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Abstract

Recent technological improvements in the field of neurorobotics have led
to developments of numerous wearable robotic assistive devices in the field
of rehabilitation. Such new prosthetic and orthotic devices should ideally
recognize a users intention to act and aid with different environmental inte-
ractions. While the mechanical design of such devices remains a demanding
challenge, it is equally important to address and investigate novel control
strategies that allow the control of these devices in an intuitive and seam-
less way. In fact, the objective of novel control paradigms in prostheses
and orthoses is to recognize effectively the user intention through bio-signals
those generate spontaneously during movement, like electromyography. Even
though myoelectric prostheses are nowadays a common reality for upper limb
amputees, none of the available lower limb prosthesis on the market provi-
de EMG-driven control. The aim of this work is therefore the definition
of a novel approach for myoelectric control in lower limb prosthesis capa-
ble of overcome state-of-the-art controller limitation. In fact, since modern
lower limb prostheses can generate net positive mechanical work, they also
have the capability to restore natural gait in amputees. Configuration of
these devices imposes a new control layout with respect to conventional pro-
stheses. The new control layout driven from user intention to move should
consider peculiar differences between rhythmic and the voluntary movemen-
ts, in order to combine and optimize the control strategy. To successfully
accomplish this task, a novel machine learning based approach for gait-cycle
classification and impedance law controller is derived. The first layer of the
proposed control framework is implemented with supervised machine lear-
ning classifiers for optimal walking phase identification. For each identified
phase impedance control law parameters are subsequently tuned automati-
cally through gaussian regression and applied to the knee and ankle joints of
the prostheses. Both classification and regression machine learning models
are investigated through input signals and parameters combination. Per-
formance of the controller is evaluated through online simulations of the
controller: minimization of the error between the predicted control output
and the measured physiological joint torque is used to assess the different
proposed approaches. The results show that inclusion of EMG-signals in the
control framework do increase slightly the gait-cycle classification accuracy
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with respect to traditional sensors. What is shown, is that the inclusion of
a machine learning algorithm avoids the need of other sensorial information
needed, such as the Ground Reaction Force.
For now, the inclusion of EMG signals do not seem to favor the performan-
ce of the gait cycle, but prior analysis indicate that it may well be used in
motor task transitions, such as start walking or standing up. In fact, the
extension of the classifier with an additional layer which includes the EMG
signals to distinguish between standing or walking condition may increase the
performance and aid the wearer to a more consistent and voluntary control.
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Capitolo 1

Background and Motivation

1.1 Human locomotor system

Locomotion is the ability to move and is one of the most important cha-
racteristics of living organisms. Locomotion and movements in vertebrates,
including man, are brought about by skeleton, joint and muscles. The hu-
man walking process is defined as a bipedal, two-phased forward propulsive
locomotion leading to a translation in space of the centre of gravity of the
body [1] [2] . By alternating coordinated movements of different segments
of the body using the least amount of energy as possible, it involves the
synergical cooperation among its components.

The human locomotive apparatus, as all the vertebrates, is composed by
three main agents: the muscular system, the skeletal system (forming toge-
ther the muscoskeletal system) and the nervous system. All three together
form an organ system that gives humans the ability to move. While the
muscoskeletal provides form, support, stability and movement of the body,
the nervous system is responsible for the control and the correct execution
of each part involved. The legs are the two lower limbs of the human bo-
dy. They provide support of weight, adaption to gravity and a range of
movements, enabling the body to freely move around and shift its centre of
gravity. The lower limbs consist of three segments each - the thigh, the tibia
and the foot - and three joints - the hip, the knee and the ankle - containing
altogether 30 bones and 54 muscles. In the next subsections each segment
and joint will be explained individually. In the following chapters all three
of the agents will be discussed, related in particular to the lower limbs.

1.1.1 Lower limb muscoskeletal system

Skeletal system

The human skeleton is the internal framework of the body, composed of 206
bones, cartilages, ligaments and other tissues [3] . Bone tissue is a hard,
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Figura 1.1: Muscoskeletal system of the human body

dense connective tissue that forms most of the adult skeleton. In the areas
of the skeleton where whole bones move against each other, cartilage, a
semi-rigid form of connective tissue, provides flexibility and smooth surfaces
for movement. Additionally, ligaments composed of dense connective tissue
surround these joints, connecting the bones to the adjacent ones. Together
they protect the internal organs, store and release fat and minerals, produce
blood cells, facilitate movement and support the body. The skeletal system
also provides attachment points for muscles to allow movements at the joints.

The human lower limbs are connected to the upper axial skeleton part
through the left and right hip bones: the pelvic girdle. The femur is the
largest bone in the body and the only bone of the thigh region. The femur
forms the ball and socket hip joint with the hip bone and forms the knee joint
with the tibia and patella (also known as kneecap). The tibia and fibula are
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the bones of the tibia region. The tibia bone is much larger then the fibula
and bears almost all of the body’s weight. The fibula is mainly a muscle
attachment point and is used to help maintain balance. The tibia and fibula
form the ankle joint with the talus, one of the seven tarsal bones in the foot.
The tarsals are a group of seven small bones that form the posterior end of
the foot and heel. The tarsals form joints with the five long metatarsals of
the foot. Then each of the metatarsals forms a joint with one of the set of
phalanges in the toes. Each toe has three phalanges, except for the big toe,
which only has two phalanges.

Figura 1.2: Lower limb skeletal system [38]

Joint structure and lower limb ranges of motion When muscles con-
tract they produce a motion of the joint to which they are related to. In
the lower limb the joints are the hip, knee and ankle joint. All of them are
synovial joints. Synovial joints are the most common type of joint in the
body. A key structural characteristic is the presence of a joint cavity. This
fluid-filled space is the site at which the articulating surfaces of the bones
have contact with each other. The articulating bone surfaces at a synovial
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joint are not directly connected to each other with fibrous connective tissue
or cartilage. This gives the bones the ability to move smoothly against each
other, allowing for increased joint mobility.

Figura 1.3: Synovial joint [39]

Each joint has its one range of possible movements [4], as listed in table
1.1.

Muscular system

The muscular system, attached to the bones of the skeletal system, is re-
sponsible for the movement of the human body. There are approximately
700 known and named muscles and each one of them is a discrete organ con-
structed of soft contractile tissue, blood vessels, tendons and nerves. There
are three types of muscle tissue: visceral, cardiac and skeletal.

Visceral and cardiac muscles are found in the inner part of the body.
The former is found inside organs like the stomach, intestines and blood
vessels and makes them contract to move substances through them. The
second type is only found in the heart and its contraction in a rhythmic
pattern pumps blood throughout the body. They are both controlled by
the autonomic nervous system and they are known as involuntary muscles.
While cardiac muscle appear striped under the microscope, visceral muscle
lack that characteristic and are therefore also called smooth muscle.
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Joint Motion Range Mean
Hip Extension 0 to 35° 9.5°

Flexion 90 to 150° 120°
Abduction 15 to 55° 38.5°
Adduction 15 to 45° 30.5°
Internal rotation 20 to 50° 32.5°
External rotation 10 to 55° 33.6°

Knee Extension 0 to -10° -1.6°
Flexion 115 to 160° 143.7°

Ankle Dorsiflexion 5 to 40° 15.3°
Plantarflexion 10 to 55° 39.6°
Eversion 15 to 50° 27.7°
Inversion 15 to 50° 27.7°

Tabella 1.1: Human lower limb joint ranges and movements

Skeletal muscles on the other hand are the only voluntary muscle, con-
trolled from the somatic nervous system and they concern with movement,
posture and balance of the human body. Skeletal muscles are attached to
the skeleton by tough connective tissues called tendons. The muscles span
over the joints and connect the bones. When the muscles contract, they pull
on the bones, causing them to move. As cardiac muscle they have a striped
appearance and longer muscle fibres. They contract due to stimuli sent by
the nervous system’s motor neurons. Skeletal muscles rarely work solely to
movement generation, instead they usually work in groups to produce pre-
cise movements. The muscle that produces any particular movement of the
body is known as an agonist or prime mover. The agonist always pairs with
an antagonist muscle that produces the opposite effect on the same bone [5].

In addition other muscles, called synergists, work to support the move-
ments of the agonist. Synergists are muscles that help stabilize a movement
and reduce extraneous movements [6]. They are usually found in regions
near the agonist and often connect to the same bones. Because skeletal
muscles move the bones they are attached together, fixator muscles assist
the movement by stabilizing the origin of the agonist and the joint that the
origin spans. The majority of fixator muscles are found working around the
hip and shoulder joints.

Lower limb muscular system The thigh is the segment located between
the hip and the knee and contains some of the largest muscle masses. The
thigh muscles are divided in three main categories: hamstrings, quadriceps
and adductors:

• The hamstrings are the three big muscles located at the back of the
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Figura 1.4: Different muscles types [40]

thigh. They include the biceps femoris, semitendinosus and the se-
mimembranosus. Each hamstring crosses two joints: the hip and the
knee. By contracting they flex the knee joint, adduct the leg and
extend the thigh to the backside of the body.

• The quadriceps are the four muscles located on the front of the thigh,
consisting of the vastus intermedius, vastus medialis, vastus lateralis
and rectus femoris. When the quadriceps contract, they straighten the
leg at the knee joint. Since they extend over the kneecap, they also
help to keep the kneecap in its proper position in a groove at the end
of the thigh bone. The rectus femoris also crosses the hip joint and
can assist in hip flexion and hip extension.

• The adductors are the muscles located on the inside of the thigh. There
are five muscles in this group: gracilis, obturator externus, adductor
brevis, adductor longus and adductor magnus. By contracting they
pull the legs together and help stabilize the hip joint. Although all of
these muscles adduct the hip, the adductor magnus is also responsible
for stabilizing the knee when the hamstrings are engaged but to weak
or restrained to sustain the actions of the knee.

The tibia is the part of the leg located between the knee and the ankle
joints. The muscles located on the tibia are divided in two compartments:
anterior and back muscles.

• There are four muscles in the anterior compartment of the leg: tibalis
anterior, extensor digitorum longus, extensor hallucis longus and fibu-
laris tertius. Collectively they act to pull the toes and feet upward and
invert the foot at the ankle joint. The extensor digitorum longus and
extensor hallucis longus also extend the toes.
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Figura 1.5: Hip and thigh muscle groups [41]

• The backside compartment instead hosts the calf muscle, which is ac-
tually made up of two muscles: the bigger gastrocnemius and the smal-
ler soleus. The gastrocnemius doesn’t actually attach to the bones of
the shin, skipping them to connect to the femur bone and the heel.
The gastrocnemius crosses paths with the hamstrings as it attaches on
either side of the femur. The calf muscles through their interaction
with the foot and the leg lift the heel of the ground and facilitate all
bipedal locomotions.

The foot is the part of the leg located distally with respect to the ankle
joint. The muscles acting on the foot can be divided into two distinct groups:
extrinsic and intrinsic muscles.

• Extrinsic muscles originate from the lower leg, their long tendons cross
the ankle joint and insert onto one of the bones of the foot. They are
mainly responsible for actions such as eversion, inversion, plantarfle-
xion and dorsiflexion of the foot.

• The intrinsic muscles are located within the foot and are responsible
for the fine motor actions of the foot. There are 10 intrinsic muscles
located in the sole of the foot. They act collectively to stabilize the
arches of the foot, and individually to control movement of the toes.

Skeletal muscle structure and movement generation Each skeletal
muscle is an organ that consists of various integrated tissues. These tissues
include the skeletal muscle fibres, blood vessels, nerve fibres and connective
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Figura 1.6: Tibia muscles, front and back view [42]

tissue. Each skeletal muscle has three layers of connective tissue - called
mysia - that enclose it and provide structure to the muscle as a whole, and
also compartmentalize the muscle fibres within the muscle. Each muscle is
wrapped in a sheet of dense, irregular connective tissue called the epimysium,
which allows a muscle to contract and move powerfully while maintaining its
structural integrity. The epimysium also separates muscle from other tissues
and organs in the area, allowing the muscle to move independently. Insi-
de each skeletal muscle, muscle fibres are organized into individual bundles,
each called a fascicle, by a middle layer of connective tissue called the pe-
rimysium. This fascicular organization is common in muscles of the limbs;
it allows the nervous system to trigger a specific movement of a muscle by
activating a subset of muscle fibres within a bundle, or fascicle of the muscle.
Inside each fascicle, each muscle fibre is encased in a thin connective tissue
layer of collagen and reticular fibres called the endomysium. The endomy-
sium contains the extracellular fluid and nutrients to support the muscle
giber. These nutrients are supplied via blood to the muscle tissue. Every
skeletal muscle is also richly supplied by blood vessels for nourishment, oxy-
gen delivery, and waste removal. In addition, every muscle fibre in a skeletal
muscle is supplied by the axon branch of a somatic motor neuron, which
signals the fibre to contract.

Skeletal muscle fibres have a long cylindrical shape. They can be quite
large call for human cells, with diameters up to 100 Î¼m and lengths up to 30
cm. Within each muscle fibre are myofibrils, long cylindrical structures that
lie parallel to the muscle fibre. They attach to the plasma membrane, called
sarcolemma, at their ends, so that as myofibrils shorten, the entire muscle
cell contracts. The striated appearance of skeletal muscle tissue is a result
of repeating bands of the proteins actin and myosin that occur along the
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length of myofibrils. Myofibrils are composed of smaller structures called
myofilaments. There are two main types of myofilaments: thick filaments
and thin filaments. Thick filaments are composed of the protein myosin,
while the primary component of thin filaments is the protein actin.

Figura 1.7: Skeletal muscle structures [43]

The thick and thin filaments alternate with each other in a structure
called a sarcomere. The sarcomere is the unit of contraction in a muscle
cell. Contraction is stimulated by an electrochemical signal from a nerve
cell associated with the muscle fibre. For a muscle cell to contract, the
sarcomere must shorten. However, thick and thin filaments do not shorten.
Instead, they slide by one another, causing the sarcomere to shorten while
the filaments remain the same length. The sliding is accomplished when a
molecular extension of myosin, called the myosin head, temporarily binds to
an actin filament next to it and through a change in conformation bends,
dragging the two filaments in opposite directions. The myosin head then
releases its actin filament, relaxes, and then repeats the process, dragging
the two filaments further along each other. The combined activity of many
binding sites and repeated movements within the sarcomere causes it to
contract. The coordinated contractions of many sarcomeres in a myofibril
leads to contraction of the entire muscle cell and ultimately the muscle itself.
The movement of the myosin head requires ATP (adenosine triphosphate),
which provides the energy for the contraction.

Each skeletal muscle fibre is stimulated to contract by chemicals released
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Figura 1.8: Sarcomere filaments a) and contraction b) [44]

from a somatic motor neuron (also known as the alpha motor neuron). Most
of these elongated nerve cells originate in the gray matter of the spinal cord,
their thread-like axon processes run inside nerves and carry electrochemical
impulses to target muscles. After entering a target muscle a motor neuron
axon branches many times making its way to different muscle fibres. As it
approaches the midpoint of one muscle fibre, the axon splits again, forming
a small cluster of terminal branches. The tips of the terminal branches
expand into small synaptic bulbs, which fit into grooves along the surface of
the muscle fibre. Together, the expanded axon tips and the nearby muscle
fibre membrane make up a neuromuscular junction.

The motor unit Amotor unit is the term applied to a single motor neuron
and all of the muscle fibres that it innervates. When a motor neuron fires,
all the muscles fibres in the motor unit contract at once. The size of the
motor unit correlates with the function of the muscle. In muscles, involved
with fine coordinated control, the motor units are very small with three to
five muscle fibres per motor neuron. Muscles instead that are involved with
more powerful but less coordinated actions have thousands of muscle fibres
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per motor neuron. When an action potential travels down the motor neuron,
it will result in a contraction of all of the muscle fibres associated with that
motor neuron. The contraction generated by a single action potential is a
called a muscle twitch. A single muscle twitch has three components: the
latent period, the contraction phase and the relaxation phase. The latent
period is a short delay - one to two milliseconds (ms)- from the time when
the action potential reaches the muscle until tension can be observed in the
muscle. The contraction phase takes place when the muscle is generating
tension and the relaxation phase spans the time for the muscle to return to
its normal length. The length of the twitch varies between different muscle
types and could be as short as ten ms or long as hundred ms.

Figura 1.9: Single muscle stimulus [45]

To avoid explosive and sudden movements, motor units fire asynchronou-
sly. As one motor unit contracts, before it has the chance to relax another
motor unit fires, leading to a smooth and controlled muscle contraction.
Even when a muscle is at rest, there is random firing of motor units. This
random firing is responsible for what is known as muscle tone.

Skeletal muscle are capable of generating different levels of force during
whole muscle contractions. To differ the amount of generated force means
to differ the number of firing motor units at a given time. This phenomena
is called multiple-motor unit recruitment, which consists in recruiting more
motor units to generate more force. Normally only a 1/3 of the total motor
units are fired at one time. As fibres begin to fatigue they are being replaced
by others in order to maintain the force. Motor unit recruitment can occur
in two possible ways. One is the wave summation, which means stimulating
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the same single motor unit with progressively higher frequencies of action
potential generating a gradual increase in the generated force. For the se-
cond, eventually the frequency of action potentials would be so high that
there would be no time for the muscle to relax between successive stimuli
and it would remain totally contracted.. This condition is called tetanus.

Figura 1.10: Types of skeletal muscle contraction [46]

Nervous system

The nervous system has two main parts: the central nervous system (CNS)
- brain and spinal cord - and the peripheral nervous system (PNS) - nerves
that carry impulses to and from the CNS. Efferent nerves are motor neurons
that carry neural impulses away from the CNS and towards muscles to cause
movement, while afferent nerves carry impulses from sensory stimuli towards
the CNS.

The CNS controls most functions of the body and mind. It is referred
as central as it collects information from the entire body and coordinates
activities across the whole organism. A small structure, the cerebellum, is
located at the back of the brain and processes incoming information from
outside the body, thanks to sensory nerves of sight, touch, smell, sound and
taste, and within some organs, such as the stomach. Although the cerebellum
accounts for approximately 10% of the brain’s volume, it contains over 50%
of the total number of neurons in the brain. Motor commands are not
initiated in the cerebellum, but rather modified as they descend along the
spinal cord to make movements more adaptive and accurate, The cerebellum
is responsible for maintaining posture and balance, coordinating voluntary
movements, increase accuracy in movements by trial and error and cognitive
functions, such as language[62]. The spinal cord can be seen as the main
stream path for communication between the body and the brain. It extends
from the brain down the bony spinal column, which serves as its protection.
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The spinal cord is a tube made up of nerve fibres. Electrical impulses travel
through the nerves and allow the brain to communicate with the rest of the
body. The CNS differs from other systems of the body as it does many jobs
at the same time. It controls all voluntary movement, such as speech and
walking, and involuntary movements, such as blinking and breathing. It is
also the core of our thoughts, perceptions, and emotions.

The PNS instead is the division of the nervous system containing all the
nerves that lie outside of the CNS. The primary role of the PNS is to connect
the CNS to the organs peripheral and apparatus. These nerves extend from
the CNS to the outermost areas of the body. The PNS allows the brain
and spinal cord to receive and send information to other areas of the body,
which allows it to react to stimuli from the environment. The PNS itself is
divided into two parts: the somatic nervous system, responsible for carrying
sensory and motor information to and from the central nervous system, and
the autonomic nervous system, which controls aspects of the body that are
usually not under voluntary control - the internal organs.

Figura 1.11: Central Nervous System and Peripheral Nervous System [47]

1.1.2 Locomotion control - rhythmic and volitional

Human locomotion depends on a strong collaboration between volitional mo-
tion pattern generation and reflex-dependent fine control of these patterns
at different levels. Basic motor patterns are thought to be generated by
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a multi-layered organization of the spinal neural work, often referred to as
the central pattern generator (CPG) [7]. Efferent stimulation is transmitted
through motor neurons to individual muscle groups, which are recruited to
effect the movement. Afferent feedback, including information from the mu-
scles, joints and sensors, is used to directly modulate motor commands and
thus contributing to efficiently perform gait, aid with stability and balance
if needed, and control of precise movements.

Rhythmic locomotion

Rhythmic locomotion consists of a cycle of patterned and rhythmic activity
of different muscle groups, working coherently together to produce a cyclical
output. The rhythmic activity is generated by the CPG inside the spinal
cord. There are three major features that represent a rhythmic locomotion:
its rhythmic and cyclical occurrence, the coordinated alternation between
flexor and extensor activity within the same limb and the alternation bet-
ween opposite limbs. The CPG is thought to consist of networks of neurons
that are synaptically or electrically connected, with cellular properties that
generate rhythmic firing. Possible examples could be walking or running.

Gait analysis

Bipedal walking is an important characteristic of humans. It provides both
support and propulsion, in a rhythmic alternated motion, where at least one
foot always touches the ground. While the terms gait and walking are often
used interchangeable, gait is just an attribute of the walking locomotion.

The gait cycle is a repetitive pattern involving steps and strides. A single
gait cycle is also known as a stride. The step time is the time between heel
strike of one leg and heel strike of the contra-lateral leg. Step width may be
described as the mediolateral space between the two feet.

The generation of movement during walking involve the following steps:

• registration and activation of the gait command within the CNS

• transmission of the gait cycle to the PNS

• contraction of the muscles

• generation of several forces

• regulation of joint forces and moments across synovial joints and ske-
letal segments

• generation of the ground reaction forces

The gait biomechanics during ground-level walking can be classified into
two main phases [9]: the stance phase and the swing phase. The stance
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phase occupies 60% of the gait cycle while the swing phase only 40%. Gait
involves a combination of open- and close-chain activities.

Figura 1.12: Phases of the Gait Cycle [48]

The stance phase is the part of the gait cycle where the foot is in con-
tact with the ground, absorbing the shock and propelling the body forward.
Within the cycle particular biomechanics sub-phases may be identified:

• heel strike: the heel strike happens in the moment when the heel comes
in contact with the ground; the ankle is in a neutral position, the knee
is slightly flexed to lessen the shock and the hip is approximately in 30
degrees of flexion; with the heel strike the body weight begins to shift
onto the stance limb.

• foot flat: continuing the walking motion, the entire foot comes in con-
tact with the ground; the ankle moves into approximately 5-10 degrees
of plantar flexion and the knee moves into 15 degrees of flexion; the
hip moves into extension allowing the trunk and body to catch up to
the limb; the weight of the body continues to shift on the stance limb.

• mid-stance: during mid-stance the body passes over the stance limb
and where the leg is approaching the vertical position offering single-
limb support with the other limb freely swinging forward; the ankle
moves into slight dorsiflexion, the knee extends and the hip continues
to extend; the trunk is in neutral position of rotation and arms are
parallel to the body.

• heel off: hell off occurs when the heel just begins to lift off the floor;
the ankle is in dorsiflexion initially and the foot in plantar flexion; the
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knee is extended and prepares to flex; the hip is in hyperextension and
the trunk rotates to the same side.

• toe off: simultaneously, when the toes leave the ground, the opposite
foot is in foot flat phase; it is the end of the stance phase and the
beginning of the swing phase; the toes go into hyperextension and the
ankle rotates towards plantar flexion; the knee keeps moving to flexion;
by end of this phase the hip starts flexing.

The swing phase of the gait cycle occurs when the foot is not in contact
with the ground. It begins when the foots leaves the floor and ends with the
heel strike. It is the nonweight bearing phase of the gait cycle and consists
of the following sub-phases:

• acceleration: in the acceleration phase, the limb is behind the body and
moving to catch up as the ankle moves into dorsiflexion; both knees
and hip continue to flex.

• mid-swing: the mid-swing involves the shortening of the limb to clear
ground; the ankle is in a neutral position and the knee is in maximum
flexion; the hip continues to flex.

• deceleration: during deceleration the limb shortens to clear ground;
the ankle is in a neutral position and the knee is in maximum flexion;
the hip continues to flex.

Double support is the period in the gait cycle when both feet are in
contact with the ground. It occurs when one limb is ending the stance phase
and the opposite limb begins stance phase. About 10% of the gait cycle is
spent in double support and it changes with speed: faster gait leads to less
double support time and slower gait leads to more time in double support.

Single support is the period when only one foot is in contact with the
ground. There are two periods of single support, right stance and left stance.

Stride length is the distance travelled in one stride i.e. between two
consecutive heel strike of the same foot.

The step is the period covered between the heel strike of one foot to the
heel strike of the opposite foot.

Step length is the distance covered between heel strike of one limb and
heel strike of the other limb.

Step width is the distance by which feet are apart during walking. For
measurement purpose, the distance between the heel centres of two consecu-
tive foot contacts is taken as step width, around 5 to 10 centimetres.

Cadence is the number of steps taken per minute and varies with walking
speed.

In running there is a period when none of the foot is on the ground. It
is called non-support and this differentiates running from walking as non-
support does not occur in walking.
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Volitional control

Voluntary movements differ from reflexes and basic locomotive rhythms as
the brain sends stimuli with a precise scope to the target muscle [10]. Volun-
tary movements improve with practice as one learns to anticipate and correct
for environmental obstacles that perturb the body. According to [11] ideas
for movement are translated into specific motor commands in some areas
of the cerebral cortex, the basal ganglia (group of nuclei located under the
cerebral cortex) and the cerebellum. This coded information is then usually
recalled from the motor cortex, which acts on brain-stem neurons and spinal
motoneurons to achieve the intended voluntary motion. Although a volun-
tary movement is initiated for a certain goal, it can be influenced by sensory
feedback, such as external perturbations or muscle fatigue, and be adjusted
[9].

1.2 Limb amputations

Amputation is described as the separation of a bone in healthy tissue or
the removal of a limb at a joint (ex-articulation). Amputation surgery may
be necessary if an injured or diseases limb is not expected to heal and if
the patient’s life is endangered as a result. Possible causes include circula-
tion issues, infections, accidents, cancer or a congenital malformation of the
limb. In these cases it is usually known well in advance that an amputation
will become necessary. In contrast, sometimes it is necessary to amputate
unexpectedly, for example due to a severe injury after an accident.

Amputation procedures vary, depending on the limb or extremity being
amputated and the patient’s general health. When performing an amputa-
tion, the surgeon removes all damaged tissue while leaving as much healthy
tissue as possible, smooth uneven areas of the bone, seal off blood vessels
and nerves and cut and shape muscles to facilitate the attachment of an
artificial limb. Recovery from amputation depends on the type of procedure
and anaesthesia used. The immediate goals after the surgery are threefold:
little to no pain, the residual limb should be able to bear weight and move
optimally in all directions. To accelerate recovery and be able to wear a
prostheses, the patient is encouraged to load the stump as soon as possible,
to accommodate the transition to the prostheses.

Levels of lower limb amputations include:

• foot amputation - toes, partial foot or ankle

• transtibial amputation - below the knee

• knee disarticulation - at the knee

• transfemoral amputation - above the knee
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• hip disarticulation - at the hip

• hemipelvectomy - removal of the entire leg and part of the pelvis

Figura 1.13: Common levels of lower limb amputation [49]

A partial foot amputation is one where the toes and part of the long
bones of the foot are amputated. This is also known as a trans-metatarsal
amputation. This amputation allows to still maintain a high level of functio-
nal mobility because many major muscle attachments are preserved during
the surgery. Also, foot balance and shape are maintained in this type of
amputation, which can help with keeping a proper gait.

A transtibial amputation, is an amputation through the shin bone, spa-
ring the knee-joint. This amputation is the most common type of amputa-
tion performed, and the risk of serious post-operative-complications is far less
than in a transfemoral amputation. Walking with a prosthesis is typically
more successful. The transtibial prosthesis consists of a socket, which con-
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tains the residual limb, a prosthetic foot, as well as adapters and connecting
elements.

Disarticulation refers to an amputation through a joint. It can make
walking easier, since the bone of the residual limb is left intact. There
is a decreased chance of bone infection from the amputation surgery. In
knee disarticulation surgery the knee joint is separated and the lower leg is
removed. The entire thigh is retained in the process. The prosthesis consists
of a socket, which contains the residual limb, a prosthetic knee joint and
foot, as well as adapters and connecting elements.

In a transfemoral amputation, the amputation occurs through the femur,
or thigh bone, of the upper leg, so that the knee is no longer present. The
prosthesis consists of a socket, which contains the residual limb, a prosthetic
knee joint and foot, as well as adapters and connecting elements.

A hemipelvic amputation is one where the hip-joint and part of the pel-
vis is amputated. This type of amputation is also known as a transpelvic
amputation. It is most often performed because of a malignant tumour or
as the result of trauma. Walking after a hemipelvic amputation is difficult
since there is no residual limb on which a prosthesis can be fitted.

1.3 Lower limb prosthetic devices

A prosthesis is a crucial technical substitute that should restore biomechani-
cal function and body integrity for people with lower limb loss or congenital
limb absence [11]. Different types of prosthetic limbs are designed with dif-
ferent goals in mind. Often these goals depend on the site of the amputation
and the needs of the patient. For example, a cosmetic prosthetic limb is de-
signed with appearance in mind rather than controllability. Other prosthetic
limbs are designed with usability and function as a central purpose, which
can be controlled in a variety of ways. Prosthesis have usually three compo-
nents: the prosthetic device, the interface and the controller, which need to
work coherently together to guarantee a correct and smooth functioning.

Functional prosthetics can be broadly categorized into two groups: body-
powered and externally-powered prosthetics. Body-powered prosthetics use
cables and harnesses strapped to the individual to mechanically manoeuvrer
the artificial limb through muscle, joint and residual limb motion. Whi-
le they are highly durable, they often sacrifice a natural appearance for
moderate functionality. As well, though the user experiences direct control
and feedback through its mechanical operation, the process can be fatiguing.
Externally-powered artificial limbs are an attempt to solve this physical exer-
tion through using a battery and an electronic system to control movement.
At the forefront of this technology is the myoelectric prosthetic.

The components of a prosthetic device include terminal mechanisms (ar-
tificial fingers, hands, feet and toes) and joints (wrists, elbows, hips, and
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knees). Metal shafts and customized fiber structures, which function as bo-
nes, are used when extra strength, flexibility and energy return are needed.
For more advanced prostheses, there are control elements available that allow
the user to move the prosthesis mechanically or electrically.

Problems that may rise from a lower-limb prosthesis are miscellaneous
but all connected to the impossibility or difficulty of executing basic sym-
metric movements related to the missing limb. For example walking down
a ramp without control of the knee joint will cause it to bend and flex on
its own. This may cause a forward falling sensation and the amputee in-
stinctively compensates for that. Equally if the joints offer more resistance,
it can make walking in the other direction, up a hill or a flight of stairs a
painful struggle. Without enough movement in the ankle a prosthetic leg
wearer has to pivot around their prosthetic leg with their healthy leg to
advance. Transfemoral and transtibial amputees expend respectively 60%
to 15% more energy [13] during walking then non amputees. A prosthesis
that only supports but does not aid the wearer during the actual gait leads
to an over-compensative motion in the hip which results in severe back pain
caused by the unnatural gait and stances they have to adopt. Another result
of these asymmetric motion is osteoarthritis in knee of the sound leg [14]. It
occurs when the protective cartilage on the ends of the bones wears down
over time affecting the joint.

1.3.1 Type of prosthetic devices

Prosthesis can be organized in three groups: passive, semi-active and active
devices. They differ in dynamics-kinetics related properties and their ability
to provide active power to the user.

Passive devices

Passive prosthesis do not have power supply, therefore they can not produce
net power and do not have electronics circuits on board. They provide basic
functional capabilities such as pushing, pulling, stabilizing, and supporting.
The passive prosthesis is certainly the simplest but certainly also the most
unstable and unsafe solution among passive leg prosthesis. Not being able
to change the impedance property of the joint may be the cause of high ri-
sk stumbling and falling. In some particular designs, as for example ESAR
(Energy Store And Return) feet, the prosthesis is able to provide energy ab-
sorption, storage and some return [15]. However, they are not able to provide
the net positive work normally needed during the stance phase of gait. This
loss of net power generation at the lower limb impairs the ability of the pro-
sthesis to restore biomechanically normal locomotive function during many
locomotive activities, as for example an above-knee amputee, a fixed passive
leg prosthesis allows walking in a rather artificial way [16]. In the absence
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of net power generation at the knee and ankle, transfemoral amputees with
passive prostheses have been shown to expend up to 60% more metabolic
energy and exert three times the affected-side hip power and torque when
compared to healthy subjects during level walking [17]. Currently the vast
majority of lower-limb prostheses are passive devices [17].

a) Sach feet b) Echelon VT c) 3R60 EBS
(https://www.spsco.com/by-product-type/prosthetics/prosthetic-feet/k1-feet-k2-feet-1/sach-foot-with-titanium-pyramid.html)
(https://www.indiamart.com/proddetail/echelon-vt-prosthetic-foot-14160438562.html)
(http://www.resolutdesign.com/portfolio-items/3r60-ebs-and-3r60-ebs-pro/)

Figura 1.14: Three examples of lower limb passive prosthetic devices

Figure 2.25 shows two examples of passive ankle prostheses and one of
a passive knee prostheses. The Solid Ankle, Cushioned Heel (SACH) feet
(2.25 a) [50] are prosthetic feet at their most basic, inexpensive and ideally
suited for low activity and lighter weight users. SACH feet have no moving
parts and an internal keel. In passive SACH feet the keel will not flex within
the foot. To perform the necessary foot function(s), rubber regions provide
areas which will bend, flex or deform under load, but provide only minimal
shock absorption. A heel wedge compresses at heel strike. This lowers the
forefoot to the ground as weight is transferred onto the foot. As the user
rolls over the toe the toe break flexes to smooth the transition. On the other
hand the EchevlonVT (2.25 b) [51] provides the active user with terrain
conformance, rotation and shock absorption. It is ideal for robust, moderate
impact activities like hiking that require a multi - axial, biomimetic function
with a high level of energy return. The combination of hydraulic ankle and
titanium spring means that the foot adapts fluidly to promote good posture
and excellent traction even on rough ground and ramps. During swing phase
the toe dorsiflexes to enhance ground clearance. The integral shock absorber
ensures minimal shear force between socket and skin for a comfortable ride
throughout the twists and turns of the day. The third shown example is the
3R60 EBS (Ergonomically Balanced Stride) knee joint (2.25 c) [52] whose
functionality lies in its adapting capability to the weight and activity of the
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user, ensuring comfortable walking with a high level of safety - including on
uneven terrain or inclines. It features a high flexion angle and a virtually
natural gait pattern. During heel strike, the knee can be flexed at an angle up
to 15°in a controlled and stabilising manner, similar to the natural version,
improving knee safety. High-performance swing phase hydraulics that are
straightforward to adjust enable easy initiation of the swing phase, optimum
progressive damping for natural movement patterns and comfortable end
position damping for a wide range of walking speeds.

Semi-active devices

Advancements in mechatronic designs gave rise to the semi-active prostheses.
They include a microprocessor-controlled system which regulates the opening
and closure of hydraulic or magneto-rheological valves. Furthermore they
integrate sensory information to gather kinematic, inertial and dynamic data
elaborated in real time to identify the stride phase and, with help of the
controller, switch the locomotion modality [19]. Controllers elaborate the
sensors’informations in order to change the stiffness and damping coefficients
of the joints according to the external environment and device status. This
control strategies permit to minimize energy expenditure of the wearer even
in challenging and energy consuming gait situations. Although semi-active
systems are a big step forward, similar to the passive prostheses, they are
not able to produce positive net power during the gait, but are limited to
generate only modulated resisting forces.

Below (figure 2.26) three examples of semi-active devices are shown. The
Raize Ankle/Foot System (2.26 a) [53] is a microprocessor ankle/foot system
in a low profile, lightweight design. Its plantar/dorsiflexion range reduces da-
maging forces on the residual limb and greatly enhances stability on slopes
and slippery surfaces. By simply pressing a button the wearer can control
roll-over resistance, lock or unlock the ankle, and adjust the heel height as
needed. Figure 2.26 b) and 2.26 c) show microprocessor controlled knee-
joints imitating the natural walk. The C-Leg 4 prosthetic knee (2.26 b) [53]
system receives sensor inputs from the knee angle sensor to determine sagit-
tal knee position and from the ankle moment sensor to determine sagittal
moments about the ankle. Beyond these two sensors, the Genium system
(2.26 c) [53] includes four additional sensors including an accelerometer and a
gyroscope, allowing the device to measure its exact position and orientation
at all times. This enables the user to walk backwards, step over obstacles,
take small- or large steps, and even descend stairs without fear of the knee
buckling.
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a) Raize Ankle/Foot system b) C-Leg 4 c) Genium
(https://www.spsco.com/raize-ankle-foot-system.html)
(https://www.ottobock.it/protesizzazioni/prodotti-dalla-a-alla-z/nuovo-ginocchio-elettronico-c-leg-4/)
(https://www.ottobockus.com/prosthetics/lower-limb-prosthetics/solution-overview/genium-above-knee-system/)

Figura 1.15: Three examples of lower limb semi-active prosthetic devices

Active devices

Active or powered prostheses provide external power through motors and
consequently they have the ability restore almost totally main locomotive
actions like walking, running, stairs and slope ascending, sitting down and
standing up [18] [19]. While they offer greater performance and greater func-
tionality, they represent the system with the highest complexity. Unfortu-
nately they do not provide greater functionalities without incoming sensory
informations from the nervous system. Over the last years various active an-
kle joints, knee joints and systems combining ankle and knee dynamics were
developed.(M. Windrich et al., "Active lower limb prosthetics: a systematic
review of design issues and solutions", Robotics: Science and Systems 2013
Berlin, Germany. 28-Jun-16) The important difference between semi-active
and active prostheses is the capability of the latter ones to generate net po-
sitive forces and torques. Therefore a control scheme that ensures a reliable
amputee/device interaction, while taking fully advantage of this capability,
is needed. The controller, by sampling sensory information coming from the
interface, the prosthetic device and the user itself, identifies and categorizes
user intended motions. Successfully it sends the necessary driving commands
to the actuators. Moreover inclusion of different locomotions modes in the
controller require complex control algorithms and sensory data elaboration
[17] demonstrated that although subjects with amputation that may initial-
ly have poor volitional control of their residual lower-limb muscles, through
training with an active device which includes sensory information coming
from the nervous system, substantially improved their volitional control.

Below are shown two examples for active devices. The BIOM Ankle
System (figure 2.27 a) [56] aids the wearer across all level-ground walking
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speeds. It provides natural bionic propulsion, emulating muscle function
about the healthy human ankle during the load-bearing stance phase of wal-
king, decreasing the impact force and knee moment on the unaffected leg
during level-ground walking near the preferred gait speed relative to passi-
ve prostheses. The Power Knee from Össur (figure 2.27 b) [57] is a motor
powered knee joint. It provides active motion and superior powered stan-
ce stability to replace lost muscle function, aiding the wearer during the
stand-up motion and add a controlled resistance when descending. By acti-
ve flexion and extension during walking it allows the wearer to reach even
further walking distances.

a) BIOM Ankle System b) Power Knee Össur
(https://www.infinitetech.org/biom-ankle-foot)
(https://www.ossur.com/prosthetic-solutions/products/dynamic-solutions/power-knee)

Figura 1.16: Two examples of lower limb active prosthetic devices

1.3.2 Interfaces

The prosthesis attaches to the body at the interface, which consists of a
socket and a rigid frame. The socket is the part directly in contact with the
amputee, it is usually made of plastic or laminated material. The frame,
which is made of graphite or similar materials, provides structural support
for the socket. A liner is worn between the residual limb and the socket
to provide cushioning and to make the fit tight. The liner is made of soft
polyurethane or silicone, which clings to the skin without causing friction.
Instead of a liner also a prosthetic sock may be worn. Socks are made of wool,
nylon or synthetic fabrics. Socks are available in different thicknesses. By
changing the number of sock-layers users can increase comfortability during
the day, as the stump varies in size throughout the day when activities,
weather and other factors change. The interface may include a suspension
system, which helps hold the prosthesis on securely. The following suspension
systems are commonly used:
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• Suction valve: When the residual limb is put in the socket, air is forced
out through an opening at the bottom of the socket. A one-way suction
valve on the socket closes the opening and forms a seal that holds the
prosthesis in place.

• Liners with a locking pin: Most liners are locked into the bottom of
the socket by a notched pin. Because the pin is pressed tightly against
the residual limb, the parts of the limb near it can become irritated
and inflamed, fluid may accumulate, and sores may develop.

• Belts and harnesses: Sometimes the prosthesis is attached by a belt or
harness. These devices may be used if keeping the prosthesis on with a
suction valve or locking pin is difficult or the pin cannot be tolerated.
However, the harness is relatively rigid and thus can be uncomfortable
and cumbersome. It may also restrict movement.

Novel smart prostheses prototypes include a controller on board, which
needs to ensure a reliable interaction between the prosthetic device and the
amputee. This is guaranteed by its ability to read and contextualize incoming
information from the socket and prostheses sensors and, by feeding them into
a predefined control state, change the prostheses actuation. The architecture
of the controller is influenced by the type of used interface and the design
and purpose of the device.

Volitional control is designed to guarantee direct communication between
the user and the device so as to directly modulate the prosthesis state. For
that scope an additional level of sensors have to be added, able to record
information from the peripheral nerves in an amputees residual limb and
forward them to the micro-controller circuitry. This will allow the prosthe-
sis user’s brain and nerves to effortlessly coordinate the movements of the
prosthesis knee and ankle joints simultaneously so that limb motions are
smooth and natural. Some applications include brain computer interfaces,
intra-neural signals and myoelectric interfaces.

Myoelectric interfaces

Myoelectric control is an advanced technique concerned with the detection,
processing, classification, and application of myoelectric signals to control
human-assisting robots, rehabilitation devices and modern day prosthetics.
Nowadays it is the most used approach for electrically-powered upper limb
prostheses [21]. A myoelectric signal, also called a motor action potential
(see paragraph "The motor unit"), is an electrical impulse that produces
contraction of muscle fibres in the body and is used to provide feed-forward
volitional control to the prosthetic device. The main obstacle in this ap-
proach lies in the difficulty of recording reliable signals from the residual
limb within the socket.
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The electrical recording of the muscle contractions is called Electromyo-
gram (EMG) [22]. EMG can be recorded using different types of electrodes,
the two most common being fine wire and surface electrodes. Although fine-
wire electromyography (fEMG) provides a better quality and muscle-specific
signals (especially for deep muscles) it remains an invasive technique crea-
ting discomfort for the subject. Surface electromyography (sEMG) instead is
simple, totally ergonomic and provides, although muscle-specific signals are
excluded, satisfying acquisitions [22] [23] [5]. The EMG signal is a compli-
cated signal, which is controlled by the nervous system and is dependent on
the anatomical and physiological properties of muscles. EMG signal acquires
noise while travelling through different tissues. Moreover, the EMG detector,
particularly if it is at the surface of the skin, collects signals from different
motor units at a time which may generate interaction of different signals.
Standard signal processing procedure therefore involve amplification, filte-
ring, rectifying to avoid a zero average, due to the raw EMG signals having
positive and negative components [24].

Some innovative surgical procedures, such as target muscle reinnervation
(TMR) [25] can improve the control of the limb prostheses. TMR transfers
residual nerves from the amputated limb to reinnervate new muscle targets
that have otherwise lost their function [26]. These reinnervated muscles then
serve as biological amplifiers of the amputated nerve motor signals, allowing
for more intuitive control of advanced prosthetic arms.

1.3.3 Control strategies

Hierarchical controller

Tucker et al. [27] proposes a generalized framework based on Varol et al. [28]
and then extended to accommodate the needs of various control approaches
for active lower limb prostheses or orthotics (P/O).

The diagram (figure 1.17) reflects the physical interaction and signal-
level feedback loops underlying powered assistive devices during practical
use. The framework consists of a hierarchical controller, the user of the P/O
device, the environment with which he interacts and the device itself. The
schematic representation intends to display how the building blocks interact
with each other and the information they exchange.

The hierarchical controller has three levels.
At the high level, the controller must understand the user’s locomotive

intent. Activity mode recognition identifies the current locomotive task (for
example level walking or stair descension). Direct volitional control allows
the user to voluntarily manipulate the device’s state (joint positions, velo-
cities and torques). Combining the two it is possible to change the device’s
behaviour within a particular activity, which is also the aim of this thesis.
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Figura 1.17: Hierarchical controller layout [59]

The mid level controller is responsible for translating the user’s motion
intentions from the high level to the low level controller. It usually defines
a particular control law, for example based on impedance or position, which
parameters vary based on the high level output.

The desired device state is passed to the low-level controller, which com-
putes the error with respect to the current state and then sends commands
to the actuators, trying to minimize the error. Finally, the P/O device is
actuated to execute these commands and the control loop is closed. Additio-
nally an artificial sensory feedback may be implemented to further increase
the dialogue accuracy between the user-environment-device throuple.

Considering the substantial output forces a robotic P/O device can ge-
nerate and the close physical contact with the user, safety layers which li-
mit excessively and therefore dangerous outputs must be included in all
subsystems, despite the lack of explicit connections.

Each subsystem within a generalized control architecture can be defined
by a set of physical and signal-level inputs, by a set of processes that operate
on those inputs to control the power exchange though the sub system and by
a set of outputs that transmit power and signals to connected subsystems.

Interactive extrinsic and computational intrinsic controller

Control of active prosthetic devices can be classified by the source of input
data. There are two possible types of controller: computational intrinsic
controllers (CIC) and interactive extrinsic controllers (IEC).
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CICs have no direct input to the nervous system and therefore do not
permit volitional control of the prosthesis. They effectively coordinate move-
ment of a prosthetic device through its own internal feedback loop [29] where
for example a classification algorithm detects the intention of the user. This
kind of control can be found even in vertebrate locomotion control, where
the CNS acts as the CIC. In [30] it was shown that in decerebrated cats and
decapitated dogs, after stimulating an area of the midbrain (mesencephalic
locomotor region) electrically, the spinal cord still was able to produce reflex
stepping, This demonstrates that reflex like mechanisms can create basic
motion patterns without brain interaction.

ICEs instead allow a communication between brain and device, occurring
for efferent commands but also on the afferent feedback sites. This capability
is necessary in case of non-cyclic locomotion or irregular limb movement.
A commonly used signal in commercial prostheses is electromyography but
also other signals can be implemented such as cortical, or peripheral nerve
sensors. A main benefit of IEC is that it can provide intent control signals
already before the movement occurs.

Figura 1.18: Computational Intrinsic Control and Interactive Extrinsic
Control layout [60]

Taking into account the characteristics of both controllers it seems useful
to have both approaches, CIC and IEC, combined in prosthetic control to
get advantages of decentralized primary locomotion functions and in addi-
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tion intended based control. Therefore it is possible to reduce the mental
effort required from the user during cyclic motions, like it is implemented in
modern prosthesis. At the same time, instead, introducing EMG signals will
permit to drive the prosthetic device voluntarily in a different configuration
if needed.

Myoelectric control

Beside the standard application of EMG signals to analyse disabilities or
to track progress in rehabilitation, more focus has been put on controlling
robot arms, exoskeletons [31] and modern day prosthetics with EMG signal
in recent years. The major challenges to overcome, in the control of human
actuated devices, are the acquisition of the user’s intention through biologi-
cal signals and correlate and contextualize them in an appropriate control
framework. The advantage of EMG signals is that they create spontaneously
during movement and therefore they form an intuitive interface for the user.

The main approach in myoelectric control is to extract significative fea-
tures from the acquired signals and use them to define and understand the
intention of the user. The problem with classification in EMG-driven control
is that it inherently leads to a control scheme that is substantially different
from the natural control. Natural movements are continuous and require the
coordination of multiple physiological degrees of freedom (DOF) across se-
veral joints. The parameter space that describes natural movements (EMG,
kinematics and kinetics) is therefore continuous. On the other hand, the
number of patterns in a pattern classification-based controller is limited.
This leads to a crude discrete approximation of the continuous parameter
space obtained by classification [23]. One common strategy used to overco-
me this issue is typically to increase the number of observed states in the
gait-cycle minimizing this approximation.

Finite state machine and heuristic rule based approach A Finite
state machine is a model of computation based on a hypothetical machine
made of one or more states. Only one single state of this machine can be
active at the same time. Every state has a set of transitions and every
transition is associated with an input and pointing to a state. The state will
change based on inputs, providing the resulting output for the implemented
changes. Once a state is reached the rules identified by the state will be
applied to the system until a transition forces the state to change [32].

The most frequent approach for finite state machine is the heuristic rule
based classifier. Heuristic rule-based classifiers are a very simplistic, but fair-
ly effective method for identifying mode transitions patter recognition and
are therefore quite valuable in activity mode recognition. Examples include
finite state machine and decision trees. They all operate under the same
principle: given the set of all states the designer identifies a fixed set of rules
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Figura 1.19: Finite state machine cycle example

that indicate the transition from one state to the other. The rules, selec-
ted heuristically, may be chosen manually or determined through analytical
means. The number of rules and thresholds that must be established increa-
ses nearly combinatorially with the number of states. Being the gait cycle a
personal characteristic, it is likely necessary to manually tune the parameters
that allow the transition from on state to the other. Two examples, dividing
the gait cycle respectively into four or five states, as shown in Figure ... take
into separate account the knee and ankle joint.

1.3.4 Volitional Impedance controller

In [33] Hoover and Fite formulate a simple model of the dominant mecha-
nical properties of individual muscles for the torque curve generation at the
knee joint. Specifically, variations in muscle force with length, rate of chan-
ge of length, and alpha motoneuron activity during slow, large amplitude
movements are included. The relationships between these variables are as-
sumed bilinear, that is, the slopes of the force-length and force-contraction
rate curves are assumed to be linear. Based on these characteristics, the
muscles are modelled as a parallel spring-damper.

Figure 1.21 depicts the simplified neuromuscular knee joint model with a
single pair of agonist-antagonist variable impedance muscles. The lower leg
is modelled as an inertia I subject to environmental loads τenv and driven
by the moments of antagonist muscles.

Net muscle forces Ff and Fe, multiplied by the moment arm r, yields the
net torque of each muscle. Accounting for first order force/length stiffness
and force/contraction rate damping characteristics, the flexive torque τf and
extensive torque τe of the muscles are:
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a) Finite State Machine - Knee Gait phases

b) Finite State Machine – Ankle Gait phases

Figura 1.20: Diagrams of Finite State Machine for level ground walking

τf = rFf = Kf (Θmax −Θ)−Bf Θ̇

τe = rFe = Ke(Θmin −Θ)−BeΘ̇

where Θ is knee joint angle, Θmax is the flex rest angle, Θmin is the extensor
rest ankle, Kf is the flexor stiffness, Ke is the extensor stiffness, Bf is flexor
damping and Be is extensor damping.

1.3.5 Machine learning approach

Artificial intelligence (AI) is the theory and development of computer sy-
stems able to perform tasks normally requiring human intelligence, such
as visual perception, speech recognition, decision-making, and translation
between languages. These processes include learning, reasoning and self cor-
rection. Machine learning (ML) is a core application of AI based around the
idea that the machines having access to data and rules applied to the lear-
ning process, may learn for themselves. One sub-field of ML is automated
pattern recognition. The main goal is to classify input data into objects or
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Figura 1.21: Simplified knee joint model with variable impedance
antagonist muscles

classes based on certain features. Pattern recognition can be either "super-
vised", where previously known patterns can be found in a given data, or
"unsupervised", where entirely new patterns are discovered.

Unsupervised Learning finds patterns based only on input data and is
therefore used when further insight of the input data is needed (exploratory
analysis of raw data). In unsupervised learning there is no correct answer
and no teacher. Algorithms are left to their own devises to discover and
present the interesting structure in the data. It can further grouped into
clustering and association problems:

• Clustering groups data items that have some measure of similarity
based on characteristic values

• Association discovers rules that describe large portion of data, such as
that people that buy X also buy Y.

Supervised Learning instead finds patterns (and develops hence predic-
tive models) using both input and output data. The goal is to approximate
the mapping function so well that when new input is submitted, the algo-
rithm can predict the output variables for the data. It is called Supervised
Learning because of the process of an algorithm learning from the training
data-set can be thought of as teacher supervising the learning process. Kno-
wing the correct answer, the algorithm iteratively makes predictions on the
training data and minimizes the error. Learning stops when the algorithm
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achieves an acceptable level of performance. Supervised learning problems
can be further grouped into regression and classification problems. The main
difference between a classification and a regression problem lies in the fact,
that in the first the output variable takes class labels, while in the second
the output variable takes continuous values.

Some popular examples of supervised machine learning algorithms are
listed in table 1.2:

Classification Regression
Support vector machines for classifica-
tion problems

Linear regression for regression pro-
blems

Random forest classification problems Random forest regression problems

Tabella 1.2: Examples of supervised machine learning algorithms

Classification and Pattern recognition

Pattern recognition is the automated recognition of recurrent regularities in
the data, by using machine learning approaches. The main idea is to endow
the control system with the ability to learn from the experience generated
by the interaction with the environment [34] and offers the ability to control
multiple movements in a seamless manner [35]. Pattern recognition can be
either "supervised," where the controller classifies data based on prior know-
ledge gained, or "unsupervised," where entirely new patterns are discovered.
One of the important aspects of pattern recognition is its speed and accuracy
in recognizing and classifying familiar and unfamiliar patterns. The entire
data set is divided into two categories, one which is used in training the
model - Training set - and the other that is used in testing the model after
training - Testing set.

Support Vector Machine

Support Vector Machines (SVM) are based on the concept of decision planes
that define decision boundaries. A decision plane separates a set of objects
having different class memberships.

The above (Figure 1.22) is a classic example of a linear classifier. Most
classification tasks, however, are not that simple and often more complex
structures are needed in order to make an optimal and correct separation.
Classification tasks based on drawing separating lines to distinguish between
objects of different class memberships are known as hyperplane classifiers.
SVM are particularly suited to handle such tasks. By using mathematical
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Figura 1.22: Linear classifier

functions, known as kernels, objects can be rearranged, simplifying the lat-
ter membership classification and avoiding the construction of a complex
separating curve.

Figura 1.23: Hyperplane classifier

To construct an optimal hyperplane, SVM employs an iterative training
algorithm, which is used to minimize an error function. According to the
form of the error function, SVM models can be classified into four distinct
groups:

• Classification SVM Type 1 (C-SVM classification)

• Classification SVM Type 2 (nu-SVM classification)

• Regression SVM Type 1 (epsilon-SVM regression)

• Regression SVM Type 2 (nu-SVM regression)

Regression

The problem of learning continuous input-output models starting from the
observed empirical data, known as regression has been widely studied. The-
re are two classic approaches: the first is to restrict the class of soughed
functions, for example taking into account only linear functions of the in-
puts; the second is to set a probability a priori to each possible function by
assigning the greatest probabilities to functions considered most likely. The
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first approach suffers from a poor predictive ability if the objective function
cannot be modelled well enough by the fixed class, while the second presents
the problem that the set of possible functions is infinite and not countable.
This last difficulty, however, can be overcome in the context of Gaussian pro-
cesses, which provides a sophisticated approach allowing easy computational
tractability.

In the following two sections both approaches are briefly discussed [37].

Linear regression model A couple formed by the input vector x (of
dimension D) and the corresponding output vector y is defined as an ob-
servation [37]. The set of n observations forms together the training set
D = { (xi, yi) | i = 1..n }. The set of n x-vectors forms the matrix X of
dimensions D × n, while the vector y collects all the outputs. The set of
all observations can be rewritten as D = (X, y). Introducing a noise ε, the
equation can be written as:

y = f(x) + ε f(x) = xTw

where x is the input vector, w is the vector of weight parameters of the
linear model, f is the value of the functions, while y is the observed value. y
differs from f(x) because of the added noise ε, which is notoriously present
in every empiric observation.

The best way to estimate the weight parameters, is to take the mean
of parameters w that minimize the residual sum of squares (RSS). RSS is
the total of the squared differences between the known values f(x) and the
mean of the predicted model outputs ŷ. RSS is a function of the model
parameters:

RSS(w) =

n∑
i=1

(f(i) − ŷ) =

n∑
i=1

(f(i) − wTxi) [61]

The above equation has a closed form solution for the model parameters
w, that minimize the error. This is known as the maximum likelihood esti-
mate of w because it is the value that is the most probable given the inputs
X and outputs y. The closed form solution expressed in matrix form is:

ŵ = (XTX)−1XT y leading to ŷ = ŵTX .

To verify that the vector contains the right parameters, the predicted out-
put may be compared to the expected ones through the Root Mean Square
Error (RMSE) analysis. Both outputs are squared to avoid the cancellation
of similar but opposite results, subtracted from each other and divided by
the number of samples. The result is then square rooted.
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RMSE =

√
f2(x) − y2

n

The closer the RMSE value is to zero, the closer the approximation is to
the real output.

Figura 1.24: Example of linear regression model estimation

Although Bayesian linear regression is a straight forward method for esti-
mating the best parameters fitting a linear function, this is also its limitation.
In a continuous non-linear function space the error between the expected and
estimated output can mostly never be optimally minimized.

Gaussian Process The GP [36] approach, in contrast, is a non-parametric
approach, as it produces a distribution of all possible functions given the
training points, getting rid of the limitation of linear regressive solutions.
The probability of all possible output functions

p(f(x1),...,f(xN ))

is set jointly Gaussian, with some mean µ(x). By specifying a covariance
matrix ∑

= k(xi, xj) .

where k is a positive definite kernel function, the covariance matrix allows
the GP to set values that are close together in input space will produce
output values that also are close together.

39



Setting the joint probability of two variables x1 and x2 as(
x1
x2

)
∼ N

( (
µ1
µ2

)
,
(
σ11σ12
σ21σ22

) )
.

it is possible to get the conditional probability of one of the variables given
the other. Extending this definition to the values of f(x) for all the possible
x values, the joint probability can be redefined as(

f
f∗

)
∼ N

( (
µ
µ∗

)
,
(

KK∗
KT

∗ K∗∗

) )
.

Here, K is the matrix gotten by applying the kernel function to the ob-
served values x, i.e. the similarity of each observed x to each other observed
x. K∗ finds the similarity of the training values to the test values whose
output values the GP is trying to estimate. K∗∗ gives the similarity of the
test values to each other. Following this thread the probability distribu-
tion p(f∗|x∗, x, f) can be found, assuming that f and f∗ together are jointly
Gaussian as defined above. At the end the GP defines the mean µ∗ and
covariance matrix

∑
that point out the distribution f∗ ∼ N(µ∗,

∑
).

Once the GP is trained, it can be applied to a new input vector x,
estimating the most probable output value f .

1.4 Thesis overview and objectives

The following chapter provides an overview of the database that was used
for the generation of the classification algorithm and the regression protocol.
It briefly outlines its characteristics to better understand the starting point
and then interpret the conclusions of this study.

The objectives of this study are threefold:

1. find a suitable control algorithm that provides a better performance
then the FSM for the gait analysis at the knee and ankle joint;

2. cross-check various input data configurations and verify which proves
to have a more accurate torque curve generation by minimizing torque
error;

3. find a suitable generalized control approach appliable to multiple sub-
jects.

Chapter 3 presents the classification analysis. This part wants to show
how a novel machine learning approach may increases the accuracy of the
gait state control algorithm with respect to a FSM heuristic rule based con-
troller. By integrating different combinations of the kinematic informations
with EMG signals and Ground Reaction Force (GRF), it is verified which
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combination provides the most stable and accurate controller. Methods are
presented and preliminary results discussed.

In Chapter 4, the second part of the research is described. Mainly, find
through the gaussian process a suitable parameter combination which esti-
mates the best torque curves applied to the knee and ankle joint, minimizing
the root mean square error between the generated and real torque curve. At
the end, again, preliminary results are discussed and differences to the linear
regressor technique are underlined.

In Chapter 5, finally, main conclusions about all the experience and resul-
ts are drawn. Limitations of this study and possible future work are finally
discussed.

All algorithms and testing were realized on the 2018b student version of
MATLAB.

At the end of this thesis the bibliography and an appendix about part of
the codes and formulas used for the classification and regression algorithms
have place.
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Capitolo 2

A novel approach

2.1 Methodology

2.1.1 Data acquisition

This chapter presents a brief introduction of the database made available
online by the team working on the "Journal of Biomechanics" and made
available for download on the www.simtk.org website. It includes informa-
tions about the leg kinematics, EMG signals of the rectus femoris, medial
and lateral hamstring muscle and the GRF.

The experiment involved eight children walking at four different walking
speeds. The walking speeds were categorized post-hoc as very slow, slow,
free and fast according to the following scheme:

very slow 0 < v∗ ≤ v̄∗free − 3σ∗free
slow v̄∗free − 3σ∗free < v∗ ≤ v̄∗free − σ∗free
free v̄∗free − σ∗free < v∗ ≤ v̄∗free + σ∗free
fast v̄∗free + σ∗free < v∗

where non-dimensional walking velocity v∗ = v
g∗Lleg

(v is absolute walking
velocity, Lleg is leg length and g is gravitational acceleration; Hof 1996),
and v∗free and σ∗free are the mean and standard deviation, respectively, of
the non-dimensional free walking speed of the subject cohort reported by
Schwartz et al. (2008). The eight subjects from this cohort achieved at
least one double-stance phase on the force plates at each walking speed,
which provided the bilateral GRF data. The obtained data base was used
to generate subject-specific simulations at each walking speed. The original
data set contains informations about the mechanisms that modulate vertical
supportive and fore-aft progressive accelerations of the body mass centre at
different overground walking speeds. The GRF was sampled at 1080Hz and
lowpass filtered at 20Hz. The EMG data was sampled at 1080Hz, bandpass
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filtered between 20 and 400Hz, rectified and then lowpass filtered at 10Hz.
To estimate the angular joint velocity, the time rate of change of its angular
position was evaluated.

ω =
Θ(tk) −Θ(tk−1)

tk − tk−1

As the database included only informations about one step length and
as walking is a repetitive side-switching motion, to replicate a whole stride
length, the data flow was repeated and lowpass filtered. To simulate the
data acquisition of a real-time controller the signal was buffered acquiring
32 sample frames and shifting by eight. Each time the mean value of the
buffer was taken and applied to the calculations.

Figura 2.1: The sampling frames scheme

Walking phase identification

As explained in chapter ... the state of the art lower limb smart prostheses
uses an onboard FSM controller to identify the gait state. In order to con-
front future results, it was necessary to develop a FSM, as based in literature,
for the knee and ankle joint. Further, to find a classifier that takes into ac-
count EMG signals and is able to guarantee an automated not heuristic rule
based state transition, it was thought to apply a machine learning approach,
more precisely the Support Vector Machine (SVM).

To verify the accuracy of the classifiers, the obtained results were compa-
red frame by frame with the actual gait states. If they matched, the accuracy
for this frame was set to a 100%, while if the did not the accuracy was set to
0%. At the end of the whole gait cycle analysis the mean value of the overall
accuracy was taken.

FSM The FSM knee controller is composed by four states: early and late
stance, and early and late swing. During the ground level walking process,
once overcoming the GRF threshold, the early stance state is initialised.
Continuing the walking process, there will be a change of sign of the knee
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joint velocity and once the velocity is increasing the late stance phase is
reached. Leaving the ground the GRF acting on the foot is zero, leading
the controller to the swing phase. Once the knee velocity increases the late
swing phase is initialised and the cycle begins from the beginning.

Figura 2.2: Knee controller FSM

The ankle controller has five states, as the ankle with respect to the
knee joint needs a preciser gait analysis and phase separation. Therefore an
additional state between the early and late stance, called middle stance, was
introduced. Once overcoming two GRF thresholds, one being slightly higher
then the other, first the early and then the middle stance is initialised. As
the shin continues is forward motion the ankle angle increases, introducing
the controller to the late stance. As the foot leaves the ground the early
swing phase is initialised and when both, the ankle velocity and angle are
respectively lower and higher then the imposed threshold, the controller
reaches the late swing.

SVM - from heuristic rule based classification to machine learning
based classification The SVM is a supervised machine learning method.
To be able to apply it, it needs to be trained. To accomplish this task the
"leave-one-out" approach was adopted: to test if the SVM works properly
and accurately it was first trained an all trials, except the one being analysed.

The database includes overall 32 ground level walking trials, divided into
four walking speeds. The classifier is trained in two approaches. The first
approach is to train the classifier on each subject (single subject wise - SS),
taking account only of three ground level walking trials and testing it one
the remaining one. This approach was adopted for all subjects and for all
trials in a cyclical matter, to enforce the highest amount of results. In a
second approach the classifier was trained on seven subjects and tested on
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Figura 2.3: Ankle controller FSM

the remaining one (multi subject wise - MS). Again a cyclical pattern was
applied. The table in figure 2.4 is a graphical representation of the two
approaches:

Figura 2.4: graphical representation of the two used approaches

A SVM classifies between two possible classes. As mentioned before the
knee junction has four gait state classifications and the ankle junction has five
of them. Therefore for both, a cascade classification approach was needed.

To classify the different gait states for the knee joint the following sche-
me, shown below, was developed. The first level splits the gait between main
stance or main swing phase. In a second level a further division was introdu-
ced, for both the swing and stance phase, separating respectively early and
late swing, and early and late stance phase (figure 2.5).

For the ankle junction an analogue approach was applied, but as the
stance phase has three sub states, being early, middle and late stance, an
additional level was introduced. The added level separated the early stance
from the other two stance phases. The logical procedure is shown in figure
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Figura 2.5: Knee SVM classifier

2.6.

Figura 2.6: Ankle SVM classifier

State related impedance control

As mentioned in Chapter 1.3.4 the torque curve of the joint can be repre-
sented by the following equation:

τ = K(θ − θK)− βω

where K is the joint stiffness, β is the joint damping factor, θ is the joint
angle, θK is the joint rest angle and ω is the joint angular velocity.

The same formula can be rewritten as:

τ = −KθK +Kθ − βω
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Figura 2.7: Mechanical scheme of the knee joint

where −KθK , K and β can be seen as variables to be estimated by the
regressor, instead of heuristic chosen parameters.

The equation can then be rewritten in matrix form:

τ =

x1x2
x3

1
θ
ω

T

where the x-vector contains the parameters to be evaluated.
Stiffness and damping can be assumed to have a linear relationship

expressed by epsilon having a range from 0.01 to 0.05.

τ = βK

The torque equation can therefore be rewritten as:

τ = −KθK +K(θ + εω)

expressed in matrix form:

τ =

[
x1
x2

] [
1

θ + εω

]T
The same structure will be used in the whole work, to divide the para-

meters that work on the stiffness with respect to the ones working on the
damping effect of the joint.

To integrate the EMG signals coming from the rectus femoris and the
medial and lateral hamstring muscles, it is possible to make the following
mathematical assumptions. Taking the minimum value between the EMG
signals from the two opposite muscles - rectus femoris and hamstrings - it is
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possible to define an EMG dependent stiffness. Different cases were taken
into account: if none of the muscles contract the stiffness is low, ff both
muscles contract the stiffness is high and if just one muscle contracts but the
other not, the stiffness remains low.

KEMG = min

(
EMGrf ,

EMGmh + EMGlh

2

)
KEMG is the EMG dependent stiffness, while the subscripts indicate respec-
tively the rectus femoris, the medial and lateral hamstring muscles.
Analogically an "EMG-angle" can be defined as the difference between the
two muscles. If both or none muscles contract the angle is null, if just one
of the muscles contract the angle has a high.

θEMG = EMGrf −
EMGmh + EMGlh

2

In the second database the last analysed control algorithm includes a
combination of all available kinematic informations (joint angle, joint angu-
lar velocity and shank acceleration) and EMG signals, where each singular
nervous muscle information is fed to the training algorithm. All five applied
torque curve equations are presented in the appendix.

Linear To have a comparison between the linear and gaussian regressor
the first needs to be applied to find the parameters of the torque curve
equation. As the gait is divided in various states, depending on the joint, the
regressor needs to find for each state the according parameters for the torque
curve generation. As the database includes different informations about the
joint kinematics, the GRF and the EMG signals, multiple combinations were
developed and compared. Once the parameters were found, they were tested
and the resulting torque curve was compared to the actual one through the
Root Mean Square Error (RMSE) approach.

Gaussian The Gaussian Process (GP), wrt to the linear regressor, as ex-
plained in chapter ... does not estimate a single parameter vector for each
state, but defines a parameter distribution over the function. This permits
a better approximation of the estimated torque to the actual torque.

Before being usable, similarly to the SVM, the GP needs to be trained.
To do so the expected torque output and input combinations defined in the
equation are fed to the GP. The GP is then tested for each trial frame by
frame. First the SVM classifies the gait state, then the GP applies the
correct control law for the torque curve generation. Again, to estimate the
discrepancy between the estimated and real torque, the RMSE approach is
applied.
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2.2 Results

2.2.1 Classification

SVM The tables below represent the combinations for which the SVM
reached the highest accuracy. First are shown the combinations (in red)
for which the knee junction, single subject wise and multi subject wise, has
reached the highest accuracy. Secondly the ankle junction (in blue). In order
to have an immediate result of the combinations that worked the best, the
next explained logical thread was followed:

1. test best working SVM including the GRF

2. test best working SVM excluding the GRF

3. test best working SVM including GRF and EMG signals

4. test best working SVM including EMG and excluding GRF

Tabella 2.1: Knee SVM input combinations for SS and MS; X denotes the
inclusion of the parameters

Tabella 2.2: Ankle SVM input combinations for SS and MS; X denotes the
inclusion of the parameters

SS wise the classifier performed better with the knee junction then the
ankle junction. In the two bar graphs below are represented the classifier
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accuracies for the different combinations of the SVM. In red is shown the
accuracy level of the FSM classifier, while in blue are shown the accuracy
levels of the different SVM combinations. Overall the knee SVM performed
better then the ankle SVM. The FSM for the knee junction reached an accu-
racy level of 89.7% with a standard deviation of 3.5. The SVM combination
including all kinematic parameters and the GRF performed at an accuracy
of 93.2%, while the combination including all parameters reached an accu-
racy of 89.3%. The FSM for the ankle junction instead, reached an overall
accuracy of 93.7%, while the best performances were reached by the combi-
nations of all kinematic parameters with the GRF and the combination of
all parameters. The SVM including all kinematic parameters and the GRF
reached an accuracy of 90.9% with a standard deviation of 5.5, while the
combination of all parameters reached an overall accuracy of 85.3% with a
standard deviation of 9.3.

MS wise again the classifier performed better with the knee junction
then the ankle junction, but this time for a much higher margin. In the two
bar graphs below are represented the classifier accuracies for the different
combinations of the SVM. The accuracy levels for the knee and ankle junction
are the same as for the SS. Overall the knee SVM performed better then the
ankle SVM. The SVM combination including all kinematic parameters and
the GRF performed at an accuracy of 93.8%, while the combination including
all parameters reached an accuracy of 93.6%. The SVM for the ankle joint
including all kinematic parameters and the GRF reached an accuracy of
92.6%, while the combination of all parameters reached an overall accuracy
of 91.9%. The two graphs below represent the accuracy levels reached by
the different SVM combinations.

Before applying the GP to the SVM to evaluate the joint torque curve, it
was necessary to confront the FSM and SVM with the true effective labels of
the gait cycle. The table below is a summary of all SVM considering the best
accuracy levels for the different combinations, including also the standard
deviations. The column to the left determines the SVM combination. In blue
are shown the results for the knee joint and in red the results for the ankle
joint. Overall the SVM performed better MS wise then SS wise, increasing
the accuracy level for both, the knee and ankle junction.

2.3 gaussian regressor

The first analysis confronted the linear regressor with the GP based on the
effective gait cycle states. Overall the GP performed better then the linear
regressor, more for the knee joint then the ankle joint. The table below
represents a summary the RMSE of all possible torque curve combinations.
The column to the left indicates the combination of parameters used: (more
accurate explanations are presented in the appendix):
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In most test trials the GP regressor performed quiet well, except in some.
In those it seems the GP was not able to estimate the correct torque output,
but overreached. Below are represented three examples of a torque curve
generation at the knee junction. The first shows the torque curve of a SS
test. The second and third show a MS torque curve, one where the GP
estimated correctly the torque and one where it did not.

Regarding the knee joint, the results show, that although in some cases
the GP performs quiet poorly, the RMSE is actually slightly lower in all pa-
rameter combinations. For the ankle joint the opposite is the case. The table
below depicts the summary of the RMSE for the knee and ankle junction,
single subject and multi subject wise, confronting case by case the linear
regressor with the GP. Single subject wise there are five different torque
equations including all possible combinations between kinematic, nervous
system and GRF sensory informations, whereas multi subject wise there are
just three. This choice had two reasons: first, mainly because the students
pc did not have the memory to elaborate the amount of data, secondly the
aim of this research is to verify which informative combination beside the
kinematic one, can be used to optimize the classifier, appliable to multiple
subjects.

In the appendix are present the bar graphs showing graphically the
achieved results for each SVM combination applied to each torque curve
equation.

2.4 Discussion

2.4.1 Classification

Overall the SVM performed better then the FSM, mostly working with the
same parameters, means kinematic and GRF. Noteworthy although is, that
in the MS analysis the accuracy level only dropped by a slight percentage
for the knee junction in the case of the kinematic combination, excluding
the GRF. This results may mean that future modern prostheses may could
avoid the integration of a GRF sensor, which would mean less costs for
the development and the manufacture. EMG sensory wise the SVM did not
perform too poorly. The overall mean accuracy for the knee joint lies slightly
below the FSM laid margin, while for the ankle junction the EMG signals
certainly should not be taken into account.

2.4.2 Regression

Regarding the torque curve evaluation the novel approach did achieve some
good results in the SS analysis and some lesser results in the MS analysis,
meaning estimating an overall RMSE slightly higher for the GP then for the
linear regressor.
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This final results, although not confirming that the adaption of the
SVM classification and the GP regression elaboration, may increase the joint
torque performance for the knee and ankle joint.

2.4.3 Future steps

Future steps in the direction laid by this research in the ground level walking
gait analysis could be the following:

• as the ankle SVM did not quite perform as well as the knee SVM
it may be advisable to integrate the second in the first. Leading in
an upper level the knee classifier could send informations to the an-
kle SVM, conditioning the gait state classification and increasing the
performance

• apply the same type of analysis to a different set of input informa-
tions, which may not only include joint angle and velocity but also
informations about segments (thigh, tibia and foot) orientation, linear
and angular acceleration along all three axis

• extend the data acquisition to a various set of subjects including male
and female of various ages
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Figura 2.8: Knee Single Subject, Torque equations accuracy
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Figura 2.9: Ankle Single Subject, Torque equations accuracy
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Figura 2.10: Knee Multi Subject, Torque equations accuracy
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Figura 2.11: Ankle Multi Subject, Torque equations accuracy
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Tabella 2.3: Gait Cycle Analysis, FSM vs SVM

Tabella 2.4: True Label Torque Curve Regressor, Linear vs Gaussian
Process

Tabella 2.5: Torque Curve representation for a Single Subject Test Trial
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Tabella 2.6: A good Torque Curve representation for a Multi Subject Test
Trial

Tabella 2.7: A bad Torque Curve representation for a Multi Subject Test
Trial
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Tabella 2.8: RMSE summary of all torque curve input parameters
combination applied to each SVM
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Abstract

In the following section are linked the five torque equations used to estimate
the joint torque at the knee and ankle joint. To a better understanding,
below is shown for what each parameter stands for:

θ - joint angle
ω - joint angular velocity
ε - coefficient linking joint stiffness and dampness
ashank - shank acceleration
θEMG - EMG angle
KEMG - EMG stiffness
EMG - EMG signals from the rectus femoris and medial and lateral ham-
string muscles
x - parameters to be estimated

Torque curve equation including three parameters:

τ =

x1x2
x3

1
θ
ω

T

Torque curve equation including two parameters:

τ =

[
x1
x2

] [
1

θ + εω

]T
Torque curve equation including six parameters:

τ =



x1
x2
x3
x4
x5
x6





θ
ω

ashank
θ(θ + εω)
ω(θ + εω)

ashank(θ + εω)



T

Torque curve equation including eight parameters:
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τ =



x1
x2
x3
x4
x5
x6
x7
x8





θ
ω

ashank
θEMG

θ(θ + εω)
ω(θ + εω)

ashank(θ + εω)
KEMG(θ + εω)



T

Torque curve equation including twelve parameters:

τ =



x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12





θ
ω

ashank
EMGrf

EMGmh

EMGmh

θ(θ + εω)
ω(θ + εω)

ashank(θ + εω)
EMGrf (θ + εω)
EMGmh(θ + εω)
EMGlh(θ + εω)



T
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Next up, are the bar graphs of each SVM combination summarizing the
RMSE performance for each parameter combination:

Figura 2.12: First SVM combination for the Knee joint - single subject
wise
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Figura 2.13: Second SVM combination for the Knee joint - single subject
wise
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Figura 2.14: Third SVM combination for the Knee joint - single subject
wise

64



Figura 2.15: Fourth SVM combination for the Knee joint - single subject
wise
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Figura 2.16: First SVM combination for the Knee joint - multi subject wise
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Figura 2.17: Second SVM combination for the Knee joint - multi subject
wise

67



Figura 2.18: Third SVM combination for the Knee joint - multi subject
wise
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Figura 2.19: Fourth SVM combination for the Knee joint - multi subject
wise
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Figura 2.20: First SVM combination for the Ankle joint - single subject
wise
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Figura 2.21: Second SVM combination for the Ankle joint - single subject
wise
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Figura 2.22: Third SVM combination for the Ankle joint - single subject
wise
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Figura 2.23: Fourth SVM combination for the Ankle joint - single subject
wise
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Figura 2.24: First SVM combination for the Ankle joint - multi subject
wise
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Figura 2.25: Second SVM combination for the Ankle joint - multi subject
wise
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Figura 2.26: Third SVM combination for the Ankle joint - multi subject
wise

76



Figura 2.27: Fourth SVM combination for the Ankle joint - multi subject
wise
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