution for a smart
contract transaction occurs when the mining node includes the transaction
in a block it generates. Once the block is generated, it’s distributed to the
network, and any node receiving it then proceeds to run through the list of
transactions, ensuring each transaction is valid (as well as running associated
code).

When a new node connects to the network, it downloads every block in his-
tory and re-validates every transaction in each. The repeated validation is
possible because smart contract transactions are deterministic. They may
depend on factors such as the block number itself, current storage values
for a contract, or the result of another smart contract’s computation, but
that information is constant and can be recomputed consistently by stepping
through transactions from the start of the chain.

Storage, Memory and Stack

The EVM has three areas where it can store data, namely storage, memory
and the stack. Each account has a data area called storage, which is persistent
between function calls and transactions. Storage is a key-value store that
maps 256-bit words to 256-bit words. A contract can neither read nor write
to any storage apart from its own, and it is comparatively costly to read, and
even more to modify storage.

The second data area is called memory, of which a contract obtains a freshly
cleared instance for each message call. Memory is linear and can be addressed
at byte level, but reads are limited to a width of 256 bits, while writes can
be either 8 bits or 256 bits wide. Memory is more costly the larger it grows
(it scales quadratically).

The EVM is not a register machine but a stack machine, so all computations
are performed on a data area called the stack. It has a maximum size of
1024 elements and contains words of 256 bits. Of course it is possible to
move stack elements to storage or memory in order to get deeper access to
the stack, but it is not possible to just access arbitrary elements deeper in
the stack without first removing the top of the stack.

18

Accounts

Accounts are main building block in the Ethereum ecosystem. It is the
interaction between accounts that is stored as transaction in the ledger. An
Ethereum account contains four fields:

e The nonce, a counter to make sure each transaction is processed only
once.

e The account’s ether balance
e The account’s contract code, if present
e The account’s storage, which is by default empty

In Ethereum there are two types of accounts: externally owned accounts,
and contract accounts. The difference between the two is that the first
comes out with no codes, so can be only used to create and sign transac-
tions. Contract accounts are instead controlled by their code, such that it
gets executed every time they receive a message, and through that it can
read or write to its internal storage, other than regularly sending messages,
transactions, or creating contracts in turn.

Contracts can be seen, citing the Ethereum whitepaper [24], as autonomous
agents, that live inside of the Ethereum execution environment, always exe-
cuting a specific piece of code when poked by a message or transaction, and
having direct control over their own ether balance and their own key/value
store to keep track of persistent variables.

The address of an external account is determined from the public key while
the address of a contract is determined at the time the contract is created (it
is derived from the creator address and the number of transactions sent from
that address, the so-called nonce). Regardless of whether or not the account
stores code, the two types are treated equally by the EVM.

Gas

Each operation (from a smart contract call to a simple transaction) is charged
with a certain amount of gas, that is a unit that measures the amount of com-
putational effort that it will take to execute such operation.

Each possible operation executable on the EVM is indeed associated with a
specific and fixed Gas unit, as specified in the Ethereum Yellow Paper [76]
(a few examples are also referenced in Section 2.3.1). This unity measure is
used to calculate the amount of fees that the transaction creator has to pay
(in Ether) up front when sending the transaction.

19

Since the Gas itself has not an intrinsic monetary value, the sender speci-
fies a gasPrice, so that he will pay eventually gasPrice * Gas. The higher
the gasPrice value he specifies, the sooner miners will mine his transaction.
Other than that, the sender might as well specify the upper Gas limit, that
is the maximum computational effort he is intended to pay for, but with a
risk: if the Gas is used entirely but the transaction would have needed some
more to be executed, an out-of-gas exception is triggered, which reverts all
modifications made to the state in the current call frame, ending up with
the sender losing what had payed. Conversely, if some Gas is left after the
execution, it is refunded to the creator again as Gas (left) * gasPrice.

The rationale behind such solution is brilliant. First, it forms the incentiviza-
tion scheme behind Ethereum. It is called Gas on purpose, as it is literally
the Ethereum’s fuel. Miners are incentivized to act honestly because they
are paid proportionally to the computational effort they offer to the network.
This couldn’t be other way: being indeed a general purpose blockchain, the
mining prize couldn’t be specified beforehand and fixed as in Bitcoin, where
instead the mining effort is deterministic.

Secondly, it constitutes a pretty strong security measure against denial of
service attacks, because to conduct one, an attacker would have to literally
pay for it.

Transaction

Ethereum, taken as a whole, can be viewed as a transaction-based state ma-
chine. It starts with a genesis state and incrementally execute transactions
to shape it into a specific final state. The state can include such informa-
tion as account balances, reputations, data pertaining to information of the
physical world; anything that can be represented by a computer. Practically,
the state is composed by accounts, objects having a 20-byte address, and a
state transition is direct transfer of value and information between accounts.
Furthermore, a transaction is always cryptographically signed by the sender
(creator).

This makes straightforward to guard access to specific modifications of the
database. In the example of the electronic currency, a simple check ensures
that only the person holding the keys to the account can transfer money from
it. There are three types of transaction that can be executed in Ethereum:

1. Transfer of Ether from one account to another: the accounts
here can be both externally owned accounts or contract accounts, and
the transfer may happen in all possible directions among this set.

2. Deployment of Smart contract: performed by an externally owned

20

account by means of a transaction in EVM.

3. Invoking a function within a contract: executing a function in a
contract that changes state is considered as transactions in Ethereum.
If executing a function does not change state (i.e. it just reads the
blockchain), it does not require a transaction.

A transaction comes out with several different parameters set by the sender,
the most important are:

e from: indicates the account that is originating the transaction, signing
it, and sending some Gas or Ether along. Can be both externally owned
or a contract account.

e to: account property refers to an account that is receiving Ether or
data (when the receiver is a smart contract) from the transaction. In
case of transaction related to deployment of contract, this field is empty.

e value: refers to the amount of ether that is transferred from one ac-
count to another.

e input: refers to the compiled contract bytecode and is used during
contract deployment in EVM. Possibly, it is also used when invoking a
smart contract function calls to supply its parameters.

e gas: refers to amount of gas supplied by sender for the miner node
executing the transaction.

e gasPrice: refers to the price per gas the sender was willing to pay in
Wei (a sub unit of Ether) to the miner node. The higher the gasPrice,
the sooner the transaction is likely to be mined in the blockchain.

Smart contract

A smart contract is a contract implemented, deployed and executed within
Ethereum environment. A traditional contract is a legal document that binds
two or more parties who agrees to execute a transaction immediately or in
future. There is a subtle difference though between the two: while a tradi-
tional contract technically may as well not be complied, because it provides
the consequences of such possibility, a smart contract enforces automatically
and inevitably the contract logic when the specified conditions are met.

As it will be explained in the Smart Contract’s security section, this feature
implies that when bad programmed, Smart Contracts could lead to poten-
tially dangerous side-effects. Smart contracts can store data in their storage

21

memory, in order to record information, facts, associations, balances and any
other information needed to implement logic for real world contracts.

From a programming point of view, the language to write them is called
Solidity, and is an object-oriented, high-level language. It is statically typed,
supports inheritance, libraries and complex user-defined types among other
features. A smart contract can call another smart contract function, and as
well as with objects, one can create an instance of the contract and invoke
functions to view and update its state.

Deployment steps The first step is compilation of contract. The com-
pilation is done using solidity compiler [68]. The compiler generates two

files:

e Bytecode is what represents the contract and is deployed in Ethereum
ecosystem. It is used to actually deploy the contract over the blockchain.
To do so, a new transaction is created passing in the contract bytecode
and appropriate quantity of gas for execution of transaction. After the
transaction is mined, the contract is available at an address determined
by Ethereum.

e Abi which stands for Application Binary Interface, is an interface con-
sisting of all external and public function declarations along with their
parameters and return types. A new instance of a deployed contract is
created using the ABI definition and its address, and that allows any
caller to invoke any contract function.

1.1.6 Security considerations

Blockchains are without any doubt a powerful technology. They allow for
a large number of interactions to be codified and carried out in a way that
greatly increases availability (as there are no single point of failures), removes
business and political risks associated with the process being managed by a
central entity, and reduces the need for trust. They create a platform on
which applications from different companies and even of different types can
run together, allowing for extremely efficient and seamless interaction, and
leave an audit trail that anyone can check to make sure that everything is
being processed correctly.

On the other hand, if a large scale adoption in the business still hasn’t arrived
after 10 years, it must lack necessarily in something. Two major issues are
crystal clear around the blockchain, and are the ones related to scalability
and to privacy. The two are going to be discussed in the next two sections.

22

Blockchain trilemma

Generally speaking about scalability for blockchains, throughout the commu-
nity it is well-known the term Blockchain Trilemma [11], coined by Vitalik
Buterin, which refers to the fact that with blockchain there is always a choice
to be made that involves the trade-off between decentralization, security and
scalability. Creating a blockchain platform that optimizes all three factors
seems to be a really challenging task.

Decentralization Decentralization refers to the fact that the blockchain
doesn’t rely on a central point of control, but on a network of nodes and on a
consensus protocol. It is important to highlight that decentralization is not
a binary attribute, but always comes at some degree. A common miscon-
ception is in fact to think that all blockchains are decentralized to the same
degree.

Of course, a centralized organization is controlled by a small group of individ-
uals, i.e. the management, who typically owns the majority of ownership in
the company, and as such detains the role of decision-maker. Decentralized
networks are controlled in a certain degree by the users. They have the power
to use their stakes to vote for some decision. Obviously, this doesn’t prevent
the fact that users have different influences with their vote: in proof-of-stake
protocols, an individual’s vote is as influential as the number of tokens they
put at stake, while in proof-of-work the influence is proportional to the com-
putational power of the user.

Another important element of decentralization is that the majority of value
is accumulated inside the community. Lots of crypto projects are owned en-
tirely by their users, rather than the founders. Precisely because there is no
management, nobody is taking a cut of the value before all shareholders are
compensated. In the music industry, for example, Apple with iTunes takes
a 30% cut of sales fees, with the remaining 70% going to content creators.
On a blockchain, content creators would likely get more than 90% of total
sales, with a small portion going to nodes involved in running the network.
A great point for decentralization then is for the greater security it typically
offers, simply because it avoids having a single central point of failure.
Nevertheless, there are downsides to take care of when choosing a decen-
tralised system. The most technical one is, as well known, a relevant slow-
down in performances, because of the intrinsic nature of the currently used
consensus protocols. Furthermore, the absence of a central moderator may
lead disputes astray in a community, ending up with bad outcomes. In a
social media use case, a plain blockchain would allow the publication of any
kind of material, from fake news to hate speeches and so on. Lastly a decen-

23

tralised system is nearly impossible to shut down, and even if this is acclaimed
as one of the major benefit, it cannot be considered an absolute advantage.

Security Implicitly, the security in a blockchain is directly proportional
to its degree of decentralization. In most of the attacks discovered so far
against a blockchain, the effort needed is relative to the number of nodes in
the blockchain. For example in the >50% Attack, an entity (or set of them)
should manage to own more than 50% of the total tokens (or computing
power), to effectively own the network, or in the less effort demanding Sybil
Attack, where an entity needs to forge as much identities as possible in the
network to gain gradually more control over it.

Clearly, security doesn’t imply downsides directly, but rather trade-offs. Se-
curity of a blockchain comes at a price of reduced throughput and increased
network latency, and these factors constitutes a deterrent for many potential
users, used to instantaneous transactions on centralized services. If we look
to offer the best user experience possible, this is a strong concern.

Scalability Obtaining infinite scalability, defined as the upper limit on how
large a network is able to grow, is a non-trivial problem for a blockchain. Con-
sensus protocols on existing public blockchains are the primary factor that
influences scalability, yet they have a critical requirement for validation of
transactions: every participating node on the network has to validate each
transaction sequentially, and then store transactions on its copy of the ledger.
Logically as the number of transactions on the network increases (with an
higher adoption), so the number of nodes does. Because of that, the data for
each transaction has to travel a lot more before being validated and stored
by all the nodes on the network.

Therefore, blockchain scalability seems to inevitably reduce as the network
size increases. But still, it’s all about trade-offs. The costs to achieving
infinite scalability is to give up complete decentralization. Quickly growing
networks will require a faster consensus mechanism, in order to validate more
transactions while delivering the same speed to individual users. In Proof of
Work, this would mean to ease the hash puzzles, but then forks would occur
more frequently and the blockchain would loose its consistency.

As far as some numbers are concerned, relatively elder blockchains, such
as Bitcoin or Ethereum, are able to process between 3-20 transactions per
second, a figure several orders of magnitude away from the amount of process-
ing power needed to run mainstream payment systems or financial markets.
Some of the most recent and performing ones are instead increasingly ob-
taining much higher throughput.

24

Probably, as of January 2019, Tron [72] is becoming the most performing
one, as it’s reaching consistently a volume of 2000 transactions per second,
other than being one of the largest one, after having incorporated into his
ecosystem BitTorrent, the world’s largest and most famous decentralized file
sharing protocol. Another great candidate to become the Ethereum killer is
Zilliga [80], which comes out with a natively Proof of Stake consensus mech-
anism, and claims to be currently supporting nearly 3000 transactions per
second, a number that is supposed to increase after the launch of the main
net, planned to occur at the end of January 2019.

Solutions

Although it may look like a relatively emerging issue, many solution to the
blockchain trilemma have already been studied and analysed. Such solutions
walk along two different paths.

On one hand, there exists many possible easy solutions, such as increasing the
block size, or as splitting applications among many different chains, giving up
scaling a single chain. Both solutions surely would increase scalability, but
not for free: the first approach might cut many light nodes out, increasing
the centralization risk; the second one instead would reduce security by the
same factor as the one gained in scalability, as the resources needed to take
control over a sub-chain would be inferior.

On the other hand, harder to implement solutions involve either formalizing
a more efficient consensus protocol for a brand new blockchain, or implement-
ing a new layer on top of the existing blockchain architecture. Fortunately,
there have been attempts in both ways, as presented below.

Algorand Algorand [1], is the name of a blockchain project that claims
to be able to solve the trilemma. Algorand defines itself as first-of-its-kind,
permissionless, pure proof-of-stake protocol supporting the scale, open par-
ticipation, and transaction finality required to build systems for billions of
users. It has been founded by the Italian cryptography pioneer and Turing
award winner, Silvio Micali [67]. The name Algorand comes from the fact
that the approach uses algorithmic randomness to select, based on the ledger
constructed so far, a set of verifiers who are in charge of constructing the
next block of valid transactions. Such selections are ensured to be immune
from manipulations and unpredictable until the last minute, and at the same
time universally clear.

The key Algorand’s features are:

1. Minimal computation required: independently from the number

25

of users in the system, each of fifteen hundred users must perform at
most a few seconds of computation.

2. Higher Performances: since in Algorand, the only limiting factor
in block generation is the network speed. It has been experimentally
tested that choosing a 2MB block size, it manages to commit around
327MB of transactions per hour (vs Bitcoin’s 6MB per hour). Increas-
ing the block size to 10MB, it even guarantees better performances,
committing 750MB of transactions per hour, more than a hundred
times higher than Bitcoin.[46].

3. Negligible forking probability: with this probability being less than
one in a trillion. Thus users could rely on the payments contained in a
new block as soon as the block appears.

4. True decentralization: for the fact that there are no exogenous enti-
ties (as the miners in Bitcoin), who can control which transactions are
recognized.

Sharding Sharding is a concept that has existed in distributed systems for
a long time, where it is used to improve scalability, performance, and 1/0O
bandwidth [65]. Tt refers to the process of splitting a blockchain into parallel
sub-chains called shards, where each shard processes a small portion of all
transactions in conjunction with other shards and appending to the main
chain only headers of such shard blocks, by means of another relatively small
validation step.

Ethereum [64] and Zilliqa [81] are the most active crypto projects that are
trying to solve the trilemma with sharding.

New challenges or threat would inevitably emerge in this scenario. First of
all, as already said before, splitting the chain into sub-chains has the side
effect that an attacker would need less resources to take control of it. The
attack is called single shard takeover attack, and once succeeded the entire
blockchain would be in danger, as the attacker could manage to control the
shard blocks as they are appended to the main chain.

More serious issues concerns the cross-shards communication: of course the
sharding solution would absolutely need a mechanism to reliably make data
available all over the chains, otherwise how could node detect invalid blocks
being appended? Another scenario is the one where the effect of a transaction
in a shard depends upon events that earlier took place in other shards. How
do we add cross-shard communication?

26

Lightning Network The Lightning Network [40] is a decentralized system
for instant, high-volume micro-payments, that has been built on top of the
Bitcoin blockchain, and claims to solve two major Bitcoin’s limitations.
The first one is the impossibility to perform micro-payments, given both that
the fees would be higher than the payment itself, and that the network would
likely ignore such payments. The other one is the speed of the network, since
it could take an hour to be sure that an appended block wouldn’t be removed.
The solution here is one of the first implementations of a multi-party Smart
Contract (programmable money) using bitcoin’s built-in scripting language.
Basically, funds are placed into a two-party, multi-signature ”channel” bit-
coin address. This channel is represented as an entry on the bitcoin public
ledger. In order to spend funds from the channel, both parties must agree
on the new balance, sign it, as it will be reflected into the bitcoin’s balance
sheet. Furthermore, it isn’t required cooperation in order to exit a channel:
both parties have the option to unilaterally close the channel, ending their
relationship.

The network of multi-signature channels that it is generated as such, is then
used to send payment from among users of this network, without the need
to create direct channels every time. The benefits of such a solution are
evident: other than giving the possibility to perform micro-payments (down
to 0.00000001 bitcoin) without any risk of loss, it nearly eliminates fees (a
user claimed to have paid 5 cents for 42 transactions [41]), it allows instant
payments (since they don’t need block confirmations).

A very similar approach has been formalized as well on top of the Ethereum
Network, and it’s called Raiden Network [60].

Privacy issues

Bitcoin was originally thought as a pseudonymous cryptocurrency that main-
tained privacy, as long as real-world identities couldn’t be linked to Bitcoin
addresses. However, due to the public nature of its blockchain, it quickly
became possible to identify individuals based on usage patterns of certain
addresses and transactions. Furthermore, nodes leak their IP addresses when
broadcasting transactions. Nonetheless, unlike with scalability, the solutions
for privacy are in some cases easier to implement but they are also much less
complete.

It is probably impossible right now to create a technology which allows users
to do absolutely everything that they can do right now on a blockchain, but
with privacy. Instead, developers will cope with partial solutions, designed
to bring privacy to specific classes of applications. In fact absolutely perfect
black-box obfuscation is known to be mathematically impossible [4], as there

27

is always some information that can be retrieved out of a program. As the
need of privacy in blockchain is fundamental for its scale adoption, many
researches have been conducted to find a solution, in different aspects of it.
In contrast to Bitcoin’s public transactions, many have developed solutions
to support private transactions. ZCash [78] for example is built by a strong
team of academic cryptographers using zk-SNARKSs , or more specifically zero
knowledge-succinct non-interactive adaptive argument of knowledge. It’s a
particular type of zero-knowledge proof system [63] that enables one to suc-
cinctly (efficiently enough) and non-interactively (because the prover pub-
lishes the proof in advance, and anyone can verify it) set a proof of some
computation.

Even though they represent a valid solution, they come at a pretty high
price: other than being resource intensive (enough to cut light nodes out),
zk-SNARKSs need for each type of problem to solve an upfront communica-
tion step called the setup phase, that other being computationally expensive
and time consuming, needs to be trusted, because otherwise it would allow
fake proofs to be undetected. Because of this restriction, zk-SNARKSs aren’t
a good fit to run arbitrary Turing-complete smart contracts, as each new
contract would require a new setup phase.

So ZCash only implemented a private currency, built on one particular SNARK
circuit, the ZCash transaction verifier, with its own trusted setup. This
trusted setup involved a group of cryptographers and well-known commu-
nity members coming together in a complex setup ceremony [79]. Trusting
the security of ZCash means trusting those participants won'’t ever collude.

Another famous project implementing privacy of transactions is Monero [49],
which instead of zero knowledge proofs uses ring signatures. A ring signature
makes use of one’s account keys and a number of public keys (also known as
outputs) pulled from the blockchain using a triangular distribution method.
One of the security properties of a ring signature is that it should be com-
putationally infeasible to determine which of the group members’ key was
used to produce the signature, and so, ring signatures ensure that transac-
tion outputs are untraceable.

Apart from creating totally privacy preserving blockchains, lots of work has
been concentrated on creating a privacy layer on top of the basic blockchain
one, towards two directions: privacy of data and privacy of transaction. As
far as privacy of data is concerned, Keep [36] is creating off-chain containers
for private data, which would allow smart contracts to manage and use pri-
vate data without exposing the data to the public blockchain.

Another exciting and worth of being cited project is AZTEC [75] (Anony-

28

mous Zero-knowledge Transactions with Efficient Communication). AZTEC
is a protocol comprehensive of a set of zero-knowledge proofs that is able to
provide confidentiality of transactions (where the value being transferred is
not visible to others), specifically designed to be compatible with blockchains
supporting Turing-complete computations. Right now, AZTEC has been im-
plemented for auditing on the Ethereum blockchain. Through a smart con-
tract it is now possible to attach AZTEC zero-knowledge proofs to existing
digital assets (i.e. ERC20 token standard). Gas costs for transactions that
verify AZTEC proofs are approximately 840’000 gas (less than half a dollar
approximately, but it floats according to the gasPrice) for a simple transac-
tion with two inputs and two outputs, though it is possible to batch multiple
proofs together to save money.

AZTEC maps real quantities to a so-called note, which is an encrypted rep-
resentation of the quantity. Users send and receive notes through join-split
transactions, which means an input is destroyed to create one or multiple
output.

For example, imagine Alice has two AZTEC notes worth 100 tokens com-
bined. If she wants to send Bob 20 tokens, Alice would create one or more
notes owned by Bob, whose values sum to 20. She would then create one
or more notes owned by her, the sum of which is 80 tokens. Alice would
construct an AZTEC zero-knowledge proof to prove that the balancing rela-
tionship between input and outputs hold. After this is done, AZTEC’s smart
contract would validate the proof, destroy Alice’s input notes, and then cre-
ate the output notes (one or more equal to 20 tokens for Bob, and one or
more equal to 80 tokens for Alice).

In order to complicate things to onlookers, users have the possibility to cre-
ate multiple notes with varying values, even null ones, to obscure the output
value. To simplify the process of creating proofs, AZTEC has been working
on an application programming interface (API) and other developer tools,
that will handle much of the work required to construct such proofs. With
the API, users will only need to input a few bits of information, such as the
values of their tokens and their public keys, rather than having to perform
specific forms of elliptic curve arithmetic.

AZTEC appears to be a quite important game-changer: for the first time
it’s possible to create confidential digital assets on Ethereum, obtaining the
immutability and decentralization benefits of public blockchains without sac-
rificing privacy. Furthermore, being the AZTEC proofs cheap to construct,
the team is confident about giving the possibility of issuing confidential trans-
actions directly from hardware wallets, thus never exposing sensitive private
keys. This is not all yet: the team is planning to accomplish even more:

29

e Confidential decentralized exchange where it would be possible to
trade AZTEC assets in complete confidentiality (both quantities and
prices of orders private).

e Anonymous identity sharing schemes that would allow to prove
to be part of a group, without revealing one’s identity. This would
represent another great milestone for the project, being this an essential
component for many KYC processes. It is said that all AZTEC tokens
would implement this functionality implicitly.

Smart Contract Security

Smart contracts are the application in which blockchain will likely have the
most disruptive short-term impact. Millions of dollars are already entrusted
to their code and, and according to Etherscan [23], as of January 2019, more
than 1 million contracts have been deployed just on Ethereum.

The problem is that, for a series of reasons, coding smart contracts correctly
appears to be extremely challenging from a security point of view. A sci-
entific research paper [51], release in early 2018, concluded that right now
Ethereum contracts are full of holes. They have implemented a new sys-
tematic characterization of a class of trace vulnerabilities, coming out after
multiple invocations of a contract over its lifetime, by means of an open-
source tool, called MAIAN. [42].

The analysis was conducted against nearly one million contracts, simulating
a life-cycle for 10 seconds per contract, and found that more than 2 thou-
sands of them were vulnerable, for a total 34000 flags raised. A subset of
3759 contracts was further analyzed, with real exploits reproduced, and the
89% of them yields vulnerabilities. Such threatening figures are explained by
several different factors.

First off, smart contracts, unlike traditional software, can’t be upgraded or
patched once deployed. Secondly, they are written in a new ecosystem of
languages and environments, and as such still they lack of standardised best
practices. Moreover they are quite difficult to test extensively, since they
are able to interact with other smart contracts, other than being invoked re-
peatedly by many users. On top of these, the fact that contracts sometimes
bring with them millions of dollars is bringing probably serious and skilled
attackers on the field.

As it will be shown sometimes hacking a contract means draining directly all
its balance. It is well known in fact that during the relatively short history
of Ethereum, the major disasters have been smart-contract related. The two
most expensive ones so far are:

30

e Parity freeze: happened in November 2017 when a user accidentally
triggered a bug in the smart contract of cryptocurrency wallet provider
Parity, freezing more than a hundred million dollars worth among all
users’ wallets [56]. Few months before, always the Parity’s multi-sig
wallet had already been the target of an hack, where a smart contract
vulnerability was exploited to steal 150.000 ether from user accounts.

e The DAO attack: where DAO stands for Decentralized Autonomous
Organization, which is basically a structure with decentralized control,
where each rule and decision-making aspect is codified through smart
contracts. The DAO (the name of a particular DAO) was launched on
April 2016, and became so popular that raised more than $100m. In
June 2016, The DAO was hacked, and 3.6m Ether (15% of all ether in
circulation at the time) was drained from its smart contracts, exploiting
a code vulnerability. Since for smart contracts in DAOs the code is
law, the hacker claimed through a public letter [18] that he didn’t steal
anything, as he just used a feature coded. This obviously opened up a
giant dispute among the community: the only way to recover the funds
lost in the hack, and effectively go back in time, was for Ethereum itself
to be reset through a hard fork, leading to the creation of Ethereum

Classic, which preserved the original version of the blockchain that
included the hack.

Back to the aforementioned trace vulnerabilities study, three kinds of families
of contracts with vulnerabilities have been defined: contracts that either leak
funds carelessly to arbitrary users, or lock them indefinitely, or can be killed
by anyone.

Prodigal Contracts Belong to the category such contracts that gives away
Ether to an arbitrary address, which is not an owner, has never deposited
Ether in the contract, and has provided no particularly hard to forge data
along with the function call. The tool developed has flagged 438 distinct
contracts, which may leak Ether to an arbitrary Ethereum address, with a
true positive rate of around 97%.

Greedy Contracts Contracts that remain alive and lock Ether indefi-
nitely, allowing it be released under no conditions. An example of that is
linked again to the Parity wallet incident: after the Parity library contracts
were killed, the wallet contracts couldn’t access the library anymore, be-
coming greedy. This vulnerability turned out to lock $200M worth of Ether

31

indefinitely. Greedy contracts may be individuated easily because they ac-
cept Ether and either completely lack instructions that send Ether out (i.e.
send, call, transfer), or such instructions are not reachable. The tool individ-
uated 1058 contracts accepting ether and not having instructions for realising
them, with a 100% true positive rate. In order to test also unreachable func-
tion calls that release funds, the analysis had to be manual and statistical,
and the extrapolated true positive rate was about 69%.

Suicidal Contracts The Ethereum Virtual Machine provides an op-code
(SELFDESTRUCT) after which the smart contract is no longer invocable
and called dead. This is a pretty useful feature: often in a contract it is
coded a security fallback option of being killed by a specific address (i.e.
contract’s owner) in emergency situations, for example when under attack.
Suicidal contracts are those that can be killed by any arbitrary account. The
tool found among the set nearly 1500 possible suicidal contracts (including
the Parity wallet library), with a true positive rate of 99%.

Posthumous Contracts After killing a contract, all its code and variables
are cleared from the blockchain, in order to prevent any further execution
of it. Nonetheless, killed contracts continue to receive transactions, and if
Ether is sent along them, it is added to the contract balance, which is locked
indefinitely. Killed contract or contracts that do not contain any code, but
have non-zero Ether are called posthumous. The tool easily found 853 dead
contracts, of which 294 received Ether after being shut down.

1.1.7 Do I need a Blockchain?

After having analyzed from a technical point of view the blockchain technol-
ogy, it is left to understand where this innovation is really convenient and
where instead it’s pure hype. Karl Wiist and Arthur Gervais conducted an
extensive analysis whether a blockchain is indeed the convenient technical
solution for a particular use-case [31]. They also developed a web applica-
tion out of it [20]. Their conclusion is straightforward: most probably the
blockchain is not needed. Let’s see what methodology they formalised to
claim so.

Database Obviously, being essentially the blockchain a distributed database,
the first rule is to check whether or not some data needs to be stored. If not,
the blockchain is absolutely not needed.

32

Writers The second check is about writers, intended as entities with write
access in a typical database system or as participant to consensus protocols
in a blockchain system. If there’s only one writer, a blockchain does not
provide additional guarantees and a regular database is better suited, both
for efficiency and ease of use. Blockchain provides advantages when the sys-
tem involves multiple writers. But still, if the writers all mutually trust each
other, a database with shared write access is likely the best solution, since
the integrity of data would be guaranteed equally.

On the other hand, when there’s no trust, using a blockchain could make
sense. If the set of writers is not fixed and unknown a priori to the par-
ticipants, as is the case of bitcoin, a permissionless blockchain could be a
suitable solution.

Trusted Third Party Even in a context with multiple writers on a shared
database, a solution that is not the blockchain exists: the trusted intermedi-
ary. Banks for example control the database and ensures that every trans-
action is valid and authorized by the customer whose funds it moves.
Customers who don’t trust each other trust the bank instead of being im-
partial. Blockchains remove the need for such trusted intermediaries, so the
question here is: do I need to remove the intermediary, if I have one? Good
reasons to prefer a blockchain-based database might include lower costs, au-
tomatic reconciliation, new regulation or a simple inability to find a suitable
intermediary.

Transaction Log So far we could have solved our use-case choosing a dis-
tributed database, with transactions coming from many places, propagated in
a peer-to-peer fashion and verified by every node independently. Yet what’s
missing from the scheme is the authoritative final transaction log, which con-
stitutes the blockchain’s main power. Why is this log so important?

First, because it enables new nodes to calculate the database content from
scratch without the need of trusting another node. Second, because it allows
node to be active or inactive whenever they want to, without the risk of fi-
nally having divergent copies of it. Third, because it implements natively an
automatic conflict resolution mechanism, which is the consensus protocol.

33

Are all
writers
known?

Are there
multiple
writers?

Can you use
an always
online TTP?

no Permissionless
Blockchain

Do you need
to store state?

Are all
writers
trusted?

Is public
verifiability
required?

Public
Permissioned
Blockchain

Private
Permissioned
Blockchain

Don’t use
Blockchain

Figure 1.2: A flow chart to determine whether a blockchain is the appropriate
technical solution to solve a problem
3]

34

1.2 Secure Multiparty Computation

Secure Multiparty Computation (MPC), is a cryptographic tool that allows
a number of parties to jointly compute a function over their inputs, keeping
them private and guaranteeing that the output is correct (if returned). It
was introduced as secure two-party computation (2PC) in 1982, with the
notorious Millionaires’ Problem, and for any other possible computation in
1986, by Andrew Yao [77].

MPC has been studied for almost thirty years, but just until recently only
in the context of academic works, as the protocol requires a fair amount of
computational effort and a intensive network communication. More or less
in the last decade, MPC has increasingly become more and more feasible,
and many real-world projects started to take place [8] [66]. A key part in this
transformation from theory to practice is the implementation of techniques
that improve performance, while not sacrificing the level of security of the
theoretical definitions. It is important to understand that MPC is not a sin-
gle protocol but rather an expanding class of solutions differing in properties
and performances.

MPC is still a lot challenging because other than covering machine crashes
or faults, it deals with all those scenarios where one or more parties involved
in the computation act maliciously, that is, tries to deviate from the protocol
in order to either learn private information or cause the result of the compu-
tation to be erroneous. Thus, the definition and implementation of a secure
multiparty computation solution involves not only computer scientists but
cryptographers as well.

1.2.1 Security Definitions

As mentioned above, the model to consider in this field is one where an
adversarial entity controls some subset of the parties and wishes to attack
the protocol execution. Such parties are called corrupted, as they follow the
adversary’s commands.

Requirements In order to formally assert that a MPC protocol is secure, a
precise definition of security is needed, and this is related to the requirements
a general purpose MPC protocol must meet. Although it is hard to formally
define a set of requirements that covers all possible applications, there are
few yet fundamental ones to be hold for any secure protocol:

e Privacy: No party should be able to learn anything more than the
function’s output. This means that the other parties’ inputs must

35

remain secret, and the only information about them is what can be
derived from the output. For example, in an auction it is revealed only
the highest bid, thus the only information about all other bids is that
they were lower than the winning one.

e Correctness: Each party should be guaranteed that the output it
receives is the correct one.

e Independence of Inputs: No party should be able to choose their
inputs as a function of other parties’ inputs.

The above informal definition of security misses out a very important
factor to consider, which is the power of the adversary attacking a proto-
col execution. As far as this is concerned, it is important to analyze his
corruption strategy and his behavior.

Corruption Strategy The corruption strategy involves the question of
when or how parties get controlled by the adversary. There are two main
models:

e Static corruption model: where the adversary takes over a fixed
set of parties before the computation takes place. Throughout the
computation, honest and corrupted parties remain so.

e Adaptive corruption model: where the adversary is capable of cor-
rupting parties during the computation, arbitrarily upon its view of the
execution. Once corrupted, parties remain so until the end.

Adversarial Behavior Another important factor that must be taken care
of is related to the actions that corrupted parties are allowed to undertake:

e Passive adversary: here even corrupted parties follow the protocol.
The advantage of the attacker comes from the fact that he is able to
read the internal state of the corrupted parties, including all messages
received from honest ones. This may help him to learn information
that should remain private. They are sometimes called also honest-
but-curious or semi-honest. Secure computation under this model can
be carried out very efficiently, but provides weak security guarantees,
not sufficient in many settings.

e Active adversary: here corrupted parties can freely deviate from
the protocol, according to the adversary’s instructions. This adversary
may be also referred to as malicious. Providing security against this

36

adversarial model means for a protocol to be highly secure, given that
honest parties are guaranteed to be protected independently from the
corrupted parties’ behavior.

e Covert adversary: this rather new model has been formally defined
by Auman and Lindell [2]. They describe covert adversaries as in be-
tween the semi-honest and malicious model: they are considered active
adversaries, because they may deviate from the protocol specification,
but they do not wish to be caught cheating. This definition might
indeed guarantee a fair enough level of security for many business, fi-
nancial, political and diplomatic use cases, where for example parties
cannot afford the loss of reputation and the negative effects with being
caught cheating.

1.2.2 Use cases

As already said, for many decades multiparty computation was perceived
to be of purely theoretical interest, but lately use-cases have been emerged,
proving the feasibility and the consequent opening of many potential unex-
plored markets. Generally speaking, these use-cases can be grouped basically
into two major sets. The first provides database style applications, that al-
lows to extract statistical information, the other concerns the control and
processing of cryptographic data, such as keys.

Jana: Private Data as a Service Data as a Service (DaaS) is a well
known and scalable model where many parties are able to access a shared
data resource. However, due to the poor privacy level such systems offer,
more privacy regulations (i.e. GDPR) have emerged, restricting the field of
the type of data that can be collected, other than stipulating how long it can
be kept and which parties may use it. In order to such services to survive,
cryptographic protections needs to be applied on data in transit, at rest and
under computation. Such set of technologies can be called Private Data as a
Service (PDaaS).

One of the most promising is the Jana project [35]. Jana is a project still
under development, and is led by David Archer from Galois [19], who has re-
united many researchers from different universities, such as Nigel Smart from
KU Leuven, and many others. In Jana, data is encrypted at all times (unless
explicitly asked to be stored as plaintext): in transit from input parties to
Jana and backwards, data is protected with ephemeral public key generation
and encryption; at rest in relational database is protected through public key
encryption, deterministic symmetric encryption.

37

Finally, the Jana ecosystem supports multiparty computations of most query
operators, using the SPDZ protocol [16]. Furthermore, the Jana team has
planned very impressive long term goals, such as the implementation of ma-
chine learning algorithms running in Jana under a multiparty computation
scheme.

Sharemind Sharemind is a solution developed over the last ten years in
Estonia to deal with the data-sharing problem emerged with the aforemen-
tioned privacy regulations, offering similarly to Jana Private Data as a Ser-
vice. What makes Sharemind particularly innovative is its architecture: it
is implemented as a distributed computing system, with each party involved
running a different part of the ecosystem.

Input parties (who owns the private data) and Result parties (who asks for
computations) run client applications that connect to the Sharemind Client
API, responsible for automatically applying the needed cryptographic algo-
rithms on the inputs and outputs. Computing parties run the Sharemind
Application Server software, a distributed system that receives queries from
client applications and runs the asked program in the Sharemind’s Secure
Computing Virtual Machine with inputs received from the client applica-
tion, after having authenticated him.

Sharemind has provided also a two-level programming language, SecreC,
an high-level procedural language for writing privacy-preserving algorithms
without knowing the underlying cryptographic primitives applied to the data.

KPI analysis The very first application which utilises Sharemind on real-
world data was made by the Estonian Association of Information Technology
and Telecommunications (ITL), and concerned the analysis of Key Perfor-
mance Indicators (KPIs) of their sector [§8]. That was the first time where
the actual computation took place over the internet, with computing nodes
located in different areas.

The problem to solve came from the fact that the official economic report
published by the ministry had a yearly occurrence, and by the time it was
published, the data was already half a year old. Thus, ITL members up-
loaded their financial metrics to the computing parties (in this case three),
under a multiparty computation scheme. After having collected the data,
the multiparty computation system sorted them by each defined KPI, inde-
pendently from the other.

Through a web application then, the same ITL members were able to see
the sorted metrics of all the industry, without knowing the company each
of them belonged to. The multiparty computation program, written in Se-

38

creC, collected as input data coming from 17 companies, and took nearly two
minutes to perform the sorting.

Unbound: Virtual-HSM Another potentially great application of the
multiparty computation is related to the concept of distributed cryptography.
The rationale is straightforward: spreading the operations of a cryptosystem
among a group of parties (processes or servers), in a fault-tolerant way.

An example of that is given by the Israeli company Unbound [73], founded
by Nigel Smart, which implemented a Virtual Hardware Software Module,
built upon the concept of secret sharing. Traditional HSMs are physical
computing devices that are able to perform cryptoprocessing, in order to
manage and secure digital keys. They can be exploited in any application
which makes use of digital keys, as they are able to perform key generation
and storage, encryption and digital signatures, among the others, all within
a highly secured environment.

The Unbound Tech vHSM product is an MPC engine which is able to carry
out any cryptographic operation found in a standard cryptographic API, but
in a distributed manner. The main use is probably related to the secure
storage of critical keys (as for in the banking sector). With the distributed
solution, the private key is split between the vHSM MPC engines, and every
time a it is needed, the server calls out to the MPC engine to perform the
distributed signing operation.

The integration of such solutions in standard cryptographic APIs, such as
PKCS #11, within standard web server software appears to be a triviality.
Besides, being the integration in software, it would be easy as well for cloud
environments, easier than when using standard HSMs. Perhaps an even
more interesting scenario is to perform the above application on a mobile
device, having the cryptographic key split between the device and a server.
This would lighten the security needed on the mobile device, since a loss
of it wouldn’t imply the security of the secret, as long as the other piece
of it, stored on the server, is safe. Moreover, the key is never transmitted
in its entirety, removing the need to secure the mobile application against
side-channel attacks.

39

Chapter 2

Incentive Compatible and
Privacy Preserving Data
Analytics System

In this chapter the actual thesis work will be presented, following a top-down
approach. Section 2.1 is dedicated to the motivations behind this work, along
with a set of open problems that this idea might be able to solve. Because
of that, the use-case chosen for the implementation of a proof of concept is
presented in this section as well.

After such considerations, the high-level overview of the implemented ap-
plication will be presented in section 2.2, starting from a description of the
system in its entirety, in order to understand how the technologies are seam-
lessly integrated together, to an explanation of the actors involved and of the
protocols formalized.

The technical implementation will be extensively described in section 2.3.
The pieces composing the system will be presented one by one in more de-
tail: first the blockchain and the smart contract design, then the multiparty
computations framework and programs, lastly the decentralized application
implemented from the union of the two, including a section with some snap-
shots of it.

The last two sections (2.5, 2.6) are dedicated to the analysis of the perfor-
mances of the overall system and to its security model respectively.

40

2.1 Motivations

2.1.1 Incentive Compatibility

Starting from the mid of the last century, given the rise of two fundamen-
tally opposite economic models such as capitalism and socialism, economists
found themselves in the need of formulating new theories and philosophies
that were able to include those new factors. Such theories took the name of
Mechanism Design [44].

Some of the early contributions to these theories can be due to well-known
economists such as Mises, von Hayek, Barone and others, that were the
first to debate over topics such as the feasibility of a centralized socialist
economy, or how to collect decentralized information and allocate resources.
Very likely, the modern growth and formalization of these theories came from
the inclusion of incentive issues. Leonid Hurwicz, in his Mechanism Design
Theory (1960), had been the first coining the term incentive compatibility.
Incentive compatibility revealed to be a total innovation, and in 2007 was
one of the key ideas that costed him, along with Eric Maskin and Roger
Myerson, the Nobel Prize in Economic Sciences [34].

Eric Maskin, in his lecture about the topic [45], used a simple example to
explain clearly what the concept was all about: the one having a parent that
wants to find a mechanism to divide a cake between two children, in a way
that makes the two equally happy. The solution is trivial: the mechanism
could be that one child cuts the cake, while the other has the first choice of
the piece he wants. Assuming that the children acts rationally, this mecha-
nism is claimed to be incentive-compatible, because it allows both children
to achieve their goal, that is to have at least half of the cake.

It is undeniable that our lives are governed by situations where collective
decisions have to be made while taking into account also individual prefer-
ences, other than that individual participants may act for their own gain,
rather than for the general well-being. Mechanism design can ultimately be
referenced as the effort to produce institutions that align social goals to indi-
vidual needs. Bitcoin is a great example of an incentive-compatible network:
it has intentionally been designed in a way that the mining process is diffi-
cult and inefficient, thus being costly and counter-productive for malicious
actors. On the other hand, actors are incentivized economically to secure the
network with their computing power, being rewarded with new coins when
this happens.

41

2.1.2 Complementary technologies

Back to computer networks, and more precisely to multi-party systems, in-
centive compatibility can be applied to obtain configurations where each
party loses only by deviating from the protocol. As already said, with the
addition of economic assumptions to purely cryptographic ones, security can
therefore be shaped by considering that parties might not be just honest or
not, but also that are rational and their gain can be quantified, such that
with a proper incentive scheme, many of them are discouraged from doing
any damage to the system.

As already stressed in Section 1.2, Multiparty Computation (MPC) allows
to analyze data while keeping the inputs private at all times. Although it
may sound contradictory, completeness theorems have demonstrated already
back in 1988 its feasibility for whichever type of function [48]. Because of
that, the literature around it is quite vast and demonstrates how promising
this technique is. Yet, practical implementations still are few.

Foremost this is due to the fact that, given the performances it offers in the
current state of the art, MPC is poorly scalable. Another important factor
comes from the security model it addresses, and the consequent assumptions
to make. Indeed, under the assumption that the majority of parties are al-
ways honest, privacy, correctness and output delivery are ensured; but if this
assumption turned out to be wrong, the entire system would immediately be
broken. On the other hand, protection against dishonest majority involves
the possibility to abort; but then a single corrupted party would be able to
deny the service for all honest ones.

It looks evident that for multiparty computation, as long as honesty is con-
cerned, cryptography alone is not enough, simply because it cannot model
strategic decisions or human behaviors. The blockchain appears to be the
missing piece in this configuration, as it represents the proper technology
to implement an incentive compatible model for a multiparty computation
scheme, exploiting all its revolutionary features. First, exploiting its in-
tegrity property, the blockchain would constitute the single source of truth
for the entire MPC system, as a distributed log. Then through smart con-
tracts the entire application logic (including the economic model) could be
coded and, reading from the shared log, honest and dishonest parties could
be detected. Finally, using cryptocurrencies and the direct payment channel
the blockchain provides, smart contracts would be able to inevitably enforce
the penalization and the rewarding of parties according to their behavior,
without the need of intermediaries.

42

2.1.3 Use case: Medical Privacy

The fast-paced progress in technology and electronic data processing has led
nations to adapt their data protection framework. The increasing digitalisa-
tion of all kinds of data, inevitable on one hand, has clearly exposed personal
and sometimes very sensitive data to security breaches, hacking and unlawful
kinds of processing, trespassing the fundamental individual’s privacy right.
In January 2012, the European Commission proposed a major reform for the
data protection framework, the so called General Data Protection Regulation
(GDPR). It aims principally to re-balance rights in the digital worlds, pro-
viding stronger rules on data protection, in order for data owners to detain
more control over their data.

As long as medical data are concerned, even more special treatments have
been established for their processing. The GDPR has included in this cat-
egory also genetic and biometric data, since upon their process, the unique
identification of a natural person is possible. The article 9 thus dictates
that the processing of such special categories is generally prohibited [30],
yet at the same time (Article 9[2][j])) legitimising it only in the domain of
health and healthcare management, according to few criterias. In this case
the processing has to guarantee respect for principles of the so-called data
minimisation, such as the anonymization of them.

Private medical data are for sale For decades researchers have con-
ducted studies to gain knowledge over health and illness, by regularly col-
lecting information about the same people’s medical history over the years.
Unfortunately, they have not been the only ones: many companies have
specialized in gathering information from hundreds of millions of medical
records, coming from hospitals, doctors, prescriptions, insurances and labo-
ratory tests. It is pretty clear why they've done so: this gigantic databases
are worth billions of dollars. Many other businesses indeed are willing to pay
for such collections in order to guide their investments, for instance in the
pharmaceutical industry.

As stated by law, identities of data owner’s in these commercial databases
are supposed to be kept secret. The law is actually respected by stripping
off all those information that can connect to the data owner’s identity from
their records. Clearly this is not enough anymore: through some not even
sophisticated data mining algorithms, data brokers are able to match sparse
pieces of information to the same individual (without knowing his name),
and by scanning multiple public databases may end up re-identifying the
individual himself.

43

Back in 1997, the today Harvard University Professor Latanya Sweeney, while
being a graduate student at MIT was able to identify the Massachusetts
governor William Weld in the publicly available hospital records, just by
comparing the supposedly anonymous data to voter registration rolls of the
governor’'s hometown. She is now the director of the Data Privacy Lab at
Harvard, and in 2013 she has re-identified more than 40% of people who have
shared their DNA data for the Personal Genome Project [70]

Citing Adam Tenner [71], the dominant player in the medical-data-trading
industry is IMS Health, that recorded $2.6 billion in revenue in 2014. Nowa-
days, it receives automatically from the computerized records of pharma-
cies, insurance companies and other, petabytes of data, and claimed to have
assembled half a billion dossiers on individual patients across the United
States and Australia. According to Marc Berger, in charge of the analysis of
anonymized patient data for Pfizer, one of the most powerful pharmaceutical
company, they spend $12 million a year to buy health data from a variety of
sources.

The need for a solution To draw things even worse, it is important
to underline that all of the aforementioned system is very often unknown to
patients. Considering the 9-to-12 figures number that such business is worth,
it is pretty much a shame that the real data owner don’t get anything out of
it.

Riding the wave of the new GDPR regulations, a blockchain based multiparty
computation solution at the same time would be compliant with the privacy
law, other than contributing to a redistribution of wealth that is so unfairly
in the hand of few companies. Through the blockchain, data owner could get
back control over their data and would have a real incentive on supplying
them to institutions for research, as well as to pharmaceutical companies for
a more precise strategy. Through the multiparty computation, calculus over
medical data would be conducted in a totally obfuscated way, so to avoid the
risk to cross-check them to obtain further private information, as it already
happens.

The work of this thesis is an experimental implementation of such solution.

2.2 High-level overview

2.2.1 Actors

The entire application logic is coded into a smart contract, and in order to
interact with it, users will need to send (and thus digitally sign) and receive

44

transactions (sometimes including cryptocurrencies as well). To do so, the
actors involved are all registered on the blockchain, that means they own
a pair of keys of a wallet. Since the blockchain used is Ethereum, it is
appropriate to talk about actual accounts.

There exists three kinds of actors in the system:

e Data Producers: are the ones that own the actual data (i.e. pa-
tients). They share such data in a secret-shared form (Section 2.3.2),
and are rewarded in cryptocurrency every time their data are input in
a computation.

e Data Consumers: are the ones that ask for a specific calculus (and
pay for it), that will be performed in a multiparty computation fashion
by computing parties. They will never get access to input data, but
just to the output of the computation they asked.

e Computing Parties: are essentially servers that perform multiparty
computations. They have to be registered on the blockchain as well
both to use it as log of the computation, and to obtain rewards for
their work. Input data is secret-shared among the parties such that in
order to reconstruct it, all of them have to collude and exchange their
shares. For this reason, each computing party is supposed to be held
by a different organisation, possibly with opposing interests.

2.2.2 System

From an high level point of view, the Multiparty Computation system acts
as a distributed cloud system, where sensitive data are stored, that is able to
ensure privacy of data both at rest and while computing any arbitrary func-
tion. Differently from traditional cloud systems, this one must be strictly
decentralised, since the only yet fundamental requirement for the security
to be held is that parties don’t collude between themselves and unify their
shares of data. To clarify the concept more, the reader may think of com-
puting parties like of miners in Bitcoin: physical independent servers who do
computational work in exchange of rewards.

The blockchain is as well part of this decentralized cloud, because provides
a key property to the MPC system, the incentive-compatibility. Other than
that, the blockchain represents the base layer upon which the client-side is
built: is responsible of managing authorisation and authentication of users,
as well as of handling disputes directly and automatically by paying (or pe-
nalizing) for good (or bad) behavior the actors. It is important to stress that

45

all payments involved in the system happens on the blockchain via cryp-
tocurrency.

Application users in the system are then Data Producers and Data Con-
sumers who, through a software library that runs on the client, interacts
seamlessly with the blockchain and with the computing cloud. On one hand
Data Producers are required only to share their sensitive data: this is easily
achieved with a single interaction through a web application, while remain-
ing agnostic of the whole underlying process (explained in Section 2.3.2). No
further interaction is needed for them, other than for redeeming the rewards
they have obtain anytime they want always via web application.

On the other hand, Data Consumers pays to obtain aggregate data coming
from arbitrary functions, which are computed by the distributed cloud in
Multiparty Computation, again just by interacting with a web application.
Their are guaranteed to either obtain the correct output, or being refunded.
In fact, in order to take part of the computation, each computing party
must put at stake an amount of coins as well. Thus, before the computa-
tion takes place, the blockchain holds a security deposit coming from the
actors involved, with which will reward or penalize parties according to the
computation outcome.

2.2.3 Protocols

The overall application logic as already mentioned is composed of three spe-
cific protocols, Data Sharing, Data Consuming and Post-Computation. Since
these protocols involve operations happening both on the blockchain and off
of it, in the pictures below the former will be referred to with normal lines,
while the latter with dashed ones.

Data Sharing The Data Sharing protocol (Figure 2.1), involves a Data
Producer requiring the Multiparty Computation input process, which is de-
scribed even in more detail in Section 2.3.2. As it’s shown, the Data Producer
authenticates itself with the MPC system using a kind of authentication to-
ken, issued upon authorization by blockchain.

Once the authentication has occurred, on an private end-to-end channel (off
the blockchain) between the Data Producer and the MPC system, the ac-
tual data sharing takes place, following the SPDZ protocol. This requires
each server to send his share of a random data (r), produced in the so called
SPDZ pre-processing phase (Section 2.3.2), to the Data Producer. Although
explained in the section, the reader should bare in mind that each server just
know a piece of the random value (his share), and not the random itself.
Upon reception of all shares from all servers, the Data Producer reconstructs

46

the random value by adding all shares, uses it to mask his input data, and
sends that to each MPC server. As soon as a server receives the masked data,
he confirms to the blockchain the fact, so that when the blockchain receives
all the confirmations, marks the Data Producer as payable: from that point
on he will be rewarded when his data is used.

Data Producer Blockchain MPC servers

— DS REQUEST:
authorized
T

A
o
w
o

to each server

——————————————————————————————————————— 73 |» SORTEREPRERSSNSA oo
DS_ID

i TRUE >

from each server
€ SHARE OF RANDOM {r) ----==-n=-nssmnmmmmmommnsnnan.

R=% (1
------------------------------- MASKED INPUT X - R----------=-------- 10 2Ch server_,,
DS_ID, OK
all confirmed

!

<— 0K, TERMINATED

Figure 2.1: Sequence diagram of the Data Sharing protocol

Data Consuming The Data Consuming protocol (Figure 2.2), involves a
Data Consumer asking for a specific computation to the MPC system over
the Data Producers’ data.

Again, the Data Consumer uses the authentication token given him by the
blockchain to connect off-chain with the MPC system. Differently from the
Data Sharing protocol, the DC has to send along with the request some cryp-
tocurrency directly to the contract address, that serves as security deposit,
other than as a simple payment for a service. Each MPC server, in order to
take part to the computation just asked, has to do the same; this time the
cryptocurrency put at stakes constitutes an incentive for him to be honest in
the computation.

The smart contract, after having collected all the stakes by the parties, au-
thorizes the computation to take place off-chain, in a private channel between
the MPC system and the Data Producer. Being the MPC protocol in this
case used secure against active adversaries, the computation either delivers
the correct output to the Data Producer, or aborts. Either way, each MPC
server append to the blockchain the output (or an abort code) hash, in order
from the smart contract to understand what happened off-chain and proceed
with the post-computation phase

48

Data Consumer Blockchain MPC servers

DC REQUEST, ETH_DEPOSIT:

authorized
T
< DC_IDr
to each server
*************************************** DC_ID-----===mmmmmmmmmmmmmmm oo mm oo
DC_ID
TRUE >

REQ_ACCEPTED, ETH_DEPOSIT

all confirmed

<«—START COMPUTATION START COMPUTATION——»

e B RGUORCOTTET OEEERTPRTREEE QUTPUT: - - - - = o smsecsccmooee

<«—OUTPUT HASH

Figure 2.2: Sequence diagram of the Data Consuming protocol

Post-Computation This last phase (Figure 2.3) is enforced by the Smart
Contract automatically after each computation, and is part of the incentive-
compatibility framework of the entire system. The Smart Contract simply by
reading the hashes appended by MPC server is able to understand whether
the computation was honest or not. Of course, this is possible given the
security definitions that the SPDZ protocol is built upon, that it is secure just
by having at least one honest player among the n involved in the computation.

49

Under this assumption, the honest player will log in the blockchain always
the correct information, either the output hash or the abort code. Thus the
contract makes this deduction: if all hashes are equal and different from the
abort code hash, the computation is necessarily gone well, otherwise it’s not.
In the latter case, the contract will send the data consumer, who hasn’t
actually received any service, his caution back, and will instead detain the
MPC servers’ ones, that are responsible for the misdeed. Clearly this basic
solution is pretty rough, because penalises honest parties as well. Ideally the
Smart Contract should be able to individually detect each party’s behavior,
and proceed accordingly. In Section 3.2.1, this issue is going to be discussed
more.

Instead, when the output is correctly delivered to the Data Consumer, the
Smart Contract will reward Data Producers and MPC servers by splitting
the DC deposited amount, other than pay back the latter with the security
deposit put at stake beforehand.

Data Consumer Blockchain MPC servers Data Producer

from each server
€ OUTPUT: == == nm s mmmmmm e e

OUTPUT HASH, DC_ID

ETH_DEPOSIT + REWARD—>

REWARD

\4

Figure 2.3: Sequence diagram of the Post-Computation Protocol

30

2.3 Implementation

2.3.1 Blockchain

The Blockchain chosen for the development is Ethereum, clearly because it’s
been designed to be a general purpose blockchain and so, being its virtual
machine Turing-complete (even infinite loops are allowed, as long as one pays
for it), one can implement whichever application logic. Besides it provides
useful tools and a good documentation for the development of decentralized
applications, among which the possibility to run smart contracts in a test
environment, either local or not. Since when running on the main blockchain
each operation has to be paid by someone, having a test environment it’s not
such an irrelevant convenience.

Smart Contract

The Smart Contract developed is formalized in Figure 2.4, and comprehends
State Variables, Functions and Events.

State variables are variables whose values are permanently stored in contract
storage. They can be either public or private to other contract calls, and
the datatypes are pretty much the same as in other programming languages.
Just worth to mention are the address datatype, which holds a 20 byte value
(size of an Ethereum address), and the mapping(keyType => valueType)
datatype, that can be imagined as hash tables and initialised such that every
possible key exists and is mapped to a default zero value. The key is not
stored in a mapping, only its keccak256 hash, that is needed to look up the
value.

Generally, a function header in Solidity can be made of different keywords
among the following:

function (param types) {internal|external|private|public} |
pure |view | payable] [returns (return types)]| methodName;

where the first set corresponds to the function visibility, more precisely:

e internal functions can only be called inside the current contract and
the ones deriving from it

e external functions cannot be accessed from the contract but only ex-
ternally, represent the contract interface

e public functions can be accessed both internally and externally by
other contracts

o1

e private functions can be accessed only by this contract

Interestingly in Solidity there is the distinction between functions which mod-
ifies the blockchain and functions that just read from it, namely:

e pure refers to those functions that do not modify the contract storage
(i.e. they don’t write the blockchain), nor read any state of it.

e view refers instead to functions that still do not write into the blockchain,
but make a read out of it. When marked as view or pure, the function
call doesn’t end up with a transaction that will be broadcast to the
network, but simply in a lookup to the current node’s blockchain.

e payable refers to those functions that are supposed to receive Ether
along with the transaction to add it to the contract balance. Consider-
ing the Smart Contract in Figure 2.4, the two functions which require
the caller to send ether along are marked as payable.

92

ContractName: Contract

+ contractOwner: address

+ mpcServerAddressess: address[]

+ mpcCost: uint

+ mpcServerDeposit: uint

+ requestldToDataProducer: mapping(uint => DataProducer)
+ addressToDpld: mapping(address => uint)

+ approvedDataProducers: address[]

+ addressToDataConsumer: mapping(address => DataConsumer)
+ approvedDataConsumers: address[]

+ idToMpcRequest: mapping(address => Computation)

+ actorBonus: mapping(address => uint)

+ actorBonus: mapping(address => uint)

+ event MpcRequestAccepted(address)

+ event DataProducerApproved(address)

+ event DataConsumerApproved(address)

+ event NewComputationRequest(uint, address)

+ event ComputationEnded(uint)

- dataConsumerld: uint

- dataProducerld: uint

- computationld: uint

+ constructor(address, address, uint, uint): void

+ changeMpcServers(address][]): void

+ getDataProducerCount(): uint

+ view getDataConsumerCount(): uint

+ view getApprovedDataConsumers(): address[]
+ view getDataProducerRequest(): address, bool, bool, address][], uint
+ view getDpRewardings(): uint, uint

+ withdrawBonus(): void

+ setDataProducerRequest(uint): void

+ confirmDataProducerRequest(uint): void

+ view isDataProducerApproved(): bool

+ view isDataProducerlnitialized(): bool

+ registerAsDataConsumer(): void

+ view checkDcAutharization(uint): bool

+ payable setNewComputationRequest(uint): void
+ payable acceptComputationRequest(): void

+ view getComputationStatus(uint): uint, uint, address, bool, bool, bool
+ setComputationResult(uint, string): void

- view isThisComputationCorrect(uint): bool

+ view getCurrentDpld(): uint

+ view getCurrentDcld(): uint

+ view getCurrentMpcld(): uint

+ view getMpcKeys(): address[]

+ withdrawBonus(): void

Figure 2.4: Class Diagram of the Solidity Smart Contract

As the reader can see from the class diagram, in Solidity there exist another
special type which is called Event. Events are convenient types and are used
for logging purposes, which in turn can be used to trigger JavaScript callbacks
in those interfaces that are listening for them. In this context for example,
MPC servers are listening on the blockchain for the NewComputationRequest
event, which is emitted inside the function setNewComputationRequest: as
soon as a new event is emitted, servers’ callbacks activate to proceed with
the computation.

Also three structs are defined in the contract, as formalized in Figure 2.7,
2.5, 2.6. This way, through mapping variables, each Ethereum address is
associated with its specific data structure, containing the needed information.

33

DataConsumer: Struct DataProducer: Struct
+ publicKey: address

« otri + isApproved: bool
+ CompanyName _Strmg +isInitialized: bool
+ numRequests: uint +mpcServerHasSigned: mapping (address => bool)
+ isInitialized: bool + approvationDate: uint

) o +numSigns: uint

+ isAuthorized: bool +numRewardings: uint
+ approvationDate: uint + cumulativeRewarding: uint

Figure 2.5: Data Consumer Struct Figure 2.6: Data Producer Struct

Computation: Struct

+ requestDate: uint

+ dataConsumer: address

+ islnitialized: bool

+ isApproved: bool

+ isFinished: bool

+ isOutputCorrect: bool

+ serverToResultHash: mapping(address => bytes32)
+ serverHasFinished: mapping(address => bool)
+ serverHasApproved: mapping(address => bool)
+ numApprovements: uint

+ numSigns: uint

Figure 2.7: Computation Struct

Costs

In Table 2.3.1, it is shown the estimation of the Gas consumption (please
refer to Section 1.1.5 for more details) for each function of the Smart Con-
tract. The gas price used is 9.6 Gwei/gas ' 2, and the average ether price
over February 2019 of 123 USD/ether.

The number of Gas, that is the computational cost mining nodes will have to
pay by running the code, is tightly dependent on the function instructions,
each of which has a fixed Gas amount. A complete documentation of such
costs can be found in the Ethereum Yellowpaper [76], while the most com-
mon ones are reported in table 2.3.1.

Nonetheless, there exist techniques of formatting the code that, by exploiting
the underneath architecture, allow to optimize the gas consumption of a con-
tract. For example a well-known pattern is called tight-packing, and exploits
the fact that the storage in Ethereum is a key-value store with keys and val-
ues of 32 bytes each. When using smaller data types (i.e. uint8 or bytes16),
the EVM automatically packs them together to fit a single 32 bytes slot,
but following the order of their declaration. By just changing the variable

11 GWei = 1 x 1079 ether
’https://ethgasstation.info/

o4

order, one can then perform multiple reads or write in a single operation,
thus reducing the gas consumption.

Function Gas Cost (USD)
contractDeployment 5073065 7.50
setDataProducerRequest 67883 0.94
register AsDataConsumer 115176 1.6
confirmDataProducerRequest 66081 0.92
setNewComputationRequest 85379 1.1
acceptComputationRequest 24696 0.34
setComputationResult 87787 1.22
withdrawBonus 19838 0.028

Table 2.1: Smart Contract functions cost on Ethereum

Operation Gas Description
ADD/SUB 3 Arithmetic operation
ADDMOD/MULMOD 8 Arithmetic operation
ADDMOD/MULMOD 8 Arithmetic operation
AND/OR/XOR 3 Bitwise logic operation
LT/GT/SLT/SGT/EQ 3 Comparison operation
POP 2 Stack operation
PUSH/DUP/SWAP 3 Stack operation
MLOAD/MSTORE 3 Memory operation
JUMP 8 Unconditional jump
JUMPI 10 Conditional jump
SLOAD 200 Storage operation
SSTORE 5,000/20,000 Storage operation
BALANCE 400 Get balance of an account
CREATE 32,000 Create a new account using CREATE
CALL 25,000 Create a new account using CALL

Table 2.2: Estimation of operation costs on Ethereum

Deployment

The deployment of the Smart Contract developed in this work has been per-
formed on a test Blockchain, specifically the one provided by Truffle Suite,
called Ganache [29]. Ganache offers a local implementation of the Ethereum
blockchain with a set of accounts, which is necessary to run tests, other than

95

to examine blockchain responses, logs and blocks.

The deployment has to be done exactly the same way as if on the Ethereum
main net, just by setting the web3 provider into a local one (via Https). For
more details regarding the deployment step, please refer to Section 1.1.5.
Web3.js is a collection of libraries that allow to interact with a local or
remote Ethereum node. The provider instead is how web3 talks to the
blockchain. Providers simply get JSON-RPC requests and return responses,
via an HTTP/IPC socket based server.

2.3.2 Multiparty Computation

The Multiparty Computation framework used in this work is called SPDZ
and is owed to Ivan Damgard and Nigel Smart, among others. They have
designed and implemented a general MPC protocol, which is secure against
an active adversary corrupting up to n — 1 of the n players [17].

It is an open source project, still under development, but that already of-
fers a fair enough flexibility and independence from the application logic to
build upon it. A surely convenient tool is the SPDZ compiler, which turns
high-level programs (written in a pseudo-Python language) into the proper
bytecode needed by the Multiparty Computation base layer.

As long as the communication between Blockchain and MPC system is con-
cerned, this is achieved through the official Ethereum Javascript API, Web3.js
[74].

Application clients instead are able to interact with the SPDZ software
through a library [69]. Since it offers several different interfaces, in this
project, it is used the one to the SPDZ Proxy web socket APIs, the most
reactive one, where the SPDZ Proxy pushes data as soon as it becomes avail-
able.

Architecture

The SPDZ architecture is made of three main components:

e Engines: they are the parties actually involved in the multiparty com-
putation.

e Proxies: they run in front of a single engine, providing a web friendly
interface that allows external clients to provide input and receive out-
put. Each proxy interact with clients either via Web Sockets or via
HTTPs, and with the engine via a stateful TCP socket connection.
Moreover they implement the appropriate encoding/decoding scheme
into/from the binary formats expected by SPDZ.

56

e Clients: end user applications that wish to interact with the SPDZ
software. They communicate with proxies to send inputs and receive
outputs again either via Web Sockets or via HTTPs.

Protocol

The SPDZ protocol consists of a pre-processing phase (or offline phase) that
is both independent of the function to be computed and of the inputs, and a
much more efficient online phase where the actual computation takes place.
The online phase is claimed to be unconditionally secure and has total com-
putational (and communication) complexity linear in n, the number of play-
ers. The offline phase instead is based on a somewhat homomorphic cryp-
tosystem, with a computational complexity of O(n?/s) operations per secure
multiplication, where s is a parameter that increases with the security pa-
rameter of the cryptosystem. Clearly, the complexity here is dominated by
the public-key operations of distributions of the pre-processed data between
the computing parties.

In the following sections secret shared values will be signed by inserting such
values into () delimiters.

Offline Phase

The purpose of this phase is to produce batches of data that are necessary
during the computation. This stage is executed by a Trusted Party, that
will eventually produce five batches of random data, each of which satisfying
some properties:

e Multiplication Triples: triples of a, b, ¢ values, such that ¢ = a x b.
These triples are used during the computation to multiply secret shared
values according to the Beaver technique (Section 2.3.2);

e Input: random single values r that are used by a client to secret share

his data before sending them over as input of the computation;
e Square: pairs of a, b values such that b = a2, useful to perform

squaring of shared values more efficiently than general multiplications;

e Bit: single bit values {0,1} that will be used to compute bitwise
boolean operations;

e Inv: pairs of a, @’ such that @’ = a~!, used for constant round protocols
for integer comparison operations.

57

After having completed this step, the Trusted Party secret shares the batches
between the engines (multiparty computation servers), delivering to each of
them five files containing shares of the values divided as described above,
through a public-key scheme. So it’s clear that these are independent both
from the input secret-shared values they are used for and from the circuit
to be evaluated. It is intended that the needed size of the batches produced
in this phase cannot be predicted a priori without knowing the function to
compute. Nonetheless as soon as the batches have been exhausted, this step
will be run again to produce some more.

Online Phase

In the Online Phase the actual multiparty computation takes place: parties
compute on open values (i.e. values which are not secret shared) and secret
values (i.e. values which are secret shared).

Input The data sent as input by a Data Consumer are sent under a secret-
sharing scheme, and as such they never run over the network in clear. Let’s
say that he wish to input 2%; obviously it must be secret shared before being
received by proxies, and this is achieved as follows:

1. When a new input request is received, each proxy sends a new (r) to
the Data Producer.

2. As soon as the Data Producer receives all (r) by all proxies, he calcu-

lates:
r=> (r)

3. Then he broadcasts to all proxies € = ' — r

4. Now party P; sets its share of 2* as 2} = ry + 2" — r while P; for j > 1
sets it as x) = r;.

Even though it might seem counter intuitive to send the same data to all the
proxies, this data is secret shared. Indeed none of the proxies could retrieve
the clear data, having just a share of the value r used to mask the input.
So at this point proxies have a secret shared values, that they store in an
external database for later use.

Addition Since the input data have been secret shared according to an
additive scheme, the following properties holds for additions:

28

e Having two parties some secret-shared field elements (a) and (b), each
party P; can compute locally a; +b; obtaining so a secret sharing (a+0b)
of the value a + b;

e Each party can multiply its share a; by some public value «, obtaining
a share of (aa), since), aa; =) . a; = aa

Being the secret sharing linear, no communication costs are required for
such operations.

Multiplication The intuition on how to multiply secret shared data comes
from Donald Beaver, in 1991 [6], and it’s the one used in the SPDZ imple-
mentation. Suppose we need to compute (xy), it works as follows:

e First off parties need to already have the so called multiplication triples,
produced in the offline phase as described above, i.e triples of a, b, ¢
values, such that ¢ =a x b.

e Each party calculates and broadcasts to the others a = x; + a; and
B =yi+0b

e At this point each party holds a secret shared value of (xy), because:
(zy) = (o — ;) (B = bi) = aB — Pa; — ab + ¢;

The multiplication is so composed of three primitive operations of local ad-
ditions, opening of values and consuming pre-processed data. It’s important
to say that a multiplication triple cannot be reused because this would reveal
information about the secrets we are trying to multiply (since z —a and y—b
are made public in the process above).

Implemented functions

The actual functions to be carried out under a multiparty computation
scheme have been written in a special Python-like language, provided with
the SPDZ ecosystem, and subsequently compiled down to a bytecode that
can be interpreted by a virtual machine, which instead is implemented in
C++. The library provides all kinds of functions needed when dealing with
MPC calculations, such as for creating, storing and loading both clear and
secret shared data types, or for retrieving pre-processed data (cited in section
2.3.2).

For the sake of implementing functions that are relevant to the use-case cho-
sen and significant in order to conduct some testing of the performances,

39

other than the traditional statistical functions (i.e. max, min, mean), it has
been implemented the Chi-squared test [13].

This kind of test is used widely to determine the degree of correlation be-
tween an expected model of frequencies and the observed ones for a certain
type of data, according to the formula:

where 01, 09, ..., 0 are the observed frequencies, e, s, ..., e; the expected ones
and k is the number of classes in which the models are divided. Clearly,
X? = 0 indicates that the observed frequencies correspond exactly to the ex-
pected one, while the higher X? the higher the discrepancy with the model.
Once the chi-square value is calculated, the observer has to fix the number
of degrees of freedom, which corresponds to k — 1, and then find the corre-
sponding p-value from the chi-square distribution table [14]. By means of the
p-value found, the correspondence between the observed and the reference
model is probabilistically evaluated, similarly to other statistical test based
on the concept of null hypothesis.

The data hypothetically taken into account in this work are related to the
HDL-cholesterol, which in literature is known to follow a Gaussian Distribu-
tion, with mean value p = 57 (mg/100ml) and standard deviation ¢ = 10
(mg/100ml) [33].

The reference model instead has been created as follows. First the distribu-
tion has been arbitrarily divided into ten intervals, eight of which belonging
to the p + 20 area, and the other two covering the tails. Each interval ex-
treme z has then been translated in the corresponding Z score in the standard
normal distribution 3, according to the formula:

z-2"H
g

Then by checking the standard normal distribution table [54], also its fre-
quency is obtained.

As long as the observed frequencies are concerned, each Data Producer’s in-
put has been used to increment the number of occurrences of the interval
it belongs to. Of course, such inputs have been generated through a script,
randomly but according to the HBL-cholesterol distribution, so to obtain
pertinent data.

3The normal distribution is a special Gaussian distribution with ;=0 and o = 1

60

2.3.3 Decentralized Application

Including the blockchain into the traditional application stack brings up a
set of new challenges around the design of the architecture and the layout of
the decentralized application, or dApp.

Generally speaking a dApp can be designed in two different ways. The
simplest one is serverless, where the entire application flow happens between
the client and the blockchain, since the latter can substitute a traditional
server as long as permanent storage, business logic, and client coordination
are concerned. On the other side though, off-chain services cannot interact
directly with on-chain code, so if the application needs to be integrated with
third-party services a server is also required to complete the architecture.
In this particular use-case, although the entire application logic is managed
by the smart contract, the integration with the MPC system requires a server
to be added to the stack. The most delicate work, since both client, server and
MPC system interacts with the blockchain, is to coordinate them seamlessly
to achieve consistency, other than a user-friendly interface. In Figure 2.8,
the architecture of the implemented dApp is reported.

MONGODB

MPC SYSTEM

NODE.JS
SERVER

BROWSER

Web3 js

transaction
submitted

Web3 creates a
transaction

SMART
CONTRACT
FUNCTION

ETHEREUM
BLOCKCHAIN

GETH
personal node

Mining

Figure 2.8: Decentralized Application Architecture

Communication with the blockchain

The coordination through the blockchain of clients (DataProducers and Dat-
aConsumers through browser) and servers (Node server and MPC system), is
obtained by means of the so called Solidity Events. These (along with their

61

parameters) are emitted by explicitly coding this instruction inside a Smart
Contract function, so that when the function is run, nodes which subscribed
to that specific event intercept that, and often a callback is triggered. It
is also possible to filter the subscription according to the event parameters:
usually clients filter their subscription only to events related to themselves,
while servers listen to all of them. Different events have been implemented
in this work, for a complete list please refer to Section 2.3.1.

Figure 2.9 reports an example of what just said. First, through the browser,
a DataConsumer append to the blockchain a dataConsuming request, which
contains the instruction for emitting a specific event. This is intercepted by
MPC servers, that needs to accept the request (and send their security de-
posit) in order to take part of it. When the needed number of servers have
accepted, another event is emitted and intercepted by the DataConsumer in
the same way, telling him that the computation (which will occur off-chain
between the Node server and the MPC system) is allowed to take place.
The drawback of such a system reflects the blockchain forking probabilities.
Due to chain splitting or forking issues, reacting right after a transaction
containing an event is mined might eventually lead to an invalidation of such
transaction. A good practice is to wait for a fair enough amount of blocks
to be appended before acting off-chain, and in the meantime update the
user-interface to let him know of what’s going on underneath.

Client . Node.JS server /
e e »een

add filtered Event Listener

> add Event Listener

<
<

submit transaction with event
(dataConsuming request)

3
>

event catched

submit transaction with event
(i.e. computation accepted/ended)

<
<

event catched

<

update Ul

Figure 2.9: Event-based communication in the Data Consuming phase

62

Front-end

The front-end has been built by using the modern React.js and Redux.js
Javascript frameworks [61] [62]. React has been designed by the Facebook
team to create interactive user interfaces, by means of class-based compo-
nents. It applies to web pages the concept of application state, in order to
make components render their views according to state changes, without the
need to refresh the page. Considering the high amount of state changes in
the application, coming both from the blockchain and from the MPC sys-
tem, a traditional server-side rendering would have lead to continuous page
refreshing and a poor user-friendly interface. Besides, being actually objects,
components come up with integrated life-cycle hooks: pre-defined methods
that are triggered following the component life-cycle. For example, inside
the componentDidMount() method, which is triggered once right after the
component is inserted in the DOM, all the events listeners and fetching op-
erations from the blockchain may be performed.

The state in React applications comes at two levels: component-level state
and application-state. If the former is a kind of component local state, bound
for example to on-screen actions (buttons, links) the user perform and that
cannot be seen by other components, the latter is used to synchronize com-
ponents between them other and with server upon a single-source state in
more complex applications.

In this work the application state is needed to manage the concept of au-
thentication and session of users: when a user logs in, the back-end server
will update the state by associating to a unique ID (corresponding to the
client’s cookie) the authentication status and any other information needed,
and components check that authentication status and render the view ac-
cordingly.

Redux is the framework that implements the concept of application state,
designed to operate in React/Node Javascript applications.

Back-end

The back-end server is implemented by means of Node.js and Express.js [52]
[25]. Node is an asynchronous event driven JavaScript runtime, designed
to build scalable network applications. Express instead is a flexible and
lightweight framework for Node.js web-based applications, that provides an
easy way to create APIs.

In this context, the back-end is responsible of managing the authentication
flow (through the integration with Passport.js middleware [57]), that hap-

63

pens off-chain with the credentials saved in a NoSql database (MongoDB),
other than the communication with the MPC system.

The used model for communication with the front-end is REST (REpresenta-
tional State Transfer): both in case of a data sharing and a data consuming,
after having obtained the authorization by the blockchain, the client initi-
ates through the browser an HTTPs post request to the back-end, which will
manage the interaction with the MPC system (spawning a new process), and
finally sending back the client the responses always via HTTPs.

2.4 Application Snapshots

This section is dedicated to the presentation of some application screenshots
of the most relevant states. For convenience, it has been split into those re-
lated to the blockchain explorer interface, to the Data Consumer dashboard
and to the Data Producer’s one.

For the sake of simplicity, in this context the multiparty computation system
is composed only by two parties. Besides, a bug has been discovered in the
local blockchain software Ganache [29], that results in an hash collision for
those transactions made separately by the MPC parties: probably this is due
to the fact that the public key of the sender is not included as well as other
data (i.e. timestamp, function header, receiver, value) in the hash calcula-
tion, and since transactions by the MPC are identical except for the sender,
the hashes are the same. Given that the transaction details are retrieved from
its hash, in the table this produces the same transaction retrieved twice.

2.4.1 Blockchain Explorer

A blockchain explorer has been implemented inside the application, in order
to decode hexadecimal data coming from blockchain’s blocks into a more user-
friendly format. This component keeps track of the approved Data Producers
and Consumers (Figure 2.10), of the transaction history (Figure 2.11), and of
the contract and MPC parties’ balances. Clearly this last information should
remain private, but for this purpose it is instead useful to understand the
flow of cryptocurrency during a computation.

Users
Approved Data Producers Approved Data Consumers

0x92fd4720477F1b65d8c6b54e83aeD56709b8CE8E 0x71Ea6808C7Ac0B13CDB69b3B2B7fb3cD05161050
0xB88fA920513eA9b8059B068596DD25D92DDIEI64

Figure 2.10: Approved Data Producers and Data Consumers Public Keys

64

Transactions history

Trx hash Block From To Value Gas Method

0x0058c469... 20 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 0 Eth 179886 setComputationResult
0x0058c469. 20 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405¢c243A4609b5 0 Eth 179886 setComputationResult
0x2fa8759c... 22 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 0 Eth 19838 withdrawBonus
0x2fa8759c... 22 0xc3001e08... 0xf3B487De7ffBE2A8CD700bDA18405¢243A4609b5 0 Eth 19838 withdrawBonus
Oxbe432921 23 0x71Ea6808... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 1Eth 85379 setNewComputationRequest
0x6b3bb3c6... 25 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 1Eth 57057 acceptComputationRequest
0x6b3bb3c6... 25 0xc3001e08... 0xf3B487De7ffBE2A8CD700bDA18405¢243A4609b5 1Eth 57057 acceptComputationRequest
Oxeddadb07... 26 0x71Ea6808... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 0 Eth 92932 refundComputation
0x326ef439.. 28 0x5bf328D2... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 0 Eth 19838 withdrawBonus
0x326ef439... 28 0x5bf328D2... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 0 Eth 19838 withdrawBonus

Figure 2.11: Transactions history

As we can see from the Picture 2.11, for each transaction it is reported its

hash, the block number where it is included, the sender and receiver public
keys, the amount in Eth sent along with the transaction, the Gas consumed
and the Smart Contract method called. The receiver here is always the Smart
Contract address, because users interact only with it, while the value field
is greater than zero only for those function calls that are related to a multi-
party computation, where a security deposit is required to be sent along by
the caller.
As long as the Smart Contract method in the last column, this is achieved
by reading the input field of the transaction: the first 4 bytes of it are called
the function signature, and are nothing more than the first 4 bytes of the
Keccak-256 hash of the function header (including its parameter types). So,
during the compilation of the Smart Contract, the hash table that maps each
function signature with its name is created, and then used to obtain from a
transaction the Smart Contract method called.

65

Transaction 0x09910edc2a942e90e4faaf3f69ddda0254290896d8de75a1d7a637779afde06f

Hash: 0x09910edc2a942e90e4faaf3f69ddda0254290896d8de75a1d7a637779afde06f
Nonce: 1

BlockHash: 0x1c2cdc9c1a781b6952d6cdbb56f8edcad0784f9030488d584ccd112155a0c021
BlockNumber: 2

Transactionindex: 0

From: 0x92fd4720477F1b65d8c6b54e83aeD56709b8CES6

To: 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5

Value: 0 Eth

Gas: 82883

GasPrice: 2000000000

Input: 0x3fc784050001

Figure 2.12: A transaction in detail

By clicking on the transaction hash, another component shows the trans-
action fields (Figure 2.12). As we can see, the first 4 bytes of the input field
constitutes the aforementioned function signatures. The reader might as well
check here 4 that:

3fc78405=keccak256 (setDataProducerRequest (uint256)) .substr(0,8)

2.4.2 Data Producer

Figure 2.13 shows the Data Producer’s dashboard, clearly right after he has
submitted his data and has been approved by mpc parties (Figure 2.14).
From the dashboard, the user sees the list of computations that used his
data among the others, and he is able to know the public key of the Data
Consumer, the date and the computation outcome.

‘https://emn178.github.io/online-tools/keccak_256.html

66

Hi, andrea

Public key: 0x92fd4720477F1b65d8c6b54e83aeD56709b8CE86
Approvation date: 14/3/2019-10:52:13
Balance: 99.993503552 ETH / 13332.92 $ Withdraw

You have 0.5 ETH bonus accumulated to withdraw

Num computations: 2
Total rewarding: 66.67$

9 Computation History

Date: 14/3/2019-11:0:25

DC public key: 0x71Ea6808C7Ac0B13CDB69b3B2B7fb3cD05161050
Finished: true

Correct: true

Date: 14/3/2019-11:0:46

DC public key: 0x71Ea6808C7Ac0B13CDB69b3B2B7fb3cD05161050
Finished: true

Correct: true

Figure 2.13: Data Producer dashboard

Besides, the top-right box invites the user to withdraw from the contract

the rewarding accumulated with the computations. The button will trigger
the withdrawBonus Smart Contract function, that will transfer the Ether
value, which inside the contract storage is associated to the user’s public key,
from the contract’s wallet to the user one.
Figure 2.14 reports instead the sequence of transactions involved in the Data
Sharing phase: the user sets, through a simple form in his dashboard, a
request containing a Solidity Event, that will activate MPC servers for the
off-chain data sharing, and upon completion they will singularly confirm that
particular request. As soon as the contract receives all the confirmations (in
this case two), the user is approved.

Transactions history

Trx hash Block From To Value Gas Method

0x09910edc... 2 0x92fd4720... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 0 Eth 82883 setDataProducerRequest
0x6474ee2e 4 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 0 Eth 143894 confirmDataProducerRequest
0x6474ee2e... 4 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405¢c243A4609b5 0 Eth 143894 confirmDataProducerRequest

Figure 2.14: Data Sharing transactions

2.4.3 Data Consumer

Figure 2.15 shows the Data Consumer’s dashboard. From the bottom-right
panel, the DC is able to ask the MPC system for a specific computation and
get back the result on the same panel, just by clicking the orange button. On

67

the bottom-left side instead, the computations he asked for are listed out,
again with their final outcome. For example, it is reported that the last one
went badly, with an output that is not correct. This can be due to many
things, from an abort of the MPC system due to malicious actors to a simple
network error. Either way, when the computation is not correct, the smart
contract reserves the Data Consumer the caution he deposited. He is then
prompted to withdraw it just as for the Data Producer by clicking on the
button.

Hi, DataConsumer

Public key: 0x71Ea6808C7Ac0B13CDB69b3B2B7fb3cD05161050
Approvation date: 14/3/2019-10:59:1
Balance: Your balance is 96.998941426 ETH / 12939.40 $ (Withdraw

You have 1 ETH bonus accumulated to withdraw

e Computation History List of available computations

Date: 14/3/2019-11:0:25 e
Finished: true Highest Value ETH @
Correct: true L)

Date: 14/3/2019-11:0:46
Finished: true

Correct: true Lowest Value ETH @

Date: 14/3/2019-11:4:2
Finished: true
Correct: false

Chi-squared test ETH @

Figure 2.15: Data Consumer dashboard

Finally, in Figures 2.16 and 2.17 are shown the sequences of transactions
occurring in the context of a Multiparty Computation both in the case of
negative and positive outcome. As one can see, both start with the Data
Consumer setting a new computation request and sending his deposit of 1
Eth along. Right after, the MPC servers that intend to take part to the
computation accept the request, as well sending 1 Eth along. Clearly at this
point the Smart Contract’s wallet detains 3 Eth. As soon as the required
number of computing parties have done so, an Event is triggered, and the
computation takes place off-chain in a secure channel between Data Con-
sumer and MPC system.

Then, in the first of the two figures we may see a call for refund Computation
from the Data Consumer, right after an error in the communication with the
MPC system occurred. This call fires an event which is caught by computing

68

parties, that will get their deposit back right after. Evidently this is a naivé
approach: given the high latency between the call and the effective event to
be triggered on the blockchain, a Data Consumer would be able to receive
the result off-chain and at the same time set an interruption call, with his
deposit received back; being this work just a proof of concept, this scenario
has been omitted in the implementation.

Transactions history

Trx hash Block From To Value Gas Method

0xbe432921... 23 0x71Ea6808... 0xf3B487De7ff8E2A8CD700bDA18405¢c243A4609b5 1Eth 85379 setNewComputationRequest
0x6b3bb3c6... 25 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405¢c243A4609b5 1Eth 57057 acceptComputationRequest
0x6b3bb3ch... 25 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 1Eth 57057 acceptComputationRequest
Oxeddadb07.. 26 0x71Ea6808... 0xf3B487De7ff8E2A8CD700bDA18405¢c243A4609b5 0 Eth 92932 refundComputation
0x326ef439... 28 0x5bf328D2... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 0 Eth 19838 withdrawBonus
0x326ef439... 28 0x5bf328D2... 0xf3B487De7ff8E2A8CD700bDA18405¢c243A4609b5 0 Eth 19838 withdrawBonus

Figure 2.16: Data Consuming transactions (negative outcome)

In Figure below instead it is shown the flow of transactions when the
computation happens correctly. Both MPC computing parties set on the
blockchain separately the Keccak-256 hash of the result they obtained, and
right after the Smart Contract receives the last result, it does the integrity
check, and if positive it will automatically share the security deposit among
Data Producers and computing parties, and will finally trigger the appropri-
ate Event. The last two transactions refer to the MPC parties that withdraw
their rewarding after having been triggered by the Event.

Transactions history

Trx hash Block From To Value Gas Method

0xa00f5edO... 16 0x71Ea6808... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 1Eth 85379 setNewComputationRequest
0x2dc488a9... 18 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 1Eth 57057 acceptComputationRequest
0x2dc488a9... 18 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 1Eth 57057 acceptComputationRequest
0x0058c469... 20 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 0 Eth 179886 setComputationResult
0x0058c469... 20 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 0 Eth 179886 setComputationResult
0x2fa8759c... 22 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 0 Eth 19838 withdrawBonus
0x2fa8759c... 22 0xc3001e08... 0xf3B487De7ff8E2A8CD700bDA18405c243A4609b5 0 Eth 19838 withdrawBonus

Figure 2.17: Data Consuming transactions (positive outcome)

69

2.5 Performances

Some tests have been conducted against the MPC system, in order to under-
stand how it scales according both to the data input size and to the number
of computing parties. Blockchain operations have not been considered in
this, as they don’t happen during a computation but only before the begin-
ning and at the end of it, once for each computing party. The timing of such
operations varies along with the block time of the chosen blockchain, that is
the time for the network to produce and broadcast a new block including the
transaction: Ethereum has an average block time of 17 seconds.

Two bash scripts have been written for this purpose. The first one simu-
lates a data sharing phase for the generation of the secret-shared input data
(Section 2.3.2), according to the passed number of inputs and the number
of computing parties. The second one simulates multiple data consuming
phases, where the computed program is the chi square test. The program
is run repeatedly varying the number of inputs, from a minimum of 250 to
a maximum of 1000 (128 bits for each input) with an increase of 50 for any
iteration, and the number of computing parties, from 2 to 5. For each it-
eration a specific log file is printed with the time of the computation, the
total megabytes of data sent and the total rounds of communication between
parties, along with the amount of pre-processing data used (Section 2.3.2).
For convenience, during the tests all computing parties were located on the
same machine, a 2015 MacBook Pro with a 2,7 GHz Intel Core i5 Processor
and a 8 GB 1867 MHz DDR3. This influences the total time for a compu-
tation, as the latency of each communication message in this setting is null,
and so the numbers related to that have to be read bearing this is mind.
Moreover, the total rounds of communication and the amount of megabytes
sent among parties have been analyzed.

2.5.1 Communication Model

As already stressed in Section 2.3.2, a round of communication between par-
ties during the computation is required for each multiplication (other than
in the beginning and in the end of the computation), where parties random-
ize their secret shared values by means of a Beaver multiplication triples,
produced in the offline phase. This step instead is not required for addi-
tions, that can be computed locally. From the SPDZ technical document
[37], we read that the communication between parties of their value a; for a
multiplication has been designed as follows :

1. The players pick an arbitrary nominated player, Player P; for example;

70

2. Players P; for i = 2,...,n send a; to Py;
3. Player P, computes a = a; + ... + a,, and sends a to all players.

Clearly, for those parties that are not the nominated one, this operation has
a complexity which increases linearly with k, the number of inputs, that will
in turn influence the number of multiplications. Differently, the nominated
player sees his computational load increasing also linearly along with the
number of parties n (excluding himself, with n < 5) and the inputs &k (with
k < 1000).

The asymmetric solution adopted prevents computation to be distributed
and carried out in parallel, and doesn’t speed up operations, because parties
have to wait for all the others to having sent their value to the nominated
one before proceeding with the computation. Nevertheless, it can be very
convenient in those settings where the nominated player either has more
computational power than the others, or is connected through higher speed
channels with the others, thus optimizing the available resources.

2.5.2 Results

Given the above considerations, in Figure 2.18 it is reported the trend of the
total amount of megabytes sent by the nominated player during a chi square
computation, according to a variable number of inputs and of computing
parties. Such numbers confirm what’s written in the technical documentation
[37], namely that the system scales linearly to the number of inputs and to
the number of players.

As we can see, in a setting of 1000 inputs and 5 players, the nominated
player has to send less than 140Mb of data, which is considerably doable in
few seconds in a fiber optic network.

71

= 2 parties
— 3 parties
— 4 parties
100 - 5 parties

50

——

300 400 500 600 700 800 900 1000

MB sent by the nominated player

Input data
Figure 2.18: The total megabytes sent by the nominated player

Figure 2.19 shows instead the amount of time from the start to the end
of a computation. As we can see, results indicate that the computation is
carried out in the order of seconds. Again, the reader should keep in mind
that these numbers are related to a best-case scenario, since they are obtained
in a configuration where the latency of the communication between parties is
null. Nevertheless, considering from the graph above the rather low amount
of data to be exchanged, these figures provide confidence that the system
could conduct a computation in a reasonable amount of time with tens or
even hundreds of thousands input data.

= 2 parties
20 = 3 parties
- 4 parties
- 5 parties

Total time of computation (in seconds)

300 400 500 600 700 800 900 1000

Number of inputs

Figure 2.19: The time in seconds of a chi square computation

72

2.6 Security Model

In this model the attacker is someone who manages to “corrupt” at least one
of the k parties involved in the computation, in order to control or alter the
messages sent to the other parties, trying to obtain extra information, and
more importantly trying to convince the other parties about the correctness
of an output that’s actually wrong.

2.6.1 Assumptions

In this section the assumptions taken during the construction of the system
are listed out below.

e Honest party [ASS-1]: this assumption states that at least one party
involved in the MPC computation is honest, that is he acts following
the protocol. This assumption doesn’t require that the honest party
would be the same at each multiparty execution;

e Blockchain properties [ASS-2]: this assumption states that the
Blockchain security properties are always valid;

e Input data [ASS-3]: this assumption states that the input data sup-
plied to the system and used in the computations are truthful and
homogeneous (standardized) .

e MPC communication [ASS-4]: this assumption states that the
parties involved in the multiparty computation exchange their messages
in a secure network (i.e. via HTTPS).

e Registered parties [ASS-5]: this assumption states that all the
actors in the system are regularly registered to the Blockchain, that is
they have a wallet with some funds that never below a given threshold.
This because each new execution of the protocol is allowed only if
parties involved put a security deposit at stake, which will be later
used to penalize dishonest ones and reward honest ones.

2.6.2 Requirements

In this section the requirements, both functional and security, the system
must have, are listed out. Each of them will be extensively analyzed in
Section 2.6.3.

73

Functional Requirements

These requirements concern the functions the system should guarantee, pre-
cisely:

FUNREQ-1: a data producer must be able to provide his data to the
system,;

FUNREQ-2: a data producer must be rewarded every time his data
is used in a computation;

FUNREQ-3: a data producer must be able to set and update the
permissions over his data. Such permissions may specify for example
for which data consumer make data available for analysis;

FUNREQ-4: a data consumer must be able to require a computation;

FUNREQ-5: a data consumer must be certain that if he pays for
a computation, then the output he obtains will be the correct one.
This implies that the system must be able to abort when some party
misbehaved;

FUNREQ-6: a computation must not be started without having left
a security deposit;

FUNREQ-T7: a computation must not be started without having done
a request through the Blockchain;

Security Requirements

These requirements concern the security properties that the proposed system
should guarantee, precisely:

Correctness of computation [SECREQ-1]: a data producer must
obtain correct output from a computation, i.e. given some input the
computation is executed according to the protocol.

Privacy of sensitive data [SECREQ-2]: sensitive data must be
stored maintaining the privacy towards all actors in the system.

Non repudiation [SECREQ-3]: an actor in the system must not be
able to deny of having taken some action.

Authentication [SECREQ-4]: all actors involved in the system
must be known in advance and all actions they could take must be
authenticated.

74

Independence of input [SECREQ-5]: parties must not be able to
choose their inputs as a function of other parties’ inputs.

Fairness [SECREQ-6]: if one party learns the output, then all
parties learn the output.

Covert security [SECREQ-7]: the system guarantees covert secu-
rity with a good enough probability of detecting dishonest parties.

Passive security [SECREQ-8]: the system guarantees that an
honest but curious attacker must not leak out sensitive information.

2.6.3 Solution

SECREQ-1: this requirement is guaranteed through the MAC check-
ing phase of the MPC protocol (SPDZ) that is used in this context,
given the assumption [ASS-1]. Of course the output is bound to the
input given to the computation, so we can say that the computation is
really correct given the assumption [ASS-3]. Either way, the system is
made up so to abort a computation in case of a dishonest part, avoiding
so to output a wrong value.

SECREQ-2: this requirement is guaranteed through the mathemati-
cal properties of the Additive Secret Sharing scheme upon which sensi-
tive data are stored in the system, given the assumption [ASS-1]. Only
by having all parties corrupted an attacker could be able to reconstruct
those data.

SECREQ-3: this requirement is guaranteed given the assumption
[ASS-2] and [ASS-5]. In fact all actions taken in the system pass
through the Blockchain, which digitally sign all of them.

SECREQ-4: this requirement is guaranteed given the assumption
[ASS-2] and [ASS-5]. Non registered actors wouldn’t be able to perform
any action, other than simply read the Blockchain (that is public), as
authentication and authorization are performed by the Blockchain in
use.

SECREQ-5/SECREQ-6: these requirements are guaranteed by the
MPC protocol used in this solution (SPDZ), with the assumption [ASS-
1].

75

e SECREQ-T7: in this scenario the attacker is an adversary who deviates
from the protocol only with a low probability of not getting caught. The
SPDZ protocol offers covert security again through the MAC checking
phase, given the assumption [ASS-1]. The probability an attacker could
get away with cheating is the same he would have to guess the global
MAC key, that is %

e SECREQ-8: in this scenario the attacker does not deviate from the
protocol, but tries to extract information that he wouldn’t know oth-
erwise. The outcome of such an attack would be an information leak-
age. Given the domain of the application, related to sensitive and
personal data, this attack may constitute a real threat. The MPC so-
lution adopted (SPDZ) is not itself secure against a passive attacker.
Nonetheless, security against a passive adversary is guaranteed by the
mathematical properties of the secret sharing on which the sensitive
data are stored, given the assumption [ASS-1].

76

Chapter 3

Conclusions

This thesis work represents an experimental dive into uncharted waters, in
order to hopefully acknowledge the reader that the world wide web is prob-
ably going through another huge transformation. The blockchain technol-
ogy, in all its implementations, from the first secure, peer-to-peer electronic
payment system [50], to the visionary peer-to-peer general purpose world-
wide computer [24], is leading an increasingly larger community towards an
entirely new set of applications. Some might see the correlation with the
Internet in 1994, when the technology emerged, but actually everyone was
clueless about where it was heading.

Apart from the technological tools it relies upon, that without any doubt are
not definitive and require great effort in terms of research from the most bril-
liant computer scientists and cryptographers, the blockchain’s unprecedented
innovation consists in the inclusion of economic theory principles inside com-
puter protocols. The term cryptoeconomics have been coined to describe the
union between cryptography and economics, in order to build decentralized
marketplaces and applications, for an entirely new and even unimaginable
set of services.

This work tries to formalize one of such services, by combining the model of
incentives enabled by the Blockchain with the privacy preserving distributed
computing of the Multiparty Computation. It is demonstrated how each
actor involved in the system could be incentivized to act according to the
protocol, assuming him to be rational and so looking first at maximizing his
profit.

Nonetheless, this is just the beginning: many tough challenges need to be
undertaken in order to overcome the few yet significant technical limitations
that both technologies still presents, around which the skepticism of many is
rightly grounded. As usual, it will be the push of innovation and science to
drive this revolution towards a more democratic and righteous version of the

77

internet.

3.1 Related Works

The projects that aim at integrating Blockchain and Multiparty Computation
are few and still under development. Nonetheless, two of them claim to
provide a working solution, and will be reported briefly here below. Both
share the vision of building a platform for data analysis that puts control
and monetization back in the hands of data owners.

3.1.1 Decentralized Computation Platform with Guar-
anteed Privacy

Enigma ! was born thanks to the groundbreaking research of Guy Zyskind,
that in 2015 was the first to theorize the union between Blockchain and MPC,
at MIT. Enigma claims to use an optimized version of MPC, guaranteed
by a verifiable secret-sharing scheme and a distributed hashtable for the
storage of secret-shared data. Enigma consists of a privacy layer (Enigma
Network) on top of the blockchain: they coined the term secret contracts
for those smart contracts that are located in the Enigma Network, that is
responsible of running the code while keeping input data hidden to underlying
blockchain nodes. On top of this they provided an application layer, to allow
programmers to create decentralized applications that exploits the Enigma
Network.

The first application they provide is called Catalyst 2, and it allows to analyze
the performances of a particular trading strategy (of crypto-assets) against
historical data, and the live-trading of cryptocurrencies already in four major
exchanges.

3.1.2 Secure infrastructure for data exchange

Insights Network ? and Partisia 4 are working together to construct a decen-
tralized platform that will allow to conduct marketing researches, other than
allowing users to securely store their data, by the combination of Blockchain
and MPC. Although still in early stages, the platform has included in the

"https://enigma.co/
’https://enigma.co/catalyst/
3https://insights.network/
‘https://partisia.com/

78

ecosystem the iOs app Gambeal ®, an application that rewards restaurants’
owners for submitting surveys related to their activities. The migration to-
wards a Blockchain-MPC solution will allow for instant payments through
cryptocurrencies, rather than via PayPal, other than ensuring an higher level
of privacy for users by means of a MPC-based authentication, rather than
the traditional one occurring via Facebook.

3.2 Future developments

3.2.1 Dishonest Parties Identification

As at its current implementation, the Smart Contract is not able to indi-
vidually identify among computing parties honest and dishonest ones. Even
though purely in theory, the actual dispute resolution between parties in case
of bad outcome is needed to happen off-chain.

Without any doubt, in a real world use-case this wouldn’t be much conve-
nient: as one of the base requirement for the entire system, which guarantees
both the input privacy and the output correctness, is that MPC servers don’t
collude between each other, it would be appropriate to have computing par-
ties belonging to different organisations and companies, in order to maintain
the highest decentralization degree as possible. It wouldn’t be acceptable
then, to have honest players penalized.

Given such considerations, it would be necessary for the smart contract to
receive from players some kind of proof that the computation had been made
correctly. Since the proof ideally should be verifiable at any given time in
the future, zkSNARKS (seciton 1.1.6) are a good candidate of zero-knowledge
proofs that could be applied here.

3.2.2 Reputation System

Once a more precise dishonest parties identification is integrated into the
Smart Contract, it will be possible to implement, always through smart con-
tracts, a reputation system of the computing parties, such that after every
computation a score indicating the honesty of the party is updated accord-
ingly. Such a system would increase the security against covert adversaries
1.2.1, those adversaries that would be active but are worried about the con-
sequences (for instance the loss of reputation) of being caught cheating.

Moreover, recalling the base security assumption that at least one computing
party must be honest in order to guarantee the security of the system, the

Shttps://gambeal .netlify.com/

79

reputation score could be used to influence the choice of the set of computing
parties at each computation, in order to minimize as much as possible the
probability to have the entire set malicious.

3.3 Acknowledgements

[would like to thank my mentor Guglielmo Coach Morgari for having signif-
icantly helped me all along this thesis period with great expertise, kindness
and wisdom. I consider myself very lucky for the opportunity I had to work
by his side and to learn from his considerable experience. Thanks also to all
the other people of Telsy SpA, for the stimulating and pleasant environment
where I spent several months.

Many thanks to my professor Danilo Bazzanella, for having always been
present when needed and for having connected me to Telsy.

To my family, for the unimaginable sacrifices made to support my studies for
six years with love and trust, there aren’t words to express my gratitude.
To my true friends, for having believed in me when I didn’t, without your
affection this journey would have been impossible.

80

Bibliography

1]
2]

[10]

Algorand website. https://www.algorand.com/.

Yonatan Aumann and Yehuda Lindell. Security against covert ad-
versaries: Efficient protocols for realistic adversaries. 2009. https:
//eprint.iacr.org/2007/060.pdf.

Adam Back. A partial hash collision based postage scheme. 1997. http:
//www.hashcash.org/papers/announce. txt.

Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit
Sahai, Salil Vadhan, and Ke Yang. On the impossibility of obfuscat-
ing programs. 2010. https://www.iacr.org/archive/crypto2001/
21390001 . pdf.

Countries that consume more or less electricity than bitcoin min-
ing in late 2018. https://powercompare.co.uk/bitcoin-mining-
electricity-map/.

Donald Beaver. Efficient multiparty protocols using circuit randomiza-
tion. CRYPTO 1991: Advances in Cryptology, 1991.

Bitcoin wiki. https://en.bitcoin.it/wiki/Transaction.

Dan Bogdanov, Riivo Talviste, and Jan Willemson. Deploying secure
multi-party computation for financial data analysis. 2011.

Joseph Bonneau. Sok: Research perspectives and challenges for bitcoin
and cryptocurrencies. 2015. Published in: 2015 IEEE Symposium on
Security and Privacy.

Vitalik Buterin. On stake. 2014. https://blog.ethereum.org/2014/
07/05/stake/.

81

[11]

Vitalik Buterin. On sharding blockchains. Ethereum Wiki, 2018.
https://github.com/ethereum/wiki/wiki/Sharding-FAQs#this-
sounds-like-theres-some-kind-of-scalability-trilemma-at-
play-what-is-this-trilemma-and-can-we-break-through-it.

Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget.
2017.

Chi-squared test - wiki. https://en.wikipedia.org/wiki/Chi-
squared_test.

Chi-square distribution tables. http://www00.unibg.it/dati/corsi/
40025/74822-tavola_chi2.pdf.

Coinmarketcap website. https://coinmarketcap.com/it/.

Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel Smart. Practical covertly secure mpc for dishonest
majority - or: breaking the spdz limits. 2013.

Ivan Damgard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Mul-
tiparty computation from somewhat homomorphic encryption. 2011.
https://eprint.iacr.org/2011/535.pdf.

The dao attack - hacker letter. https://pastebin.com/CcGUBgDG.
David archer - galois inc. https://galois.com/team/david-archer/.

Do you need a blockchain? - web application. http://
doyouneedablockchain. com/.

Cynthia Dwork and Moni Naor. Pricing via processing or combatting
junk mail. Crypto "92.

Decentralized dns. https://ens.domains/.
Etherscan token tracker. https://etherscan.io/tokens.

Ethereum whitepaper. https://github.com/ethereum/wiki/wiki/
White-Paper#ethereum.

Expressjs. https://expressjs.com/it/.

Facebook reports third quarter 2018 results. https://investor.
fb.com/investor-news/press-release-details/2018/Facebook-
Reports-Third-Quarter-2018-Results/default.aspx.

82

[27]
28]
[29]
[30]
[31]
32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Ethereum Foundation. Ethereum problems. "https://github.com/
ethereum/wiki/wiki/Problems.

Ethereum Foundation. Proof of stakes faq. https://github.com/
ethereum/wiki/wiki/Proof-of-Stake-FAQs.

Truffle suite - ganache. https://truffleframework.com/ganache.

Gdpr - processing of special categories of personal data.
http://www.privacy-regulation.eu/en/article-9-processing-
of-special-categories—-of-personal-data-GDPR.htm.

Arthur Gervais and Karl Wiist. Do you need a blockchain? 2017.

Search engine market share. https://netmarketshare.com/search-
engine-market-share.aspx.

Hdl-cholesterol distribution. https://www.unich.it/med/papers/
Metodologia\%20Medico-Scientifica\%20di\%20base/statistica/
04-distribuzione\’%20normale_nuovo.pdf.

Optimizing social institutions - nobel prize. https://www.nobelprize.
org/prizes/economic-sciences/2007/speedread/.

Jana: Private data as a service. 2018. http://www.bu.edu/hic/files/
2018/06/2018-06-05-Anand . Swarte.pdf.

Keep - privacy layer for public blockchains. https://backend.keep.
network/whitepaper.

Marcel Keller, Peter Scholl, and Nigel Smart. An architecture for
practical actively secure mpc with dishonest majority. 2013. https:
//eprint.iacr.org/2013/143.pdf.

Ajay Kshemkalyani and Mukesh Singhal. Distributed Computing: Prin-
ciples, Algorithms, and Systems. Cambridge University Press, 2008.

Jae Kwon. Tendermint: Consensus without mining. 2014. https:
//tendermint.com/static/docs/tendermint.pdf.

Lightning network. https://lightning.network/.

Lighting network transaction costs. https://www.reddit.com/r/
Bitcoin/comments/8q7fj3/so_far_ive_made_42_transactions_on_
lightning/.

83

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]
[54]

[55]

[56]

Maian: automatic tool for finding trace vulnerabilities in ethereum
smart contracts. https://github.com/MATAN-tool/MATAN.

Andrew Marshall. Combined crypto market capitalization races past
$800 bln. Cointelegraph.

Mechanism design. https://en.wikipedia.org/wiki/Mechanism_
design.

Eric maskin - an introduction to mechanism design - warwick economics
summit 2014. https://www.youtube.com/watch?v=XSVoeETsEcU.

Silvio Micali and Jing Chen. Algorand. 2016. https://arxiv.org/
abs/1607.01341.

Silvio Micali, Jing Chen, Sergey Gorbunov, and Georgios Vlachos. Algo-
rand agreement super fast and partition resilient byzantine agreement.
2018.

Avi Wigdemon Michael Ben-Or, Shafi Goldwasser. Completeness the-
orems for non-cryptographic fault-tolerant distributed computation.
1988. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.116.2968&rep=repl&type=pdf.

Monero. https://www.getmonero.org/.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
https://bitcoin.org/bitcoin.pdf.

Ivica Nikolic, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas
Hobor. Finding the greedy, prodigal, and suicidal contracts at scale.
2018.

Nodejs. https://nodejs.org/en/about/.
Ethereum erc-721. http://erc721.org/.

Normal distribution table. https://www.math.arizona.edu/~rsims/
ma464/standardnormaltable.pdf.

P4Titan. Slimcoin: A peer-to-peer crypto-currency with proof-of-burn.
2014. http://www.slimcoin.club/whitepaper.pdf.

Ethereum’s parity hack. https://www.coindesk.com/ethereum-
client-bug-freezes-user-funds-fallout-remains—-uncertain.

84

[57]
[58]
[59]

[67]
[68]

[69]

[70]

[71]

[72]
73]

Passport.js. http://www.passportjs.org/.

Peercoin. https://peercoin.net/.

Preimage attacks. "https://en.wikipedia.org/wiki/Preimage\
_attack”.
Raiden network. https://raiden.network/.

Reactjs. https://reactjs.org/.
Reduxjs. https://redux.js.org/.

Charles Rackoff Shafi Goldwasser, Silvio Micali. The knowledge com-
plexity of interactive proof-systems. 1985. https://groups.csail.
mit.edu/cis/pubs/shafi/1985-stoc.pdf.

On sharding blockchains. https://github.com/ethereum/wiki/wiki/
Sharding-FAQs.

Sharding - wikipedia. https://en.wikipedia.org/wiki/Shard_
(database_architecture).

Sharemind multi-party computation. https://sharemind.cyber.ee/
sharemind-mpc/.

Silvio micali. https://it.wikipedia.org/wiki/Silvio_Micali.

Solidity compiler. https://solidity.readthedocs.io/en/v0.5.2/
installing-solidity.html.

Spdz client library. https://github.com/bristolcrypto/spdz-
client-1ib.

Adam Tanner. Harvard professor re-identifies anonymous vol-
unteers in dna study. Scientific American, 2013. https:
//www.forbes.com/sites/adamtanner/2013/04/25/harvard-

professor-re-identifies-anonymous-volunteers-in-dna-study/.

Adam Tenner. How data brokers make money off your medical
records. 2016. https://www.scientificamerican.com/article/how-
data-brokers-make-money-off-your-medical-records/.

Tron-decentralise the web. https://tron.network/.

Unbound tech. https://www.unboundtech.com/.

85

[74]

[75]

[76]

[77]
[78]
[79]

[80]
[81]

Web3 - ethereum javascript api. https://github.com/ethereum/
web3. js/.

Zachary J. Williamson. The aztec protocol. 2018. https://github.
com/AztecProtocol/AZTEC/blob/master/AZTEC. pdf.

Gavin Wood. Ethereum: A secure decentralised generalised transaction
ledger. 2014. https://github.com/ethereum/yellowpaper.

Andrew Chi-Chih Yao. Protocols for secure computations. 1982.

Zcash. https://z.cash/.

Zcash setup ceremony. https://www.wnycstudios.org/story/
ceremony.
Zilliqa website. https://zilliqa.com/.

Zilliqa technical whitepaper. https://docs.zilliqa.com/
whitepaper.pdf.

86

