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di Tecnologia (IIT), uno dei più avanzati centri di ricerca per la robotica in Europa.

Desidero innanzitutto ringraziare per la sua impeccabile disponibilità il Prof. Rizzo, senza
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Abstract

The purpose of this master thesis is to analyse the effects induced by gravity compensators
in robotic systems.

Nowadays robotic research is more focused on attaining energy-efficient and safe solutions.
For instance, they are key-aspects of robots that are required to interact with human
workers in not confined environments. The introduction of a mechanism that passively
compensates the joint torque caused by the weight of the robot may offer a valid solution.
Relieving the actuators from generating the torques due to gravity has the consequence
of decreasing the power consumption and allowing the possibility to reduce the size and
weight of the actuators. Thus, an overall lighter robot is obtained, further reducing the
power consumption. Furthermore, in the context of human-robot interaction a lighter
robot is potentially less dangerous and can be manoeuvred at higher speeds.
In addition, a gravity compensator allows the robot to hold a static position without the
need of an external power source, hence avoiding the risk of collapsing in case of failure
of the actuators.

This work is focused on a gravity compensator composed by a noncircular pulley and
a spring. This specific gravity compensator features the possibility of generating an ar-
bitrary torque profile, so it is not limited to compensate exclusively the trigonometric
torque profiles due to gravity on revolute joints.
First, a virtual prototype of the mechanism applied to an inverted pendulum was devel-
oped. This model was initially used to study the static and dynamic behaviour of the
mechanism in order to validate its theoretical concept. Following, it was used to guide
the design of a physical prototype of the system where the inverted pendulum was actu-
ated by an electric motor. In designing the test bench, particular attention was made to
include a system to effectively measure the pretension of the springs.
Once that the test bench had been assembled, a set of experiments was performed to
verify the results obtained from the simulations of the virtual model.
Finally, the results are discussed along with problems, limitations and possible improve-
ments of both the virtual model and the physical prototype.
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Chapter 1

Introduction

A robot is an artificial machine capable of performing a series of actions to help or replace
humans in hard or dangerous jobs. For instance the first industrial robot ever build had
the task to handle die castings in order to protect the workers from hot splashes of metal
and toxic fumes. It was called Unimate and was designed in the 1950s to work in the
assembly lines of General Motor. [2]
Thanks to scientific progress in the fields related to robotics, robots have evolved from be-
ing designed exclusively for heavy, monotonous and repetitive tasks in the industrial field
to being able to perform more complex routines in numerous fields: medicine, agriculture,
exploration and transports, to cite but a few. The introduction of automated systems has
resulted in a general enhancement in the production, both in volume and quality, and an
improvement of the workers’ conditions, yet not without its controversies.

Up to now, most of the robots are designed to be perfectly rigid, in order to withstand high
payloads and accelerations, move at high velocity and ensure precision and repeatability
of their movements. Achieving these high performances come at the cost of having a
bulkier and, above all, heavier structure.
Another prerogative of robots, in particular of robot manipulator, is to have a good
manipulability and dexterity, i.e., the ability to reach a desired pose avoiding obstacles.
This is obtained through a serial kinematic chain called redundant chain, made of multiple
joints. Revolute joints are preferred because of the strength, low friction and reliability
of ball bearings. An example is the LBR iiwa by KUKA, which has 7 degrees of freedom
(Figure 1.1). A criticality of this type of robots is that the torque due to the weight of
the structure increases with the number of degrees of freedom of the mechanism.

Figure 1.1: LBR iiwa robot.
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An increase in the torque due to weight of a heavier, stiffer and longer structure, causes
the need of more powerful actuators. In turn a bigger actuator on its own adds weight
to the robot and implies a higher power consumption. Moreover, with the increase of
circumstances where human-robot cooperation is required, a heavier robots is potentially
more dangerous and has to be manoeuvred at lower speeds.

Thus it results clear the benefits of implementing energy-free mechanisms that compensate
the torques due to gravity in a revolute joint: the torque needed to move the robot is
reduced, which implies a smaller power consumption and the possibility to use a lighter
motor to obtain a lighter robot overall. It is remarkable to note that in the case of a
perfect weight compensation, the power consumption required to hold a static position is
null. Furthermore, such a mechanism would potentially prevent the robot from suddenly
collapsing in case of failure of the actuators.
By ”energy-free mechanism”, it is meant a mechanism that does not require external
power and so does not introduce power from outside the system. Hence it compensate
the torque due to the weight of the robot by maintaining the potential energy as constant.

1.1 A simple example of gravity compensation

The generic dynamic equation of a multibody system is:

H (q) q̈ (t) + C (q, q̇) q̇ (t) +Bq̇ + g (q) = τ (1.1)

The terms used in Equation 1.1 are:

q: generalized coordinates.

q̇: generalized velocities.

q̈: generalized accelerations.

H (q) q̈ (t): torque due to accelerations.

C (q, q̇) q̇ (t): torque due to centrifugal and Coriolis accelerations.

Bq̇: torque due to viscous friction.

g (q): torque due to the weight forces.

τ : resultant torque.

In the case of a simplified system that uses bearings, friction can be neglected without
compromising the significance of the results. The equation becomes:

H (q) q̈ (t) + C (q, q̇) q̇ (t) + g (q) = τ (1.2)

A gravity compensation mechanism is designed to compensate the term due to gravity
g (q), so that Equation 1.2 becomes:

H (q) q̈ (t) + C (q, q̇) q̇ (t) = τ

2



1 - Introduction

Figure 1.2: Double pendulum example.

To better understand the impact of a weight compensation system, the behaviour of a
double pendulum working at different speeds is analysed. The software MSC Adams is
used to simulate the dynamic behaviour of the system (Figure 1.2). A perfect weight
compensation could be easily introduced by simply deactivating the gravity field.
In the simulation, the link are ideal rigid uniform bodies and the joint are ideal revolute
joints. The fact that there is no friction in the system is not a issue as a simplified model
is under study.
The goal of the simulation is to compute the torque needed for link 1 to perform a 360◦

turn at three different speeds (1.5, 15, 150degree/s), while link 2 rotate at double the
speed of link 1.

The main quantities describing the system and the results are reported in Table 1.1 and
Figure 1.3.

Table 1.1: Double pendulum quantities.

Mass of link 1 520 kg

Mass of link 2 212 kg

Inertia along z axis of link 1 4.86 kgm2

Inertia along z axis of link 2 1.07 kgm2

OO′: distance between joints 1.0m

OC1: distance between joint 1 and the center of mass of link 1 0.5m

OC1: distance between joint 2 and the center of mass of link 2 0.375m

Obviously the torques due to gravity g (q) is constant in all three cases, as it does not
depend on the speed and acceleration of the system, but only on the position of the centers
of mass of the links; and it is approximately equal to the torques of Figure 1.3a, as at low
speed the torques due to the accelerations are negligible (Figure 1.3b).
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Figure 1.3: Double pendulum simulation’s results.

Figure 1.3 shows how the torque due to the acceleration is more and more significant as the
angular velocities of the two links increase. Therefore a gravity compensation mechanism
is particularly convenient in applications that work at low speed, as the torque due to
acceleration and deceleration is sensibly smaller than the torque due to gravity. While
in the case of big accelerations and decelerations, the torque required to accelerate is
comparable to the one due to gravity and the size and power of the actuators can not be
substantially reduced as it is with a lower speed.
Nevertheless, weight compensation could be used advantageously as a safety and energy
saver device also in high speeds applications, though not as much as in lower speeds
applications.
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1.2 Different types of gravity compensators

Different types of weight compensation mechanisms are presented and categorized in [3].
Here only energy-free mechanism for complete gravity compensation on revolute joints
are presented.

Counterweight

Using an additional mass and the law of the lever it is possible to let the centre of mass
coincide with the joint axis, as shown in Figure 1.4. In this way the gravitational potential
energy of the system is constant for every position of the robot, as the centre of mass does
not move, and the torque due to gravity is null.
In other words, the counterweight works like an accumulator of the potential energy lost
and gain by the robot while moving. This technique allow smooth dynamic behaviours,
but as the drawback of increasing the total weight, inertia and volume of the system.
Consequently it is not suitable in application that requires movements with high acceler-
ations. The use of counterweight is recommended in applications were the base link can
not be rigidly fixed to the ground as in Figure 1.5. [4]

Figure 1.4: Weight compensation using a counterweight.

Figure 1.5: pantograph manipulator balanced by a counterweight, mounted on a demininig
rover.

Spring

Another method to accumulate the gravitational potential energy is to convert it into
elastic potential energy, by substituting the counterweight with a spring. The advantages
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of a having a spring are that it adds less mass, inertia and complexity to the system
compared to a counterweight. On the other side, it is more difficult to match the nonlinear
joint torque induced by gravity and to obtain a smooth dynamic behaviour.
Torsional springs are more rarely compared to axial springs, in view of the fact that it is
more difficult to adapt and fine-tune their behaviour to achieve static balance ([5]). On
the contrary, the use of axial spring is well documented in literature ([6]).

There are different way to connect the spring to the system to be compensated. The
simplest one is to connect the springs directly to the manipulator links as in Figure 1.6a.
However, this technique allows perfect compensation only if a zero-free length spring is
used, and even in this case, it is difficult to fine-tune the mechanism and obtain a perfect
compensation. In addition there is also the risk that the protruded spring may interfere
with other parts of the robot.

More elaborated techniques involving cables, additional links, pulleys and cams allow to
bypass these two problems. For example, a pulley and a cable can be arranged to simulate
a zero-free length spring by storing away the initial length of the spring. Additional links
are used to protect the spring in a more compact configuration, but have the disadvantage
of adding more weight to the structure.

(a) (b) (c)

Figure 1.6: Weight compensation mechanisms with springs, cables, additional links and
pulleys.

The use of pulleys and cams with noncircular shapes has the benefit to increase the
free design parameters of the system, allowing an easier and better optimization of the
mechanism of gravity compensation. Figure 1.7 illustrates some of the many examples
described in literature. [7, 8, 9, 1]

(a) (b) (c) (d)

Figure 1.7: Weight compensation mechanisms with springs, cables, cams and pulleys.
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Magnets

Recently a series of magnets arranged in a special configuration, called Halbach array,
has been used by [10] in a gravity compensator device. It was exploited the fact that two
nested Halbach cylinders produce a sinusoidal torque capable of compensating that of a
gravitational load over a complete rotation of a revolute joint.
Even if this solution is difficult to fine-tune and it is not possible to obtain a perfect com-
pensation, it has the advantages of being extremely compact, with the cylinders mounted
in axis with the joint, and the possibility to be modularize so that several modules can
be combined in series to obtain increasing torques.

(a) (b) (c)

Figure 1.8: (a) Linear Halbach array. (b) Nested Halbach cylinders to achieve gravity
compensation. (c) Serial manipulator retrofitted with a magnetic compensation module.

Vertical axial joints

By designing a robot with vertical axial joint, parallel to the gravity field, all the weight of
the robot is supported by the structure itself and there is no torque due to gravity on the
joints. Robots like the SCARA (Figure 1.9) have been build with this notion. However
this technique limits considerably the design of the robot and has a worse characteristics
in terms of supported payload, accuracy, dexterity as the range of motion increases.

Figure 1.9: SCARA robot.
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1.3 FlegX

To deepen the effects of implementing a gravity compensator into a robotic systems, the
Italian Institute of Technology (IIT) started a research project connected on the mecha-
nism proposed by [1] (Figure 1.7d). The aim of the project was to build a test bench to
apply the gravity compensation mechanism to a simple case: an inverted pendulum with
one degree of freedom. In parallel, a model to perform a multibody dynamic simulation
of the system was developed using the software MSC.ADAMSR©, in order to compare the
real and simulated systems. In a second phase of the project, the possibility of imple-
menting such a mechanism into a robotic flexible leg, called FlegX ([11]), will be taken
into consideration.
FlegX is a 3 DoF mechanism with two actuated revolute joints, that act as hip and knee
of the robotic leg and a translational joint; the upper leg is build with a rigid link, while
the lower leg is made out of a flexible component. This robot was build with the intention
of examining the advantages of using flexible components into industrial robots.
The reason to apply a gravity compensator to FlegX is to decrease the size of the electric
actuators in order to obtain better jumping performances lowering the total mass of the
robot.
In this phase the multibody system will be exploited to run some preliminary simulations
to better assess the functioning of the gravity compensator in a more complex system.

Figure 1.10: FlegX.

The gravity compensator made with a spring and a noncircular pulley, proposed by [1]
(Figure 1.11), was preferred among all the possible designs because of its simplicity,
compactness and, above all, because it presents the possibility to compensate an arbitrary
torque profile on the joint, not just the trigonometric torque profile due to the weight of
the structure. This characteristic allows interesting application of this particular gravity
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compensator; e.g. it can be adjusted to optimize the specific task of the robot, or it
can be used into exoskeleton to generate particular exponential torque typical of human
articulations, as reported in [12, 1].

Figure 1.11: Gravity compensation with noncircular pulley and spring.

1.4 Analysis of mechanism with spring connected di-

rectly to the link

As a first step in the design of the weight compensation mechanism with the noncircular
pulley, the kinematic of the compensator where the spring is directly connected to the
manipulator link was analysed. The study of this simpler mechanism had the aim of
acquiring a better understanding of the subject. The compensator was applied to a
planar 1 DoF inverted pendulum, because it represents an easier system to study and is
the same system studied in the further phases of the project.
The two possible configurations illustrated in Figure 1.12 are described by the same
kinematic model. While configuration 1.12a is more compact, 1.12b is more convenient
in the case of large workspaces and less width robots.

(a) (b)

Figure 1.12: Weight compensation mechanisms with spring connected directly to the link.

Supposing to have an ideal spring, which elongation at rest is null, the equation of the
spring is: {

Fs = k(x− x0)
x0 = 0

⇒ Fs = k · x

where Fs is the force exerted by the spring, k the spring stiffness, x the elongation and
x0 the elongation of the spring at rest.

The problem is to find, if possible, the value of the spring stiffness k that allows a perfect
compensation of the torque due to gravity on the joint. The solution can be obtained
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through several procedures. Here two methods are reported: firstly using the equilibrium
among the forces and then using and energy approach.
Both solutions are developed in reference to Figure 1.13.

a

Mg

r

L

Fs

Fn

x

M

O

θ

θ
θ

Figure 1.13: Static scheme of the system.

Equilibrium of forces

Force due to mass:
Fg = M · g

Spring force:
Fs = k · x

Vertical component of the spring force:

Fn = k · a

Equilibrium of momentum in O:

Fg · L sin θ = Fn · r sin θ

MgL sin θ = kar sin θ

MgL = kar

Spring stiffness that allows perfect gravity compensation:

k =
MgL

ar
(1.3)
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Constant potential energy

Potential energy of mass M :

VM = MgL cos θ

Using the law of cosines:

x =
√
r2 + a2 − 2ar cos (θ)

Potential energy of spring k:

Vs =
1

2
kx2 =

1

2
k
(
r2 + a2

)
− kar cos θ

Total potential energy of the system:

Vtot = VM + Vs = (MgL− kar) cos θ +
1

2
k
(
r2 + a2

)
Independence of V tot from θ is ensured it the related derivative is null for every value θ

∂Vtot
∂θ

= − (MgL− kar) sin θ = 0,∀θ

which is obtained for every value of θ if:

k =
MgL

ar

that is the same expression of Equation 1.3. Therefore perfect gravity compensation is
possible by using an ideal spring with stiffness k = MgL

ar
.

If the case with a real spring is considered, the equation of the spring force is:{
Fs = k(x− x0)
x0 6= 0

Using the constant potential energy solution, it is possible to demonstrate that perfect
gravity compensation can not be achieved.
Potential energy of real spring:

V ′s =
1

2
k (x− x0)2 =

1

2
k
(
r2 + a2 − 2ar cos θ − 2x0

√
r2 + a2 − 2ar cos θ + x2

0

)
4

Therefore the total potential energy is:

V ′tot = (MgL− kar) cos θ +
1

2
k
(
r2 + a2 + x2

0

)
− 2kx0

√
r2 + a2 − 2ar cos θ
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Independence of V ′tot from θ if:

∂V ′tot
∂θ

= − (MgL− kar) sin θ − 2kx0 ·
1

2

(
r2 + a2 − 2ar cos θ

)− 1
2 · (−2ar (− sin θ)) =

=

(
kar −MgL− 2kx0ar√

r2 + a2 − 2ar cos θ

)
sin θ = 0,∀θ (1.4)

Equation 1.4 cannot be verified for every θ and x0 6= 0, which means that perfect gravity
compensation on a revolute joint can not be achieved using a real spring.
A possible alternative solution is the use of pre-loaded spring, tuned to have zero-free
length (Figure 1.14); but this method carries two main drawbacks: it cannot be applied
if a force smaller than the pre-load of the spring F0 is required, and this type of spring
are difficult to find as off-the -shelf products.

(a) spring with zero initial
tension.

(b) spring with some initial
tension.

(c) spring with zero-free-
length due to an initial ten-
sion F0 = kx0.

Figure 1.14: Initial tension in extension springs.

Alternatively, the initial lenth x0 of a standard spring can be stored in a different position
through pulleys and cables, as illustrated in 1.15.
In these way perfect weight compensation is theoretically possible but it is difficult to
realise in practise: once that the geometry of the system is established (M,L, a, r), the
quality of the compensation depend solely on the accuracy of the value of the spring
stiffness s. Differently, as it will be shown in the following chapter, using the compensator
with spring and noncircular pulley, the profile of the pulley can be adjusted to value of
the spring, providing an easier possibility of fine-tuning the gravity compensator.

Figure 1.15: Alternatives to zero-free length springs.
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Chapter 2

Weight Compensation Mechanism
with a Non-Circular Pulley and a
Spring

This configuration consists in a linear spring connected to a belt which is laid down on
a noncircular pulley. By controlling the elongation of the spring and the variation of the
radius of the noncircular pulley, which means controlling the spring force and moment
arm, it is possible to control the torque generated on the revolute joint.

In the first part of the current chapter the working principle of the mechanism is analysed
in order to obtain the equations that describe the noncircular profile of the pulley. Next,
some practical limitations to the shape of the pulley are described and a new procedure
via the solution of a convex optimization problem is presented. This procedure allows to
include the constraints into the generation of the profile
Afterwards, three topics presented by [1] are reported: a way to take into account some
geometrical modifications with respect to the ideal configuration of the mechanism, a
procedure to implement an antagonistic springs design to generate a bidirectional torque,
and a numerical method to evaluate the torque that can be compensated by a given
noncircular pulley.
Finally some examples are reported to clarify the themes introduced in the chapter.

2.1 Working principle

The system represented in Figure 2.1 is used to develop the methodology to synthesis the
noncircular pulley profile.
The mechanism is composed by two links, connected by a revolute joint in point O. The
noncircular pulley is fixed to the grounded link. A linear extension spring is connected to
the mobile link in point R, which will be referred as insertion point, and to the grounded
link via a cable that wraps around the noncircular pulley. The distance between the axis
of revolute joint O and the insertion point R is called insertion length and measures L.
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Figure 2.1: Schematic diagram of the system with a spring and a noncircular pulley.

At a joint angle θ, the line of action of the spring passes through point R, the tangency
point on the pulley P and point Q on the grounded link. The torque on the joint is
determined by the product of the spring force and the moment arm rm(θ). If R is fixed,
rm depends solely on the pulley shape.
The goal is to design the profile of the noncircular pulley so that it generates the desired
torque profile τd(θ), given the insertion length L and the spring stiffness k.
In this first phase, it is assumed that the cable has infinite stiffness and negligible radius,
the spring is linear, there is no sliding between cable and pulley, there are no friction
losses in the system and there is no pulley to redirect the cable in R. Some of these issues
will be addressed later on.

There are different procedures to synthesize the pulley profile: [13] proposes a numerical
method where each value of τd(θ) is associated to a point of the pulley profile; [14] and
[1] have both developed an analytical method. However the latter was preferred and
hereafter described because it takes into account the possibility to consider some practical
implementations in the mechanism: the thickness of the cable and the introduction of a
circular pulley at the insertion point to redirect the cable.

2.1.1 Moment arm

The first step to synthesize the pulley profile is to find a relation between the desired
torque τd(θ) and the moment arm rm(θ), including the effects of the spring elongation .
This is done starting from the principle of virtual work: in static equilibrium, the virtual
work done by the spring is equal to the one done by the external torque:

τd (θ) · dθ = Fs (u) · du (2.1)
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where Fs(u) is the spring force and u(θ) is the total extended length of the spring.

τd (θ) = Fs (u) · du
dθ

= ku (θ) rm (θ)

rm (θ) =
τd (θ)

ku (θ)
(2.2)

The work done by the τd(θ) from θ0 to θ is equal to the one done by Fs(u) from u0 to
u. The total work, which takes into account the effects of the cable wrapping around the
pulley and the spring elongating, is computed integrating 2.1:

∫ θ

θ0

τd (α) dα =

∫ u

u0

Fs (β) dβ =
1

2
k
(
u2 − u2

0

)
u (θ) =

√
2

k

∫ θ

θ0

τd (α) dα + u2
0 (2.3)

Equation 2.3 relates the elongation of the spring u(θ) to τd(θ). The relation with the
moment arm rm(θ) is obtained substituting in 2.2:

rm (θ) =
τd (θ)

ku (θ)
=

τd (θ)

k
√

2
k

∫ θ
θ0
τd (α) dα + u2

0

=
τd (θ)√

2k
∫ θ
θ0
τd (α) dα + k2u2

0

(2.4)

2.1.2 Pulley shape synthesis

Once the moment arm rm(θ) is known for every θ, the pulley profile can be determined.
This is accomplished using infinitesimal calculus: the equation of the line l(θ) passing
though R and P is found; then the interception between l(θ) and l (θ + δθ) is evaluated,
since the interception points coincides with the profile of the noncircular pulley for δθ
approaching zero.

Figure 2.2: Schematic diagram of the system with coordinates system.
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2 - Weight Compensation Mechanism with a Non-Circular Pulley and a Spring

Accordingly, the slope of l(θ) is found:

RQ sin (θ + φ)

RQ cos (θ + φ)
= tan (θ + φ)

where:
φ = ÔRP

The equation of l(θ) can be written as:

l(θ) : y = tan (θ + φ)x+O′K

where, in reference to Figure 2.2, O′K expressed in terms of θ and φ is:

O′K = O′R−KR = L sin θ − L cos θ · tan (θ + φ)

Angle φ can be written as funcition of θ:

sinφ =
rm (θ)

L
⇒ φ = sin−1

(
rm (θ)

L

)

Therefore, the equation of line l(θ) is function of geometric parameters and θ:

l(θ) : y = tan

(
θ + sin−1

(
rm (θ)

L

))
x+ L

[
sin θ − cos θ · tan

(
θ + sin−1

(
rm (θ)

L

))]
(2.5)

S(θ) and Y (θ) are introduced to simplify Equation 2.5: S(θ) is the slope of l(θ) and Y (θ)
is the y-intercept of the line.

S (θ) = tan
(
θ + sin−1

(
rm(θ)
L

))
Y (θ) = L

[
sin θ − cos θ · tan

(
θ + sin−1

(
rm(θ)
L

))]

l(θ) : y = S (θ) · x+ Y (θ) (2.6)

Next, line a and b are defined, which are respectively the lines RP for angles θ and and
(θ + δθ); and the coordinates of their intersection I : (xI , yI) is found:

a : y = S (θ) · x+ Y (θ)
b : y = S (θ + δθ) · x+ Y (θ)

[S (θ + δθ)− S (θ)]xI + Y (θ + δθ)− Y (θ) = 0{
xI = − Y (θ+δθ)−Y (θ)

[S(θ+δθ)−S(θ)]

yI = S (θ)xI + Y (θ)
(2.7)
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Figure 2.3: Schematic diagram of line a, b and points I, P .

As the the infinitesimal increment δθ decreases, the intersection between line a and b
approaches point P on the profile of the pulley. As previously seen, P is the tangency
point of the cable on the noncircular pulley for a generic angle θ.
Thus it is possible to find the x-coordinate of point P by taking an infinitesimal increment
in θ.

xP = lim
δθ→0
− Y (θ + δθ)− Y (θ)

[S (θ + δθ)− S (θ)]
= −dY (θ)

dS (θ)
= −

dY (θ)
dθ

dS(θ)
dθ

= −Y
′ (θ)

S ′ (θ)

Finally the y-coordinate is found substituting in Equation 2.7:{
xP (θ) = −Y ′(θ)

S′(θ)

yP (θ) = S (θ)xP + Y (θ)

Summarising, given the profile of the desired torque to be compensated τd (θ), the stiffness
k and the initial length u0 of the spring and the insertion length L, the profile of the
noncircular pulley is found with the following calculations:

rm (θ) = τd(θ)√
2k

∫ θ
θ0
τd(α)dα+k2u20

φ = sin−1
(
rm(θ)
L

)
S (θ) = tan (θ + φ)
Y (θ) = L [sin θ − cos θ · tan (θ + φ)]

(xP , yP ) =
(
−Y ′(θ)

S′(θ)
, Y (θ)− Y ′(θ)

S′(θ)
S (θ)

)
(2.8)

2.2 Constraints on Non-Circular Pulley Shape

The noncircular pulley can not have any profile, e.g. in Figure 2.4, and not all combina-
tions of τd(θ), k, u0 and L generate a feasible profile. Thus it is necessary to analyse the
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2 - Weight Compensation Mechanism with a Non-Circular Pulley and a Spring

constraints to be imposed on the pulley shape and translate them into constraints on the
design parameter (τd(θ), k, u0, L).
Similar constraints to the one discussed here, had already been discussed in a previous
study [15], where noncircular cams are used in band mechanisms to satisfy a given non-
circular input-output motion relationship. Given the similar nature of the mechanism,
those constraints have been adjusted by [1] to suit the noncircular pulley of the gravity
compensator.

First of all, the function of the moment arm must be single valued, continuous and differen-
tiable in all the domain, because the pulley profile must be univocally defined, continuous
and without sharpen points, caused by a sudden change of derivative for each angle θ.
A sharpen point has the double detriments of damaging the cable and not allowing the
cable to perfectly unwrap itself on the pulley (Figure 2.4a).
Also, the moment arm rm(θ) must be smaller than the insertion length L, otherwise the
mobile link would hit the noncircular pulley and there would be no space to insert the
spring.
Lastly, the radius of the pulley contour must not tend to infinite and the shape must be
convex. Both of these conditions constraint the curvature of the profile, which must not
tend towards 0 to avoid having an infinite radius, and it must not change sign or it would
cause interferences between the spring line RP and other sections of the pulley (Figure
2.4b).

(a) (b)

Figure 2.4: Examples of infeasible pulley profile.

Resuming, the constraints on the pulley profile for every θ ∈ [θi, θf ] are:

1. rm (θ) single valued.

2. rm (θ) continuous.

3. rm (θ) differentiable.

4. rm (θ) < L.

5. Curvature does not tend to 0.

6. Curvature does not change sign.
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where [θi, θf ] is the range of angles where the τd(θ) has to be compensated.

Unluckily, due to the complexity of the relations among the design parameters and the
final profile, enclosed in Equations 2.8, it has not been found a way to translate all
the aforementioned constraints on the pulley profile into constraint purely on the design
parameters (τd(θ), k, u0, L).
A solution has been found only for the first three constraints on rn(θ): since the expression
of rm is:

rm (θ) =
τd (θ)√

2k
∫ θ
θ0
τd (α) dα + k2u2

0

rm (θ) is single valued, continuous and differentiable if τd (θ) is single valued, continuous
and differentiable.

For fourth contraint (rm (θ) < L), the simplest expression found is:

τd (θ) ≤ L

√
2k

∫ θ

θ0

τd (α) dα + k2u2
0

which is not helpful in simplifying the selections of the design parameters.

The same problem appears in the two constraints regarding the curvature of the profile.
The expression of the curvature κ of a curve is the derivative of the tangent T with respect
to the arc length s, which is equivalent to the ratio between the derivative of the tangent
with respect to θ over the inverse of the derivative of the arc lenght with respect to θ:

κ =
dT (θ)

ds (θ)
=
d (Tθ)

dθ

dθ

ds (θ)
=
T ′(θ)

s′(θ)

Therefore imposing:

κ 6= 0

is equivalent to

T ′(θ) 6= 0 (2.9)

Applying Equation 2.9 to the current case:

d (Tθ)

dθ
=
dS (θ)

dθ
6= 0

dS (θ)

dθ
=
d (tan (θ + φ))

dθ
=

1

cos2 (θ + φ)
·
(

1 +
dφ (θ)

dθ

)
which implies:

1 + φ′ 6= 0 (2.10)

Any development of Equation 2.10 has shown to be immune to further analyses.
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The second constraint on the curvature of the pulley was not solve directly for the same
reason. However if the rm(θ) is continuous and 5 is respected, that is that the curvature
is not equal to 0 for every θ, it is implied that the curvature can not change sign and 6 is
respected.

In conclusion, experience in working with Equations 2.8 and the constraints on the pul-
ley profile has shown that the best way to select the design parameters (τd(θ), k, u0, L)
is to have a single-valued, continuous, differentiable profile of the desired torque to be
compensated τd and consequently select the remaining parameters by trial and error.

2.3 Convex optimization approach

An attempt to improve the process of synthesising the profile of the pulley was carried
out by finding the moment arm rm as the solution of an optimization problem in convex
form, and then using the previous method presented by [1] to compute the profile. The
main advantages of this approach is the possibility of including the constraints on the
pulley profile directly as constraints of the optimization problem.

Convex Optimization Problem

First of all, the target function of the optimization problem is determined from the equa-
tion of rm (Equation 2.4).
Angle θ is discretized over the range of motion of the joint, from the initial angle θi to
the final θf :

θ̄ ∈ Rn, θ̄ =
[
θ0 θ1 . . . θn−1

]ᵀ
Then Equation 2.4 is rewritten and then applied to the discretized angle θ̄:

rm(θ) ·

√
2K

∫ θ

θ0

τd(α)dα + k2u2
0 = τd(θ)

rm(θi) ·

√
2K

∫ θi

θ0

τd(α)dα + k2u2
0 = τd(θi), ∀θi ∈ θ̄ (2.11)

⇒ rm(θ̄) ∈ Rn

Then variable v(θ̄) is introduced

v(θi) =

√
2K

∫ θi

θ0

τd(α)dα +K2u2
0)

and it is used to simplify Equation 2.11:

rm(θi) · v(θi) = τd(θi) (2.12)
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Then Equation 2.12 is rewritten in matrix form:

diag(rm(θ̄)) · v(θ̄) = τd(θ̄)

rm can be computed solving a Least Square (LS) problem:

minimize
rm

||diag(rm(θ̄)) · v(θ̄)− τd(θ̄)||2 (2.13)

as v(θ̄) and τd(θ̄) are known matrix defined by the design parameters, and rm(θ̄) is the
decision variable to be optimized.
Remarkably, since a LS problem is known to be constant, problem 2.13 has a unique
solution than can be found with very efficient algorithms.

Approximation of rm with a polynomial of degree m

rm is approximated py a polynomial of degree m to allow an easier implementations of
the constraints:

rm(θ) = β0 + β1θ + β2θ
2 + . . .+ βmθ

m

which can be rewritten in matrix form as:

rm(θ̄) =
[

1 θ̄ θ̄2 . . . θ̄m
]
·


β0

β1
...
βm

 , β̄ =


β0

β1
...
βm



rm(θ̄) =
[

1 θ̄ θ̄2 . . . θ̄m
]
· β̄ (2.14)

The polynomial approximation is integrated into the optimization problem by adding
Equation 2.14 as an affine equality constraint, which preserve the convexity of the problem,
and extending the searching variables by including β̄:

minimize
rm,β̄

||diag(rm(θ̄)) · v(θ̄)− τd(θ̄)||2

subject to: rm(θ̄) =
[

1 θ̄ θ̄2 . . . θ̄m
]
· β̄

(2.15)

Additional constraints on rm

The arm moment rm is constrained to have a positive finite value, smaller than the
insertion length L. Therefore it must respect the following relation:

0 < rm < L (2.16)
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Equation 2.16 can be subdivided into two linear disequality constraints of the LS problem,
without depriving the optimization problem from its convexity:

minimize
rm,β̄

||diag(rm(θ̄)) · v(θ̄)− τd(θ̄)||2

subject to: rm(θ̄) =
[

1 θ̄ θ̄2 . . . θ̄m
]
· β̄

rm(θ̄) > 0

||rm(θ̄)||∞ < L

(2.17)

Constraint on the convexity of the pulley

As previously proved, the shape of the pulley is imposed as convex in order to avoid inter-
ferences between the cable and other parts of the noncircular pulley. The straightforward
way to obtain so is to impose a constraint on the curvature of the pulley, so that it does
not change sign.
However, a way to impose convexity on the parametric expression (xp(θ), yp(θ)) was not
found; not even by deriving a convex relation (xp(θ), yp(θ)) and the moment arm rm, due
to the complexity of their relations expressed by 2.8.
Even if the proper radius of the pulley OP and the moment arm rm are not to be confused
with each other (Figure 2.5), it is considered reasonable to aim for a more conservative
solution by imposing convexity on the profile of the moment arm rm, because of their
tight relation. Furthermore, a tendency at benefiting from the use of rm instead of the
proper radius of the pulley was observed in the dissertation of the constraints on the
pulley profile in [1], as well.

Figure 2.5: Radius OP and moment arm rm.

Thus convexity on the shape is ensured by imposing a positive second derivative of rm(θ)
with respect to θ:

d2(rm(θ))

dθ
≥ 0 (2.18)

The polynomial approximation of rm(θ) is used to rewrite the constraint as a linear
disequality:

d2(rm(θ))

dθ
= 2β2 + 6β3θ + . . .+m(m− 1)βmθ

m−2 ≥ 0
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which in matrix form becomes:[
0 0 2 6θ̄ . . . m(m− 1)θ̄m−2

]
· β̄ ≥ 0 (2.19)

The resulting convex optimization problem is enriched with another linear disequality
constraint (Equation 2.19), and therefore retains convexity:

minimize
rm,β̄

||diag(rm(θ̄)) · v(θ̄)− τd(θ̄)||2

subject to: rm(θ̄) =
[

1 θ̄ θ̄2 . . . θ̄m
]
· β̄

rm(θ̄) > 0

||rm(θ̄)||∞ < L[
0 0 2 6θ̄ . . . m(m− 1)θ̄m−2

]
· β̄ ≥ 0

(2.20)

This final version of the optimization problem includes all the constraints on the shape
of the pulley and, as demonstrated, is convex. Hence it can be used to synthesise the
profile of the noncircular pulley ensuring to obtain a feasible profile, to the detriment of
a perfect compensation of the weight.
In fact, in the cases when the analytical procedure by [1] would produce a profile per-
fect for weight compensation, yet infeasible to be practically implemented, the convex
approach generates a feasible profile, that can not ensure perfect compensation.
In future works, it would be interesting to study whether the feasible but not perfect
profile is still convenient to be implemented.
A MATLAB function to synthesise the noncircular profile using the convex approach hare
described was reported in Appendix A.4.

2.4 Geometrical corrections

Up this point, it was assumed to have a cable with zero thickness, but in practise the
thickness of the cable is never zero and this has the effect of increasing the moment arm
with which the force from the spring is applied. In addition, it is generally necessary
to reroute the cable through a circular pulley in the insertion point R to have a more
convenient arrangement of the mechanism.
[1] suggests how to take into account these two geometrical corrections to achieve a perfect
gravity balance.

The thickness of the cable tc and the radius of the circular pulley rp change the positions
of the contact point R from the insertion point O′ to R′. Since the line of action can
be assumed to pass through the centre of the cable, OS is the difference between rm(θ)
and 0.5tc, and O′R′ can be obtained from the similarity between triangles OSR′ and
O′QR′. The new slope of the action line l is tan (θ + φ′), with φ′ being the inverse sine of
O′R′/ (rm − 0.5tc).
Thus, the corrected equation of line l can be found from O′R′ and tan (θ + φ′), and from
it the new profile of the noncircular pulley is computed.

23



2 - Weight Compensation Mechanism with a Non-Circular Pulley and a Spring

(a) (b)

Figure 2.6: Possible configurations of cable routing.

The solution was developed taking into account both possible cable routing configuration
(a) and (b), illustrated in Figure 2.6:

Case a

φ′ = sin−1
(
rm(θ)−0.5tc−rp

LO

)
S (θ) = tan (θ + φ′)
Y (θ) = LO

1−rp/(rm(θ)−0.5tc)
[sin θ − cos θ · tan (θ + φ′)]

(2.21)

Case b

φ′ = sin−1
(
rm(θ)+0.5tc+rp

LO

)
S (θ) = tan (θ + φ′)

Y (θ) = (rm(θ)−0.5tc)LO
rm(θ)+0.5tc+rp

[sin θ − cos θ · tan (θ + φ′)]

(2.22)

The expressions of rm(θ) and (xP , yP ) remains unchanged from 2.8.

2.5 Antagonist springs design

In many applications, the gravity compensator is needed to generate a bidirectional torque
so that it can be applied to revolute joints that move clockwise and counter-clockwise
from a neutral position. One way to achieve this is to use a spring and noncircular pulley
compensator on each side of the neutral position. However, in this arrangement the spring
must be pretensioned in order to avoid slack in the cable, that could cause the cable to
slip from the pulley or to get caught by another moving part (Figure 2.7).

In order to adapt the analytical procedure previously described to this double configura-
tion with pretensioned springs, the desired torque profile τd(θ) generated by the mecha-
nism is subdivided into two subtorque profiles. Each subtorque is then used to synthesise
the profile of one of the two pulley.
The desired torque τd(θ) over the range of motion from θi to θf is divided into a positive
definite function τU(θ) and a negative definite function τD(θ) (Figure 2.8a), whose sum
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(a) (b)

Figure 2.7: Antagonistic spring configuration.

equals τ(θ). These two subfunctions are then transformed into symmetrical functions
(τd1(θ), τd2(θ) in Figure 2.8b) so that their difference equals τd(θ), since the 2 mechanism
have antagonistic action.

(a) (b)

Figure 2.8: Subtorques.

One possible example of the subdivision of τ(θ) is the following:

τU(θ) = γτd(θ) + doff (2.23)

τL(θ) = (1− γ) τd(θ)− doff (2.24)

where γ is a constant value between 0 and 1, and doff is an offset to ensure a positive and
negative definite function torque and an initial tension in the spring to avoid slack in the
cable. If γ is set equal to 0.5, the two pulley are symmetric.
To avoid slack, the offset doff must respect the following constraint:

doff ≥ max (|γτd (θ)min| , |(1− γ) τd (θ)max|) , ∀θ ∈ (θi, θf ) (2.25)

The operation to transform the function of Equation 2.23 and 2.24 into symmetrical forms
is the following:

τd1(θ) = τU (θf − θ) (2.26)

τd2(θ) = −τL (θ + θi) , (2.27)

with both equations are valid for ∀θ ∈ (0, θf − θi).
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2.6 Evaluation of a pulley profile without taking into

account geometric corrections

The possibility to evaluate the torque produced by a given combination of design parame-
ters and pulley profile is useful as it allows to counter-check an already build configuration
of the gravity compensator or to study the torque produced by pulley with a profile easier
to manufacture. Furthermore, the process to develop the algorithm hereinafter helps in
deepening the understanding of the mechanism.
In [1] only the case with no cable thickness and routing pulley is considered.

Figure 2.9: Evaluation of the torque generated by the noncircular pulley-spring mecha-
nism.

The solution was developed setting a reference frame on the axis of the revolute joint O.
The torque τact(θ) applied in O is the resultant of the product of the spring force Fs(θ)
and the moment arm ra(θ):

τact(θ) = Fs(θ)ra(θ) = ku(θ)ra(θ) (2.28)

The total extended length of the spring u(θ) is the sum of the length u0 to apply the
initial pretension and the difference between the current length of Lwrap +RP the initial
cable-spring length R0P0.

u(θ) = Lwrap(θ) +RP (θ)−R0P0 + u0 (2.29)

Lwrap is the arc length of the curve from the initial tangency point P0 to the current
tangency point P . Its computation requires numerical integration, as it is expressed in
nonclosed form:

Lwrap =

∫ θ

θ0

√(
dxp (α)

dα

)2

+

(
dyp (α)

dα

)2

dα (2.30)
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The moment arm ra(θ) is the distance from O to the line l(θ) passing from P and R:

ra(θ) =
|xR(θ)yP (θ)− yR(θ)xP (θ)|√

(xR(θ)− xR(θ))2 + (yR(θ)− yR(θ))2
(2.31)

Since there is no routing pulley in the insertion point, the coordinates of R during the
motion of the link is circular with centre O and radius L, the insertion length:{

xR(θ) = L cos (θ)
yR(θ) = L sin (θ)

(2.32)

So Equations 2.30, 2.32, 2.29 are used to compute the total extended length of the spring
u0(θ); Equations 2.32, 2.31 are used to compute the moment arm ra(θ); lastly Equation
2.24 generates the produced torque τact(θ).

2.7 Evaluation of a pulley profile taking into account

geometric corrections

Since [1] presents a numerical evaluation only for the ideal case, the author of this thesis
developed an algorithm to evaluate the profile of a noncircular pulley taking into account
the thickness of the cable and the a routing pulley in the insertion point and it is hereunder
presented.

Figure 2.10: Evaluation of the torque generated by the noncircular pulley-spring mecha-
nism.

As shown in Figure 2.10, the contact points between the cables and the two pulley P ′ and
R′ are not the same of the previous case. The goal is to find the the expressions of the
coordinates of P ′, R′ in order to use them in the solution of [1].
The thickness of the cable tc is taken into account simply enlarging the radius of the
routing pulley and of the noncircular pulley by 0.5tc, since the line of action is assumed
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to be in the middle of the cable. A MATLAB function to enlarge the profile of the pulley
was reported in A.3.
Therefore P ′ is found moving P of 0.5tc in the direction normal to the profile of the
noncircular pulley. R′ is computed as the intersection between the enlarged profile c2 of
the circular routing pulley, with centre in the insertion point O′ and radius rp+ 0.5tc, and
the circumference c1 with centre in P ′ and radius P ′O′. The difficult part of the procedure
is to implement a robust algorithm able to select the correct intersection between c1 and
c2, depending on which routing configuration is used ((a) or (b) in Figure 2.11). For
example, in Figure 2.12 the intersection corresponding to configuration (a).

(a) (b)

Figure 2.11: Possible configurations of cable routing.
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Figure 2.12: Evaluation of the torque generated by the noncircular pulley-spring mecha-
nism.

2.8 Examples

Three examples were analysed in order to test the the algorithms explained in the previous
sections: an inverted pendulum, an inverted pendulum with some geometrical corrections
to be implemented, a 3 DoF articulate robot.
The software MATLABR© was used to realise several scripts and functions that automate
all the algorithms. The scripts of the first two examples were reported in Appendix A.1
and A.2.
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2.8.1 Example 1: gravity compensator using the antagonist spring
design for an inverted pendulum

The aim of the example reported herein was to synthesise the profile of two noncircular
pulleys to compensate the gravity torque of an inverted pendulum. The design parameters
are reported in Table 2.1.

Table 2.1: Example 1’s parameters.

Gravity g = 9.807m/s2

Mass of pendulum M = 3 kg

Pendulum length l = 1m

Spring stiffness ks = 5 · 103N/m

Spring elongation at rest x0 = 22mm

Insertion length L = 0.1m

Angular range θ ∈ [0◦, 180◦]

Parameters for the antagonistic subtorques γ = 0.5, doff = 0.55τd(0)

Since the angular range stretched from 0◦ to 180◦, the gravity compensator had to produce
a bidirectional torque. Hence the torque to be compensated τd(θ) had to be subdivided
into two antagonistic subtorques τd1(θ) and τd2(θ), as explained in Section 2.5.

τd(θ) = Mgl cos θ

τU(θ) = 0.5τd(θ) + 0.55τd(0) = Mgl (0.5 cos θ + 0.55)

τL(θ) = (1− 0.5) τd(θ)− 0.55τd(0) = Mgl (0.5 cos θ − 0.55)

τd1(θ) = τU (180◦ − θ) = −Mgl (0.5 cos θ − 0.55)

τd2(θ) = −τL (θ + 0◦) = −Mgl (0.5 cos θ + 0.55)

Figure 2.13 reports the profiles of the subtorques. Since γ was set equal to 0.5, the two
subtorques τd1(θ), τd2(θ) that were used to synthesise the noncircular pulley were identical.
Consequently the two synthesised noncircular pulleys of the mechanism were symmetrical.

After the subdivision of τd(θ), the procedure reported in Section 2.1.2 was used to compute
the profile of rm(θ) and (xP (θ) , yP (θ)), whose plots are reported in Figure 2.14.

Finally, the pulley profile was evaluated using the method explained in Section 2.7, in
order to check the torque that it would generate.
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Figure 2.13: Torque subdivision.
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Figure 2.14: rm(θ) and (xP (θ) , yP (θ)).
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Figure 2.15: Evaluation of torque produced by the pulley profile.
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2.8.2 Example 2: Noncircular pulley profile with geometrical
corrections

The same inverted pendulum was considered but with the addition of a routing pulley at
the insertion point and a cable of not negligible thickness, that was routed to the pulley
in configuration (a).

Table 2.2: Geometrical corrections.

Routing pulley’s radius rp = 10mm

Cable thickness tc = 7mm

Figure 2.16 reports the two different profiles generated either taking into account the
above-mentioned modifications applying the method described in Section 2.4, or not con-
sidering them.
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Figure 2.16: Pulley profile taken into considerations the geometry corrections.

This time the pulley profile was evaluated through two different methods: firstly with the
method by [1], secondly with the method proposed in Section 2.6 that takes into account
the geometry corrections. The results, reported in Figure 2.17, showed how neither of
the two methods was able to give a perfect result as in the previous example (Figure
2.15). However, a better result was obtained with the method that takes into account the
geometry corrections, suggesting that the general concepts of that method were correct,
yet its implementation should be improved.
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Figure 2.17: (a) Evaluation of the torque generated by the pulley profile with two different
methods. (b) Error between the evaluated and the actual generated torque.

2.8.3 Example 3: 3 DoF articulated robot

Lastly, the case of a 3 DoF articulated robot was examined (Figure 2.18a). Since the
first revolute joint axis is perpendicular to the ground, it does not affect the gravitational
potential energy of the robot. Hence the case could be simplified to the study of a 2 DoF
system, where the two remaining revolute joints have the axis parallel to each other and
to the ground, as in Figure 2.18b.

(a) (b)

Figure 2.18: Articulated robot simplified from 3 to 3 DoF.

The key difficulty was to generate on both of the joints a coupled torque, which is function
of both the joints’ angles. In the following, the solution proposed by [1] is reported. The
problem was solved introducing an articulated parallelogram to the structure. In this way
a torque that is function of the sum of the 2 joint angle could be generated by the gravity
compensator and transferred to the distal joint.

Figure 2.19: Gravity compensation of a 2 DoF robot with articulated parallelogram.
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That method was used to generate the profiles of the noncircular pulleys for a simplified
model of the 2 DoF articulated parallelogram, depicted in Figure 2.20. The masses of the
joints, links and end effector were taken into consideration. The masses of the links could
be considered as concentrated in the centres of mass in the middle points of each link, as
this simplification does not affect the potential energy of the system.
All the significant parameters of the model were summarised in Table 2.3.

Figure 2.20: Schematic representation of the articulated robot.

Table 2.3: Example 3’s parameters.

Length of links l01, l23 l1 = 0.8m

Length of links l12, l30 l1 = 0.3m

Length of link l24 l1 = 0.7m

Mass of P1 mP1 = 1 kg

Mass of P2 mP1 = 1 kg

Mass of P3 mP1 = 1 kg

Mass of P4 mP1 = 1 kg

Mass per unit length l01, l12, l24 ρ1 = 3.0 kg/m

Mass per unit length l23, l30 ρ2 = 1.5 kg/m

Spring stiffness ks = 5 · 103N/m

Spring elongation at rest x0 = 22mm

Insertion length L = 0.1m

Angular range θ ∈ [0◦, 180◦]

Parameters for the antagonistic subtorques γ = 0.5, doff = 0.55τd(0)

The first step was the computation of the torques for synthesising the profile of the
noncircular pulley.
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This was accomplished by finding the contribution of each mass to the torque caused by
gravity in O. Thus the expressions of the coordinates of the masses of the joints (Equation
2.33), the values of the masses of the links (Equation 2.34) and their coordinates (Equation
2.35) were computed:

P1 :

(
l1 cos θ1

l1 sin θ1

)
P2 :

(
l1 cos θ1 + l2 cos (θ1 + θ2)
l1 sin θ1 + l2 sin (θ1 + θ2)

)
P3 :

(
l2 cos (θ1 + θ2)
l2 sin (θ1 + θ2)

)
P4 :

(
l1 cos θ1 + (l2 + l3) cos (θ1 + θ2)
l1 sin θ1 + (l2 + l3) sin (θ1 + θ2)

)
(2.33)

m01 = ρ1l1 = 2.40 kg

m12 = ρ1l2 = 0.90 kg

m23 = ρ2l1 = 1.20 kg

m30 = ρ2l2 = 0.45 kg

m24 = ρ1l3 = 2.10 kg

(2.34)

m01 :

(
l1
2

cos θ1
l1
2

sin θ1

)
m12 :

(
l1 cos θ1 + l2

2
cos (θ1 + θ2)

l1 sin θ1 + l2
2

sin (θ1 + θ2)

)
m23 :

(
l1
2

cos θ1 + l2 cos (θ1 + θ2)
l1
2

sin θ1 + l2 sin (θ1 + θ2)

)
m30 :

(
l2
2

cos (θ1 + θ2)
l2
2

sin (θ1 + θ2)

)
m24 :

(
l1 cos θ1 +

(
l2 + l3

2

)
cos (θ1 + θ2)

l1 sin θ1 +
(
l2 + l3

2

)
sin (θ1 + θ2)

)
(2.35)

The torque in O due to gravity could be subdivided in the torque τ1 function of θ1 and
the torque τ12 function of to (θ1 + θ2)

τ1(θ1) =

[
(mP1 +mP2 +mP4l1) +

(
m01

l1
2

+m12l1 +m23
l1
2

+m24l1

)]
g cos θ1

τ12(θ1 + θ2) =
{

[(mP1 +mP2 +mP4l1) l2 +mP4l3] +

+

[
(m12 +m30)

l2
2

+m23l2 +m24

(
l2 +

l3
2

)]}
g cos (θ1 + θ2)

τ1(θ1) and τ12(θ1 + θ2) were then used to synthesise the profile of two noncircular pulleys,
as in the previous examples. The insertion point of the pulley for θ1 would be on link l01,
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while the insertion point for the other pulley would be on link l30.
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Figure 2.21: Pulley’s profiles to compensate the gravity of the articulated robot.

Figure 2.21 reports the pulleys’ profiles obtained. The fact that the noncircular pulleys
overlapped could be overcome by mounting the pulley on different planes.
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Chapter 3

Virtual dynamic model

In order to test the correct working of the spring-noncircular pulley gravity compensator
applied to a revolute joint in the antagonistic springs configuration, a test bench was
designed. Since the test bench was used to evaluate the performances of the mechanism,
it had to be as simple and neat as possible so that the behaviour of each component could
be neatly isolated. It was therefore decided to apply the gravity compensator to a 1 DoF
inverted pendulum actuated by a an electric motor.
However, before designing and manufacturing the actual prototype of the inverted pen-
dulum and the relative noncircular pulley-spring mechanism to compensate its gravity, it
was decided to realise a virtual prototype of the system. This choice was made to benefit
from the several advantages deriving from having a dynamic model of the system during
the entire process of realisation of the physical prototype.
First of all it provided the possibility to have a preliminary validation of the theoretical
concept. Then, while designing the physical prototype, it allowed to compare different
possible designs of the mechanism and to check the forces and mechanical stresses in the
structure.
Once that the actual prototype was build and assembled, the physical and virtual pro-
totypes were compared in order to fine-tune the parameters of the virtual model. This
process, called validation, had the goal to make the virtual model perform more realisti-
cally and to deepen the understanding of the static and dynamic behaviour of the system.
At the end of the study, the virtual model could be applied to more complex systems to
investigate its interaction with other multibody systems. Furthermore, it could be used
to investigate new, more complicated configurations, without the need of manufacturing
a new prototype.
To realise the virtual prototype, the multibody dynamics simulation software MSC.ADAMSR©

(Automated Dynamic Analysis of Mechanical Systems) was used.

When developing the model of a mechanical system, [16] recommends to proceed following
the crawl-walk-run approach: starting from the easiest possible model, the system is
gradually improved with the aim of reaching a model as close to reality as possible. At
every step of the process, the system is tested via a dynamic simulation. The following
variation to the system is then pondered inspecting the results of the simulation and
comparing them with the expected behaviour of the real world system.
There are many indicators that have to be looked at in order to understand whether the
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simulation of a model is successful or not, and they vary from case to case. In general, if
the computation of the simulation happens smoothly and without crashes, the movements
of the parts in the system correspond to the expected ones, and the graphs of the various
forces, velocity, accelerations do not have unexpected shapes or values, it is likely that
the model is correct; but it really does depend on the specific case that is studied each
time.
Anyway, verifying the model via the designated command Model Verify before every
computation is a good practice and can help foreseeing potential problems.

Driven by the crawl-walk-run design approach, it was preferred to report the step-by-step
process followed to obtain the final virtual system of the spring-noncircular pulley gravity
compensator, instead of simply describing the final definitive model. In this way, the pro-
cess hereinafter reported could help in giving an idea on how to approach the realisation
of an intricate system.

3.1 Early considerations

Figure 3.1: Schematic representation of the system.

The essential elements that would form the test bench are the electric motor, the inverted
pendulum and the gravity compensator mechanism.
To simplify the system, initially the electric motor could be modelled by either a torque or
a motion imposed on the joint. In the Adams environment, by imposing a certain motion
to a joint is meant to force the link of the joint to perform that given movement; e.g.
in the pendulum-electric motor case, the rotation of a certain angle at a given angular
speed.
The pendulum was simply modelled with a marker, i.e. a reference frame, with associ-
ated the inertial properties of the pendulum and connected to the ground via a revolute
joint. However, a geometry was associated to the marker in order to have a better visual
reference of the position and orientation of the pendulum.
The most critical parts to be modelled were the two antagonist spring-cable-noncircular
pulley mechanisms: while the springs could be modelled by the respective element present
in Adams and a CAD model of the noncircular pulley could be imported into the Adams
model, there was not a predefined method to model the cable and its contact with the
noncircular pulley.
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Hence the main focus of the current chapter is the investigation of an effective way to
model the spring-noncircular pulley mechanism.

Initially, the gravity compensator was designed with the noncircular pulley fixed to the
ground and the insertion point on the pendulum, as in the examples made by [1]. The
cable was attached to the pendulum, so that there was no need of a routing pulley at the
insertion point.
Moreover, the two antagonist spring-pulley mechanisms to generate the bidirectional
torque were designed to be symmetrical. In this way, once that one of the two spring-
pulley-cable had been modelled, the other one could be created simply as the reflection of
the first one. This was achieved by setting parameter γ of Equations 2.23, 2.24 equal to
0.5. In addition, angle θ of the pendulum was set equal to 90◦ in the initial configuration
of the simulation, so that not only the two mechanisms were identical, but also the initial
arrangements of the cables were symmetrical.
It was thus possible to focus in developing only one of the two spring-pulley mechanisms.

The earliest models were developed imposing to the system the arbitrary design param-
eters used in the examples of the previous section: the pendulum was set to weight 3
kg, with the mass concentrated in a point distant 1 m from the joint axis; the insertion
length was equal to 0.1 m. The profile of the noncircular pulley was synthesised from
this parameters and considering an angular range of θ from 0◦ to 180◦, the pretension
parameter doff equal to 0.55τd(0), the spring stiffness k equal to 5000N/m and its length
at rest x0 equal to 0.022mm.
At this stage, no geometrical correction was considered to synthesise the pulley profile.
The design parameters would be corrected to the one of the physical prototype only in
the final definitive model, so that the results could be compared. In this first phase, the
exemplifying values of the system were sufficient, as the focus was on the overall func-
tioning of the system, not on the attained values.
The design parameters for the noncircular pulley are reported in Table 3.1.
The profile of the noncircular obtained from the above-mentioned parameters was used
to create a CAD model of the noncircular pulley to be imported into the Adams model.

Table 3.1: Design parameters to synthesise the noncircular pulley.

Function of the torque to be compensated τd(θ) = Mgl sin θ

Mass of the pendulum M = 3 kg

Length of the pendulum l = 1m

Gravity g = 9.807m/s2

Angular range θ ∈ [0◦, 180◦]

Insertion length L = 0.1m

Parameters for the antagonistic subtorques γ = 0.5, doff = 0.55τd(0)

Spring’s parameters ks = 5000N/m, x0 = 0.022m
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3.2 Model using Adams’ machinery suite

The first attempt at modelling the cable was made exploiting the Adams’ simulation suite
called Machinery. This suite is used to simulate mechanical drive systems like gear, belt,
chain, cams and cable transmission system, bearings and motor. In particular the package
to simulate a cable and pulleys transmission system was used.
The idea was to discretise the noncircular pulley placing several circular pulley on the
profile of the noncircular one, as illustrated in Figure 3.2. The benefits of this method
were that the models of the cable and the circular pulleys could be automatically created
through the machinery wizard. This implies that the contacts automatically included in
the models have optimal values for the type of transmission needed.
In this case the noncircular pulley was used as visual reference: the locations of the
circular pulleys were defined using the equation of the profile of the noncircular pulleys
for different values of θ.
In order to maintain the same profile, the noncircular pulley had to be shrunk normally
to the profile of the dimension of the radius of the circular pulleys. In this way, if the
circular pulley were inserted on the profile of the shrunk pulley, they would enter in
contact with the cable at the correct distance from the centre of the noncircular pulley,
keeping unaltered the moment arm rm(θ). The same algorithm used to enlarge the profile
of the pulley in section 2.7 was used to shrink the profile, the only difference being the
sign of the parameter that determines the entity of the enlargement since in this case the
aim is to shrink and not to enlarge.

Figure 3.2: Noncircular pulley and cable using the machinery suite.

Unfortunately, despite the advantages of this method, the use of the machinery suite had
revealed to be unsuited to model the cable-noncircular pulley system. However powerful
and easy to use, the machinery suite is intended for more conventional cases and it is not
customisable to cases as specific and unconventional as this one.
The main issue was that the circular pulleys must touch the cable in the initial configura-
tion of the system otherwise they are deactivated during the simulation, letting the cable
pass through them.
A possible solution for one of the two antagonist compensators would be to set the ini-
tial configuration of the system at the angle at which the cable is engaged with all the
circular pulley, i.e. the cable is wrapped on all the noncircular pulley. For example for
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θ = 180◦, the pulley in Figure 3.2 is fully engaged. The problem is that when one of the
two antagonist noncircular pulleys is fully engaged, the specular one is not engaged at all
and its circular pulleys would be deactivated during the simulation.
For this reason the solution via the machinery suite was excluded.

3.3 Model using Adams/View Command Language

In alternative to using the machinery suite, it was decided to model the cable from scratch
and let it interact with the imported CAD of the noncircular pulley adding a contact
between the parts to prevent interpenetration.

If the two antagonist mechanisms and the pendulum axis are arranged in the same plane,
the exchanges of forces springs-cables and cables-noncircular pulleys all occur in the same
plane, e.g. the xy-plane in Figure 3.3. This characteristic of the system was used to
simplify the model of the cable.

Figure 3.3: Location of the reference frame in the model.

The cable was modelled as a series of small elements, connected in line one to the other.
Since all the actions of the model occur in one plane, the cable elements were connected
one to the other through revolute joints with the axis perpendicular to the xy-plane,
instead of spherical joints. In this way the DoFs of the cable elements were decreased and
with it the complexity of the simulation.
Another design choice, made thanks to the fact that the mechanisms are contained in
one plane, was to set the section of the cable rectangular instead of circular. This was
accomplished by making the cable elements out of parallelepiped, instead of cylinders.
In this way the contact area between the single cable element and the noncircular pulley
is increased from being punctual to a segment. This choice was made in order to avoid
small areas of contacts that could be harder to compute by the solver.
Because of the shape, the cable is hereinafter referred to as belt in the next sections.

Due to the great number of parts that had to be created to model the cable, the plan of
building the model entirely through ADAMS graphic interface was not conceivable. Thus
it was decided to build the model using the Adams/View Command Language, which
allows to write macros that can automatise any operation in the Adams environment.
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The use of Adams/View Command Language is very convenient in our case, because it
allows to build elaborated system supported by the benefits of a computer language, e.g.
the creation of the cable elements can be iterated using for cycles.
Not only the belt, but the entire system was modelled trough macros in order to obtain
a more refined model, easier to debug and modify. Moreover, this had the merit to
strengthen the knowledge in the new language.

(a) (b)

Figure 3.4: Preliminary belt model.

As a first preliminary attempt, a sample of a belt made out of a dozen elements was
created (Figure 3.4a). The belt elements were connected to each other through revolute
joints, as previously explained, while the first element of the belt was attached to the
cylindrical yellow pulley through a fixed joint. Contacts between each belt elements and
the cylinder were defined, using the default values for the contact parameters. Next a
motion of rotation was imposed to the cylinder and the model was simulated (Figure
3.4b).
The objectives of this simple model were to become familiar with the geometry of the
problem and to have a first test on the contact between the belt and a curved surface.
Once that the simulations had been considered satisfactory, the model of the proper belt
was undertaken.

3.4 First belt model

At this stage of the project, it was decided to bring some modifications to the mechanism
with the aim of facilitating the design of both the virtual and physical prototype.
The first change was to make the noncircular pulley integral to the pendulum and not to
the ground (Figure 3.5). This design decision was made to simplify the realisation of the
physical prototype, allowing to lock the noncircular pulley on the shaft of the pendulum.
This modification caused the insertion point to be moved from the mobile link to the
ground so that the relative motion between the insertion point and the noncircular pulley
could remain unaltered. While previously the insertion point on the pendulum would
rotate with respect to the noncircular pulley that was fix on the ground, in the new
arrangement the noncircular pulley attached to the pendulum rotates with respect to the
insertion point, which is fixed on the ground.
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(a) (b)

Figure 3.5: Model with fixed or mobile noncircular pulley.

The second change that was brought to the design was to add a routing pulley at the
insertion points, as illustrated in Figure 3.6. The reason that motivated this decision
was to have a virtual model more similar to the physical one. The inclusion of a routing
pulley in the physical prototype was justified by the fact that it would allow for a simpler
regulation of the pretension of the spring attached to the cable.
The distance from the axis of the pendulum to centre of the circular pulley must be equal
to the insertion length.

Figure 3.6: Addition of routing pulleys.

For an easier and more efficient placement of the belt elements, the belt was divided into
sectors, as reported in Figure 3.7. Every sector is characterised by a different function
defining the coordinates of the markers to originate each belt element.

• Sector 1 is the portion of belt positioned on the noncircular pulley and goes from
point Q to R; where point Q is the point where the belt is fixed to the noncircular
pulley, so (xP (0◦) , yP (0◦)), and R is the tangency point of the belt on the noncir-
cular pulley at the initial position of the model, so (xP (90◦) , yP (90◦)).

• Sector 2 goes from the tangency point of the noncircular pulley R to the tangency
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point on the circular pulley S.

• Sector 3 is the portion of belt placed on the circular pulley goes from S to T .

• Sector 4 is the final vertical portion of the belt that goes from the circular pulley in
T to point U , where the belt is attached to the spring.

S

T

R

U

Q

OO’

2 1

3

4

Figure 3.7: Division in sectors.

Regarding the belt elements dimensions, the height and width were set constant for all the
sectors. Their values were decided arbitrarily, slightly oversized compared to the actual
cable in order to have a bigger surface of contact with the pulleys. The density of mass
assigned to the belt elements would be adjusted in a later phase, so that the inertia of
the belt elements would still be realistic.
On the contrary, the length of the belt elements differed from sector to sector as their
value was a consequence of the number of elements desired in each sector: nnonc, ncirc,
nline.
nnonc and ncirc were the preset numbers of belt elements positioned on the noncircular
and circular pulley, nline was the preset number of elements in sector 2 and in sector 3.

The process to arrange the belt in each sector was to discretise function γk (·) in the given
number of elements, where γk (·) is the function describing the curve that the belt would
follow in that given sector k.

44



3 - Virtual dynamic model

This was done by writing the curve in a form γk (·) such that:

γk (i∆k) = Xi, i ∈ [0, ni]

γk (0) = X0

γk (ni∆k) = X1

Xi ∈ [X0, X1]

where k identifies the number of the sector (here from 1 to 4); X0, X1 are the initial and
final point of the sector, Xi is a generic point between X0 and X1, and ∆k is the increment
used to discretise γk (·).
It was important to choose the suitable increment ∆k for each sector k, as from it depends
the length of the parallelepipedal belt elements.
Each belt element is then created from point Xi to Xi+1, where:

Xi = γk (i∆k)

Xi+1 = γk
(

(i+ 1) ∆k

)
In the Adams environment, a parallelepiped, called box or block, is created by defining
two opposite vertexes Vi, V

′
i+1, as illustrated in Figure 3.8. These two points could be

derived by offsetting Xi and Xi+1: Vi was obtained translating Xi of half the value of the
width, while V ′i+1 translating Xi+1 of half the value of the width in the opposite direction
and then perpendicularly of the height value.
Xi and Xi+1 were also used to locate the revolute joint in between the belt elements. By
not offsetting the revolute joints of half the value of the height, the line of action of the
belt was kept on curve γk (·), simulating an ideal zero thickness cable.

Figure 3.8: Definition of a belt element.

To arrange the belt elements in sector 1 and sector 3 a further operation was required:
since the elements of these sectors were arranged over curved surface, they would inter-
penetrate the volumes of the pulleys. The interferences, however small, cause problems
in the computations of the simulation. Since contacts had to be defined between the belt
elements and the pulleys, γ1 and γ3 were offset to obtain γ′1, γ′3, as illustrated in Figure
3.9. For this reason, a period of time at the beginning of the simulation must be dedicated
to let the belt fall and lean on the pulleys. The value of the offset between γ and γ′ was
set as a value that allows to arrange the desired number of element in that sector, without
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interpenetration between the belt elements and the volume. The value was found by trial
and error, trying to keep it as small as possible, in order to minimise the fall of the belt
at the beginning of the simulation.

Figure 3.9: Offset curve to avoid interferences.

sector 1

Using the same algorithm to enlarge the profile of the noncircular pulley in Section 2.7,
γ′1 was computed in the form of a polynomial in θ, the angle included between the x-axis
and the pendulum axis.
Instead of transforming the function in a new form that would allow for a parametrization
ensuring a constant length of the belt elements, γ1 was discretised through regular intervals
of θ, computed as:

∆1 =
90◦

nnonc
In Figure 3.10 it is possible to note how a constant increment of angle θ generates a
particular distribution of the belt elements due to the way the profile of the noncircular
profile was parametrised: the length of the elements is greater when the curvature of the
profile is smaller. This allowed to have more little belt elements where the curvature is
greater and less big elements where it is smaller, allowing to optimise the combination of
the number, dimensions and arrangement of the belt parts.
Additionally, a belt element was added to connect the belt to the noncircular pulley. The
element was created so that one face touched point γ′1 (0), to connect it to the first belt
element. The piece can be seen in red in Figure 3.10.

Figure 3.10: Belt elements in sector 1.

sector 2

To arrange the belt elements in sector 2, the length
∣∣RS∣∣ and inclination α of the segment

from point R to S were computed, taking into account that the two points are offset from
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the pulleys’ profiles. Then the points Xi to create the belt elements were found starting
from R and moving with inclination α of a length lline1 for nline iterations; where:

lline1 =

∣∣RS∣∣
nline

(3.1)

Figure 3.11: Particulars of the belt over the 2 pulleys.

sector 3 and routing pulley

The routing pulley was modelled with a cylinder slightly longer than the width of the belt
and connected to the ground with a revolute joint.
Concerning the belt elements of sector 3, the coordinates of points Xi were found from
the parametric equations of a circumference using angular increment:

∆3 =
90◦

ncirc
(3.2)

In this sector, curve γ′3 has a constant curvature and the belt elements obtained had
constant length.
To offset the belt elements from the pulley, the quarter of circumference γ′3 has a radius
bigger than the circular pulley.

sector 4

The same method of sector 2 was used to locate points Xi in sector 4, with the difference
that it was not necessary to find the inclination, since the belt elements were arranged
on a vertical line. In this phase, the x-coordinate of point U was set to have the same
x-coordinates of T , while the y-coordinate was set to obtain belt elements of the same
length of sector 3.

Final adjustments on the belt

While creating the different sectors, the belt elements were ordered by associating a
number to each element, starting from the one connecting the noncircular pulley to the
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belt in Q, and finishing with the one connecting the belt to the spring in U . In this way
the revolute joints and the contacts with the pulleys could be added within a unique cycle.
The revolute joints were added to link each belt element to the next one, while the first
belt element was connected to the noncircular pulley through a fixed joint.
Contacts between the belt element and the noncircular pulley were assigned to sector 1
and sector 2; whereas contacts between the belt element and the circular pulley were
assigned to sector 2, sector 3 and sector 4.

Next, a spherical mass was created to tighten the belt. The choice to add a mass instead
of the spring was made with the aim of not overcomplicating the model and being able
to more easily check the correct functioning of the belt. The mass was connected to the
final belt elements trough a fixed joint.
Figure 3.12a reports the mass at one end of the belt and the joints highlighted in light
blue.
The belt had to be tightened during the simulation of the intermediate models to avoid
it from getting loose and falling in between the two pulleys, as in Figure 3.12b.

(a) (b)

Figure 3.12: Tighten and loose belt.

The spherical mass was then substituted by a constant single-component force, in order
to obtain the same effect of the tightening spherical mass, but avoiding to add further
mass and inertia to the belt. The force was located in the final belt element, directed in
the opposite direction to the y-axis and with modulus equivalent to that generated by the
spherical mass.

Analysing the results of the simulations of these first models, it was noted that the belt
would fall and lay on the pulley as expected, but then it would start vibrating almost
perpetually. This happened because the energy gained by the belt during the fall would
cause it to start vibrating; then the lack of damping in the system would prevent the
vibrations from being promptly reduced and cancelled.
Hence a damping element was added to each revolute joint connecting the belt elements.
This addition was key as it drastically reduced the computation time of the simulations,
highlighting the importance of adding damping to every dynamic model.
Another way to model the damping into the belt would have been adding friction to
the revolute joints. However, friction is modelled in a more complex and less robust
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manner, that would make the computation of the simulation more time-consuming and
less accurate. Consequently, it was preferred to add the damping elements. Figure 3.13
reports the distance from the origin of the centre of mass of a belt element in sector 3 in
two different cases: without and with damping elements in the belt.
In Figure 3.13b, where there was a damping element at each revolute joints of the belt, it
is possible to see how the vibrations were damped of over 99% after a transient of 0.4 s.
On the contrary, in Figure 3.13a the vibrations have a much longer transient, since the
only damping into the system was provided by the friction in the contacts belt-pulleys.
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Figure 3.13: Effect of the damping elements.

3.5 Fine-tuning of the simulation parameters

Considering that the computation of simple simulations of the obtained model were slow
and some of the results not as smooth as desired, it was decided to perform a first fine-
tuning of some of the parameters of the model rather than carrying on to improve the
layout of the belt. This operation aimed at shortening the computation time of the sim-
ulation, so that it would be faster to check the correct working of the model after every
adjustment, and at obtaining clearer results with less spikes and disturbances.

The design parameters calibrated were:

• thickness and width of the belt elements

• damping value in the revolute joints

• contact parameters (damping, stiffness, static and dynamic friction, force exponent,
penetration depth)

• solver’s integrator, formulation and error

• step size of the simulation
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Since it was not conceivable to assess all the possible combinations of parameters, they
were fine-tuned one at a time. Each value was varied several times and tested by comput-
ing a simple simulation of the model. Once that the value of the parameter was considered
satisfactorily optimized, another parameter was assessed.
To estimate whether the variation of the values brought benefits to the simulations or
not, particular attention was brought to checking whether the simulation would crash or
not, if the computation time would sensibly decrease, if less spikes appeared in the plot
of the results, especially the one reporting the force of contact between pulleys and belt.
The above-mentioned simulation consisted simply in rotating the pendulum at a speed of
1 deg/s after an initial settling time of 1 s, during which the pendulum was locked to the
ground.
[16] was essential in guiding the process of fine-tuning, also by suggesting the range of
possible values of some of the parameters.
The optimal values are summarised in Table 3.2.

Table 3.2

Thickness of belt elements 0.4mm

Width of belt elements 5.0mm

Damping value in the revolute joints 0.005 kg/s

Contact damping 1.0 · 104 kg/s

Contact stiffness 1.0 · 105N/mm2

Contact µs 0.99

Contact µd 0.9m

Contact force exponent 2.2

Contact penetration depth 0.1mm

Solver integrator HHT

Solver formulation I3

Solver error 1.0 · 10−5

Simulation step size 0.001 s

Belt dimensions

There was a slight improvement in the computation time decreasing the dimensions of the
belt elements. This event was related to the decrease of the inertia of the belt elements
and the relative reduction of the amplitude of the vibrations.
There was no evidence of a alteration of the performance caused by the variation of the
contact area. Nevertheless, it was preferred to provisionally leave a bigger contact surface
to avoid possible problems, with the intention of attempting to decrease it in a later phase
of the design.
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Damping value in the revolute joints

The damping value was fine-tuned with the intention of decreasing the computation time
and obtaining a transient of the initial vibrations with a reasonable duration. The trade-
off was found at a value of 0.005 ks/s, with the vibrations reduced of over 99% of their
amplitude after a transient of 0.4 s.

Contact parameters

The default value of the stiffness resulted to be satisfactory. Consequently the value of
the damping was set at 1÷ 10% of the stiffness, as [16] suggests.
The value of the static and dynamic friction was set very high, so that there would not
be any relative motion between the pulleys and the belt.
[16] recommend a force exponent higher than 1.5. An exponent greater than 2.1 is sug-
gested to gain more stability. After the simulations, an exponent at 2.2 was considered
optimal.
Regarding the value of the penetration depth, the value suggested by [16] resulted to be
adequate.

Solver

Only two solvers were tried: the Gear stiff (GSTIFF) and the Hilber-Hughes-Taylor
(HHT). GSTIFF is Adams default solver, and showed to provide acceptable results in
the Stabilised Index 2 (SI2) formulation. [16] reccomends this formulation for most con-
tact models as it is more robust and produces less spiky results.
HHT provided slightly less smooth results, but required a shorter computation time, and
it was therefore referred. The efficiency of the HHT solver in this type of simulations is
reflected also by the fact that is the default solver used by the machinery suite when there
are models with numerous contacts, like a gear mechanism.
The default solver error for the HHT solver was kept as it provided a stable computation.

Step size

A bigger step size caused the computation to crash or to provide poor results, as the step
size was too big to follow the vibrations of the belt. Moreover in case of model with many
contacts, a small step size is suggested. Figure 3.14 reports the distance from the origin
of the centre of mass of a belt element in sector 3, computed using two different sampling
sizes. In 3.14b the sampling time was too big and the simulation was not able to track
the movements due to the vibrations.
When the step size was set too low, it proved to slow down the computation and, in more
advanced simulations, to produce noisier results. Therefore, a trade-off value was found
at 0.001 s.
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(a) (b)

Figure 3.14: Simulations with different sampling times.

3.6 Second belt model

The preliminary model described in the previous Section had the merit of consolidating
the operations to arrange the belt elements and to fine-tune the contact’s parameters, but
left still room for improvement. Therefore, the macros to arrange the belt elements were
rewritten to obtain a more functional disposition of the belt that required less elements.

The criteria used to optimize the design were to:

• minimise the length of the belt

• minimise the number of contacts to be introduced

• customise the length of the belt elements to the curvature of the pulley that they
would enter in contact with.

This meant that the spring could be attached to the belt element that would just enter
in contact with the circular pulley when the pendulum was at an angle θ of 30◦. On
the symmetric pulley-belt-spring system, this limited the pendulum to reach a maximum
angle θ of 150◦. In this way less belt elements were needed with respect to the previous
configuration, as there are no redundant belt elements.

The number of contact elements introduced was decreased by assigning a contact only
to the belt element that would actually enter in contact with one of the pulley across
the angular range. By limiting the angular range of θ to 30◦ ÷ 150◦, a sector of the belt
resulted to never enter in contact with neither pulley. This section would be made up by
a single belt element, with no contacts assigned to it.
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The belt elements that would enter in contact with the circular pulley were all created
with the same length, to adapted them to the curvature of the pulley.
The length of the belt elements that would touch the noncircular pulley was less straight-
forward to outline. In the previous model of the belt, only the sector that would touch
the noncircular pulley in the initial position had the length customised to the curvature
of the pulley, not the entire section of belt that would lay on the pulley across the range.
In this second model, a method to customise the length of the entire all the belt elements
that would touch the noncircular pulley was developed.

3.6.1 Preparation

First of all, the system composed by pendulum, noncircular pulley, routing pulley, belt
and spring was schematised in the initial position of the simulation, and in the two ex-
treme positions of the angular range (30◦ and 150◦), in order to better understand the
geometry of the problem.
Figure 3.15a reports some of the parameters that are used in the dissertation: the pen-
dulum angle θ, the reference frame xy used in the model, the insertion length L, that is
the distance of the routing pulley from the revolute joint. Moreover, it reports some sig-
nificant points of the belt: Q is the point where the belt is attached to noncircular pulley,
R is the tangency point of the belt on the noncircular pulley, S and T are the tangency
points of the belt on the circular pulley, V is the point where the spring is connected to
the ground. xV is the x-coordinate of point V , that is the distance between T and V . c
is the length of the circular arch between S and T .
Figure 3.15b, 3.15c, 3.15d report the three significant orientations of the model: with
angle θ at 90◦, 30◦ and 150◦. The belt was divided into 4 sectors as in the previous
configurations, but a different denomination was introduced: l is the sector of belt laying
on the noncircular pulley, b is the sector between the two pulleys from R to S, c is the
sector laying on the circular pulley, d is the vertical sector after the circular pulley any
pulley between point T and U .
Point U is the point where the extremity of the belt is attached to the spring. The length
of the segment representing the spring is denominated x, and is situated between point
U and V .
The points and sectors that are not constant in θ, were characterised by a subscript in-
dicating the value of the angle θ. Only point S, T , V and sector c are constant for every
θ.

The coordinates of point S and T were defined by the geometry of the components:

S :

(
rcirc
L

)
T :

(
0

L+ rcirc

)
where rcirc is the radius of the circular pulley.
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(a) (b)

(c) (d)

Figure 3.15: Schematic representation of the system across the angular range.

The coordinated of point Q(θ) were computed from the parametric equations of the non-
circular pulley profile (xP (θ) ; yP (θ)) for θ = 0 and then rotated according to the case:

Q90 : R(90)

(
xP (0)
yP (0)

)
Q30 : R(30)

(
xP (0)
yP (0)

)
Q150 : R(150)

(
xP (0)
yP (0)

)

where R(α) is the rotation matrix of a generic angle α:

R(α) =

[
cosα − sinα
sinα cosα

]

Similarly, the coordinates of point R(θ) were computed from (xP (θ) ; yP (θ)) and then
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rotated of the same angle θ:

R90 : R(90)

(
xP (90)
yP (90)

)
R30 : R(30)

(
xP (30)
yP (30)

)
R150 : R(150)

(
xP (150)
yP (150)

)

The lengths of l30, l90, l150 were computed using the formula to estimate the arc length of
a curve in parametric form:

lθ =

∫ θ

0

√(
dxP (α)

dα

)2

+

(
dyP (α)

dα

)2

dα

Whereas b30, b90, b150 were computed as the distance from point Rθ to S.∣∣RθS
∣∣ =

√
(xRθ − xS)2 + (yRθ − yS)2

From these values, the arrangement of the belt in the initial position of the simulation
(θ = 90◦) was laid out, following the above-mentioned criteria to improve the model.

In order to shorten the belt, the sector of belt d30 in Figure 3.15c could be eliminated, as
it was not essential. Hence the total length of the belt lb could be computed as:

lb = l30 + b30 + c

From the length of the belt lb, it is possible to compute the length of the vertical section
of the belt d:

d90 = lb − (l90 + b90 + c)

d150 = lb − (l150 + b150 + c)

The sector of belt lnonc that would enter in contact with the noncircular pulley coincides
with sector l30:

lnonc = l30

While the length of the sector lcirc of belt that would touch the circular pulley across the
angular range from 30◦ to 150◦ is:

lcirc = d150 + c

The section of belt that touches both pulleys lboth is the difference between lcirc and length
of belt that would never touch the noncircular pulley (b30 + c+ d30). As a result:

lboth = d150 − b30
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If lboth is a negative number, that means that there are no elements in contact with both
pulleys, but there is a sector long −lboth that does not enter in contact with neither pulleys
across all the angular range.

The x-coordinate of point V was computed summing up the vertical sector of belt d90

and the spring length x90, both at the initial angle of 90◦:

xV = d90 + x90

x90 was obtained from the value of the spring force:

Fs90◦ =
τd1(90◦)

rm(90◦)
= k (x90 + x0)

x90 = x0 +
Fs90◦
k

where x0 is the elongation of the spring at rest.

3.6.2 Deployment of the belt elements

Figure 3.16: Schematic representation of the initial configuration of the belt.

At this point, all the values needed to arrange the belt had been computed, and the new
model of the belt could be created. Figure 3.16 reports the draft used to create the belt
elements in the final configuration.
As in the previous model of the belt, the sectors on the circular and noncircular pulleys
were offset to avoid interpenetration. Points Q′90, R′90, S ′, T ′ are the equivalent of Q90,
R90, S, T on the new curves. As a consequence, the lengths of the sectors l′90 and c′, laid
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on the two pulley from Q′90 to R′90 and from S to T , would be slightly longer than l90 and
c, thought the difference was small and considered negligible.
Also the point of connection between belt and spring U90 was moved to U ′90 in order to
align it with V ′ and simplifying the process of deployment of the belt elements in the
segment T ′U ′90.

Once again, the belt elements were ordered by associating an increasing number to the
name of each part, from point Q′90 to U ′90.

Noncircular pulley sector

Differently from the previous model, the number of belt elements on the noncircular pulley
nnonc was now the number of belt elements that would lay on the pulley across the angular
range, that is to say the belt elements in section lnonc.
The angular increment was obtained dividing the maximum angle of the range (θ = 150◦)
by the number of elements:

∆l =
150◦

nnonc
Then, the belt elements were created along the offset curve until 90◦ was overcome. The
point reached by the belt elements, called W , is likely after R′90, due to the discretisation
of the curve. This section is represented in black in Figure 3.16.
From point W , the belt elements were arranged on the line from W to S ′, until the nnonc
elements had been created (the grey sector in Figure 3.16). The final point of this section
was called X.
The lengths of the belt elements was computed by an algorithm that acted in parallel
to the creation of the belt element parts. It worked by continuing to progress along the
offset curve with angular increment ∆l and computing the distance between the points,
until the tangency point R′30.
In this way, when the pendulum rotates, the belt elements that wrap the noncircular
pulley have the length customised to the curvature of the pulley.

Circular pulley sector

The number of belt elements on the circular pulley ncirc was one of the design parameters.
The length of the belt elements lbcirc was computed so that the quarter of circumference
would be divided by the integer number ncirc:

lbcirc
2

= r+ sin
∆2

2
= r+

√
1− cos ∆2

2

lbcirc = r+
√

2 (1− cos ∆2)

where r+ is the radius of the offset quarter of circumference, and ∆2 is the angular
increment computed as:

∆2 =
90◦

ncirc
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Figure 3.17: Schematic representation of the circular pulley used to compute lbcirc.

Straight line sectors

The belt elements in sector d90, from Y to S ′, and d′90, from T ′ to U ′90 were all created
with length lbcirc, as they would all enter in contact with the circular pulley.
Sector d′90 is computed as the difference between the length of belt lcirc that touches the
circular pulley across the range sector for θ equal 150◦, and the vertical sector at 90◦ plus
c:

d′90 = lcirc − (d90 + c) = d150 − d90 (3.3)

Point Y was found progressing along segment WS ′, starting from S ′, at steps long lbcirc
and stopping immediately after having covered a distance longer than d′90.
Once that the sectors d′90, c′ and d90 are defined, the elements in those sectors are created
in the same way explained in Section 3.4.

Finally a single element was created in sector lboth between X and Y , to connect the two
sectors lnonc and lcirc. The reason to make up this sector with a single element was that
it would never enter in contact with any of the pulleys, and therefore never lay down on
a curved surface.

3.6.3 Final adjustments

After having created all the belt elements, the revolute joints connecting them and the
contacts were added. A contact with the noncircular pulley was added only to the belt
elements between Q′90 and W . A contact with the circular routing pulley was added only
to the belt elements between Y and U ′90.

Next, as in the previous model, a force was added to the terminal point of the belt U ′90

in order to tighten the belt during the preliminary simulations.

After having tested the model with the tightening force, a spring was added between
point U ′90 and V . The spring was modelled as a single-component force, whose value was
defined by the function:

Fs = −ks · (DM (V, U ′90)− x0)− cs · VM (V, U ′90)
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where ks and cs are the spring stiffness and damping respectively; DM(A,B) and VM(A,B)
are two functions in Adams to compute the distance and relative velocity between two
points A and B.
[16] recommends to add some damping to elastic elements in order to stabilise the system.
The damping value is usually 1÷ 10% of the stiffness.

3.6.4 Symmetrical mechanism

Once that the left spring-belt-pulleys model was completed, the symmetric right one was
created.
With the aim of simplifying this operation, the position and orientation of all the parts
making up the left mechanism were defined with respect to a reference frame located
in the origin called MK centre belt system L. For the same reasons, the suffix L was
added to the name of all the elements making up the left mechanism.
In this way, the right mechanism was easily created by copying all the macros used to
create the left mechanism, rotate the reference frame MK centre belt system L of 180◦

along its x-axis (see Figure 3.18) and substitute all the suffixes L with R to all the
elements, in order to avoid duplicates.
This operation was possible since the two mechanisms were designed symmetrical to each
other by setting the γ parameter equal to 0.5, and the model of the left mechanism was
created symmetrical with respect to the xy-axis.
The ease and swiftness with which this operation was accomplished are clear evidences of
the advantages in creating complex models using macros and the Adams/View Command
Language.

(a) (b)

Figure 3.18: Creation of the symmetric mechanism.

3.6.5 Further improvements

After having successfully tested the complete double mechanism, some final improvements
were made to the model. First of all the section of the cable was modified from rectangular
to circular to make it more similar to the actual prototype. This was accomplished by
creating cylindrical belt elements instead of parallelepipedal ones. In addition the revolute
joints between the belt elements were moved to the axis of the cylinders in order to
simulate the thickness of the cable. In this way, the line of action on the cable was on the
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axis of the cylindrical cable (Figure 3.19b). To do so, the offset curves used to create the
elements on the pulleys were further offset of half the thickness of the cylindrical cable.
The reduction of the contact areas between the cable and the pulleys did not seem to create
problems to the simulation. Nevertheless, an additional fine-tuning of the parameters was
carried out, as the one described in Section 3.5, aiming for a further improvements of the
simulations. None of the changes to the parameters appeared to bring any improvements
and the parameters were hence left unaltered.

(a) (b)

Figure 3.19: Cylindrical cable elements.

Lastly, the values of mass and inertia of the pendulum and the dimensions of the pulleys
were substituted by the values of the actual prototype. The profile of the noncircular
pulleys were synthesised taking into account the geometrical corrections due to the routing
pulleys and cable thickness.
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Physical prototype

After having tested the concepts of the gravity compensator through the dynamic simu-
lations of the Adams model, a 3D model of the prototype was designed. The aim was to
build a test bench to verify the effects of the noncircular pulley-spring mechanism on an
inverted pendulum in real-world experiments and to collect data to validate the virtual
model.
The criteria that guided the design were to realise a sturdy and reconfigurable test bench.
A sturdy and robust structure has the merit to avoid vibrations and bending, allowing to
collect less noisy results from the tests.
At the same time, the design had to be easy to reconfigure in order to allow to perform
tests varying some of the parameters. In particular, it was decided to provide the pos-
sibility to substitute the noncircular pulley and to modify all the parameters that affect
the synthesis of the noncircular pulley profile; namely, the routing pulleys’ radius, the
insertion length, the springs and their preload, the mass and inertia of the pendulum.

(a) (b)

Figure 4.1: 3D model of the test bench, highlighted with illustrative colours.
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4.1 General description

The 3D model was created using the solid modelling CAD software SolidWorksR©. Despite
the numerous iterations needed to accomplish the definitive version of the test bench, only
the final design was considered worthy to be described in the following sections.
The dimension drawings of all the non-standard components are reported in Appendix C.

4.1.1 Pendulum

The pendulum design was divided into three components: a base to couple the pendulum
to the shaft, a stem with threaded ends, and a spherical mass located at the end of the
stem. Both the base and the sphere have a threaded hole to connect them with the stem.
The connections were strengthen with nuts.
The bottom base of the pendulum was drilled to allow to couple it with the rod of the
reference angle system. The hole is visible in Figure 4.2b.
The stem was made out of aluminium so that the mass would be more concentrated to-
wards the extremity of the pendulum. The base and the sphere were made out of steel.
The connection to the shaft was realised through a robust flange coupling to avoid clear-
ance and relative motions between the two parts.
The centre of mass of the pendulum could be modified either by substituting the sphere
or the stem.

(a) (b)

Figure 4.2: Assembly and sectional view of the pendulum.

4.1.2 Electric motor and motor support

The maximum torque τ pmax that could be acting on the shaft was computed to select the
correct size of the electric motor. τ pmax was set defining an extreme use of the pendulum
with a desired maximum angular acceleration αpmax of the pendulum equal to 0.5 rad/s2
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when the pendulum is in the horizontal position (either at 0 or π rad). The torque that
has to be applied to the shaft is:

τ pmax = Izαmax +mplp = 0.987 + 0.079 = 1.066Nm (4.1)

The dimensions of the pendulum are summarised in Table 4.1.

Table 4.1: Pendulum’s dimensions

Mass mp = 411 g

Distance of the center of mass from the shaft’s axis lp = 192mm

Moment of inertia along the shaft’s axis Ipz = 1.974 kg m2

Consequently, the motor-gearbox combination had to be able to generate a torque greater
or equal than τ pmax. The value was not multiplied by a safety factor because it had already
been intentionally overvalued.
The DC motor with graphite brushes RE 25 in combination to the planetary gearhead
GP 32, both by ”Maxon motor Spa”, were selected among the equipment available in the
laboratory where the experiments were undertaken. The actuation package was completed
by an HEDS-5540 encoder.
Tables 4.2 and 4.3 summarise the main characteristics stated in the datasheets of the
motor and the gearhead.

Table 4.2: RE 25 motor data

Motor data
Nominal Voltage 48V
No load speed 10300rpm
No load current 20.1mA
Nominal speed 9160rmp
Nominal torque (max. continuous torque) 27.7mNm
Nominal current (max. continuous current) 0.653A
Stall torque 264mNm
Stall current 6.03A
Maximum efficiency 87%
Terminal resistance phase to phase 7.96Ω
Terminal inductance phase to phase 0.832mH
Torque constant 43.8mNm/A
Speed constant 218rpm/V
Speed/torque gradient 39.6rpm/mNm
Mechanical time constant 4.37ms
Rotor inertia 10.5gcm2

The maximum torque generated by the electric motor is:

τmmax = ηgearkgeartmotor = 1.659Nm (4.2)

τmmax ≥ τ pmax
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Table 4.3: GP-42-C gearhead data

Gearhead data
Reduction 86 : 1
Absolute reduction 14976/175
Number of stages 3
Maximum continuous torque 6Nm%
Maximum intermittent torque 7.5Nm
Maximum efficiency 70%
Mass inertia 0.7gcm2

The support that holds the motor has slots to house bolts that lock the support to the
base, allowing to regulate the axial distance to the supports of the shaft.

(a) (b)

Figure 4.3: (a) Assembly of the electric motor and its support. (b) Assembly of the two
shaft supports.

4.1.3 Shaft supports

The shaft supports were designed with a sturdy structure, like the motor support. Each
support was divided into two parts to simplify its manufacture and decrease the cost of
production.
The two parts were connected by two bolts and two centring pins to ensure their correct
relative placement.
Since the two ball bearings were both secured on the shaft with an interference fit, and
axially locked with shoulders and Seeger rings, the housings on the shaft supports were
designed so that one of the two bearings would be axially locked and the other would
be mobile. In this way, eventual inaccuracies in the manufacture or the assembly of the
components would not cause damaging stress in the structure.
The supports are fixed to the base with bolts. One of he two support has holes for the
bolts, while the other has slots, in order to regulate the distance between the two.
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4.1.4 Noncircular pulleys

The 3D model of the noncircular pulleys was subdivided into three parts according to
their function: one part to couple to the shaft, on that contains the proper noncircular
profile section, and one to secure the cable.
The cylindrical section with the function of coupling to the shaft houses a feather key to
transmit the torque and two grub screws at 120◦ to lock the pulley and avoid any relative
motions.
The section with the synthesised profile has two incisions to mark the tangency point
of the cable when the pendulum is in vertical position. This section is coloured with a
darker shade in Figure 4.4.
The part of the noncircular pulley designed to secure the cable has a hole to house the
cable. The hole starts at the tangency point of the lowest angle of the angular range, i.e.
30◦ in this case, and perforates the pulley. The cable would be inserted and secured with
two grub screws perpendicular to the axis of the cable. The two screws are not in line
one to the other to ensure a better grip on the cable.
Due to the unconventional shape of the pulley, particularly of the noncircular profile, it
was decided to 3D printing the component. This choice also allowed to print the pulley
after the manufacture of the other components of the test bench, so that it was possible
to properly measure all the parameters needed to synthesise the noncircular profile (in-
sertion length, spring constants,etc.).
In addition 3D printing would allow to manufacture pulleys with different profiles in fairly
short times.
The pulley was printed out of ABS, as it was the only material available in the laboratory.
A cable with rubber coating was selected in order to better secure the cable in the pulley
and to prevent consuming the surface of the pulley that was made out of a softer material.
Threaded inserts were heated and forced into the pulley to house the grub screws.

(a) (b) (c)

Figure 4.4: 3D model of the noncircular pulley with threaded inserts and grub screws.
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4.1.5 Shaft

The overall shape of the shaft was defined by its couplings with the various components:
a flange for the pendulum, shoulders and Seeger ring grooves for the two bearings, keyway
slots for the two noncircular pulleys.

(a) (b)

Figure 4.5: (a) 3D model of the shaft. (b) Assembly view of the shaft and all the
components coupled to it.

The minimum acceptable diameter for the shaft was sized from the value of τmmax.
According to the Tresca yield criterion, the principal stress in each section is computed
as:

σid =
1

Wf

√
σ2 + 4τ 2 =

1

Wf

√(
Mf

Wf

)2

+ 4

(
Mt

Wt

)2

(4.3)

where Mf is the bending moment, Mt is the torque, Wf the flexural modulus, Wt the
torsion modulus, all relative to a given section of the shaft.

Since:

Wt = 2Wf

Equation 4.3 could be simplified:

σid =
1

Wf

√
M2

f +M2
t

Thus the flexural modulus is equal to:

Wf =
1

σid

√
M2

f +M2
t
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The flexural modulus for a solid shaft with circular section is equal to:

Wf =
πD3

32

The greatest admissible stress σadm was computed dividing the ultimate tensile strength
UTS by a safety factor sf :

σadm =
UTS

sf

Hence the minimum admissible diameter in the shaft was computed as:

Dmin =

(
32

πσadm

√
M2

f +M2
t

)

The shaft is made out of C40 steel, whose ultimate tensile strength UTS is 500MPa.
The maximum torque generated by the motor is τmmax.
The bending moment Mf is null where the shaft has the smallest diameter. With a safety
factor sf equal to 5, the minimum admissible diameter is 5.5mm.
Hence the diameter is set to 6mm to take into account the slots due to the feather keys.

Figure 4.6: Sectional view of the shaft.

The shaft is connected to the electric motor with an elastic joint in order to absorb
vibration and correcting eventual misalignment of the axes of the shaft and electric motor.
Furthermore, the elastic joint could operate as fuse in case of failure or overload in the
transmission.

4.1.6 Reference angle system

One of the features added to the test bench was a system to lock the pendulum in the
vertical position, so that the encoder used to measure the angular position of the shaft
could be calibrated.
The system, denominated reference angle system, consists in a rod that couples to the
hole drilled in the base of the pendulum (Figure 4.7b). The bottom part of the rod is
threaded so that it can be moved up and down.
The threaded coupling added functionality, but had the disadvantage of adding some
clearance, too. However, even if a perfect vertical position is not ensured, the misalign-
ment resulted to be small enough to be neglected.
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(a) (b)

Figure 4.7: (a) Assembly view of the reference angle system. (b) Sectional view of the
test bench.

4.1.7 Routing pulleys

The routing pulleys are composed by a support and a standard circular pulley with ball
bearings to decrease energy losses due to friction.
In case the radius of the routing pulley was to be modified, the pulley could be easily
disassembled and substituted by a similar standard component.
The insertion length could be regulated by adding spacers beneath the support of the
pulley.

(a)
(b)

Figure 4.8: (a) Assembly view of the routing pulley. (b) Assembly view of the spring
holder.
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4.1.8 Spring holder

The components designated to secure the spring to the ground are a rod with an eyelet
to attach the axial spring and an hollow parallelepiped to holds the rod.
The upper surface of the parallelepiped was drilled to facilitate the use of the Allen key
to mount the piece.
The rod can move backwards and forwards and is locked by nuts. The thread on the rod
also allows to attach the mechanism to measure the preload of the spring.
An additional locking nut was added to lock the nut that opposes the force of the spring,
after that the operation to regulation of the preload of the spring has been executed.

4.1.9 Preload system

The system to determine and regulate the preload of the spring was composed by a load
cell and a mechanism to move backwards and forwards the rod of the spring holder.
The load cell used was the 8417 by burster, as it was the only one available in the
laboratory. Between the load cell and the rod of the spring holder there is an adapter to
connect the two components with different diameters. This was needed because the load
cell was selected after the manufacturing of the test bench, so its diameter was unknown
at the time of the design. Hence the adapter was 3D printed in a second phase.
The load cell is connected on the other side to a second rod through a long nut. The rod
is threaded on the extremes and squared in the middle. The thread on the load cell side
is long enough to completely house the nut and free the load cell. This feature is relevant
when assembling the mechanism.
On the other side, the rod is screwed to a cylinder with a hole along its axis. A portion
of the hole is threaded to couple with the thread of the rod, while the rest was enlarged
to house the squared section of the rod.
A hole perpendicular to the axis of the cylinder was added to account for the eventual
use of a lever to rotate the cylinder, if a bigger torque was needed.
The support of the rod has a squared hole that couple with the squared section of the rod,
preventing it from rotating. In this way, the rod can be moved backwards and forwards
by rotating the cylinder.
One preload system is sufficient to tune the preload of both springs, as they can be
regulated one at a time.

(a) (b)

Figure 4.9: Assembly and sectional view of the preload system.
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4.1.10 Base

The base was made out of aluminium to keep the weight down so that the test bench
could be lifted by hand.
The central sector of the base is occupied by a groove that guides the axial alignment
of the motor, the shaft holders and the reference angle system. In the groove there are
threaded holes to fix the aforementioned components and the two routing pulleys.
On the sides there are two other grooves for a correct assembly of the preload mechanism
and spring support. The numerous equidistant threaded holes were made to mount the
devices at different distances from the shaft, so that the test bench could employ other
springs, too.
In addition the base was provided with eight holes to eventually fix the test bench to the
ground (two of which are highlighted in red in Figure 4.10), and eight threaded holes to
eventually mount proximity sensors to signal a particular angle of the pendulum to the
control system (four of which are highlighted in green).

Figure 4.10: 3D model of the base.

4.2 Noncircular pulley profile

Before assembling the test bench, the shaft and all the components that were to be
mounted on it were weighted. These values were used to compute the overall mass, the
centre of mass and the moments of inertia of the rotating components with the CAD
software. These three values were used to synthesise the profile of the noncircular pulley
and to characterise the mass properties of the pendulum in the virtual prototype.
For the same reasons, the diameter of the routing pulley, the thickness of the cable and
the length of the spring at rest were measured. Also the distance between the routing
pulley and the shaft was checked, provisionally assembling the relative components.
Finally, an attempt at evaluating the stiffness of the spring was made, measuring its
elongation with different loads applied. However the equipment available in the laboratory
did not have the precision required for a valid evaluation, and in conclusion the datasheet
value was used.
The values required to synthesise the noncircular profile are all reported in Table 4.4.
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Table 4.4: Input parameters to synthesise the noncircular profile.

Mass of the shaft assembly 900 g
Distance of the centre of mass from the axis 90.1mm
Spring stiffness ks = 410N/m
Spring elongation at rest x0 = 65mm
Insertion length L = 108mm
Angular range θ ∈ [30◦, 150◦]
Parameters for the antagonistic subtorques γ = 0.5, doff = 0.55τd(0)
Routing pulley’s radius rp = 6.5mm
Cable thickness tc = 1.5mm
Routing configuration (a)

After this operations, the noncircular pulley profile could be synthesised (Figure 5.1).
Selecting the correct combination of parameters was crucial to realise a functional profile.
Particular attention was paid to obtaining a pulley with a short profile, so that the
elongation required to the spring was limited. In this way, the spring can maintain a
linear behaviour across the entire range.

Ensuring that the noncircular profile would not interfere with the shaft was important,
too. Eventually, the problem could be solved with a different design that locates the
noncircular pulley on the ground and not on the shaft.
At last, the profile was used to create and print the 3D model of the noncircular pulley.
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Figure 4.11: Synthesised profile for the noncircular pulley.
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4.3 Assembly

The sequence followed to assemble the test bench was:

1. The pendulum was assembled and connected to the shaft with the four bolts. Then,
with the help of a press, the ball bearings were mounted on the shaft and locked
with the Seeger rings. (Figure 4.12a)

2. The shaft support that axially locks the bearing was assembled and mounted on the
base with four bolts. The ball bearings was locked into the support between the
shoulder and a Seeger ring. (Figure 4.12b)

3. The second shaft support was assembled. After having inserted the shaft bearing
into the designated hole in the support, the distance from the first support was
adjusted and then the second support was fixed with four bolts.
Also the reference angle system was assembled so that is could be used to prevent
the pendulum from rotating to facilitate the operations that followed. (Figure 4.12c)

4. The threaded inserts were heated and pressed into the designated holes of the non-
circular pulleys, which were then mounted onto the shaft using the feather key and
the grub screws.
The two routing pulleys were assembled and mounted onto the base. (Figure 4.12d)

5. The motor was locked into its support. Then the elastic joint was used to connect
shaft and electric motor, and the motor support was fixed to the base with four
screws. (Figure 4.12e)

6. The spring supports were mounted onto the base, and the cables were connected
to the springs and the noncircular pulleys, passing through the routing pulleys.
Finally, the pretension system was used to adjust the preload of each of the two
springs. (Figure 4.12f)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12

73





Chapter 5

Preliminary tests

5.1 Adams simulation

All the parameters measured or computed in Section 4.2 to synthesise the noncircular
profile were used to update the parameters of the virtual prototype. Moreover, the non-
circular profile synthesised for the test bench was used to create a simpler 3D model of
the noncircular pulley to be added to the virtual model.
Table C.1 reports the values of all the parameters needed to develop the virtual model of
the test bench; while the macros used to create the model are all reported in Appendix
B. The main reference frame of the model is located at the base of the pendulum (Figure
5.1).
In this particular configurations, it is remarkable how the two long cable elements, with no
contacts with neither pulley, succeeded in significantly decreasing the number of elements
needed to model the cable (Figure 5.1).

x

y

Figure 5.1: Updated model of the test bench.
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Table 5.1: Parameters of the final virtual prototype

Pendulum parameters
Mass of pendulum 900 g

Inertia of pendulum

 21513.87 · ·
0 1652.36 ·

86.04 0 20039.01

 kg mm

Coordinates of CM of pendulum
[

0 90.06 7.45
]
mm

Routing pulley parameters
Radius of routing pulleys 6.5mm
Inertia of routing pulleys

[
ixx = 0.07 iyy = 0.07 izz = 0.13

]
kg mm

Increased radius of routing pulley (6.5 + 1.5/2 + 0.2)mm
Cable parameters

Cable diameter 1.5mm
Density of cable 7800 kg/m3

Coefficient of damping elements 0.005 kg/s
Spring parameters

Stiffness 410N/m
Damping 0.005 kg/s
Elongation at rest 65mm
Initial preload 30.781N

Other parameters to synthesise the noncircular profile
Angular range θ ∈ [30◦, 150◦]
Insertion length 108mm
Parameters of the antagonistic subtorques γ = 0.5, doff = 0.55τd(0)
Routing configuration (a)
Gravity −9.807m/s

Other parameters to arrange the cable elements
Increased radius for the noncircular pulley (rnonc + 1.5/2 + 0.05)mm
nnonc 60
ncirc 12

Contact parameters
Damping 1.0 · 104 kg/s
Stiffness 1.0 · 105N/mm2

µs 0.99
µd 0.90m
Force exponent 2.2
Penetration depth 0.1mm

Solver parameters
Solver integrator HHT
Solver formulation I3
Solver error 1.0 · 10−5

Simulation step size 0.001 s
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In order to show the behaviour of the model, a simple simulation, with a motion imposed
to the pendulum, was performed. The motion, applied to the revolute joint connecting
the pendulum to the ground, constraint the angular velocity of the pendulum to track
the following profile:

"4.0d*(STEP(time, 2, 0 ,2.5 , 1) + STEP(time, 12.0, 0, 12.5, -1)) +

-40.0d*(STEP(time, 15.0, 0,15.1, 1) + STEP(time, 16.9, 0, 17.0, -1))"

The end time of the simulation was set at 20 s.

5.1.1 Results exemplifying Adams simulation

Angular position and velocity

Following the motion imposed to the joint, the pendulum remained motionless for 2 s, so
that the cables had time to settle on the pulleys. Then it rotated anticlockwise up to
130◦ (Figure 5.4a) at an angular speed of 4 deg/s, stayed motionless for 2.5 s and rotated
clockwise for 2 s at angular speed of 40 deg/s (Figure 5.4b).
The pendulum accelerated four times to reach the given velocity, as reported in Figure
5.3b.
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Figure 5.2: Angular position of the pendulum.
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Figure 5.3: Angular velocity and acceleration of the pendulum.

(a) (b)

Figure 5.4: Extreme orientation reached by the pendulum during the simulation.

Cable elements and routing pulleys

Figure 5.5a shows the trajectory in the xy-plane of a cable element close to the circular
pulley (highlighted in Figure 5.6a). In the enlargement of Figure 5.5b it is possible to
observe the initial settling movement of the cable due to the gap with the routing and
noncircular pulleys. Figure 5.7 reports the contact force between the same cable element
and the routing pulley. The irregularities in the profile were likely due to the discretisation
of the cable that caused small vibrations in the cable.
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Figure 5.5: Trajectory of a cable element during the simulation.
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(a) (b)

Figure 5.6: Particular of the arrangement of the cable on the routing pulley at the begin-
ning of the simulation (a) and after 0.01 s (b).
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Figure 5.7: Contact force between the cable element highlighted in Figure 5.6 and the
routing pulley.

Spring force

The force generated by the springs (Figure 5.8) was characterized by an initial settling of
the preload value, as the cables enter in contact with the pulleys.
The desired value of the preload was 30.781N , while the value assumed after the initial
movement was 30.859N . The difference is small enough to be negligible, as also the
preload of the springs in the physical prototype could not have the exact desired value.
However, by fine-tuning the position of the two points connecting the springs to the
ground, it would be possible to correct the initial discrepancy of the preload value.
Another peculiarity of the plot in Figure 5.8 is that the two spring forces have similar
profiles, but not symmetric values, as the noncircular pulley causes one of the springs to
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stretch more than the other, depending on if the angle is greater or smaller than 90◦.
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Figure 5.8: Spring forces.

Torque

The most interesting value of the simulation to analyse was the torque required to rotate
the pendulum (Figure 5.9).
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Figure 5.9: Torque generated to rotate the pendulum.

The four peaks at around 2, 12, 15, 17 s are due to the torque needed to accelerate and
decelerate the pendulum. In fact they are similar to the peaks in the plot reporting the
acceleration of the pendulum (Figure 5.3b), with the first two peakes being smaller since
they are related to smaller accelerations.
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Between the peaks, from 2 to 12 s and from 15 to 17 s, the pendulum was rotating at a
constant speed, hence the torque on the joint is caused solely to gravity and not to inertial
accelerations. In these segments the gravity compensator manages to decrease the torque
caused by gravity, almost annihilating it.
The vibrations present in the plot were likely caused by the discretisation of the two
cable, as the contact on the pulleys is not as smooth as with a continuous cable. It is
probable that also the fact that the movement of the pendulum was constraint by the
motion contributed to generate the vibrations, as the system could not move smoothly,
but it was forced to follow a specific velocity profile.

2 3 4 5 6 7 8 9 10 11 12
 [s]

-5

-4

-3

-2

-1

0

1

2

3

 [N
m

m
]

Figure 5.10: Enlargement of the torque profile from 2 to 13 s.
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Figure 5.11: Enlargement of the torque profile from 15 to 17 s.

Comparison with models without gravity compensator

In order to better analyse the effect of the gravity compensator, a new model of the cable
without the gravity compensator was created (Figure 5.12). It was then used to perform
two simulations with the same motion previously imposed to the virtual prototype: in the
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first simulation the gravity field was left active to analyse the performances of the pen-
dulum without gravity compensator, while in the other the gravity field was deactivated
in order to analyse the behaviour of the pendulum with a perfect gravity compensator.

Figure 5.12: Model of the pendulum without the gravity compensator.

Figure 5.13 reports the torque applied to the pendulum to make it follow the imposed
motion. It is possible to observe how the gravity compensator significantly reduces the
torque needed by the pendulum and has almost the same performances of the case without
the gravity field.
As expected, the peaks due to the accelerations are present and are equivalent in all
three cases. Excluding those peaks, the maximum torque applied in the case without
the gravity compensator is 510.8Nmm, measured when the pendulum was stopped at
130◦. The maximum value of torque applied in the case with the gravity compensator
was 5.6Nmm, again excluding the the peaks of torque due to the accelerations. All in all,
it means that using the gravity compensator maximum torque needed by the pendulum
was decreased by 98.9%, which is very significant.
Furthermore, the plot shows how at 130◦ the system with gravity compensator needed a
torque of just 1.4Nmm to hold the position, while without the gravity compensator the
maximum torque (510.8Nmm) needed to be applied to the pendulum.
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Figure 5.13: Comparison of the torque generated in the three simulations.
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Figures 5.14 and 5.15 report the torque in the cases with the gravity compensator and
the one without gravity, in the two segments of time when the pendulum is rotating.
Apart from the vibrations most likely due to the discretisation of the cable, it is possible
to note how the torque with the gravity compensator tended to linearly move away from
the theoretical profile of the case without gravity. One possible cause could be that the
initial preload of the springs was not the imposed one, as mentioned earlier. The initial
error would linearly increase its effect while the pendulum was rotating, as the torque is
generated by the spring force multiplied the moment arm of the noncircular pulley. More
simulations to investigate this particular issue are planned to be performed in future
works.
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Figure 5.14: Enlargement of the torque profiles from 2 to 13 s.

15 15.2 15.4 15.6 15.8 16 16.2 16.4 16.6 16.8 17
 [s]

-6

-4

-2

0

2

4

6

8

10

 [N
m

m
]

with gravity compensation
without gravity

Figure 5.15: Enlargement of the torque profiles from 15 to 17 s.
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5.2 Tests on the physical prototype

After assembling the test bench as described in Section 4.3, the prototype was prepared
for the first tests.
First of all, the load cell was calibrated by weighting several weights. Afterwards, the
preload system was assembled and used to regulate the preload of the two springs with the
same value used in the simulations (30.87N). During this operation, particular attention
was paid at carefully tightening both the nuts locking the spring supports, without moving
the rod and thus varying the value of the preload. Finally, after that the locking nut
was tighten and the preload system was disassembled, the test bench preparation was
completed.

Figure 5.16: Preload system.

These preliminary tests had the aim of checking the general setup of the experiments and
collect the first results to perform a first comparison with the virtual prototype.

5.2.1 Static test

This first test consisted in evaluating the behaviour of the test bench without the assis-
tance of the electric motor. For this reason, the motor was disconnected from the shaft
by removing the elastic joint.
Initially the pendulum would tended to lean on one of the sides, most likely due to a dis-
crepancy in the preload values of the two springs. So the preload system was reassembled
on one of the spring supports, and the spring was regulated so that the pendulum would
stand still in the vertical position, without checking the value of the preload force. Then
the spring support was locked and the preload system removed.
After that adjustment, the pendulum started to perform as expected: it was set at differ-
ent angles within the 30◦ ÷ 150◦ range and remained balanced in the set positions, with
the exception of some small oscillatory movements of a few degrees.
This test gave a first positive feedback on the performances of the gravity compensator,
which resulted functioning but not perfect. Moreover, it highlighted the importance of
having the same preload tension in the two springs in order to successfully balance the
pendulum.
The not perfect regulation of the preload was very likely caused by the use of a load cell
without the correct range and precision, and by the reduced dimensions of the preload
system that made the operation difficult to perform.
Another factor in the behaviour of the system was the friction presents in the springs,
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cables and ball bearings, which had a positive effect on the system: it assisted the gravity
compensator in contrasting the torque due to gravity, and allowed to even out the errors
due to a not perfect preload. Nevertheless, friction has to be limited, as it potentially
increases the energy losses of the system.

(a) (b)

Figure 5.17: Test bench during the static test.

5.2.2 Dynamic test

After the conclusion of the static test, the electric motor was reconnected to the shaft via
the elastic joint to perform a dynamic test, aimed at evaluating the torque required to
rotate the pendulum.
The test consisted in rotating the pendulum from 45◦ to 90◦ at three different average
angular speeds: ω1 = 7 deg/s, ω2 = 50 deg/s, ω3 = 120 deg/s. The test was repeated in
two different configurations: one with the gravity compensator on, and the other with the
gravity compensator being detached from the shaft by disconnecting the springs from the
cables.

Following the test, the virtual model was used to perform three sets of simulations. In
each set of simulations, a motion replicating the rotation of the pendulum in the real-
world test was imposed to the model, in the configuration with gravity compensator,
without gravity compensator and with the gravity field deactivated, as in the simulations
of Section 5.1.1.

(a) (b)

Figure 5.18: Test bench during the dynamic test.

The electric motor was controlled using the EPOS4 50/8 Positioning Controller by ”Maxon
motor Spa”.
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The current absorbed by the electric motor, the angular velocity and position of the
pendulum were collected by the EPOS4 driver. After the test, the recorded signal of the
current i(t) was filtered with a LPF to clean it from the noise (Figure 5.19).
The filtered values of the current if (t) were then used to estimate the torque τ(t) applied
on the shaft to rotate the pendulum as:

τ(t) = ηgear · ηm · kgear · kt · if (t) (5.1)

where ηgear and ηm are the datasheet maximum efficiency of the gearbox and electric
motor respectively, kgear is the reduction ratio of the gearbox, kt is the torque constant
of the motor.
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Figure 5.19: Unfiltered (a) and filtered (b) current absorbed by the electric motor at ω1.

Figures 5.20, 5.21 and 5.22 report the plots of the evaluate torques. In all of the three
cases, the torque generated by the motor is smaller when the the gravity compensator is
used.
Table 5.2 reports the maximum and average value of the torque in each of the cases.
Table 5.3 reports the percentage decrease of the maximum and average torque by using
the gravity compensator.

Table 5.2: Maximum and average torque generated by the motor.

Maximum torque [Nmm] Average torque [Nmm]
ω1 = 7 deg/s, with compensator 48 16.1
ω1 = 7 deg/s, without compensator 551 243.0
ω2 = 50 deg/s, with compensator 155 71.9
ω2 = 50 deg/s, without compensator 746 238.9
ω3 = 120 deg/s, with compensator 1200 498.2
ω3 = 120 deg/s, without compensator 1503 690.9

Table 5.3: Percentage reduction in the torque generated by the motor.

Reduction in maximum torque Reduction in average torque
case 1 91.3% 93.4%
case 2 79.2% 69.9%
case 3 20.2% 27.9%
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5 - Preliminary tests

These values are a sign of how advantageous a gravity compensator could be, especially
at low velocities. In fact with the increase of the angular velocity, the torque generated by
the actuator to accelerate and decelerate the system is more and more important, while
the gravity torque becomes less of a factor, as anticipated in Section 1.1.
The oscillations present in the signals were likely due to the controller that accelerated
and decelerated the pendulum to track the given signal. They could be decreased by
fine-tuning the parameters of the controller.
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Figure 5.20: Torque absorbed at ω1,
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Figure 5.21: Torque absorbed at ω2,
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Figure 5.22: Torque absorbed at ω3,

The angular position and velocity recorded values were used to create three equivalent
motions for the virtual model.
Since the rotation performed in the test started from 45◦, the motions necessitated to
include an initial rotation from 90◦ to 45◦ and a small settling time to let the vibrations
disappear.
The three computed motions were:

1. "-18d*(STEP(time, 1.99, 0, 2.00, 1) +

+ STEP(time, 4.49, 0, 4.50, -1)) +

+ 7.03d*(STEP(time, 6.500, 0, 6.640, 1) +

+ STEP(time, 12.880, 0, 13.080, -1))"

2. "-45.0d*(STEP(time, 2.0, 0,4.0, 1) +

+ STEP(time, 6.000, 0, 6.882, -1))"

3. "-45.0d*(STEP(time, 2.0, 0,4.0, 1) +

+ STEP5(time, 6.000, 0, 6.376, -1))"

The first motion was imposed to the angular velocity of the pendulum, while the other
two were imposed to its angular position.

Figures 5.23a, 5.24a and 5.25a report the comparison of the angle of the pendulum of the
dynamic test and the corresponding simulation, only in the segment of time when the
pendulum rotates from 45◦ to 90◦.
The simulations performed as expected, in particular the ones with the gravity compen-
sator gave almost the same results of the ones without gravity, as it was the case in Section
5.1.1.
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Figure 5.23: (a) Comparison between the angle of the pendulum in the test and in the
simulations. (b) Torques of the simulations. Both for ω1.
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Figure 5.24: (a) Comparison between the angle of the pendulum in the test and in the
simulations. (b) Torques of the simulations. Both for ω2.
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Figure 5.25: (a) Comparison between the angle of the pendulum in the test and in the
simulations. (b) Torques of the simulations. Both for ω3.

Figures 5.26, 5.27 and 5.28 report the plot comparing the results of the real-world tests
and the simulations.
In all the three figures it is possible to see the initial acceleration and final deceleration,
which are present also in the cases with no gravity field. In the real-world cases, these
peaks are bigger and wider, as the controller took more time to modulate the signal.
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Excluding the oscillations due to the controller, the results obtained were very promising,
as the profiles of the real-world tests and the simulations had the same trends and the
results had similar values; and especially considering all the limitations concerning the
tests.
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Figure 5.26: Comparison of the torque profiles at ω1.
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Figure 5.27: Comparison of the torque profiles at ω2.
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Figure 5.28: Comparison of the torque profiles at ω3.

Some of the aforementioned limitations could be solved through a better modelling of the
components in the virtual prototype, while other were due to not ideal preparation of the
physical test bench for the tests and the way they were carried out.

Regarding the virtual prototype, a model of the electric motor and the controller had
yet to be developed and used instead of the motion. Possible ways to model the two
components are either using the designated machinery suite in Adams, or by developing
the model of the controller and electric motor with MATLAB and Simulink and exporting
the Adams model into Simulinks.
In addition, friction in the revolute joints of the pendulum and the two routing pulleys
had not modelled neither.
Two other possible improvements to the virtual model would be to model the springs as
elastic components, and not simply as ideal forces; and substituting the ideal revolute
joints present in the cable, in the pendulum and in the routing pulleys with bushing
elements, which takes into account the elasticity and damping of a real revolute joint.
All of these modifications would draw the simulations closer the real-world system, but
require a careful identification of every parameter using the results of the tests on the test
bench.

The limitations of the tests due to inaccuracies in the set-up of the test-bench regarded in
particular the preload of the spring, which proved to be incorrect and had to be adjusted
already during the static test. Also the losses electric motor should have been better
characterised via specific tests and not simply using the datasheet estimated efficiency.
Another factor that should be better analysed in the future would be the precision with
which the noncircular profile was manufactured, as at the time of the tests it was yet to be
investigated. To this end, the procedure to evaluate the torque generated by a noncircular
profile pulley, developed in Section 2.7, could be used.
Finally, more repetitions of the tests should be performed to limit the influence of random
uncertainties in the results.
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Chapter 6

Conclusions

Nowadays the interest towards more energy-efficient and safer solutions for robotic ma-
nipulators is ever increasing, as these are key aspects required to let them interact with
human workers in non-confined environments. The introduction of passive mechanisms
that compensate the joint torque due to the weight of the robot has proved to be a valid
solution to these demands.
In this work the gravity compensator for revolute joints proposed by [1] was examined.
This particular mechanism is able to generate an arbitrary torque profile through the
action of a spring and a noncircular pulley. Therefore it has the advantage of not being
limited to compensate exclusively the trigonometric torque profiles due to gravity on rev-
olute joints.
In order to test the benefits of this gravity compensator, a virtual model of the mechanism
applied to an inverted pendulum and a physical test rig of the same system were realised.

The first part of the work is focused on analysing the procedures introduced by [1] to
synthesise the noncircular profile of the pulley, create an antagonist spring configuration
to generate a bilateral torque, and evaluate the torque generated by a given noncircular
pulley. In addition, a new method to synthesise the noncircular profile that exploits con-
vex optimization is proposed, together with an improvement in the procedure to evaluate
a noncircular profile, that takes into account also some practical issues related to cable
routing. These methods are applied to synthesise the profiles for an exemplary 1 DoF
and a 3 DoF systems.
Then, the procedure to develop the virtual model of the noncircular pulley-spring mech-
anism applied to an inverted pendulum using the software MSC AdamsR© is reported.
The model was created using macros written in Adams/View Command Language, as it
proved to be the most effective way to model the cable-noncircular pulley interaction.
The simulations computed with the virtual model allowed to confirm the theory behind
the noncircular pulley-spring gravity compensator and analyse the different dynamic be-
haviours of the pendulum with and without the gravity compensator.
After the realisation of the virtual model, the design and assembly of the physical test
bench to test the effects of the gravity compensator is described. A system to regulate
the pretension of the springs was included.
Afterwards, the results of the preliminary tests performed on the test rig are reported.
They consisted in measuring the torque generated by an electric motor to actuate the
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pendulum in two different configurations: one with the gravity compensator acting on
the system and the other where the compensator was disconnected. During the tests, the
gravity compensator managed to decrease both the average and maximum torque gener-
ated by the motor by up to 90%.
In conclusion, the data collected from the test rig were compared to the ones from the
simulations of the virtual model. The results were very promising, as they have similar
values and highlighted the same dynamic behaviours.

This work succeeded in showing how the introduction of a gravity compensator mecha-
nism could be an effective solution to reduce the energy consumption of a robot and the
size of its actuators. But its main merits were to realise two valid and functioning in-
struments to test the noncircular pulley-spring mechanism proposed by [1], in the virtual
model and the test rig.
However, the work still requires to be finalised by performing a proper validation of the
virtual model using the test rig. In addition, other improvements could be brought to
both the virtual model and the test rig, e.g. the realisation of the models of the electric
motor and control system, and a better system to regulate the preload of the springs in
the test rig.
Eventually the studies could be deepen by recreating, using the test rig, a case where a
more peculiar torque profile has to be compensated, to fully exploit the advantages of the
noncircular pulley-spring mechanism. Furthermore, the virtual model could be applied
to study the effects of the compensator on more complex system, possibly with multiple
DoF systems.
All of these researches could lead to employ this particular compensator in very differ-
ent fields: from optimising the efficiency of robotic manipulators in executing particulars
routines in production lines, to the manufacture of passive exoskeletons that are required
to compensate torques with unconventional profiles.
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Appendix A

MATLAB scripts to synthesise the
noncircular profile

A.1 Example 1

A.1.1 Main

1 clear va r i a b l e s
2 close a l l
3 clc
4
5 %% Design Parameters
6 g = 9 . 8 1 ;
7
8 % Pendulum :
9 m = 3 ;

10 l = 1 ;
11 k = 5e3 ; % spr ing constant
12 u 0 = 0 . 0 22 ; % spr ing i n i t i a l e l onga t i on
13 L = 0 . 1 ; % spr ing i n s e r t i o n point
14 % motion range :
15 th 0 = 0 ;
16 th 1 = pi ;
17
18 %% Desired Torque
19 syms th real ;
20 t max = m∗g∗ l ;
21 t D ( th ) = t max∗cos ( th ) ; % Torque to balanced due to the mass
22
23 t D0 = double ( t D ( th 0 ) ) ;
24 t U ( th ) = 0.5∗ t D+0.55∗ t D0 ; % t L ( th ) + t U ( th ) = t D ( th )
25 t L ( th ) = 0.5∗ t D−0.55∗ t D0 ; % t L ( th ) , t U ( th ) : the system uses 2 oppos i t e spr ings , with

i n i t i a l p r e t ens i on
26 t d ( th ) = 0.5∗ t D (pi−th )+0.55∗ t D0 ; % Torque p r o f i l e to be balanced by pu l l ey1
27
28 %t d2 ( th ) = −t L ; % Torque p r o f i l e to be balanced by pu l l ey2 ( equal to t d ( th ) , t h e r e f o r e the

pu l l ey w i l l be s immetr ic to pu l l ey1 )
29
30 %% Pr o f i l e
31
32 [ rm , phi ,Y, S , x P , y P ] = a n a l y t i c a l p u l l e y p r o f i l e (k , u 0 , L , t d , th , [ th 0 , th 1 ] ) ;
33 save ( ’ p r o f i l e ’ , ’rm ’ , ’ x P ’ , ’ y P ’ ) ;
34
35 %% Plot
36 % Des i re torque
37 f igure
38
39 hold on
40 fplot ( t D ,[−pi , 2∗ pi ] , ’ LineWidth ’ , 1 . 2 5 )
41 fplot ( t U ,[−pi , 2∗ pi ] )
42 fplot ( t L ,[−pi , 2∗ pi ] )
43 fplot ( t d ,[−pi , 2∗ pi ] , ’−− ’ , ’ LineWidth ’ , 1 . 2 5 )
44 plot ( [ th 0 , th 0 , th 0 , th 0 ] , [ t D ( th 0 ) , t U ( th 0 ) , t L ( th 0 ) , t d ( th 0 ) ] , ’ o ’ )
45 plot ( [ th 1 , th 1 , th 1 , th 1 ] , [ t D ( th 1 ) , t U ( th 1 ) , t L ( th 1 ) , t d ( th 1 ) ] , ’∗ ’ )
46 grid on
47 axis auto
48 t i t l e ( ’ Torque p r o f i l e ’ )
49 legend ( ’ t d (\ theta ) ’ , ’ t U (\ theta ) ’ , ’ t L (\ theta ) ’ , ’ t d1 (\ theta ) \ equiv t d2 (\ theta ) ’ , ’ t (\ the ta 0 ) ’ , ’ t (\

the ta 1 ) ’ )
50 xlabel ( ’\ theta [ rad ] ’ )
51 ylabel ( ’ Torque [Nm] ’ )
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52 set (gca , ’ Color ’ , ’w ’ )

A.1.2 Function to synthesise the noncircular profile

1 function [ rm , phi ,Y, S , x P , y P ] = a n a l y t i c a l p u l l e y p r o f i l e (k , u 0 , L , t d , th , theta )
2
3 % Function to generate the p r o f i l e o f an nonc i r cu l a r pu l l ey des igned to
4 % conunterbalance a given torque p r o f i l e .
5
6 % INPUTS
7 % k : spr ing constant
8 % u 0 : spr ing i n i t i a l e l onga t i on
9 % L : spr ing i n s e r t i o n point

10 % t d : torque p r o f i l e to compensate ( symfun )
11 % th : s ybo l i c v a r i ab l e
12 % theta : motion range [ th 0 ; th 1 ]
13
14 % OUTPUTS
15 % rm( th ) : rad ius o f the pu l l ey
16 % phi ( th )
17 % Y( th )
18 % S( th ) : s l ope o f the the tangent to the pu l l ey at [ x P ( th ) ; y P ( th ) ]
19 % x P ( th ) : x coo rd ina t e o f the pu l l ey p r o f i l e
20 % y P ( th ) : y coo rd ina t e o f the pu l l ey p r o f i l e
21
22 th 0 = theta (1) ;
23 th 1 = theta (2) ;
24
25 %% Pr o f i l e
26
27 rm( th ) = t d /(2∗k∗ i n t ( t d )+kˆ2∗ u 0 ˆ2) ˆ(1/2) ;
28 phi ( th ) = asin (rm/L) ;
29 Y( th ) = L∗( sin ( th )−cos ( th )∗tan ( th+phi ) ) ;
30 S( th ) = tan ( th+phi ) ;
31 x P ( th ) = −d i f f (Y, th ) / d i f f (S , th ) ;
32 y P ( th ) = S∗x P+Y;
33
34 %% Plot
35
36 f igure
37 % Torque p r o f i l e
38 subplot (1 , 3 , 1 )
39 grid on
40 hold on
41 fplot ( t d ,[−pi , 2∗ pi ] )
42 plot ( [ th 0 , th 1 ] , [ t d ( th 0 ) , t d ( th 1 ) ] , ’∗ ’ )
43 axis auto
44 t i t l e ( ’ t d ’ )
45 xlabel ( ’\ theta [ rad ] ’ )
46 ylabel ( ’ Torque [Nm] ’ )
47
48 % Radius over theta
49 subplot (1 , 3 , 2 )
50 hold on
51 fplot (rm,[−pi , 2∗ pi ] )
52 plot ( [ th 0 , th 1 ] , [ rm( th 0 ) ,rm( th 1 ) ] , ’∗ ’ )
53 grid on
54 t i t l e ( ’ Radius o f non−c i r c u l a r pu l l ey ’ )
55 legend ( ’ r m ’ )
56 xlabel ( ’\ theta [ rad ] ’ )
57 ylabel ( ’ Radius [m] ’ )
58
59 % P r o f i l e in xy−plane
60 subplot (1 , 3 , 3 )
61 hold on
62 grid on
63 fplot ( x P , y P , [ th 0 , th 1 ] )
64 plot (0 ,0 , ’+ ’ )
65 plot ( x P ( th 0 ) , y P ( th 0 ) , ’ o ’ )
66 plot ( x P ( th 1 ) , y P ( th 1 ) , ’∗ ’ )
67 grid on
68 t i t l e ( ’ Shape o f non−c i r c u l a r pu l l ey ’ )
69 xlabel ( ’ [m] ’ )
70 ylabel ( ’ [m] ’ )
71 axis equal
72
73 end

96



A - MATLAB scripts to synthesise the noncircular profile

A.1.3 Function to evaluate the profile as proposed by [1]

1 function t a = check pro f i l e t o rque num (k , u 0 ,L , th , x P , y P , range ,N)
2
3 % Function to compute the torque p r o f i l e generated by the given pu l l ey
4 % p r o f i l e , in order to eva luate the qua l i t y o f the des ign .
5
6 % INPUTS
7 % k : spr ing constant
8 % u 0 : spr ing i n i t i a l e l onga t i on
9 % L : spr ing i n s e r t i o n point

10 % th : symbol ic v a r i ab l e
11 % x P ( th ) : x coo rd ina t e o f the pu l l ey p r o f i l e
12 % y P ( th ) : y coo rd ina t e o f the pu l l ey p r o f i l e
13 % range : motion range [ th 0 ; th 1 ]
14 % N: number o f samples used to d i s c r e t i z e
15
16 % OUTPUTS
17 % t a : vec tor conta in ing the torque p r o f i l e generated by the pu l l ey p r o f i l e ( x P ( th ) ; y P ( th ) )
18
19 th 0 = range (1) ;
20 th 1 = range (2) ;
21
22 x = linspace ( th 0 , th 1 ,N) ’ ;
23 i n c r = ( th 1−th 0 ) /N;
24
25 % Function used to compute the d e r i v a t i v e
26 x P1 ( th ) = x P ( th−i n c r ) ;
27 x P2 ( th ) = x P ( th+in c r ) ;
28 y P1 ( th ) = y P ( th−i n c r ) ;
29 y P2 ( th ) = y P ( th+in c r ) ;
30
31 % D i s c r e t i z a t i o n o f the func t i on s
32 x P = double ( x P (x ) ) ;
33 y P = double ( y P (x ) ) ;
34 x P1 = double ( x P1 (x ) ) ;
35 y P1 = double ( y P1 (x ) ) ;
36 x P2 = double ( x P2 (x ) ) ;
37 y P2 = double ( y P2 (x ) ) ;
38
39 % t r a j e c t o r y o f the i n s e r t i o n point (R)
40 x R = L∗cos ( x ) ;
41 y R = L∗ sin ( x ) ;
42
43 RP = sqrt ( ( x R−x P ) .ˆ2+(y R−y P ) . ˆ 2 ) ; % d i s t ance between i n s e r t i o n point (R) and tangency point

on the pu l l ey (P)
44 ra = abs ( x R .∗ y P−y R .∗ x P ) . / ( ( ( x P−x R) .ˆ2+(y P−y R) . ˆ 2 ) ) . ˆ ( 1/2 ) ; % d i s tance between cent r e o f

pu l l ey (O) and tangency point (P)
45
46 %% lenght o f wire wrapped around the pu l l ey
47
48 % Der iva t i v e s o f x P and y P
49 xPd 1 = (x P−x P1 ) / i n c r ;
50 xPd 2 = ( x P2−x P ) / i n c r ;
51 xPd = ( xPd 1+xPd 2 ) /2 ;
52 yPd 1 = (y P−y P1 ) / i n c r ;
53 yPd 2 = ( y P2−y P ) / i n c r ;
54 yPd = ( yPd 1+yPd 2 ) /2 ;
55 L1 = (xPd.ˆ2+yPd . ˆ2 ) . ˆ ( 1/2 ) ;
56
57 % In t e g r a l o f L1
58 L s = [ L1 (1) ∗ i n c r ] ;
59 for i = 2 :N
60 L s ( i , 1 ) = L1( i )∗ i n c r+L s ( i −1) ;
61 end
62
63 u = L s+RP−RP(1)+u 0 ; % e longat i on o f the spr ing
64 t a = k .∗u .∗ ra ; % torque produced by the pul ley−sp r ing system
65
66 end

97



A - MATLAB scripts to synthesise the noncircular profile

A.2 Example 2

A.2.1 Function to synthesise the noncircular profile taking into
account the geometrical corrections

1 function [ rm , phi ,Y, S , x P , y P ] = an a l y t i c a l p u l l e y p r o f i l e g e om c o r (k , u 0 , L , t d , th , theta , geom corr )
2
3 % Function to generate the p r o f i l e o f an nonc i r cu l a r pu l l ey des igned to
4 % conunterbalance a given torque p r o f i l e . This func t i on takes in to
5 % account the geomet r i ca l c o r r e c t i o n s meade due to the rope th i ckne s s
6 % and the f a c t that the i n s e r t i o n point i s on a c i r c u l a r pu l l ey .
7
8 % INPUTS
9 % k : spr ing constant

10 % u 0 : spr ing i n i t i a l e l onga t i on
11 % L : spr ing i n s e r t i o n point
12 % t d : torque p r o f i l e to compensate ( symfun )
13 % th : s ybo l i c v a r i ab l e
14 % theta : motion range [ th 0 ; th 1 ]
15 % geom corr : [ tc , rp , cb ]
16 % tc = cab le th i ckne s s
17 % rp = pu l l ey rad ius
18 % case o f cab l e rout ing : case ( a ) = −1; case (b) = 1
19
20 % OUTPUTS
21 % rm( th ) : rad ius o f the pu l l ey
22 % phi ( th )
23 % Y( th )
24 % S( th ) : s l ope o f the the tangent to the pu l l ey at [ x P ( th ) ; y P ( th ) ]
25 % x P ( th ) : x coo rd ina t e o f the pu l l ey p r o f i l e
26 % y P ( th ) : y coo rd ina t e o f the pu l l ey p r o f i l e
27
28 th 0 = theta (1) ;
29 th 1 = theta (2) ;
30 tc = geom corr (1 ) ;
31 rp = geom corr (2 ) ;
32 cb = geom corr (3 ) ;
33
34 %% Pr o f i l e
35 rm( th ) = t d /(2∗k∗ i n t ( t d )+kˆ2∗ u 0 ˆ2) ˆ(1/2) ;
36 phi ( th ) = asin ( ( rm+cb ∗ (0 .5∗ tc+rp ) ) /L) ;
37 Y( th ) = L∗(rm−0.5∗ tc ) /(rm+cb ∗ (0 .5∗ tc+rp ) ) ∗( sin ( th )−cos ( th )∗tan ( th+phi ) ) ;
38 S( th ) = tan ( th+phi ) ;
39 x P ( th ) = −d i f f (Y, th ) / d i f f (S , th ) ;
40 y P ( th ) = S∗x P+Y;
41
42 %% Plot
43 f igure
44
45 % Torque p r o f i l e
46 subplot (1 , 3 , 1 )
47 grid on
48 hold on
49 fplot ( t d ,[−pi , 2∗ pi ] )
50 plot ( [ th 0 , th 1 ] , [ t d ( th 0 ) , t d ( th 1 ) ] , ’∗ ’ )
51 axis auto
52 t i t l e ( ’ t d ’ )
53 xlabel ( ’\ theta [ rad ] ’ )
54 ylabel ( ’ Torque [Nm] ’ )
55
56 % Radius over theta
57 subplot (1 , 3 , 2 )
58 hold on
59 fplot (rm,[−pi , 2∗ pi ] )
60 plot ( [ th 0 , th 1 ] , [ rm( th 0 ) ,rm( th 1 ) ] , ’∗ ’ )
61 grid on
62 t i t l e ( ’ Radius o f non−c i r c u l a r pu l l ey ’ )
63 legend ( ’ r m ’ )
64 xlabel ( ’\ theta [ rad ] ’ )
65 ylabel ( ’ Radius [m] ’ )
66
67 % P r o f i l e in xy−plane
68 subplot (1 , 3 , 3 )
69 hold on
70 grid on
71 fplot ( x P , y P , [ th 0 , th 1 ] )
72 plot (0 ,0 , ’+ ’ )
73 plot ( x P ( th 0 ) , y P ( th 0 ) , ’ o ’ )
74 plot ( x P ( th 1 ) , y P ( th 1 ) , ’∗ ’ )
75 grid on
76 t i t l e ( ’ Shape o f non−c i r c u l a r pu l l ey ’ )
77 xlabel ( ’ [m] ’ )
78 ylabel ( ’ [m] ’ )
79 axis equal
80
81 end

98



A - MATLAB scripts to synthesise the noncircular profile

A.2.2 Functions to evaluate the profile as proposed taking into
account the geometrical corrections

Main function

1 function t a = check pro f i l e to rque num geom cor (k , u 0 , L , geom corr , x P , y P , range ,N)
2
3 % Function to compute the torque p r o f i l e generated by the given pu l l ey
4 % p r o f i l e , in order to eva luate the qua l i t y o f the des ign . This func t i on
5 % takes in to account the geomet r i ca l c o r r e c t i o n s meade due to the rope
6 % th i ckne s s and the f a c t that the i n s e r t i o n point i s on a c i r c u l a r pu l l ey .
7
8 % INPUTS
9 % k : spr ing constant

10 % u 0 : spr ing i n i t i a l e l onga t i on
11 % L : spr ing i n s e r t i o n point
12 % tc : cab l e th i ckne s s
13 % th : symbol ic v a r i ab l e
14 % x P ( th ) : x coo rd ina t e o f the pu l l ey p r o f i l e
15 % y P ( th ) : y coo rd ina t e o f the pu l l ey p r o f i l e
16 % range : motion range [ th 0 ; th 1 ]
17 % N: number o f samples used to d i s c r e t i z e
18
19 % OUTPUTS
20 % t a : vec tor conta in ing the torque p r o f i l e generated by the pu l l ey p r o f i l e ( x P ( th ) ; y P ( th ) )
21
22 th 0 = range (1) ;
23 th 1 = range (2) ;
24 tc = geom corr (1 ) ;
25 rp = geom corr (2 ) ;
26 cb = geom corr (3 ) ;
27 x = linspace ( th 0 , th 1 ,N) ;
28 i n c r = ( th 1−th 0 ) /N;
29
30 [ x P , y P , x R , y R ] = correct PR (L , geom corr , x P , y P , range ,N) ; % Comnpute new Ps and Rs
31 RP = sqrt ( ( x R−x P ) .ˆ2+(y R−y P ) . ˆ 2 ) ; % d i s t ance between i n s e r t i o n point (R) and tangency point

on the pu l l ey (P)
32 ra = abs ( x R .∗ y P−y R .∗ x P ) . / ( ( ( x P−x R) .ˆ2+(y P−y R) . ˆ 2 ) ) . ˆ ( 1/2 ) ; % d i s tance between cent r e o f

pu l l ey (O) and tangency point (P)
33
34 %% lenght o f wire wrapped around the pu l l ey
35
36 % Der iva t i v e s o f x P and y P
37 for i = 2 :N−1
38 xPd 1 ( i ) = ( x P ( i +1)−x P ( i ) ) / i n c r ;
39 yPd 2 ( i ) = ( y P ( i +1)−y P ( i ) ) / i n c r ;
40
41 xPd 2 ( i ) = ( x P ( i )−x P ( i −1) ) / i n c r ;
42 yPd 2 ( i ) = ( y P ( i )−y P ( i −1) ) / i n c r ;
43
44 xPd( i ) = ( xPd 1 ( i )+xPd 2 ( i ) ) /2 ;
45 yPd( i ) = ( xPd 2 ( i )+yPd 2 ( i ) ) /2 ;
46 end
47 xPd(1) = ( x P (2)−x P (1) ) / i n c r ;
48 yPd(1) = ( y P (2)−y P (1) ) / i n c r ;
49 xPd(N) = ( x P (N)−x P (N−1) ) / i n c r ;
50 yPd(N) = ( y P (N)−y P (N−1) ) / i n c r ;
51
52 L1 = (xPd.ˆ2+yPd . ˆ2 ) . ˆ ( 1/2 ) ;
53
54 % In t e g r a l o f L1
55 L s = [ L1 (1) ∗ i n c r ] ;
56 for i = 2 :N
57 L s ( i ) = L1( i )∗ i n c r+L s ( i −1) ;
58 end
59
60 u = L s+RP−RP(1)+u 0 ; % e longat i on o f the spr ing
61 t a = k .∗u .∗ ra ; % torque produced by the pul ley−sp r ing system
62
63 end

Function to evaluate the corrected profile

1 function [ x P , y P , x R , y R ] = correct PR (L , geom corr , x P , y P , range ,N)
2 % Function to compute the new po int s P and R to use in the func t i on
3 % to f i nd the torque that can be compensated , g iven the p r o f i l e o f
4 % a pu l l ey .
5
6 % INPUTS
7 % L : spr ing i n s e r t i o n point
8 % tc : cab l e th i ckne s s
9 % th : symbol ic v a r i ab l e

10 % x P ( th ) : x coo rd ina t e o f the pu l l ey p r o f i l e
11 % y P ( th ) : y coo rd ina t e o f the pu l l ey p r o f i l e
12 % range : motion range [ th 0 ; th 1 ]
13 % N: number o f samples used to d i s c r e t i z e
14
15 % OUTPUTS
16 % [ x P ( th ) , y P ( th ) ] : new coord inated o f P ( tak ing in to account the width o f the cab l e )
17 % [ x R( th ) , y R ( th ) ] : new coord inated o f R ( tak ing in to account the width o f the cab l e and the

pu l l ey in the i n s e r t i o n point )
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18
19 th 0 = range (1) ;
20 th 1 = range (2) ;
21 tc = geom corr (1 ) ;
22 rp = geom corr (2 ) ;
23 cb = geom corr (3 ) ;
24 x = linspace ( th 0 , th 1 ,N) ;
25 i n c r = ( th 1−th 0 ) /N;
26
27 %% New Ps :
28 [ x P , y P ] = e n l a r g e p r o f i l e (0 . 5∗ tc , x P , y P , [ th 0 , th 1 ] ,N) ;
29
30 %% New Rs :
31 x R 1 = L∗cos ( x ) ;
32 y R 1 = L∗ sin ( x ) ;
33
34 RP 1 = sqrt ( ( x R 1−x P ) .ˆ2+( y R 1−y P ) . ˆ 2 ) ;
35 syms gam ip s real ;
36 x R = [ ] ;
37 y R = [ ] ;
38 m f lag = zeros (1 ,N) ;
39 for i = 1 :N
40 s o l 1 = so l v e ( x P ( i )+RP 1( i )∗cos (gam) == x R 1 ( i )+(rp+0.5∗ tc )∗cos ( i p s ) , y P ( i )+RP 1( i )∗ sin (gam)

== y R 1 ( i )+(rp+0.5∗ tc )∗ sin ( i p s ) ,gam , i p s ) ;
41 s o l 1 = double ( s o l 1 . gam) ;
42 x R 2 = x P ( i )+RP 1( i )∗cos ( s o l 1 ) ;
43 y R 2 = y P ( i )+RP 1( i )∗ sin ( s o l 1 ) ;
44 mR1 = ( y R 2 (1)−y P ( i ) ) /( x R 2 (1)−x P ( i ) ) ;
45 mR2 = ( y R 2 (2)−y P ( i ) ) /( x R 2 (2)−x P ( i ) ) ;
46 i f mR1 < mR2
47 x R( i ) = x R 2 (1) ;
48 y R ( i ) = y R 2 (1) ;
49 else
50 x R( i ) = x R 2 (2) ;
51 y R ( i ) = y R 2 (2) ;
52 end
53 i f (mR1∗mR2 < 0)
54 i f ( i < N)
55 mP = ( y P ( i +1)−y P ( i ) ) /( x P ( i +1)−x P ( i ) ) ;
56 else
57 mP = ( y P ( i )−y P ( i −1) ) /( x P ( i )−x P ( i −1) ) ;
58 end
59 m f lag ( i ) = 1 ;
60 i f ( i == 1)
61 x R( i ) = x R 2 (1) ;
62 y R ( i ) = y R 2 (1) ;
63 else
64 i f ( ( (mP > 0) & ( m f lag ( i −1) ˜= 1) ) | ( m f lag ( i −1) == 2) )
65 m f lag ( i ) = m flag ( i ) + 1 ;
66 i f mR1 > mR2
67 x R( i ) = x R 2 (1) ;
68 y R ( i ) = y R 2 (1) ;
69 else
70 x R( i ) = x R 2 (2) ;
71 y R ( i ) = y R 2 (2) ;
72 end
73 end
74 end
75 end
76 i f ( cb == 1)
77 i f ( ( x R ( i ) == x R 2 (1) ) & (y R( i ) == y R 2 (1) ) )
78 x R( i ) = x R 2 (2) ;
79 y R ( i ) = y R 2 (2) ;
80 else
81 x R( i ) = x R 2 (1) ;
82 y R ( i ) = y R 2 (1) ;
83 end
84 end
85 end
86 end
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A.3 Function to enlarge the profile of a curve

1 function [X,Y] = e n l a r g e p r o f i l e ( tc , x P , y P , range ,N)
2
3 % Function to en la rge or shr ink a p r o f i l e , a long the d i r e c t i o n o f i t s
4 % curvature po int by point .
5
6 % INPUTS
7 % tc : magnitude ( th i ckne s s ) o f the enlargement ( tc>0) or shr inkage ( tc>0)
8 % [ x P , y P ] : parametr ic coo rd ina t e s o f the curve
9 % range : range over which the func t i on s are transformed [ th 0 ; th 1 ]

10 % N: number o f po in t s to d i s c r e t i z e the cruve
11 %
12
13 % OUTPUTS
14 % [X,Y ] : c oo rd ina t e s o f the transformed curve
15
16 th 0 = range (1) ;
17 th 1 = range (2) ;
18 x = linspace ( th 0 , th 1 ,N) ’ ;
19 i n c r = abs ( ( th 1−th 0 ) /N) ;
20 xp = double ( x P (x ) ) ’ ;
21 yp = double ( y P (x ) ) ’ ;
22
23 %% 1 st d e r i v a t i v e o f ( x P , y P )
24 for i = 2 :N−1
25 xd1 ( i ) = (xp ( i +1)−xp ( i ) ) / i n c r ;
26 yd1 ( i ) = (yp ( i +1)−yp ( i ) ) / i n c r ;
27
28 xd2 ( i ) = (xp ( i )−xp ( i −1) ) / i n c r ;
29 yd2 ( i ) = (yp ( i )−yp ( i −1) ) / i n c r ;
30
31 xd ( i ) = ( xd1 ( i )+xd2 ( i ) ) /2 ;
32 yd ( i ) = ( yd1 ( i )+yd2 ( i ) ) /2 ;
33 end
34
35 % de r i v a t i v e o f the extremes
36 xd (1) = (xp (2)−xp (1) ) / i n c r ;
37 yd (1) = (yp (2)−yp (1) ) / i n c r ;
38
39 xd (N) = (xp (N)−xp (N−1) ) / i n c r ;
40 yd (N) = (yp (N)−yp (N−1) ) / i n c r ;
41
42 %% Curvature o f ( x P , y P )
43 for i = 1 :N
44 % Or ientat ion
45 xc ( i ) = −1/xd ( i ) ;
46 yc ( i ) = 1/yd ( i ) ;
47 % Curvature l enght s e t equal to tc
48 l c = sqrt ( xc ( i )ˆ2+yc ( i ) ˆ2) ;
49 xc ( i ) = tc ∗xc ( i ) / l c ;
50 yc ( i ) = tc ∗yc ( i ) / l c ;
51 % Di r e c t i on
52 i f ( xc ( i )∗yc ( i ) > 0)
53 X( i ) = xp ( i )+xc ( i ) ;
54 Y( i ) = yp ( i )+yc ( i ) ;
55 else
56 X( i ) = xp ( i )−xc ( i ) ;
57 Y( i ) = yp ( i )−yc ( i ) ;
58 end
59 end
60
61 end
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A.4 Function to synthesise via the convex optimiza-

tion approach

1 function [ b , r , cvx optva l ] = c onv ex p r o f i l e (N,m, range , th , t d , k , u 0 ,L)
2
3 % Function to generate the p r o f i l e o f an nonc i r cu l a r pu l l ey des igned to
4 % conunterbalance a given torque p r o f i l e . The s o l u t i on i s obtained by
5 % solvng a convex opt imizat i on problem .
6
7 % INPUTS
8 % N: number o f samples
9 % m: degree o f the appross imat ing polynomial

10 % range : motion range [ th 0 ; th 1 ]
11 % th : s ybo l i c v a r i ab l e
12 % t d : torque p r o f i l e to compensate ( symfun )
13 % k : spr ing constant
14 % u 0 : spr ing i n i t i a l e l onga t i on
15 % L : spr ing i n s e r t i o n point
16
17 % OUTPUTS
18 % b : c o e f f i c i e n t s o f the polynomimal appross imat ing the p r o f i l e o f the nonc i r cu l a r pu l l ey
19 % r : coo rd ina t e s o f the nonc i r cu l a r pu l l ey p r o f i l e
20 % cvx optva l : optimal value
21
22 th 0 = range (1) ;
23 th 1 = range (2) ;
24 t d i n t ( th ) = in t ( t d ( th ) ) ; % i n t e g r a l o f the torque des ign
25 t d d i f f ( th ) = d i f f ( t d ( th ) ) ; % de r i v a t i v e o f the torque des ign
26 th = linspace ( th 0 , th 1 ,N) ’ ; % d i s c r e t i s a t i o n o f the angular range
27 t = double ( t d ( th ) ) ;
28 t i n t = double ( t d i n t ( th ) ) ;
29 t d i f f = double ( t d d i f f ( th ) ) ;
30
31 theta = [ ] ;
32 a = [ ] ;
33 for i = 0 :m
34 theta = [ theta , th . ˆ i ] ;
35 a = [ a ; i ∗( i −1) ] ;
36 end
37 a = a ( 3 : end) ;
38 A= [ ] ;
39 for i = 0 : (m−2)
40 A = [A, a ( i +1) .∗ th . ˆ i ] ;
41 end
42 v = (2∗k∗ t i n t+kˆ2∗ u 0 ˆ2) . ˆ ( 1/2 ) ;
43 eps = 1e2 ∗( th 1−th 0 ) /N;
44
45 cvx beg in
46 va r i a b l e s r (N, 1 ) b(m+1 ,1)
47 minimize norm( v .∗ r−t , 2 )
48 sub j e c t to
49 L−r >= 0 % Pul ley does not i n t e r f e r e with i n s e r t i o n point and rad ius does not go to

i n f i n i t y
50 r >= 0; % rad ius i s p o s i t i v e
51 r == theta ∗b ; % rad ius i s approximated with a polynomial o f degree m
52 A∗b ( 3 : end) <= 0;
53 cvx end
54
55 end
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Appendix B

Macros in Adams/View Command
Language

The code to create the virtual model of the test rig was subdivided into several macros
to simplify the writing and the debugging operations. In fact, in this way it is possible to
gradually create the model and control the outcome at every step.

B.1 Definition of main parameters and creation of

the pendulum model

1 !WRAP IN UNDO NO
2
3 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
4 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
5 ! # GRAVITY #
6
7 f o r c e modify body g r a v i t a t i o n a l g rav i ty = . nog2 . g rav i ty &
8 x comp = 0 &
9 y comp = −9806.65 &

10 z comp = 0
11
12 f o r c e a t t r i b f o r c e = . nog2 . g rav i ty v i s i b i l i t y = no opin ion
13 en t i t y a t t r i b u t e s entity name = . nog2 . g rav i ty a c t i v e = on depend=on
14
15 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
16 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
17 ! # DESIGN VARIABLES #
18
19 !−−−−−−−−
20 ! Mass o f the pendulum
21 va r i ab l e c r ea t e var iable name = . nog2 . mass pendulum &
22 r e a l = 0.89980 &
23 un i t s = mass
24
25 !−−−−−−−−
26 ! Cartes ian coo rd ina t e s o f the nonc i r cu l a r pu l l ey p r o f i l e ( polynomial o f 7 th degree )
27 va r i ab l e c r ea t e var iable name = . nog2 . x P &
28 r e a l = −0.015651180578848 , 0 .213652508009337 , −1.153939853424818 , 3 .450332228361171 ,

−5.963485230816165 , −0.532168316445568 , 16.135612371732208 , −0.103199694472842 &
29 un i t s = no un i t s
30
31 va r i ab l e c r ea t e var iable name = . nog2 . y P &
32 r e a l = 0.029191532886411 , −0.300040172286356 , 1 .180575742064421 , −2.057882976776742 ,

−0.604959553102431 , 8 .357158714679175 , −0.919000425196018 , −1.534300188872310 &
33 un i t s = no un i t s
34
35 !−−−−−−−−
36 ! Angular range o f the grav i ty−compensator mechanism
37 va r i ab l e c r ea t e var iable name = . nog2 . range &
38 r e a l = (PI /6) , (5/6∗PI ) &
39 un i t s = no un i t s
40
41 !−−−−−−−−
42 ! I n i t i a l angular po s i t i o n o f the pendulum
43 va r i ab l e c r ea t e var iable name = . nog2 . th 0 &
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44 r e a l = (PI /2) &
45 un i t s = no un i t s
46
47 !−−−−−−−−
48 ! Distance o f the i n s e r t i o n point from the cent r e o f the pu l l ey
49 va r i ab l e c r ea t e var iable name = . nog2 . i n s e r t i o n l e n g t h &
50 r e a l = 108 &
51 un i t s = length
52
53 !−−−−−−−−
54 ! rad ius o f c i r c u l a r pu l l e y s at the i n s e r t i o n point
55 va r i ab l e c r ea t e var iable name = . nog2 . i n s e r t i o n p u l l e y r a d i u s &
56 r e a l = 6 .5 &
57 un i t s = length
58
59 !−−−−−−−−
60 ! Dimensions o f be l t ’ s e lements
61 va r i ab l e c r ea t e var iable name = . nog2 . b e l t r a d i u s &
62 r e a l = (1 . 5/2 ) &
63 un i t s = no un i t s
64
65 !−−−−−−−−
66 ! rad ius o f c i r c u l a r pu l l e y s at the i n s e r t i o n point i n c r ea s ed with the be l t rad ius
67 va r i ab l e c r ea t e var iable name = . nog2 . i n s e r t i o n r a d i u s &
68 r e a l = ( . nog2 . i n s e r t i o n p u l l e y r a d i u s + . nog2 . b e l t r a d i u s ) &
69 un i t s = length
70
71 !−−−−−−−−
72 ! rad ius o f c i r c u l a r pu l l ey in c r ea s ed to p lace the b e l t e lements not in contact with the pu l l ey
73 va r i ab l e c r ea t e var iable name = . nog2 . i n s e r t i o n r a d i u s i n c r e a s e d &
74 r e a l = ( . nog2 . i n s e r t i o n r a d i u s +0.2) &
75 un i t s = length
76
77 !−−−−−−−−
78 ! c o e f f i c i e n t o f damping elements in the b e l t
79 va r i ab l e c r ea t e var iable name = . nog2 . b e l t c &
80 r e a l = 0.005 &
81 un i t s = damping
82
83 !−−−−−−−−
84 ! CONTACT PARAMETERS
85 va r i ab l e c r ea t e var iable name = . nog2 . Cnt Damp &
86 r e a l = 1000.0 &
87 un i t s = damping
88
89 va r i ab l e c r ea t e var iable name = . nog2 . Cn t S t i f f &
90 r e a l = 1e5 &
91 un i t s = s t i f f n e s s
92
93 va r i ab l e c r ea t e var iable name = . nog2 . Cnt mus &
94 r e a l = 0.99 &
95 un i t s = no un i t s
96
97 va r i ab l e c r ea t e var iable name = . nog2 . Cnt mud &
98 r e a l = 0 .9 &
99 un i t s = no un i t s

100
101 va r i ab l e c r ea t e var iable name = . nog2 . Cnt exp &
102 r e a l = 2 .2 &
103 un i t s = no un i t s
104
105 va r i ab l e c r ea t e var iable name = . nog2 . Cnt dmax &
106 r e a l = 0 .1 &
107 un i t s = no un i t s
108
109 !−−−−−−−−
110 ! Spring parameters
111 va r i ab l e c r ea t e var iable name = . nog2 . sp r ing k &
112 r e a l = 0.410 &
113 un i t s = s t i f f n e s s
114
115 va r i ab l e c r ea t e var iable name = . nog2 . s p r i n g c &
116 r e a l = 0.005 &
117 un i t s = damping
118
119 ! p r e t en s i on o f the spr ing : td ( p i /2) /rm( pi /2) = 0 . 4372 [Nm]/0 . 0 14205 [m] = 30.781 [N]
120 va r i ab l e c r ea t e var iable name = . nog2 . sp r ing F 0 &
121 r e a l = 30.781 &
122 un i t s = f o r c e
123
124 ! l ength o f the spr ing
125 va r i ab l e c r ea t e var iable name = . nog2 . sp r i ng x 0 &
126 r e a l = 65 &
127 un i t s = length
128
129 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
130 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
131 ! # MATERIALS #
132
133 mate r i a l c r e a t e &
134 material name = . mate r i a l s . AISI 304 &
135 adams id = 1000 &
136 youngs modulus = 2 .0E5 &
137 p o i s s o n s r a t i o = 0.28 &
138 dens i ty = (7800 ( kg/m∗∗3) )
139
140
141 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
142 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
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143 ! ## CREATE PENDULUM ##
144
145 part c r ea t e r i g id body name and pos i t ion part name = . nog2 .PENDULUM
146 part a t t r i b u t e s part name = . nog2 .PENDULUM co l o r = Goldenrod name vis = o f f
147
148 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
149 ! # MASS PROPERTY OF PENDULUM AND NONCIRCULAR PULLEYS #
150
151 !−−−−−−−−
152 ! c ent r e o f mass
153 marker c r ea t e marker = . nog2 .PENDULUM.cm &
154 l o c a t i on = 0 .0 , 90 .06 , 7 .45 &
155 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2
156 marker a t t r i b u t e s &
157 marker name = . nog2 .PENDULUM.cm &
158 v i s i b i l i t y = o f f
159
160 !−−−−−−−−
161 ! po int in the o r i g i n to use as RF f o r the i n e r t i a
162 marker c r ea t e marker = . nog2 .PENDULUM. MK inertia RF &
163 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
164 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2
165 marker a t t r i b u t e s &
166 marker name = . nog2 .PENDULUM. MK inertia RF &
167 v i s i b i l i t y = o f f
168
169
170 !−−−−−−−−
171 ! mass p r op e r t i e s
172
173 part c r ea t e r i g id body mas s p rope r t i e s part name = . nog2 .PENDULUM &
174 mass = ( . nog2 . mass pendulum ) &
175 cente r o f mass marker = . nog2 .PENDULUM.cm &
176 in e r t i a marke r = . nog2 .PENDULUM. MK inertia RF &
177 ixx = (21513 .86950) &
178 iyy = (1652 .35620) &
179 i z z = (20039 .01384) &
180 ixy = ( 0 . 0 ) &
181 iyz = (0 .00264) &
182 i zx = (86 .04018) &
183
184
185 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
186 ! # STEM #
187
188 marker c r ea t e marker = . nog2 .PENDULUM. MK pos stem &
189 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
190 o r i e n t a t i o n = 0 .0 , −90.0 , 0 .0 r e l a t i v e t o = . nog2
191
192 geometry c r ea t e shape cy l i nd e r &
193 cyl inder name = . nog2 .PENDULUM. Stem &
194 length = (120 .0mm) &
195 rad ius = (5 . 00mm) &
196 angle = 360.0d &
197 center marker = . nog2 .PENDULUM. MK pos stem
198
199 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
200 ! # NONCIRCULAR PULLEY L #
201
202 f i l e pa r a s o l i d read &
203 f i l e name = ” non c i r c u l a r p u l l e y p a r a s o l i d . x t ” &
204 part name = . nog2 .PENDULUM &
205 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
206 o r i e n t a t i o n = 90 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 .PENDULUM
207
208 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
209 ! # NONCIRCULAR PULLEY R #
210
211 f i l e pa r a s o l i d read &
212 f i l e name = ” non c i r c u l a r p u l l e y p a r a s o l i d . x t ” &
213 part name = . nog2 .PENDULUM &
214 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
215 o r i e n t a t i o n = 90 .0 , 180 .0 , 0 .0 r e l a t i v e t o = . nog2 .PENDULUM
216
217 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
218 ! # CREATE REVOLUTE JOINTS BETWEEN GROUND AND PENDULUM#
219
220 marker c r ea t e marker = . nog2 .PENDULUM. MK pendulum Rev i &
221 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
222 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 .PENDULUM
223
224 marker c r ea t e marker = . nog2 . ground . MK pendulum Rev j &
225 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
226 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 .PENDULUM
227
228 ! # CREATE REVOLUTE JOINTS BETWEEN GROUND AND PENDULUM#
229 con s t r a i n t c r ea t e j o i n t Revolute &
230 jo int name = . nog2 . Rev Gnd Pendulum &
231 i marker name = . nog2 .PENDULUM. MK pendulum Rev i &
232 j marker name = . nog2 . ground . MK pendulum Rev j
233
234 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
235 ! # REVOLUTE MOTIONS ON JOINT PENDOLUM−GROUND #
236
237 con s t r a i n t c r ea t e mot ion generator motion name = . nog2 . r o t a t i on 03 &
238 jo int name = . nog2 . Rev Gnd Pendulum &
239 func t i on = ” −18d ∗ (STEP( time , 1 .99 , 0 , 2 . 0 , 1 ) + STEP( time , 4 .49 , 0 , 4 . 5 , −1 ) ) + 7.03d ∗

(STEP( time , 6 .5 , 0 ,6 .640 , 1 ) + STEP( time , 12 .880 , 0 ,13 .080 , −1 ) ) ” &
240 t ime de r i v a t i v e = v e l o c i t y
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241
242 con s t r a i n t a t t r i b u t e s constra int name = . nog2 . r o t a t i on 03 &
243 ac t i v e = o f f
244
245 con s t r a i n t c r ea t e mot ion generator motion name = . nog2 . r o t a t i on 07 &
246 jo int name = . nog2 . Rev Gnd Pendulum &
247 func t i on = ”45.0d ∗( STEP( time , 2 , 0 , 4 . 0 , 1 ) + STEP( time , 6 .0 , 0 , 6 .882 , −1 ) ) ” &
248 t ime de r i v a t i v e = disp lacement
249
250 con s t r a i n t a t t r i b u t e s constra int name = . nog2 . r o t a t i on 07 &
251 ac t i v e = o f f
252
253 con s t r a i n t c r ea t e mot ion generator motion name = . nog2 . r o t a t i on 11 &
254 jo int name = . nog2 . Rev Gnd Pendulum &
255 func t i on = ”−45.0d ∗( STEP( time , 2 , 0 , 4 . 0 , 1 ) + STEP5( time , 6 .0 , 0 , 6 .376 , −1 ) ) ” &
256 t ime de r i v a t i v e = disp lacement
257
258 con s t r a i n t a t t r i b u t e s constra int name = . nog2 . r o t a t i on 11 &
259 ac t i v e = o f f
260
261 con s t r a i n t c r ea t e mot ion generator motion name = . nog2 . r o t a t i on 00 &
262 jo int name = . nog2 . Rev Gnd Pendulum &
263 func t i on = ”1.0d ∗ STEP( time , 1 .99 , 0 , 2 .0 , 1 ) ” &
264 t ime de r i v a t i v e = v e l o c i t y
265
266 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
267 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
268 ! # CREATE FIXED JOINTS BETWEEN GROUND AND PENDULUM #
269
270 marker c r ea t e marker = . nog2 .PENDULUM. MK pendulum Fix i &
271 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
272 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 .PENDULUM
273
274 marker c r ea t e marker = . nog2 . ground . MK pendulum Fix j &
275 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
276 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 .PENDULUM
277
278 con s t r a i n t c r ea t e j o i n t f i x ed &
279 jo int name = . nog2 . Fixed Gnd Pendulum &
280 i marker name = . nog2 .PENDULUM. MK pendulum Fix i &
281 j marker name = . nog2 . ground . MK pendulum Fix j
282
283 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
284 ! # DEACTIVATE FIXED JOINTS BETWEEN GROUND AND PENDULUM #
285
286 con s t r a i n t a t t r i b u t e s constra int name = . nog2 . Fixed Gnd Pendulum &
287 ac t i v e = o f f
288
289 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
290 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
291 ! # CREATE CIRCULAR PULLEY AT THE INSERTION POINT L
292
293 part c r ea t e r i g id body name and pos i t ion &
294 part name = . nog2 . INSERTION pulley L &
295 l o c a t i on = (−. nog2 . i n s e r t i o n l e n g t h ) , 0 . 0 , 0 .0 &
296 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2
297
298 part a t t r i b u t e s part name = . nog2 . INSERTION pulley L co l o r = GREEN name vis = o f f
299
300 marker c r ea t e marker = . nog2 . INSERTION pulley L . MK insert ion po int L &
301 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
302 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 . INSERTION pulley L
303
304 marker c r ea t e marker = . nog2 . INSERTION pulley L . MK pos inse r t i on pu l l ey L &
305 l o c a t i on = 0 .0 , 0 . 0 , −10.0 &
306 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 . INSERTION pulley L . MK insert ion po int L
307
308 geometry c r ea t e shape cy l i nd e r &
309 cyl inder name = . nog2 . INSERTION pulley L . CYLINDER insertion pulley L &
310 length = (20 . 0mm) &
311 rad ius = ( . nog2 . i n s e r t i o n p u l l e y r a d i u s ) &
312 angle = 360.0d &
313 center marker = . nog2 . INSERTION pulley L . MK pos inse r t i on pu l l ey L
314
315 !−−−−−−−−
316 ! mass p r op e r t i e s
317
318 part c r ea t e r i g id body mas s p rope r t i e s part name = . nog2 . INSERTION pulley L &
319 mass = (0 .00273) &
320 cente r o f mass marker = . nog2 . INSERTION pulley L . MK insert ion po int L &
321 in e r t i a marke r = . nog2 . INSERTION pulley L . MK insert ion po int L &
322 ixx = (0 .06960) &
323 iyy = (0 .06960) &
324 i z z = (0 .12901) &
325 ixy = ( 0 . 0 ) &
326 iyz = ( 0 . 0 ) &
327 i zx = ( 0 . 0 ) &
328
329 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
330 ! # REVOLUTE JOINT INSERTION PULLEY L−GROUND #
331
332 marker c r ea t e marker = . nog2 . INSERTION pulley L . MK Insert ion L Rev i &
333 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
334 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 . INSERTION pulley L
335
336 marker c r ea t e marker = . nog2 . ground . MK Insert ion L Rev j &
337 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
338 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 . INSERTION pulley L
339
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340 con s t r a i n t c r ea t e j o i n t Revolute &
341 jo int name = . nog2 . Rev Gnd Insert ion L &
342 i marker name = . nog2 . INSERTION pulley L . MK Insert ion L Rev i &
343 j marker name = . nog2 . ground . MK Insert ion L Rev j
344
345 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
346 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
347 ! # CREATE CIRCULAR PULLEY AT THE INSERTION POINT R
348
349 part c r ea t e r i g id body name and pos i t ion &
350 part name = . nog2 . INSERTION pulley R &
351 l o c a t i on = ( . nog2 . i n s e r t i o n l e n g t h ) , 0 . 0 , 0 .0 &
352 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2
353
354 part a t t r i b u t e s part name = . nog2 . INSERTION pulley R co l o r = GREEN name vis = o f f
355
356 marker c r ea t e marker = . nog2 . INSERTION pulley R . MK insert ion point R &
357 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
358 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 . INSERTION pulley R
359
360 marker c r ea t e marker = . nog2 . INSERTION pulley R . MK pos inser t ion pu l l ey R &
361 l o c a t i on = 0 .0 , 0 . 0 , −10.0 &
362 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 . INSERTION pulley R . MK insert ion point R
363
364 geometry c r ea t e shape cy l i nd e r &
365 cyl inder name = . nog2 . INSERTION pulley R . CYLINDER insertion pulley R &
366 length = (20 . 0mm) &
367 rad ius = ( . nog2 . i n s e r t i o n p u l l e y r a d i u s ) &
368 angle = 360.0d &
369 center marker = . nog2 . INSERTION pulley R . MK pos inser t ion pu l l ey R
370
371 !−−−−−−−−
372 ! mass p r op e r t i e s
373
374 part c r ea t e r i g id body mas s p rope r t i e s part name = . nog2 . INSERTION pulley R &
375 mass = (0 .00273) &
376 cente r o f mass marker = . nog2 . INSERTION pulley R . MK insert ion point R &
377 in e r t i a marke r = . nog2 . INSERTION pulley R . MK insert ion point R &
378 ixx = (0 .06960) &
379 iyy = (0 .06960) &
380 i z z = (0 .12901) &
381 ixy = ( 0 . 0 ) &
382 iyz = ( 0 . 0 ) &
383 i zx = ( 0 . 0 ) &
384
385 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
386 ! # REVOLUTE JOINT INSERTION PULLEY R−GROUND #
387
388 marker c r ea t e marker = . nog2 . INSERTION pulley R . MK Insert ion R Rev i &
389 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
390 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 . INSERTION pulley R
391
392 marker c r ea t e marker = . nog2 . ground . MK Insert ion R Rev j &
393 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
394 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 . INSERTION pulley R
395
396 con s t r a i n t c r ea t e j o i n t Revolute &
397 jo int name = . nog2 . Rev Gnd Insert ion R &
398 i marker name = . nog2 . INSERTION pulley R . MK Insert ion R Rev i &
399 j marker name = . nog2 . ground . MK Insert ion R Rev j
400
401
402 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
403 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
404 ! # GENERAL ATTRIBUTES #
405
406 con s t r a i n t a t t r i b u t e s constra int name=.∗ s i z e o f i c o n s = 1 .0
407 f o r c e a t t r i b u t e s force name=.∗ s i z e o f i c o n s = 1 .0
408 marker a t t r i b u t e s marker name=.∗ s i z e o f i c o n s = 1 .3
409 en t i t y a t t r i b u t e s entity name=.∗ name vis = o f f
410 s imu la t ion s i n g l e s e t update = ”none”
411 var d e l e t e var = ( eva l (DB CHILDREN( $ s e l f , ” va r i ab l e ”) ) )
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B.2 Creation of the cable model

B.2.1 Computation of the geometric parameters to arrange the
cable

1 !WRAP IN UNDO NO
2
3 !−−−−−−−−
4 ! per imeter o f the nonc i r cu l a r pu l l ey (0 , PI /2)
5 va r i ab l e c r ea t e var iable name = . nog2 . l 9 0 &
6 r e a l = 19.108 &
7 un i t s = length
8
9 !−−−−−−−−

10 ! per imeter o f the nonc i r cu l a r pu l l ey (0 , PI /6)
11 va r i ab l e c r ea t e var iable name = . nog2 . l 1 50 &
12 r e a l = 7.504 &
13 un i t s = length
14
15 !−−−−−−−−
16 ! per imeter o f the nonc i r cu l a r pu l l ey (0 ,5/6∗PI )
17 va r i ab l e c r ea t e var iable name = . nog2 . l 3 0 &
18 r e a l = 29.638 &
19 un i t s = length
20
21
22
23
24 !−−−−−−−−
25 ! Point o f tangency o f b e l t on the nonc i r cu l a r pu l l ey at angle th 0 = 90
26 var s e t var = . nog2 . pnt R 90 &
27 r e a l = ( eva l ( x P [ 1 ] ∗ th 0∗∗7+x P [ 2 ] ∗ th 0∗∗6+x P [ 3 ] ∗ th 0∗∗5+x P [ 4 ] ∗ th 0∗∗4+x P [ 5 ] ∗ th 0∗∗3+x P [ 6 ] ∗ th 0

∗∗2+x P [ 7 ] ∗ th 0∗∗1+x P [ 8 ] ∗ th 0 ∗∗0) ) , &
28 ( eva l ( y P [ 1 ] ∗ th 0∗∗7+y P [ 2 ] ∗ th 0∗∗6+y P [ 3 ] ∗ th 0∗∗5+y P [ 4 ] ∗ th 0∗∗4+y P [ 5 ] ∗ th 0∗∗3+y P [ 6 ] ∗ th 0∗∗2+

y P [ 7 ] ∗ th 0∗∗1+y P [ 8 ] ∗ th 0 ∗∗0) )
29
30
31 !−−−−−−−−
32 ! Point o f tangency o f b e l t on the nonc i r cu l a r pu l l ey at angle range [ 1 ] = 150
33 var s e t var = . nog2 . pnt R 150 0 &
34 r e a l = ( eva l ( x P [ 1 ] ∗ range [1]∗∗7+x P [ 2 ] ∗ range [1]∗∗6+x P [ 3 ] ∗ range [1]∗∗5+x P [ 4 ] ∗ range [1]∗∗4+x P [ 5 ] ∗ range

[1]∗∗3+x P [ 6 ] ∗ range [1]∗∗2+x P [ 7 ] ∗ range [1]∗∗1+x P [ 8 ] ∗ range [ 1 ]∗∗0 ) ) , &
35 ( eva l ( y P [ 1 ] ∗ range [1]∗∗7+y P [ 2 ] ∗ range [1]∗∗6+y P [ 3 ] ∗ range [1]∗∗5+y P [ 4 ] ∗ range [1]∗∗4+y P [ 5 ] ∗ range

[1]∗∗3+y P [ 6 ] ∗ range [1]∗∗2+y P [ 7 ] ∗ range [1]∗∗1+y P [ 8 ] ∗ range [ 1 ]∗∗0 ) )
36
37 !−−−−−−−−
38 ! Rotate po int o f +60 deegre
39 var s e t var = . nog2 . pnt R 150 &
40 r e a l = ( eva l ( pnt R 150 0 [ 1 ] ∗COS(180/PI∗( th 0−range [ 1 ] ) ) − pnt R 150 0 [ 2 ] ∗ SIN(180/PI∗( th 0−range [ 1 ] ) ) )

) , &
41 ( eva l ( pnt R 150 0 [ 1 ] ∗ SIN(180/PI∗( th 0−range [ 1 ] ) ) + pnt R 150 0 [ 2 ] ∗COS(180/PI∗( th 0−range [ 1 ] ) ) ) )
42
43 !−−−−−−−−
44 ! Point o f tangency o f b e l t on the nonc i r cu l a r pu l l ey at angle range [ 2 ] = 30
45 var s e t var = . nog2 . pnt R 30 0 &
46 r e a l = ( eva l ( x P [ 1 ] ∗ range [2]∗∗7+x P [ 2 ] ∗ range [2]∗∗6+x P [ 3 ] ∗ range [2]∗∗5+x P [ 4 ] ∗ range [2]∗∗4+x P [ 5 ] ∗ range

[2]∗∗3+x P [ 6 ] ∗ range [2]∗∗2+x P [ 7 ] ∗ range [2]∗∗1+x P [ 8 ] ∗ range [ 2 ]∗∗0 ) ) , &
47 ( eva l ( y P [ 1 ] ∗ range [2]∗∗7+y P [ 2 ] ∗ range [2]∗∗6+y P [ 3 ] ∗ range [2]∗∗5+y P [ 4 ] ∗ range [2]∗∗4+y P [ 5 ] ∗ range

[2]∗∗3+y P [ 6 ] ∗ range [2]∗∗2+y P [ 7 ] ∗ range [2]∗∗1+y P [ 8 ] ∗ range [ 2 ]∗∗0 ) )
48
49 !−−−−−−−−
50 ! Rotate po int o f −60 deegre
51 var s e t var = . nog2 . pnt R 30 &
52 r e a l = ( eva l ( pnt R 30 0 [ 1 ] ∗COS(180/PI∗( th 0−range [ 2 ] ) ) − pnt R 30 0 [ 2 ] ∗ SIN(180/PI∗( th 0−range [ 2 ] ) ) ) ) ,

&
53 ( eva l ( pnt R 30 0 [ 1 ] ∗ SIN(180/PI∗( th 0−range [ 2 ] ) ) + pnt R 30 0 [ 2 ] ∗COS(180/PI∗( th 0−range [ 2 ] ) ) ) )
54
55
56 !−−−−−−−−
57 ! Point S
58 var s e t var = . nog2 . pnt S &
59 r e a l = ( eva l ( . nog2 . i n s e r t i o n r a d i u s ) ) , &
60 ( eva l ( . nog2 . i n s e r t i o n l e n g t h ) )
61
62 !−−−−−−−−
63 ! Point S 0
64 var s e t var = . nog2 . pnt S 0 &
65 r e a l = ( eva l ( . nog2 . i n s e r t i o n r a d i u s i n c r e a s e d ) ) , &
66 ( eva l ( . nog2 . i n s e r t i o n l e n g t h ) )
67
68 !−−−−−−−−
69 ! Distance b
70 var s e t var = . nog2 . b 90 &
71 r e a l = ( eva l ( ( ( pnt S [1]− pnt R 90 [ 1 ] ) ∗∗2 + ( pnt S [2]− pnt R 90 [ 2 ] ) ∗∗2) ∗∗(1/2) ) )
72
73 var s e t var = . nog2 . b 150 &
74 r e a l = ( eva l ( ( ( pnt S [1]− pnt R 150 [ 1 ] ) ∗∗2 + ( pnt S [2]− pnt R 150 [ 2 ] ) ∗∗2) ∗∗(1/2) ) )
75
76 var s e t var = . nog2 . b 30 &
77 r e a l = ( eva l ( ( ( pnt S [1]− pnt R 30 [ 1 ] ) ∗∗2 + ( pnt S [2]− pnt R 30 [ 2 ] ) ∗∗2) ∗∗(1/2) ) )
78
79 !−−−−−−−−
80 ! d i s t ance l c
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81 var s e t var = . nog2 . l c &
82 r e a l = ( eva l ( . nog2 . i n s e r t i o n r a d i u s ∗PI /2) )
83
84 !−−−−−−−−
85 ! l ength o f b e l t
86 var s e t var = . nog2 . belt length TOT &
87 r e a l = ( eva l ( l 3 0+b 30+l c ) )
88
89 !−−−−−−−−
90 ! d i s t ance d
91 var s e t var = . nog2 . d 90 &
92 r e a l = ( eva l ( belt length TOT−( l 9 0+b 90+l c ) ) )
93
94 var s e t var = . nog2 . d 150 &
95 r e a l = ( eva l ( belt length TOT−( l 1 50+b 150+l c ) ) )
96
97 !−−−−−−−−
98 ! l ength o f b e l t in contact with NONC
99 var s e t var = . nog2 . l cn t nonc &

100 r e a l = ( eva l ( l 3 0 ) )
101
102 !−−−−−−−−
103 ! l ength o f b e l t in contact with CIRC
104 var s e t var = . nog2 . l c n t c i r c &
105 r e a l = ( eva l ( d 150+l c ) )
106
107 !−−−−−−−−
108 ! l ength o f b e l t in contact with both pu l l e y s
109 var s e t var = . nog2 . l c n t bo th &
110 r e a l = ( eva l ( d 150−b 30 ) )
111
112 !−−−−−−−−
113 ! i n i t i a l i ex tens ion o f the spr ing
114 var s e t var = . nog2 . x 90 &
115 r e a l = ( eva l ( sp r i ng x 0+spr ing F 0 / sp r ing k ) )
116
117 !−−−−−−−−
118 ! Point U 90
119 var s e t var = . nog2 . pnt U 90 &
120 r e a l = ( eva l (−d 90 ) ) , &
121 ( eva l ( i n s e r t i o n l e n g t h+i n s e r t i o n r a d i u s ) )
122
123 !−−−−−−−−
124 ! Point V
125 var s e t var = . nog2 . pnt V &
126 r e a l = ( eva l (−d 90−x 90 ) ) , &
127 ( eva l ( i n s e r t i o n l e n g t h+i n s e r t i o n r a d i u s ) )
128
129 !−−−−−−−−
130 ! Point T
131 var s e t var = . nog2 . pnt T &
132 r e a l = 0 . 0 , &
133 ( eva l ( i n s e r t i o n l e n g t h+i n s e r t i o n r a d i u s ) )
134
135 !−−−−−−−−
136 ! Point T 0
137 var s e t var = . nog2 . pnt T 0 &
138 r e a l = 0 . 0 , &
139 ( eva l ( i n s e r t i o n l e n g t h+i n s e r t i o n r a d i u s i n c r e a s e d ) )
140
141 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
142 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
143 ! # GENERAL ATTRIBUTES #
144
145 con s t r a i n t a t t r i b u t e s constra int name=.∗ s i z e o f i c o n s = 1 .0
146 f o r c e a t t r i b u t e s force name=.∗ s i z e o f i c o n s = 1 .0
147 marker a t t r i b u t e s marker name=.∗ s i z e o f i c o n s = 1 .3
148 en t i t y a t t r i b u t e s entity name=.∗ name vis = o f f
149 s imu la t ion s i n g l e s e t update = ”none”
150 var d e l e t e var = ( eva l (DB CHILDREN( $ s e l f , ” va r i ab l e ”) ) )

B.2.2 Creation of the cable elements on the left noncircular pul-
ley

1 !WRAP IN UNDO NO
2 ! $n bod i e s nonc pu l l ey : t=in t e g e r : d=60
3 ! $ n b od i e s c i r c p u l l e y : t=in t e g e r : d=12
4
5 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
6 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
7 ! ## CABLE SYSTEM LEFT ##
8
9 marker c r ea t e marker = . nog2 .PENDULUM. MK centre belt system L &

10 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
11 o r i e n t a t i o n = 90 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 .PENDULUM
12
13 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
14 ! # BELT ON NONCIRCULAR PULLEY L #
15
16 !−−−−−−−−
17 ! i n i t i a l ang le o f the nonc i r cu l a r pul ley , d i f f e r e n t from range [ 1 ]
18 var s e t var = . nog2 . nonc 0 &
19 r e a l = 0
20
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21 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
22 ! Compute angle ”th W” at which the be l t i s not in contact with the nonc i r cu l a r pul ley , but i s t i gh t en

between the 2 pu l l e y s
23
24
25 var s e t var = . nog2 . th W &
26 r e a l = 0
27
28 var s e t var= $ s e l f . i p a r t &
29 i n t e g e r = 0
30
31 whi le cond i t i on =(. nog2 . th W <= . nog2 . th 0 )
32 !−−−−−−−−
33 ! counter f o r the name o f the b e l t e lements
34 var s e t var= $ s e l f . i p a r t &
35 i n t e g e r = ( eva l ( $ s e l f . i p a r t +1) )
36
37 !−−−−−−−−
38 ! d iv ide the range o f the angle d e f i n i n g the nonc i r cu l a r pu l l ey p r o f i l e
39 var s e t var = . nog2 . th W &
40 r e a l = ( eva l ( nonc 0 + $ s e l f . i p a r t ∗( range [2]− nonc 0 ) / $n bod i e s nonc pu l l ey ) )
41 end
42
43 !−−−−−−−−
44 ! Point o f tangency o f b e l t on the nonc i r cu l a r pu l l ey at angle th W
45 var s e t var = . nog2 . pnt W &
46 r e a l = ( eva l ( x P [ 1 ] ∗ th W∗∗7+x P [ 2 ] ∗ th W∗∗6+x P [ 3 ] ∗ th W∗∗5+x P [ 4 ] ∗ th W∗∗4+x P [ 5 ] ∗ th W∗∗3+x P [ 6 ] ∗ th W

∗∗2+x P [ 7 ] ∗ th W∗∗1+x P [ 8 ] ∗ th W∗∗0) ) , &
47 ( eva l ( y P [ 1 ] ∗ th W∗∗7+y P [ 2 ] ∗ th W∗∗6+y P [ 3 ] ∗ th W∗∗5+y P [ 4 ] ∗ th W∗∗4+y P [ 5 ] ∗ th W∗∗3+y P [ 6 ] ∗ th W∗∗2+

y P [ 7 ] ∗ th W∗∗1+y P [ 8 ] ∗ th W∗∗0) )
48
49 !−−−−−−−−
50 ! Pos i t i on o f part W
51 var s e t var = . nog2 . part W &
52 i n t e g e r = ( eva l ( i p a r t ) )
53
54 !−−−−−−−−
55 ! compute the i n c l i n a t i o n o f segment W−S
56 var s e t var = . nog2 . alpha &
57 r e a l = ( eva l (ATAN2( ( . nog2 . pnt W[2 ] − . nog2 . pnt S 0 [ 2 ] ) , ( . nog2 . pnt W[1 ] − . nog2 . pnt S 0 [ 1 ] ) ) ) )
58
59 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
60 ! # CREATION OF BELT ELEMENTS ON NONCIRCAR PULLEY#
61
62 f o r var = $ s e l f . npart s t a r t = 0 inc = 1 end = ( eva l ( $n bod i e s nonc pu l l ey ) )
63
64 !−−−−−−−−
65 ! counter f o r the name o f the b e l t e lements
66 var s e t var= $ s e l f . i p a r t &
67 i n t e g e r = ( eva l ( r t o i ( $ s e l f . npart ) ) )
68
69 !−−−−−−−−
70 ! d iv ide the range o f the angle d e f i n i n g the nonc i r cu l a r pu l l ey p r o f i l e
71 var s e t var = $ s e l f . th &
72 r e a l = ( eva l ( nonc 0 + $ s e l f . i p a r t ∗( range [ 2 ] − nonc 0 ) / $n bod i e s nonc pu l l ey ) )
73
74 !−−−−−−−−
75 ! save preav ious coo rd ina t e s
76 i f cond i t i on = ( eva l ( $ s e l f . i p a r t ) != 0)
77 var s e t var = $ s e l f . pnt nonc o ld &
78 r e a l = ( eva l ( $ s e l f . pnt nonc [ 1 ] ) ) , &
79 ( eva l ( $ s e l f . pnt nonc [ 2 ] ) )
80 end
81
82 !−−−−−−−−
83 ! compute new coo rd ina t e s
84 var s e t var = $ s e l f . pnt nonc &
85 r e a l = ( eva l ( x P [ 1 ] ∗ $ s e l f . th∗∗7+x P [ 2 ] ∗ $ s e l f . th∗∗6+x P [ 3 ] ∗ $ s e l f . th∗∗5+x P [ 4 ] ∗ $ s e l f . th∗∗4+x P

[ 5 ] ∗ $ s e l f . th∗∗3+x P [ 6 ] ∗ $ s e l f . th∗∗2+x P [ 7 ] ∗ $ s e l f . th∗∗1+x P [ 8 ] ∗ $ s e l f . th ∗∗0) ) , &
86 ( eva l ( y P [ 1 ] ∗ $ s e l f . th∗∗7+y P [ 2 ] ∗ $ s e l f . th∗∗6+y P [ 3 ] ∗ $ s e l f . th∗∗5+y P [ 4 ] ∗ $ s e l f . th∗∗4+y P [ 5 ] ∗

$ s e l f . th∗∗3+y P [ 6 ] ∗ $ s e l f . th∗∗2+y P [ 7 ] ∗ $ s e l f . th∗∗1+y P [ 8 ] ∗ $ s e l f . th ∗∗0) )
87
88 !−−−−−−−−
89 ! each be l t element goes from the the cur rent po int to the preav ious one . The f i r s t po int i s used to

f i x the be l t onto the noncu i r cu l a r pu l l ey ( see the e l s e part )
90 i f cond i t i on = ( eva l ( $ s e l f . i p a r t ) != 0)
91
92 !−−−−−−−−
93 ! compute length o f each be l t element as the d i s t ance between 2 po in t s
94 var s e t var = $ s e l f . ( eva l (” l e n g th b e l t n on c ”// $ s e l f . i p a r t ) ) &
95 r e a l = ( eva l ( ( ( $ s e l f . pnt nonc [1]− $ s e l f . pnt nonc o ld [ 1 ] ) ∗∗2+( $ s e l f . pnt nonc [2]− $ s e l f .

pnt nonc o ld [ 2 ] ) ∗∗2) ∗∗(1/2) ) )
96
97 !−−−−−−−−
98 ! in the i f the e lements on the nonc i r cu l a r pu l l ey are created , in the e l s e the elements t i gh t en

between W and S
99 i f cond i t i on = ( eva l ( $ s e l f . th ) <= eva l ( . nog2 . th W) )

100
101 !−−−−−−−−
102 ! compute the i n c l i n a t i o n o f each be l t element
103 var s e t var = $ s e l f . ( eva l (” i n c l i n a t i o n b e l t ”// $ s e l f . i p a r t ) ) &
104 r e a l = ( eva l (ATAN2( ( $ s e l f . pnt nonc [2]− $ s e l f . pnt nonc o ld [ 2 ] ) , ( $ s e l f . pnt nonc [1]− $ s e l f .

pnt nonc o ld [ 1 ] ) ) +90.0) )
105
106 !−−−−−−−−
107 ! c r ea t e b e l t element
108 part c r ea t e r i g i d name part= ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) &
109 l o c a t i on = ( eva l ( $ s e l f . pnt nonc [ 1 ] ) ) , ( eva l ( $ s e l f . pnt nonc [ 2 ] ) ) ,0 r e l a t i v e t o = . nog2 .PENDULUM

. MK centre belt system L

110



B - Macros in Adams/View Command Language

110 part modify r i g id body mas s p rope r t i e s part name = ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) mate r i a l =.
mate r i a l s . AISI 304

111 part a t t r i b u t e s part name = ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) c o l o r = BLUE GRAY name vis = o f f
112
113 !−−−−−−−−
114 ! c r ea t e marker f o r c y l i nd e r o f each be l t element
115 marker c r ea t e marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
116 l o c a t i on = 0 . 0 , 0 . 0 , 0 .0 &
117 o r i e n t a t i o n = ( eva l (” i n c l i n a t i o n b e l t ”// $ s e l f . i p a r t ) ) , −90.0 , 0 .0 r e l a t i v e t o = ( eva l (”

BELT L ”// $ s e l f . i p a r t ) )
118
119 !−−−−−−−−
120 ! c r ea t e geometry o f each be l t element
121 geometry c r ea t e shape cy l i nd e r cy l inder name = ( eva l (”iWALL ”// $ s e l f . i p a r t ) ) &
122 center marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
123 ang l e ex t en t = 360 &
124 length = ( eva l (” l e n g th b e l t n on c ”// $ s e l f . i p a r t ) ) &
125 rad ius = ( . nog2 . b e l t r a d i u s )
126
127 e l s e
128
129 i f cond i t i on = ( eva l ( $ s e l f . i p a r t ) != eva l ( part W + 1) )
130 var s e t var = $ s e l f . pn t s e g o l d &
131 r e a l = ( eva l ( $ s e l f . pnt seg [ 1 ] ) ) , &
132 ( eva l ( $ s e l f . pnt seg [ 2 ] ) )
133 e l s e
134 var s e t var = $ s e l f . pn t s e g o l d &
135 r e a l = ( eva l (pnt W [ 1 ] ) ) , &
136 ( eva l (pnt W [ 2 ] ) )
137 end
138
139 var s e t var = $ s e l f . l W &
140 r e a l = ( eva l (” l e n g th b e l t n on c ”// $ s e l f . i p a r t ) )
141 !−−−−−−−−
142 ! compute new coo rd ina t e s
143 var s e t var = $ s e l f . pnt seg &
144 r e a l = ( eva l ( pn t s e g o l d [ 1 ] − l W∗COS( . nog2 . alpha ) ) ) , &
145 ( eva l ( pn t s e g o l d [ 2 ] − l W∗SIN ( . nog2 . alpha ) ) )
146
147 !−−−−−−−−
148 ! c r ea t e b e l t element
149 part c r ea t e r i g i d name part= ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) &
150 l o c a t i on = ( eva l ( $ s e l f . pnt seg [ 1 ] ) ) , ( eva l ( $ s e l f . pnt seg [ 2 ] ) ) ,0 r e l a t i v e t o = . nog2 .PENDULUM.

MK centre be lt system L
151 part modify r i g id body mas s p rope r t i e s part name = ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) mate r i a l =.

mate r i a l s . AISI 304
152 part a t t r i b u t e s part name = ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) c o l o r = BlueVio l e t name vis = o f f
153
154 !−−−−−−−−
155 ! c r ea t e marker f o r c y l i nd e r o f each be l t element
156 marker c r ea t e marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
157 l o c a t i on = 0 . 0 , 0 . 0 , 0 .0 &
158 o r i e n t a t i o n = ( eva l ( . nog2 . alpha + 90) ) , 90 . 0 , 0 .0 r e l a t i v e t o = ( eva l (”BELT L ”// $ s e l f . i p a r t ) )
159
160 !−−−−−−−−
161 ! c r ea t e geometry o f each be l t element
162 geometry c r ea t e shape cy l i nd e r cy l inder name = ( eva l (”iWALL ”// $ s e l f . i p a r t ) ) &
163 center marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
164 ang l e ex t en t = 360 &
165 length = ( eva l (” l e n g th b e l t n on c ”// $ s e l f . i p a r t ) ) &
166 rad ius = ( . nog2 . b e l t r a d i u s )
167
168 end
169
170 e l s e
171
172 !−−−−−−−−
173 ! c r e a t e b e l t element
174 part c r ea t e r i g i d name part= ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) &
175 l o c a t i o n = ( eva l ( $ s e l f . pnt nonc [ 1 ] ) ) , ( eva l ( $ s e l f . pnt nonc [ 2 ] ) ) ,0 r e l a t i v e t o = . nog2 .PENDULUM.

MK centre be lt system L
176 part modify r i g id body mas s p rope r t i e s part name=(eva l (”BELT L ”// $ s e l f . i p a r t ) ) mate r i a l = .

mate r i a l s . AISI 304
177 part a t t r i b u t e s part name = ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) c o l o r = BLUE GRAY name vis = o f f
178
179 !−−−−−−−−
180 ! c r e a t e marker f o r c y l i nd e r o f f i r s t b e l t element
181 marker c r ea t e marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
182 l o c a t i o n = 0 . 0 , 0 . 0 , 0 .0 &
183 o r i e n t a t i o n = 90 .0 , −90.0 , 0 .0 r e l a t i v e t o = ( eva l (”BELT L ”// $ s e l f . i p a r t ) )
184
185 !−−−−−−−−
186 ! c r e a t e geometry o f f i r s t b e l t element
187 geometry c r ea t e shape cy l i nd e r cy l inder name = ( eva l (”iWALL ”// $ s e l f . i p a r t ) ) &
188 center marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
189 ang l e ex t en t = 360 &
190 length = 1 &
191 rad ius = ( . nog2 . b e l t r a d i u s )
192
193 end
194 end
195
196 !−−−−−−−−
197 ! counter f o r X: the l a s t b e l t e lements that touches only the nonc i r cu l a r pu l l ey
198
199 var s e t var = . nog2 . pnt X &
200 r e a l = ( eva l ( $ s e l f . pnt seg [ 1 ] ) ) , &
201 ( eva l ( $ s e l f . pnt seg [ 2 ] ) )
202
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203 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
204 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
205 ! # GENERAL ATTRIBUTES #
206
207 con s t r a i n t a t t r i b u t e s constra int name=.∗ s i z e o f i c o n s = 1 .0
208 f o r c e a t t r i b u t e s force name=.∗ s i z e o f i c o n s = 1 .0
209 marker a t t r i b u t e s marker name=.∗ s i z e o f i c o n s = 1 .3
210 en t i t y a t t r i b u t e s entity name=.∗ name vis = o f f
211 s imu la t ion s i n g l e s e t update = ”none”
212 var d e l e t e var = ( eva l (DB CHILDREN( $ s e l f , ” va r i ab l e ”) ) )

B.2.3 Creation of the cable elements between the left noncircu-
lar and routing pulleys

1 !WRAP IN UNDO NO
2 ! $n bod i e s nonc pu l l ey : t=in t e g e r : d=60
3 ! $ n b od i e s c i r c p u l l e y : t=in t e g e r : d=12
4 !−−−−−−−−
5 ! compute the length o f the b e l t e lements not in contact with NONC
6 var s e t var = . nog2 . b e l t l e n g t h c i r c &
7 r e a l = ( eva l (SQRT(2∗ i n s e r t i o n r a d i u s i n c r e a s e d ∗∗2∗(1−COS(90/ $ n b od i e s c i r c p u l l e y ) ) ) ) )
8
9 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −

10 ! # FIND POINT Y #
11
12 var s e t var = . nog2 . d 150 hat &
13 r e a l = ( eva l ( d 150 − d 90 ) )
14
15 var s e t var = . nog2 . part Y &
16 i n t e g e r = 0
17
18 whi le cond i t i on = ( eva l ( b e l t l e n g t h c i r c ∗part Y ) < eva l ( d 150 hat ) )
19 var s e t var = . nog2 . part Y &
20 i n t e g e r = ( eva l ( part Y + 1) )
21 end
22
23 var s e t var = nog2 . pnt Y &
24 r e a l = ( eva l ( pnt S 0 [ 1 ] + part Y∗ b e l t l e n g t h c i r c ∗COS( alpha ) ) ) , &
25 ( eva l ( pnt S 0 [ 2 ] + part Y∗ b e l t l e n g t h c i r c ∗SIN( alpha ) ) )
26
27
28 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
29 ! # BELT BETWEEN X AND Y #
30
31 !−−−−−−−−
32 ! counter f o r the name o f the be l t e lements
33 var s e t var= $ s e l f . i p a r t &
34 i n t e g e r = ( eva l ( $n bod i e s nonc pu l l ey + 1) )
35
36 var s e t var = . nog2 . length XY &
37 r e a l = ( eva l ( ( ( pnt Y [1]−pnt X [ 1 ] ) ∗∗2 + ( pnt Y [2]−pnt X [ 2 ] ) ∗∗2) ∗∗(1/2) ) )
38
39 !−−−−−−−−
40 ! c r ea t e b e l t element
41 part c r ea t e r i g i d name part= ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) &
42 l o c a t i on = ( eva l ( pnt Y [ 1 ] ) ) , ( eva l ( pnt Y [ 2 ] ) ) ,0 r e l a t i v e t o = . nog2 .PENDULUM. MK centre be lt system L
43 part modify r i g id body mas s p rope r t i e s part name = ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) mate r i a l =.mate r i a l s .

AISI 304
44 part a t t r i b u t e s part name = ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) c o l o r = co r a l name vis = o f f
45
46 !−−−−−−−−
47 ! c r ea t e marker f o r c y l i nd e r o f each be l t element
48 marker c r ea t e marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
49 l o c a t i on = 0 . 0 , 0 . 0 , 0 .0 &
50 o r i e n t a t i o n = ( eva l ( . nog2 . alpha + 90) ) , 90 . 0 , 0 .0 r e l a t i v e t o = ( eva l (”BELT L ”// $ s e l f . i p a r t ) )
51
52 !−−−−−−−−
53 ! c r ea t e geometry o f each be l t element
54 geometry c r ea t e shape cy l i nd e r cy l inder name = ( eva l (”iWALL ”// $ s e l f . i p a r t ) ) &
55 center marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
56 ang l e ex t en t = 360 &
57 length = ( eva l ( length XY ) ) &
58 rad ius = ( . nog2 . b e l t r a d i u s )
59
60
61 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
62 ! # BELT BETWEEN y AND S L #
63
64 f o r var = $ s e l f . npart s t a r t = ( eva l ( $n bod i e s nonc pu l l ey + 2) ) inc = 1 end = ( eva l (

$n bod i e s nonc pu l l ey + part Y + 1) )
65
66 !−−−−−−−−
67 ! counter f o r the name o f the b e l t e lements
68 var s e t var= $ s e l f . i p a r t &
69 i n t e g e r = ( eva l ( r t o i ( $ s e l f . npart ) ) )
70
71 i f cond i t i on = ( eva l ( $ s e l f . i p a r t ) != eva l ( $n bod i e s nonc pu l l ey + 2) )
72 var s e t var = $ s e l f . pn t s e g o l d &
73 r e a l = ( eva l ( $ s e l f . pnt seg [ 1 ] ) ) , &
74 ( eva l ( $ s e l f . pnt seg [ 2 ] ) )
75 e l s e
76 var s e t var = $ s e l f . pn t s e g o l d &
77 r e a l = ( eva l ( pnt Y [ 1 ] ) ) , &
78 ( eva l ( pnt Y [ 2 ] ) )
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79 end
80
81 !−−−−−−−−
82 ! compute new coo rd ina t e s
83 var s e t var = $ s e l f . pnt seg &
84 r e a l = ( eva l ( pn t s e g o l d [ 1 ] − b e l t l e n g t h c i r c ∗COS( . nog2 . alpha ) ) ) , &
85 ( eva l ( pn t s e g o l d [ 2 ] − b e l t l e n g t h c i r c ∗SIN ( . nog2 . alpha ) ) )
86
87 !−−−−−−−−
88 ! c r ea t e b e l t element
89 part c r ea t e r i g i d name part= ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) &
90 l o c a t i o n = ( eva l ( $ s e l f . pnt seg [ 1 ] ) ) , ( eva l ( $ s e l f . pnt seg [ 2 ] ) ) ,0 r e l a t i v e t o = . nog2 .PENDULUM.

MK centre be lt system L
91 part modify r i g id body mas s p rope r t i e s part name = ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) mate r i a l =.

mate r i a l s . AISI 304
92 part a t t r i b u t e s part name = ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) c o l o r = SlateBlue name vis = o f f
93
94 !−−−−−−−−
95 ! c r ea t e marker f o r c y l i nd e r o f each be l t element
96 marker c r ea t e marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
97 l o c a t i o n = 0 . 0 , 0 . 0 , 0 .0 &
98 o r i e n t a t i o n = ( eva l ( . nog2 . alpha + 90) ) , 90 . 0 , 0 .0 r e l a t i v e t o = ( eva l (”BELT L ”// $ s e l f . i p a r t ) )
99

100 !−−−−−−−−
101 ! c r ea t e geometry o f each be l t element
102 geometry c r ea t e shape cy l i nd e r cy l inder name = ( eva l (”iWALL ”// $ s e l f . i p a r t ) ) &
103 center marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
104 ang l e ex t en t = 360 &
105 length = ( eva l ( b e l t l e n g t h c i r c ) ) &
106 rad ius = ( . nog2 . b e l t r a d i u s )
107
108
109 end
110
111
112 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
113 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
114 ! # GENERAL ATTRIBUTES #
115
116 con s t r a i n t a t t r i b u t e s constra int name=.∗ s i z e o f i c o n s = 1 .0
117 f o r c e a t t r i b u t e s force name=.∗ s i z e o f i c o n s = 1 .0
118 marker a t t r i b u t e s marker name=.∗ s i z e o f i c o n s = 1 .3
119 en t i t y a t t r i b u t e s entity name=.∗ name vis = o f f
120 s imu la t ion s i n g l e s e t update = ”none”
121 var d e l e t e var = ( eva l (DB CHILDREN( $ s e l f , ” va r i ab l e ”) ) )

B.2.4 Creation of the cable elements between on the left routing
pulleys

1 !WRAP IN UNDO NO
2 ! $n bod i e s nonc pu l l ey : t=in t e g e r : d=60
3 ! $ n b od i e s c i r c p u l l e y : t=in t e g e r : d=12
4
5 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
6 ! # BELT ON CIRCULAR PULLEY L #
7
8 !−−−−−−−−
9 ! compute the length o f the b e l t e lements not in contact with NONC

10 var s e t var = . nog2 . b e l t l e n g t h c i r c &
11 r e a l = ( eva l (SQRT(2∗ i n s e r t i o n r a d i u s i n c r e a s e d ∗∗2∗(1−COS(90/ $ n b od i e s c i r c p u l l e y ) ) ) ) )
12
13 f o r var = $ s e l f . npart s t a r t = ( eva l ( $n bod i e s nonc pu l l ey + part Y + 1 + 1) ) inc = 1 end = ( eva l (

$n bod i e s nonc pu l l ey + part Y + 1 + $n bod i e s c i r c p u l l e y ) )
14
15 !−−−−−−−−
16 ! counter f o r the name o f the b e l t e lements
17 var s e t var= $ s e l f . i p a r t &
18 i n t e g e r = ( eva l ( r t o i ( $ s e l f . npart ) ) )
19
20 var s e t var = $ s e l f . th &
21 r e a l = ( eva l (90/ $ n b od i e s c i r c p u l l e y ∗( i p a r t − ( $n bod i e s nonc pu l l ey + part Y + 1) ) ) )
22
23 !−−−−−−−−
24 ! save preav ious coo rd ina t e s
25 i f cond i t i on = ( eva l ( $ s e l f . i p a r t ) != eva l ( $n bod i e s nonc pu l l ey + part Y + 2) )
26 var s e t var = $ s e l f . p n t c i r c o l d &
27 r e a l = ( eva l ( $ s e l f . p n t c i r c [ 1 ] ) ) , &
28 ( eva l ( $ s e l f . p n t c i r c [ 2 ] ) )
29 e l s e
30 var s e t var = $ s e l f . p n t c i r c o l d &
31 r e a l = ( eva l ( pnt S 0 ) )
32 end
33
34 var s e t var = $ s e l f . p n t c i r c &
35 r e a l = ( eva l ( i n s e r t i o n r a d i u s i n c r e a s e d ∗COS( th ) ) ) , &
36 ( eva l ( i n s e r t i o n r a d i u s i n c r e a s e d ∗SIN( th )+ i n s e r t i o n l e n g t h ) )
37
38 !−−−−−−−−
39 ! compute the i n c l i n a t i o n o f each be l t element
40 var s e t var = $ s e l f . ( eva l (” i n c l i n a t i o n b e l t ”// $ s e l f . i p a r t ) ) &
41 r e a l = ( eva l (ATAN2( ( pn t c i r c [2]− pn t c i r c o l d [ 2 ] ) , ( pn t c i r c [1]− pn t c i r c o l d [ 1 ] ) ) −90.0) )
42
43 !−−−−−−−−
44 ! c r ea t e b e l t element

113



B - Macros in Adams/View Command Language

45 part c r ea t e r i g i d name part= ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) &
46 l o c a t i o n = ( eva l ( $ s e l f . p n t c i r c [ 1 ] ) ) , ( eva l ( $ s e l f . p n t c i r c [ 2 ] ) ) , 0 . 0 r e l a t i v e t o = . nog2 . Pendulum .

MK centre be lt system L
47 part modify r i g id body mas s p rope r t i e s part name=(eva l (”BELT L ”// $ s e l f . i p a r t ) ) mate r i a l =.mate r i a l s .

AISI 304
48 part a t t r i b u t e s part name = ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) c o l o r = DimGray name vis = o f f
49
50 !−−−−−−−−
51 ! c r ea t e marker f o r c y l i nd e r o f each be l t element
52 marker c r ea t e marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
53 l o c a t i o n = 0 . 0 , 0 . 0 , 0 .0 &
54 o r i e n t a t i o n = ( eva l (” i n c l i n a t i o n b e l t ”// $ s e l f . i p a r t ) ) , 90 . 0 , 0 .0 r e l a t i v e t o = ( eva l (”BELT L ”//

$ s e l f . i p a r t ) )
55
56 !−−−−−−−−
57 ! c r ea t e geometry o f each be l t element
58 geometry c r ea t e shape cy l i nd e r cy l inder name = ( eva l (”iWALL ”// $ s e l f . i p a r t ) ) &
59 center marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
60 ang l e ex t en t = 360 &
61 length = ( eva l ( b e l t l e n g t h c i r c ) ) &
62 rad ius = ( . nog2 . b e l t r a d i u s )
63
64 end
65
66 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
67 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
68 ! # GENERAL ATTRIBUTES #
69
70 con s t r a i n t a t t r i b u t e s constra int name=.∗ s i z e o f i c o n s = 1 .0
71 f o r c e a t t r i b u t e s force name=.∗ s i z e o f i c o n s = 1 .0
72 marker a t t r i b u t e s marker name=.∗ s i z e o f i c o n s = 1 .3
73 en t i t y a t t r i b u t e s entity name=.∗ name vis = o f f
74 s imu la t ion s i n g l e s e t update = ”none”
75 var d e l e t e var = ( eva l (DB CHILDREN( $ s e l f , ” va r i ab l e ”) ) )

B.2.5 Creation of the cable elements in the left vertical sector

1 !WRAP IN UNDO NO
2 ! $n bod i e s nonc pu l l ey : t=in t e g e r : d=60
3 ! $ n b od i e s c i r c p u l l e y : t=in t e g e r : d=12
4
5 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
6 ! # BELT VERTICAL L #
7
8 var s e t var = . nog2 . part Z &
9 i n t e g e r = 0

10
11 whi le cond i t i on = ( eva l ( b e l t l e n g t h c i r c ∗part Z ) < eva l ( d 90 ) )
12 var s e t var = . nog2 . part Z &
13 i n t e g e r = ( eva l ( part Z + 1) )
14 end
15
16 var s e t var = . nog2 . part Z &
17 i n t e g e r = ( eva l ( part Z − 1) )
18
19 var s e t var = . nog2 . pnt Z &
20 r e a l = ( eva l ( pnt T 0 [ 1 ] − part Z∗ b e l t l e n g t h c i r c ) ) , &
21 ( eva l ( pnt T 0 [ 2 ] ) )
22
23
24 f o r var = $ s e l f . npart s t a r t = ( eva l ( $n bod i e s nonc pu l l ey + part Y + 1 + $n bod i e s c i r c p u l l e y + 1) )

inc = 1 end = ( eva l ( $n bod i e s nonc pu l l ey + part Y + 1 + $n bod i e s c i r c p u l l e y + part Z ) )
25
26 !−−−−−−−−
27 ! counter f o r the name o f the b e l t e lements
28 var s e t var= $ s e l f . i p a r t &
29 i n t e g e r = ( eva l ( r t o i ( $ s e l f . npart ) ) )
30
31 i f cond i t i on = ( eva l ( $ s e l f . i p a r t ) != eva l ( $ n b od i e s c i r c p u l l e y + $n bod i e s nonc pu l l ey + part Y +

2) )
32 var s e t var = $ s e l f . pn t s e g o l d &
33 r e a l = ( eva l ( $ s e l f . pnt seg [ 1 ] ) ) , &
34 ( eva l ( $ s e l f . pnt seg [ 2 ] ) )
35 e l s e
36 var s e t var = $ s e l f . pn t s e g o l d &
37 r e a l = ( eva l ( pnt T 0 [ 1 ] ) ) , &
38 ( eva l ( pnt T 0 [ 2 ] ) )
39 end
40
41 !−−−−−−−−
42 ! compute new coo rd ina t e s
43 var s e t var = $ s e l f . pnt seg &
44 r e a l = ( eva l ( pn t s e g o l d [ 1 ] − b e l t l e n g t h c i r c ) ) , &
45 ( eva l ( pn t s e g o l d [ 2 ] ) )
46
47 !−−−−−−−−
48 ! c r ea t e b e l t element
49 part c r ea t e r i g i d name part= ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) &
50 l o c a t i o n = ( eva l ( $ s e l f . pnt seg [ 1 ] ) ) , ( eva l ( $ s e l f . pnt seg [ 2 ] ) ) ,0 r e l a t i v e t o = . nog2 .PENDULUM.

MK centre be lt system L
51 part modify r i g id body mas s p rope r t i e s part name = ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) mate r i a l =.

mate r i a l s . AISI 304
52 part a t t r i b u t e s part name = ( eva l (”BELT L ”// $ s e l f . i p a r t ) ) c o l o r = MedTurquoise name vis = o f f
53
54 !−−−−−−−−
55 ! c r ea t e marker f o r c y l i nd e r o f each be l t element
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56 marker c r ea t e marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
57 l o c a t i o n = 0 . 0 , 0 . 0 , 0 .0 &
58 o r i e n t a t i o n = 90 .0 , 90 . 0 , 0 .0 r e l a t i v e t o = ( eva l (”BELT L ”// $ s e l f . i p a r t ) )
59
60 !−−−−−−−−
61 ! c r ea t e geometry o f each be l t element
62 geometry c r ea t e shape cy l i nd e r cy l inder name = ( eva l (”iWALL ”// $ s e l f . i p a r t ) ) &
63 center marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
64 ang l e ex t en t = 360 &
65 length = ( eva l ( b e l t l e n g t h c i r c ) ) &
66 rad ius = ( . nog2 . b e l t r a d i u s )
67
68 end
69
70 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
71 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
72 ! # GENERAL ATTRIBUTES #
73
74 con s t r a i n t a t t r i b u t e s constra int name=.∗ s i z e o f i c o n s = 1 .0
75 f o r c e a t t r i b u t e s force name=.∗ s i z e o f i c o n s = 1 .0
76 marker a t t r i b u t e s marker name=.∗ s i z e o f i c o n s = 1 .3
77 en t i t y a t t r i b u t e s entity name=.∗ name vis = o f f
78 s imu la t ion s i n g l e s e t update = ”none”
79 var d e l e t e var = ( eva l (DB CHILDREN( $ s e l f , ” va r i ab l e ”) ) )

B.2.6 Addition of the contact and revolute joints to the left
cable elements

1 !WRAP IN UNDO NO
2 ! $n bod i e s nonc pu l l ey : t=in t e g e r : d=60
3 ! $ n b od i e s c i r c p u l l e y : t=in t e g e r : d=12
4
5 var s e t var = . nog2 . part TOT &
6 in t e g e r = ( eva l ( $n bod i e s nonc pu l l ey + part Y + 1 + $n bod i e s c i r c p u l l e y + part Z ) )
7
8 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
9 ! # MODIFY BELT: CREATE MARKERS FOR JOINTS AND CONTACTS WITH NONCIRCULAR PULLEY L #

10
11 f o r var = $ s e l f . npart s t a r t = 0 inc = 1 end = ( eva l ( . nog2 . part TOT) )
12
13 !−−−−−−−−
14 ! counter f o r the name o f the b e l t e lements
15 var s e t var= $ s e l f . i p a r t &
16 i n t e g e r = ( eva l ( r t o i ( $ s e l f . npart ) ) )
17
18 !−−−−−−−−
19 ! hide cm of b e l t e lements
20 marker a t t r i b u t e s &
21 marker name = ( eva l (”BELT L ”// $ s e l f . i p a r t //” .cm”) ) &
22 v i s i b i l i t y = o f f
23
24 !−−−−−−−−
25 ! c r ea t e marker f o r j o i n t s among the be l t e lements
26 marker c r ea t e marker = ( eva l ( ” . nog2 . BELT L ”// $ s e l f . i p a r t //” .MK Rev j ”// $ s e l f . i p a r t ) ) &
27 l o c a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = ( eva l (”BELT L ”// $ s e l f . i p a r t ) )
28
29 i f cond i t i on=(eva l ( $ s e l f . i p a r t ) != 0)
30 marker c r ea t e marker = ( eva l ( ” . nog2 . BELT L ”// $ s e l f . i p a r t //” .MK Rev i ”// $ s e l f . i p a r t ) ) &
31 l o c a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = ( eva l (”BELT L ”//( $ s e l f . ipar t −1) ) )
32 !−−−−−−−−
33 !−−−−−−−−
34 ! c r e a t e contac t s between be l t e lements and nonc i r cu l a r pu l l ey
35 i f cond i t i on=(eva l ( $ s e l f . i p a r t ) <= eva l ( $n bod i e s nonc pu l l ey ) )
36 contact c r ea t e contact name = ( eva l (” Cnt nonc L ”// $ s e l f . i p a r t ) ) &
37 type = s o l i d t o s o l i d &
38 i geometry name = ( eva l ( ” . nog2 . BELT L ”// $ s e l f . i p a r t //” . iWALL ”// $ s e l f . i p a r t ) ) &
39 j geometry name = . nog2 .PENDULUM.SOLID1 &
40 s t i f f n e s s = ( . nog2 . Cn t S t i f f ) &
41 damping = ( . nog2 . Cnt Damp) &
42 exponent = ( . nog2 . Cnt exp ) &
43 dmax = ( . nog2 . Cnt dmax ) &
44 cou l omb f r i c t i on = on &
45 mu stat i c = ( . nog2 . Cnt mus ) &
46 mu dynamic = ( . nog2 . Cnt mud) &
47 s t i c t i o n t r a n s i t i o n v e l o c i t y = 100.0 &
48 f r i c t i o n t r a n s i t i o n v e l o c i t y = 1000.0
49 ! en t i t y a t t r i b u t e s ent ity name = ( eva l (” Cnt nonc L ”// $ s e l f . i p a r t ) ) a c t i v e=o f f depend=o f f
50
51 d i s p l a y a t t r i b u t e s v i s i b i l i t y f o r c e force name = ( eva l (” Cnt nonc L ”// $ s e l f . i p a r t ) ) &
52 v i s i b i l i t y = o f f &
53 name v i s i b i l i t y = of
54 end
55
56 !−−−−−−−−
57 ! c r e a t e contac t s between be l t e lements and c i r c u l a r i n s e r t i o n pu l l ey
58 i f cond i t i on=(eva l ( $ s e l f . i p a r t ) > ( $n bod i e s nonc pu l l ey + 1) )
59 contact c r ea t e contact name = ( eva l (” Cnt c i r c L ”// $ s e l f . i p a r t ) ) &
60 type = s o l i d t o s o l i d &
61 i geometry name = ( eva l ( ” . nog2 . BELT L ”// $ s e l f . i p a r t //” . iWALL ”// $ s e l f . i p a r t ) ) &
62 j geometry name = . nog2 . INSERTION pulley L . CYLINDER insertion pulley L &
63 s t i f f n e s s = ( . nog2 . Cn t S t i f f ) &
64 damping = ( . nog2 . Cnt Damp) &
65 exponent = ( . nog2 . Cnt exp ) &
66 dmax = ( . nog2 . Cnt dmax ) &

115



B - Macros in Adams/View Command Language

67 cou l omb f r i c t i on = on &
68 mu stat i c = ( . nog2 . Cnt mus ) &
69 mu dynamic = ( . nog2 . Cnt mud) &
70 s t i c t i o n t r a n s i t i o n v e l o c i t y = 100.0 &
71 f r i c t i o n t r a n s i t i o n v e l o c i t y = 1000.0
72 ! en t i t y a t t r i b u t e s ent ity name = ( eva l (” Cnt c i r c L ”// $ s e l f . i p a r t ) ) a c t i v e=o f f depend=o f f
73
74 d i s p l a y a t t r i b u t e s v i s i b i l i t y f o r c e force name = ( eva l (” Cnt c i r c L ”// $ s e l f . i p a r t ) ) &
75 v i s i b i l i t y = o f f &
76 name v i s i b i l i t y = o f f
77 end
78
79 end
80
81 end
82
83 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
84 ! # CREATE REVOLUTE JOINTS AMONG BELT ELEMENTS #
85
86 f o r var = $ s e l f . npart s t a r t = 1 inc = 1 end = ( eva l ( . nog2 . part TOT) )
87
88 !−−−−−−−−
89 ! counter f o r the name o f the b e l t e lements
90 var s e t var = $ s e l f . i p a r t &
91 i n t e g e r = ( eva l ( r t o i ( $ s e l f . npart ) ) )
92
93 ! r evo lu t e j o i n t s between a be l t element and the prev ious one
94 con s t r a i n t c r ea t e j o i n t Revolute &
95 jo int name = ( eva l (” Rev be l t L ”// $ s e l f . i p a r t ) ) &
96 i marker name = ( eva l ( ” . nog2 . BELT L ”// $ s e l f . i p a r t //” .MK Rev i ”// $ s e l f . i p a r t ) ) &
97 j marker name = ( eva l ( ” . nog2 . BELT L ”// $ s e l f . ipar t −1//”.MK Rev j ”// $ s e l f . ipar t −1) )
98
99 ! r o t a t i o n a l torque between a be l t element and the prev ious one . This i s added on order to stop the

be l t from v ib ra t i ng
100 f o r c e c r ea t e e l emen t l i k e ro ta t i ona l sp r ing damper &
101 spring damper name= ( eva l (” F r i c t i o n t o r q u e b e l t L ”// $ s e l f . i p a r t ) ) &
102 damping= ( . nog2 . b e l t c ) &
103 s t i f f n e s s= 0 &
104 i marker name = ( eva l ( ” . nog2 . BELT L ”// $ s e l f . i p a r t //” .MK Rev i ”// $ s e l f . i p a r t ) ) &
105 j marker name = ( eva l ( ” . nog2 . BELT L ”// $ s e l f . ipar t −1//”.MK Rev j ”// $ s e l f . ipar t −1) )
106
107 end
108
109 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
110 ! # CREATE FIXED JOINTS BETWEEN BELT AND NONCIRCULAR PULLEY L #
111
112 con s t r a i n t c r ea t e j o i n t f i x ed &
113 jo int name = . nog2 . F ix Be l t Nonc Pul l ey L &
114 i part name = . nog2 . BELT L 0 &
115 j part name = . nog2 .PENDULUM &
116 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
117 o r i e n t a t i o n = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = . nog2 . BELT L 0
118
119 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
120 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
121 ! # GENERAL ATTRIBUTES #
122
123 con s t r a i n t a t t r i b u t e s constra int name=.∗ s i z e o f i c o n s = 1 .0
124 f o r c e a t t r i b u t e s force name=.∗ s i z e o f i c o n s = 1 .0
125 marker a t t r i b u t e s marker name=.∗ s i z e o f i c o n s = 1 .3
126 en t i t y a t t r i b u t e s entity name=.∗ name vis = o f f
127 s imu la t ion s i n g l e s e t update = ”none”
128 var d e l e t e var = ( eva l (DB CHILDREN( $ s e l f , ” va r i ab l e ”) ) )
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B.2.7 Creation of the right cable model

The macros to create the model of the right cable are identical to the ones to create
the model left cable reported from Appendix B.2.2 to B.2.6, with the only exceptions of
rotating of 180◦ the reference marker MK_centre_belt_sytem_L and substituting all the
suffixes _L with _R. Here the first macro is reported as an example.

1 !WRAP IN UNDO NO
2 ! $n bod i e s nonc pu l l ey : t=in t e g e r : d=60
3 ! $ n b od i e s c i r c p u l l e y : t=in t e g e r : d=12
4
5 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
6 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
7 ! ## CABLE SYSTEM RIGHT ##
8
9 marker c r ea t e marker = . nog2 .PENDULUM. MK centre belt system R &

10 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
11 o r i e n t a t i o n = 0 .0 , 180 .0 , 0 .0 r e l a t i v e t o = . nog2 .PENDULUM. MK centre belt system L
12
13 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
14 ! # CREATION OF BELT ELEMENTS ON NONCIRCAR PULLEY#
15
16 f o r var = $ s e l f . npart s t a r t = 0 inc = 1 end = ( eva l ( $n bod i e s nonc pu l l ey ) )
17
18 !−−−−−−−−
19 ! counter f o r the name o f the b e l t e lements
20 var s e t var= $ s e l f . i p a r t &
21 i n t e g e r = ( eva l ( r t o i ( $ s e l f . npart ) ) )
22
23 !−−−−−−−−
24 ! d iv ide the range o f the angle d e f i n i n g the nonc i r cu l a r pu l l ey p r o f i l e
25 var s e t var = $ s e l f . th &
26 r e a l = ( eva l ( nonc 0 + $ s e l f . i p a r t ∗( range [ 2 ] − nonc 0 ) / $n bod i e s nonc pu l l ey ) )
27
28 !−−−−−−−−
29 ! save preav ious coo rd ina t e s
30 i f cond i t i on = ( eva l ( $ s e l f . i p a r t ) != 0)
31 var s e t var = $ s e l f . pnt nonc o ld &
32 r e a l = ( eva l ( $ s e l f . pnt nonc [ 1 ] ) ) , &
33 ( eva l ( $ s e l f . pnt nonc [ 2 ] ) )
34 end
35
36 !−−−−−−−−
37 ! compute new coo rd ina t e s
38 var s e t var = $ s e l f . pnt nonc &
39 r e a l = ( eva l ( x P [ 1 ] ∗ $ s e l f . th∗∗7+x P [ 2 ] ∗ $ s e l f . th∗∗6+x P [ 3 ] ∗ $ s e l f . th∗∗5+x P [ 4 ] ∗ $ s e l f . th∗∗4+x P

[ 5 ] ∗ $ s e l f . th∗∗3+x P [ 6 ] ∗ $ s e l f . th∗∗2+x P [ 7 ] ∗ $ s e l f . th∗∗1+x P [ 8 ] ∗ $ s e l f . th ∗∗0) ) , &
40 ( eva l ( y P [ 1 ] ∗ $ s e l f . th∗∗7+y P [ 2 ] ∗ $ s e l f . th∗∗6+y P [ 3 ] ∗ $ s e l f . th∗∗5+y P [ 4 ] ∗ $ s e l f . th∗∗4+y P [ 5 ] ∗

$ s e l f . th∗∗3+y P [ 6 ] ∗ $ s e l f . th∗∗2+y P [ 7 ] ∗ $ s e l f . th∗∗1+y P [ 8 ] ∗ $ s e l f . th ∗∗0) )
41
42 !−−−−−−−−
43 ! each be l t element goes from the the cur rent po int to the preav ious one . The f i r s t po int i s used to

f i x the be l t onto the noncu i r cu l a r pu l l ey ( see the e l s e part )
44 i f cond i t i on = ( eva l ( $ s e l f . i p a r t ) != 0)
45
46 !−−−−−−−−
47 ! compute length o f each be l t element as the d i s t ance between 2 po in t s
48 var s e t var = $ s e l f . ( eva l (” l e n g th b e l t n on c ”// $ s e l f . i p a r t ) ) &
49 r e a l = ( eva l ( ( ( $ s e l f . pnt nonc [1]− $ s e l f . pnt nonc o ld [ 1 ] ) ∗∗2+( $ s e l f . pnt nonc [2]− $ s e l f .

pnt nonc o ld [ 2 ] ) ∗∗2) ∗∗(1/2) ) )
50
51 !−−−−−−−−
52 ! in the i f the e lements on the nonc i r cu l a r pu l l ey are created , in the e l s e the elements t i gh t en

between W and S
53 i f cond i t i on = ( eva l ( $ s e l f . th ) <= eva l ( . nog2 . th W) )
54
55 !−−−−−−−−
56 ! compute the i n c l i n a t i o n o f each be l t element
57 var s e t var = $ s e l f . ( eva l (” i n c l i n a t i o n b e l t ”// $ s e l f . i p a r t ) ) &
58 r e a l = ( eva l (ATAN2( ( $ s e l f . pnt nonc [2]− $ s e l f . pnt nonc o ld [ 2 ] ) , ( $ s e l f . pnt nonc [1]− $ s e l f .

pnt nonc o ld [ 1 ] ) ) +90.0) )
59
60 !−−−−−−−−
61 ! c r ea t e b e l t element
62 part c r ea t e r i g i d name part= ( eva l (”BELT R ”// $ s e l f . i p a r t ) ) &
63 l o c a t i on = ( eva l ( $ s e l f . pnt nonc [ 1 ] ) ) , ( eva l ( $ s e l f . pnt nonc [ 2 ] ) ) ,0 r e l a t i v e t o = . nog2 .PENDULUM

. MK centre belt system R
64 part modify r i g id body mas s p rope r t i e s part name = ( eva l (”BELT R ”// $ s e l f . i p a r t ) ) mate r i a l =.

mate r i a l s . AISI 304
65 part a t t r i b u t e s part name = ( eva l (”BELT R ”// $ s e l f . i p a r t ) ) c o l o r = BLUE GRAY name vis = o f f
66
67 !−−−−−−−−
68 ! c r ea t e marker f o r c y l i nd e r o f each be l t element
69 marker c r ea t e marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
70 l o c a t i on = 0 . 0 , 0 . 0 , 0 .0 &
71 o r i e n t a t i o n = ( eva l (” i n c l i n a t i o n b e l t ”// $ s e l f . i p a r t ) ) , −90.0 , 0 .0 r e l a t i v e t o = ( eva l (”

BELT R ”// $ s e l f . i p a r t ) )
72
73 !−−−−−−−−
74 ! c r ea t e geometry o f each be l t element
75 geometry c r ea t e shape cy l i nd e r cy l inder name = ( eva l (”iWALL ”// $ s e l f . i p a r t ) ) &
76 center marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
77 ang l e ex t en t = 360 &
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78 length = ( eva l (” l e n g th b e l t n on c ”// $ s e l f . i p a r t ) ) &
79 rad ius = ( . nog2 . b e l t r a d i u s )
80
81 e l s e
82
83 i f cond i t i on = ( eva l ( $ s e l f . i p a r t ) != eva l ( part W + 1) )
84 var s e t var = $ s e l f . pn t s e g o l d &
85 r e a l = ( eva l ( $ s e l f . pnt seg [ 1 ] ) ) , &
86 ( eva l ( $ s e l f . pnt seg [ 2 ] ) )
87 e l s e
88 var s e t var = $ s e l f . pn t s e g o l d &
89 r e a l = ( eva l (pnt W [ 1 ] ) ) , &
90 ( eva l (pnt W [ 2 ] ) )
91 end
92
93 var s e t var = $ s e l f . l W &
94 r e a l = ( eva l (” l e n g th b e l t n on c ”// $ s e l f . i p a r t ) )
95 !−−−−−−−−
96 ! compute new coo rd ina t e s
97 var s e t var = $ s e l f . pnt seg &
98 r e a l = ( eva l ( pn t s e g o l d [ 1 ] − l W∗COS( . nog2 . alpha ) ) ) , &
99 ( eva l ( pn t s e g o l d [ 2 ] − l W∗SIN ( . nog2 . alpha ) ) )

100
101 !−−−−−−−−
102 ! c r ea t e b e l t element
103 part c r ea t e r i g i d name part= ( eva l (”BELT R ”// $ s e l f . i p a r t ) ) &
104 l o c a t i on = ( eva l ( $ s e l f . pnt seg [ 1 ] ) ) , ( eva l ( $ s e l f . pnt seg [ 2 ] ) ) ,0 r e l a t i v e t o = . nog2 .PENDULUM.

MK centre belt system R
105 part modify r i g id body mas s p rope r t i e s part name = ( eva l (”BELT R ”// $ s e l f . i p a r t ) ) mate r i a l =.

mate r i a l s . AISI 304
106 part a t t r i b u t e s part name = ( eva l (”BELT R ”// $ s e l f . i p a r t ) ) c o l o r = BlueVio l e t name vis = o f f
107
108 !−−−−−−−−
109 ! c r ea t e marker f o r c y l i nd e r o f each be l t element
110 marker c r ea t e marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
111 l o c a t i on = 0 . 0 , 0 . 0 , 0 .0 &
112 o r i e n t a t i o n = ( eva l ( . nog2 . alpha + 90) ) , 90 . 0 , 0 .0 r e l a t i v e t o = ( eva l (”BELT R ”// $ s e l f . i p a r t ) )
113
114 !−−−−−−−−
115 ! c r ea t e geometry o f each be l t element
116 geometry c r ea t e shape cy l i nd e r cy l inder name = ( eva l (”iWALL ”// $ s e l f . i p a r t ) ) &
117 center marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
118 ang l e ex t en t = 360 &
119 length = ( eva l (” l e n g th b e l t n on c ”// $ s e l f . i p a r t ) ) &
120 rad ius = ( . nog2 . b e l t r a d i u s )
121
122 end
123
124 e l s e
125
126 !−−−−−−−−
127 ! c r e a t e b e l t element
128 part c r ea t e r i g i d name part= ( eva l (”BELT R ”// $ s e l f . i p a r t ) ) &
129 l o c a t i o n = ( eva l ( $ s e l f . pnt nonc [ 1 ] ) ) , ( eva l ( $ s e l f . pnt nonc [ 2 ] ) ) ,0 r e l a t i v e t o = . nog2 .PENDULUM.

MK centre belt system R
130 part modify r i g id body mas s p rope r t i e s part name=(eva l (”BELT R ”// $ s e l f . i p a r t ) ) mate r i a l = .

mate r i a l s . AISI 304
131 part a t t r i b u t e s part name = ( eva l (”BELT R ”// $ s e l f . i p a r t ) ) c o l o r = BLUE GRAY name vis = o f f
132
133
134 !−−−−−−−−
135 ! c r e a t e marker f o r c y l i nd e r o f f i r s t b e l t element
136 marker c r ea t e marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
137 l o c a t i o n = 0 . 0 , 0 . 0 , 0 .0 &
138 o r i e n t a t i o n = 90 .0 , −90.0 , 0 .0 r e l a t i v e t o = ( eva l (”BELT R ”// $ s e l f . i p a r t ) )
139
140 !−−−−−−−−
141 ! c r e a t e geometry o f f i r s t b e l t element
142 geometry c r ea t e shape cy l i nd e r cy l inder name = ( eva l (”iWALL ”// $ s e l f . i p a r t ) ) &
143 center marker = ( eva l (” MK centra l be l t ”// $ s e l f . i p a r t ) ) &
144 ang l e ex t en t = 360 &
145 length = 1 &
146 rad ius = ( . nog2 . b e l t r a d i u s )
147
148 end
149 end
150
151 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
152 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
153 ! # GENERAL ATTRIBUTES #
154
155 con s t r a i n t a t t r i b u t e s constra int name=.∗ s i z e o f i c o n s = 1 .0
156 f o r c e a t t r i b u t e s force name=.∗ s i z e o f i c o n s = 1 .0
157 marker a t t r i b u t e s marker name=.∗ s i z e o f i c o n s = 1 .3
158 en t i t y a t t r i b u t e s entity name=.∗ name vis = o f f
159 s imu la t ion s i n g l e s e t update = ”none”
160 var d e l e t e var = ( eva l (DB CHILDREN( $ s e l f , ” va r i ab l e ”) ) )
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B.3 Final adjustments

B.3.1 Creation of the springs model

1 !WRAP IN UNDO NO
2 ! $n bod i e s nonc pu l l ey : t=in t e g e r : d=60
3 ! $ n b od i e s c i r c p u l l e y : t=in t e g e r : d=12
4
5 !−−−−−−−−
6 ! # FORCE REPRESENTING THE SPRING FOR PULLEY L #
7
8 !−−−−−−−−
9 ! c r ea t e marker o f sp r ing anchor po int on the be l t

10 marker c r ea t e marker = ( eva l ( ” . nog2 . BELT L ”//( . nog2 . part TOT) ) //” . MK end belt L ”) &
11 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = ( eva l ( ” . nog2 . BELT L ”//( . nog2 . part TOT) //” .MK Rev j ”// ( . nog2 .

part TOT) ) )
12
13 marker c r ea t e marker = . nog2 . ground .MK V L &
14 l o c a t i on = ( eva l ( pnt V [ 1 ] ) ) , ( eva l ( pnt V [ 2 ] ) ) , 0 .0 r e l a t i v e t o = . nog2 .PENDULUM.

MK centre be lt system L
15
16 !−−−−−−−−
17 f o r c e c r ea t e d i r e c t s i ng l e component f o r c e &
18 s ing le component force name = . nog2 . Spring L &
19 type o f f r e edom = t r a n s l a t i o n a l &
20 func t i on = ”−sp r ing k ∗(DM(MK V L, MK end belt L )−sp r i ng x 0 )−s p r i n g c ∗VM(MK V L, MK end belt L ,MK V L)”

&
21 i marker name = ( eva l ( ” . nog2 . BELT L ”//( nog2 . part TOT) ) //” . MK end belt L ”) &
22 j marker name = . nog2 . ground .MK V L
23
24
25 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
26 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
27 ! # FORCE REPRESENTING THE SPRING FOR PULLEY R #
28
29 !−−−−−−−−
30 ! c r ea t e marker o f sp r ing anchor po int on the be l t
31 marker c r ea t e marker = ( eva l ( ” . nog2 . BELT R ”//( . nog2 . part TOT) ) //” . MK end belt R ”) &
32 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 r e l a t i v e t o = ( eva l ( ” . nog2 . BELT R ”//( . nog2 . part TOT) //” .MK Rev j ”// ( . nog2 .

part TOT) ) )
33
34 marker c r ea t e marker = . nog2 . ground .MK V R &
35 l o c a t i on = ( eva l ( pnt V [ 1 ] ) ) , ( eva l ( pnt V [ 2 ] ) ) , 0 .0 r e l a t i v e t o = . nog2 .PENDULUM.

MK centre belt system R
36
37 !−−−−−−−−
38 f o r c e c r ea t e d i r e c t s i ng l e component f o r c e &
39 s ing le component force name = . nog2 . Spring R &
40 type o f f r e edom = t r a n s l a t i o n a l &
41 func t i on = ”−sp r ing k ∗(DM(MK V R, MK end belt R )−sp r i ng x 0 )−s p r i n g c ∗VM(MK V R, MK end belt R ,MK V R)”

&
42 i marker name = ( eva l ( ” . nog2 . BELT R ”//( nog2 . part TOT) ) //” . MK end belt R ”) &
43 j marker name = . nog2 . ground .MK V R
44
45
46 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
47 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
48 ! # GENERAL ATTRIBUTES #
49
50 con s t r a i n t a t t r i b u t e s constra int name=.∗ s i z e o f i c o n s = 1 .0
51 f o r c e a t t r i b u t e s force name=.∗ s i z e o f i c o n s = 1 .0
52 marker a t t r i b u t e s marker name=.∗ s i z e o f i c o n s = 1 .3
53 en t i t y a t t r i b u t e s entity name=.∗ name vis = o f f
54 s imu la t ion s i n g l e s e t update = ”none”
55 var d e l e t e var = ( eva l (DB CHILDREN( $ s e l f , ” va r i ab l e ”) ) )

B.3.2 Creation of the tightening forces model

1 !WRAP IN UNDO NO
2 ! $n bod i e s nonc pu l l ey : t=in t e g e r : d=60
3 ! $ n b od i e s c i r c p u l l e y : t=in t e g e r : d=12
4
5 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 ! # FORCE TO TIGHTEN BELT L #
7
8 marker c r ea t e marker = ( eva l ( ” . nog2 . BELT L ”//( . nog2 . part TOT) ) //” . MK force L i ”) &
9 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &

10 o r i e n t a t i o n = 90 .0 , −90.0 , 0 .0 r e l a t i v e t o = ( eva l ( ” . nog2 . BELT L ”//( . nog2 . part TOT) //” .MK Rev j
”// ( . nog2 . part TOT) ) )

11
12 marker c r ea t e marker = . nog2 . ground . MK force L j &
13 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
14 o r i e n t a t i o n = 90 .0 , −90.0 , 0 .0 r e l a t i v e t o = ( eva l ( ” . nog2 . BELT L ”//( . nog2 . part TOT) //” .MK Rev j

”// ( . nog2 . part TOT) ) )
15
16 f o r c e c r ea t e d i r e c t s i ng l e component f o r c e s ing le component force name = . nog2 . t i gh t L &
17 type o f f r e edom = t r a n s l a t i o n a l &
18 ac t i on on l y= on &
19 func t i on = ( spr ing F 0 ) &
20 i marker name = ( eva l ( ” . nog2 . BELT L ”//( . nog2 . part TOT) ) //” . MK force L i ”) &
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21 j marker name = . nog2 . ground . MK force L j
22
23
24 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 ! # FORCE TO TIGHTEN BELT R #
26
27 marker c r ea t e marker = ( eva l ( ” . nog2 . BELT R ”//( . nog2 . part TOT) ) //” . MK force R i ”) &
28 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
29 o r i e n t a t i o n = 90 .0 , 90 . 0 , 0 .0 r e l a t i v e t o = ( eva l ( ” . nog2 . BELT R ”//( . nog2 . part TOT) //” .MK Rev j ”// ( .

nog2 . part TOT) ) )
30
31 marker c r ea t e marker = . nog2 . ground . MK force R j &
32 l o c a t i on = 0 .0 , 0 . 0 , 0 .0 &
33 o r i e n t a t i o n = 90 .0 , −90.0 , 0 .0 r e l a t i v e t o = ( eva l ( ” . nog2 . BELT R ”//( . nog2 . part TOT) //” .MK Rev j

”// ( . nog2 . part TOT) ) )
34
35 f o r c e c r ea t e d i r e c t s i ng l e component f o r c e s ing le component force name = . nog2 . t ight R &
36 type o f f r e edom = t r a n s l a t i o n a l &
37 ac t i on on l y= on &
38 func t i on = ( spr ing F 0 ) &
39 i marker name = ( eva l ( ” . nog2 . BELT R ”//( . nog2 . part TOT) ) //” . MK force R i ”) &
40 j marker name = . nog2 . ground . MK force R j
41
42 !−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
43 ! # DEACTIVATE TGHTENING FORCES #
44
45 f o r c e a t t r i b u t e s force name = . nog2 . t i gh t L &
46 ac t i v e = o f f
47
48 f o r c e a t t r i b u t e s force name = . nog2 . t ight R &
49 ac t i v e = o f f
50
51 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
52 ! − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
53 ! # GENERAL ATTRIBUTES #
54
55 con s t r a i n t a t t r i b u t e s constra int name=.∗ s i z e o f i c o n s = 1 .0
56 f o r c e a t t r i b u t e s force name=.∗ s i z e o f i c o n s = 1 .0
57 marker a t t r i b u t e s marker name=.∗ s i z e o f i c o n s = 1 .3
58 en t i t y a t t r i b u t e s entity name=.∗ name vis = o f f
59 s imu la t ion s i n g l e s e t update = ”none”
60 var d e l e t e var = ( eva l (DB CHILDREN( $ s e l f , ” va r i ab l e ”) ) )
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Appendix C

Dimension drawings for the test rig

Table C.1: Parameters of the final virtual prototype

Base and supports
Base Figure C.1
Base of right shaft support Figure C.2
Right shaft support Figure C.3
Base of left shaft support Figure C.4
Left shaft support Figure C.5
Motor support Figure C.6

Pendulum and shaft
Pendulum base Figure C.7
Pendulum stem Figure C.8
Pendulum sphere Figure C.9
Shaft Figure C.10

Reference angle system
Rod Figure C.11
Base Figure C.12

Routing pulleys
Axis Figure C.13
Base Figure C.14

Spring holder
Rod Figure C.15
Support Figure C.16

Preload system
Cylinder Figure C.17
Support Figure C.18
Squared rod Figure C.19
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2008.

[3] V. Arakelian, “Gravity compensation in robotics,” Advanced Robotics, vol. 30, no. 2,
pp. 79–96, 2016.

[4] Y. Tojo, P. Debenest, E. F. Fukushima, and S. Hirose, “Robotic system for human-
itarian demining,” in Robotics and Automation, 2004. Proceedings. ICRA’04. 2004
IEEE International Conference on, vol. 2. IEEE, 2004, pp. 2025–2030.

[5] A. Rosyid, B. El-Khasawneh, and A. Alazzam, “Gravity compensation of parallel
kinematics mechanism using torsional springs based on potential energy optimiza-
tion.”

[6] J. L. Herder, Energy-free Systems. Theory, conception and design of statically, 2001,
vol. 2.

[7] N. Ulrich and V. Kumar, “Passive mechanical gravity compensation for robot manip-
ulators,” in Robotics and Automation, 1991. Proceedings., 1991 IEEE International
Conference on. IEEE, 1991, pp. 1536–1541.

[8] I. Simionescu and L. Ciupitu, “The static balancing of the industrial robot arms:
Part ii: Continuous balancing,” Mechanism and machine theory, vol. 35, no. 9, pp.
1299–1311, 2000.

[9] A. Kondrin, L. Petrov, and N. Polishchuk, “Pivoted arm balancing mechanism,” SU
Patent, vol. 1, 1990.

[10] J. Boisclair, P.-L. Richard, T. Laliberté, and C. Gosselin, “Gravity compensation of
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