
Politecnico di Torino
Master degree course in
Computer Engineering

Clustering algorithms for rock
porosity categorization

Candidate: Riccardo Callà
Supervisors: prof. Elena Baralis, prof. Paolo Garza,

Dott. Andrea Pasini

April 2019

Abstract

In this thesis we will discuss about the results of a research project conducted for

Politecnico di Torino about the classification of geological pores in rock samples. We

analyzed data collected by domain experts by using the most well-known clustering

techniques of data mining. The aim is to understand which clustering algorithms give

the best result in pores data categorization. In general, clustering studies sets of objects

properties by finding relationships between data elements based on the similarity of

their properties. In our case pores, have a great variety of attributes mainly based

on their shape and size. An important aspect is that some of their attributes have

values that are not uniformly distributed and this means that is possible to create

groups where locate pores characterized by similar attributes values. For example, in

nature there exist pores of very different sizes, so measuring their diameter is possible

to create distinct groups by using this feature. The thesis will be organized in parts

where we will present the problem in more detail, discuss the used techniques from a

mathematical and implementation point of view, then the most significant results we

have obtained. This study can be thought as a starting point for classifying the pores

through the clustering methods. Moreover it can be used as an approach to inspect

the feasibility of an automatic way to address the first part of the procedure to analyze

rock permeability.

1

CONTENTS

Contents

1 Thesis structure 4

2 Introduction 6
2.1 Thesis objectives . 6
2.2 Geological Background . 6
2.3 Data Mining background . 7

2.3.1 Data Mining process . 8
2.3.2 Data Mining approaches . 9

3 Details of the designed process 11
3.1 Proposed methodology . 11
3.2 Feature selection . 13

3.2.1 Attribute correlation . 13
3.2.2 Correlation families and leaders 15

3.3 Clustering Methods . 18
3.4 Clustering Metrics . 18
3.5 Clustering algorithms . 20

3.5.1 Kmeans . 20
3.5.2 Centroids . 21
3.5.3 DBSCAN . 21
3.5.4 Hierarchical . 22

3.6 Cluster Description . 22
3.6.1 Silhouette . 22
3.6.2 Decision trees . 24
3.6.3 3D representation with PCA. 26

4 Implementation 27
4.1 Environment . 27
4.2 Libraries . 28

4.2.1 Managing data . 28
4.2.2 Scientific . 28
4.2.3 Visualization . 28

4.3 Implementation process . 29
4.4 Kmeans . 30

4.4.1 Development and tuning . 31
4.4.2 Execution Time . 31

4.5 DBSCAN . 33
4.5.1 Development and tuning . 34
4.5.2 Execution Time . 35
4.5.3 Neighbor Distance . 37

2

CONTENTS

4.5.4 Eps Analysis . 39
4.6 Hierarchical clustering . 41

4.6.1 Development and tuning . 42
4.6.2 Hardware restriction . 42
4.6.3 Execution Time . 44
4.6.4 Linkage types . 46
4.6.5 Linkage selection . 47
4.6.6 Silhouette with Dendrogram . 51

4.7 Cluster Comparison . 53

5 Representative experimental results 55
5.1 Kmeans Clustering . 55

5.1.1 Silhouette analysis . 55
5.1.2 Centroid description . 56
5.1.3 Decision tree description . 58

5.2 DBSCAN Clustering . 60
5.2.1 Choice of epsilon . 61
5.2.2 Cluster size histograms . 64

5.3 Hierarchical Clustering . 66
5.3.1 Silhouette evaluation . 67
5.3.2 Cluster description . 68

6 Conclusion 72

3

1. THESIS STRUCTURE

1 Thesis structure

This thesis was structured in the following way:

Chapter Introduction. In this chapter we discuss about the goal of this research

and we give the information useful to understand the analysis discussed in the various

chapters. In particular, we introduce the geological background with a brief descrip-

tion about the pores that were the object of study. Moreover, an introduction of the

data mining methods explaining which of them we choose to achieve the results.

Chapter Details of the designed process. In this chapter we present our own

methodology to approach the problem by defining the various steps of the pipeline that

were followed to achieve the results. Then, there is a deep explanation of the adopted

methods and algorithms. In particular, we report the mathematical defeinition and

the main aspects of Kmeans, Hierarchical and DBSCAN. Moreover, other procedures

that helped to improve the clusters quality like the feature selection, the PCA, or the

silhouette analysis.

Chapter Implementation. In this chapter we discuss about the python environ-

ment used for the analysis and how we combined the python libraries with our custom

code. Here we analyze the configuration of the clustering algorithms and the hardware

restrictions that must be faced off when executing the code in real cases. Then, the

strategies adopted to solve the raised problems and how we improve the execution of

the algorithms. Moreover, we reported some information about the execution time a

some quality tests about the different types of configuration.

Representative experimental results. In this chapter we present the most

significative result we obtained for all the three experimented algorithms: Kmeans,

Hierarchical and DBSCAN. We report different test cases and which of these algo-

4

1. THESIS STRUCTURE

rtihms returned the best results explaining the reasons through the plots we have

configured.

Conclusion. In this last setcion we treated the steps in chronological order of how

we produced the analyzes and the results obtained. We also provide some suggestions

for future analysis that could be done to continue this research.

5

2. INTRODUCTION

2 Introduction

2.1 Thesis objectives

This report describes the methodology and the procedures proposed for an applied

research, focused on clustering of geological pores. All the analyzed data are in the form

of structured datasets, where each dataset is a set of pores. In these data collections,

each pore is described with a set of specific attributes, derived from its shape and size.

The objective of this research activity is to split each input set of pores in groups

(i.e., clusters) of homogeneous pores, based on the attribute values characterizing the

input pores. To achieve our goal, we considered the most well-known clustering algo-

rithms. With this study we aim to identify which clustering algorithms are best suited

to this task and type of data by validating the results together with domain experts.

2.2 Geological Background

We introduce some information to facilitate the understanding of the analyzed

data. From the geological point of view, a pore is a cavity present in the rock that

can have different sizes. In a sample of rock there are usually a lot of small pores

and few big pores. Their presence allows the flow of liquids, such as water, and the

displacement and accumulation of natural gas (Figure 1). The experts can retrieve

information about the pores by analyzing sections of rock. In particular, with sophis-

ticated photographic tools supplied with advanced software they are able to scan the

characteristics of the pores present in a rock sample. For instance a lot of information

about its dimensions can be retrieved. Then, all the relevant properties about each

scanned pore are converted in numerical format and saved in a digital data structure.

This data structure is exported as a csv dataset where each row contains information

about a single pore and in the corresponding columns there are its attributes.

6

2. INTRODUCTION

Figure 1: Rock pores

2.3 Data Mining background

Data Mining is a set of techniques and methods which aim to find useful information

from huge quantity of data that can be for example big databases or big datasets like

in our case. These procedures can extract (mining) hidden pattern or correlations that

are impossible to be found by human brains. Nowadays many companies adopt this

solutions to improve several aspects of the productive process. For instance, helpful

information about customers can be obtained in order to increase the profitability of

sales processes. We will present in details the techniques and algorithms we adopted

in this research.

7

2. INTRODUCTION

2.3.1 Data Mining process

We briefly introduce what are the common standard step typically involved in the

Data Mining process. This process is call Knowledge Discovery in Databases (KDD)[1]

and consists of some sequential stages aiming to discover in data the desired informa-

tion and hidden patterns as we explained previously. Therefore, first we will give a

description of the general stages in the schema of Data Mining application, then we

are going to discuss in details our personal method adopted for the purposes of this

research.

Figure 2: KDD pipeline

Selection. At the beginning the input data requires a preliminary step where

experts choose its content by satisfying the application domain and the final purpose

application requirements.

Pre-processing. In this step is executed a data selection. It means to decide

which part of data need to be discarded for the further steps. It is very important to

have suitable data in order to reduce probability of errors, improve the result accuracy

and reduce the usage of computational resources. Data can be discarded for many

8

2. INTRODUCTION

reasons. One is the presence of noise that if not omitted can lightly falsify the final

result because automatic procedures can give to the noise the same importance as to

the useful data.

Transformation This is a fundamental step because the data is prepared and

transformed to be ready to use for the next step. Since in Data Mining techniques

exist a lot of different procedures and each of them require a defined data format, it is

important to know already which of the procedures will be used in the next step.

Data mining. It is the main step of this chain because here the Data Mining

procedures are executed. As mentioned above the current data is ready to be analyzed

by using the selected method. Details of the different Data Mining approaches will be

discussed later on. Now we can simply consider that after the procedure execution we

obtain the patterns that will be analyzed in the next step.

Interpretation/evaluation. The final step is where the found patterns are ana-

lyzed. Usually it means that they are edited and printed in plots or tables. The goals

of this step is to create the best possible visual representation in order to help the

readability and the comprehension of the final result.

2.3.2 Data Mining approaches

As mentioned above Data Mining is a set of techniques and procedure that aim to

extract useful information and hidden patterns from huge quantity of data. In this

section we highlight three of the most important well-known methods. They are asso-

ciation rule mining, classification and clustering.

Association rule mining. Consists of finding any kind of relationship in the

same bunch of data. For example, is mainly used by companies transactions to find

correlation between the purchased products by customers.

Classification. It is one of the most used methods. The input data consists in a

9

2. INTRODUCTION

domain of defined samples that are used to predict other non defined cases in the same

domain. It is also called Supervised problem because the decision about the undefined

data is taken by training on the starting labeled data. For this reason the train data

is strictly necessary to use this methodology. Several approaches exists in this set like

statistics, neural networks,linear programming or decision Tree.

Example of classification are:

(i)Decision tree. Decision tree are based on multiple conditions which guide data

and expanding it from the root node to the final decisions on the terminal leaves. In

particular, each internal node is a sub condition of the root. A path is built selecting

all the internal conditions present in the visited nodes. At the end of this path, when

the leaf is reached, the tree gives the final decision.

(ii)Neural network. It is a network of logic neurons hosted by a machine. Its struc-

ture represents the real human brain network of neurons and like it is able to learn

from the input train data and predict the label on test data.

Clustering. It is very similar to Classification. In fact, giving a set of objects

it produces different kinds of groups called clusters to which the object are assigned.

Moreover, these groups can be formed by analyzing the input data, comparing the

samples properties and find most relevant similarities among them. The big differ-

ence from the Classification method is that, in this case, there aren’t defined starting

groups where to put the objects, otherwise they are created by considering only the

input data. Result that there is no dependency with additional data as happened with

the training data of the classification method.

For our purpose we adopted the Clustering method because, as explained before,

the aim of this research is to analyze and evaluate the different possibilities of classifying

the pores in the datasets. Since do not exist predefined groups for this domain, the

approach we choose is the Clustering method. In the next sections we will describe in

details the clustering algorithms and measures adopted for this study.

10

3. DETAILS OF THE DESIGNED PROCESS

3 Details of the designed process

3.1 Proposed methodology

This section presents the main building blocks of the proposed methodology, de-

picted in Figure 3. The whole procedure is applied separately to each dataset, in order

to obtain clusters which are specific of a single geological sample.

Figure 3: Clustering pipeline

Feature selection. This is the first (optional) step, where all the attributes (also

called features) that are not suitable for the following analysis are removed. This

phase is performed by analyzing the characteristics of the attributes such as their

value distribution and their mutual correlations. Initially, we remove the attributes

which are useless for the analysis, since they are not related to the description of the

pore shapes (e.g. pore id, pore position). Afterwards we automatically drop all the

features which present high statistical correlations among each other, as they would

provide redundant information. This process allows the reduction of the dataset size

and a more proper working of the distance measures used for clustering.

Preliminary procedures. The following step consists of dataset transformations

to be applied before the clustering algorithms. Since the clustering phase requires

many hardware resources (in terms of memory), if necessary the number of points is

11

3. DETAILS OF THE DESIGNED PROCESS

reduced by applying (i) a filtering operation based on the pore size or (ii) random

sampling techniques. Secondly, we normalize the training data in order to avoid biases

related to different feature ranges. Each data attribute is normalized with Z-Score

that consists of subtracting the population mean from an individual raw score and

then dividing the difference by the population standard deviation. More formally:

Z =
X − µ

σ

Clustering and parameter tuning, cluster quality check. At this point our

process introduces a loop between clustering and cluster quality check building blocks.

At each iteration we select one of the available state-of-the-art clustering algorithms

and inspect the results by varying its parameters (for example the desired number

of clusters or the neighborhood radius for density based algorithms). The clustering

process labels the dataset points with the assigned group and saves the results to a

file. Afterwards a cluster quality check is performed by analyzing the generated clusters

with quality measures such as SSE, silhouette and PCA 3D representations.

Cluster description. This building block is responsible for obtaining inter-

pretable descriptions of the generated clusters. We use representations which allow

inspecting the cluster size, the centroid positions (center of gravity of each cluster)

and the attributes which are more significant to characterize each cluster (by means

of decision trees).

Domain experts quality evaluation. The last step of the process involves the

intervention of domain experts to visualize and inspect the characteristics of the clusters

obtained so far. Here domain experts may use the cluster descriptors produced in the

previous phase to ease the analysis. If the results are not sufficiently coherent with the

geological interpretation, the whole process is run from the beginning in order to find

a better configuration of each building block of the process.

12

3. DETAILS OF THE DESIGNED PROCESS

3.2 Feature selection

Feature selection is defined as the process of selecting a subset of relevant features

(i.e. attributes) among the original ones. There are three main reasons why feature

selection is effective when applied before clustering.

A smaller number of attributes implies (i) an easier understanding of the cluster

shapes (ii) a reduced dataset size, which makes shorter the execution time and requires

less hardware resources (iii) better quality of the distance metrics used to assign data

to each cluster. Indeed, higher number of features entails a well known issue called

curse of dimensionality[2]. When data points present a very high dimensionality they

tend to have approximately the same distance among each other, even if they have one

or more dimensions which are very different.

The feature selection analysis presented in the following sections is performed on a

first set of datasets provided by domain experts. The dataset names are: a1, a2, a3,

b1, b2, b3. The feature selection step has not been applied on the other datasets.

3.2.1 Attribute correlation

In our analysis we considered the statistical attribute correlation in order to choose

the most relevant features. Correlated attributes introduce redundant information

which could damage the performances of the clustering algorithm. Feature selection

can be applied to correlated attributes in order to reduce the redundant information.

We compute the correlation between attribute pairs with the Pearson [3] metric.

This measure produces values between −1 (high negative correlation) and +1 (high

positive correlation). Two attribute are correlated when the absolute value of the

Pearson correlation is close to 1.

13

3. DETAILS OF THE DESIGNED PROCESS

Figure 4: Correlation attributes, dataset: a1

Figure 4 represents the correlation matrix for an example dataset (a1). The color

in each cell encodes the Pearson correlation between two attributes. Black cells imply

that the correlation cannot be computed from the selected attributes (because they

present incomplete information or missing values). Cells on the diagonal are always

red, since they represent the correlation of an attribute with itself.

To decide which attribute pairs should be considered as highly correlated, we define

a correlation threshold (in absolute value). The value of this threshold is the same for

all the datasets under analysis. It is computed by looking at the distribution of the

14

3. DETAILS OF THE DESIGNED PROCESS

absolute value of the correlations among the attribute pairs in each dataset.

Figure 5 shows the correlation for each attribute pair across different datasets.

Each curve represents the values for a specific dataset. The correlation is plotted on

the vertical axis, while the horizontal axis represents all the possible attribute pairs

(sorted by increasing absolute correlation). At the correlation value 0.85 it is possible

to observe an elbow in the shape of most of the curves. This means that for values

greater than the threshold 0.85 all the datasets contain attribute pairs with similar

correlation coefficients, closer to 1. The obtained threshold is used in the following

section to group together attributes and perform feature selection.

Figure 5: Correlation curves

3.2.2 Correlation families and leaders

As presented before, attributes with high correlations bring redundant information

and can be grouped together. We introduce the following notation.

15

3. DETAILS OF THE DESIGNED PROCESS

Family. A family is a set of attributes which present high correlations. Each at-

tribute belonging to the family has a correlation greater than the selected threshold

(0.85) with at least another attribute in the family. Since attributes of the same family

bring similar information, we only keep the most representative one.

Family leader. We call family leader the selected representative attribute for a

specific family. The attribute selected as family leader is the one with the highest

correlation with the other attributes in the family and the lowest correlation with the

attributes of other families.

Singleton. We call singleton the family leader which belong to families composed

of a single element. The dataset a1 contains for example 32 correlated attributes and

14 singletons.

The feature selection process applied to a specific dataset keeps as important fea-

tures only the family leaders. Figure 6 shows the 17 selected attributes (family leaders)

among the initial 46 for dataset a1.

From this chart we can also observe that the correlations among the different attribute

pairs are very low after the application of feature selection. This implies that the

redundant information is reduced drastically.

16

3. DETAILS OF THE DESIGNED PROCESS

Figure 6: Selected Attributes, dataset: a1

Since the list of initial attributes for the different datasets is the same, we expect

to find similar families and leaders. From the analysis we found 13 common group

leaders, which are shared among all datasets. The common group leaders are: Angle,

Area/Box, Aspect, Box X/Y, Den./Inten. (max), End points, Fractal dimension,

Heterogeneity, Hole Ratio, Margination, Perimeter(ratio), Radius Ratio, Roundness.

All these 13 leaders are singleton, except for End points, whose family is composed by

Dendrites, Dendritic length and End points.

Another observation common for all datasets is that many of the attributes de-

17

3. DETAILS OF THE DESIGNED PROCESS

scribing the size of the pores are grouped in the same family (e.g. Area, Diameter,

Feret, Perimeter). For this reason in each dataset there is always a big family (about

10 attributes) of attributes describing the pore size.

3.3 Clustering Methods

A clustering algorithm takes as input a set of data points associated with their

attributes and produces as output a partitioning of the input data in groups called

clusters. Hence, each sample is labeled with the identifier of the cluster to which it

is assigned. We considered only clustering algorithms that generate non-overlapping

clusters (i.e., each point is assigned to one single cluster). A brief description of the

algorithms that we used for the analyses is provided in the next subsections.

3.4 Clustering Metrics

The clustering metric represents the distance between a pair of samples. It is fun-

damental because it establishes a criterion with which to compare the various points,

in fact the chosen metric influences the clusters shape. We will describe the main

characteristics of the most famous metrics adopted by the clustering algorithms.

Euclidean distance. In a 2D space the distance between two points is the seg-

ment that connects the two points. In a multi-dimensional space, with more than 2

dimension, the distance is obtained by adding the distances for each dimension.

||a− b||2 =
sX

i

(ai − bi)2

Where ai and bi are the values of samples a and b for attribute i.

Squared Euclidean distance. It is very similar to the euclidean distance

but does not have the square root. It means that it is faster to be executed from a

18

3. DETAILS OF THE DESIGNED PROCESS

computational point of view.

||a− b||22 =
X
i

(ai − bi)
2

Where ai and bi are the values of samples a and b for attribute i.

Manhattan distance. It works in a taxicab geometry that is an alternative to

the euclidean geometry. In this geometry system there are no distances that directly

connects two points of the space. For example, in a 2D space of this geometry, the

distance between two points is the absolute difference between their x-axis values and

their y-axis values. It means that does not exist a path that directly connect two points,

otherwise this path would be composed by sub-paths that are parallel or orthogonal to

the plane axis. The name ”Manhattan” is inspired by this concept because represents

the road network of the borough of New York City. In fact, it is known, having a

chessboard shape where almost all the streets are parallel or orthogonal to each other.

In the real case a taxi, that inspired the name ”taxicab geometry”, can’t move directly

from point A to B in the city, but it must follow the streets making a path similar to

the one that is generated on the 2D-plane mentioned above.

||a− b||1 =
X
i

|ai − bi|

Where ai and bi are the values of samples a and b for attribute i.

Chebyshev distance. As for the distance Manhattan, this is also based on the

concept of chessboard. However, unlike the method described above, this one consider

the center of the boxes instead of the length of sides. In fact, the distance between

two points in the chessboard is the number of boxes that a king must cross, being able

to move in all directions, but making the shortest path. From the mathematical point

of view it can be represented by a uniform norm, in particular, as also shown in the

19

3. DETAILS OF THE DESIGNED PROCESS

formula, the distance between two points is given by the maximum difference between

their x-axis values and their y-axis values.

||a− b||∞ = max
i

|ai − bi|

Where ai and bi are the values of samples a and b for attribute i.

Jaccard. The Jaccard index uses the math of sets to compare distinct objects.

In particular, it calculates the similarity between two sets and higher the similarity,

shorter the distance is between this two sets. The similarity is obtained with the

Jaccard similarity coefficient that is defined as the intersection divided by the

union of two sets:

J(A,B) =
|A ∩B|
|A ∪B|

Where A and B are two sets of objects. More precisely the distance between two

sets is calculated with the complement of the Jaccard coefficient and it is also called

dissimilarity:

Dj(A,B) = 1− J(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|

Where Dj is the Jaccard distance, A and B are two sets of objects.

3.5 Clustering algorithms

3.5.1 Kmeans

This algorithm receives as parameter the expected number of clusters k. Each

cluster is identified by a centroid. A sample is assigned to the cluster whose centroid

is closer. Kmeans initially sets k centroids with random positions. At each iteration

of the algorithm data points are associated with the closest centroid. Then centroids

are updated towards the center of gravity of their cluster.

20

3. DETAILS OF THE DESIGNED PROCESS

3.5.2 Centroids

The centroid of a cluster is defined as its center of gravity. It is computed as the

mean of all the data points of the cluster:

centroid(c) =
1

|c|
X
xi∈c

xi

where c is the considered cluster, |c| is the number of points in c and xi are the points

associated with cluster c. Figure 7 depicts an example of bi-dimensional clusters with

their associated centroids. Clusters are represented by colors, while centroids are

depicted as black dots.

Figure 7: Example of centroids in a 2D Plot

3.5.3 DBSCAN

This algorithm groups together points based on their density in the space. Samples

which are located in low-density regions (whose nearest neighbors are too far away)

21

3. DETAILS OF THE DESIGNED PROCESS

are marked as outliers (cluster with label −1). The number of generated clusters is

not known a-priori and depends on the data distribution. DBSCAN takes as input two

parameters to model the concept of neighborhood and density between data samples.

The first one (epsilon) specifies the radius of the neighborhood of a point. The second

one (minpoints) specifies the minimum number of samples in the neighborhood of a

point. Samples with less than minpoints neighbors are marked as noise (outliers).

3.5.4 Hierarchical

This algorithm generates clusters which are organized in hierarchy. The output

hierarchy is encoded with a structure called dendrogram. This structure specifies the

aggregations of the clusters at different levels. The algorithm does not take parameters

as input. However, a user can specify k as the desired number of clusters in order to

extract the grouping of the data samples at a particular level of hierarchy. Hierarchical

algorithms work by repeatedly identifying and merging the two clusters which are the

most close at a specific hierarchy level. Initially each point is considered as a specific

cluster, while at the end of the hierarchy the algorithm ends with a single cluster.

3.6 Cluster Description

After labeling the data points with one of the proposed clustering methods, the

characteristics of each cluster can be described in order to ease the analysis of the

results. In the following paragraphs we briefly describe the techniques adopted for

cluster description.

3.6.1 Silhouette

Since clustering is an unsupervised technique, measuring the quality of the results

is often a difficult task. Silhouette[4] is a metric defined to measure the characteristics

of each cluster without having prior knowledge on the expected clusters. This measure

takes values between −1 and 1. Values closer to 1 imply a good quality of the clusters.

22

3. DETAILS OF THE DESIGNED PROCESS

Silhouette is computed by inspecting the cohesion of the samples inside each cluster

and their separation from the samples in other clusters. Intra cluster separation and

inter cluster separation are the two components used to build the Silhouette value.

The intra cluster separation of a cluster c is defined as:

intra(c) =
X
xi∈c

X
xj∈c,i 6=j

||xi − xj ||2

where xi and xj are two points of the cluster c and ||xi − xj ||2 is the squared distance

between the two points. Higher values of the intra cluster separation imply a lower

density of the cluster, since its points are more distant among each other.

The inter cluster separation of a cluster c is defined as follows.

inter(c) =
X
xi∈c

X
xj /∈c

||xi − xj ||2

where xi is a point of cluster c and xj is a point of any other cluster. Higher values of

the inter cluster separation imply a higher distance between the specified cluster and

the other ones. The silhouette score gathers these two contributions. It is defined as

follow:

silh(c) =
inter(c)− intra(c)

max(inter(c), intra(c))

Higher values are obtained when the clusters have a relative higher inter separation

with respect to the intra separation.

The intra/inter cluster separation can also be computed globally for all the clusters:

intra =
X
c∈C

intra(c)

inter =
X
c∈C

inter(c)

where C is the set of all clusters.

23

3. DETAILS OF THE DESIGNED PROCESS

With these definitions it is possible to compute the global silhouette:

silh =
inter − intra

max(inter, intra)

The global silhouette allows understanding the global quality of the produced clusters.

For our analysis we will visualize charts inspecting the global silhouette, the silhouette

on each cluster and the intra/inter cluster separation values.

3.6.2 Decision trees

Decision trees are classification models designed to classify data based on the values

of the input attributes. Although these models are typically used for classification, here

we use them to describe the clusters produced by each of the algorithms presented in

the previous section (i.e. Kmeans, DBSCAN, Hierarchical).

For this purpose we train a decision tree to classify each sample with the cluster

identifier assigned by the clustering method under inspection. After the learning pro-

cess, the generated decision tree performs a sequence of tests on the input attributes

to decide the cluster identifier. The test sequence can be visualized as a tree graph,

where each internal node represents a ”test” on an attribute, each branch selects a

possible outcome of the test, and each leaf node represents a class label (cluster id).

Tests near to the tree root perform coarser splits among high quantities of samples.

Tests near to the leaves perform finer splits trying to assign the correct cluster id for

most of the samples. The objective of the learning phase of a decision tree is to grow

until the leaves contain only samples of a specific cluster. Such objective would require

trees with a very high number of leaves. For this reason we stop the growing of the

tree by setting a parameter of the algorithm called maximum gain. In this way the

objective of the training becomes minimizing the impurity of data inside each leaf.

Leaves with lower impurity contain samples which belong mainly of a specific cluster

id. The impurity is measured with a value called Gini index[5].

24

3. DETAILS OF THE DESIGNED PROCESS

Figure 8: Example of decision tree, the leaves represent the final clusters

Figure 8 shows an example of decision tree employed for cluster description. From

Figure 8, we can understand that the most relevant attribute is Aspect, since it appears

at the root of the tree. This attribute is exploited to split all the samples in two groups.

Samples with a value of Aspect <= 1.009 flow through the left branch, while the others

flow through the right one.

If we consider the orange leaf, we can observe that the number of samples which

flow towards this bucket is 1538. Among these, 1484 belong to cluster 0, 1 to cluster

1 and 53 to cluster 3. The impurity of this node is low (gini = 0.068), since most of

the samples belong to the same cluster.

25

3. DETAILS OF THE DESIGNED PROCESS

3.6.3 3D representation with PCA.

The Principal Component Analysis (PCA) is a linear dimensionality reduction tech-

nique based on Singular Value Decomposition (SVD) [7]. Every data point is projected

to a lower dimensional space, with less features than the original one. Each of the new

generated features can be obtained from the original ones by applying a linear trans-

formation. By specifying three output features, PCA can produce a three-dimensional

representation of the sample distribution. Moreover we can enhance this visualization

technique by coloring the points according to the cluster which they are assigned to.

From these kind of charts experts can visually inspect whether the clusters are well

separated in the space and their characteristics such as density or shape.

Figure 9 shows an example of dataset where PCA was applied to derive the 3D

representation. The three colors (yellow, green, blue, purple) represent the generated

clusters. For example we can observe that the yellow cluster is the most dense among

the others and that the purple cluster is smaller, with a lower density.

Figure 9: Example of PCA visualization, different colors represent the clusters

26

4. IMPLEMENTATION

4 Implementation

In this section we will analyze the clustering procedures described above from the

point of view of the implementation. In particular, what library we used to implement

the technique, the extra code we add to build the result and our consideration about

issues and problems that occurred in the development process. In Table 1 the details

of the hardware we used to execute tests and analysis.

cpu Intel® Core™ i7-8700K (5 GHz)

ram G.Skill Trident Z - DDR4 16GB - (3200 MHz)

hard drive SSD Crucial MX500

os Windows 10

python 2.7.9

Table 1: Hardware configuration

4.1 Environment

The whole application development for this research was done in Python. There

are many reason why we adopted this language to implements the algorithms and

procedures. Python is an high-level programming language mainly based on scripts

and can be used for any kind of programming purpose. Its easy syntax and the good

readability have helped to grow its fame during the last years, making it one of the

most used languages today. Moreover, there are some other advantages like that it is

free and the cross-platform compatibility. In our specific case we found a very advanced

community from the point of view of data mining. In fact, exist some useful open-

source libraries that have already implemented some basic code constructs that helps

to faster build complex algorithms. We will discuss which are the main libraries we

27

4. IMPLEMENTATION

used in the next section.

4.2 Libraries

This section describes the most important libraries we used to implement the code.

4.2.1 Managing data

Pandas. Is a library designed for the management of data structures. In fact, it

provides several tools that facilitate the reading, editing and writing of relational data.

It was very useful to import the datasets in the csv format and to store it content in

the data structures where can be edited and analyzed.

Numpy. Is instead a fundamental package for scientific computing with Python

that allows to easily manage arrays and execute functions in multi-dimensional data.

4.2.2 Scientific

Scikit-learn. Is the main library of the project that provides all the functions to

implement the classification and the clustering algorithms. Scipy. Is another support

library, useful to manage the Hierarchical strategy.

4.2.3 Visualization

Matplotlib This library allows to visualize all the result in plots.

28

4. IMPLEMENTATION

4.3 Implementation process

Figure 10: Implementation Diagram

In Figure 10 the common steps about the implementation process and how the

support tools and libraries were adopted through the various stages:

Data. The starting point is to retrieve the data that must be analyzed and in our

case this data is in csv format.

Transformed Data. In this step we use Pandas to import the source csv in a Pandas

structure. After that it is possible to use this data structure for sampling or just going

to the next step where to execute clustering algorithms.

Clustering algorithm. Here we execute algorithms taken from the scientific libraries.

In most of the cases is the Sklearn library.

Custom Code. At this points we implement our custom code with the goal to ana-

lyze the given result from the previous steps and prepare the data to be visualized or

29

4. IMPLEMENTATION

reused as input for an other clustering algorithm step.

Visualize Data. This is the last step where we collect and transform the results in

suitable data structures that are going to used as input for the Matplotlib library.

Then, the plot that describes the desired analysis is shown.

4.4 Kmeans

This section represents the details for the Kmeans clustering implementation. A

summary is proved in Table 2.

Library SkLearn

Average time complexity O(knT)

Worst case time complexity O(nk+2/p)

Original time complexity O(ndk+1)

Table 2: Kmeans clustering properties

Listing 1: In first row the data structure of Kmeans is generated by setting the

number of cluster K and the seed, in the second and third is fit the data structure

created before in the fourth row are extracted the labels of the generated clusters.

1 km = KMeans(k , random_state=seed)

2 X = dsNorm . va lue s

3 km. f i t (X)

4 l a b e l s = km. labe l s_

30

4. IMPLEMENTATION

4.4.1 Development and tuning

Kmeans clustering initialize k centroids and assign each point to the closest cen-

troid. At the beginning the algorithm generates k centroids with random values for

each of the attributes. In each iteration a point is assigned to the closest centroid.

Centroids attribute values are updated by calculating the mean of the points inside its

cluster algorithm belong to the NP-hard problem and has a complexity of O(ndk+1),

briefly means that the whole execution can not be performed in a polynomial time.

However the sklearn implementation of this algorithms uses Lloyd’s [8] or Elkan’s [9]

variation approach that optimize its’ execution. In fact, its computational time is

O(nk+2/p) for the worst case where n is the number of samples, p is the number of

features. O(knT) is the average time, were n is the number of samples and T is the

number of iterations. Thanks to the fast convergence of the algorithm there are low

computational costs and short execution times, so its it very suitable to test big dataset

without sampling them. However, since it requires a seed to initialize the centroid it

could give very different result when changing these values. In our tests we choose a

fixed seed that gives the Kmeans always the same initialization in order to compare

later the results obtained in different execution times.

4.4.2 Execution Time

We measure the execution time of the kmeans algorithm. The test was executed

without sampling the dataset because kmeans does not require huge quantity of mem-

ory like the hierarchical one. In fact, the kmeans data structure only consists of a

set of centroids with their associated attributes. At each step all points are assigned

to the closest centroid, whose positions are updated as we explained before. For this

reason the convergence of this algorithm is usually faster than the hierarchical and

DBSCAN. More in depth, we measured the execution time starting from 103 to the

entire size of the dataset, increasing the number of samples of 103 in each execution

step. After that, we approximate the obtained coordinate to a linear curve in order to

31

4. IMPLEMENTATION

see the correspondence with the expected prediction of O(knT). We report in Figures

11,12 the results about same dataset analyzed before in the hierarchical case. In both

cases the trend of the measures seems to respect well the expectations, in fact the or-

ange line, that corresponds to the approximation, well fills the blue points. To notice

that, also for the measure done with huge quantity of samples (>105), there is not

many differences in terms of time compared to the taken measure with few samples.

Moreover, there are some measures that are lower even if the number of samples is

smaller.

Figure 11: Execution time dataset c1, x axis is the number of tests, y axis is the execution
time in seconds.

32

4. IMPLEMENTATION

Figure 12: Execution time dataset c3, x axis is the number of tests, y axis is the execution
time in seconds

4.5 DBSCAN

This section represents the details for the DBSCAN clustering implementation. A

summary is proved in Table 3.

Library SkLearn

Time complexity Get neighbor O(log n)

Time complexity with distance matrix O(n · log n)

Time complexity without distance matrix O(n2)

Memory complexity O(n2)

Table 3: DBSCAN clustering properties

33

4. IMPLEMENTATION

Listing 2: In first row the data structure of DBSCAN is generated by setting the

value of eps and minsamples, in the second and third row is fit the data structure

created before, in the fourth row are extracted the labels of the generated clusters.

1 db = DBSCAN(eps=eps , min_samples=minSamples)

2 X = dsNorm . va lue s

3 db . f i t (X)

4 l a b e l s = db . labe l s_

4.5.1 Development and tuning

DBSCAN works in a different way from the Hierarchical and Kmeans, in fact its

biggest difference is that it does not require as configuration parameter the number of

clusters (k) that will be generated. The two parameters used to generate labels are

eps and min samples. During the execution phase DBSCAN visits one point at a time

tracing an area with ray of eps around the point itself. If, in this area there are other

points as the value of min samples, a new cluster is generated and the point marked as

core and all points in the neighborhood are assigned to it, otherwise the visited point

is temporarily labeled as noise. In fact, later in the execution, this point could be part

of a new cluster because it could be a neighbor of another core point. Note that, when

a new cluster is generated,in addition to the core and neighborhood points, also the

neighbors of neighborhood points are added to the cluster, this until all points have

been visited. Therefore, to correctly configure DBSCAN it is necessary to run several

tests by varying the two input parameters eps and min samples. In the analysis we set

min samples with heuristic values of 5 10 and 15 in order to give consistency to the

size of the clusters and then we test the value of eps and analyzed the results. We used

two support procedures for tuning: the KNN and a custom procedure that measures

the value of k at varying eps. Both will be described later.

34

4. IMPLEMENTATION

4.5.2 Execution Time

For this test we proceeded in a similar way to the hierarchical and kmeans, in fact

the number of samples start from 103 to 44 ∗ 103, increasing by 103 samples each step.

The configuration parameters have been configured as eps = 1 and minsamples = 5,

however their influence on the final execution time can be ignored. We found two

main behaviors analyzing all the plots. The first case, Figures 13,14, the prediction of

O(nlogn) is respected, in fact the orange curve follows well the trend of the blue points.

There is only a bit of divergence in the measures of few samples. On the other hand,

the second case, Figures 15, 16, does not respect the expectation. It can be observed

that for few samples there is a very slow growth that suddenly changes behavior at a

certain point between two measures, leaving two distinct points zones.

Figure 13: Case 1 dataset d5, x axis is the num of samples, y axis is the execution time. The
blue points trend respect the expectations

35

4. IMPLEMENTATION

Figure 14: Case 1 dataset d6, x axis is the num of samples, y axis is the execution time. The
blue points trend respect the expectations

Figure 15: Case 2 dataset c6, x axis is the num of samples, y axis is the execution time. The
blue points differ from the prediction

36

4. IMPLEMENTATION

Figure 16: Case 2 dataset d3, x axis is the num of samples, y axis is the execution time. The
blue points differ from the prediction

4.5.3 Neighbor Distance

As we said previously, the DBSCAN algorithm creates clusters by using the points

distance. For this reason we adopted a method that allow to calculate the points

distances and show them as a function, then it is possible to ease the choose of the

configuration parameter eps that represents the distance used by the algorithm to

generate the clusters labels.

Listing 3: In first row are retrieved the values form the dataset, in the second

row is fit the data structure of the nearest neighbor by setting the number of

neighbors and the ’auto’ algorithm, in the third row are retrieved the distances

generated in the second row, in the fourth row is extract only the fifth column of

the distances matrix in the sixth row the extracted values in row four are sorted

in ascending order

1 X = dsNorm . va lue s

37

4. IMPLEMENTATION

2 nbrs = NearestNeighbors (n_neighbors =5, a lgor i thm=’ auto ’) . f i t (X)

3 d i s t a n c e s = nbrs . kne ighbors (X)

4 d i s t a n c e s = d i s t a n c e s [: , [minSamples − 1]]

5 d i s t a n c e s = np . s o r t (d i s tance s , ax i s =0)

To configure this procedure must be select the value of min points first. In the

example we will describe here we set min points = 5. Then the following steps consist

in executing the NearestNeighbors function provided by Sklearn. This function return

a matrix structure that contains as rows as points in the dataset. The number of

columns depends on the selected values of min points. In this example we have 5

columns. In particular the last column represents the distance that there is between a

point and the fifth point closest to it. The next step consist in sorting this last column

in ascending order. It means that the points are now sorted according to the distance

they have from their fifth nearest point in ascending order. Then, the result plot is

shown in Figure 17. It is possible to see that the distance value does not grows till

reaching 8 ∗ 105 samples, then there is a knee and after that the distance grows very

quickly. This means that in the analyzed dataset there are approximately 8 ∗ 105 very

close points and as we discuss in Section 2.2 correspond to the small pores. Where

the curve grows quickly there is a set of approximately 5 ∗ 103 of very spread points

that correspond to the big pores, in fact the reason of this growth is due to the great

variance in their attribute values.In order to create cohesive and homogeneous clusters,

it is common to select the value of eps in the knee part of the plot, because it allows

to generate clusters where all the points below the threshold are assigned to a cluster

while all the points above are marked as noise.

38

4. IMPLEMENTATION

Figure 17: Neighbor distances, x axis is the num of point, y axis is the distance. The blue
points differ from the prediction

4.5.4 Eps Analysis

We present here an alternative method to choose the value of eps to configure the

DBSCAN algorithm. As we discuss the DBSCAN receives as input the parameters eps

and min samples, therefore there is no control on the number of generated clusters.

But, in some cases could be useful to ask the algorithm the number of cluster (k) to be

generated to compare the result with other cluster algorithms results. For this reason

we inspected the results of this method that shows the correlation between the eps

values and the number of clusters (k). Since it is only possible to know the number of

clusters after executing the DBSCAN, this method consist of executing the algorithm

by fixing the number of min samples and varying eps in a range of values, then plotting

the result. In Figure 18 there is an example of how this method works. The value

of min samples was set to 5. Then, in the x axis the value of eps and the number

39

4. IMPLEMENTATION

of generated cluster in the y axis. It is possible to choose the number of clusters by

watching the y axis and finding where the curve assumes the desired value of L and

then read the correspondent value of eps. If the algorithm is then configured with this

precise value of min samples and the selected value of eps it returns exactly k clusters.

Notice that can exist more than one value of eps that gives the desired value of k.

For this reason we introduced a more detailed version of this method. In Figure 19

there is an example. The top sub plot corresponds to the previous example, but it was

combined with the silhouette and the outliers analysis. More in details, the silhouette

gives the information of what could be the best choice of eps where the score is high,

and can be useful when more value of eps correspond to a single value of k, in this case

it better to choose the higher value of the silhouette. In the bottom plot is shown the

number of outliers that will be generated. It is a good idea to choose the parameters

to have this value as low as possible.

Figure 18: Eps - k correlation details, x axis is the value of eps, y axis is the number of
clusters k.

40

4. IMPLEMENTATION

Figure 19: eps - k correlation details, Top plot is fig 18, mid plot is the silhouette, bottom
plot is the ouliers analysis

4.6 Hierarchical clustering

This section represents the details for the hierarchical clustering implementation.

A summary is proved in Table 4.

Library Scipy

Time complexity O(n3)

Memory complexity O(n2)

Table 4: hierarchical clustering properties

41

4. IMPLEMENTATION

Listing 4: In first row is created the distances matrix by setting the dataset, and

the linkage type. In this case we used the ward type, in second row the clusters

labels are generated by setting the distance matrix, the number of cluster k, and

the criterion (in this case we used =’maxclust’)

1 Z = l inkage (dsNorm , l i n k = ’ ward ’)

2 c l u s t e r s = f c l u s t e r (Z , k , c r i t e r i o n=’ maxclust ’)

4.6.1 Development and tuning

To implement the Hierarchical clustering we adopted the Agglomerative strategy.

It is a ”bottom up” approach. It means that at the beginning each sample belongs to

a different cluster. Later, in each execution step, the clustering algorithm merges the

two closest clusters by measuring their distance till, in the last step, only one cluster

will remain. All of this merging steps are saved in a data structure that can be called

linkage matrix. Then, an other function receives as input this matrix and the number of

cluster to generate (k). Finally, returns as output the labels associated to the samples

in the starting dataset. There are three parameters that tune the algorithm:

(i) K. it is the number of clusters to generate

(ii) Metric. it is the formula to calculate the distance between two points and can

influence the final shape of clusters. In our analysis we used the ”Euclidean” metric

distance. (See Section 3.4).

(iii) Linkage. it measures the distance between two sets of points. The algorithm

uses this formula to find what are the closest cluster to merge at a certain moment of

execution. In our analysis we used the linkage ”ward”:

4.6.2 Hardware restriction

With the Hierarchical clustering we had to face with the problem of the memory

requirement. In fact, this clustering technique requires O(n3) in terms of time and

42

4. IMPLEMENTATION

O(n2) in terms of memory. The last requirement means that this algorithm is difficult

to apply on medium and large dataset because requires big quantity of memory. For

example, in our real case we used 16Gb of memory ram where part of it is used by

the OS and other processes, but to approximate we can still consider to have available

all the 16 GB. The formula to calculate the maximum number of samples in a dataset

that can be processed within the memory is:

M ∼ DS2

Smax ∼
√
Mmax

D

where S is the maximum number of samples in the dataset, M is the available

memory (Bytes), and D is the size (in bytes) of the numbers used to store distances

in the distance matrix. In our case the result was approximately:

S ∼
√
16 ∗ 109

8
∼ 44721

Where the value of the kind of data is 8 because we used doubles.

Starting from this consideration the number of samples we can process with our

hardware is ∼ 44721, but it is possible to process a slightly larger quantity of them.

In fact, if the memory runs out, the operating system compensates using the swap

space. The datasets analyzed contains many more samples than the quantity obtained

above so we bypass this issue by sampling the dataset and we choose 5 ∗ 104 points

for the dataset sampling size. Notice that all the problem involved with the sampling

technique are discuss in an other section. We found a good use of the hierarchical if

combined with a smart filter. In our case the points filtered with a Diameter max ≥ 25

in each dataset are not more than 104 so the can be clustered with the hierarchical

method without run out of memory. In theory is possible to cluster more points if the

algorithm executed on a machine with more memory ram, but must keep in mind that

43

4. IMPLEMENTATION

the execution time grows exponentially as we see later.

4.6.3 Execution Time

We measured the execution time of the hierarchical clustering on our datasets. In

this test we set the sampling size starting from the previous consideration about the

number of samples. In fact, we reduced the maximum number of samples to 44 ∗ 103

because is near the maximum value our hardware can process. More in depth, we

measured the execution time starting from 103 to 44 ∗ 103, increasing the number of

samples of 103 in each execution step. The result consist of 44 measures for each

dataset. After that, we approximate the obtained coordinate to a 3-degree polynomial

curve in order to see the correspondence with the expected prediction of O(n3). In

Figures 20,21 we selected two of the most significative results we obtain in all the

datasets. In Figure 21 there is an example of an expected trend because the orange

line, that corresponds to the positive part of the 3-degree polynomial curve, strictly

follow the blue points. On the other hand we found in several datasets a different

behavior shown in Figure 20. It is possible to see that the time growth is more similar

to a linear curve than the expected cubic curve. In fact, the orange line doesn’t not

fit well the trend of all the points. To notice that the last blue points in the right of

each plot are very far from their expected position. The reason is that even if 44 ∗ 103

samples do not completely fill 16 GB of Ram, in the real case this memory is also used

by other processes and then it saturated before the expectation. When the ram is not

sufficient for all the processes that the CPU is executing therefore, according to the

rules of the scheduler of the OS, some of them are moved temporally out from the

ram to the disk. It is possible to improve performance by increasing the priority of

the python process that performs the analysis but remaining however in a bottleneck

status.

44

4. IMPLEMENTATION

Figure 20: Execution time plot for dataset c1, x axis is the num of samples,y axis is the
execution time

Figure 21: Execution time plot for dataset c3, x axis is the num of samples,y axis is the
execution time

45

4. IMPLEMENTATION

4.6.4 Linkage types

Single

d(u, v) = min(dist(u[i], v[j])

Where u, v are two clusters and ui, vi are two elements in the respective clusters. It is

the distance between the closest pair of points of two different clusters. The algorithm

merges the two clusters where this distance lower.

Complete

d(u, v) = max(dist(u[i], v[j])

Where u, v are two clusters and ui, vi are two elements in the respective clusters. It is

the distance between the farthest pair of points of two different clusters. The algorithm

merges the two clusters where this distance lower.

Average or UPGMA

d(u, v) =
X
ij

d(u[i], v[j])

(|u| ∗ |v|)

Where u, v are two clusters and ui, vi are two elements in the respective clusters. The

distance is the mean of the distances between any pair of points of two different clus-

ters. The algorithm merges the two clusters where this distance lower.

Weighted or WPGMA

d(u, v) = (dist(s, v) + dist(t, v))/2

Where s, t are the two previous merged clusters in new cluster u and v is an other

cluster. The distance is the mean of the distances between the previous merged cluster

s, t and the other cluster v. The algorithm merges the two clusters where this distance

46

4. IMPLEMENTATION

lower.

Centroid or UPGMC

d(s, t) = ||cs − ct||2

Where s, t are two clusters and cs, ct are the two controids of the respective clusters.

The distance is the Euclidean difference between the centroids of two different clusters.

The algorithm merges the two clusters where this distance lower.

Median or WPGMC

d(s, t) = ||ws − wt||2

Where s, t are two clusters and ws, wt are the two controids of the respective clusters.

It is similar to the centroid method but this one creates a new centroid on the median of

the two old centroids. The algorithm merges the two clusters where this distance lower.

Ward

d(u, v) =

s
|v|+ |s|

T
d(v, s)2 +

|v|+ |t|
T

d(v, t)2 − |v|
T

d(s, t)2

Where s, t are the two previous merged clusters in new cluster u and v is an other

cluster. The algorithm merges the two clusters where the variance is minimum.

4.6.5 Linkage selection

The choice of the linkage type in the hierarchical clustering influences the clusters

shapes. Therefore we combine the hierarchical clustering linkages with the silhouette

procedure. This could be useful indication about how good is a link type for the current

dataset. The method consists of sampling the dataset, due to the hardware restriction

of the hierarchical algorithm, then execute the clustering for each linkage type. Finally

47

4. IMPLEMENTATION

use the labels obtained as input for the silhouette computation. In this analysis we

tested two different cases: the first case we used sampled dataset of 105 points, in the

second case we set the filter Diameter Max >25 that usually return datasets of 105

point max. Their characteristics are shown in Table 5.

Case 1 Case 2 Case 3

Number of tests 4 10 10

Sampling 105 105 Diameter Max > 25

Number of clusters 2≤K ≤6 K = 4 K = 4

Linkages single, complete, average, weighted, centroid, median, ward

Plot Silhouette score

Table 5: Executed tests on hierarchical linkage types

With the exception of the ward linkage, all the other linkage types have similar

values in all the tests performed. So in this case the silhouette is not influenced by

the variation of k, or by sampling and also returns similar results even on multiple

datasets. We report the plot of two datasets:

48

4. IMPLEMENTATION

Figure 22: Case 1: dataset c1, Silhouette, x axis is the number of clusters (k), y axis is the
silhouette score

Figure 23: Case2: dataset c1, Silhouette, x axis is the num of test, y axis is the silhouette
score

49

4. IMPLEMENTATION

Figure 24: Case 3: dataset c3, Silhouette, filtered DiamterMax >25, x axis is is the number
of clusters (k), y axis is the silhouette score

In all the executed tests the metric ”ward” assumed the lower values while all the

other metrics have similar values. From this results it is difficult to establish if there

is a best linkage type at all because no one assumes ever the best values. In this case,

the best approach is to select the linkage according to the value of k or the sampling

type used to configure the hierarchical algorithm. To notice that in the hierarchical

experiments was used the linkage ward that achieved good result confirmed by domain

experts. Then, could be an interesting investigation trying the other linkages that

obtain a better score in this analysis and see if they will also obtain better result in

real test cases.

50

4. IMPLEMENTATION

4.6.6 Silhouette with Dendrogram

We introduce here a custom method that we developed to analyze the silhouette

scores with the hierarchical clustering. To understand the content of this analysis refer

to the silhouette description above where are deeply discussed the meaning of the score,

in particular what are the intra ed extra cluster values (see Section 3.6.1).

A dendrogram is a branches-tree plot usually used with the hierarchical clustering.

In fact it graphically describes the merges that the hierarchical does at the various

steps of its execution. As discuss in previous sections the hierarchical clustering start

its execution having each point in a separate cluster till the final step where all the

point are merged in a single cluster. In the plot configuration must be set the number

of cluster to be shown. These clusters will be placed on the leaves of the plot and

correspond to the execution step that has exactly the desired number of clusters that

have not been merged yet.

This method combine together the dendrogram with the inter, intra silhouette values.

In particular, the aim of the method is to show on the branches of the dendrogram the

values of the silhouette for the cluster identified by the branch itself. The dendrogram

can be considered as a binary tree where each leaf is a cluster. From the point of

view of the implementation, this tree it can be visited using a recursive function, thus

allowing access to all clusters and how they are connected through branches. This is

the basic idea behind the implementation of the method. In our case it was necessary

to adapt the data structures in order that could be used following the reverse path.

In fact, our recursive method starts from the root node and runs through the tree

until it reaches the leaves that represent the end clusters. When the recursion reaches

the terminal leaves it calculates the silhouette immediately, consequently, when an

intermediate node is reached, which has sub leaves, the silhouette is calculated only

after it has been calculated on all of the sub leaves. This path continues until the

root of the tree is reached. In Figure 25 an example of the plot described above. We

clustered the dataset c1 through the hierarchical algorithm with linkage ward and

51

4. IMPLEMENTATION

metric euclidean. In each branch there are the information of the inter, intra values

of the silhouette. Greater is the value of inter to the respect of the intra and more

the referenced cluster is cohesive. In this case we have the clusters 0 and 1 that are

very dense because the inter value is higher than the intra value, and the intra value is

globally low to the respect of the other intra values in other clusters. As consequence

the cluster 2 is the most sparse because the intra value is high.

Figure 25: Silhouette with Dendrogram dataset c1 and K = 4, the leaves represents the
generated clusters. In each branch there are the information of the inter, intra values of the
silhouette. Greater is the value of inter to the respect of the intra and more the referenced
cluster is cohesive

52

4. IMPLEMENTATION

4.7 Cluster Comparison

We present here a method that can be useful to compare the labels of two different

clustering result. It is based on the Jaccard similarity index (Section 3.4) that repre-

sents how many two clusters are similar. Figure 26 is an example of this analysis. In

this example we run the filter Diameter Max > 25 on the dataset c1 and clustered it

with two different configurations:

(i) Hierarchical, k = 4, linkage = ”ward”.

(ii) Kmeans, k = 4, seed = 346346.

The analysis is divided in three subplots:

The bottom right is the histogram of the hierarchical labels that shows the size of the

generated clusters, the top left is the histogram of the kmeans labels that shows the

size of the generated clusters. In the bottom left position, there is the heat map that

shows the Jaccard value between the aligned clusters bars. The heat map values are in

a range of [0, 100]. The value 100 means that the two compared clusters are identical.

On the other hands the value 0 means that in the two compared clusters there aren’t

common points. In this example, the higher value is between the hierarchical cluster

1 and the kmeans cluster 3. This is a usual situation because the higher values is in

the cross of the two biggest compared clusters. In fact, the probability that there are

common points is higher if the size of clusters is bigger.

53

4. IMPLEMENTATION

Figure 26: Cluster compare plot dataset c1, bottom right is the histogram of the Hierarchical
clustering labels, top left is the histogram of the Kmeans clustering labels, bottom left is the
heat map that shows the Jaccard values between the aligned clusters

54

5. REPRESENTATIVE EXPERIMENTAL RESULTS

5 Representative experimental results

In the following, we report some representative results obtained by using our frame-

work with different clustering algorithms and we describe how the results can be ana-

lyzed by using a set of charts generated by our system.

5.1 Kmeans Clustering

As described in Section 3.3 Kmeans identifies each cluster with a centroid (center

of gravity). Centroids are computed along the different iterations of the algorithm.

The number of clusters k is specified as input parameter. Kmeans can work with a

very large amount of input data and for this reason is suitable for our purposes where

the datasets can reach millions of elements.

In the following analysis we apply Kmeans to each of the available datasets. We vary

the value of k and inspect the obtained results with the cluster description techniques

presented in Section 3.6. The analyzed datasets are: a1, a2, a3, b1, b2, b3. For these

experiments we applied the feature selection based on attribute correlations (Section

3.2), since this group of datasets are characterized by many (i.e. 46) attributes.

5.1.1 Silhouette analysis

In this section we compute the value of the global silhouette (see Section 3.6.1)

in order to inspect the quality of the clusters for different values of parameter k.

Fore this example the silhouette score is computed on 10000 samples over the 86000

samples of the entire dataset (a1). This means that a sample of the 12% is analyzed.

However the Kmeans algorithm is computed on all the samples. Sampling is necessary

for silhouette computation because this measure has a quadratic complexity with the

number of points. Hence, this procedure requires huge hardware resources.

Figure 27 shows global silhouette score for different values of k between 2 and 29.

We selected two possible two good values at k = 6 and k = 22. These values are

55

5. REPRESENTATIVE EXPERIMENTAL RESULTS

located in regions of the curve where the silhouette is approximately constant. These

regions could represent stable values of the silhouette when varying k. Picking the

local maximum in these regions allows selecting values of k which are potentially less

sensible to noisy data.

Figure 27: Silhouette a1, local max in k = 6, k = 22

5.1.2 Centroid description

In this section we explain how to analyze the positions of the centroids generated

by the Kmeans algorithm. The centroid position allows understanding the average

values of each attribute in a specific cluster.

Figure 28 shows the centroids for k = 22. The horizontal axis enumerates the

identifiers of each cluster (from 0 to k − 1). For each centroid the chart shows a

histogram with the values of the different attributes. The values are normalized with

z-score in order to improve visualization. From the chart it is possible to detect clusters

56

5. REPRESENTATIVE EXPERIMENTAL RESULTS

with very high values on a particular attribute. For example there are two well-defined

clusters which have bigger values for the size attributes (e.g. the first two clusters

from the left of Figure 28). From this kind of descriptions it is also possible to inspect

clusters which present similar characteristics, such as the first two clusters from the

right of Figure 28).

Figure 28: Centroids a1, K = 22, vertical bars represent the mean values for each attribute
in the cluster

The similarity between cluster centroids can also be inspected by applying a hi-

erarchical clustering on their values. This analysis considers each cluster centroid as

a sample and uses the centroid attributes to compute the distance measures. The

result is a dendrogram plot like the one presented in Figure 29. This chart shows the

hierarchy generated among the cluster centroids. The centroids that are merged in

the first (lower) levels of the hierarchy present very similar characteristics. Clusters

57

5. REPRESENTATIVE EXPERIMENTAL RESULTS

that are merged in the very last stages (such as the first three clusters from the left of

Figure 29: cluster 4 and 21, 20) present very different attribute values from the other

centroids. Notice that the height of each merge stage in the dendrogram represents

the distance between the two clusters being merged. For example the blue cluster

represents a possible outlier since it is merged at very high values on the vertical axis

of the plot.

Figure 29: Dendrogram Centroids a1, K = 22

5.1.3 Decision tree description

In this section we use decision trees to describe the cluster produced by Kmeans.

These representations highlight the most relevant attributes which better describe the

shape of each cluster. Attributes at levels next to the root have higher discriminative

power on the input data.

58

5. REPRESENTATIVE EXPERIMENTAL RESULTS

For these experiments we generated decision trees for the Kmeans results with

k varying from 3 to 22. Figure 30 depicts an example of decision tree with k = 6

on dataset Falak12210. In this example, the most relevant attribute is Aspect, as it

appears in the root.

The purple leaf shows that 12919 of the 13658 elements in cluster 5 are characterized

by Aspect > 1.005, AreaBox > 0.975. The Gini index for this leaf is very small (0.037)

and for this reason cluster 5 is well described by this decision tree. Also cluster 0 is

well represented by the two orange leaves. The 40K samples of cluster 1 are grouped

together in the leftmost green leaf. Finally the rightmost green leaf contains a mixture

of all the remaining points, which are difficult to describe with shallow levels in the

decision tree. For these points deeper decision tree would be required. However, notice

that deep decision tree are too specific on the input data and do not generalize well

the cluster shape.

Figure 30: Centroids a1, K = 6

Table 6 represents the importance of the attributes by analyzing the decision trees

59

5. REPRESENTATIVE EXPERIMENTAL RESULTS

generated for k varying from 3 to 22. This result is built by counting the number

of times that an attribute appears in the first three levels of all the trees built with

the different values of k. Higher number of occurrences represent attributes which are

more important, as they appear many times next to the root of the trees.

Table 6: Relevant attributes

Attribute Occurrences in the first three levels

Aspect 25

Den./Inten. (min) 16

Fractal Dim 14

Box X/Y 10

Area/Box 6

Margination 6

End points 4

5.2 DBSCAN Clustering

DBSCAN is a density based clustering algorithm (see Section 3.5.3 for details).

Density is computed by inspecting the distance of each point from all the others. This

operation has quadratic computational complexity and requires much more hardware

resources and time with respect to Kmeans. For this reason this clustering technique is

applied after sampling each dataset. Here we use random sampling and fix the number

of selected pores to 50, 000.

The analyzed datasets are: c2 (83,875 data points), c6 (154,074 data points).

60

5. REPRESENTATIVE EXPERIMENTAL RESULTS

5.2.1 Choice of epsilon

As described in Section 3.5.3 epsilon represents the radius of the neighborhood of

a sample. The minpoints parameter is instead the minimum number of neighbors to

avoid marking a particular sample as outlier. To choose the values of epsilon (eps)

we fixed minpoints = {5; 10}. For brevity this report discusses only the results for

minpoints = 5.

Figure 31 and Figure 32 show different metrics evaluated by varying eps on the

horizontal axis. Generating these kind of charts is very time consuming, since the

DBSCAN algorithm is run many times.

For example the left section of Figure 31 shows the number of clusters k obtained

while varying eps from 0.5 to 3. This curve can be used to select significant values of

eps (e.g. eps = {1.0; 1.2; 1.4}) which produce a specific number of clusters. The three

charts on the right of Figure 31 represent the number of clusters, the silhouette and the

number of outliers by varying eps in a smaller range of values (highlighted in green on

the left side of Figure 31). For example with eps = 1.0 we obtain 19 clusters, a (good)

silhouette near 0.7 and about 3000 outliers. It can be also noticed that the number of

clusters, the silhouette and the number of outliers decreases when eps increases. This

is expected from the behavior of DBSCAN because higher values of eps mean that

lower densities are tolerated while merging points into clusters.

61

5. REPRESENTATIVE EXPERIMENTAL RESULTS

Figure 31: Dataset: a1, Choice of Eps, minpoints 5

62

5. REPRESENTATIVE EXPERIMENTAL RESULTS

Figure 32: Dataset: a2, Choice of Eps, minpoints 5

63

5. REPRESENTATIVE EXPERIMENTAL RESULTS

Fig. 31, Dataset c2: minpoints = 5. The selected values are eps = 1.0, 1.2, 1.4.

Fig. 32, Dataset c6: minpoints = 5. The selected values are eps = 0.8, 1.6, 2.0.

5.2.2 Cluster size histograms

These paragraphs show some examples of clustering results by selecting the most

significant values of eps highlighted in the previous section. In particular we show

histogram charts which specify the size of the clusters obtained in each clustering

configuration.

The histograms in Figure 33 and Figure 34 are built by clustering pores in dataset

c2 and c6 respectively. We inspect three different values of eps for each dataset, with

minpoints = 5. From these charts it can be noticed again that when increasing eps

the number of clusters decreases. In each histogram the red bin (cluster −1) represents

the set of pores labeled as outliers.

Clustering in Figure 33 presents three main big clusters (i.e. 0, 1, 2) for all the three

eps configurations. The remaining clusters have less samples and decrease in number

when eps grows (they are merged either with noise or with the other main clusters).

Clustering in Figure 34 presents three main big clusters (i.e. 1, 2, 3) for the first

two values of eps (i.e. 0.8, 1.6). The third histogram, built with eps = 2 has only two

main clusters (i.e. 1, 2). Cluster 3 has approximately the same size of cluster 3 in the

previous two histograms. Cluster 2 is instead bigger than cluster 2 in the first two

histograms. Hence, it is likely that cluster 1 and 2 obtained with eps = 0.8, 1.6 were

merged into a single cluster (i.e. cluster 2) when eps = 2.

64

5. REPRESENTATIVE EXPERIMENTAL RESULTS

Figure 33: Cluster size, dataset c2, eps = {1.0; 1.2; 1.4}, minpoints(alias min samples) = 5.
The red bin (cluster -1) contains outliers.

65

5. REPRESENTATIVE EXPERIMENTAL RESULTS

Figure 34: Cluster size, dataset c3, eps = {0.8; 1.6; 2.0}, minpoints(alias min samples) = 5.
The red bin (cluster -1) contains outliers.

5.3 Hierarchical Clustering

As previously described in Section 3.5.4 this algorithm generates clusters which

are organized in a structure called dendrogram. We perform different experiments

by setting the desired number of clusters k which allows to cut the dendrogram at

a specific height. Each of the experiments works by sampling only the pores with

DiameterMax > 25. This allows to (i) focus only on bigger pores, which are mostly

micro-pores and are not interesting for our analysis, and (ii) reduce the requirements

of time resources since, similarly to DBSCAN, hierarchical clustering has quadratic

66

5. REPRESENTATIVE EXPERIMENTAL RESULTS

complexity with the number of samples.

5.3.1 Silhouette evaluation

As first analysis we run the hierarchical clustering process on several datasets and

cut the dendrogram at different values of k from 2 to 9. The quality of the result is

evaluated with the silhouette metric (presented in Section 3.6.1).

The result of this analysis is shown in Figure 35. Notice that, for better visual-

ization, the values of the silhouette score are normalized with z-score. By inspecting

Figure 35 the best values of k for all datasets range in 2 < k ≤ 4.

Figure 35: Silhouette score, normalized. Similar trends are marked with the same color.

From the chart in Figure 35 it is possible to detect three different groups of curve

67

5. REPRESENTATIVE EXPERIMENTAL RESULTS

trends. We highlighted the three groups with different colors. Each of them is com-

posed of 6 datasets. The complete subdivision is listed below.

• Red group, curve decreases significantly after k = 2: c4, c8, c9, d1, d4, d8

• Green group, curve decreases significantly after k = 3: c1, c2, c3, c6, d2, d9

• Blue group, curve decreases significantly after k = 4: c5, c7, d3, d5, d6, d7

5.3.2 Cluster description

The experiments presented in this section involve hierarchical clustering on the

pores with DiameterMax > 25 and a dendrogram cut at k = 4. For each clustering

result we present four different plots: dendrogram, PCA scatterplot, silhouette compo-

nents and silhouette. Figure 36 shows the four plots for dataset c1.

The first chart, shown in Figure 36a, depicts the dendrogram plot cut at k = 4.

The dendrogram shows how the different clusters are merged together at the different

levels of hierarchy. From the root of the hierarchy the clusters split in two partitions

and then each of them splits again in two. The number of pores of the four partitions

is shown at the bottom of the dendrogram. For example the first two clusters from

the left are the biggest ones (respectively 2, 592 and 5, 571 pores).

Figure 36b shows the PCA scatterplot for the different clusters. Note that the color

of the clusters can be used to make comparisons with the dendrogram in Figure 36a.

The clusters seem well divided as the are poorly overlapped. The red and the blue

clusters are the most dense, since their points are very close among each other. From

the dendrogram we can conclude that these two clusters are also the two bigger ones

and they are merged together at the first stage of the hierarchy. The light-blue and

the purple clusters are instead more sparse and extend to a bigger area (Figure 36b).

Figure 36c shows the intra cluster and inter cluster components of the silhouette

score. The two measures are computed separately for each cluster. From this chart we

68

5. REPRESENTATIVE EXPERIMENTAL RESULTS

can notice that cluster 2 is the most sparse (high intra cluster component) and that

cluster 1 is the most dense. This conclusion can be confirmed by looking also at the

PCA scatterplot (36b).

Finally, Figure 36d presents the silhouette computed for each cluster. The cluster

with the highest silhouette is cluster 1. This is confirmed by Figure 36c, since the

difference between the intra cluster and the inter cluster components is very high with

respect to their values.

Figure 37 shows another example for the four plots presented before. Differently

from Figure 36a the dendrogram in Figure36a presents three levels of hierarchy. Firstly,

the two medium-sized clusters merge together (purple and blue). Afterwards the small-

est (and most sparse) red cluster is added to the group. The biggest (and most dense)

blue cluster does not merge until the last stage of hierarchy. The blue and purple clus-

ters (Figure 37d) present the highest silhouette, as they are dense and well separated.

In this example (Figure 37d) the smallest cluster presents only 95 elements as opposed

to the 174 of Figure 36d.

69

5. REPRESENTATIVE EXPERIMENTAL RESULTS

(a) dendrogram with silhouette (b) PCA 3D scatterplot

(c) Silhouette components (d) Silhouette of each cluster

Figure 36: Clusters analysis dataset c1, k = 4, DiameterMax>25

70

5. REPRESENTATIVE EXPERIMENTAL RESULTS

(a) dendrogram with silhouette (b) PCA 3D scatterplot

(c) Silhouette components (d) Silhouette of each cluster

Figure 37: Clusters analysis id d6, k = 4, DiameterMax>25

71

6. CONCLUSION

6 Conclusion

We analyzed the data collected by the experts about geological pores by using the

most well-known clustering techniques of data mining. The aim was to understand

which clustering algorithms give the best result in pores data classification. We re-

port below a summary of the most significant results we achieved. The hierarchical

clustering was initially tested on the entire datasets, but given the limitations of the

algorithm in processing big datasets, we had to reduce them by using using a random

sampling technique. We found two issues: the first is that the analyzed datasets did

not have a fixed size, so applying a sampling that returns a fixed size we could analyze

only different percentages for each dataset making the comparison between them less

effectively. The second issue was that random sampling discarded the most interesting

pores with a certain probability, making the result analyses less significant. Since we

were interested in analyzing as much data as possible we relied on the Kmeans algo-

rithm. The Kmeans algorithm (Section 5.1). This algorithm was the most efficient

in terms of execution time (Section 4.4) and was able to process the entire datasets

without sampling them. Although this was good because it avoided the problems due

to the sampling process, it remained difficult to analyze the quality of the generated

clusters because, for example, it was necessary to apply sampling for the silhouette

analysis, which is quadratic in complexity. Moreover, according to domain experts it

was found that the quality of clustering was not too high because the groups were not

homogeneous. We also inspected the result with the DBSCAN algorithm (Section

5.2). In an introductory analysis we tried to find the eps value automatically by ex-

ploiting the distance plot in combination with the second derivative, but the results

were not satisfactory. In a subsequent analysis we combined the trend of k and eps

with the value of the silhouette to identify the best values of eps. Also in this case the

results can be improved by using different approaches such as the multiple execution

on the noise of the previous analysis, moreover DBSCAN has suffered problems related

72

6. CONCLUSION

to the sampling as for the hierarchical algorithm. After consulting with the domain

experts we were able to set up a domain driven filter on the DiameterMax attribute on

all datasets. This filter had the dual function of conserving the most important pores

and reducing the size of the datasets, making unnecessary to perform further sampling.

With this new filter we initially investigated the hierarchical algorithm (Section 5.3)

because it was possible to perform the analyses without sampling. We found, inspect-

ing the results with domain experts, that using the ward linkage and euclidean metric

we obtained good results for k = 4. Results that we confirmed with auxiliary anal-

ysis of the dendrogram, plus silhouette and the intra/inter silhouette bar histogram.

Regarding future analysis, it is worth trying the hierarchical algorithm using different

linkages and metrics. In this research we conducted an introductory analysis about

the silhouette score conducted on experiment with the various linkages with euclidean

metric. Another future analysis concerns the study of attribute distribution within

a cluster. The idea is to find which of them take in disomogeneous distribution in

order to divide a cluster into sub-clusters. Also test in DBSCAN on data filtered by

diameter and running multiple times to process the noise obtained from the previous

executions, then comparing this result with the hierarchical could be an interesting

analysis to extend our work.

73

REFERENCES

References

[1] Fayyad, Piatetsky-Shapiro, Smyth, From Data Mining to Knowledge Discovery: An

Overview, in Fayyad, Piatetsky-Shapiro, Smyth, Uthurusamy, Advances in Knowl-

edge Discovery and Data Mining, AAAI Press / The MIT Press, Menlo Park, CA,

1996, pp.1-34

[2] Keogh, Eamonn, and Abdullah Mueen. Curse of dimensionality Encyclopedia of

machine learning. Springer, Boston, MA, 2011. 257-258.

[3] Benesty, Jacob, et al. ”Pearson correlation coefficient.” Noise reduction in speech

processing. Springer, Berlin, Heidelberg, 2009. 1-4.

[4] Rousseeuw, Peter J. ”Silhouettes: a graphical aid to the interpretation and vali-

dation of cluster analysis.” Journal of computational and applied mathematics 20

(1987): 53-65.

[5] Gastwirth, Joseph L. ”The estimation of the Lorenz curve and Gini index.” The

review of economics and statistics (1972): 306-316.

[6] Jolliffe, Ian. ”Principal component analysis.” International encyclopedia of statis-

tical science. Springer, Berlin, Heidelberg, 2011. 1094-1096.

[7] Golub, Gene H., and Christian Reinsch. ”Singular value decomposition and least

squares solutions.” Numerische mathematik 14.5 (1970): 403-420.

[8] Kanungo, Tapas, et al. ”An efficient k-means clustering algorithm: Analysis and

implementation.” IEEE Transactions on Pattern Analysis & Machine Intelligence

7 (2002): 881-892.

[9] Monge, Alvaro, and Charles Elkan. ”An efficient domain-independent algorithm

for detecting approximately duplicate database records.” (1997).

74

