
POLITECNICO DI TORINO

Master of Science in Computer Engineering

Master Thesis

Integration of Smart
Orchestration in an Open Source

NFV Framework

Supervisors
prof. Guido Marchetto
prof. Riccardo Sisto

Candidate
Daniele Decaro

March 2019

To Dalia,

You will always be my guiding light.

i

Contents

List of Figures vi

List of Tables viii

Listings ix

1 Introduction 1

2 Network Functions Virtualization 3
2.1 Virtualization . 3

2.1.1 Lightweight Virtualization . 5
2.2 Cloud Computing, SDN and NFV . 7

2.2.1 Cloud Computing . 8
2.2.2 Software-Defined Networking 10
2.2.3 NFV and relationship to Cloud Computing and SDN 11

2.3 ETSI NFV Architectural Framework 13
2.3.1 Network Function Virtualization Infrastructure 15
2.3.2 Virtualized Network Functions 16

2.3.2.1 Network Services and VNF Forwarding Graph 17
2.3.3 NFV MANO Architecture . 18

2.3.3.1 Network Function Virtualization Orchestrator (NFVO) 19
2.3.3.2 Virtual Network Function Manager (VNFM) 20
2.3.3.3 Virtualized Infrastructure Manager (VIM) 20

2.3.4 ETSI Information Model . 20
2.3.4.1 Network Service . 21
2.3.4.2 Virtual Network Function 23
2.3.4.3 Physical Network Function 24
2.3.4.4 Virtual Links . 24
2.3.4.5 VNF Forwarding Graphs 25

ii

3 Requirements Definition and Analysis 26
3.1 Objectives definition and functional requirements 27
3.2 Verifoo . 27

3.2.1 Information Model . 28
3.2.1.1 Graphs . 29
3.2.1.2 Property Definitions 31
3.2.1.3 Hosts . 31
3.2.1.4 Connections . 32
3.2.1.5 Constraints . 32
3.2.1.6 Network Forwarding Paths 32
3.2.1.7 Parsing String . 32

3.2.2 REST API . 33
3.3 Open Baton . 34

3.3.1 Network Function Virtualisation Orchestrator 35
3.3.2 Virtual Network Function Managers 38

3.3.2.1 Generic VNFM . 38
3.3.2.2 Juju VNFM adapter 39
3.3.2.3 Docker VNFM . 41
3.3.2.4 Custom VNFM adapter 42
3.3.2.5 Custom-built VNFM 43

3.3.3 Virtualized Infrastructure Manager Drivers 43
3.3.3.1 OpenStack VIM driver 43
3.3.3.2 Docker VIM driver 44
3.3.3.3 Amazon VIM driver 44
3.3.3.4 Test VIM driver . 44

3.3.4 Operation Support System (OSS) 44
3.3.4.1 Monitoring Plugin 44
3.3.4.2 AutoScaling Engine (ASE) 45
3.3.4.3 Fault Management System (FMS) 45
3.3.4.4 Network Slicing Engine (NSE) 46

3.3.5 Event Engine and Plugins . 46
3.4 Solution high-level analysis . 46

3.4.1 Single-PoP versus multiple-PoP deployment optimization . . . 47
3.4.1.1 Single PoP . 47
3.4.1.2 Multiple PoP . 48

3.4.2 Integration design . 49
3.4.2.1 Open Baton plugin 49
3.4.2.2 Open Baton Contribution 49

iii

3.4.2.3 External Software 50
3.4.3 Analysis conclusions . 50

4 Veribaton 51
4.1 Design . 51

4.1.1 Development framework . 53
4.1.1.1 Java programming language 53
4.1.1.2 Spring Boot . 55
4.1.1.3 Gradle . 56

4.1.2 Open Baton API interface . 57
4.1.3 Data model conversion . 60

4.2 Implementation . 63
4.2.1 Project configuration . 63
4.2.2 Resource representation . 67
4.2.3 Controller methods . 67
4.2.4 Externalized configuration . 68
4.2.5 Verifoo annotated classes generation 68
4.2.6 ETSI JSON to Verifoo XML conversion 70

4.2.6.1 Serialization . 70
4.2.6.2 Graph model . 70
4.2.6.3 VNF Descriptors and configuration 71
4.2.6.4 Infrastructure . 72

4.2.7 Exception handling . 73
4.2.8 OpenAPI documentation . 74

4.3 Testing and validation . 76
4.3.1 Environment setup . 76

4.3.1.1 Docker VIM . 77
4.3.1.2 Open Baton . 79
4.3.1.3 Verifoo . 80
4.3.1.4 Veribaton . 81

4.3.2 NSD test instances . 81
4.3.2.1 Verifoo 1.0 . 81

4.3.2.1.1 Scenario 1A 82
4.3.2.1.2 Scenario 1B 83
4.3.2.1.3 Scenario 1C 83

4.3.2.2 Verifoo 2.0 . 84
4.3.2.2.1 Scenario 2A 84
4.3.2.2.2 Scenario 2B 85

iv

4.3.2.2.3 Scenario 2C 85
4.3.2.2.4 Scenario 2D 86
4.3.2.2.5 Scenario 2E 86
4.3.2.2.6 Scenario 2F 87

4.3.3 VNF implementation . 88
4.3.3.1 Web Client . 88
4.3.3.2 Firewall . 89

4.3.4 Service deployment . 91

5 Conclusions 93

Bibliography 95

v

List of Figures

2.1 Type I and type II hypervisors. 5
2.2 A comparison between virtualization and containers technology. . . . 7
2.3 Relationship between NFV, SDN and Cloud Computing concepts. . . 8
2.4 Type I and type II hypervisors. 11
2.5 Transition from dedicated hardware devices to virtualized network

functions. 12
2.6 An overview of ETSI NFV architecture. 14
2.7 NFV MANO architecture overview [13] 19
2.8 ETSI MANO information model representation. 22
2.9 Multiple VNFFGs in end-to-end network service. 25

3.1 Verifoo NFV diagram . 28
3.2 Node element diagram . 29
3.3 Verifoo REST operations . 33
3.4 Open Baton architecture. Source: [15] 34
3.5 Open Baton management dashboard. 35
3.6 NFVO REST operations overview. Source: [19] 37
3.7 Open Baton Generic VNFM sequence diagram. Source: [20] 39
3.8 Open Baton VNFM interaction sequence diagram. Source: [23] 42

4.1 Veribaton sequence diagram. 52
4.2 Project directory tree . 64
4.3 Veribaton Swagger UI page. 75
4.4 Local testing environment. 77
4.5 Remote testing environment. 78
4.6 NSD with two web clients, two firewalls, one NAT and one web server

VNFs, with node connections redundancy. 83
4.7 NSD with three web clients, three firewalls, and two web server VNFs. 84

vi

4.8 NSD with two web client nodes, two firewalls, one NAT, and one web
server. 85

4.9 NSD with two web client nodes, two firewalls, and one web server. . . 86
4.10 Faulty NSD with two web client nodes, two firewalls not connected

to each other and one web server. 87
4.11 Open Baton deployment console. 91

vii

List of Tables

4.1 Open Baton NSD API operations. 58
4.2 Open Baton VNFD API operations. 59
4.3 Open Baton NSR API operations. 60
4.4 Open Baton and Verifoo information model comparison 61
4.5 Veribaton configurable properties. 69

viii

Listings

3.1 HATEOAS-style Hyperlinks XML object 33
3.2 VNFD lifecycle event block example 40
3.3 VNFM registration request payload 43
4.1 Gradle Spring Boot plugin configuration. 65
4.2 Gradle starter dependencies block. 66
4.3 Docker VIM instance ondoarding payload. 80
4.4 Web Client VNF Dockerfile. 89
4.5 Web Client run.sh script. 89
4.6 Firewall VNF Dockerfile. 90
4.7 Firewall run.sh script. 90

ix

Chapter 1

Introduction

Telecommunication industry service provisioning has been bound for years to a tra-
ditional model involving manual deployment of proprietary hardware and devices,
often as part of architectures requiring strict components chaining and interdepen-
dencies. This led to long products and services lifecycle and longer time to value,
dependency from specialized equipment and technicians skills, also possibly resulting
in vendor lock-in, low service agility and an overall increase of capital and opera-
tional expenditure for the telecommunications service providers (TSPs).

The Network Functions Virtualization (NFV) paradigm has been proposed by
a task force of leading TSPs to address the challenge of achieving a flexible way
to meet always more demanding customer needs, and at the same time reducing
costs and product time-to-market. By leveraging the potential of virtualization
technology, it is possible to decouple the network function from the hardware it
runs on, implementing network components in software-defined Virtual Network
Functions (VNFs) that can be subsequently consolidated on commodity hardware
such as high volume servers, storage, and switches. In this way, the TSP can chain
together a set of VNFs to provision a network service, and then be able to instantiate
it and relocate it according to the necessities without the need to purchase additional
hardware capacity.

Although NFV paradigm is drawing considerable interest from both the academic
and enterprise worlds, the ecosystem of tools and solutions supporting it is still in its
infancy: this thesis work the main goal is to enrich one or more NFV orchestration
platforms with support for smart service composition, VNF forwarding graph formal
verification and deployment optimization by integrating the capabilities of Verifoo[1],

1

1 – Introduction

a project whose name is a contraction for Verification and Optimization Orchestrator
(VerifOO). This solution would improve service composition and prevent human
error in descriptor design, identify unused VNFs in service chains and optimize
deployment.

2

Chapter 2

Network Functions Virtualization

Network Functions Virtualization (NFV) is an emerging network paradigm pro-
posed to address issues in service development, delivery and derived costs for service
providers. This chapter is intended to present the main concepts behind NFV, its
architecture and characteristics, and related technologies.

2.1 Virtualization

During last two decades, virtualization has continued gaining traction in enterprise
and private contexts enabling infrastructure scalability, agility, and efficiency in
managing physical assets, and continues growing thanks to innovations as hardware-
assisted virtualization technology (Intel VT-x and AMD-V in particular)[2], support
of major operating systems, and a growing landscape of software. The term refers
to the concept of creating software based representations of devices or resources in a
layer that is abstracted from the physical hardware underlying. Typical components
of a computer system that can be virtualized are CPU, memory, storage, network
devices, and I/O peripherals. Most commonly, these resources are combined into a
virtual machine, a full-fledged computer environment on which an operating system
can be executed: in this case, the machine used for virtualization is called host
whereas the guest is the virtual machine. Software executed on the guest machine
behaves as it was running directly on hardware, but its access to physical resources
such as network, storage and peripherals can be, and often is, managed more strictly
than the host.

This approach yields many advantages: for desktop users, virtualization can be

3

2 – Network Functions Virtualization

used amongst all for executing applications meant for a different operating system
without the need to reboot into another system or switch computer. On the enter-
prise level, this technology allows cost mitigation by consolidating multiple servers in
a larger physical one and therefore reducing effort spent in hardware acquisition and
maintenance, and increasing resource utilization efficiency: the server compaction
optimizes inconsistent workloads, resulting in considerable energy costs saving, and
a much lighter footprint from an environmental point of view. Manageability is
another advantage that a virtualized environment can offer: machines can be easily
provisioned, inspected from a remote site and moved from a physical host to an-
other. Moreover, their execution status can be saved and backed up persistently,
allowing their use in disaster recovery scenarios deriving from faulty hardware or
human error. Lastly, virtual machines create a sandboxed execution environment
for the guest operating system and applications running on top of it, so that faults
occurring cannot harm the host operating system, and applications do not have
access to physical resources, enhancing the security of the infrastructure. Likewise,
if a guest operating system becomes corrupted, for example from malware infec-
tion or installation of misbehaving software, the virtual machine can be effortlessly
discarded or replaced with a previously backed up version.

Drawbacks of this technology include magnification of physical failures, because
malfunctioning hardware can impact many different systems meant to be kept sepa-
rate, and degraded performance[3]: virtualization overhead is not always negligible,
and estimating how many additional resources are necessary is not trivial, the higher
the number of servers pooled into a single physical host, the more the virtualization
overhead increases. In this context, consolidation approach is valid because in enter-
prise data centers servers are for most of the time utilized for less than 30% of their
available capacity, yet under peak demand, some of the hosts might be overloaded,
with the consequence of increased latency and lower overall quality of service.

The firmware or software enabling creation and execution of virtual machines is
called hypervisor, or virtual machine monitor, allowing a host to share its resources
to support multiple guest operating systems. Historically it has been possible to
make a distinction between two types of hypervisors, described visually in figure
2.1:

• Type I, or bare metal hypervisors: hypervisors running directly on hardware,
consisting of a micro-kernel based operating system having direct access to
physical resources by means of their own device drivers. Between commercial
and open-source products belonging to this category, we can name VMWare

4

2 – Network Functions Virtualization

Figure 2.1: Type I and type II hypervisors.

ESXi, Xen, Microsoft Hyper-V.

• Type II, or hosted hypervisors: hypervisors running as a process on a general
purpose operating system and requiring hardware access through its features.
VMware Workstation, VirtualBox, Parallels Desktop for Mac and QEMU are
type-2 hypervisors.

However, this categorization is not suitable to embrace all different types of
software developed through the years: Kernel-based Virtual Machine (KVM), for
instance, is a Linux kernel module allowing the system to operate as a hypervisor;
in this case, being part of the kernel, KVM has direct interaction with hardware as
in bare metal virtual machine monitors, yet guests do share memory blocks, CPU
instructions and other components of the underlying Linux operating system as in
hosted virtualization platforms, hence it cannot be considered either a type-1 nor a
type-2 hypervisor.

2.1.1 Lightweight Virtualization

Debated solutions involve running a separate kernel for each guest virtual machine,
enforcing strong separation between environments and enabling the possibility of
executing different operating systems on the same hardware. However, different
technologies have been developed to achieve user-space process isolation without the
need for a full system emulation. These solutions are commonly referred to with the

5

2 – Network Functions Virtualization

term of operating-system-level virtualization or containerization: they provide the
operating system’s kernel the capability of instantiating different isolated execution
contexts, called containers, virtual environments, or jails, and can be considered
as a lightweight alternative to traditional hypervisor-based solutions. Examples of
container-based virtualization products are Docker, OpenVZ, Solaris Containers,
Linux LXC, and FreeBSD jail.

Applications running in containers see only resources and devices associated with
the container and have their own execution context, but share the kernel with the
host operating system, as well as the operating system libraries. Using a container-
based solution has different advantages:

• Reduced CPU and memory overhead[4]: operations execute at near na-
tive speed, resulting in applications performance advantage compared to hard-
ware virtualization

• Lower footprint[5]: containers show lower memory and static image storage
footprint by orders of magnitude, and severe decrease of guest OS initializa-
tion time, allowing easier back-up, snapshot, and live migration of virtual
environments for resource optimization purposes.

• Higher density:[3] a much higher number of virtual instances can be executed
concurrently on the same host without incurring in significant performance
degradation.

• Application packaging: developers can use container technology to package
in a single image all dependencies of an application and run it on a different
environment with consistent results, allowing faster development lifecycle and
improved productivity.

Container-based solutions present also disadvantages in comparison to hardware
virtualization, and the most relevant are:

• Security: containers isolation is weaker than virtual machines; the kernel of
the host system is shared between all containers, this means that a kernel
vulnerability it can jeopardize the security of the other containers as well,
while in a virtual machine security threats such as malware and intrusions are
not able to spread over.

6

2 – Network Functions Virtualization

Figure 2.2: A comparison between virtualization and containers technology.

• Operating systems: since the hardware access of container operating system
happens through the host kernel, it is not possible to run different operating
systems on the same host, which could be an issue for complex enterprise
applications.

• Networking: achieving adequate networking capabilities with sufficient iso-
lation and security is a complex issue.

With the advent of Docker in 2014[6] and its exponential growth in popularity,
container-based solutions and their ecosystems are experiencing a tremendous mo-
mentum and a revolution in how applications are packaged and released, challenging
traditional hypervisor-based virtual machines infrastructures, also encouraging ap-
plication design paradigms such as service-oriented architectures and microservices.

2.2 Cloud Computing, SDN and NFV

Virtualization has been the main enabler technology for a new paradigm which
aims to transform computing into a commodity-like service, delivered the same way
traditional utilities, electricity, gas, water, and telephony are. The name Cloud

7

2 – Network Functions Virtualization

Figure 2.3: Relationship between NFV, SDN and Cloud Computing concepts.

Computing for this model was made popular in 2006 when Amazon.com created
its subsidiary company Amazon Web Services and advertised its product Elastic
Compute Cloud (EC2)[7], even though the cloud has been a symbol of distributed
network computing since ARPANET[8].

2.2.1 Cloud Computing

According to National Institute of Standards and Technology (NIST)[9] cloud com-
puting is “a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with mini-
mal management effort or service provider interaction”. In this context, the "cloud"
represents the infrastructure to which users, both private and enterprise, are able to
access on demand from anywhere in the world. The cloud computing paradigm, in

8

2 – Network Functions Virtualization

the NIST perspective, defines five essential characteristics:

• On-demand self-service. Computing resources and services are provided
as autonomously requested by the user, automatically without the need for
human intervention from the service provider.

• Broad network access. The network is the mean enabling access to offered
computing capabilities, which are available for the consumer through stan-
dardized protocols and mechanisms allowing usability from multiple platforms
and clients.

• Resource pooling. Provider’s resources are collected in pools and allocated
and released dynamically to multiple consumers in a multi-tenant model. The
consumer has no perception of where the resources are located, but might be
able to choose a geographical macro area, such as country, region or datacenter.

• Rapid elasticity. The consumer can provision and release resources to meet
application demands, growing or shrinking allocated computing elastically.

• Measured service. Consumed resources are monitored and measured, and
can be controlled and reported transparently for both the user and the service
provider.

Moreover, the service can be offered in different models to meet the needs of the
customer:

• Software as a Service (SaaS). The consumer can use the provider’s ap-
plication running on a cloud infrastructure, accessing it from anywhere with
a thin client, such in the case of a web-based application, or a software in-
terface, without the possibility of monitoring and managing the underlying
infrastructure.

• Platform as a Service (PaaS). The provider allows access to a platform
on which the consumer can deploy applications built using tools supported by
the provider, having access to application-specific settings and environment
configuration, but not the underlying infrastructure.

• Infrastructure as a Service (IaaS). The consumer can provision computing
resources as processing, storage, and networks from the cloud infrastructure to
deploy and run software appliances. The consumer has control over operating
systems, storage, and most aspects of networking.

9

2 – Network Functions Virtualization

2.2.2 Software-Defined Networking

With the advent of cloud computing, has become even clearer how traditional IP
networks are hard to manage and to maintain. In a context of multitenancy, in which
every consumer’s resources must be completely isolated although existing in the same
infrastructure, and configure quickly in response to customer needs, the providers’
need is to express network policies based on different users and services. Being the
IP network distributed by design, each individual device should be configured in
order to set up a network policy, often by hand using vendor specific commands,
or by executing scripts; in either case, human intervention is essential, making this
task error-prone and not scalable. Moreover, in a cloud environment, connections
should be able to be resilient to faults and adapt to changes in traffic load: traditional
networks have no means of feedback reconfiguration. In addition, networking devices
integrate together both control plane, which decides how to route the traffic, and
data plane, that forwards packets according to decisions taken at the control plane
level, further reducing flexibility, and increasing costs and effort necessary to operate
an IP network.

To address these issues, a new network paradigm has been proposed: Software-
Defined Networking (SDN) is a network architecture that decouples control logic
from underlying physical devices forwarding the packets, introducing a centralized
logic controller able to communicate and dynamically configure and manage routers
and switches, which expose a common and well-defined management interface (API)
and become plain forwarding devices. The core of this architecture is the SDN Con-
troller, which centralizes the logic of the traffic routing and offers an abstract view
of the network topology and devices, including events and metrics; exposes a North-
bound Interface to enable application and orchestration systems to interact with
the network and its data path policies. The controller, through the SDN Control to
Data-Plane Interface (CDPI), is able to translate application requirements to pro-
grammatically control forwarding rules, send and receive events notifications and
collect statistics through a Southbound Interface. One of the values of the SDN
architecture is that expects this interface to be standardized, hence every vendor
would be able to introduce compliant forwarding devices.

By leveraging the capabilities of SDN architecture, cloud providers are able to
solve the issue of multitenancy in network infrastructures, as IP and Ethernet tech-
nology have virtual network capabilities but limited in terms of number of sup-
ported tenants and isolation between them[10], to ensure per-tenant service level as
minimum bandwidth and latency guarantee, and to offer Networking-as-a-Service

10

2 – Network Functions Virtualization

Figure 2.4: Type I and type II hypervisors.

capabilities.

2.2.3 NFV and relationship to Cloud Computing and SDN

The same need for flexibility, agility, and reduction of capital and operating ex-
penses that inspired the birth and growth of the SDN architecture, pushed telecom-
munications service providers (TSPs) into building a consortium to develop a new
concept of networking, founding the European Telecommunications Standards Insti-
tute (ETSI). Taking advantage of virtualization technology, and using concepts de-
riving from cloud computing, Network Function Virtualization (NFV) architecture
abstracts networking capabilities from the hardware effectively performing them,
increasing resource utilization efficiency and reducing the need for special-purpose

11

2 – Network Functions Virtualization

Figure 2.5: Transition from dedicated hardware devices to virtualized network func-
tions.

hardware. In the original white paper[11], ETSI declares the problems that NFV
aims to solve, proposing the NFV solution:

Network Operators’ networks are populated with a large and increas-
ing variety of proprietary hardware appliances. To launch a new net-
work service often requires yet another variety and finding the space and
power to accommodate these boxes is becoming increasingly difficult;
compounded by the increasing costs of energy, capital investment chal-
lenges and the rarity of skills necessary to design, integrate and operate
increasingly complex hardware-based appliances. Moreover, hardware-
based appliances rapidly reach the end of life, requiring much of the
procure-design-integrate-deploy cycle to be repeated with little or no
revenue benefit. [. . .]

Network Functions Virtualisation aims to address these problems by
leveraging standard IT virtualization technology to consolidate many
network equipment types onto industry standard high volume servers,
switches and storage, which could be located in Datacentres, Network
Nodes and at the end user premises. We believe Network Functions Vir-
tualisation is applicable to any data plane packet processing and control
plane function in fixed and mobile network infrastructures.

12

2 – Network Functions Virtualization

In this way, a network service can be decomposed in a series of elementary Virtual
Network Functions (VNFs), each running as a virtual instance on Commercial-Off-
The-Shelf (COTS) hardware, becoming building blocks that may connect or chain
together to create required services. The same network functions can be effort-
lessly scaled independently with fine granularity to meet load requirements as they
evolve, as well as relocated in a different geographic area to provide services tar-
geting customers in a specific location. Examples of use cases for NFV technology
include virtualized load balancers, CDNs, tunneling devices as VPN gateways, secu-
rity functions as firewalls or intrusion detection systems, and traffic analysis elements
as DPIs (figure 2.5).

Network Functions Virtualization takes advantages from cloud computing tech-
nologies: virtualization through hypervisors and containers as enabling mechanics
for functions decoupling, as well as utilization of virtual ethernet switches; cloud
infrastructures can be leveraged to orchestrate and manage virtual appliances, in
order to ease instantiation, back-up and restore, snapshot, migration, and termina-
tion of virtual machines executing network functions, management of image catalog
and storage attached to instances, and creation of virtual networks and network
interfaces.

At the same time, Network Functions Virtualisation has a strong relationship
with SDN: both architectures can be implemented without being dependent one
from the other, but the two concepts can be combined and potentially achieve greater
synergy. NFV can benefit from the concepts of separation of data and control plane
defined from SDN, simplifying operations, increasing manageability, and enhancing
performance. On the opposite side, SDN can take advantage of Network Function
Virtualization running virtualized SDN-compatible devices, further strengthening
the concepts of SDN of interoperability, agility, and vendor neutrality.

2.3 ETSI NFV Architectural Framework

European Telecommunications Standards Institute (ETSI) established in late 2012
the Industry Specification Group for NFV (ETSI ISG NFV), in charge of defining
the requirements and guidelines for the NFV paradigm. One of the most important
deliverables produced by this group can be identified in the Architectural Framework
specification document[12]. In this paper, ETSI described the actors involved in
the NFV context, and a reference architectural framework, outlining the different

13

2 – Network Functions Virtualization

Figure 2.6: An overview of ETSI NFV architecture.

components of the framework and the connections and interfaces between them,
with the aim of creating a modular ecosystem driven by open and standardized
interfaces; in this way, every building block can be supplied by a different producer,
enabling a multi-vendor interoperable NFV solution.

As visually described in figure 2.6 the Architectural Framework document delin-
eates three core domains:

• Network Function Virtualization Infrastructure (NFVI). The environ-
ment providing computing, storage and network capabilities on which Virtual
Network Functions are instantiated; includes both physical resources such as
servers, network-attached storage and switches, and software, hypervisors, op-
erating systems, and virtual infrastructure managers. Characteristics of NFVI
will be detailed in section 2.3.1.

• Virtualized Network Functions (VNFs). A Virtualized Network Function
is the basic component of the NFV architecture and represents the abstraction

14

2 – Network Functions Virtualization

of a network function running in software as a virtual appliance in the NFVI.
VNF structure, features, and relationships between VNFs will be further de-
scribed in section 2.3.2.

• NFV Management and Orchestration (MANO). The MANO framework
takes care of provisioning, operation, and lifecycle management for VNFs in-
teracts with NFV Infrastructure and with the virtualization layer in order to
instantiate necessary virtual resources, interfaces with VNFs for configuration
and reporting. Development of NFV MANO framework is supported by a
working group of the ETSI organization, and for the purposes of this thesis
work requires an in-depth analysis, which will be addressed in section 2.3.3.

2.3.1 Network Function Virtualization Infrastructure

With Network Function Virtualization Infrastructure, ETSI defines the context in
which VNF lifecycle takes place, from instantiation to operation and dismission. It
builds up of different hardware and software components that allow VNF execution:

• Hardware resources. The physical resources including processing, storage,
and connectivity that allow execution and communication between VNFs. The
computing resources are assumed to be COTS hardware, instead of special-
purpose dedicated hardware; the same way, storage could be supplied by a stor-
age area network (SAN) or by disks residing on the servers, commonly pooled
to offer an abstraction of storage capacity. Networking resources include high-
capacity L2/L3 switches, routers, and links, and can be distinguished in two
main types[12]: the NFI-PoP network, interconnecting resources internal to
a PoP, and the transport network, connecting PoPs between them, to other
networks owned by third parties, or other network appliances outside NFVI
network.

• Virtualization Layer. The virtualization layer provides an abstraction be-
tween VNFs and hardware, allows partitioning and access to physical resources,
allowing an hardware-independent lifecycle for VNFs. This virtualization ser-
vices can be provided by essentially two means: an hypervisor-based solution,
in which each VNF has its own operating system inside a virtual machine
(VM), or a lightweight virtualization solution (see 2.1.1), allowing the execu-
tion of each VNF in a separated and sandboxed context, but with a lower

15

2 – Network Functions Virtualization

degree of isolation. NFV framework does not constraint the virtualization so-
lutions which can be used for the network functions, is also possible to leverage
different technologies according to the specific function to be virtualized. Ben-
efits of using containerization for VNFs are several: a much faster startup time,
which could be critical when instantiating services which need to be created
and deleted in a short amount of time, or autoscaling policies with dynamic
load; I/O performance is close to bare metal, critical for carrier-grade applica-
tions, even if new virtualization technologies allow virtual machines to access
hardware directly in passthrough mode to avoid these issues; and an overall
higher flexibility for the network service, at the cost of less isolation and a
higher attack surface from the security point of view.

• Virtualized Infrastructure. On top of the latter layer, the virtualized in-
frastructure encloses all resources provisioned to support network functions in-
cluding virtual computing, storage, and networking, which is abstracted from
the hardware level to provide connectivity between VNFs based on virtual net-
work paths. This is allowed by means of multiple techniques, like Virtual Local
Area Network (VLAN), an overlay network, and encapsulation protocols, often
implemented using SDN techniques.

NFV Architecture is designed to be distributed, therefore the NFVI can be
present in a single physical location or can stretch across multiple sites, in order
to satisfy requirements of latency and geographical locations that might exist when
designing a network service; in this case, the network connecting different sites is
considered part of the infrastructure. From the VNF point of view, the different
components of the NFVI appear as a single entity providing required resources, of-
fering contact points through which it is possible to request resource allocation in
the form of Points of Presence (PoPs).

2.3.2 Virtualized Network Functions

A Virtualized Network Function is, according to ETSI, “virtualization of a network
function in a legacy non-virtualised network”[12]. Examples of network functions
that could be virtualized are firewalls, NAT devices, VPN gateways, Dynamic Host
Configuration Protocol (DHCP) servers, or WAN routing devices. A chain of Net-
work Functions, whether virtualized or not, represents an end-to-end Network Ser-
vice (NS), which solves a functionality for the end user and will be addressed more
specifically in subsection 2.3.2.1. From the user’s perspective, and from the point

16

2 – Network Functions Virtualization

of view of the NS, there is no difference between Virtualized Network Functions
and Physical Network Functions, the functional aspects and external interfaces are
assumed to be identical, so these components could be interchangeable; the same
applies to VNF capabilities, degradation of performance introduced by the virtual-
ization layer must be largely negligible, so that delivered behavior can be equivalent
in case of a virtualized or non-virtualized environment.

A VNF is not always a monolithic block of software, yet could be composed
internally by different internal components communicating together. When this is
the case, these components may be running each in a different virtual machine, or
in a single one, depending on the VNF implementation.

VNFs are executed on top of the NFV Infrastructure virtualized infrastructure;
necessary resources and connectivity are provisioned through NFI-PoPs. NFV ar-
chitecture highlights the need for the end-to-end service to be completely unaware of
the physical placement of VNF instances, given that requirements for redundancy,
high availability and failover, and geolocation awareness as in a distributed cache or
CDN, are satisfied. In this way, VNF instances could be geographically stretched
across multiple datacenters, as well as implemented using physical devices, differ-
ent hypervisors, and virtualization techniques as long as service requirements and
constraints are met.

2.3.2.1 Network Services and VNF Forwarding Graph

The description of an E2E service goes by the name of Network Service (NS) and
can be achieved by means of a list of interconnected Network Functions, and one
or more VNF Forwarding Graphs (VNF-FG). A VNF-FG represents a path which
packets follow in a network service; it is composed by a set of nodes corresponding
to network appliances, devices or server applications, and logical links, which could
be unidirectional or bidirectional, unicast, multicast or broadcast. Each Network
Service can have multiple VNF-FGs spanning its set of nodes, each of them imple-
menting a different subset of capabilities for the service: as an example, there could
be different kind of traffic, such as user traffic and control traffic, which need to be
routed in different paths across VNFs, yet both necessary to implement the same
service for the end users; this scenario would require two different forwarding graphs
for a single NS. Nodes of a VNF-FG are Network Functions, while logical links are
implemented on top of physical links provided by the NFV Infrastructure often
by means of Service Function Chaining, the capability of routing packets through

17

2 – Network Functions Virtualization

logical links instead of using traditional L3 routing techniques.

2.3.3 NFV MANO Architecture

The introduction of a conceptually innovating network paradigm such as NFV
presents a new set of challenges, concerning service to NFV network mapping, VNF
instantiation and orchestration, resource allocation and management, metrics col-
lection and reporting, which need to be addressed in order to have a successful
deployment and operation of the networking model. For this purpose, ETSI created
since the early stages a working group to build a comprehensive reference frame-
work to ensure compatibility between different vendor solutions and to create a
standardized approach to deal with NFV management.

NFV MANO architecture describes different building blocks, which communicate
with each other through well-defined interfaces; the figure 2.7 provides a bird’s eye
view over MANO components and interfaces.

In this picture, it is clear the extent of MANO framework, its reference points
between internal components, and the interactions with external elements: there are
three main constituents of the architecture:

• NFV Orchestrator (NFVO) (2.3.3.1).

• VNF Manager (VNFM) (2.3.3.2).

• Virtualized Infrastructure Manager (VIM) (2.3.3.3).

Each component solves a specific function and will be detailed in its own subsection.
The interfaces listed are standardized and can be used to decouple the different
components in a microservice-based architecture. Moreover, NFV Management and
Orchestration can be used in conjunction with existing management systems, such an
Operation Support System/Business Support System (OSS/BSS), used to support
various end-to-end telecommunication services, inventory, and service lifecycle, an
NFV Infrastructure Manager, often identifiable with a Cloud Management System,
and other tools able to support telecommunication service providers.

18

2 – Network Functions Virtualization

Figure 2.7: NFV MANO architecture overview [13]

2.3.3.1 Network Function Virtualization Orchestrator (NFVO)

The NFV Orchestrator is the front-end for the user to interact to: provides user
interfaces and APIs for integration with existing software components. It is in
charge of managing different critical aspects of NFV architecture:

• Catalog. The NFVO is responsible for onboarding and management of de-
scriptors catalogs. In detail, manages Network Services definitions and linked
resources, VNF descriptors and service topologies in the form of VNF-FGs.

• Network Service Lifecycle. Manages Network Service instantiation, termina-
tion, upgrade and scaling in and out. In order to offer an end-to-end network
service, the NFVO interacts with and coordinates VNF instantiation and life-
cycle, which might be managed by different VNF Managers; it is up to the
NFVO to monitor each VNF to establish network service status and eventually

19

2 – Network Functions Virtualization

proceed to VNF auto-healing.

• Resource Orchestration. It is in charge of engaging the NFV Infrastructure
through the infrastructure manager to allocate and release resources and con-
nections necessary to the VNF instantiation.

2.3.3.2 Virtual Network Function Manager (VNFM)

The VNF Manager is used to control, manage and monitor the VNFs lifecycle un-
der the direction of the NFVO, in particular, instantiation, starting and stopping,
upgrade, scaling in or out and termination of VNF instances. Controls also the El-
ement Management System (EMS) and the Network Management System (NMS).
If required, there could be more than one VNF Manager for each datacenter, each
managing its domain of VNFs, or a single VNFM could be used for multiple VNFs.

2.3.3.3 Virtualized Infrastructure Manager (VIM)

The Virtualized Infrastructure Manager is responsible for virtual resource manage-
ment, coordinated by the NFVO. In particular, the VIM deals with:

• Resource management. The VIM is in charge of allocating, and releasing
resources from the NFVI when requested by the NFVO; keeps track of used
resources and their physical allocation, optimizing hardware usage. Manages
the pooling of hardware resources, and the list of available virtual and physical
resources available.

• Networking. Provides the networking infrastructure supporting the VNF For-
warding Graphs in the form of virtual links, networks, and subnets.

• Image management. Manages the catalog of software images available to the
NFVO, and allows creation, update, and deletion of images.

• Reporting. Collects metrics about performance and faults, making information
available when requested from the NFVO.

2.3.4 ETSI Information Model

The loosely coupled architecture proposed from ETSI aims to promote the develop-
ment of a multi-vendor ecosystem in which every component evolves independently

20

2 – Network Functions Virtualization

from the whole system. In this context, standardized interfaces and a proper interac-
tion model between different entities are critical since the beginning of the paradigm
introduction, and so is a coordination framework such as MANO, which grants inter-
operability and avoids vendor lock-in. For this reason, ETSI developed a reference
information model[14]. This document defines the data structures necessary for
service definition and instantiation dividing them into three different categories of
information:

• Descriptors. Descriptors contain static deployment information provided as
input to the orchestration system, used for resource template onboarding and
instantiation.

• Records. Records represent resource instances; they include static data from
descriptors, integrating it with run-time information from the environment
and updates about resource status and lifecycle.

• Exchange information. Information flowing between components interfaces.

Descriptor templates created by the user are added to a catalog, specific for each
different descriptor category, through the onboarding operation. Upon instantiation,
descriptors are enriched with user-provided data which could be used for instance
customization and configuration, and with information exchanged through orches-
trator’s functional blocks. As a result of the instantiation process, the representation
of created resources is obtained through the creation of a record, which models the
current state of newly created instances, and is updated upon property changes.
In the following sections, the different possible descriptors and their corresponding
records are outlined in detail.

2.3.4.1 Network Service

The root of the information model is represented from the Network Service Descrip-
tor (NSD), which is the deployment template for the Network Service. It contains
information concerning service properties, such as external endpoints definition, auto
scale and security policies, and references to the different elements descriptors com-
posing the service, which can be of four types:

• Virtualised Network Function Descriptors (VNFDs) (2.3.4.2).

• Virtual Link Descriptors (VLDs) (2.3.4.2).

21

2 – Network Functions Virtualization

Figure 2.8: ETSI MANO information model representation.

• Physical Network Function Descriptors (PNFDs) (2.3.4.3).

• VNF Forwarding Graph Descriptors (VNFFGDs) (2.3.4.5).

Upon instantiation, a Network Service Record (NSR) is created, the most rele-
vant information the NSR contains is:

• Network Service Descriptor (NSD). The NSR holds a reference to the NSD
used to create the instance.

• Status and history. The NSR keeps track of the status of the instance, as well
as the lifecycle events history and logs.

• Records references. Subcomponents records are stored in the NSR to keep a
reference to service instances.

22

2 – Network Functions Virtualization

2.3.4.2 Virtual Network Function

A VNF Descriptor (VNFD) represents a VNF template and its deployment require-
ments, dependencies, and resources. It is used by the VNFM during instantiation
of the VNFs and lifecycle management, and by the NFVO to allocate and instan-
tiate necessary resources from the NFVI for each VNF instance. Among the most
important information contained are:

• Virtual Deployment Unit (VDU). A Virtual Deployment Unit describes the
hardware characteristics of the virtualized instance the VNF will be deployed
on. It contains information about the CPU and memory requirements and the
virtual machine image to be deployed; in addition, other constraints can be
specified, about the hypervisor type, storage, network interfaces, PCIe con-
nections, processor operating frequency, memory speed, and others. These
parameters, although not required for instantiation, could be useful for de-
ployment optimization.

• Connection Points (CP) and Internal Virtual Links (IVL). Connection Points
represent the accessibility of the VNF through a Virtual Link. If the VNF is
composed of different subcomponents, Internal Virtual Links can be defined
and specify the connections between them. A Connection Point defines an
interface of the VNF over a subnet and can be attached to a Virtual Link
defined in the VLD section at the network service level or even to an IVL.

• Lifecycle Hooks. Defines scripts or actions to execute upon lifecycle events,
such as initialization, termination, scaling in or out, upgrade. Is used from the
VNF Manager to instantiate lifecycle management for the VNF.

• Dependencies. Describe dependencies between VDUs, in order to define an
instantiation order between VNFs.

Upon instantiation, a VNF Record is created to track VNF instances and rel-
ative allocated resources, allowing cross-reference between all resources involved.
This record includes all static data coming from the VNFD, in addition to run-
time information about the VNF, such as status and network address, and VNFC
instances.

23

2 – Network Functions Virtualization

2.3.4.3 Physical Network Function

If a physical device needs to be included in the Network Service, this can be de-
scribed using a Physical Network Function Descriptor (PNFD). This can be used by
the NFVO to create necessary links between VNFs and the existing physical inter-
faces, together with the required virtual link KPIs such as latency and throughput.
Information included within the PNFD describes the network requirements and con-
nectivity needed to integrate the PNF in the service and contains the Connection
Points that the PNF exposes, and the definition of the Virtual Links these CPs
connect to.

After instantiation, a PNF Record is created to index the created networking
resources and linked PNFs.

2.3.4.4 Virtual Links

A Virtual Link Descriptor (VLD) is a template descriptor used by the NFVO to
instantiate network infrastructure based on the connectivity requirements between
VNFs, PNFs, and Network Service external endpoints. The information contained
is used to determine the type of connection to instantiate, and the VIM responsible
for service provisioning based on requirements. Three different connection types
have been identified in the NFV context: E-Line, E-LAN, and E-Tree. An E-Line
connection represents a simple point-to-point link between the existing network and
the VNF; an E-LAN acts a local network on which VNFs can exchange information
between each other; finally, an E-Tree is a rooted multipoint virtual connection in
which leaf nodes cannot exchange data between each other, useful in case of load
balancing services, internet access or video over IP. The VLD provides information
about the connectivity topology (E-Line, E-LAN or E-Tree), bandwidth parameters,
Quality of Service requirements (latency, jitter, etc...) and references to Connection
Points attached to the VL.

Virtual Link Records are stored after deployment to keep track of instanced
links and their status, allocated capacity, and the references of Network Services
and VNFFGRs they participate to.

24

2 – Network Functions Virtualization

Figure 2.9: Multiple VNFFGs in end-to-end network service.

2.3.4.5 VNF Forwarding Graphs

VNF Forwarding Graphs define traffic flows through VNFs in terms of a set of
Network Forwarding Paths (NFP), which represent a chain of VNFs, together with
policies for which it can be traversed by traffic. Each VNF-FG can include one or
more NFP, which control the actual packet flow. A VNF Forwarding Graph Descrip-
tor (VNFFGD) defines a template used from the NFVO for VNF-FG instantiation.
It references dependent NSD elements such as VNFDs, PNFDs and VLDs, and rel-
ative Connection Points to describe the constituent components of the forwarding
graph, and at least two Network Forwarding Path Descriptors (NFPD) determining
the traffic routing and policies. Each NFPD defines a policy to apply and a set of
references to Connection Points to be joined.

Upon setup of a VNF-FG, a VNFFG Record (VNFFGR) is created to store
graph instance information.

25

Chapter 3

Requirements Definition and
Analysis

As described in previous chapters, the NFV paradigm represents a promising so-
lution for software and hardware decoupling in complex networks, yet it cannot
be implemented disregarding a management framework such as NFV MANO. The
reference MANO implementation makes use of user-defined templates called descrip-
tors which have to be composed and validated by hand by an administration user
before onboarding on the orchestrators’ catalogs, and lack the capability of analysis
of these descriptor templates, as well as the possibility of smart deployment of the
solutions taking into consideration the NFV Infrastructure and service topology.
These thesis work aims to develop a solution able to enhance NFV MANO capabili-
ties to fulfill resource allocation optimization considering underlying infrastructure,
and service graph formal verification, to ensure that once deployed, the network
service will behave as expected, and produce a deliverable which will be used both
a proof-of-concept and as a starting point for future development scenarios.

In the following sections, an outline of the functional requirements will be pre-
sented, together with an overview of the tools to be integrated into the development,
Verifoo (3.2), and Open Baton (3.3). Finally, an analysis of possible approaches will
follow, unitedly to the evaluation of their strengths and weaknesses, and the solution
implementation choices.

26

3 – Requirements Definition and Analysis

3.1 Objectives definition and functional require-
ments

This thesis work objective is to produce a deliverable able to extend a MANO
orchestrator capabilities in order to produce an optimized deployment. In order to
pursue this goal, the solution to be implemented should comply with the following
requirements:

• Verifoo integration. The solution should interact with Verifoo, a service
graph optimization tool described in section 3.2, transmitting data related to
service graph and NFV infrastructure.

• Graph validation. Graph verification performed by Verifoo should be used
for service graph validation and formal reachability assurance. Deployment of
an invalid graph instance will be denied, or a notification will be produced,
informing the user.

• Deployment optimization. The deployment should be optimized according
to Verifoo VNF-FG analysis and available NFVI resources, both by using
configuration information provided by Verifoo and considering NFVI resources
allocation.

• MANO interaction. The solution should be able to interact with an open
source MANO NFV orchestration software, in order to enrich its features with
service analysis and optimization. In the context of this thesis work, the
product chosen to implement the solution is Open Baton, which will be detailed
in section 3.3.

3.2 Verifoo

Verifoo is an open source software developed at Politecnico di Torino, a “Verification
and Optimization Orchestrator component for joint Service Graph mapping and
verification”, and has been designed to be the validation and verification engine
behind an NFV orchestrator. It makes use of the z3 library, a Satisfiability Modulo
Theories (SMT) solver developed at Microsoft, in order to solve the Virtual Network
Embedding (VNE) problem. It offers a RESTful interface through which is possible

27

3 – Requirements Definition and Analysis

to input the instance topology in order to compute policy validation and deployment
satisfiability and scheduling based on the infrastructure specifications.

3.2.1 Information Model

Figure 3.1: Verifoo NFV diagram

Verifoo makes use of XML Schema Definition language to describe its data model.
Figure 3.1 shows a view of the main component of the information model, the
NFV object, and its subcomponents. Elements drawn in solid lines are required,
while dashed-line is optional, and under boxes identifying multiple cardinality items,
minimum and maximum occurrences are shown. For space constraints, properties
of the node object have not been shown and are compressed into their parent node,
specifying it as a plus sign on the side: due to its considerable importance in the
information model, this object will be represented in figure 3.2. Follows a detailed
description of each NFV child element.

28

3 – Requirements Definition and Analysis

3.2.1.1 Graphs

Figure 3.2: Node element diagram

The graphs element models a multiplicity of VNF-FGs in an NFV environment.
It contains a set of graph elements, each of them contains a list of nodes composing
the graph. The node object represents a VNF: as can be seen from figure 3.2, it
contains a configuration object, and a list of neighbor nodes, in order to form a chain.
Node attributes id and name identify the node in the graph, while functional type
represents an enumeration of the VNF types supported by Verifoo. The configuration
object child element assumes a different value depending on the functional type of
the VNF the node is modeling. The node element functional type can be one of the
following, each corresponding to its own configuration type:

• FIREWALL: models a simple ACL-based firewall VNF; its configuration is
composed by a list of elements representing an ACL (Access Control List).
Each ACL defines a couple of source and destination nodes, and the action
that will be taken upon connections from source to destination, which could be

29

3 – Requirements Definition and Analysis

blocking or allowing packets. Optionally, additional properties can be defined
to increase traffic control granularity, such as considered protocol, source, and
destination ports, and if the ACL is effective in one direction or in both.

• ENDHOST : An end-host represents a network node which exchanges traffic
with a destination node in the network. It serves as a generic model of a node
which is the beginning or the end of a VNF-FG chain.

• ENDPOINT : A generic node which can represent an edge entity in the for-
warding chain, for example, a user client.

• ANTISPAM : models an anti-spam VNF which can be placed in the chain
connecting an email client with the corresponding server. It is configured in
order to reject POP3 packets in which the sender address corresponds to one
of the source configuration elements.

• CACHE : simple web cache modeled using the concepts of external and internal
networks. Cache configuration includes the addresses of all nodes belonging
to the internal network that should be cached.

• DPI : represents a Deep Packet Inspection (DPI) network function which can
be configured to drop traffic including in the body a set of blacklisted strings.

• MAILCLIENT : an email client derived from the end-host model, which can
only send POP3_REQUEST or SMTP_REQUEST messages, and receive
POP3_RESPONSE or SMTP_RESPONSE. The destination mail server must
be specified in its configuration.

• MAILSERVER: a particular form of end-host which represents an email server,
receives POP3_REQUEST or SMTP_REQUEST messages from an email
client, and can generate only POP3_RESPONSE or SMTP_RESPONSE
messages, depending on the request type, addressed to the origin of the re-
quests.

• NAT : models a Network Address Translation function. As the web cache,
needs the notion of internal and external networks: in its configuration is listed
a set of private addresses that represent the hosts in the internal network.

• VPNACCESS : a Virtual Private Network (VPN) access gateway, requires ref-
erence to a VPNEXIT element.

30

3 – Requirements Definition and Analysis

• VPNEXIT : a VPN termination; must be configured with a reference to the
access gateway.

• WEBCLIENT : VNF based on the end-host model which can generate only
HTTP_REQUEST packets; needs a WEBSERVER as a destination node.

• WEBSERVER: models an HTTP web server which sends HTTP_RESPONSE
to the origin of web client requests.

• FIELDMODIFIER: represents a content-aware proxy able to modify the mes-
sage payloads passing through it. Cannot be an edge node of the graph.

• FORWARDER: a VNF which forwards traffic, can be seen as a firewall per-
mitting all packets.

3.2.1.2 Property Definitions

Property definitions allow specification of graph characteristics to be verified in order
for the graph to be valid. Definitions are instances of the Property object and the
property name is an enumeration value defining which attributes of the graph will be
ensured to be valid. Except for the name, the object carries information about the
source and destination nodes, layer-4 and layer-7 protocol considered, and source
and destination ports. Currently, two different property types have been defined:

• ReachabilityProperty: can be imposed to verify that packets generated by the
source are able to reach destination address.

• IsolationProperty: checks that traffic going out from the source node cannot
reach the destination address.

Each property instance holds an attribute stating its satisfiability in the current
NFV context.

3.2.1.3 Hosts

NFV Hosts object contains a set of Host items, each of them representing a physical
host in the NFV Infrastructure. In Verifoo data model, a host holds information
about its hardware specification, such as CPU an CPU cores, memory and disk
storage, the maximum number of supported VNFs, and can have a type which can

31

3 – Requirements Definition and Analysis

be CLIENT, SERVER or MIDDLEBOX. Moreover, every host can have a list of
supported VNF types to impose scheduling constraints during deployment. In order
to represent nodes deployed on hosts, the NodeRef element is used, an array of
references to nodes in a graph.

3.2.1.4 Connections

Physical links between hosts are represented using the Connections object, an array
of items of type Connection. Each connection has a couple of values referencing
source and destination host, plus information about average latency between them.
In Verifoo, the concept of a network does not exist and must be represented using
a mesh of connections spanning hosts in the same address domain.

3.2.1.5 Constraints

The Constraints object defines constraints affecting graphs and NFV infrastructure,
imposing restrictions in deployment and property satisfiability. Two types of con-
straints can be enforced, node constraints and link constraints. The former specifies
information about the VNF nodes in a graph, as the required CPU cores, mem-
ory and storage, and node optionality, while the latter describes requirements for
connections between hosts, such as required latency.

3.2.1.6 Network Forwarding Paths

The NetworkForwardingPaths object is composed of a set of Path element, each one
representing a logical connection between two or more different nodes in the NFV
architecture. It is used to implement the NFV concept of more VFG-FGs spanning
the same network service.

3.2.1.7 Parsing String

A string element accepting as a value the raw output of Verifoo execution used to
convert a raw model to deployment information.

32

3 – Requirements Definition and Analysis

Figure 3.3: Verifoo REST operations

3.2.2 REST API

In figure 3.3 are described endpoints available through Verifoo REST API. The
interface is structured according to the principles of HATEOAS (Hypermedia as the
Engine of Application State), a constraint of the REST architecture which allows the
construction of a hypermedia-driven system in which client applications can access
REST interfaces dynamically by following hyperlinks included in server responses.

1 <Hyperlinks>
2 <Link rel="self" href="http://localhost:8080/verifoo/rest/"

type="application/xml" method="GET" />
3 <Link rel="deployment" href="http://localhost:8080/verifoo/rest/deployment"

type="application/xml" method="POST" />
4 <Link rel="converter" href="http://localhost:8080/verifoo/rest/converter"

type="application/xml" method="POST" />
5 <Link rel="log" href="http://localhost:8080/verifoo/rest/log"

type="text/html" method="GET"/>
6 </Hyperlinks>

Listing 3.1: HATEOAS-style Hyperlinks XML object

Operations exposed from the API are:

• Root. A GET method on the root resource returns a collection of URLs
describing available operations and their reference endpoints in a Hyperlink
object (3.1).

• Deployment. The main API for interaction with Verifoo, allows the POST
HTTP verb receiving as an input in the request body an NFV object (figure
3.1). As a response, the client receives the same NFV object with integrated

33

3 – Requirements Definition and Analysis

information about properties verification, elements configuration and deploy-
ment nodes layout across hosts. The complete query parameter is a boolean
value indicating whether the response body should contain hosts and connec-
tions that have not been involved in graph deployment.

• Converter. The converter API allows conversion between the raw output of
Verifoo execution, to be included in the ParsingString NFV element (3.2.1.7),
and deployment XML output. Permits a POST HTTP request with an NFV
object in the request body, and returns the same object including deployment
information.

• Log. A convenience operation allowing reading the log output of the service
from the web interface. Returns an HTML object that can be rendered through
a web browser.

3.3 Open Baton

Figure 3.4: Open Baton architecture. Source: [15]

Open Baton[16] is an open source platform compliant to the standards of ETSI
NFV Management and Orchestration (MANO) specification, developed by Fraun-
hofer FOKUS (Fraunhofer Institute for Open Communication Systems) and Tech-
nical University of Berlin. It is designed with the main goals of extensibility and

34

3 – Requirements Definition and Analysis

flexibility, leveraging a message broker to allow decoupling between the different
component of the orchestrator architecture, which can be plugged in according to
the user needs.

As can be seen from figure 3.4 the orchestrator revolves around an instance
of RabbitMQ Message Broker[17], an open-source software implementing the Ad-
vanced Message Queuing Protocol (AMQP) to support asynchronous communica-
tion between modules. The orchestrator supports a wide range of VNF solutions,
and through its generic VNFM and EMS allows the definition of VNFs at runtime
through integration with the VNF lifecycle event engine. It is natively a multi-PoP
orchestrator, allowing the definition of different types of VIMs though a pluggable
VIM driver implementation which permits deployment over different NFV infras-
tructure without modifications in the orchestration logic.

3.3.1 Network Function Virtualisation Orchestrator

Figure 3.5: Open Baton management dashboard.

The core component of Open Baton allowing user interactions and service deliv-
ery is its MANO-compliant NFV Orchestrator, designed and implemented following
ETSI specifications. Its main features include:

• Descriptors repository: the NFVO allows creation, retrieval, modification
and deletion of NS and VNF descriptors, and SSH key catalog management;

35

3 – Requirements Definition and Analysis

VNFs onboarding can be achieved also through the VNF Package format,
which consists of a tar archive containing descriptors, VDU image files, and
metadata necessary for VNF instantiation.

• Service lifecycle management: allows instantiation, upgrade, scale-in and
scale-out, and deletion of Network Services; takes care of orchestrating de-
ployment of VNF instances over existing NFVI PoPs, and NFVI compute and
network resource allocation. Deployed services are stored as NSRs, and the
NFVO acts as a registry of allocated instances.

• NFVI PoP management: through the NFVO is possible to register NFVI
PoPs in order to make them available for deployment of VNF instances. PoP
onboarding capabilities are exposed from VIM driver components, which will
be detailed in section 3.3.3. Aggregating information from the different PoPs,
the NFVO is able to offer an overview of the NFVI available and used resources,
such as total CPU cores or memory allocation.

• Access control: Open Baton implements security through authentication
and identity management ([18]), which is achieved by means of projects and
users with assigned roles so that the same environment could be safely shared
between multiple users. Open Baton uses the concept of the project to rep-
resent the top-level isolation level between resources: users can be assigned
to different projects, each adopting a different role, so that project-specific re-
sources such as PoP instances, NS and VNF descriptors could be accessed only
by authorized users. Possible roles a user can have in a project are GUEST,
allowing read-only access to resources, and USER, which gives permissions to
create, update and delete PoPs and descriptors, while a user with the ADMIN
role is able to manage the whole system independently from the project.

• Marketplace: the orchestrator is able to import NSDs, VNF descriptors and
packages, VDU images and other plug-in components such as VIM drivers
from a public marketplace portal. This can be used to download example
descriptors to get started with the tools or to ease VIM images onboarding
and installation of plug-ins. At the time of writing, only a limited set of items
uploaded from the Open Baton team is featured, but in following releases it
is planned to add support for user uploads.

• Dashboard: Open Baton features a web interface (figure 3.5) which can be
used to manage all aspects of the NFV environment; it allows control over
all components, offering an overview over NFV infrastructure in terms of free

36

3 – Requirements Definition and Analysis

and used resources, PoPs accessible for deployment, information about their
virtual networks and available images, and tracks NS deployments and their
status, VNF instances and information about resourced assigned to them. The
dashboard is a necessary feature for scenarios in which one or more admin-
istration users are in charge of service management, offering a user-friendly
interface for operating the NFVO and controlling all its features, overview,
and management of the deployed network services, and their creation.

Figure 3.6: NFVO REST operations overview. Source: [19]

• REST API: to enable use cases in which the NFVO operation is not handled
by a user, but instead it is integrated through external custom tools or included
in a service-oriented architecture, all features which can be controlled through
the dashboard are also exposed through a RESTful interface for programmatic
consumers. An outline of operations which can be performed can be seen in

37

3 – Requirements Definition and Analysis

figure 3.6, grouped according to the category they belong to.

Open Baton RESTful operations make use of an information model compliant
to ETSI specifications and described in section 2.3.4, serialized through the
JSON data interchange format.

• CLI: another tool which can be used to operate the orchestrator is a command
line interface (CLI), used to send a command through the terminal as an
alternative to the dashboard.

3.3.2 Virtual Network Function Managers

In order to control VNF instantiation and lifecycle management, multiple VNF
managers can be added to the orchestrator leveraging the plug-in system, each
addressing a particular domain of VNFs. VNF managers available to be installed at
the moment of writing are detailed in the following sections.

3.3.2.1 Generic VNFM

The Generic VNF manager is a general-purpose VNFM implemented according to
ETSI specifications, managing VNF instantiation and configuration through inter-
action with the virtual machine instances on which the VNF software is installed.
Generic VNF lifecycle hooks are defined specifying a set of lifecycle events for the
VNF, and associating to each event one or more script files contained in a VNF
package or referenced as a link by the VNFD: upon the occurrence of these events,
the VNFM executes the corresponding scripts by way of its tight interdependence
with the Open Baton Element Management System (EMS), which is installed as
an agent on the VM instance hosting the VNF (figure 3.7). The VNFM is capable
of handling errors occurred during the execution of these scripts, and resuming the
VNF lifecycle event execution from the failed script.

Although current trends in day-1 operations lean towards the use of a configu-
ration management tool such as Puppet, Chef, Salt or Ansible, this approach even
if simplistic brings great flexibility and can be applied to any network function soft-
ware. Listing 3.2 describes an example of lifecycle scripts inside a VNF descriptor;
non relevant sections of the VNFD have been omitted for brevity.

38

3 – Requirements Definition and Analysis

Figure 3.7: Open Baton Generic VNFM sequence diagram. Source: [20]

3.3.2.2 Juju VNFM adapter

Juju ([21]) is an open-source application modeling tool, backed by Canonical, the
company behind the Ubuntu distribution of the Linux operating system. It allows
deployment, configuration, and management of software across a virtualized envi-
ronment such as private or public cloud platform. In contexts where applications are
not shipped in a standalone fashion, but they have dependencies, relationships and
connections with each other Juju allows service definition through an abstraction
level offering an outline view of the complexity of the applications involved and their

39

3 – Requirements Definition and Analysis

1 {// VNFD
2 ...
3 "lifecycle_event":[
4 {
5 "event":"INSTANTIATE",
6 "lifecycle_events":[
7 "pre-install.sh",
8 "install.sh"
9]

10 },
11 {
12 "event":"CONFIGURE",
13 "lifecycle_events":[
14 "server_configure.sh"
15]
16 },
17 {
18 "event":"START",
19 "lifecycle_events":[
20 "start.sh"
21]
22 },
23 {
24 "event":"STOP",
25 "lifecycle_events":[
26 "stop.sh"
27]
28 },
29 {
30 "event":"TERMINATE",
31 "lifecycle_events":[
32 "terminate.sh"
33]
34 }
35],
36 ...
37 }

Listing 3.2: VNFD lifecycle event block example

configurations, and ease management operations such as deployment, scale-in and
scale-out, and monitoring.

From the point of view of the NFVO, it offers a flexible solution to handle VNF
lifecycle and day-1 operations, fulfilling the role of both VNFM and EMS. Through
the Juju VNFM it is possible to deploy VNF packages uploaded to the catalog,
VNFDs described through lifecycle hooks and Charms from the Juju Charm Store

40

3 – Requirements Definition and Analysis

([22]), a marketplace gathering an ecosystem of application packages ready to be
deployed. At the moment of writing, complete interoperability between the lifecycle
engine of the generic VNFM and Juju is not granted but is part of the roadmap for
future development.

In order to successfully employ Juju as a VNFM, it is necessary to have it
installed and configured to interact with a supported VIM, e.g. an on-premises
virtualization platform as an OpenStack or VMWare vSphere instance, or a public
cloud provider such as Amazon AWS, Google Cloud Platform or Microsoft Azure.
Alongside the tool, on the same host, the Open Baton plug-in adapter must be in-
stalled and connected to the orchestrator through the AMQP protocol. The ETSI
specifications state that resource allocation in MANO environment could be per-
formed from the NFVO interaction with the VIM or directly from the VNFM: while
the general approach of Open Baton is to comply to the first option, this scenario
belongs to the latter case, therefore it is necessary to specify a dummy VIM driver
in the VNFD when using Juju as VNFM.

Although being a very powerful tool for service definition and lifecycle man-
agement, Juju has not been designed to act as a VNFM in an ETSI-compliant
environment: there are different disadvantages that could dissuade the MANO ad-
ministrator from exploiting this VNFM at the current state, even if solutions for
these issues are planned for future releases of Open Baton. The most restricting is-
sues include low reliability for NSR/VNFR status updates, lack of scaling support,
and the impossibility of passing configuration parameters to Charms deployed from
the Charm Store.

3.3.2.3 Docker VNFM

Docker is a containerization platform (see 2.1.1) which enables packaging of appli-
cations and required libraries into portable and self-sufficient distribution units and
ship them as containers. The Docker VNF manager, if used in conjunction with the
Docker VIM driver (3.3.3.2) enables instantiation of VNFs running in containers on
top of a Docker engine. The VNFM works with the upstream NFVO logic and is
perfectly integrated, yet due to the conceptual differences between virtual machines
and Docker containers, some fields in the VNFD might assume different meanings;
the most relevant difference in management relies in the fact that while VM instances
are a complex entity and can be configured, Docker images are thought to be used
without being modified, therefore the lifecycle engine is disabled for container VNFs.

41

3 – Requirements Definition and Analysis

3.3.2.4 Custom VNFM adapter

This adapter plugin allows Open Baton interaction with users’ VNF managers; the
NFVO exposes a REST interface for communication with the VNFM, which can
be consumed to integrate with the NS lifecycle. Figure 3.8 shows the sequence
diagram of the instantiation of an NS, describing the different types of exchanges
between the two components: upon user instantiation request, the NFVO invokes
REST operations on the VNFM, subsequently waiting for the corresponding callback
function.

Figure 3.8: Open Baton VNFM interaction sequence diagram. Source: [23]

In order to be used for VNF instantiation, custom VNFMs must be registered to
the NFVO though a REST operation including the request body reported in listing
3.3.

42

3 – Requirements Definition and Analysis

1 {
2 "type":"the VNFM type handled, referenced in the VNFD using the field

’endpoint’",
3 "endpointType":"REST or AMQP",
4 "endpoint":"the URL the NFVO will use to connect with the VNFM, in the form

’http://<IP>:<PORT>’",
5 "description":"Custom description",
6 "enabled":"true/false"
7 }

Listing 3.3: VNFM registration request payload

3.3.2.5 Custom-built VNFM

It is also possible to create a custom VNFM which could be plugged-in to the
orchestrator via a REST-based interface or connecting to the message broker using
AMQP. To this purpose, Open Baton released several Software Development Kits
(SDK), each with different languages support (Java, Python, GO), which can be
used to build a personalized VNF manager without the need of implementing the
low-level communication details and focusing on the VNF lifecycle logic.

3.3.3 Virtualized Infrastructure Manager Drivers

Open Baton interacts with the NFV Infrastructure Manager through VIM drivers,
plugins implementing interfaces used by the NFVO which enable resource manage-
ment. Differently, from the other plug-in components, VIM drivers are built based
on a Remote Procedure Call (RPC) architectural style and are registered at the
NFVO at startup time as JAR libraries in a specific installation folder. Follows a
list of currently implemented and generally available drivers.

3.3.3.1 OpenStack VIM driver

Open Baton OpenStack VIM driver leverages the OpenStack4J library to allow inter-
action with PoPs managed by the de-facto standard for NFVI managers consuming
its REST APIs. It is able to allocate all necessary resources for VNF execution,
including networks, routers, floating IP addresses and compute instances. Docu-
mentation ([24]) suggests the use of an admin user to allow these resources to be
created in case of necessity, while without administration rights it could not be pos-
sible to create new networks and set up routing policies. When making use of an

43

3 – Requirements Definition and Analysis

OpenStack instance, security groups have to be created beforehand and affect all
resources deployed on the same PoP.

3.3.3.2 Docker VIM driver

Together with the Docker VNFM (3.3.2.3) allows the deployment of network ser-
vices over a Docker engine. It offers the possibility to create both container and
networking resources interacting with PoPs managed by a local or remote Docker
engine, both through Unix sockets or over the network.

3.3.3.3 Amazon VIM driver

The Amazon VIM driver allows interaction with Amazon EC2 (see 2.2) using the
Amazon Java SDK to invoke AWS REST APIs. In order to use this driver is
suggested to create supporting resources such as VPC (Virtual Private Cloud) and
security groups before deploying compute instances. Networking resources could be
created from the driver or, if existing, can be referenced from the NS descriptor and
VNF instances can be attached.

3.3.3.4 Test VIM driver

This VIM driver simulates the behavior of an actual VIM driver without instanti-
ation of any real resource; allows service testing and dry-run, and can be used in a
situation in which the VNFM handles resource allocation as for example in case of
Juju VNFM (3.3.2.2).

3.3.4 Operation Support System (OSS)

Given the nature of Open Baton architecture, it is relatively easy to integrate ex-
ternal components to support service provisioning and management. OSS plugins
provided by the project are detailed below.

3.3.4.1 Monitoring Plugin

The Open Baton orchestrator is able to interact with multiple monitoring systems
through a standard communication interface using the plugin mechanism; plugins

44

3 – Requirements Definition and Analysis

implementing this interface act as an intermediate component between the NFVO
and the monitoring solution allowing consumers (NFVO, VNF managers, other OSS)
to interact with a well-defined and consistent API.

An example is the Zabbix plugin, integrating Open Baton with Zabbix Server.
Zabbix ([25]) is an open-source monitoring solution able to collect metrics about,
among others network performance, hosts resource consumption, and cloud ser-
vices. This plugin extends the VIM driver interface implementing two ETSI-defined
interfaces ([26]), Virtualised Resources Performance Management and Virtualised
Resources Fault Management, enabling external components to create monitoring
policies and query performance metrics.

3.3.4.2 AutoScaling Engine (ASE)

The AutoScaling Engine can be installed as a service plugin to the orchestrator
and allows the automatic management of scale-in and scale-out operations based
on policies defined by the user. It makes use of performance metrics collected by
the monitoring interface (3.3.4.1) to define monitoring event subscriptions and the
corresponding actions to be taken. The default plugin used is Zabbix plugin, but
the integration with the standard interface makes possible to use any preferred
monitoring system.

3.3.4.3 Fault Management System (FMS)

The Open Baton FMS plugin can be used to provide high availability and auto-
matic fault remediation features to the orchestrator. It exploits metrics collected by
monitoring plugins described in section 3.3.4.1 to enable the back-up to a standby
instance in an active-passive failover scenario in case of instances malfunction, and
supports actions executions upon VNF failure to restore normal execution status.

In the VNFD, a section called fault_management_policy can be provided at
the VDU level, containing information about the monitoring events for which to
create alarms and how to react: the FM engine takes advantage of the Drools rule
management system[27] to create a policy and define which alarms to create and
how to react.

45

3 – Requirements Definition and Analysis

3.3.4.4 Network Slicing Engine (NSE)

This OSS component enables quality of service (QoS) policy definition and enforce-
ment in virtual networks according to information provided by the NFVO in NS
descriptors. Currently, the only supported driver is OpenStack Neutron starting
from Mitaka version but can be extended to introduce more networking services
providers.

3.3.5 Event Engine and Plugins

Open Baton features a powerful event system based on a publish/subscribe paradigm
which allows to easily extend the orchestrators features through external plug-in
modules. Using the provided SDK an application can register for notifications upon
the occurrence of events in the NS lifecycle, and perform actions in response. The
orchestrator will submit requests to endpoints specified during subscription, filter-
ing based on the events the plugin is interested to receive; the connection can be
established using AMQP or REST protocols. Events that could be subscribed are
relative to the NSR or the VNFR, or both of them: notifications are generated and
submitted asynchronously including the JSON representation of the records in the
request payload.

3.4 Solution high-level analysis

In order to meet functional requirements, different design approaches have been
considered, taking into account all possible use case scenarios and used software
capabilities and characteristics. Verifoo functionalities that have been considered
for implementation, and considerations regarding their implementation possibilities
in the context of extending Open Baton, are identified as follows:

• Graph validation: the input graph can be validated according to policies
defined by the user, such as reachability or isolation between nodes. This
feature allows the user designing the service to check its formal verification.
Can extend Open Baton rejecting catalog upload of invalid service graphs,
or preventing their deployment; in any case, a meaningful message should
be provided to the service administrator in order to allow the design to be
reviewed and policies adjusted.

46

3 – Requirements Definition and Analysis

• Graph optimization: Verifoo modifies the input graph pruning unnecessary
nodes, and automatically configuring components according to specified poli-
cies; this should be reflected in target NSD deployments. Open Baton can
benefit from this feature in two scenarios: when the service graph is modeled
redundantly can identify necessary nodes for policy fulfillment and remove
the others, and in place of day-1 configuration, to avoid manually configuring
VNFs after deployment. In the first case, the pruning needs to be done at a
catalog upload level, while in the latter the VNF configuration can happen at
service definition or at instantiation independently.

• Smart deployment: providing a description of the NFV Infrastructure, Ver-
ifoo is able to optimize VNF deployment. The infrastructure must be defined
in terms of hosts and interconnections between them. This feature can bring
an advantage in resource optimization but is very situational considering that
VIMs as OpenStack, VMWare vCloud and others often do not offer access to
single hosts for machine deployments, instead they have internal scheduling
mechanisms for resource management. In the eventuality VIMs are chosen be-
tween public cloud infrastructure providers, hosts hypervisor interface is not
even accessible, nullifying benefits deriving from scheduling optimization.

Follows an analysis of the main aspects of the software solution necessary to fulfill
functional requirements, together with high-level design principles and architectural
analysis.

3.4.1 Single-PoP versus multiple-PoP deployment optimiza-
tion

In order to implement a virtual machine placement optimization two use case sce-
narios have been considered, using a single PoP or multiple PoPs. Follows a detailed
analysis of these possible options.

3.4.1.1 Single PoP

In case of deployment optimization of resources managed by the same PoP in a VIM,
several considerations are worth to be mentioned. Allocation optimization in a single
PoP scenario is the main Verifoo use case, and it means to create a smart placement
policy able to select appropriate hosts where to deploy VNF instances based on

47

3 – Requirements Definition and Analysis

currently available resources, placement of VNFs deployed in the infrastructure, and
constraints restricting placement for nodes such as dependency between functions
or minimum compute or memory requirements.

After computing a distribution plan, the infrastructure management tool should
support custom scheduling of instances over accessible hosts: this represents a lim-
itation in terms of the possible VIM that could be employed, narrowing down the
possible choices to OpenStack and VMWare vSphere, which are the products cur-
rently allowing hosts selection during instantiation. Infrastructure providers such as
public cloud platforms in which the customer is agnostic to the physical infrastruc-
ture are therefore excluded from the use case; the same applies are other hypervisors
solutions which do not offer a management framework, in which every host should be
dealt with singularly, and for light virtualization solutions such as LXD or Docker.

In order to select hosts on which to deploy VNFs a custom VIM driver should
be implemented, specific for the NFVI management platform. Moreover, more than
one component should have been affected: the NFVO in order to be made aware of
Verifoo integration, in charge of interaction control and results interpretation, the
VIM driver to correctly control resource requisition, and Or-Vi interface, to allow
host preference parameters to be correctly parsed and passed to VIM driver.

3.4.1.2 Multiple PoP

The scenario in which multiple PoPs, possibly managed by different types of VIM,
is another significant use case which has been considered in the analysis phase of
this thesis work to implement deployment management and optimization at the
NFVO level. In this context, analysis of the optimum deployment schedule could
be happening to take into account different PoPs as "hosts" in the multi-PoP infras-
tructure, each providing information about available and used resources from their
respective pools. Each NS instantiation request could be this way evaluated in order
to allocate each VNF on the best-suited PoP considering requirements in terms of
computing, memory but also network latency and throughput.

Comparing this approach with Verifoo capabilities and data model, with partic-
ular interest to hosts (3.2.1.3) and connections (3.2.1.4) can be seen how it could be
possible to treat the PoPs as the Host elements, and introduce Connection items
representing the LAN or WAN links between them, including information about
required latency and throughput. In this way, Verifoo could be able to provide a
smart placement strategy for VNFs to be instantiated.

48

3 – Requirements Definition and Analysis

3.4.2 Integration design

Different approaches could be undertaken to achieve integration of service graph
validation and deployment management in the tool: the following sections present
the considered ones, together with their strengths and weaknesses.

3.4.2.1 Open Baton plugin

As a low-impact and integrated solution for extending Open Baton functionali-
ties[28], the plugin has been a first-class option. As described in section 3.3.5, a
plugin is a software component able to receive notifications about NSR lifecycle
through registration to an event system. In response to events generated from the
NFVO, the plug-in can take actions receiving as input data the generated VNF
Record or the NS Record depending on the type of event the plug-in subscribed to.

This solution, even being the most integrated and better-documented way of
extending the NFVO, does not satisfy the requirements, as it cannot directly interact
with NS Record lifecycle once started deployment: it could be possible for the plugin
to take actions consuming Open Baton REST interface, yet the service descriptor
cannot be object of modifications until deployment, renouncing to service graph
validation. Virtual instances placement is in any case not being considered as plugin
capabilities do not allow to interact with the resource allocation from the NFVO.

3.4.2.2 Open Baton Contribution

A contribution to Open Baton project has been the most flexible solution considered,
as deep integration with the MANO architecture allows fulfillment of requirements.
Graph validation can be achieved integrating Verifoo with the NFVO component,
and can be performed at onboard time, rejecting invalid service graphs uploads,
or could interact with the lifecycle validating services upon deployment requests.
Graph optimization can be performed together with validation or could happen at a
separate time. As for service deployment management, the possibilities depend on
the use cases defined in section 3.4.1: in case the infrastructure architecture is based
on a single-PoP, as previously stated is necessary to modify ETSI-defined inter-
faces to allow interactions including deployment schedules information; differently,
a multiple-PoP use case can be handled complying to MANO standards.

Although the most flexible solution, a contribution to the Open Baton project

49

3 – Requirements Definition and Analysis

leveraging an external tool for service validation introduces a dependency that could
be seen from the community as an excessive burden to the project, especially con-
sidering the highly decoupled architecture the tool is built on. Moreover, it could be
overcomplicated to maintain the software to make it compliant to the newer releases
of the orchestrator.

3.4.2.3 External Software

The last option taken into consideration has been an external software integrating
with both Open Baton and Verifoo through exposed REST interfaces. This solution
allows to interact with the orchestrator introducing graph validation and optimiza-
tion in the phase of Network Service catalog upload, thus allowing onboarding of
a service graph only after a validation check, rejecting formally invalid descriptors,
and possibly updating the graph to optimize configurations and service design. As
tools involved in the solution have to be operated as an end user, consuming avail-
able user-facing services, platform-specific characteristics cannot be overridden, as
could be happening in a contribution scenario; in particular it is necessary to re-
nounce to NFV placement optimization feature, available in Verifoo, and instance
deployment orchestration must be delegated to the MANO platform. Advantages in
undertaking this approach are the interoperability of the solution, which could be
able to support the lifecycle of both Verifoo and Open Baton in a decoupled fashion.

3.4.3 Analysis conclusions

Albeit the interesting possibilities offered by the multi-PoP architectural approach,
also considering current trends in multi-domain and geographically-distributed NFV
orchestration ([29]), it has emerged as a non-functional requirement that the use
cases for this thesis work focus mainly on single-PoP scenarios. This considered,
and taking into account the strengths and weaknesses of possible solution designs,
the development of an external software interacting with the two existing tools has
been evaluated as the best choice. In the following chapter will be detailed the design
choices and implementation methods undertaken to achieve the desired result.

50

Chapter 4

Veribaton

With the label of "Veribaton" has been identified for the sake of brevity the solu-
tion developed to extend the capabilities of the Open Baton orchestrator in terms
of service graph verification and validation, by integrating the tool Verifoo. This
chapter intends to present an outline of the development process of Veribaton, and
is structured as follows:

• Section 4.1 presents the design principles of Veribaton.

• Section 4.2 describes the implementation process, difficulties encountered and
how they have been overtaken.

• Section 4.3 illustrates testing procedures and a demonstration scenario used
to validate the solution.

4.1 Design

The aim of this development process is to obtain a product able to interact with Open
Baton during the operation of NSD catalog upload in order to perform verification
and validation over the graph instance before onboarding. Figure 4.1 shows the
sequence diagram representing the graph uploading activity: as it can be seen,
Veribaton receives as input the NSD, converts this information into a representation
which can be digested by Verifoo, subsequently consumes the verification service
to obtain an optimized version of the original graph. After obtaining the result,
converts the result in ETSI NSD representation to feed it to Open Baton for catalog

51

4 – Veribaton

Figure 4.1: Veribaton sequence diagram.

onboarding. In the end, the user receives a feedback message stating the success or
failure of its operation.

This architecture has been designed to comply with the following principles:

• Interface compatibility: the interface used to interact with Veribaton ser-
vice should match completely the interface exposed by Open Baton for NSD

52

4 – Veribaton

onboarding. In this way, the end user can be unaware of Veribaton presence
if not interested, and behave as it was interacting with Open Baton; the main
advantage in this context is that network services can be developed following
ETSI data model, making Veribaton validation capabilities pluggable at the
user discretion, based on the endpoint where the request is placed. Veribaton
becomes this way a sort of "proxy" which could be used depending on the
needs, with NSD instances built directly for Open Baton. As communication
with Open Baton happens through a REST interface over HTTP, Veribaton
will be itself a RESTful API server.

• Input validation: Verifoo acts as a validator for the input provided to Veri-
baton, implying that an invalid service graph will be blocked before reaching
Open Baton with suitable feedback for the user. In particular, Verifoo is in
charge of verifying that nodes are correctly organized in a chain, and policies
specified as input such as reachability and isolation between VNFs are satisfi-
able. In this way, it is prevented the scenario in which a service present in the
catalog once deployed does not behave as expected.

• Graph optimization: once received the optimal service configuration from
Verifoo, the original input should be modified according to it. Possible sce-
narios include removal of nodes from the graph and automatic configuration
of elements such as firewalls, which should be reflected on the NSD to be
uploaded to Open Baton.

4.1.1 Development framework

The design phase of the tool included the choice of the programming environment to
be used to develop Veribaton. The following sections define an outline of the selected
tools and the reasons for which they have emerged as the preferred solution.

4.1.1.1 Java programming language

The programming language chosen to implement Veribaton is Java[30], an object-
oriented general-purpose language born in the 1990s which has constantly grown in
popularity over the years and appreciated for its versatility and compatibility. It
has been selected for different reasons:

53

4 – Veribaton

• Ease of use: being statically-typed, object-oriented with a syntax deriving
from C and C++, Java language is fairly well understandable and easy to use.
It relies on a garbage collector for automatic memory management, reliev-
ing the programmer of memory allocation issues. It’s type system, although
complicated, is well designed and allows great flexibility in type definition.

• Platform independence: Java is an interpreted language designed to ex-
ecute on top of any operating system and hardware architecture providing
run-time support for it. This is achieved by compiling the source Java code
into an intermediate representation called bytecode, a set of low-level instruc-
tions which can be executed from an interpreter, the Java Virtual Machine
(JVM), compatible with the host execution environment. In this way, Java
bytecode can be exported everywhere a JVM is supported and be executed
without modification.

• Popularity and support: during the last decades, Java has grown expo-
nentially as a programming language, becoming a sort of lingua franca of
enterprise software development. This growth has generated a complex and
rich ecosystem of applications, libraries, and tools supporting the language,
each followed by its specific documentation, which constitutes real value for
the community and for the programmer. A prolific production of open-source
libraries provides implementations for many of the most common development
issues.

• Object-oriented paradigm: Java is built as an all-around object-oriented
language, its consistent and efficient type system allows to organize and extend
the code, and is better suited for management of a large-scale code base than
most of the general-purpose languages.

• Performance: modern JVMs leverage Just-In-Time (JIT) compilation to
compile Java bytecode into native binaries targeting the machine executing
the code at run-time. This provides excellent performance, almost compara-
ble to native binaries built compiling low-level languages such as C or C++
into machine code, surely outrunning interpreted programming languages like
Python or JavaScript[31].

• Maintainability: due to the popularity of Java language and its easy under-
standability, united to the tooling which allows documenting the deliverable
in an appropriate way, it will be possible for the open-source community to
maintain and extend the software.

54

4 – Veribaton

• Open Baton SDK availability: although a simple REST client could be
sufficient for interacting with Open Baton, an SDK is offered as a Java library
to ease operations.

Nevertheless, different drawbacks might emerge from the usage of this program-
ming language:

• Memory management: the usage of a virtual machine executing the byte-
code, and garbage collection without instant reclaim, cause Java programs to
consume memory in orders of magnitude higher than systems with manual
memory management such as C or C++. Memory deallocation is performed
by the garbage collector in some implementations of the JVM in a stop-the-
world fashion, interrupting program execution until unreachable objects are
not freed, in others is handled incrementally, yet consuming more resources in
the process. However, in modern systems with fewer constraints in terms of
memory, this approach does not constitute a significant problem for general-
purpose and non-real-time software.

• Verbosity: Java as a language has been designed with simplicity and un-
derstandability in mind, and the features that make it so are also causing
programs written in Java to be fairly longer than other programming lan-
guages; some frameworks implementing the paradigm of dependency injection
and inversion of control (Spring Framework among them, detailed in section
4.1.1.2), reduce the amount of code necessary to the program execution at the
cost of clarity of the interactions between classes.

Other languages considered for Veribaton implementation include Python, C,
JavaScript, and Golang among languages known by the author, yet for the reasons
described Java emerged as the preferred tool.

4.1.1.2 Spring Boot

There exist several ways of implementing a RESTful service in Java, including using
instances of the Servlet interface to accept HTTP requests and provide responses,
using a JAX-RS API[32] implementation like Jersey or Apache CXF, or using a more
complex framework such as Spring or Apache Struts. Using low-level HTTP handlers
reduces applications dependencies, yet makes hard implementing REST paradigm
from the ground up. Leveraging JAX-RS, an interface for RESTful service defined

55

4 – Veribaton

by the Java EE (Enterprise Edition) platform; implementations of this standards
come in different forms and depend on the application server the web service will be
deployed on. A framework as Spring or Struts abstracts low-level details to allow
focusing on business logic.

Spring Boot[33] is a project aiming to simplify configuration and deployment
in building a Java Spring application by packaging in one executable all necessary
components to execute it, providing a completely stand-alone application working
out-of-the-box. It extends the Spring framework by embedding the required servlet
container (Tomcat, Jetty or Undertow), eliminating the need of packaging the ap-
plication into a WAR archive and deploy it to the desired application server; more-
over, takes care of the aspects that received criticism of Spring, such as the need
of verbose XML configuration, providing standards for configuration externalization
without the need of writing XML, and adding nonfunctional features like security
and support for authorization and authentication, metrics and health-checks. Being
well-documented and allowing full personalization of the features and behaviors of
the framework, in addition to enabling a loosely coupled architecture, Spring Boot
has been considered appropriate for selection in Veribaton development.

4.1.1.3 Gradle

Spring Boot application projects are typically accompanied by a build automation
utility tool for libraries dependency management, source code compilation, binary
packaging, and unit tests execution. Any build system could be used, yet fully
supported build systems are Maven and Gradle. Maven is an Apache project defining
a POM (Project Object Model) as an XML file defining the project structure and its
configuration details used to build the project. Gradle, instead, achieves dependency
management and build automation leveraging a DSL (Domain-Specific Language)
based on Groovy, a JVM-based scripting language) to define and run tasks. Both of
them allow project compilation and dependency resolution, downloading necessary
libraries from external repositories, defining the tasks to execute in order to build
the binary and in which order, and packaging the application in different formats.

In the context of this thesis work, the reasons behind the choice of Gradle as a
build management tool can be described as follows:

• Dependency graph: while conventional systems use a linear representation in
the form of a series of steps to describe tasks and their dependencies, Gradle

56

4 – Veribaton

makes use of a directed acyclic graph (DAG) to model these relationships, thus
allowing more precise and granular task definition.

• Incremental builds: due to the DAG structure, Gradle is capable of deter-
mining whether a task needs to be executed or not based on the update of its
dependencies; in this way unnecessary tasks execution is avoided, dramatically
reducing build time.

• Performance: in addition to incremental builds, Gradle is able to reuse the
output of previous runs of tasks when detects they are being run with the
same inputs, implementing this way a caching system to further reduce build
times. Moreover, Gradle makes use of a compilation daemon running in the
background, to minimize build initialization time deriving from the instanti-
ation of the JVM, as well as to leverage in-memory caching for achieving the
best performance.

• Flexibility: Gradle is extensively customizable, it allows the definition of cus-
tom tasks and scripting using Groovy.

4.1.2 Open Baton API interface

Open Baton offers a broad catalog of RESTful operations allowing integration with
the orchestrator system as a whole, exposing all possible interactions with the sys-
tem. Among documented interfaces, it is necessary to select a subset for implemen-
tation in order to expose them as Veribaton APIs.

Tables 4.1, 4.2 and 4.3 show API operations considered, divided by scope; each
of them receives as an input parameter as a request HTTP header the identificator
of the project it is referring to, therefore the parameter has been omitted for clarity.
Open Baton API catalog is fairly larger, yet it has been chosen to not include APIs
scopes not relevant to this analysis, such as users management or VIM onboarding,
and to filter out preemptively operations not meaningful for the purposes of this
thesis work.

Selected contexts of interest, as can be seen, include:

• NSD: intercepting CRUD (Create, Retrieve, Update and Delete) operations
on NSD resources is the most straightforward mean of interacting with service

57

4 – Veribaton

Table 4.1: Open Baton NSD API operations.

Scope Method Endpoint Description Codes

NSD GET /api/v1/ns-descriptors Returns all NSDs
onboarded.

200
404

NSD POST /api/v1/ns-descriptors Onboards the NSD
received as payload.

201
404

NSD GET /api/v1/ns-descriptors/{id} Returns the NSD
with the specified

ID.

200
404

NSD PUT /api/v1/ns-descriptors/{id} Creates or updates
the NSD with the

specified ID.

201
202
404

NSD DELETE /api/v1/ns-descriptors/{id} Deletes the NSD
with the specified

ID.

204

NSD POST /api/v1/ns-
descriptors/multipledelete

Deletes NSDs which
IDs are specified in

payload.

204
404

graph; in particular NSD onboarding can be leveraged to verify graph validity;
in case of invalid service definition, the operation can be stopped, differently,
the request can be forwarded to Open Baton.

• VNFD: APIs related to the VNFD catalog have been considered for imple-
mentation, as in order to be used in a network service, VNFs need to comply
Verifoo specifications in terms of functional type and configuration (details in
section 4.1.3).

• NSR: implementing NSR-related operations would mean the possibility of
interacting with NSD deployment, therefore could be possible to implement
service verification at deployment time. These APIs allow modification of an
already deployed service, which could indicate the update of an existing service
in order to comply with formal verification of the service graph.

Looking at functional requirements, the workflow step considered more appro-
priate for enforcement of correctness and reachability policies has been the NSD

58

4 – Veribaton

Table 4.2: Open Baton VNFD API operations.

Scope Method Endpoint Description Codes

VNFD GET /api/v1/vnf-descriptors Returns all VNFDs
onboarded.

200
404

VNFD POST /api/v1/vnf-descriptors Onboards the
VNFD received as

payload.

201
404

VNFD GET /api/v1/vnf-
descriptors/{id}

Returns the VNFD
with the specified

ID.

200
404

VNFD PUT /api/v1/vnf-
descriptors/{id}

Creates or updates
the VNFD with the

specified ID.

201
202
404

VNFD DELETE /api/v1/vnf-
descriptors/{id}

Deletes the VNFD
with the specified

ID.

204

VNFD POST /api/v1/vnf-
descriptors/multipledelete

Deletes VNFDs
which IDs are

specified in payload.

204
404

onboarding, therefore the implementation of operations related to NSD catalog is
required.

Analyzed use cases for Veribaton involve uploading of a service graph as a whole,
given Verifoo data model, therefore exposing VNFD-related operations has been
considered not essential; if necessary, could be implemented in future releases of the
tool.

In this context, the instantiation of the verified NSD is imagined to be executed in
a following moment at the hands of a system administrator able to manually inspect
the graph; moreover, after onboarding through Veribaton, it would be redundant
to perform validation for the service. This set of APIs could be implemented in
the scenario of update of a deployed service, which for the moment has not been
considered.

59

4 – Veribaton

Table 4.3: Open Baton NSR API operations.

Scope Method Endpoint Description Codes

NSR GET /api/v1/ns-records Returns all NSRs
deployed.

200
404

NSR POST /api/v1/ns-records Deploys the NSR
receiving an NSD as

payload.

201
404

NSR GET /api/v1/ns-records/{id} Returns the NSR
with the specified

ID.

200
404

NSR POST /api/v1/ns-records/{id} Deploys an NSR
with the NSD
having the ID

specified in path.

201
404

NSR PUT /api/v1/ns-records/{id} Updates the NSR
with the specified

ID.

201
202
404

NSR DELETE /api/v1/ns-records/{id} Deletes the NSR
with the specified

ID.

204

NSR POST /api/v1/ns-
records/multipledelete

Deletes NSRs which
IDs are specified in

payload.

204
404

4.1.3 Data model conversion

As summarized in table 4.4 the most critical aspect which should be taken into
consideration during the design of the solution derives from the difference in the
data model between Verifoo and Open Baton representation of the service graph:

• Serialization format: Open Baton is using JSON as its data model serial-
ization format, while Verifoo makes use of an XML document adhering to an
XML Schema Definition: it will be necessary to convert between the two for-
mats during graph validation step. In order to comply with Verifoo schema, it

60

4 – Veribaton

Table 4.4: Open Baton and Verifoo information model comparison

Open Baton Verifoo

Serialization ETSI-defined JSON XSD-based XML

VNFFG Nodes connected to
virtual links

Adjacency between
nodes

Node descriptors VM image Functional type

Configuration Key-value pairs Node-specific
configuration

Infrastructure N/A Physical hosts and links

is necessary to import the XSD file and validate the generated XML payloads
against the schema. The most viable solution to integrate XML validation
seamlessly is automatic code generation from the schema, using one of the
supporting tools for the technology.

• Graph model: the representation of the VNF forwarding graph between the
two tools significantly differs conceptually; in Open Baton and in ETSI guide-
lines the VNF-FG is represented as a set of paths interconnecting different
VNF descriptors to form a graph, while in Verifoo the separation between
nodes descriptors and connections enabling traffic flow between them is not
highlighted, and graphs are created using the idea of adjacency between neigh-
boring nodes. In this case, it will be critical to understand how to convert the
VNF paths model to an adjacency-based model without losing information.

At the moment of writing, Open Baton does not completely support Ser-
vice Function Chaining (SFC), preventing routing configuration through SDN-
based techniques, therefore a heavy usage of the VNFFGD section (2.3.4.5)
seems inappropriate for the first assumption of the design principles, according
to which compatibility with Open Baton represents a crucial aspect. Moreover,
Verifoo data model includes the concept of forwarding graph in the definition
of nodes, and for this reason, it is impossible to represent different graphs
spanning over the same VNF nodes. Given these assumptions, has been de-
cided to drop multiple graph support in favor of simplicity in the definition of
the network service: in service design, adjacency between nodes will be rep-
resented by VNFs connected to the same virtual link, and a simple algorithm

61

4 – Veribaton

will extract the neighbor of each node based on its connections.

• VNF descriptors: in Verifoo, VNFs are represented as nodes, each having
as an attribute a functional type describing the role the VNF embodies in the
service graph in a broad outline, such as FIREWALL, NAT or WEBSERVER.
This conflicts with ETSI specifications, in which a VNF is represented using its
Virtual Deployment Unit (VDU); VDU information includes, other than CPU
cores, memory, storage capacity of the VNF, information about the virtual
machine image used to clone the VNF, without any specific information about
its functional behavior. For this reason, it is compulsory to define in VNF
metadata information about the role it is assuming in order to propagate
this information to Verifoo during graph validation. Open Baton information
model offers the type attribute at the VNF level which can be fit for the
purpose. Is to be considered that Verifoo functional type can assume a limited
number of different values, this will cause a restriction in the ETSI data model
which provides a free format string as an input value.

• Configuration: another noticeable difference which should be taken into ac-
count in solution design is how VNFs configuration parameters are specified.
In Verifoo, each VNF functional type includes its own configuration item, each
defining one or more parameters the node can receive. In Open Baton and
ETSI in general, parameters are passed to VNFs as key-value pairs without any
particular restriction; this approach leaves the user a higher grade of flexibility
and customization for the functions, yet on the other side lacks input control,
definition of required and optional parameters, format of configuration values,
and complex types such as arrays and dictionaries, not negligible in case of
heterogeneous scenarios in which VNFs might require articulated settings.
In order to achieve the desired result in terms of configuration, it is necessary
to define for each functional type which parameters to support for Verifoo
verification; selected ones will be evaluated by Verifoo and can be used for
service graph properties such as reachability or isolation between nodes as
in case of firewall rules or NAT settings, other parameters will pass through
validation and will be meaningful to Open Baton only. The disadvantage of
this approach is that this might likely result in hard-coded handling of possible
enumeration values, hence implying a lower overall code quality in terms of
flexibility and modularity.

• Infrastructure description: Open Baton data model is infrastructure ag-
nostic, deployment is entirely handled by the VIM driver, while infrastructure

62

4 – Veribaton

knowledge is delegated to the VIM internals. Verifoo, instead, has knowledge
of physical resources and uses them to compute an optimal deployment plan.
At the beginning of the design process, Verifoo was not able to verify the graph
and fulfill deployment information without specification of the infrastructure
the VNFs will be deployed on, hence it has been necessary to implement a
Veribaton version creating a dummy infrastructure on which Verifoo could op-
erate. Verifoo second version has been enhanced to overcome these limitations,
therefore it has been possible to neglect the notion of underlying infrastructure.

4.2 Implementation

This section addresses the development phase following the design stage of Veriba-
ton. It focuses on interaction with the framework and guidelines used in order to
improve Veribaton user and developer experience in terms of configuration manage-
ment, maintenance, and code readability; outlines the core business logic illustrating
the implementation of the algorithms for data conversion between the subsystems;
moreover, it describes the documentation process of the code and the exposed in-
terface, through the tools of Javadoc and Swagger respectively.

4.2.1 Project configuration

Spring framework does not set any constraint related to the project directory lay-
out, although encourages a conventional code structure as a best practice to ease
development and maintainability. In the case of Veribaton, the directory layout
chosen for the project complies with the standard defined by Maven[34], and more
specifically represented in figure 4.2.

The structure of the directories reflects the anatomy of a typical Gradle project.
As can be seen, the source code of the application resides completely in the src

folder, under the project root. As for Maven default, java classes are placed at the
path src/main/java inside a sub-tree of directories representing the class package
they belong to. At the first level, in a root package above other classes, is placed
the application main class Application.java, in charge of bootstrapping the service:
this class defines a minimal main method in charge of simply running the Spring
application, and is annotated with @SpringBootApplication, an annotation setting the
main entry point for the framework, and enabling three features:

63

4 – Veribaton

build

gradle

wrapper

gradle-wrapper.jar

gradle-wrapper.properties

src

main

java

it

polito

veribaton

Application.java

resources

application.properties

gradlew

gradlew.bat

build.gradle

settings.gradle

Readme.md

directory containing Gradle-generated build artifacts

contains JAR and configuration for Gradle Wrapper

application Java source files

folder containing it.polito.veribaton package classes

Veribaton main class

Veribaton resource files

properties configuration file

script for executing wrapper (bash)

script for executing wrapper (windows)

Gradle build script

Gradle project settings

markdown documentation

Figure 4.2: Project directory tree

• Component scan, detecting and registering @Component annotated classes start-
ing from the main class package.

• Auto-configuration, for which the framework attempts to provide configuration
based on dependencies included in the classpath.

64

4 – Veribaton

• Configuration, allowing importing configuration classes.

Application resource files reside under the path src/main/resources: this includes
static files and assets used by the application; furthermore, the framework by default
reads the application.properties file at this location in order to load configuration
options. This file contains key-value pairs separated by an equal sign as described
by Java properties format that will be added to Spring Environment for later use.

At the project root, the gradle folder is present, containing gradle-wrapper.jar,
a JAR file including Gradle Wrapper classes, and gradle-wrapper.properties, de-
scribing its respective configuration. Gradle Wrapper is the recommended system
for execution of Gradle builds, which consists of a script able to invoke a specific
version of Gradle, downloading it beforehand if not installed. This allows tying the
project build configuration script to a specific Gradle version, assuring it is always
possible to build the project even on systems in which Gradle is not installed, and
always using the same version of the build tool, leading to more reliable builds. In
case the Gradle version needs to be updated, it is sufficient to update the wrapper
configuration file. As a result, the project has a dramatically low setup time, as it is
not required to follow manual installation procedures. For this purpose, two scripts
are present in the root directory, gradlew, a shell script for unix-based systems, and
gradlew.bat, a batch file for Microsoft Windows operating systems, which behave as
the entry point of the tasks to be executed for performing the build.

File settings.gradle defines the configuration required to instantiate the project
hierarchy in case of multi-project builds. This is not the case of Veribaton, which
consist of a single module, therefore this file is optional; however, this script allows
defining the root project name, as by default it would have been defined after the
name of the root folder. The build.gradle script is the core of the build configuration
for the project. In order to enable Spring Boot specific tasks, it is necessary to add
the Spring Boot Gradle plugin to the configuration through the lines described in
listing 4.1.

1 buildscript {
2 repositories {
3 mavenCentral()
4 }
5 dependencies {
6 classpath("org.springframework.boot:spring-boot-gradle-plugin:2.0.5.RELEASE")
7 }
8 }
9

65

4 – Veribaton

10 apply plugin: ’org.springframework.boot’
11 apply plugin: ’java’

Listing 4.1: Gradle Spring Boot plugin configuration.

This script adds the plugin to the classpath referencing it through the Maven
central repository, an artifact storage system provided by the community, and then
includes it through the apply plugin directive. This plugin, when used together
with the java plugin, enables a task able to collect and package all libraries on the
classpath into a single executable JAR file, which can be easily moved for deployment
and used to launch the service. Moreover, provides a dependency resolver that
configures all dependencies version numbers according to the selected Spring Boot
version, in any case leaving the possibility to override default settings.

In order to instantiate a RESTful interface replying to incoming HTTP requests,
Spring Boot is able to embed a web server component into the application, to avoid
packaging the classes into a WAR archive for deployment on a servlet container
platform; for this purpose, there are available a set of libraries to add as dependencies
which include the basic components to build a web-enabled application, together
with the HTTP server. The default bootstrap library is spring-boot-starter-web,
including Tomcat, but it is possible to use Jetty or Undertow instead by changing
it with a more specific one. To include required JARs, it is possible to create a
dependencies block inside the build.gradle file as in listing 4.2.

1 dependencies {
2 implementation ’org.springframework.boot:spring-boot-starter-web’
3 }

Listing 4.2: Gradle starter dependencies block.

To build and run the solution, Gradle offers two possible tasks: bootJar packages
a JAR file including the service and its relative dependencies, which is possible to
execute using the command java -jar build/libs/<JAR file name>, and the bootRun

task, which uses the Gradle plugin to build and directly run the application. All
build artifacts generated from Gradle tasks are stored in the build directory under
the root of the project.

66

4 – Veribaton

4.2.2 Resource representation

To comply with the principles of REST[35] architecture the HTTP service interface
should be organized in resources, each of them having its own URL and repre-
sentation. Therefore, it is necessary to build classes that model the web service
resources, in the form of POJOs (Plain Old Java Object), a class which implements
java.io.Serializable and is not bound to other classes, with a constructor that re-
ceives no argument, and having standard getters and setters for its properties. When
a similar class is defined, Spring is able of using the Jackson JSON library to auto-
matically serialize the class in its JSON representation, and to unmarshal received
input into instances of the class.

Since Veribaton implements the resource representation of Open Baton, an open-
source project which is implemented using Java language, it has been possible to
import the Open Baton SDK, a library including the required data model for the
NSD API and the helper methods for interaction to the NFVO, and defining the
resources using Open Baton classes to ensure full compatibility. In case of update of
the NFVO, it could be sufficient to update the dependency to the required version.

4.2.3 Controller methods

In Spring approach to RESTful services, a @Controller or @RestController annotation
defines a class handling HTTP requests. Each controller class is typically associated
with a single URL defining a resource or a collection. In Veribaton case, only
one controller has been implemented, as operations defined in table 4.1 all share a
common path segment, /api/v1/ns-descriptors.

The class NetworkServiceDescriptorController has been defined, and the path
mapping implementation for the NSD collection controller has been achieved using
the annotation @RequestMapping("/ns-descriptors"), which associates all methods be-
longing to the class to a common root URL.

Subsequently, for each operation which should be implemented in the service a
method of the class is provided; two annotations allow the correct handling of the
HTTP request: @RequestMapping is used to define the allowed methods, the media
type of the operation input and output, and bindings for parameters passed in the
path; @ResponseStatus, instead, sets the response HTTP status code upon successful
completion of the request.

67

4 – Veribaton

The arguments of handler methods can be defined as Java objects and primitives,
and wired to the HTTP request body through @RequestBody, parameters present in
the resource path with @PathVariable, or HTTP headers using @RequestHeader.

4.2.4 Externalized configuration

As Veribaton use case involves multiple moving pieces, namely the two different
back-end services Verifoo and Open Baton, it has been deemed useful to adopt an
approach based on configuration files to define the services URLs and settings which
may vary often, especially taking into consideration different lifecycle environments
such as local development, staging, and production. Spring offers a highly dynamic
system for configuration externalization[36], in which configuration properties are
loaded hierarchically in a particular order sensible to user overrides, to allow the
same application code to work independently from the environment.

In particular, a @SpringApplication annotated class will check and load properties
from different sources: the application.properties configuration file present under
the folder src/main/resources serves as a definition of default values for variables,
while property files defined outside the packaged JAR gain precedence, especially if
contained in a directory /config. These configuration values get overridden by, in
order, operating system environment variables, JVM system properties, and com-
mand line arguments. There exist other possible options, as only the most common
have been described, and the load order is customizable at preference.

Table 4.5 defines Veribaton properties and their default value, configured in the
application.properties file.

These property values can be injected into class attributes using the @Value an-
notation, and allow agile service configuration. An exception is represented by the
server.port property, which is defined by the Spring Boot framework and deter-
mines the HTTP listener port: normally the default for the framework is 8080, it
has been overridden to avoid conflicts specifically during local development, in which
all services should be running on the same host.

4.2.5 Verifoo annotated classes generation

Verifoo REST service communicates through an XML-based interface in which rep-
resentation of resources relies on XML Schema Definition for validation. In order to

68

4 – Veribaton

Table 4.5: Veribaton configurable properties.

Property Description Default value

server.port The TCP port the REST API server
will listen on

9090

verifoo.scheme Scheme for verifoo URL, can be http
or https

http

verifoo.host Verifoo base URL, can be a hostname
or IP address

localhost

verifoo.port Port on which Verifoo is listening 8090

verifoo.baseUri Base URI for Verifoo REST service /verifoo/rest

verifoo.deploymentUri URI for deployment service on Verifoo
REST API

/deployment

openbaton.host Open Baton NFVO address, can be a
hostname or IP

localhost

openbaton.port Port on which Open Baton is listening
on

8080

openbaton.username Username provided when requesting
services from Open Baton

admin

openbaton.password Password for Open Baton user openbaton

openbaton.ssl Whether Openbaton REST uses https
or not, can be true or false

false

interact with the service, it is necessary to obtain Java classes models of the XML
document; this can be achieved using the xjc shell script. This tool name stands
for XML to Java Compiler and it is able, based on an existing XSD schema, to
generate classes annotated with JAXB (Java Architecture for XML Binding) anno-
tation, the standard Java framework for XML processing, which can be later used
for marshaling and unmarshaling of XML objects.

After importing Verifoo XSD files, nfvSchema.xsd together with the other schema
files it references, under the resources path of the project, it is possible to execute
xjc from the terminal shell to obtain generated source classes. However, to fully
integrate the generated classes into the project lifecycle, it is necessary to add the

69

4 – Veribaton

code generation step to the build automation, in order to make sure Verifoo classes
are kept up-to-date upon Verifoo versions and schema change. Adding the xjc tool
to Gradle script is not officially supported through a specific plugin as it does for
Maven, yet there exists an Ant plugin which could be invoked by Gradle. To do
so, the jaxb dependency should be added, and a custom task needs to be defined in
build.gradle. In this way is possible to add in the dependency block of the Gradle
script the classes built by the compiler, which will be executed each time a clean
action is performed.

4.2.6 ETSI JSON to Verifoo XML conversion

Interacting with Verifoo for service validation implies converting the NSD received as
an input of operations performing the catalog onboarding. This operation presents
different complexities, as described in 4.1.3: this section purpose is to describe the
implementation methods and choices taken to overcome such limitations.

4.2.6.1 Serialization

Spring framework controllers handle input unmarshaling from JSON format as de-
scribed in 4.2.2, by automatically instantiating objects defined by resource classes,
using the Jackson library. As a result, it is possible to wire the request body to a
parameter in the method signature. For interaction with the NFVO instead, low-
level serialization details are handled by the Open Baton SDK library: the methods
signatures make use of the same classes defined as input for the controller methods.

Once instantiated the objects representing Verifoo resources, XML marshaling
is handled transparently from JAXB; HTTP client functionalities are handled by
using Spring RestTemplate, a class exposing a simple interface for most common
REST scenarios, which can be used to execute requests to Verifoo.

4.2.6.2 Graph model

ETSI NSD represents the service in the form of VNFs connected to Virtual Links,
while Verifoo data model is based upon the concept of adjacency between the nodes,
where each element has a list of neighbors. In order to convert the graph between the
two information models it has been necessary to design and implement an algorithm
performing the following steps:

70

4 – Veribaton

• Extract networks: all Virtual Links are extracted from the service definition,
and for each link, an empty set of VNF objects is created.

• Populate networks with nodes: iterating over available VNFs, for each
node a row in an adjacency matrix is created; then, the node is added to the
set of nodes of each network it is attached to. In this way, at the end of the
iteration, for each Virtual Link, there is a list of nodes connected to it, and
there exists an empty list of neighbor nodes for each VNF.

• Create adjacency matrix: iterating over the lists of nodes connected to each
network, the row of the adjacency matrix of each VNF is updated adding to it
all the nodes belonging to the same network, except the node itself; duplicate
nodes will not be present more than once. In this way, at the end of the step
for each VNF there will be a list of neighbor nodes.

• Define neighbors: for each row in the adjacency matrix, create a node in
Verifoo representation and add to it the list of its neighbors.

After interaction with Verifoo service the created graph might experiences mod-
ifications: the tool applies the validation logic, verifying that reachability and isola-
tion between nodes defined as input are satisfied, and it is possible that some nodes,
which have been marked as optional, are in fact unnecessary and are removed from
the network service, as they do not concur to the policies fulfillment. In this case,
it is necessary to apply an algorithm able to apply the same modifications to the
original NS descriptor. In detail, for each optional node in Verifoo graph which has
not been deployed, the corresponding VNF in the NSD is removed from the service;
moreover, since Service Function Chaining support is not complete for the current
release of Veribaton, Virtual Links in the original NSD are collapsed into a single
link, with the purpose of guaranteeing traffic flow between VNFs.

4.2.6.3 VNF Descriptors and configuration

The difference in data structure between ETSI VNFDs and Verifoo nodes has a
number of implications. In the first place, it is necessary to impose a constraint
on the field NSD -> VNFD -> type: this is a free format string in ETSI data model,
yet it should be used from the service designer to define the functional type of
the corresponding Verifoo node, implemented as an enumerated value as described
in section 3.2.1.1; this restricts possible values of the VNF definition to the ones
supported by Verifoo. Moreover, Open Baton configuration format consists in a set

71

4 – Veribaton

of key-value pairs, allowing uniquely scalar values as parameters; Verifoo, on the
other hand, allows a specific configuration element to be defined for each VNF type,
often making use of composite types for values. This results in a lower expressiveness
when converting from ETSI format, and an unavoidable loss of information when
reversing the process, forcing the definition of a custom serialization format for
complex parameters.

In order to define Verifoo nodes on the basis of VNFDs, it has been necessary
to rely on the flexibility of ETSI configuration, defining special purpose keys which
would be ignored by the instantiated VNFs. Depending on the value of the type field,
the related specific configuration is created in Verifoo graph, then it is populated
by extracting the values from configuration objects in which the key string matches
the property name. In case of list values, it is necessary to duplicate the keys in
the entries for the NSD; this does not reflect when converting a configuration array
back to the ETSI format, as values having the same key will be overridden by the
NFVO.

To complete information related to the node it is also necessary to add node
constraints (3.2.1): the optional configuration key holds a boolean value which is
used to determine whether the node can be removed if considered unnecessary from
the verification algorithm or not. As concerns other node constraints, e.g. CPU
cores and memory, they are not yet supported in Open Baton, therefore have been
ignored.

Leveraging configuration was also the strategy used for the implementation of
graph properties, specifically reachability and isolation. In this case, the keys used to
represent this concept are canReach and cannotReach: this allows to obtain properties
definitions in which the source node is the VNF including such parameter keys, while
the parameter value represents the target node.

4.2.6.4 Infrastructure

At the beginning of this thesis work the first Verifoo version has been used: this
implementation required an infrastructure definition to be present in the service
graph, in order to deploy nodes on a set of physical hosts and connections. Not
having information about this domain in the NSD, it has been necessary to pro-
grammatically generate a dummy one for the sake of correct interaction with the
service. This infrastructure definition has been generated in the following way:

72

4 – Veribaton

• Each edge node in the service graph, specifically a WEBCLIENT, WEB-
SERVER, MAILCLIENT, MAILSERVER, ENDHOST, and ENDPOINT, gen-
erates a dedicated host of type CLIENT or SERVER to which it is tied to.

• A single cauldron host is created with the type MIDDLEBOX to accommodate
all other functional types; it is defined with a high value of resources in order
to avoid being a bottleneck during the execution of the scheduling algorithm.

• A mesh of connections between hosts is created.

In the following versions of Verifoo the algorithm completes successfully even in
absence of hosts and interconnections, hence is not necessary to generate them.

4.2.7 Exception handling

Being Veribaton dependant on a multiplicity of external components, different ex-
ceptions can arise during operation of the tool related to errors of the downstream
services, which should be interpreted for their functional value, whether they in-
dicate an invalid service graph, or depend on different causes. Intercepting these
errors correctly allows notifying the client in an explanatory way while failing to do
so could result in an unusable service. Follows the detail of different scenarios which
have been considered, together with their HTTP error codes[37].

• Invalid input format: in case the NSD input is not compliant to the format, the
client receives an HTTP Bad Request error; this scenario includes the cases in
which the VNF type cannot be correctly parsed as a Verifoo functional type.

• Invalid service graph: Verifoo response contains, for each property that has
been verified, the isSat attribute, indicating whether the property was satisfi-
able or not; at the first unsatisfiable property, the service responds with a Bad
Request error, containing the details of which property was not satisfied.

• Invalid Verifoo payload: upon receiving a 400 error code from Verifoo, this is
forwarded to the client; the most common occurrence of this scenario is when
VNFs are not correctly organized in a chain.

• Verifoo service error: if Verifoo experiences an unexpected server error, a 500
code is generated, which is dispatched to Veribaton consumer.

73

4 – Veribaton

• Verifoo communication error: in case of communication errors, this is reported
using an Internal Server Error response.

• NFVO operation error: due to the usage of the Open Baton SDK, interaction
happens through a library method invocation, meaning that no fine-grained
support for errors in provided; in any case, errors in communicating with the
NFVO result in a 500 HTTP response.

For the sake of clarity, two custom exceptions have been defined in Veribaton,
InvalidGraphException and UnsatisfiedPropertyException; these allow precisely defin-
ing the cause of the error.

Spring allows the customization of the error handler in order to specify the prop-
erties of responses in case of controller methods exceptions. In Veribaton case, a the
VeribatonErrorController class has been implemented: it takes care of outputting
JSON objects in the occurrence of an error. The error properties are wired auto-
matically by the framework using the annotation @Autowired for the object of class
ErrorAttributes, and include a textual representation of the timestamp the excep-
tion was raised, the HTTP code and meaning, the message available and the path
of the request.

4.2.8 OpenAPI documentation

OpenAPI[38], formerly known as Swagger, is an open-source collaborative project
driven by the Linux Foundation and has the purpose of creating a specification
defining a standardized file format for describing a REST API. Specifications can
be written in JSON or YAML[39], and the structure is intended to be both human-
readable and machine-readable. On top of this format, a growing set of tools has
been developed, starting from Swagger UI, a web interface able to create dynamic
API documentation, the Swagger Codegen, able to automatically generate client and
server code in multiple languages compliant to the RESTful interface described in
the OpenAPI file, and many others.

In the context of Veribaton, this specification allows creating a live documen-
tation of the API, tightly bound to the server implementation and hence always
up-to-date with the code, useful to both programmatic and human API consumers.
Through the use of SpringFox library[40] it is possible to automate Swagger file
generation based on implemented controller methods.

74

4 – Veribaton

In order to serve the Swagger file by means of an endpoint of the service, it is
necessary to create a controller class, the SwaggerController, and annotate it using
@EnableSwagger2, which will cause the endpoint to respond to HTTP GET requests
with a Swagger JSON document, compliant to version 2 of the OpenAPI spec, built
by scanning controller classes in the project and their respective methods. A con-
figuration bean allows selecting how the documentation file is generated: gives the
possibility to filter operations to include based on the package their controller is, the
type of documentation, the description of the elements and more. Although Ope-
nAPI version is currently 3.0, this library allows up to version 2 of the specification.
For each controller method, it is possible to customize the name of the operation
and relative description in order to have them included in the documentation in the
preferred form, differently a default automatically generated will be used.

Figure 4.3: Veribaton Swagger UI page.

Adding as a dependency the library springfox-swagger-ui adds to the service the
static files necessary to serve the Swagger UI page and adds several endpoints:

• A /swagger.json resource serving the Swagger JSON file.

• The /swagger-resources URI, which is possible to invoke to retrieve the list of
all swagger resources configured for the application.

• A resource serving the Swagger UI page, at /swagger-ui.html.

As a result, as the Swagger UI interface is accessed by the client, it will take

75

4 – Veribaton

care of configuring itself using information gathered using the /swagger-resources

endpoint in order to correctly render the service API descriptor file.

For the purpose of simplifying the administrator in retrieving the Swagger UI, a
redirect entry has been added, listening at the path /swagger, pointing to the HTML
file location.

4.3 Testing and validation

With the purpose of verifying the applicability of the implemented solution, it has
been necessary to create a demonstration environment in which to test the inter-
action between the different components; moreover, one or more Network Service
Descriptor instances had to be fed as an input to the software to confirm the ex-
pectations about the service validity. As a final step, onboarded services had to be
deployed to verify communication between the VNFs, and the correct behavior of
the orchestrator in terms of VNF instantiation and configuration.

4.3.1 Environment setup

To set up a demonstration environment for Veribaton, two different physical hosts
have been used: a laptop, on which the solution has been developed and tested, and
a host on which Open Baton and Verifoo have been deployed. Follows the hardware
specifications of the hosts.

Laptop:

• CPU: Intel i7 5500U @ 2.40 GHz

• RAM: 8 GB DDR3

• OS: Ubuntu Linux 18.04.2 LTS (Bionic Beaver)

NFVO host:

• CPU: Intel Core Duo Q8300 @ 2.50 GHz

• RAM: 8 GB DDR2

• OS: Ubuntu Linux 18.04.2 LTS (Bionic Beaver)

76

4 – Veribaton

Figure 4.4: Local testing environment.

Two different testing configurations have been realized to verify different use case
scenarios:

• Local: all services are located on the same host. Figure 4.4 visually describes
this scenario, in which all components have been installed in the laptop ma-
chine, and their connectivity is achieved through the use of the loopback in-
terface of the network card.

• Remote: Veribaton acts as a client application consuming REST APIs of the
external services located on a different host. In this scenario, Veribaton is
installed on the laptop while other services are configured on the NFVO host;
the two hosts are connected through their network interface to the same LAN,
as shown in figure 4.5

The different use cases derive from the low resources available on the devel-
opment environment, therefore it has been necessary to separate the components
when testing instances of service graphs with several nodes. Moreover, the remote
configuration allows verifying that connectivity does not represent an issue for the
operation of the solution.

4.3.1.1 Docker VIM

Docker[6] is an operating-system-level virtualization platform, able to create and
manage container instances running in isolation. The Docker Engine, the core tool of
the platform, is a client-server application based on multiple components: a daemon

77

4 – Veribaton

Figure 4.5: Remote testing environment.

server process executing persistently in the background, called dockerd, which is in
charge of containers lifecycle and all resources related such as storage volumes and
networking; a REST API exposing a uniform interface to interact with the daemon
and send commands to it; and a Command Line Interface (CLI) as a user tool for
interacting with the API to perform administration tasks.

Docker creates containers based on images, which are templates for container
instances: they contain a snapshot of the filesystem of an application, including all
required libraries and executables, and a set of instructions to start the packaged
software, relying on the host kernel to be executed. Docker images are commonly
stored in registries, repositories from where the Docker daemon is able to import
them and execute the related container instances; the Docker Hub is a publicly avail-
able registry where both official images and ones created by the users are uploaded
and available to the community, and Docker is configured by default to use it to
search for images, even if it is possible to modify the setting to address a private
repository.

As described in section 3.3.3.2, it is possible to use Docker as Virtualized Infras-
tructure Manager, as it allows the creation of VNFs based con container images, and
is able to configure networking in order to allow connectivity between containers.
In order to do this in Veribaton environment, it has been sufficient to install the
software on the physical hosts.

78

4 – Veribaton

4.3.1.2 Open Baton

As a consequence of its architecture, Open Baton is consisting of multiple com-
ponents in communication through an instance of the RabbitMQ message broker,
which should be installed separately and configured to interact with each other.
To solve the complexity of the setup, the Open Baton team chose as the preferred
installation solution Docker Compose, a tool which allows defining and running ap-
plications composed by multiple Docker containers. It requires the Docker Engine
to be installed on the host

Leveraging this tool, it is relatively easy to install the different components using
a definition file, written in YAML format, containing the description of all necessary
containers together with their configuration options. The minimum configuration of
installed components to instantiate network services on the Docker virtual environ-
ment is composed of:

• NFVO: the main component, allows service orchestration and funnels user
interactions.

• RabbitMQ Broker: the backbone of Open Baton, allowing communication
between the components.

• NFVO Database: persists data for the NFVO, such as descriptor catalog
and state of deployed services.

• Docker VNFM: allows configuration of container instances on top of an
installed Docker Engine; depends on the Docker VIM driver.

• Docker VIM Driver: together with the Docker VNFM allows interaction
with the Docker Engine for containers and networking instantiation.

To use the Docker Engine instance as VIM is necessary to onboard it as a PoP:
communication happens locally and is achieved through UNIX sockets. A VIM
instance can be uploaded using the payload specified in listing 4.3.

It is then possible to reference the PoP during deployment through the value
used for the name field. In case the Docker daemon is configured to accept unau-
thenticated connections, the username and password fields are not required and can
be substituted by a blank string.

79

4 – Veribaton

1 {
2 "name": "vim-instance",
3 "authUrl": "unix:///var/run/docker.sock",
4 "username": "admin",
5 "password": "openbaton",
6 "type": "docker"
7 }

Listing 4.3: Docker VIM instance ondoarding payload.

4.3.1.3 Verifoo

Verifoo is implemented as a Java Enterprise Edition application, exposing a RESTful
interface through the JAX-RS (Java API for RESTful Web Services) interface, in
particular using the Jersey library. For this reason, in order to deploy the service it
is necessary to package compiled class files into a WAR archive and deploy it to a
servlet container; according to Verifoo documentation the supported tool is Apache
Tomcat[41], an implementation of several Java EE specifications, among which the
Java Servlet technology, and provides an HTTP web server environment listening
for TCP connections and on which Java code can be executed.

Verifoo can be installed on a Tomcat instance either statically, by moving the
WAR file in a specific folder of the host, or dynamically, by uploading the archive
containing compiled classes through the Tomcat manager application, offering an
interface for deployment management both programmatically and interactively. In
particular, Verifoo makes use of the Ant[42] build tool that includes a set of tasks
for automatic distribution of the application on a Tomcat environment.

Installation of Verifoo involves the following steps:

• Installation of the Java Runtime Environment version 7 or later.

• Installation of Apache Tomcat version 8.5.

• For the correct functioning of the application, it is necessary to install and
include in the Java Library Path the Microsoft Z3 native library.

• Deployment of the application using an already packaged version or by exe-
cuting the Ant script tasks ant deploy or ant deployWS.

80

4 – Veribaton

4.3.1.4 Veribaton

The only prerequisite for Veribaton installation is an installed Java Runtime Envi-
ronment. Execution of the application is achievable in two different ways:

• JAR deployment: Veribaton classes can be packaged as an executable JAR
file by the means of the Gradle task bootJar. This archive can be used to
bootstrap the service using the command java -jar veribaton.jar.

• Gradle plugin: the Gradle task bootRun compiles and executes the service
starting from the sources.

The service can be configured, as described in section 4.1.1.2, by providing a
properties file overriding default parameter values, which are provided to support the
local development environment. The remote use case scenario needs the properties
related to the network addresses of external services to be overridden accordingly to
the environment configuration.

4.3.2 NSD test instances

To verify the capabilities of the software has been necessary to design several NSD
instances representing common use cases of the tool and feed them as input to
Veribaton. During the testing of the solution, Verifoo upgraded from version 1.0 to
version 2.0: in the following sections are highlighted the differences in service graph
design for the two renditions of the tool.

4.3.2.1 Verifoo 1.0

NSDs implemented while integrating Verifoo 1.0 consider the limitations imposed
by the version of the tool:

• Link redundancy: in order to exploit Verifoo capability to detect and remove
unused nodes for the satisfiability of the properties given as input, it is possible
to flag nodes as optional. It is necessary, however, to provide an additional
connection between the node preceding the optional node and the one following
it, because it does not have the capability of recreating the adjacency between
VNFs in case of removal of a node. While this issue can affect smaller instances

81

4 – Veribaton

in a lower measure, for graphs with a higher number of nodes this results in a
proliferation of connections not useful to the purposes of the network services,
and seriously affect service design. For this reason, only NSDs with a relatively
low number of nodes have been considered, and each optional node presents
the additional neighbors necessary to complete the node removal functionality.

• Autoconfiguration issues: Verifoo has the capability of computing and
applying the correct configuration for nodes in accordance with the properties
specified in the NFV object, with particular attention to the VNFs having
the FIREWALL functional type. More specifically, it can detect the default
routing policy for packets in the form of denying or allowing traffic forwarding,
and the rules necessary to satisfy the required conditions. In this version, some
of these features are not always behaving as expected, therefore it has been
necessary to adapt the network service design according to the presented issues.

• Performance: in some specific cases it has been detected that graph ver-
ification demonstrated performance issues affecting the user experience in a
substantial way. A memory leak has been identified in the construction of the
NAT VNF model preventing validation of instances including a NAT to com-
plete successfully; in other cases, graphs with less than ten nodes, therefore
instances which are considered minimal, experienced a considerably high so-
lution time, so that Veribaton would encounter a time-out without providing
responses to the user.

Having reported instances affected by these issues as test instances, it has been
possible to verify that in the subsequent release of the software they have been
addressed correctly. Test cases performed are detailed in the following sections.

4.3.2.1.1 Scenario 1A Figure 4.6 describes visually the configuration of this
test instance including two web client nodes, two firewalls and one NAT VNFs
connecting to a web server.

• Reachability is required between node A and node B.

• Reachability is required between node C and node B.

• Node 1 and node 3 are optional and are not configured.

• Node 2 is required.

82

4 – Veribaton

Figure 4.6: NSD with two web clients, two firewalls, one NAT and one web server
VNFs, with node connections redundancy.

The test instance completes successfully behaving as expected: both node 1 and
node 3 are removed as they are not necessary for guaranteeing reachability.

4.3.2.1.2 Scenario 1B This scenario node configuration is kept equivalent to
the one described in figure 4.6, with the following properties:

• Reachability is required between node A and node B.

• Isolation is required between node C and node B.

• Node 1 and node 3 are optional and are not configured.

• Node 2 is required.

In this case, the test is not successful: again both node 1 and node 3 have been
removed, yet to ensure isolation between node C and node B it is necessary to
introduce at least a firewall instance in the service graph.

4.3.2.1.3 Scenario 1C The NSD for this scenario is described in figure 4.7; is
composed of three we client nodes, three firewalls connected to two web servers. The
properties of the graph are as follows:

• Reachability is required between node A and node B.

• Isolation is required between node C and node B.

83

4 – Veribaton

Figure 4.7: NSD with three web clients, three firewalls, and two web server VNFs.

• All firewall nodes are required.

This service instance does not complete as receives an Internal Server Error from
Verifoo. According to the service logs, it depends on an error invoking the Z3 library
through the JNI interface.

4.3.2.2 Verifoo 2.0

In the following version of Verifoo, restrictions enforced by the tool have been over-
come, leading to the test instances described in the following paragraphs.

4.3.2.2.1 Scenario 2A As shown in figure 4.8, test case involving the same
service graph as scenario 2B, yet removing redundant links. The settings of the
service are:

• Reachability is required between node A and node B.

• Isolation is required between node C and node B.

• Node 1, node 2 and node 3 are optional and are not configured.

As a result, service validation is successful; as expected, node 3 has been removed,
while node 1 has been configured to allow traffic directed from node A to node B,
denying everything else.

84

4 – Veribaton

Figure 4.8: NSD with two web client nodes, two firewalls, one NAT, and one web
server.

4.3.2.2.2 Scenario 2B This test case makes use of the service definition shown
in figure 4.7; configuration follows:

• Reachability is required between node A and node B.

• Reachability is required between node E and node B.

• Isolation is required between node C and node B.

• Firewall nodes are required and not configured.

As expected, none of the nodes has been removed; firewall nodes 1 and 2 are both
configured to allow connections between node A and node B, and from node E to
node B, while blocking the rest of the traffic. Firewall 3 has been left unconfigured.

4.3.2.2.3 Scenario 2C This scenario modifies the properties of the service de-
fined in figure 4.7 by flagging all middlebox VNFs as optional:

• Reachability is required between node A and node B.

• Reachability is required between node E and node B.

• Isolation is required between node C and node B.

• Node 1, node 2 and node 3 are optional and are provided an empty configu-
ration.

85

4 – Veribaton

The service graph properties result satisfiable; node 1 and node 3 are removed
as not necessary, while firewall VNF 2 is configured to forward packets from A to B
and from E to B, dropping all the others.

Figure 4.9: NSD with two web client nodes, two firewalls, and one web server.

4.3.2.2.4 Scenario 2D This use case is represented by figure 4.9, including a
simpler instance composed of two web clients, two firewalls and a web server instance.
The service is configured as follows:

• Reachability is required between node A and node B.

• Isolation is required between node C and node B.

• Node 2 is optional.

• Node 1 is required but provided without configuration.

The service instance completes successfully, node 2 is removed and the firewall
instance is configured in order to allow traffic from A to B and deny traffic from C
to B.

4.3.2.2.5 Scenario 2E For this test case the same node chaining defined in
figure 4.9 is used, yet is intended to provide an incorrect configuration by using a
conflicting set of properties to be verified. The properties follow:

• Reachability is required between node A and node B.

86

4 – Veribaton

• Isolation is required between node A and node B.

• Isolation is required between node C and node B.

• Node 2 is optional.

• Node 1 is required but provided without configuration.

As can be noticed the first two properties conflict; it is expected to receive as
output the notification of the faulty graph instance, either by flagging one of the two
as not satisfied, or returning a service error. The actual output shows the instance
as successfully validated: this highlights a fault in Verifoo conflict solving algorithm.

Figure 4.10: Faulty NSD with two web client nodes, two firewalls not connected to
each other and one web server.

4.3.2.2.6 Scenario 2F This test scenario used a faulty NSD in order to test
the detection of incorrect design of graph instances. In figure 4.10, representing the
considered graph, it is possible to notice the absence of a link connecting node1 to
node 2. This is expected to be identified as an issue causing the NSD to be rejected
from onboarding. The configuration used is:

• Reachability is required between node A and node B.

• Isolation is required between node C and node B.

• Node 2 is optional.

• Node 1 is required but provided without configuration.

87

4 – Veribaton

As intended, the service responds with an error stating the incompleteness of the
graph as nodes should be connected with each other.

4.3.3 VNF implementation

Deployment of the network services test cases required implementation of a mini-
mal working example of VNF software to verify the platform capabilities and the
interaction between the orchestrator and Docker containers, as well as connectivity
and networking. For this reason, it has been necessary to implement Docker images
supporting the service scenarios described in section 4.3.2, with particular interest
to the firewall and web client VNF.

The configuration of VNFs, from the point of view of the orchestrator, can be
performed in two possible cases, not mutually exclusive:

• Startup: the VNF instances are created having a set of environment variables
corresponding to the configuration keys defined in the VNFD; these variables
are set to the value of the parameter and can be read by the software running
in the virtualized instance to define its configuration.

• Runtime: after VM creation, lifecycle scripts can be executed on the instance
to obtain the desired state.

Since Docker VNFM does not allow the execution of lifecycle scripts because of the
characteristics of the container platform, which encourages packaging the application
in images that should be run off the shelf, it has been necessary to define VNF
software able to leverage environment variables passed to the container instance for
configuration.

4.3.3.1 Web Client

In order to deploy a container instance acting as a web client which could be accessed
interactively by the administrator to test connectivity, a Docker image had to be
developed so as the deriving containers could be able to be launched in a detached
state. Moreover, to compensate for the lack of Service Function Chaining capabilities
of the orchestrator, the VNF routing had to be configured in order to forward the
traffic through the correct node in the chain, as all the containers in the graph are
required to be attached to the same virtual link for reachability purposes.

88

4 – Veribaton

1 FROM node:latest
2

3 RUN apt-get update && apt-get install -y \
4 bridge-utils \
5 net-tools \
6 inetutils-traceroute
7

8 ADD run.sh /tmp/run.sh
9 RUN chmod +x /tmp/run.sh

10 ENTRYPOINT ["/tmp/run.sh"]

Listing 4.4: Web Client VNF Dockerfile.

The Docker file used to build the image is shown in listing 4.4.

As it is possible to note, the official Node.js image has been used as a base,
assuming a simple JavaScript client; as this image is not configured to be launched
in a detached state, yet it runs with the specified parameters before exiting, it has
been necessary to add a shell script executing in the background an infinite loop,
preventing the VNF to exit.

As shown in listing 4.5, in addition the script configures the routing table so
as packets directed to the address stored in variable nameWebServer are sent through
the host which name is contained in the environment variable netxHop. This has
the purpose of providing a way of configuring the VNF based on the information
gathered using the Verifoo service.

1 #!/bin/bash
2 ip route add "$(getent hosts "$nameWebServer" | awk ’{ print $1 }’)" via

"$(getent hosts "$nextHop" | awk ’{ print $1 }’)"
3 while true; do sleep 15 ; done

Listing 4.5: Web Client run.sh script.

4.3.3.2 Firewall

For the firewall VNF implementation, a simple iptables-based firewall has been
used, which could be configured to read the environment to apply iptables policies
for packet filtering.

As Verifoo configuration for firewall nodes is composed by a list of complex en-
tries, each containing information concerning the action to perform based on source

89

4 – Veribaton

and destination address of the packets, it is necessary to define a simple serializa-
tion format to include all available information as a string value to be used as a
configuration parameter. In addition, the VNF software needs to be able to cor-
rectly parse the information contained in the environment and apply corresponding
iptables filters.

1 FROM glanf/base:latest
2

3 ADD run.sh /tmp/run.sh
4 RUN chmod +x /tmp/run.sh
5 ENTRYPOINT ["/tmp/run.sh"]

Listing 4.6: Firewall VNF Dockerfile.

Listing 4.6 reports the Dockerfile used to build the firewall image; as a base has
been used an open-source image provided by the Network Laboratory of the Glasgow
University, in the context of the Glasgow Network Functions (GNF) project[43]. On
top of this, a custom script has been added to allow parsing of the configuration
variables and applying the related firewall rules.

1 #!/bin/bash
2 # $deny and $allow are in form src1,dst1;src2,dst2
3 IFS=’;’ read -ra ADDR <<< "$deny"
4 for i in "${ADDR[@]}"; do
5 IFS=’,’ read -ra SRCDST <<< "$i"
6 iptables -A FORWARD -s "${SRCDST[0]}" -d "${SRCDST[1]}" -j REJECT
7 done
8 # IFS=’;’ read -ra ADDR <<< "$deny" ...
9 if [[$defaultAction = [Aa][Ll][Ll][Oo][Ww]]]; then

10 iptables -t filter -A FORWARD -j ACCEPT
11 elif [[$defaultAction = [Dd][Ee][Nn][Yy]]]; then
12 iptables -t filter -A FORWARD -j REJECT
13 fi
14

15 while true; do sleep 15 ; done

Listing 4.7: Firewall run.sh script.

As it can be read in listing 4.7, the variable deny is expected to contain a set of
key-value pairs separated by the semicolon character; each pair, in turn, represents a
couple of source and destination addresses that the firewall should avoid forwarding,
therefore the appropriate rule is applied to iptables. Although omitted for brevity,
the same procedure is performed for the allow variable, this time permitting the

90

4 – Veribaton

traffic through the iptables rule. At the end of the startup script, the variable
defaultAction is checked to verify whether in case packets reach the end of the
processing chain they should be dropped or forwarded.

4.3.4 Service deployment

Figure 4.11: Open Baton deployment console.

Test NSD instances that completed validation successfully are then modified
according to Verifoo service response and uploaded on Open Baton catalog for de-
ployment. An administration user which is able to access the management console
can subsequently verify the presence of the instance in the catalog and launch the
network service as shown in figure 4.11.

During instantiation, it is possible to choose for each VNF the PoP on which it
will be located; given the nature of this thesis work, the only available possibility
will be the local Docker Engine onboarded during the environment configuration.
For the correct completion of deployment, it is necessary for the Docker PoP to
import the images used in the VDU section of the VNF, by pulling them from a
registry or building the Dockerfiles.

Upon deployment, each VNF lifecycle can be followed through the Network Ser-
vice Records section of the administration dashboard: assuming instantiation com-
pleted, each of the nodes should be reported in the ACTIVE state. It is possible
to verify directly on the VIM that containers have been created and are running;
by issuing the command docker ps on the host, a container process will be shown
for each VNF. Moreover, the creation of the virtual link between containers can be

91

4 – Veribaton

verified using docker network ls; this command will list all available virtual networks
for the Docker Engine, among which a link of type bridge can be noticed.

A connectivity test can be performed from the point of view of the VNF by
interacting directly with the container. It is possible to log on a container instance
using the command docker exec -it <node_name> bash. This allows the execution
of the bash program on a specified container; the flags used, i and t indicate re-
spectively that the program should be run interactively, meaning that it will keep
expecting input from the STDIN until explicitly detached, and that a pseudotermi-
nal will be allocated for the command. Inside the container, it is then possible to
perform actions aimed to verify the network service has been configured correctly.
As an example, with reference to the service instances described in section 4.3.2, the
following activities can be carried out:

• Verifying reachability and isolation by logging on the nodes defined as source
in the property; executing inside the bash session a curl or ping command
specifying the target node should lead to a failure in case isolation is requires,
and to success in case of reachability. This should be satisfied as it derives
from formal verification.

• Checking routing policies; executing the traceroute program from a web client
container targeting the corresponding web server should demonstrate that traf-
fic is conveyed through the host configured as a next hop. In case of incorrect
VNF configuration, as containers are attached to the same virtual link, packets
flow directly to the target node.

• Examine iptables routing policies logging on the firewall VNF container; this
information should correspond to what is defined in the allow, deny and de-
faultAction environment variables.

92

Chapter 5

Conclusions

The goal of this thesis work was to integrate external graph verification capabil-
ities provided by Verifoo to a tool deriving from the open-source community and
able to be used in a telecommunication service scenario. For this purpose, Verib-
aton has been developed, successfully presenting a solution capable of translating
the information model based on the ETSI specifications to the application-specific
format defined by the verification engine albeit the substantial differences in data
representation and structure.

However, it has not been possible to integrate all Verifoo features; specifically,
given the nature of orchestrators analyzed in the open-source panorama and their
interaction with the NFVI management platforms, it is not possible to perform the
resource allocation schedule in place of the VIM. Even considering infrastructure
managers offering the possibility of deployment host selection, ETSI-defined inter-
faces offer no support and are not suited for this interaction format with the NFVI.

As concerns Verifoo autoconfiguration capabilities, it has been possible to enrich
the VNFD based on the computed information; although, it must be noted that
the configuration model of the orchestration tools available as open-source software
an based on ETSI principles is designed to be agnostic to the chosen VNF im-
plementation, leaving to the service designer the responsibility of applying specific
parameters according to the interfaces exposed by the virtual appliances performing
the network function. Configuration options offered by Verifoo are defined on the
basis of the functional type of the VNF, therefore is necessary to adapt them to fit
the chosen implementation of each VNF type, actually departing from the concept
of vendor neutrality professed by ETSI. This limitation has been overcome for the

93

5 – Conclusions

purposes of this thesis work by developing VNF software exposing an interface based
on autoconfiguration settings obtained by Verifoo, yet in a different context, it could
be necessary to design a solution suitable to be applied to a cross-vendor scenario.
Furthermore, at the moment this feature can be exploited only for firewall nodes;
to obtain a complete framework for graph optimization, support of additional types
of VNF will represent a significant enhancement in future applications.

It should be taken into account, nevertheless, that Verifoo is to be considered
still in development, and therefore imposes some limitations; during the progress of
this work, issues arisen in its usage have contributed to identify aspects presenting
the possibility for improvement, leading to a major release. Despite that, as demon-
strated in the previous chapters, the tool has not yet reached the state of the art,
allowing a considerable margin of refinement.

The proposed solution leaves open a wide array of development prospects. The
lack of Service Function Chaining and SDN support in Open Baton imposed several
constraints during service design, which could be overcome upon implementation of
this feature in the platform, and might be refined if considering different NFV orches-
trators. An interesting opportunity is represented by the possibility of coordinating
a multi-PoP infrastructure: leveraging resource allocation capabilities of Verifoo, an
optimal deployment plan can be computed in a geographically-distributed network
service scenario, taking into account resource availability over a distributed NFV
Infrastructure, and connectivity properties such as latency and bandwidth between
multiple sites, opening the way for WAN-based use cases such as VNF placement
over public cloud services providers infrastructure.

In conclusion, Veribaton might be considered a starting point for enrichment
of MANO orchestration software; its design principles, unitedly to the modular
structure and ease of extensibility, allow it to be used as a basis to a comprehensive
framework for formally-verified network services, which can be integrated in a lean
and unobtrusive way with orchestration platforms available on the market.

94

Bibliography

[1] Verifoo github repository. url: https://github.com/netgroup- polito/
verifoo.

[2] Rajeshwari Ganesan et al. “Empirical study of performance benefits of hard-
ware assisted virtualization”. In: Aug. 2013. doi: 10.1145/2522548.2522598.

[3] Pradeep Padala et al. “Performance Evaluation of Virtualization Technologies
for Server Consolidation”. In: Technical Report HPL-2007-59R1, HP Labora-
tories (Jan. 2007).

[4] Roberto Morabito, Jimmy Kjällman, and Miika Komu. “Hypervisors vs. Lightweight
Virtualization: A Performance Comparison”. In: 2015 IEEE International Con-
ference on Cloud Engineering (2015), pp. 386–393.

[5] George Collins and Yahav Biran. “Multi-tenant utility computing with com-
pute containers”. In: Sept. 2015, pp. 213–217. doi: 10.1109/ICCE-Berlin.
2015.7391238.

[6] Dirk Merkel. “Docker: lightweight Linux containers for consistent development
and deployment”. In: Linux Journal 2014 (Mar. 2014).

[7] Announcing Amazon Elastic Compute Cloud (Amazon EC2) - beta. url: https:
//aws.amazon.com/it/about-aws/whats-new/2006/08/24/announcing-
amazon-elastic-compute-cloud-amazon-ec2---beta/.

[8] Christine Miyachi. “What is" Cloud"? It is time to update the NIST defini-
tion?” In: IEEE Cloud Computing 5.3 (2018), pp. 6–11.

[9] Peter Mell and Timothy Grance. “National Institute of Standards and Technol-
ogy, “The NIST Definition of Cloud Computing””. In: Nist Special Publication
145 (Jan. 2011).

[10] S. Azodolmolky, P. Wieder, and R. Yahyapour. “SDN-based cloud computing
networking”. In: 2013 15th International Conference on Transparent Optical
Networks (ICTON). June 2013. doi: 10.1109/ICTON.2013.6602678.

95

https://github.com/netgroup-polito/verifoo
https://github.com/netgroup-polito/verifoo
https://doi.org/10.1145/2522548.2522598
https://doi.org/10.1109/ICCE-Berlin.2015.7391238
https://doi.org/10.1109/ICCE-Berlin.2015.7391238
https://aws.amazon.com/it/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/it/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/it/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://doi.org/10.1109/ICTON.2013.6602678

BIBLIOGRAPHY

[11] SDN and OpenFlow World Congress. “Network Functions Virtualization white
paper”. In: Oct. 2012. url: http://portal.etsi.org/NFV/NFV_White_
Paper.pdf.

[12] ETSI. Network Functions Virtualisation (NFV); Architectural Framework. Oct.
2013. url: https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/
01.02.01_60/gs_nfv002v010201p.pdf.

[13] Faqir Zarrar Yousaf et al. “Cost analysis of initial deployment strategies for
virtualized mobile core network functions”. In: IEEE Communications Maga-
zine 53 (2015), pp. 60–66.

[14] ETSI. Network Functions Virtualisation (NFV); Management and Orchestra-
tion. Dec. 2014. url: https://www.etsi.org/deliver/etsi_gs/nfv-
man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf.

[15] Open Baton architecture diagram. url: https://openbaton.github.io/
documentation/images/openbaton-release-5.png.

[16] Open Baton website. url: http://openbaton.github.io/.
[17] RabbitMQ Website. url: https://www.rabbitmq.com/.
[18] Open Baton identity management documentation. url: https://openbaton.

github.io/documentation/security/.
[19] Open Baton REST API documentation. url: https://openbaton.github.

io/documentation/api/.
[20] Open Baton Generic VNFM sequence diagram. url: http://openbaton.

github.io/documentation/images/generic- vnfm- or- vnfm- seq- dg-
v2.png.

[21] Juju website. url: https://jujucharms.com/.
[22] Juju charm store. url: https://jujucharms.com/store.
[23] Open Baton VNFM interaction sequence diagram. url: http://openbaton.

github.io/documentation/images/nfvo-rest-vnfm-seq-dg-v2.png.
[24] Open Baton OpenStack VIM driver documentation. url: http://openbaton.

github.io/documentation/openstack-driver/.
[25] Zabbix website. url: https://www.zabbix.com/.
[26] ETSI. Network Functions Virtualisation (NFV); Management and Orchestra-

tion; Or-Vi reference point - Interface and Information Model Specification.
Apr. 2016. url: https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_
099/005/02.01.01_60/gs_nfv-ifa005v020101p.pdf.

96

http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/gs_nfv002v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv/001_099/002/01.02.01_60/gs_nfv002v010201p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://openbaton.github.io/documentation/images/openbaton-release-5.png
https://openbaton.github.io/documentation/images/openbaton-release-5.png
http://openbaton.github.io/
https://www.rabbitmq.com/
https://openbaton.github.io/documentation/security/
https://openbaton.github.io/documentation/security/
https://openbaton.github.io/documentation/api/
https://openbaton.github.io/documentation/api/
http://openbaton.github.io/documentation/images/generic-vnfm-or-vnfm-seq-dg-v2.png
http://openbaton.github.io/documentation/images/generic-vnfm-or-vnfm-seq-dg-v2.png
http://openbaton.github.io/documentation/images/generic-vnfm-or-vnfm-seq-dg-v2.png
https://jujucharms.com/
https://jujucharms.com/store
http://openbaton.github.io/documentation/images/nfvo-rest-vnfm-seq-dg-v2.png
http://openbaton.github.io/documentation/images/nfvo-rest-vnfm-seq-dg-v2.png
http://openbaton.github.io/documentation/openstack-driver/
http://openbaton.github.io/documentation/openstack-driver/
https://www.zabbix.com/
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/005/02.01.01_60/gs_nfv-ifa005v020101p.pdf
https://www.etsi.org/deliver/etsi_gs/NFV-IFA/001_099/005/02.01.01_60/gs_nfv-ifa005v020101p.pdf

BIBLIOGRAPHY

[27] Drools website. url: https://www.drools.org/.
[28] Openbaton plugin development documentation. url: https://openbaton.

github.io/documentation/how-to-register-event/.
[29] Mohammad Abu-Lebdeh et al. “NFV orchestrator placement for geo-distributed

systems”. In: 2017 IEEE 16th International Symposium on Network Comput-
ing and Applications (NCA) (2017), pp. 1–5.

[30] Ken Arnold, James Gosling, and David Holmes. The Java programming lan-
guage. Addison Wesley Professional, 2005.

[31] Mathieu Fourment and Michael R Gillings. “A comparison of common pro-
gramming languages used in bioinformatics”. In: BMC bioinformatics 9.1 (2008),
p. 82.

[32] JAX-RS API JSR. url: https://jcp.org/en/jsr/detail?id=339.
[33] Spring Boot overview. url: https://spring.io/projects/spring-boot.
[34] Introduction to Maven Directory Structure. url: https://maven.apache.

org/guides/introduction/introduction-to-the-standard-directory-
layout.html.

[35] Roy T. Fielding and Richard N. Taylor. “Principled Design of the Modern
Web Architecture”. In: ACM Trans. Internet Technol. 2.2 (May 2002). doi:
10.1145/514183.514185. url: http://doi.acm.org/10.1145/514183.
514185.

[36] 24. Externalized Configuration. url: https://docs.spring.io/spring-
boot/docs/current/reference/html/boot-features-external-config.
html.

[37] Roy Fielding and Julian Reschke. “RFC 7231-Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content”. In: Internet Engineering Task Force
(IETF) (2014).

[38] Open API website. url: https://www.openapis.org/.
[39] YAML website. url: https://yaml.org/.
[40] SpringFox Documentation. url: https://springfox.github.io/springfox/

docs/current/.
[41] Apache Tomcat home page. url: https://tomcat.apache.org/.
[42] Apache Ant home page. url: https://ant.apache.org/.

97

https://www.drools.org/
https://openbaton.github.io/documentation/how-to-register-event/
https://openbaton.github.io/documentation/how-to-register-event/
https://jcp.org/en/jsr/detail?id=339
https://spring.io/projects/spring-boot
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://doi.org/10.1145/514183.514185
http://doi.acm.org/10.1145/514183.514185
http://doi.acm.org/10.1145/514183.514185
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://www.openapis.org/
https://yaml.org/
https://springfox.github.io/springfox/docs/current/
https://springfox.github.io/springfox/docs/current/
https://tomcat.apache.org/
https://ant.apache.org/

BIBLIOGRAPHY

[43] Glasgow Network Functions (GNF). url: https://netlab.dcs.gla.ac.uk/
projects/glasgow-network-functions.

[44] Rashid Mijumbi et al. “Network Function Virtualization: State-of-the-Art and
Research Challenges”. In: IEEE Communications Surveys & Tutorials 18 (Sept.
2015). doi: 10.1109/COMST.2015.2477041.

[45] Gerald J. Popek and Robert P. Goldberg. “Formal Requirements for Virtu-
alizable Third Generation Architectures.” In: vol. 17. Jan. 1973, p. 121. doi:
10.1145/361011.361073.

[46] Sapan Gupta and Deepanshu Gera. “A comparison of LXD, Docker and Vir-
tual Machine”. In: International Journal of Scientific & Engineering Research
7.9 (2016).

[47] Lightweight Virtualized Containers for Network Function Virtualization (NFV).
Mar. 2018. url: https://software.intel.com/en-us/articles/lightweight-
virtualized-containers-for-nfv.

[48] Moritz Raho et al. “KVM, Xen and Docker: A performance analysis for ARM
based NFV and cloud computing”. In: Information, Electronic and Electrical
Engineering (AIEEE), 2015 IEEE 3rd Workshop on Advances in. IEEE. 2015,
pp. 1–8.

[49] Rajkumar Buyya et al. “Cloud computing and emerging IT platforms: Vi-
sion, hype, and reality for delivering computing as the 5th utility”. In: Future
Generation computer systems 25.6 (2009), pp. 599–616.

[50] Software-Defined Networking (SDN) Definition. url: https://www.opennetworking.
org/sdn-definition/.

[51] Q. Duan, N. Ansari, and M. Toy. “Software-defined network virtualization: an
architectural framework for integrating SDN and NFV for service provisioning
in future networks”. In: IEEE Network 30.5 (Sept. 2016). issn: 0890-8044. doi:
10.1109/MNET.2016.7579021.

[52] Diego Kreutz et al. “Software-defined networking: A comprehensive survey”.
In: Proceedings of the IEEE 103.1 (2015), pp. 14–76.

[53] Ersue Mehmet. ETSI NFV Management and Orchestration - An Overview.
url: http://www.ietf.org/proceedings/88/slides/slides-88-opsawg-
6.pdf.

[54] Open Baton VNF Package documentation. url: https://openbaton.github.
io/documentation/vnf-package/.

98

https://netlab.dcs.gla.ac.uk/projects/glasgow-network-functions
https://netlab.dcs.gla.ac.uk/projects/glasgow-network-functions
https://doi.org/10.1109/COMST.2015.2477041
https://doi.org/10.1145/361011.361073
https://software.intel.com/en-us/articles/lightweight-virtualized-containers-for-nfv
https://software.intel.com/en-us/articles/lightweight-virtualized-containers-for-nfv
https://www.opennetworking.org/sdn-definition/
https://www.opennetworking.org/sdn-definition/
https://doi.org/10.1109/MNET.2016.7579021
http://www.ietf.org/proceedings/88/slides/slides-88-opsawg-6.pdf
http://www.ietf.org/proceedings/88/slides/slides-88-opsawg-6.pdf
https://openbaton.github.io/documentation/vnf-package/
https://openbaton.github.io/documentation/vnf-package/

BIBLIOGRAPHY

[55] Michael Till Beck and Juan Botero. “Scalable and Coordinated Allocation
of Service Function Chains”. In: Computer Communications 102 (Oct. 2016).
doi: 10.1016/j.comcom.2016.09.010.

99

https://doi.org/10.1016/j.comcom.2016.09.010

Acknowledgements

The path towards this work has been winding and tangled; its completion is in the
large part due to the amazing people who have supported and motivated me to
pursue this goal.

My first thanks goes to my parents, whose incredible strength inspired me to
never surrender in the face of difficulties. Without my mom and dad, and their
infinite patience and love, this work would never have seen the light.

Thanks to my friends, who shared with me moments of joy and sorrow. As an
old Irish proverb states, a good friend is like a four-leaf clover: hard to find and
lucky to have, and I am incredibly lucky to have all of you.

I would like to express the deepest appreciation and the most sincere thanks
to Irene, the person who most of all has been able to understand, support and
encourage me during the hardest times. Thanks for believing in me, without you,
none of this would have been possible.

Finally, my biggest thought is for Dalia, whose smile will always lead my way.
This work is for you.

100

	List of Figures
	List of Tables
	Listings
	Introduction
	Network Functions Virtualization
	Virtualization
	Lightweight Virtualization

	Cloud Computing, SDN and NFV
	Cloud Computing
	Software-Defined Networking
	NFV and relationship to Cloud Computing and SDN

	ETSI NFV Architectural Framework
	Network Function Virtualization Infrastructure
	Virtualized Network Functions
	Network Services and VNF Forwarding Graph

	NFV MANO Architecture
	Network Function Virtualization Orchestrator (NFVO)
	Virtual Network Function Manager (VNFM)
	Virtualized Infrastructure Manager (VIM)

	ETSI Information Model
	Network Service
	Virtual Network Function
	Physical Network Function
	Virtual Links
	VNF Forwarding Graphs

	Requirements Definition and Analysis
	Objectives definition and functional requirements
	Verifoo
	Information Model
	Graphs
	Property Definitions
	Hosts
	Connections
	Constraints
	Network Forwarding Paths
	Parsing String

	REST API

	Open Baton
	Network Function Virtualisation Orchestrator
	Virtual Network Function Managers
	Generic VNFM
	Juju VNFM adapter
	Docker VNFM
	Custom VNFM adapter
	Custom-built VNFM

	Virtualized Infrastructure Manager Drivers
	OpenStack VIM driver
	Docker VIM driver
	Amazon VIM driver
	Test VIM driver

	Operation Support System (OSS)
	Monitoring Plugin
	AutoScaling Engine (ASE)
	Fault Management System (FMS)
	Network Slicing Engine (NSE)

	Event Engine and Plugins

	Solution high-level analysis
	Single-PoP versus multiple-PoP deployment optimization
	Single PoP
	Multiple PoP

	Integration design
	Open Baton plugin
	Open Baton Contribution
	External Software

	Analysis conclusions

	Veribaton
	Design
	Development framework
	Java programming language
	Spring Boot
	Gradle

	Open Baton API interface
	Data model conversion

	Implementation
	Project configuration
	Resource representation
	Controller methods
	Externalized configuration
	Verifoo annotated classes generation
	ETSI JSON to Verifoo XML conversion
	Serialization
	Graph model
	VNF Descriptors and configuration
	Infrastructure

	Exception handling
	OpenAPI documentation

	Testing and validation
	Environment setup
	Docker VIM
	Open Baton
	Verifoo
	Veribaton

	NSD test instances
	Verifoo 1.0
	Scenario 1A
	Scenario 1B
	Scenario 1C

	Verifoo 2.0
	Scenario 2A
	Scenario 2B
	Scenario 2C
	Scenario 2D
	Scenario 2E
	Scenario 2F

	VNF implementation
	Web Client
	Firewall

	Service deployment

	Conclusions
	Bibliography

