
POLITECNICO DI TORINO

Master degree course in Mechatronic Engineering

Master Degree Thesis

Analysis, design and
implementation of an optimal
planner for redundant robotic

applications

Supervisor
prof.ssa Marina Indri

Candidate
Fabio Capasso

ALTEC Advisor
ing. Federico Salvioli

April, 2019

Contents

1 Introduction 5
1.1 Background . 5
1.2 Focus . 6
1.3 Aims and Objectives . 6
1.4 Outline . 7

2 Robot Planning 9
2.1 The Planning Problem . 9
2.2 Path Planning and Trajectory Planning 11

3 State of the Art on Redundancy Resolution 15
3.1 Robotic Manipulators . 15
3.2 Redundant Robots . 17
3.3 Kinematic Inversion . 18

3.3.1 Resolution Methods . 18
3.3.2 Inverse Kinematics of Redundant Manipulators 20
3.3.3 Inverse Kinematics of Non-Redundant Manipulators 20

3.4 Redundancy Resolution . 21
3.4.1 Locally-Optimal Inverse Kinematics 21
3.4.2 Globally-Optimal Inverse Kinematics 24

3.5 Redundancy Resolution with Euler-Lagrange Equation 25
3.5.1 Euler-Lagrange Equation . 25
3.5.2 Analysis with Euler-Lagrange Equation 25
3.5.3 Euler-Lagrange Boundary Conditions 28
3.5.4 Reduced-Order Form . 31

3.6 Redundancy Resolution with Dynamic Programming 33
3.6.1 Dynamic Programming . 33
3.6.2 Analysis with Dynamic Programming 34
3.6.3 Redundancy Parametrization 35
3.6.4 Minimum Number of Equations 36

3.7 A DP-inspired algorithm . 38
3.7.1 Grid Representation . 38
3.7.2 Algorithm Formulation . 41

2

4 Analysis of Planning Technologies 43
4.1 Optimal Trajectory Planning . 43
4.2 ROS . 44
4.3 Moveit! . 47
4.4 Optimal Planners and Redundancy Resolution 47
4.5 Inverse Kinematics Solvers . 48

5 Design of an Optimal Planner 51
5.1 Overview . 51
5.2 Mobile Manipulators . 52
5.3 Base-Arm Kinematics Plugin . 54
5.4 Redundancy Resolution Service . 56

5.4.1 Grid Generation and Generalized DP Algorithm 56
5.4.2 Flowchart . 58
5.4.3 Example with Two Redundancy Parameters 60

6 Implementation of the Modules 63
6.1 Software Architecture . 63

6.1.1 Base-Arm Kinematics Plugin 63
6.1.2 Redundancy Resolution Service 65

6.2 Test Suites . 66
6.2.1 Test Suite for Base-Arm Kinematics Plugin 67
6.2.2 Test Suite for Redundancy Resolution Service 68

7 Conclusions 69
7.1 Results . 69
7.2 Future Works . 70

Appendix A Calculus of Variations 71
A.1 Principal Problems in Calculus of Variations 71

A.1.1 Fixed endpoint problem . 71
A.1.2 Fixed endpoint constrained problem 73
A.1.3 Fixed endpoint multidimensional problem 73
A.1.4 Isoperimetric problem . 74

Bibliography 75

3

List of Figures

2.1 Diagram depicting the activity hierarchy in a planning problem. . . 9
2.2 Scheme of a trajectory planner followed by a control system. 11
2.3 Panda manipulator TCP proceeding through trajectory waypoints. . 12
2.4 Scheme of a closed-loop control system with trajectory planner. . . 13

3.1 Kinematics chain of a 6-DOF manipulator. 15
3.2 Colormaps of homogeneous grids indicating the value of joint q2. . . 40

4.1 Scheme of a closed-loop control system with optimal trajectory planner. 44
4.2 Two nodes communicating over a topic during a service invocation. 46

5.1 Representation of a building task for cooperative robots. 52
5.2 Model of mobile manipulator with Kinova Mico as robotic arm. . . 53
5.3 Base-arm kinematics plugin applied to a mobile manipulator. 55
5.4 Non-homogeneous grids for different arm joint values. 57
5.5 Node exploration at generic index j. 59
5.6 Node exploration at index 1. 60
5.7 Node exploration inside grid at fixed waypoint. 61

6.1 UML class diagram depicting the design structure of the plugin. . . 64
6.2 UML class diagram depicting the design structure of the service. . . 66

4

Chapter 1

Introduction

1.1 Background
Space exploration of celestial structures is conducted by both unmanned robotic
space probes and human spaceflight. Explorative missions are, generally, very ex-
pensive, performed in hostile environment and extremely risky. Such missions are
often more suited to robots rather than men, due to lower costs and lower risk
factors, but employed systems need to be highly reliable to compensate for human
distance.

On the contrary, the investigation of new areas requires robots able to explore
unfamiliar territories and capable of dexterous manipulations. Suitable robotic
systems for these jobs are those with the ability to proceed on uneven terrains,
handle objects and use tools.

However, future space mission scenarios are shifting from robotic exploration
towards planetary colonization. These scenarios demand robots, either as human
helpers or precursors, capable of supporting construction specific use cases, such as
object manipulation, assembling of large structures, material transportation, terrain
selection and preparation, etc. In addition, since they require physical interaction
with the environment, these tasks are more complex than explorative ones.

In these circumstances, engineers can rely on cooperative robots, which are sys-
tems consisting of multiple robots that can collaborate with each other to accom-
plish specific tasks that individual robotic systems cannot achieve. Although they
grant huge flexibility, the combination of two or more robotic units increases the
complexity of the whole system and, so, the control of the structure.

Mobile manipulators are used in the present dissertation as an example of rep-
resentatively complex robotic systems which are not trivial to control. Basically,
mobile manipulators are systems composed of a moving platform upon which a
robotic arm is installed, so they are very suited for manipulating, transporting and
assembling large structures within constructions.

5

1 – Introduction

Moreover, due to environment asperity, resources available to space robots are
normally very poor. Provided that robots have sufficient autonomy for the mis-
sion and in order to satisfy reliability requirements, the ground segment is much
more suitable for performing optimal planning than the robot on-board systems,
allowing to exploit computational resources at low cost. For this reason, remotely
supervised expeditions are often directed with long distance operational communi-
cations. These communications are characterized by an off-line transmission, which
is a time-delayed data transfer between the ground station and the landed asset.
Commonly, time delays for signal transmission vary from a few minutes to several
hours, thus, control centers have a predefined visibility window in which all sort of
off-line calculations for planning purposes are conducted.

1.2 Focus
When dealing with cooperative robots, and specifically with mobile manipulators,
modern robot control approaches assume that the motion of the mobile platform is
executed first, and, once the moving base is settled, the manipulator activity starts.
From a synergetic point of view, it would be better if the robot acted as a whole
automated system while accomplishing a given objective. This way, instead of
having an assigned task split into two sub-tasks, the operation would be completed
in just one phase, obtaining benefits in terms of performance and execution time.

To make this possible, several problems have to be overcome, such as, how to
command the robot in its entirety, how to efficiently exploit the complexity of the
structure in order to minimize resources depletion, how to take into account every
feasible motion and select the right one, even in case of harsh terrain or large
obstacles. These difficulties are only some of the major challenges that companies
have to deal with when facing up the exploration topic.

Among the companies supporting planetary exploration missions, the Aerospace
Logistics Technology Engineering Company (ALTEC) is the Italian center of ex-
cellence for the provision of engineering and logistics services [1] for the aerospace.
ALTEC is currently developing advanced technologies for ground control centers
to support planning and control of redundant robotic systems, with the aim to
improve the next explorative missions and sustain operations on board the Inter-
national Space Station (ISS).

1.3 Aims and Objectives
The aim of the present dissertation is to contribute to the development of the
aforementioned technologies in the measure of producing software deliverables and
the corresponding documentation.

6

1.4 – Outline

The objective of this discussion is to reach the suggested goal through the following
steps:

1. build a plugin that performs the inverse kinematics of mobile manipulators,
i.e., systems composed of a manipulator mounted on a mobile base

2. generalize a redundancy resolution service and using it in combination with
the aforementioned module to test its application in optimal planning of tra-
jectories

Besides space exploration, the newly developed tools could be employed in several
fields, such as welding (manipulator mounted on a slider), painting, assembling,
or in activities that require the motion in narrow or unsafe areas. Thanks to
the exploitation of possible redundant degrees of freedom, these tools will provide
globally-optimal ways to perform the assigned operations, offering the possibility
to choose the quality metrics (e.g., energy consumption) to be optimized during
the execution of the task.

1.4 Outline
Next chapters are arranged as follows.

Chapter 2 introduces the robot planning problem from the control point of view
and offers a depiction of the workflow of operations executed during the planning
of robotic tasks.

Chapter 3 investigates the most recent stage in the development of redundancy
resolution tools and techniques, and explores the inverse kinematics problem pre-
senting two procedures to achieve the globally-optimal solution.

Chapter 4 analyzes the main problems when dealing with the creation of an
optimal planner, examining implementation aspects as well.

Chapter 5 shows the methods applied to solve the inverse kinematics of mobile
manipulators, and the building of an algorithm that collects information from the
previous plugin in order to compute the globally-optimal path for the assigned task.

Chapter 6 discusses the results acquired from tests performed on the software
packages implementing inverse kinematics and optimal path planning.

Chapter 7 reviews the objectives of the dissertation and checks if they have been
completely attained. At last, some suggestions for future works are provided.

7

8

Chapter 2

Robot Planning

2.1 The Planning Problem
In robotic exploration, missions are assigned to robotic systems rather than human
spaceflight. Robots can be asked to carry out diverse tasks, such as to reach a
location, to handle materials, to utilize tools, to grasp or release objects, to exert
forces or torques, etc. These missions share the common problem of planning the
robot motion in every single aspect. The planning problem can be decomposed into
a number of activities categorized in a hierarchical structure [2].

Figure 2.1: Diagram depicting the activity hierarchy in a planning problem.

9

2 – Robot Planning

Objective

At the highest level in the hierarchy, there is the objective. Once a mission is
designated, then a goal is established and the objectives to achieve that goal are
defined. For instance, if the appointed mission is the exploration of new areas, one
goal might be the discovery of buildings or constructions and the objective would
be the reaching of a specified location using a robotic system. Thereby, for a given
goal, one or more objectives are delineated.

Task

Each objective is characterized by at least one task that has to be executed. A
task defines a group of actions or operations to be accomplished for the attainment
of the objective. For instance, some tasks corresponding to the previously defined
objective would be the conduction of the robot to the location or the acquisition
and analysis of data received by the payloads mounted on it.

Operation

For a given task, the operation defines one of the single activities the task is com-
posed of. For instance, if the assigned task is to lead the robot to a location, the
corresponding operations might be the motion of a platform on a particular terrain,
or the manipulation of an arm to remove possible obstacles placed on the route.

Move

Often, operations require the motion of some part of the considered system. The
move action defines a single motion that must be executed to perform an operation.
For instance, manipulation operations may request the motion of parts of the arm,
the attaining of a pose, or the grasping act by means of the manipulator’s hand.

Path

The elementary move can be decomposed in one or more geometrical paths, if no
time law is defined, or trajectories, if a time law and kinematic constraints are
defined. For instance, in order to move a robotic arm end-effector a trajectory
must be first determined, so that the manipulator TCP can be moved along the
discretized path with certain velocity and acceleration constraints.

Reference

At the lowest level in the hierarchy, there is the reference. It consists of the data
vector obtained from the kinematic inversion once the path or trajectory is sampled.
The reference signal is, at last, supplied to motors for their control.

10

2.2 – Path Planning and Trajectory Planning

2.2 Path Planning and Trajectory Planning
One of the most common robotics tasks is the motion of the robot end-effector
along a prescribed path. The fulfillment of this action involves the creation of a
trajectory planner that computes, at each time sample, the reference needed by the
controller to regulate the motion of the system. The trajectory planner is a software
“node” that, given the desired path, computes the joint reference values (for the
controller block), according to the robot kinematic constraints (max velocity, etc.)
and dynamic constraints (max accelerations, max torques, etc.) [2].

Figure 2.2: Scheme of a trajectory planner followed by a control system.

Trajectory planners make use of different algorithms to compute the reference vec-
tor. Typically, there are two kinds of algorithms used for building a trajectory
planner: path planning algorithms and trajectory planning algorithms.

For the sake of clarity, it is worth making a distinction among path planning
and trajectory planning, but first, it is necessary to define the configuration space.

Given a robot with n-links, a configuration is a complete specification of the
robot location, generally, by means of a set of joint coordinates q. The set of all
possible configurations is known as the configuration space, or joint space. Given a
robot with n-links and its configuration space, the subset of the special Euclidian
group SE(3) = R3×SO(3), where the robot motion takes place, is called workspace
of the robot, or task space. The workspace might contain obstacles.

Path planning is the task of finding a path in the configuration space, that is,
finding a function which connects an initial configuration and a final configuration,
that does not collide any obstacle as the robot traverses the path.

Trajectory planning is the task of finding a trajectory in the configuration space,
i.e., a path parametrized with time. As a result, trajectory planning implies the
possibility to make specifications on the kinematic constraints, such as velocity or
acceleration.

11

2 – Robot Planning

Path planning algorithms generate collision-free paths through configuration space.
Obstacles are converted (with the aid of a collision checker) from the workspace to
configuration space, and geometric algorithms are used to search through configu-
ration space for a path, from start to goal, that does not collide with any obstacles
(including robot self-collisions). Once a geometric path is found, it has no timing
element. Since the robot could move along the path with different speed patterns,
there are infinite trajectories per path. Trajectories can be seen as paths endowed
with time information, made up of a set of waypoints, i.e., discrete points spread
across the path, often at a fixed time interval. The scope of trajectory planning
algorithms is to generate trajectories segments between two consecutive waypoints,
taking into account physical constraints such as collision avoidance, joint limits,
velocity limits, acceleration limits, jerk limits, torque bounds, etc.

Figure 2.3: Panda manipulator TCP proceeding through trajectory waypoints.

12

2.2 – Path Planning and Trajectory Planning

Kinematic Inversion

Robot planning for space exploration is executed by ground control centers and
robotic systems are remotely controlled from afar. The executed trajectory x(t)
is computed on board the robot and sent to the ground control center. There,
the robot planning begins with the computation of an optimal path, starting from
the last position received from the robot. The resulting geometric path xr(λ),
calculated by the path planner, does not depend on time. Indeed, λ is a variable
used to parametrize the path x independently from its variation with time. The
following step is to feed in the path xr(λ) to the trajectory planner, which returns
a discrete trajectory in the time variable xr(t). Ultimately, the inverse kinematics
for that robotic system is computed from xr(t) and the calculated configuration
qr(t) is sent back to the robot.

Figure 2.4: Scheme of a closed-loop control system with trajectory planner.

An alternative scheme to the previous one has the blocks Trajectory Planner and
Inverse Kinematics swapped. While with scheme in Figure 2.4 the trajectory plan-
ning derives from a conservative process, the alternative grants the satisfaction of
kinematic and dynamic constraints after the planning is performed.

One big challenge in this context is the resolution of the inverse kinematics prob-
lem. When performing kinematic inversion on compound robots, the evaluation of
the reference vector qr(t) becomes a hard process. Sometimes, due to the com-
plexity of the problem, heavy computational loads are required to solve the inverse
kinematics, implying a lot of time consumed for this operation. Provided with the
most advanced technologies, ground centers take care of robot planning, minimiz-
ing the time spent in numerical calculations thanks to a huge computational power
availability. Moreover, in space exploration missions, a priori information about the
environment can be obtained, which is another reason in favor of offline planning
and the usage of offline planners.

13

14

Chapter 3

State of the Art on
Redundancy Resolution

3.1 Robotic Manipulators
A robotic manipulator, or robotic arm, is a machine capable of automatically car-
rying out a series of actions. Many robotic arms are designed with shape that
resembles a human arm, consisting of a shoulder, an elbow and a final wrist. Con-
nected to the wrist there is an end-effector, or robotic hand, that is a tool employed
in the handling of devices or instruments.

Robotic manipulators have a mechanical structure, modeled by means of links
or bars, driven by joints such as electrical actuators. This structure is described by
geometric entities, called kinematic chains, that are characterized by a number of
links connected by joints. Kinematic chains are either open chains, if there is only
one link between any two joints, or closed chains, if there is more than one link
between two joints, and manipulators typically fall into the first category.

Figure 3.1: Kinematics chain of a 6-DOF manipulator.

15

3 – State of the Art on Redundancy Resolution

Joints, or kinematic pairs, represent connections between two bodies that impose
constraints on their relative motion. Depending on the number of constraints im-
posed by the joint, they are able to grant one or more degrees of freedom (DOF)
to the paired bodies. In general, supposing that only 1-DOF kinematic pairs are
employed, the number of degrees of motion (DOM) corresponds to the number of
joints of the robot. As this number grows, the robot acquires a greater ability to
move freely in the space, i.e., there are multiple ways to fulfill a given task.

The tasks assigned to a robotic arm can be disparate. For instance, many ordi-
nary tasks involve the ‘pick and place’ action; basically, the robotic hand, usually
provided with a gripper, grabs an object, which is taken from a location and brought
to another one. Other common tasks are those required in assembly operations,
welding, painting, drilling, handling of equipment, which can be more or less com-
plicated. Whatever task will be assigned to a robot, a number of degrees of freedom
can always be determined for that task. This quantity represents the number of
independent variables that characterize or are required by the task reference frame.

Every task requires the motion of the robot. To this purpose commands are
sent to the robotic system, but before giving any instruction to a real-world robot,
virtual simulations are performed. Using simulation tools to design robots is a
simple and cheap method to build complex robots [3], at least virtually. A robot
model that emulates real-world processes is built into a virtual environment so to
test any action that the actual robot will execute.

The tool center point (TCP) is adopted as a reference to move the robot end-
effector inside the simulation environment. It is an ideal point chosen on the ma-
nipulator end-effector, usually in the middle of it, that is also used to set a target
point in the task space, or Cartesian space. The number of independent variables in
the joint space that describe the TCP reference frame in the task space determines
the number of degrees of freedom of the TCP.

It is comprehensible that, while the number of DOM of the robot can be as
large as desired, the number of DOF of the task can only assume fixed values.
For instance, a task for which it is required to fix the position and orientation
of a manipulator end-effector, in the 2-dimensional plane, is characterized by a
number of DOF equal to 3; while, the same task executed in the 3-dimensional
space is characterized by a number of DOF equal to 6. Other examples of typical
manipulator tasks are: positioning the end-effector in the 2D plane (DOF = 2),
orienting the end-effector in the 2D plane (DOF = 1), positioning the end-effector
in the 3D space (DOF = 3), orienting the end-effector in the 3D space (DOF = 3).
Frequently, more complex tasks are assigned to a manipulator such as to follow a
task space trajectory. A common case is that of a trajectory in the 3D space
with constrained roll/pitch orientation, for which the number of DOF is equal to 5
instead of 6. Ordinary examples are laser cutting, painting, welding, etc.

16

3.2 – Redundant Robots

3.2 Redundant Robots
When a task with DOF m is assigned to a robot having DOM n, three main
conditions can be identified.

Case 1 n < m
Case 2 n = m
Case 3 n > m

Table 3.1: Redundancy table

The first case deals with robots whose DOM does not allow to perform the specified
task, consequently, it is not relevant to any application.

The second case, the most common one, is associated with non-redundant robots,
that is, robots having a robot DOM that matches the task DOF. The number
of variables required for the task is equal to the number of variables the TCP
is provided. This situation happens, for instance, when a 6-revolute-joints (6R)
robotic manipulator is employed to draw some 3-dimensional task space trajectory
with constrained orientation.

The third case shows the condition where the DOM of the robot is higher than
the task DOF. It represents a condition for which the robot is said to be redundant
with respect to the assigned task: the robotic system is able to select a unique
solution from a set of infinite alternatives to accomplish the given task. An exam-
ple of this condition is what happens when a 7-revolute-joints (7R) manipulator
is employed to draw some 3-dimensional task space trajectory with constrained
orientation. This is the case of utmost relevance for real applications, since, once
fixed the task space as a 3D 6-DOF space, robots having a DOM higher than 6 are
able to exploit their redundancy capability in order to achieve better performance
according to some cost functional.

The measure of the redundancy capability of a robot requires the introduction
of a new concept: the degree of redundancy. Given a prescribed task with DOF m,
the degree of redundancy r is the number of extra degrees of freedom the robot is
provided with respect to those necessary to fulfill that task:

r = n−m (3.1)

17

3 – State of the Art on Redundancy Resolution

3.3 Kinematic Inversion
The manipulator forward kinematic function f [4] is a non-linear vector function
which relates a set of n joints coordinates q to a set of m end-effector coordinates:

x = f(q) (3.2)

One of the primary issues of practical interest in manipulator kinematics is deter-
mining the inverse kinematic function f−1. This function computes one or more
sets of joint variables q (angles if revolute joints, linear displacements if prismatic
joints) that place the manipulator end-effector in a desired position and orientation
x, also known as pose:

q = f−1(x) (3.3)

The process that aims at finding such a point in the joint space is termed kinematic
inversion. For non-redundant manipulators, there is a bounded set of distinct
configurations which satisfy (3.3). For redundant manipulators, there is an infinite
number of configurations which satisfy the relation in (3.3).

3.3.1 Resolution Methods
From (3.3), it is clear that the inverse kinematics problem for a manipulator requires
the resolution of a set of nonlinear equations [5]. For a solution to exist, the
desired position and orientation of the end-effector must lie in the workspace of the
manipulator. In cases where solutions do exist, they often cannot be determined
in a closed form, so numerical methods are required. Several techniques [6] or a
combination of them can be used to solve the inverse kinematics of a manipulator.
Basically, they are divided into analytical methods and numerical methods.

Analytical Methods

An analytic solution to the inverse kinematics problem is a closed-form expression.
Closed-form solutions are desirable because they are, in general, faster than nu-
merical solutions and immediately identify all possible results. For instance, when
manipulators are not provided of a spherical wrist, that is, when the three wrist
axes of rotations do not intersect at one point, the inverse kinematics solutions
for the shoulder (and the elbow, if any) can be easily obtained through a simple
analytic formulation. The drawback of this method is that it does not guarantee a
solution for generic structures, since it is robot dependent. Also, even if a closed-
form solution existed, it would get more and more complex with the growth of the
number of DOM. In general, analytic solutions can only be obtained for 6-DOM
systems with specific kinematic structures [5], so most industrial manipulators have
such structures because they permit more efficient software coordination.

18

3.3 – Kinematic Inversion

Numerical Methods

Unlike analytical methods, numerical methods are not robot dependent, and can
be applied to any kinematic structure. The disadvantage of numerical solutions
is that they can be slower than analytical solutions and, in some cases, they do
not allow the computation of all the possible solutions. Among numerical meth-
ods, there are iterative approaches that solve the kinematics problem by successive
approximations so to obtain progrssively better solutions. Some worth mentioning
iterative methods [6] are the following:

• Jacobian inversion technique

+ computationally fast
+ works fine with simple or complex structures
– singular configurations cannot be handled as the inversion of the Jacobian

is undefined
– unpredictable joint configurations

• Jacobian transpose technique

+ simpler calculations with respect to the previous method, since matrix
inversion is not required

– needs many iterations until convergence in certain configurations
– unpredictable joint configurations

• Optimization based techniques

+ explicit optimization criterion provides control over manipulator configu-
rations

– numerical problems at singularities
– non conservative

• Cyclic coordinate descent (CCD)

+ singularity-free and suitable for real-time applications
– does not work well with complex structures

• Genetic programming

+ useful for complex and independent motion control
– very slow, in general

Each of them has their own advantages and disadvantages, but, being numerical
methods, their solution is just an approximation of the analytic one. Furthermore,
in some cases the analytic solution is not the true inverse kinematics solution, but
an approximation as well. That is why, if available and computationally efficient,
an analytic solution is always preferred over a numerical solution.

19

3 – State of the Art on Redundancy Resolution

3.3.2 Inverse Kinematics of Redundant Manipulators
Over the last decades, a large body of literature has appeared concerning the in-
verse kinematics resolution of redundant robots. Many papers have been published
discussing local and global approaches for the optimal resolution of the problem.

Some papers cover the problem from an engineering point of view, by means of
locally-optimal techniques.
Carignan [7] used the energy consumption as cost function to search for a solution
to the problem.
Nedungadi [8] developed a locally-optimal algorithm focusing on drive-forces.
Kazerounian [9] showed the difference between locally-optimal and globally-optimal
control approaches.

Some other papers cover the problem applying globally-optimal techniques, ex-
ploiting procedures proper of the calculus of variations.
Nakamura [10] has solved the globally-optimal control problem by minimizing the
norm of the joint velocities vector over the entire trajectory.
Hanafusa [11] extends the previous work to obstacle avoidance.
Kyriakopoulos [12] tries to solve the problem by minimizing the jerks, the time
derivative of the joint accelerations.

3.3.3 Inverse Kinematics of Non-Redundant Manipulators
For 6-DOM manipulators to which a 6-DOF task is assigned, the system of equa-
tions (3.3) to solve is square, that is, it has a number of equations equal to the
number of unknowns. This implies that, for non-redundant manipulators, none,
one or multiple solutions can be found. Literature related to the inverse kinematic
problem of non-redundant robots is, now, consolidated from both the mathematical
and engineering point of view.

Papers that cover the problem from a mathematical point of view, investigate
the maximum number of achievable kinematics solutions.
The problem of finding all possible solutions has been addressed by Tsai and Mor-
gan [13], who applied homotopy map techniques to the kinematic inversion of 6R
and 5R arms and developed a numerical method guaranteed to find all isolated
solutions. An application example of this homotopy map method proved that the
number of real inverse kinematics solutions could be as high as 12.
Duffy and Crane [14] have shown that the inverse kinematic problem of a 6-DOM
arm can be expressed in terms of a 32nd-degree polynomial in one joint variable.
Some work by Lee and Liang [15] reduces the degree of the polynomial to 16. This
result puts an upper bound of 16 on the number of distinct configurations by which
a 6-DOM general manipulator can achieve a given end-effector pose.
Thanks to Manseur and Doty [16] the previous theoretical analysis has been prac-
tically verified on a 6R manipulator, thereby closing the proof that 16 is indeed the
maximum number of inverse kinematics solutions for 6-DOM manipulators.

20

3.4 – Redundancy Resolution

3.4 Redundancy Resolution
The redundant degrees of freedom can be used to optimize manipulator properties
or perform additional tasks. As a result, much previous work in redundant manip-
ulator inverse kinematic analysis has been closely tied to the redundancy resolution
process, where algorithms are developed to determine the motion of the joints in
order to achieve end-effector trajectory control. The common thread is that redun-
dancy should be resolved in such a way that the robot optimizes some performance
index while carrying out its given task.

At the most basic level, researchers have proposed redundancy resolution meth-
ods involving optimized solutions to the kinematic inversion. The complexity of this
problem is highly dependent on the geometry of the manipulator, and the inverse
kinematics solution is, usually, not unique. The exact number of solutions depends
on the manipulator architecture as well as the desired end-effector trajectory.

3.4.1 Locally-Optimal Inverse Kinematics
Many previous investigations [17, 18, 11, 19] have focused on the linearized first
order instantaneous kinematic relation between end-effector velocities and joint
velocities:

ẋ = J(q) q̇ (3.4)
where ẋ ∈ Rm and q̇ ∈ Rn are, respectively, the task space and joint space velocity
vectors, while J(q) = ∂f/∂q ∈ Rm×n is the analytic Jacobian of the manipulator.
Once joint velocities q̇ are known, it is possible to compute the corresponding joint
positions q via numerical integration. Eventually, appropriate algorithms are used
to minimize the errors introduced by the numerical integration [20].

Since a redundant manipulator is employed, system (3.4) is not square, i.e., it
has more unknowns than equations, or, more rows than columns. Thus, set ẋ, the
aforementioned system admits infinite solutions in q̇.

Despite the complexity, a solution to this problem can be obtained if, besides
the system of equations (3.4), an additional requirement is considered: a common
choice is the optimization of a cost function g.

Given ẋ, the question is how to find the solution vector q̇ that, at the same
time, satisfies (3.4) and minimizes the following quadratic cost function:

min
q(t)

g(q̇) = 1
2 q̇|W q̇

s.t. ẋ = J(q) q̇

(3.5)

where W ∈ Rn×n is a weight matrix, symmetric and positive definite, whose ele-
ments reflect the relative cost of utilizing each joint, for instance, in terms of energy
or time. The choice of a quadratic cost function grants a closed-form solution to
the problem.

21

3 – State of the Art on Redundancy Resolution

One way to solve (3.5) is by means of the Lagrange multipliers method: a strategy
for finding the local maxima and minima of a function g(q̇) subject to equality
constraints h(q̇) = 0, i.e., subject to the condition that one or more equations have
to be satisfied exactly by the chosen values of the variables.

Introducing the Lagrange multipliers vector λ, which allows to incorporate con-
straint (3.4) into a wider cost function, it is possible to study the Lagrange function
(or Lagrangian) defined by:

L(q̇, λ) = g(q̇) + λ · h(q̇) (3.6)

which, in this specific case, becomes:

L(q̇, λ) = 1
2 q̇|W q̇ + λ|(ẋ− J(q) q̇) (3.7)

As a consequence, the sought solution has to satisfy the following two conditions:

∂L
∂q̇

|

= 0

∂L
∂λ

|

= 0
(3.8)

By merging their results, a new relation is obtained:

q̇ = W −1J|(q)λ (3.9)

which, combined with (3.4), gives:

ẋ = J(q)W −1J|(q)λ (3.10)

Assuming J(q) full rank, then J(q)W −1J|(q) is a square full rank matrix and,
thus, invertible. Solving the previous expression in λ:

λ = (J(q)W −1J|(q))−1ẋ (3.11)

and substituting in (3.9), it yields to:

q̇ = W −1J|(q)(J(q)W −1J|(q))−1ẋ (3.12)

The previous equivalence is also written as:

q̇ = J †
W (q)ẋ (3.13)

where J †
W (q) is the weighted pseudoinverse of the manipulator Jacobian J(q),

which instantaneously minimizes the quadratic form q̇|W q̇ at configuration q.

22

3.4 – Redundancy Resolution

The above solution can be generalized by adding another quantity to the right-hand
side of the equality, as stated by the fundamental theorem of linear algebra [21]:
given a matrix A, any vector v can be expressed as the sum of two orthogonal
vectors, one in the range of A|, and one in the null-space of A.
On the trail of this, the general form of the solution to problem (3.5) is:

q̇ = J †
W (q)ẋ + (I − J †

W (q)J(q)) ν (3.14)

or, in a simpler form:
q̇ = J †

W (q)ẋ + PW ν (3.15)

The term PW = (I − J †
W (q)J(q)) projects an arbitrary vector ν ∈ Rn onto the

null-space of the manipulator Jacobian matrix J(q). Physically, any motion in the
null-space is an instantaneous motion of the manipulator joints which causes no
movement of the end-effector. Many redundancy resolution objective functions can
be developed as potential functions, and ν might be the gradient of that function.
In general, vector ν is conveniently chosen to achieve further objectives, such as
obstacle avoidance or to prevent kinematic singularities.

Analogously to previous calculations, it is possible to show that equation (3.14)
is the solution of the more general formulation of (3.5):

min
q(t)

g(q̇) = 1
2 (q̇ − ν)|W (q̇ − ν)

s.t. ẋ = J(q) q̇

(3.16)

It is significant to note that the particular (3.13) and generalized (3.14) solutions of
the optimization problem bring to a local minimization of the norm of q̇, because
they do not take into account the time evolution of q along the task space trajectory.
A locally-optimal solution may not be suitable for some kinds of tasks: minimizing
the norm of the joint velocities vector at a given configuration does not guarantee
its minimal value along the whole path.

23

3 – State of the Art on Redundancy Resolution

3.4.2 Globally-Optimal Inverse Kinematics
Another approach for the resolution of redundant manipulator inverse kinematics
is through global optimization of the cost function [22, 10, 23, 9]. Such a procedure
exploits the redundancy of the robot optimizing an integral performance index.
Additional constraints assures the fulfillment of forward kinematics as well.
The problem can be summarized in the following way:

min
q(t)

G =
∫︂ t1

t0
g(t, q, q̇)dt

s.t. x = f(q)
(3.17)

where G is the objective function, t0 and t1 are, respectively, the initial and final
values of the time interval under observation, and g(t, q, q̇) is a generic cost function
to be minimized. In (3.17), constraints are represented by algebraic equations, so
it can be solved by exploiting the Euler-Lagrange equation.

A different formulation of (3.17) can be provided, if forward kinematics (3.2),
differential kinematics (3.4), and equation (3.14) are considered, supposing W equal
to the identity matrix I and substituting ν = u:

min
q(t)

G =
∫︂ t1

t0
g(t, q, q̇)dt

s.t. q̇ = J †(q)ẋ + PW u

(3.18)

The reason behind this choice is justified by the fact that g(t, q, q̇) is a generic cost
function, so any possible pseudoinverse of J can be used, as well as a non-weighted
pseudoinverse given by setting the weight matrix W = I.

One remarkable difference between the previous systems is the constraints for-
mulation: system (3.17) is composed by algebraic equations, while system (3.18) is
constructed with differential equations. It is interesting to notice how constraints in
(3.18) can be read as the equations composing a non-linear time-varying dynamical
system, where q is the state vector and u is the input (or control) vector.

Keeping in mind that the selection of vector u is arbitrary, it is possible to use
this quantity as decision variable for the minimization of performance index G:

min
u(t)

G =
∫︂ t1

t0
g(t, q, q̇)dt

s.t. q̇ = J †(q)ẋ + PW u

(3.19)

This latter case can be worked out with the help of Pontryagin’s maximum principle.
Besides the different formalization of (3.17) and (3.19), they conceptualize the

same optimization problem: the former involves the minimization of performance
index G with respect to all the possible joint space trajectories q, while the latter
minimizes G about all the possible velocity null-space trajectories u.

24

3.5 – Redundancy Resolution with Euler-Lagrange Equation

3.5 Redundancy Resolution with Euler-Lagrange
Equation

The Euler-Lagrange equation is a second-order partial differential equation whose
solutions are the functions that make a given functional stationary. Because a
differentiable functional is stationary at its local maxima and minima, the Eu-
ler–Lagrange equation is useful for solving optimization problems in which, given
some functional, one seeks the function minimizing or maximizing it.

As long as system (3.17) is concerned, it is worth remarking that it represents
an n-DOM redundant manipulator inverse kinematic problem, subject to algebraic
equality constraints along a prescribed path specified by the forward kinematics f ,
with the goal to minimize some integral functional G for all the possible joint space
trajectories q.

3.5.1 Euler-Lagrange Equation
In a similar way to what has already been done for locally-optimal inverse kine-
matics resolution procedure, a Lagrangian function is introduced:

L(t, λ, q, q̇) = g(t, q, q̇) + λ|(x− f(q)) (3.20)

Thanks to λ ∈ Rm, the Lagrange multipliers vector, it is possible to extend the
cost function g comprising the forward kinematic constraint. Therefore, by calling
G∗ the augmented objective function, the problem assumes the compact form:

min
q(t)

G∗ =
∫︂ t1

t0
L(t, λ, q, q̇)dt (3.21)

and Euler-Lagrange first-order necessary condition can be applied:

Lq(t, λ, q, q̇)− d

dt
Lq̇(t, λ, q, q̇) = 0 (3.22)

in which Lq(t, λ, q, q̇) and Lq̇(t, λ, q, q̇) are the partial derivatives of L(t, λ, q, q̇)
with respect to q and q̇.

3.5.2 Analysis with Euler-Lagrange Equation
In order to let the non-constrained optimization problem (3.21) be equivalent to
the constrained optimization problem (3.17), forward kinematic constraints have
to be considered besides equation (3.22). Hence, the optimal solution has to satisfy
the set of differential algebraic equations (DAE):

Lq(t, λ, q, q̇)− d

dt
Lq̇(t, λ, q, q̇) = 0

x(t) = f(q(t))
(3.23)

25

3 – State of the Art on Redundancy Resolution

This set of DAEs is composed of n+m equations (characterized by (3.22) and (3.2),
respectively) in n + m unknowns (represented by q ∈ Rn and λ ∈ Rm). Moreover,
this system of equations can be reconducted to a set of only algebraic equations.
Taking into account equation (3.22), applying definition (3.20) and simplifying the
results, the following equation is obtained:

∂g

∂q
− λ|∂f(q)

∂q
− d

dt

(︄
∂g

∂q̇

)︄
= 0 (3.24)

Bearing in mind the definition of manipulator analytic Jacobian and transposing
both members of the previous equation, it follows that:(︄

∂g

∂q

)︄|

− J|λ− d

dt

(︄
∂g

∂q̇

)︄|

= 0 (3.25)

Eventually, setting:

gq =
(︄

∂g

∂q

)︄|

gq̇ =
(︄

∂g

∂q̇

)︄| (3.26)

equation (3.25) becomes:
dgq̇

dt
− gq + J|λ = 0 (3.27)

At this point, adopting as cost function a simple quadratic law, e.g., the weighted
norm of the joint velocities vector q̇:

g(t, q, q̇) = 1
2 q̇|W q̇ (3.28)

equations (3.26) turn into:
gq = 0

gq̇ = W q̇
(3.29)

and, thus, equation (3.27) transforms into:
W q̈ + J|λ = 0 (3.30)

Assuming that matrix W is invertible, and by performing a pre-multiplication of
W −1 in the previous expression, equation (3.30) develops into:

q̈ + W −1J|λ = 0 (3.31)

Then, recalling the definition of pseudo-inverse J †
W = W −1J| (J W −1J|)−1 and

the definition of weighted orthogonal projector PW onto the null-space of J(q):
PW = (I − J †

W J) (3.32)
by multiplying equation (3.31) by this quantity, it follows that:

PW q̈ + PW W −1J|λ = 0 (3.33)

26

3.5 – Redundancy Resolution with Euler-Lagrange Equation

In turn, after some simple computations, equation (3.33) comes to be:

PW q̈ +
(︂
W −1J| − J †

W J W −1J|
)︂

λ = 0 (3.34)

which can be further spread into:

PW q̈ +
(︃

W −1J| −W −1J|
(︂
J W −1J|

)︂−1
J W −1J|

)︃
λ = 0 (3.35)

that, eventually, takes a simpler form:

PW q̈ = 0 (3.36)

In going from (3.31) to (3.36) it is assumed that J has full rank and its inverse
J †

W = W −1J|(J W −1J|)−1 exists. At kinematic singularities, this assumption is
false. In practice, optimal joint space trajectories may or may not contain singular
configurations, so they cannot be completely ignored.

Returning to system (3.23), for what concerns the manipulator forward kinemat-
ics, it is possible to work out a second-order form by deriving twice with respect to
time:

ẍ = J̇(q, q̇)q̇ + J(q)q̈ (3.37)

In analogy to the first-order inverse kinematics, a possible solution to the kinematic
inversion of this form is given by:

q̈ = J †
W

(︂
ẍ− J̇ q̇

)︂
+ PW α (3.38)

in which α is an acceleration vector whose projection onto the null-space of the
Jacobian does not provide any contribution to the motion of the end-effector.
Here again, pre-multiplying PW to both sides of (3.38):

PW q̈ = PW J †
W

(︂
ẍ− J̇ q̇

)︂
+ PW PW α (3.39)

and by exploiting the following orthogonal projector properties:

PW J †
W =

(︂
I − J †

W J
)︂

J †
W = 0

PW PW =
(︂
I − J †

W J
)︂ (︂

I − J †
W J

)︂
=
(︂
I − J †

W J
)︂

= PW

(3.40)

it results that:
PW q̈ = PW α (3.41)

which can be further simplified by taking advantage of equation (3.36):

PW α = 0 (3.42)

27

3 – State of the Art on Redundancy Resolution

One considerable remark is that the previous outcomes are specifically retrieved for
g in (3.28), i.e., for a quadratic cost function. Then, gathering results (3.38) and
(3.42), the system of equations evolves into:

q̈ = J †
W

(︂
ẍ− J̇ q̇

)︂
(3.43)

In order to achieve (3.43), both Euler-Lagrange and forward kinematics expressions
have been applied. As a result, it is completely equivalent to the starting system of
DAEs (3.23). Moreover, (3.43) is a system consisting of n second-order differential
equations, which can be converted into 2n first-order differential equations.

In addition to this, redefining the joint positions vector ξ = q and joint velocities
vector ζ = ξ̇ = q̇, (3.43) changes into:

ξ̇ = ζ

ζ̇ = J †
W

(︂
ẍ− J̇ζ

)︂ (3.44)

It is worth pointing out that (3.44) is a set of non-linear differential equations. For
this reason, a unique solution to (3.44) is not granted, such as in the linear case,
and multiple solutions may appear, even for fixed boundary condition values.

3.5.3 Euler-Lagrange Boundary Conditions
The resolution of a system made-up of 2n equations requires as many boundary
conditions. The optimality of the solution to problem (3.17) strictly depends on
the choice of these conditions. As mentioned in Appendix A , calculus of variations
imposes “natural” boundary conditions for the computation of the optimal solu-
tion. Moreover, in some circumstances, “forced” boundary conditions are utilized,
providing sub-optimal solutions to the optimization problem: although they guar-
antee the fulfillment of the forward kinematics, higher values of performance index
are achieved. It is worth noting that the fulfillment of natural boundary conditions
is only a necessary condition to the optimality of the solution, since the integration
of (3.44) with these conditions may lead to a sub-optimal solution as well.

The following discussion presents some study cases for different Euler-Lagrange
boundary conditions, for which mathematical details can be found in Appendix A.

Case 1: Free Endpoints

The first case studied is the one with the minimum number of imposed conditions.
In this situation, the only requirement on the joint position values is that, at times t0
and t1, they result in the end-effector position specified by the kinematic constraints
in (3.17):

x(ti) = f (q(ti)) , ti = {t0, t1} (3.45)
which can be put in the implicit form:

Sk(q, ti) = 0, k = 1, . . . , m, ti = {t0, t1} (3.46)

28

3.5 – Redundancy Resolution with Euler-Lagrange Equation

This constraint formulation is legitimate considering the vectorial nature of the
manipulator kinematic equations. It may also be convenient to look at equations
(3.46) from a geometric point of view. These non-linear equations represent m
hypersurfaces in the n-dimensional joint space.

Since none of the joint positions are prescribed at these values, then δq(ti) no
longer vanishes in equation (A.15). In order to satisfy equation (A.15), the following
condition should be met:(︄

∂g

∂q̇(ti)

)︄|

δq(ti) = 0, ti = {t0, t1} (3.47)

Clearly, the joint position values q(ti) should satisfy both (3.46) and (3.47) at any
given time instant ti: in (3.46) joints q(ti) are represented by points onto the hy-
persurfaces Sk, while (3.47) implies that variations δq(ti) must be tangent to those
hypersurfaces. Recalling that the gradient of a surface is a vector orthogonal to it
in each point belonging to that surface, it follows that δq(ti) has to be orthogonal
to all the gradients of each hypersurface Sk, and, moreover, it will be orthogonal
to a linear combination of these gradients:

∂g

∂q̇(ti)
=
(︄

∂Sk(q, ti)
∂q(ti)

)︄|

p (3.48)

where p ∈ Rm is a constant vector and the term in brackets is the Jacobian matrix
of the manipulator at boundary time ti. Equation (3.48) can be, thus, simplified
in:

∂g

∂q̇(ti)
= J|(ti)p (3.49)

Equation (3.49) can be further developed by exploiting (3.28):

W q̇(ti) = J|(ti)p (3.50)

otherwise written as:
q̇(ti) = W −1J|(ti)p (3.51)

In addition, by use of the first-order differential kinematics (3.4) of the manipulator:

ẋ(ti) = J|(ti)q̇(ti) (3.52)

and substituting equation (3.51) into (3.52):

ẋ(ti) = J(ti)W −1J|(ti)p (3.53)

an expression of p is, so, obtained:

p =
(︂
J(ti)W −1J|(ti)

)︂−1
ẋ(ti) (3.54)

29

3 – State of the Art on Redundancy Resolution

This newly found expression can be replaced into (3.51) to generate:

q̇(ti) = W −1J|(ti)
(︂
J(ti)W −1J|(ti)

)︂−1
ẋ(ti) (3.55)

which is, finally, reduced to:

q̇(ti) = J †
W ẋ(ti), ti = {t0, t1} (3.56)

Equation (3.56) is immediately recognized to be the least square solution of joint
velocities for the specified boundary velocities q̇(t0) and q̇(t1). This equation is
referred to as the natural boundary condition (or, free boundary condition) and
should be satisfied at both t0 and t1.

The set of differential equations (3.44) and the natural boundary condition (3.56)
together define a system of second-order differential equations with split boundary
conditions (i.e., at t0 and t1) on velocities. The solution to this boundary value
problem (BVP) guarantees a minimum value for the objective function (3.18) for a
given trajectory.

Case 2: Imposed Initial Joint Position Values

When the joint positions are specified at the beginning of the trajectory, then
δq(t0) is zero and the natural boundary condition exists only at the final time t1.
Therefore, the boundary conditions corresponding to the set of differential equations
(3.44) are:

q(t0) = qs

q̇(t1) = J †
W ẋ(t1)

(3.57)

It is important to observe that binding the manipulator initial configuration per-
mits to find only a sub-optimal solution: the research of the minimum value of the
objective function is not done anymore into the space of all possible joint space
trajectories, but by searching into a subspace of it, i.e., into the space of all the
possible joint space trajectories that start with a given manipulator initial config-
uration. As a result, the value of the objective function is expected to be larger
than the one in Case 1.

Case 3: Imposed Initial Joint Position and Velocity Values

A particular case presents when both joint positions and joint velocities at time
t0 are given. Here, none of the two natural boundary conditions is applied and it
becomes an initial value problem (IVP) with boundary conditions:

q(t0) = qs

q̇(t0) = J †
W ẋ(t0)

(3.58)

30

3.5 – Redundancy Resolution with Euler-Lagrange Equation

Once again, a sub-optimal solution is reached. However, since the natural boundary
condition at t1 is ignored, the resulting path is a “weak” minimum. The “strong”
minimum solution, which can be seen in Case 2, is achieved by a sudden jump
from the imposed joint velocities (3.58) to those dictated by the natural boundary
conditions (3.56). Such a discontinuity, q̈ = ∞, is physically impossible for the
manipulator dynamics, so the best strategy is to choose initial joint velocities as
close as possible to those determined by the natural boundary conditions.

Case 4: Imposed Joint Position Values at Both Boundaries

When both initial and final joint positions are assigned, no natural boundary con-
dition is defined and the forced boundary conditions are simply split at the initial
time and the final time:

q(t0) = qs

q(t1) = qf

(3.59)

A conservative solution in the joint space can be reached by specifying the same
point for the beginning and the end of the trajectory. This circumstance represents
a periodic boundary value problem and happens when the task space trajectory is
periodic, i.e., x(t0) = x(t1). In this particular situation, the problem is subject to
the following constraints:

q(t0) = q(t1)
q̇(t0) = q̇(t1)

(3.60)

All the previously considered boundary value problems, that is, every study case
but number 3, are also referred to as two-point boundary value problems (TPBVP).
The word two-point refers to the fact that the boundary conditions are evaluated
at the two interval endpoints t0 and t1, unlike for initial value problems where
the initial conditions are all evaluated at a single point. Occasionally, problems
arise where constraints are also evaluated at other points in [t0, t1]. In these cases,
a multipoint BVP arise. A multipoint problem may be converted to a two-point
problem by defining separate sets of variables for each subinterval between the
points and adding boundary conditions which ensure continuity of the variables
across the whole interval [24].

3.5.4 Reduced-Order Form
As previously pointed out, the resolution of the inverse kinematic problem in a
globally-optimal form means to solve a 2n first-order differential equations system.
In this sense, a simpler set of equations can be introduced to decrease the complexity
of the problem. Before starting to reduce the degree of the system, it is appropriate
to present the concept of redundancy parameter.

31

3 – State of the Art on Redundancy Resolution

This quantity consists of r elements, where r is the degree of redundancy of the
robot (3.1), and is such that, for each point of the end-effector path, the set of all
possible inverse kinematics solutions becomes finite [25].

The following considerations concern system (3.38), which is the direct derivation
of a quadratic performance index, but, it can be applied to a wide range of systems,
being (3.38) the solution to most of the performance indices found in the literature.

Given vector γ of null-space velocities, N a null-space basis of the manipula-
tor Jacobian matrix and NW = W N a weighted null-space basis, the following
relations hold:

γ = N |
W q̇

γ̇ = Ṅ |
W q̇ + N |

W q̈
(3.61)

Recalling the generic first-order (3.15) and second-order (3.38) solutions:

q̇ = J †
W ẋ + PW ν

q̈ = J †
W

(︂
ẍ− J̇ q̇

)︂
+ PW α

(3.62)

if multiplied by N |
W , an equivalent formulation is found:

N |
W q̇ = N |

W (J †
W ẋ + PW ν)

N |
W q̈ = N |

W (J †
W (ẍ− J̇ q̇) + PW α)

(3.63)

Taking into account both N |
W J †

W = 0 and N |
W PW = N |

W , the previous equations
become:

N |
W q̇ = N |

W ν

N |
W q̈ = N |

W α
(3.64)

Then, folding (3.64) into (3.61), a new expression of γ and γ̇ is obtained:

γ = N |
W ν

γ̇ = Ṅ |
W q̇ + N |

W α
(3.65)

The inverse of the first equation in (3.65) is:

ν = N |
W

−1γ (3.66)

which substituted into (3.15), while bearing in mind the definition of weighted
orthogonal projector PW = N (N |

W N)−1N |
W , gives birth to:

q̇ = J †
W ẋ + N (N |

W N)−1γ (3.67)

Eventually, the system composed by (3.67) and the second equation in (3.65) rep-
resent a set of n + r = 2n −m first-order ordinary differential equations in q and
γ, and constitutes an equivalent reduced-order form of (3.38).

32

3.6 – Redundancy Resolution with Dynamic Programming

3.6 Redundancy Resolution with Dynamic Pro-
gramming

The application of calculus of variations to redundant manipulators, either by
means of the Euler-Lagrange equation or Pontryagin’s maximum principle, pro-
vides an analytic formulation of the inverse kinematic problem in the form of a
TPBVP. Two-point boundary value problems are often hard to solve, also with the
usage of modern tools. In addition, they are weak at finding Pareto-optimal sets,
as the optimization of multiple performance indices at the same time can only be
done through the application of weights [26].

As a result, alternatives to calculus of variations have been explored to seek
globally-optimal solutions to the inverse kinematic problem. Recently, algorithms
based on dynamic programming (DP) are preferred among other options. It has
been demonstrated that DP-inspired techniques can easily handle multiple objec-
tive functions, ensuring the Pareto-optimality of the solution: they show better
computational performance due to a reduced search space size given by the addi-
tional constraints imposed through each objective function. Accordingly, although
DP is more demanding in terms of memory usage and computational time, when
compared to numerical integrations, the aforesaid properties make it much more
flexible in meeting the challenges of real applications.

3.6.1 Dynamic Programming

Dynamic programming is both a mathematical optimization method and a com-
puter programming method. In these contexts, it refers to simplifying a complex
problem by breaking it down into simpler sub-problems. If sub-problems can be
nested recursively within larger problems, then there is a relation between the value
of the larger problem and the values of the sub-problems, termed the Bellman
equation. In computer science, if a problem can be optimally solved by breaking
it into sub-problems and then recursively finding the optimal solutions to the sub-
problems, then it is said to have optimal substructure. There are two key attributes
that a problem must have in order for dynamic programming to be applicable: op-
timal substructure and overlapping sub-problems.

Optimal substructure means that the solution to a given optimization problem
can be calculated by the combination of optimal solutions to its sub-problems. Such
optimal substructures are usually described by means of recursion.

Overlapping sub-problems means that the space of sub-problems must be small,
that is, any recursive algorithm solving the problem should solve the same sub-
problems over and over, rather than generating new sub-problems. Dynamic pro-
gramming takes account of this fact and solves each sub-problem only once.

33

3 – State of the Art on Redundancy Resolution

3.6.2 Analysis with Dynamic Programming
Although a continuous-time formulation of the dynamic programming problem can
be given, it is necessary to have a discrete-time form so that an algorithm can be
easily derived from it. The discussed DP-inspired algorithm is based on Bellman’s
principle of optimality and its corresponding equation. As already mentioned, the
problem has to be discretized so that a number of sub-problems can be extracted
from it and solved by applying the algorithm.

Assuming that a task is assigned to a robotic system, and performed within a
time interval [t0, t1], this can be divided into a number of Ni = (t1− t0)/τ samples,
where τ , the sampling interval, is such that the following relation holds t = iτ , with
t ∈ [t0, t1] the discrete time samples and i = 0,1, . . . , Ni the waypoint index. The
following discrete kinematic model of the robot is supposed, with corresponding
initial conditions:

q(i + 1) = f (q(i), u(i)) , q(0) = qs (3.68)

As in previous paragraphs, q is the state vector of the system and u is the input
vector (or control vector). The goal is to find the optimal time sequence of u(i)
that optimizes a given cost function. The cost function is, generally, dependent on
q(i), u(i) and their derivatives.
An example of objective function [27] is the following one:

I(0) = Ψ(q(Ni)) +
Ni−1∑︂
j=0

l (q(j), q̇(j), u(j), u̇(j)) (3.69)

where Ψ(q(Ni)) is the cost at final configuration, and l (q(j), q̇(j), u(j), u̇(j)) is the
local cost. This formulation can be slightly modified by using the Euler approxi-
mation for the derivatives. Thus, given:

q̇(j) ≈ q(j + 1)− q(j)
τ

u̇(j) ≈ u(j + 1)− u(j)
τ

(3.70)

the new form of the objective function is:

I(0) = Ψ(q(Ni)) +
Ni−1∑︂
j=0

l (q(j), q(j + 1), u(j), u(j + 1)) (3.71)

which, at a generic stage i, becomes:

I(i) = Ψ(q(Ni)) +
Ni−1∑︂
j=i

l (q(j), q(j + 1), u(j), u(j + 1)) (3.72)

34

3.6 – Redundancy Resolution with Dynamic Programming

As already stated, in order to proceed with a dynamic programming approach, the
problem must be broken into many sub-problems and, then, a solution can be found
by means of recursion. Consequently, expression (3.72) is put in a recursive form:

I(Ni) = Ψ(q(Ni))
I(i) = I(i + 1) + l (q(i), q(i + 1), u(i), u(i + 1))

(3.73)

The last computed cost function will be I(0), which is the original objective function
to be optimized. Actually, choosing the cost minimization as optimization criterion,
Bellman’s principle can be exploited:

I(Ni) = Ψ(q(Ni))
Iopt(i) = min

u
[I(i + 1) + l (q(i), q(i + 1), u(i), u(i + 1))] (3.74)

In (3.74), Iopt(i) is the optimal return function and represents the minimum value
of the objective function if the process started at stage i. Hence, I(0) coincides
with the optimal return function computed from starting time t = 0, and, so, it
represents the optimized function throughout the entire trajectory.

3.6.3 Redundancy Parametrization
One big difference between the Euler-Lagrange approach and dynamic program-
ming approach is the input vector u. This quantity provides a way to control the
kinematic system, and this is why it has to be carefully chosen to properly optimize
the cost function. Most times, u is restrained to a bounded time-variant domain
Ai, and its time derivative u̇ as well. To be more precise, u̇ is limited to a domain
Bi(u(i)) which is, basically, both time-variant and input-variant. Therefore, at each
i, the set of admissible values of u(i), from which it is possible to reach u(i + 1), is
given by the set Ci, intersection between Ai and the set of values of u that respect
the constraint on the derivative. In summary [27]:

u(i) ∈ Ai

u̇(i) ∈ Bi(u(i))

Ci = Ai ∩
{︄

u(i) | u(i + 1)− u(i)
τ

∈ Bi(u(i))
}︄

, u(i + 1) ∈ Ai+1

(3.75)

An important matter, when dealing with the determination of an optimal joint
space trajectory, is to decide which quantity the input vector u corresponds to. A
common choice is to adopt as input vector a subset of the joint position variables,
and, from these, the remaining joint positions are computed at each i. An alterna-
tive to joint selection is to parametrize the redundancy with respect to some joint
combination [26]. Frequently, joint selection is preferred as primary option, so both
terms u and qj (the vector of joints chosen as redundancy parameters) are often
used interchangeably.

35

3 – State of the Art on Redundancy Resolution

3.6.4 Minimum Number of Equations
Analyses with dynamic programming typically require an enormous amount of cal-
culations. The resolution of a large number of equations involves long computa-
tional times, so the amount of equations to deal with has to be kept as low as
possible. Thanks to redundancy parametrization, a further minimization in the
number of manipulator kinematic equations [25] is attained.
The optimization problem (3.21):

min
q(t)

G∗ =
∫︂ t1

t0
L(t, λ, q, q̇)dt

with performance index (3.28):

g(t, q, q̇) = 1
2 q̇|W q̇

once applied the Euler-Lagrange equations, yields to solution (3.43):

q̈ = J †
W

(︂
ẍ− J̇ q̇

)︂
For the sake of simplicity, the adopted performance index is the square norm of
the joint velocities vector (3.28). However, the concept can be generalized to any
performance index that can be managed with the Euler-Lagrange method and leads
to n second-order differential equations.
To the purpose of simplifying the following notation, two assumptions are made:

W = I

r = n−m = 1
(3.76)

The first of (3.76) gives equal weight to each component of the square norm, and
permits to put (3.43) in a simpler form, which, without loss of generality, can be
expressed in function of q and q̇:

q̈ = J †(q)
(︂
ẍ− J̇(q, q̇)q̇

)︂
(3.77)

The second equation in (3.76) explicitly claims one degree of redundancy, which
means that one of the manipulator’s joints, qj, is chosen as redundancy parameter
and it is parametrized. Therefore, the j-th equation picked from the system (3.77)
is written as:

q̈j = η†
j,∗(q)

(︂
ẍ− J̇(q, q̇)q̇

)︂
(3.78)

where η†
j,∗(q) refers to the j-th row of J †(q). As the terms on the right-hand side

of the previous equation depend on q, it is preferable to separate qj from the other
joints.

36

3.6 – Redundancy Resolution with Dynamic Programming

To this end, the position vector qs ∈ Rm of the kinematic substructure, i.e., the
kinematic chain obtained by removing qj, is defined:

qs = [q1 . . . qj−1 qj+1 . . . qn]| (3.79)

and (3.78) translates into:

q̈j = η†
j,∗(qj, qs)

(︂
ẍ− J̇(qj, qs, q̇j, q̇s)q̇

)︂
(3.80)

At this point, it is convenient to recall the manipulator forward kinematic function
(3.2) highlighting qj and qs:

x = f(qj, qs) (3.81)

Assuming that qj is driven by the differential equation (3.80), the inverse of (3.81)
in qs returns a finite set of solutions:

qs = f−1(x, qj) (3.82)

Furthermore, choosing joint selection as redundancy parametrization criterion, and
parametrizing the input vector u = qj with discrete values, the manipulator forward
kinematics function simplifies into x = f(qs), which suggests that the Jacobian
matrix of f is square.

Now, defining η∗,j as the j-th column of J , and Js as the square matrix obtained
from J by removing the j-th column, also called reduced Jacobian, the derivative
of forward kinematic function ẋ = J(qj, qs)q̇ turns into:

ẋ = η†
∗,j(qj, qs)q̇j + Js(qj, qs)q̇s (3.83)

Taking for granted that the kinematic substructure is far from mechanical singu-
larity, again, by inverting the kinematic relation, it is possible to solve for qs:

q̇s = J−1
s (qj, qs)

(︂
ẋ− η†

∗,j(qj, qs)q̇j

)︂
(3.84)

At last, collecting the results for qj and qs, the following set of equations is achieved:

q̈j = η†
j,∗(qj, qs)

(︂
ẍ− J̇(qj, qs, q̇j, q̇s)q̇

)︂
q̇j = dqj

dt

q̇s = J−1
s (qj, qs)

(︂
q̇ − η†

∗,j(qj, qs)q̇j

)︂
qs = f−1(x, qj)

(3.85)

This system is equivalent to (3.78) but composed of only 2r differential equations
in qj, being qs given by the last two of (3.85), once the redundancy parameter is
set. As a result, it represents a reduced-order form of the initial group of solutions.

37

3 – State of the Art on Redundancy Resolution

These results on the minimum number of equations are useful only when Js is
full-rank, so it can be inverted. In order to exploit equation (3.84) so to make
sure that (3.84) returns a finite number of solutions, singularities for the reduced
Jacobian must be detected. In fact, a singular Jacobian is a necessary but not
sufficient condition to get an infinite set of solutions, that is, if a singularity is
determined for the reduced Jacobian, it may lead to a group of finite solutions. To
this purpose, an effective procedure on how to correctly select the redundant joints
to be parametrized is illustrated in [25].

3.7 A DP-inspired algorithm
Several DP-inspired algorithms have been suggested in the literature, such as
[28, 29, 30] and [27]. The latter introduces a forward algorithm, which permits
to broadly explore the joint space of a robot considering the possibility of manipu-
lator reconfiguration (e.g., from elbow-up to elbow-down and vice-versa). This is a
crucial feature for achieving the globally-optimal solution. As stated in [25, 26, 27],
manipulator reconfiguration happens in the vicinity of a kinematic singularity of
the robot. In particular, given a redundant robot and a task space trajectory, the
assigned task may be accomplished in multiple ways, that is, there are several feasi-
ble joint space trajectories, and some of them may contain kinematic singularities.
The possibility to exploit singular configurations of a joint space trajectory allows
to obtain the globally-optimal solution, with the lowest value of cost function, not
attainable otherwise.

The above-mentioned algorithm investigates the topological features of redun-
dant manipulators kinematics, which for some simple cases (e.g., a 4R manipulator
with one redundancy parameter) can give graphical representation of the globally-
optimal solution in terms of joint space trajectory.

3.7.1 Grid Representation
Besides a graphical feedback of the inverse kinematics solution, for the building
of the algorithm, it is convenient to generate a data structure which includes in-
formation relating waypoints and redundancy parameters. Such a structure can
be effectively identified as a grid having on one axis the discrete time variable ti,
with i = 1, . . . , Ni the stage index, or waypoint index, and on the other axes the
discretized redundancy parameters labelled as uj , where j ∈ Nr is the vector of re-
dundancy parameters indices. In addition, parametrizing the redundancy by means
of joint selection, it holds that uj = qj .

For the sake of simplicity, as already done above, it is supposed to work with
only one redundancy parameter. Thus, keeping r = 1, it brings to j = j ∈ N with
j = 1, . . . , Nu, being Nu the number of redundancy parameter samples, from which
follows that uj = uj; consequently, a two-dimensional grid is produced.

38

3.7 – A DP-inspired algorithm

Each cell (i, j) of the grid is designed as an object containing various attributes. One
of these is the joint position vector computed by solving the manipulator inverse
kinematics, taking advantage of (3.85). As a result, each cell takes in a vector:

q(i, j) = f−1(x(i), uj) = [q1(i, j), q2(i, j), . . . , qn(i, j)]| (3.86)

The reason behind this approach is found in the avoidance of a well-known issue
in dynamic optimization, whose name, coined by Richard E. Bellman, is curse
of dimensionality. The curse of dimensionality refers to various phenomena that
arise when analyzing and organizing data in high-dimensional spaces that do not
occur in low-dimensional settings, such as the three-dimensional physical space of
everyday experience. As discussed in [31], it is possible to refer to three curses
of dimensionality: the large dimensionality of the state space, of the action space,
and the difficulty or impossibility of computing expectations. The former is the
most relevant in the present case of study, and to deal with it, as also suggested
in other works, a discretization of the state space is realized instead of the input
space. Inputs are then selected from a continuous set, allowing the system to
evolve from one discrete state to another. This way, a solution to the problem
can be found regardless of the Bellman optimality principle, necessary in case of
continuous state space set, and the dynamic programming algorithm turns into an
optimal path search algorithm [27].

This said, given a robotic manipulator and a specified task space trajectory,
equation (3.86) returns a finite set of solutions. These solutions differ one from
another and, in order to study their arrangement in the joint space, multiple grids
need to be analyzed at the same time. This is the proper way to explore the whole
joint space and attain the globally-optimal solution.

From [32], a manipulator is said to have a type 1 geometry if it must pass through
a singularity when changing posture. In the remainder of the discussion, given a
type 1 manipulator, the term extended aspect will be used in reference to subspaces
of the joint space into which it is possible to locate one and only one solution to the
inverse kinematics problem, when u is given. Under this hypothesis, each grid will
represent a different extended aspect of the robotic arm for the assigned task space
path. As defined in [33], for a type 1 manipulator, once a redundant parameter is
defined, a grid is homogeneous if all the inverse kinematics solutions contained in
it belong to the same extended aspect. Although more performant algorithms can
be designed if the homogeneity property is satisfied, it is not a necessary condition
for an algorithm to find the globally-optimal solution.

Once the redundancy parameters are set, the number of solutions generated from
the inverse kinematics problem only depends on the mechanical characteristics of
the manipulator. This implies that, for a given manipulator, the maximum number
of grids Ng is constant and equal to the number of maximum inverse kinematic
solutions [34, 4].

39

3 – State of the Art on Redundancy Resolution

Thus, Ng evaluates to 2, 2, 4 and 16 for planar, spherical, regional and spatial
manipulators, respectively. It is worth to note that for some specific kinematic
structures, as well as for some particular task space trajectories, the actual number
of grids produced is less than the maximum theoretical value. Indeed, for most six-
axis industrial manipulators, the number of distinct solutions is equal to 8, while
for orthogonal manipulators it is 16.

In Figure 3.2, an example of grids generated from a 4-DOF planar manipulator
with one redundancy parameter is presented. The considered manipulator [9] is
employed to draw a circular task space trajectory in the 2-dimensional task space
with constrained orientation, which means a 3-DOF task. The robotic arm is clearly
redundant for the assigned task, and q1 is chosen as redundancy parameter, whose
discrete values are located on the ordinate axis. On the abscissa axis, instead, lie
the time parametrized waypoints of the trajectory. The colormaps in figures show
the values assumed by joint q2 for each waypoint-q1 pair, while white areas cor-
respond to nodes in the grids for which no solution to the inverse kineamatics is
found.

(a) Elbow-left grid (b) Elbow-right grid

Figure 3.2: Colormaps of homogeneous grids indicating the value of joint q2.

Besides, further researches on topological aspects of globally-optimal inverse kine-
matics solutions for redundant manipulators can be found in [26].

40

3.7 – A DP-inspired algorithm

3.7.2 Algorithm Formulation
The algorithm presented in [27] is demonstrated to be able to find the globally-
optimal solution by transiting from one extended aspect to another. It makes use
of a forward implementation of (3.74), as explained in [27], where the calculation
advances from t = t0 towards greater values of time steps, ending at t = t1:

I(0) = Ψ(q(0))
Iopt(i) = min

u
[I(i− 1) + l (q(i), q(i− 1), u(i), u(i− 1))] (3.87)

The discussed formulation applies equation (3.87), using multiple grids and ig-
noring any assumption on their homogeneity. The algorithm exploits the infor-
mation stored in each node of the grid to perform comparisons between adjacent
clusters. A cluster is defined in [29] as the set of inverse kinematics solutions,
obtained from (3.86) for fixed values of grid index k and waypoint index i, and
variable redundancy parameter index j. Thus, referring to Figure 3.2, a clus-
ter is the vector containing all the inverse kinematics solutions at a given way-
point. Since the generic cluster at current waypoint {q(i, j, k), j = 1, . . . , Nu} has
2Ng adjacent clusters, namely {q(i− 1, j, k), j = 1, . . . , Nu, k = 1, . . . , Ng} and
{q(i + 1, j, k), j = 1, . . . , Nu, k = 1, . . . , Ng}, the number of comparisons to make
at each iteration of the algorithm is quite considerable.

For a given waypoint index i, each cell, or node, of cluster at current waypoint
{q(i, j, k), j = 1, . . . , Nu} is compared to all the nodes (of cardinality Nu) of clusters
at next waypoint {q(i + 1, j, k), j = 1, . . . , Nu, k = 1, . . . , Ng} (of cardinality Ng).
Comparisons are made up as far as the solution in the explored node is feasible,
otherwise the grid is abandoned. When a grid different from the current one is
visited at a node where robot reconfiguration is not possible, the grid is abandoned.

If homogeneous grids can be obtained instead, an optimized algorithm that
exploits kinematic constraints and cuts down the number of comparisons performed
between adjacent clusters is provided in [33]. To this end, comparisons are made
up until the constraints are satisfied and the grid is abandoned when they are
not. The group of nodes of the cluster at next waypoint index i + 1, visited from
every node of the cluster at current waypoint index i, is named lookup window
[33], and has cardinality Nw due to the reduced comparison number. The present
implementation, due to lower values of Nw with respect to Nu, allows reducing
the computational complexity [33] of the algorithm, whose original value [29] is
O(NiN

2
u), which represents an approximation of O(NiN

2
uN2

g) for Ng constant. For
typical applications, Nw is one to three orders of magnitude lower than Nu, yielding
a considerable reduction in the execution time.

41

42

Chapter 4

Analysis of Planning
Technologies

4.1 Optimal Trajectory Planning
In Chapter 2, it has been showed that the presence of planners is essential for
ground stations to control the robot. Figure 2.4 reveals that ground control oper-
ations for space robotics activities mainly consist of path planning and trajectory
planning, followed by the inverse kinematics problem resolution. This is true in
general, but alternative solutions, such as inverse kinematics of task space path
followed by joint space trajectory planning, are reasonable as well. When dealing
with trajectory planning of robotic systems, employed in the field of space explo-
ration, redundancy resolution may play a significant role: robots used for robotic
exploration are autonomous systems that need a high degree of dexterity, necessary
to fulfill the assigned task with good efficiency in short time; naturally, the higher
the dexterity, the higher the degree of redundancy. In order to exploit the higher
degree of motion of the structure, optimal trajectory planners are developed to
effectively manage the extra degrees of freedom of the system and receive benefits
in terms of performance.

Frequently, the term trajectory planner is associated with both the actual trajec-
tory planner and the subsequent kinematics inversion. This process yields the joint
reference values qr(t) from an assigned geometric path xr(λ). In some planning
problems, where, for instance, it might be advantageous to find the shortest tra-
jectory between two configurations, the attainment of any valid trajectory between
a start and a target configuration may not be of practical interest [35]. In these
situations, the main objective is the research of optimal trajectories: trajectories
which satisfy some constraints (e.g., connects start and target configurations with-
out collisions) and also optimizes some performance index. Trajectory planners
which attempt to optimize performance indices are known as optimal planners.

43

4 – Analysis of Planning Technologies

A possible control scheme that integrates an optimal trajectory planner is depicted
in Figure 4.1.

Figure 4.1: Scheme of a closed-loop control system with optimal trajectory planner.

Given a task space trajectory xr(t), with a prescribed time law and kinematic con-
straints, and the set of all possible solutions qr(t) to the kinematic inversion at
each waypoint of xr(t), the scope of an optimal planner is to compute the globally-
optimal configuration space trajectory qopt(t) that will be sent to the robotic system.
Thus, in the remainder of this dissertation, when talking about optimal trajectory
planners, it will be referred to the software suite that computes the globally-optimal
joint reference values qopt(t) from an assigned path and related kinematic con-
straints, that is, a task space trajectory with predefined time law xr(t). This is
different from just computing the inverse kinematics of a redundant system, since an
optimal trajectory planner is capable of finding the best (optimized) configuration
space trajectory taking into account the whole space of inverse kinematics solu-
tions, choosing among them the ones that, along the whole task space trajectory,
minimize or maximize some cost function.

In building an optimal trajectory planner, theoretical aspects, such as kinematics
inversion and redundancy resolution (discussed in Chapter 3), are important, as well
as practical elements, such as the technologies that currently tackle this problem
and how to implement them.

4.2 ROS
The first topic to address, when dealing with a software implementation of a tra-
jectory planner, is the selection of the framework onto which the software is built.
A common choice among the members of the scientific community is ROS.

The Robot Operating System (ROS) is an open-source, meta-operating system
for robot software development [36]. It includes tools, libraries, and conventions
that aim at simplifying the task of creating complex and robust robot behavior [37].
Although ROS is not properly an operating system, it provides services designed
for computer clusters, such as low-level device control and package management.

44

4.2 – ROS

One of the primary advantages of using ROS is its open source characteristic. Open
source development usually offers a more flexible technology and quicker innovation
with respect to proprietary software. It is, also, more reliable since it typically has
thousands of independent programmers testing the software.

The Robot Operating System is not a real-time framework, though it is possible
to integrate ROS with real-time code. To this purpose, a suggestion of real-time
system implementation has been arranged for ROS 2, the new version of ROS, and
other projects, such as ESROCOS [38], have been designed to meet the needs of
real-time applications. Nevertheless, this is not a major issue for offline trajectory
planning, where the whole trajectory is scheduled before the begin of any action.

The principal ROS client libraries (C++, Python, and Lisp) are efficiently fit
for Unix-like systems, primarily because of their dependence on large collections of
open-source software. For these client libraries, Ubuntu is listed as the preferred
Linux distribution, as it was extensively used for its development since the begin-
ning of the ROS project. The present dissertation makes use of the C++ client
library, roscpp, being the most widely used ROS client library and designed to
be the high-performance library for ROS, enabling C++ programmers to quickly
interface with ROS concepts, especially those at the Computation Graph level.

The Computation Graph [39] is a network of ROS processes, which provide data
to the Graph in different ways. The basic Computation Graph concepts of ROS
are nodes, Master, Parameter Server, messages, services, topics, and bags.

Node

A ROS node is a process that performs computation [40]. A robot control system
usually comprises many nodes. Nodes are combined together into a graph and
communicate with one another using topics, services, and the Parameter Server.

Master

The role of the Master is to enable individual ROS nodes to locate one another
[41]. It tracks publishers and subscribers to topics as well as services. Without the
Master, nodes would not be able to find each other, exchange messages, or invoke
services. The Master also provides the Parameter Server.

Parameter Server

A parameter server is a shared dictionary that allows data to be stored in a central
location [42]. Nodes use this server to store and retrieve parameters at runtime.
As it is not designed for high-performance, it is best used for static data structures
such as setup parameters. Since it is part of the Master, the parameter server is
globally viewable; this way tools can easily inspect information about the system
and modify them if necessary.

45

4 – Analysis of Planning Technologies

Message

Nodes communicate with each other by publishing messages to topics [43]. A
message is a simple data structure, comprising typed fields. Standard primitive
types (integer, floating point, boolean, etc.) are supported, as well as arrays of
primitive types. Nodes can also exchange a request and response message as part
of a ROS service call.

Service

Request and reply are done via a service, which is defined by a pair of messages:
one for the request and one for the reply [44]. A ROS node offers a service under
a string name, while a client calls the service by sending the request message and
awaiting the reply. This concept will be recalled later on for the development of a
generalized redundancy resolution service.

Topic

Topics are named buses over which nodes exchange messages [45]. Topics have
a publish/subscribe semantics. This way, nodes that are interested in data can
subscribe to the relevant topic, while nodes that generate data can publish to the
relevant topic. However, topics are intended for unidirectional streaming commu-
nication: nodes that need to perform procedure calls, i.e., to receive a response to
a request, should use services instead.

Figure 4.2: Two nodes communicating over a topic during a service invocation.

46

4.3 – Moveit!

4.3 Moveit!
Inside ROS, MoveIt! is the package that incorporates the latest advances in mo-
tion planning, manipulation, and kinematics [46]. Motion planners take care of
both the trajectory planning and the execution of the robot motion. In MoveIt!,
motion planners are loaded using a plugin infrastructure, allowing the package to
communicate at runtime with different planners from multiple libraries.

Motion planning becomes an easy task when using the MoveGroupInterface class.
MoveGroupInterface is the simplest user interface in MoveIt!, communicating over
the more general MoveGroup node through ROS concepts, such as services and
messages. It offers user-friendly functionalities for most operations that a user may
want to carry out, specifically setting joint or pose goals, creating motion plans,
moving the robot, and adding objects into the environment. Indeed, the planning
of a trajectory can be accomplished by just setting the current robot configuration
and the specified target.

The default motion planners in MoveIt! are configured to use OMPL, which
is an open-source motion planning library that implements randomized planners
[47]. Depending on the planner used, MoveIt! can choose between joint space and
Cartesian space for the representation of the problem. Natively, planning requests
with orientation path constraints are sampled in Cartesian space.

OMPL also provides several sample-based optimal planning algorithms. Some
of them use a general framework to express the “cost” of robot configurations and
paths, allowing to, e.g., maximize the minimum clearance along a path, minimize
the mechanical work, or some arbitrary user-defined optimization criterion. How-
ever, the convergence to optimality is not guaranteed when optimizing over some
index or metric which is not the path length [48].

4.4 Optimal Planners and Redundancy Resolu-
tion

In robotic missions for space exploration, robots are assigned a number of objectives,
achieved by completing one or more tasks. During the execution of these tasks,
the robot spends a lot of resources, which can be difficult to fetch on a remote
and unfamiliar territory. In these situations, where resource depletion is a crucial
matter, the optimal planning of the task, and, thus, of the robot motion is essential.
Optimal planners are especially suited for space exploration missions since they
allow the definition of a quality metric, or a performance index, to be optimized
during the execution of the task. For instance, one of the key resources that an
autonomous vehicle should preserve is the power consumption, hard to produce on
planets distant from an energy source.

47

4 – Analysis of Planning Technologies

One way to exploit the main feature of optimal planners is with the usage of redun-
dant robots, whose extra degrees of freedom help in achieving the minimization or
maximization of a cost function. The higher the degree of redundancy, the better
the optimization of the quality metric will be. Conversely, increasing the number
of redundancy parameters, the complexity of finding a solution increments as well.

Among the available methods for redundancy resolution, approaches based on
dynamic programming seems to fit well the requirements of the problem. An ex-
ample of redundancy resolution by means of dynamic programming techniques was
presented in Chapter 3, which refers to researches done on the globally-optimal
resolution of redundancy exposed in [27]. This method relies on a grid search al-
gorithm that solves the inverse kinematics problem for each discretized value of
the redundancy parameters. Following this approach, the realization of a motion
planner, and, in particular, of a trajectory planner, requires the help of kinematics
tools to work out the robot inverse kinematics problem.

To this purpose, MoveIt! not only includes a series of inverse kinematics solvers
by default, but it also allows users to write their own algorithms for the inverse
kinematics resolution.

4.5 Inverse Kinematics Solvers
MoveIt! offers a plugin infrastructure to manage both motion planners and inverse
kinematics solvers. The default inverse kinematics plugin for MoveIt! is configured
for using the KDL kinematics plugin. The KDL plugin wraps around the numerical
Jacobian-based inverse kinematics solver provided by the Orocos KDL package [49].
Although it works fine with robots having a number of DOM greater than 6, it
does not fit well for robots with DOM less than 6. MoveIt! grants alternatives
to its default solver as well, such as the LMA (Levenberg-Marquardt) kinematics
plugin, that also wraps around a numerical inverse kinematics solver provided by
the Orocos KDL package, and the TRAC-IK, developed by TRACLabs [50], that
combines two IK implementations to obtain more reliable solutions than common
available open source IK solvers.

However, as seen in Chapter 3, numeric solvers are too slow when dealing with
extremely large amounts of computations, needed for the generation of the grids,
and, if available, analytical methods must be used.

Analytical inverse kinematics solvers can be significantly faster than numerical
solvers and grant more than one solution for a given end-effector pose. To this
end, MoveIt! provides a tool to create plugins from C++ code generated with the
robot kinematics compiler IKFast. The IKFast open-source program can solve for
the complete set of analytical solutions of most common robot manipulators and
generate C++ code for them. The generated solvers can be rapidly wrapped into
plugins, retrieving all the inverse kinematics solutions in microseconds, on recent
computers.

48

4.5 – Inverse Kinematics Solvers

The key features that make IKFast one of the most valued robot kinematics com-
pilers are [51]:

• the handling of robots with any number of DOM (with some limitations)

• the handling of robots with arbitrary joint complexity (e.g., non-intersecting
axes)

• the computation of all possible discrete inverse kinematics solutions

• the detection of degenerate cases, e.g., where two or more axes align and
generate infinite solutions

Despite that, some restrictions are present. First, IKFast only works with kinematic
chains. Second, although IKFast is able to manage by itself the choice of redun-
dancy parameters, it also permits to manually select these “free” joints. However,
while it is possible to pick any arbitrary joint, from the base to the tip of a kinematic
chain, choosing as redundancy parameters joints far from the tip (or end-effector)
highly decreases the chances to obtain a solution to the inverse kinematics prob-
lem. So, as the author of IKFast suggests, a general rule of thumb for the choice of
redundant parameters, when working with IKFast, is that the closer it is to the end
effector, the better. Also, an analytic inverse kinematics solution cannot always be
found by means of IKFast, especially if the robot number of DOM is greater than
7, e.g., for most mobile manipulators. In that case, MoveIt! does not support the
generation of a plugin and the inverse kinematics solutions cannot be obtained.

Therefore, when dealing with special typologies of robots, the major problem is
the acquisition of a working inverse kinematics solver. Generally, it is not hard to
find inverse kinematics tools for common robotic structures, such as manipulators
or mobile platforms. A big shortage in the implementation of control algorithms
for compound exploration robots is the lack of analytic inverse kinematics solvers.

The standard strategy is to divide the motion planning of the robot into mul-
tiple steps. Considering, for instance, the case of a mobile manipulator, the first
step would be the computation of the inverse kinematics solution for the moving
platform. Then the motion of the vehicle would follow. When the moving platform
stops, the manipulator inverse kinematics is solved and, with it, the motion of the
arm is performed. It is clear that this way a lot of time is spent in sending signals
for communications; also, the task may not be carried out in an optimal way since,
to this end, the structure has to be considered as a whole to globally optimize some
quality metric.

To this purpose, the solution proposed in this dissertation consists in building a
plugin that performs the kinematic inversion of redundant systems composed of a
manipulator, also called arm, mounted on a mobile platform, also termed base.

49

4 – Analysis of Planning Technologies

Once the inverse kinematics solutions are obtained for the specified robotic struc-
ture, a dynamic programming algorithm determines, through the optimization of a
desired cost functional, the most efficient way the trajectory has to be traveled, i.e.,
the set of joint position values that minimizes or maximizes the overall performance
index along the whole trajectory.

50

Chapter 5

Design of an Optimal
Planner

5.1 Overview

Optimal planners are able to find the best joint space trajectory a robot has to
follow, given a task space path and the corresponding time law. Essentially, they
solve optimization problems in which one or more quality metrics, or performance
indices, are minimized or maximized. One practical difficulty, in this sense, is the
development of techniques and tools for the determination of a solution to the
optimization problem. Typically, sample-based planners are employed, but the
attained solutions may not be globally optimal. This means that the obtained
optimized solutions for each trajectory sample do not always provide the global
minimum or maximum value of performance index for the whole trajectory.

As remarked in Chapter 4, the building of an optimal planner must take into
account redundancy resolution, and, as seen in Chapter 3, a dynamic programming
approach can be employed to solve the redundancy in a globally-optimal way. To
this purpose, an implementation of a DP-inspired algorithm has been provided by
ALTEC, using the formulation in [33]. The algorithm has been demonstrated to
work fine with redundant robots, such as 4R and 7R manipulators, that only have
one redundancy parameter. The major challenge is to generalize its formulation so
to support robots with an arbitrary number of degree of redundancy, r.

The aforementioned algorithm searches for the optimal trajectory in the robot
joint space, exploring all the extended aspects at once, and, if necessary, performing
robot reconfiguration, moving from one extended aspect to another. Therefore, the
generalization of the algorithm involves the acquisition, or the creation, of robots
having a degree of redundancy greater than 1, and tools for inverse kinematics
resolution.

51

5 – Design of an Optimal Planner

5.2 Mobile Manipulators
Redundancy is a concept that can only be defined in association with an assigned
task. Accordingly, a conservative decision would be the study of robots applied in
tasks having the highest DOF, that is, considering tasks characterized by 6 degrees
of freedom in the 3D Cartesian space. The first issue, then, is to procure a robot
with a high number of DOM, and, in particular, greater than 7.

Concerning space exploration, the generic task imposes a robotic structure able
to move on extreme terrains and capable of dexterous manipulations. For example,
in the perspective of planet colonization, a demanding operation could be the re-
mote construction of buildings or infrastructures. In this view, mobile manipulators
can be considered a suitable option, being equipped with a moving platform, for the
motion over uneven terrain, upon which a robotic arm is mounted for manipulative
purposes.

Figure 5.1: Representation of a building task for cooperative robots.

Choosing mobile manipulators as a reference structure, the first step was to find
a virtual model to start from for the implementation of the trajectory planner. In
doing this, some mobile platforms have been taken into account, such as ClearPath’s
Husky and Jackal. The latter has been employed in the beginning, but due to issues
related to the lack of inverse kinematics solvers and the difficulty in generating one,
it has eventually been discarded. Not so many difficulties with the manipulator
selection have been encountered instead.

52

5.2 – Mobile Manipulators

Several robotic arms have been examined, such as Franka Emika’s Panda, Kinova’s
Jaco and Mico, and Universal Robots UR5, having regard for the availability of
inverse kinematics solvers. Among them, two have been used to test the planner,
namely the 7-DOM Franka Emika’s Panda and the 6-DOM Kinova’s Mico.

At this point, considering the implications of using a wheeled moving platform
on the generation of an inverse kinematics solver, it was decided to create a moving
base with suitable, but simpler characteristics. In fact, given the necessity to obtain
an analytical solver, mainly due to the large number of computations that will be
executed inside the algorithm, the most convenient way of formulating one inside
ROS was by means of MoveIt! IKFast inverse kinematics plugin generator. The
plugin generator is based on the IKFast robot kinematics compiler, which, unfortu-
nately, only works with kinematic chains. Although the combination of a wheeled
platform and a robotic arm could be seen as a kinematic chain, e.g., by using one
wheel as active joint and mimicking the others, for a simpler management of the
motion of the moving base, a prismatic platform has been designed on purpose.

Figure 5.2: Model of mobile manipulator with Kinova Mico as robotic arm.

The underlying idea is that the base, modeled in a first instance as a parallelepiped,
is composed of three prismatic joints (X, Y, Z) and three revolute joints (Roll, Pitch,
Yaw), thus, totaling a 6-DOM structure. However, not all of them are active joints,
i.e., controllable joints: three (active) are chosen as command inputs and three
(passive) are given by the terrain shape transformation. This way, active joints
are chosen as redundant joints that will be parametrized during the redundancy
resolution process. The most appropriate choice is to select as redundant joints a
triad of two prismatic joints and a revolute joint: (X, Y, Yaw).

53

5 – Design of an Optimal Planner

5.3 Base-Arm Kinematics Plugin
The next step in building a planner is to provide an interface for the kinematics
management, so to obtain the inverse kinematics solutions for mobile manipulators,
or Base-Arm robotic systems.

As seen in Chapter 4, while analyzing the availability of inverse kinematics
solvers, MoveIt! offers a plugin infrastructure to handle motion planners and kine-
matics tools. In principle, it is possible to build a kinematics solver by implementing
the KinematicsBase class methods, which is a MoveIt! interface that enables users
to either write their own forward and inverse kinematics solvers or wrap around
external kinematics solver libraries. On this thread, the base-arm kinematics plugin
has been designed, allowing kinematics computations for robotic systems composed
of an arm mounted on a mobile base.

The base-arm plugin is part of the base-arm package suite, together with the
base-arm description package, for the handling of robotic structures comprising a
base and an arm. The two packages work jointly providing both the robot mod-
els, through description files such as URDF and XACRO, and the management of
their kinematics. The main class of the base-arm plugin implements several meth-
ods derived from KinematicsBase, among which the most relevant one deals with
kinematic inversion.

Due to the lack of a kinematics solver that solves the redundant inverse kine-
matics problem of systems with r > 1, the proposed technique tackles this issue by
breaking the problem into easier sub-problems. Basically, the inverse kinematics
resolution of the kinematic chain, composed by the whole mobile manipulator, is
separated into two resolution processes, involving the single sub-chains, i.e., base
and arm. In MoveIt!, planning groups are used for semantically describe different
parts of the robot. In this case, the three principal planning groups are the arm
planning group, the base planning group and the chain planning group; the latter
includes the previous two.

A kinematics plugin can be associated to each planning group, that performs
computations for the forward and inverse kinematics resolution of the group kine-
matic sub-chain. Each plugin, assigned this way, is provided of a kinematic solver
for the resolution of at least the inverse kinematics problem. Following this logic,
the chain planning group is linked to the base-arm kinematics plugin and, thus,
to the corresponding kinematics solver. Actually, the base-arm inverse kinematics
solver wraps around both the base group solver and the arm group solver: it first
sets the base redundant joints, which are also the active joints, then computes the
transformation of the base mount point (on which the arm mount link is rooted)
in the joint space, and eventually feeds the new arm root position to the arm
kinematics solver, that yields the solution for the manipulator.

54

5.3 – Base-Arm Kinematics Plugin

The following figures show the motion of a mobile manipulator formed by the
parallelepiped base and the Kinova Mico 6R (M1N6S300). The base-arm plugin
has been used to pick one among a set of different solutions obtained from the
manipulator analytical kinematics solver. Indeed, while the base planning group
does not make use of any inverse kinematics solver, since all the active base joints are
redundancy parameters and must be set, the arm inverse kinematics solver returns
a set of at most 8 (theoretically 16, as seen in Chapter 3) analytic solutions. In this
simulation, where the goal was to check the correct behavior of the plugin, only the
initial and final end-effector poses were provided, while OMPL was used to choose
an arbitrary planner to solve the trajectory in the robot joint space.

(a) Starting configuration (b) Motion trail (c) Start/End configuration

Figure 5.3: Base-arm kinematics plugin applied to a mobile manipulator.

One of the peculiarities of the base-arm model is its flexible kinematic description.
The choice of having a 6-DOM base built with nonholonomic constraints (i.e.,
not all of its joints are controllable) allows controlling its motion as if a terrain
with variable geometry was present. While three base joints are set as active, the
remaining three joints are used to simulate the motion of the base over a terrain:
a transformation computes the values of non-controllable base joints taking in the
active joints through a set of primitive geometries.

Furthermore, the plugin permits to manage the inverse kinematics for base mod-
els with a lower number of joints. In fact, the designed base model also makes
possible to operate with only three joints, namely (X, Y, Yaw), instead of 6 (X,
Y, Z, Roll, Pitch, Yaw), so that systems typical of many industrial applications,
such as manipulators mounted on a 1-DOF or 2-DOF slider, can be taken into
account. This way, since the number of controllable joints decreases, the handling
of redundancy parameters during the kinematic resolution process is made easier.

55

5 – Design of an Optimal Planner

5.4 Redundancy Resolution Service
Granted that, for each waypoint of the given trajectory and for each combination of
redundancy parameter values, the sets of inverse kinematics solutions are computed,
the last step in building the optimal planner is to find, among the freshly computed
joint space solutions, those that optimize the desired performance index. The idea
is to build a redundancy resolution ROS service based on a generalization of the DP-
inspired algorithm [33]. While the original algorithm only supports one redundancy
parameter, the proposed implementation extends to r > 1 the number of degrees
of redundancy.

5.4.1 Grid Generation and Generalized DP Algorithm
Following the procedure in Chapter 3, the computation of the grids (such as in
Figure 3.2) is fundamental for the implementation of the algorithm. By definition,
the grids exist in a space of dimension Rr+1, where r is the degree of redundancy
of the robot (3.1). Each grid is composed of r + 1 axes: one axis is assigned to
the trajectory waypoints, while the other r axes are assigned to each discretized
redundancy parameter. So, the first enhancement to be done is to generalize the
data structure of the grids.

The library employed for this improvement is Boost.MultiArray [52], which al-
lows the building of N -dimensional arrays and provides an interface to operate with
these data structures. Among the evaluated options two are worth to mention:

• The C++ template library for linear algebra, Eigen, supporting matrices, vec-
tors and numerical solvers.

+ It is fast, reliable, and versatile, supporting matrices of all sizes, all stan-
dard numeric types, and matrix decomposition.

- There is no implementation for matrices with more than two dimensions.

• The Standard Template Library container std::vector for a linear representa-
tion of multi-dimensional matrices.

+ Vectors are able to represent dynamic arrays with the ability to resize
themselves automatically when an element is inserted or deleted.

+ One vector is employed to contain all grid elements, providing optimized
methods to manage the std::vector structure.

- An indexing method has to be provided to correctly map each element of
the array to the corresponding element of the multi-dimensional matrix.

- Although this approach is feasible, a test suite may be required to verify
the behavior of operations executed on the data structure.

56

5.4 – Redundancy Resolution Service

A significant element to take into account, during the generalization of the service,
is the number of redundant degrees of freedom r. When using the data structure
provided with Boost.MultiArray, r must be chosen at compile time, so a decision
on the upper limit of r has to be taken. Considering the limitations of nowadays
processing power, it has been decided that the maximum number of redundancy
parameters of the robot is rmax = 4, otherwise the computational complexity would
be unreasonable.

Although the generalization of the grids gives the possibility to include more than
one redundancy parameter, the development of (r + 1)-dimensional structures does
not consent any graphical representation for r > 2. A picture of a 3-dimensional
grid would not be advantageous as well. In fact, subspaces of inverse kinematics
solutions often show a sparse distribution inside the examined joint space sector,
and the representation of a 3-dimensional entity would not permit to visualize the
interior of it, so it would not be of practical interest. However, one technique that
could be useful in this case is to divide the object into several slices, for instance,
one at each waypoint, and analyze each slice individually.

Despite that, an example of non-homogeneous grids generated for a mobile ma-
nipulator with r = 1, using the base-arm kinematics plugin, is illustrated in Fig-
ure 5.4. These grids are obtained employing the Kinova Mico 6R as the robotic
arm and the 6-DOF parallelepiped as the moving platform. In order to represent
a two-dimensional grid, only one redundancy parameter must be set: choosing X
as prismatic redundant joint, the remaining two joints (Y, Yaw) are fixed at their
initial values.

(a) Arm Joint 1 (b) Arm Joint 6

Figure 5.4: Non-homogeneous grids for different arm joint values.

57

5 – Design of an Optimal Planner

Once the grids are generated, they are sent to the DP-inspired algorithm, which
computes the value of the cost functional at each node of every grid. The algorithm
is, basically, an optimal path search algorithm: for each node, at a given waypoint, it
explores the adjacent cells at next waypoint and checks if they are feasible; for each
feasible node, the cost value is computed, verifying if it satisfies the optimization
criterion. This recursive algorithm stops when the last waypoint is reached, or if no
feasible node is found at next waypoint. In order to achieve a feasible trajectory,
each waypoint must include at least one feasible node. Moreover, the optimal
trajectory is found if and only if the final value of the objective function I(0) (3.87)
is the optimum (minimum or maximum).

An applicative example of the operating principle of the generalized algorithm
is provided below.

5.4.2 Flowchart
For the sake of clarity, and in order to provide a clear insight into the core logic of the
algorithm, the flowchart diagram of the dynamic programming solver is illustrated
here. It depicts the decision process at the base of the solver, capable to work
out the redundancy problem for systems composed of n redundancy parameters.
Figure 5.5 and Figure 5.6 represent the flowchart of the generalized DP-inspired
algorithm.
To properly comprehend the adopted symbolism, some definitions are given:

• n is the number of redundancy parameters the robot is provided

• j denotes the j − th element of the grid index vector

• Sj is the boolean corresponding to a switch in the exploration direction of the
j − th grid index; it evaluates to true if a switch is requested

• ∆j is the boolean corresponding to whether increase or decrease index j; it
evaluates to true if grid index j is increasing

In addition, initial values are defined this way:

• S = [S1, . . . , Sn]← [False, . . . , False]

• ∆ = [∆1, . . . , ∆n]← [True, . . . , T rue]

• idx← idx0 = [idx0,1, . . . , idx0,n]

58

5.4 – Redundancy Resolution Service

Figure 5.5: Node exploration at generic index j.

59

5 – Design of an Optimal Planner

Figure 5.6: Node exploration at index 1.

5.4.3 Example with Two Redundancy Parameters
This section provides an example that clarifies the operating principle of the gener-
alized algorithm. In particular, this example shows how the algorithm works when
two redundancy parameters are employed.

The two redundancy parameters, respectively q1 and q2, are sampled with dis-
crete values at each waypoint. Redundancy parameter values are accessed through
indices, in this case idx1 and idx2, stored into a vector idx.

Figure 5.7 represents a slice of the state space grid at a fixed waypoint. The
ellipse contains the feasible nodes, at the given waypoint, and each node corresponds
to a data structure that includes the inverse kinematics solution for each pair of q1
and q2 values. Starting from an initial point on the grid, i.e., for a given pair (idx0,1,
idx0,2) that identifies a node on the grid, the algorithm explores adjacent nodes in
every dimension. The most “external” dimension is investigated first, which is the
dimension corresponding to the last redundancy parameter, e.g., q2, whose discrete
values lie on the horizontal axis, while the discrete values of q1 are located on the
vertical axis.

60

5.4 – Redundancy Resolution Service

Switch
direction

Stop

Switch
direction

Switch
direction

Switch direction

Switch direction

Switch directionSwitch direction

a) b) c) d)

e) f) g)

h) i) j)

k) l) m) n)

Figure 5.7: Node exploration inside grid at fixed waypoint.

61

5 – Design of an Optimal Planner

In Figure 5.7, a) depicts an empty grid where no node has been explored yet.
Grid b) shows an initial node represented by a star with empty surroundings.

The node is accessed through the vector idx = [idx1, idx2] and the cost function is
computed. Then, the algorithm explores the successive node.

In grids c) and d), the algorithm advances through the dimension of q2, increasing
at each step the corresponding index idx2 of one unit (∆2 = True).

In grid e), the explored node is not a feasible node, either because the inverse
kinematics solution stored inside it is not valid (it does not satisfy the kinematic
constraints or no solution has been found) or because the maximum range limit of
idx2 has been reached. In this case, a switch in the search direction is requested
(S2 = True).

In grid f), the algorithm goes back to the initial node and starts stepping back-
wards (∆2 = False), exploring all the nodes preceding the initial one until another
switch is requested (S2 = True), as showed in grid g).

At this point, in grid h), the algorithm begins the research in other dimensions,
and jumps to the successive raw in the dimension of q1, i.e., vertically (∆1 = True).
Thus, index idx1 increases of one unit, and the algorithm starts examining the upper
raw in the horizontal dimension.

Once no further exploration is possible in the “lower” dimension, as in grid l),
two consecutive switches are requested (S1 = True, S2 = True), and the algorithms
runs backwards in the dimension of q1.

In grid m), vector idx is reset and index idx1 decreases, so the exploration of
the bottom raws starts.

The last grid in Figure 5.7 shows what happens when the last node is explored:
since two consecutive switches are requested and no other dimension can be in-
spected, the algorithm comes to an end.

62

Chapter 6

Implementation of the
Modules

6.1 Software Architecture
In Chapter 4 the major issues in the design of an optimal planner have been re-
ported, while in Chapter 5 some possible solutions to these problems have been
presented. Here, the proposed solutions are explored in a more detailed way, ex-
amined from the architectural point of view, investigating the implementation of
the principal functions of the service.

6.1.1 Base-Arm Kinematics Plugin
The base-arm kinematics plugin is designed as a ROS package under the name of
base_arm_kinematics_plugin. This package is placed in a parent directory, the
base_arm_kinematics, which gathers kinematics tools. The base-arm kinematics
plugin package is part of a bigger structure, the package suite base_arm, that also
includes a robot description package base_arm_description, where robot models,
initial configurations, and kinematic constraints are put together. Their relation
with the KinematicsBase class is illustrated by the UML chart in Figure 6.1.

The package of the plugin consists of a main class, the BaseArmKinematic-
sPlugin, that manages the various methods utilized for kinematics computations.
Among the different implemented methods, two of them require special attention:
the one that handles the inverse kinematics solver, getPositionIK, and the one that
runs the forward kinematics solver, getPositionFK.

The method getPositionIK takes in an initial guess solution for the inverse kine-
matics (including redundant parameters, if any), which can simply be the set of
joints of the current robot configuration, and the end-effector pose specified in the
task space.

63

6 – Implementation of the Modules

The function returns either the set of joints corresponding to the solution with min-
imum distance from the initial guess or all the sets of inverse kinematics solutions
found. In theory, for a given pose, the maximum number of inverse kinematics
solutions is 16. This is valid as long as either 6-DOF non-redundant robots are
considered or, as in this case, (6 + r)-DOF redundant robots with fixed redundant
parameters are taken into account. Moreover, if non-orthogonal manipulators are
employed, the maximum number of kinematic solutions is 8.

The method getPositionFK accepts as input parameters the robot configuration
for which forward kinematics is computed (i.e., joint position values) and the set of
links of the corresponding kinematic chain. The function computes the task space
pose of each link of the robot.

One more method, worth to mention, is applyTerrainTransformation_: it re-
ceives the set of base joint values and transforms it accordingly to the terrain
shape, returning the set with modified passive base joints.

Figure 6.1: UML class diagram depicting the design structure of the plugin.

64

6.1 – Software Architecture

6.1.2 Redundancy Resolution Service
The redundancy resolution service is designed as a ROS service, comprehensive of
two packages: moveit_dp_redundancy_resolution, that collects all the libraries nec-
essary to implement the redundancy resolution through dynamic programming op-
timization, and moveit_dp_redundancy_resolution_msgs, that includes messages
and definitions necessary for the service to work in the right way. Unlike the plugin’s
layout, the arrangement of this service is organized in several classes:

• WorkspaceTrajectory generates a task space trajectory from the computed joint
space trajectory

• StateSpaceMultiGrid creates state space multi-dimensional grids, solves the
inverse kinematic problem, stores the solutions in node objects and provides
import/export functionalities for the grids

• ObjectiveFunction manages the desired performance index and the applied
optimization criterion

• DynamicProgrammingSolver executes the dynamic programming algorithm
and returns the globally-optimal solution in the form of a joint space tra-
jectory

• MoveGroupDPRedundancyResolutionService comprises the main service of the
plugin, supervising and controlling the other classes

The primary aspects of the generalization reside in having a new grid data structure,
that supports more than two dimensions, and the extension of the search algorithm,
that handles more than one redundancy parameter.

Concerning grid generation, most of the effort has been put on the provision of
methods to assist operations with the new data structure, boost::multi_array. This
data structure acts as a container for the element of the grids. Each element is an
instance of the StateSpaceNode class, which represents a unique grid node. Node
objects are given a generic implementation so that future developments can grow
in many directions.

Regarding the dynamic programming solver, a large part of the work focused
on making the multi-dimensional grids, objects of class StateSpaceMultiGrid, work
with already existing solver methods (generalized, if necessary). In some cases,
iterative structures were specifically constructed for node indexing, compelled by
some operations on grid nodes.

65

6 – Implementation of the Modules

Figure 6.2: UML class diagram depicting the design structure of the service.

6.2 Test Suites
The verification of the previously analyzed concepts is carried out by means of unit
tests. Unit testing is a level of software testing where individual components of a
software are tested [53]. It is the first level of software testing and is performed
prior to any other software tests, such as Integration Testing, System Testing and
Acceptance Testing. The purpose is to validate that each unit of the software
performs as designed. A unit is the smallest testable part of any software. In
object-oriented programming, the smallest unit is a method, which may belong to
a base/super class, abstract class or derived/child class.

Unit tests are usually performed by using the White Box Testing method [54].
White box testing (also known as Clear Box Testing, Open Box Testing, Glass Box
Testing, Transparent Box Testing, Code-Based Testing or Structural Testing) is a
software testing method in which the internal structure of the item being tested is
known to the tester. The tester chooses inputs to exercise paths through the code,
and determines the appropriate outputs. This method is named so because the
software program, in the eyes of the tester, is like a white (transparent) box, inside
which one clearly sees.

66

6.2 – Test Suites

There are some reasons [53] that make unit tests vital for a proper writing of
software:

1. Unit testing increases confidence in changing or maintaining code. If good
unit tests are written and if they are run every time any code is changed, it
will be easier to catch any defects introduced due to the change.

2. Codes are more reusable because they need to be modular to make unit testing
possible.

3. The effort required to find and fix defects found during unit testing is much
less in comparison to the effort required to fix defects found during system
testing or acceptance testing. Also, the cost of fixing a defect detected during
unit testing is less than the one of defects detected at higher levels.

4. Debugging is easy. When a test fails, only the latest changes need to be
debugged. With testing at higher levels, changes made over the span of several
days, weeks or months need to be scanned.

5. Codes are, in general, more reliable if they are provided of unit tests.

In this section, unit tests are executed with the aid of gtest (or googletest [55]),
which is a testing framework developed with Google’s specific requirements [56].

6.2.1 Test Suite for Base-Arm Kinematics Plugin
The performed unit tests that verify the reliability of BaseArmKinematicsPlugin
class methods are the following:

• SolutionFound_getPositionIK_AllSolutions: verifies whether the method get-
PositionIK, which returns all the solutions to the inverse kinematics, returns
true or false.

• SolutionFound_getPositionIK_MinDistanceSeedSolution: for arms with less
than 7-DOM, it checks that the method getPositionIK returns the joint space
solution closest to the initial seed; for arms with more than 6-DOM, it verifies
that the method correctly throws an exception, as an implementation is not
available for such arms.

• SolutionFound_getPositionFK_AllSolutions: verifies that getPositionIK, re-
turning all the solutions to the inverse kinematics, and getPositionFK meth-
ods work correctly together; the test fails if the error between the goal pose
and computed pose is greater than a given absolute error.

• 8SolutionsFound_getPositionIK_AllSolutions: this very specific test checks
that getPositionIK returns at least 8 solutions to the inverse kinematics for a
given end-effector target pose and fixed base joint coordinates.

67

6 – Implementation of the Modules

• SetJointIndices_getRedundantJoints: checks that the method getRedundan-
tJoints correctly retrieves the redundant joints of the base-arm chain.

The class has been tested on mobile manipulators composed of arms, such as Franka
Emika’s Panda (7-DOM) and Kinova Mico (6-DOM), mounted on a 6-DOM base.

As a result of the execution of these tests, a remarkable flaw emerged: one of the
arm analytic inverse kinematics solvers, obtained from the official repository of the
manipulator, retrieved a wrong solution to the inverse kinematics for that manipu-
lator. A fix to this issue has been provided by regenerating the inverse kinematics
plugin for the concerned arm by means of MoveIt! IKFast plugin generator.

6.2.2 Test Suite for Redundancy Resolution Service
The performed unit tests that verify the reliability of StateSpaceGrid and StateS-
paceMultiGrid classes are the following:

• ComputeGrids: verifies that method computeGrids() from class StateSpace-
MultiGrid returns true.

• EnableNode: verifies that methods isNodeValid(), enableNode() and isNodeEn-
abled() from class StateSpaceGrid return true when 8 solutions to the inverse
kinematics are expected at given node.

• CompareGrids: verifies that grids binary files computed with method export-
ToBinary() from class StateSpaceGrid are byte-wise equal to those calculated
with previous implementation in [33].

The performed unit test that verifies the reliability of DynamicProgrammingSolver
class is the following:

• ReturnRobotTrajectory: verifies that the DP-inspired generalized solver is able
to return an optimal solution, that is equivalent to check that method solve()
from class DynamicProgrammingSolver returns true.

The classes have been tested on Franka Emika’s Panda (7-DOM) manipulator and
verified that obtained results match those in [33].

68

Chapter 7

Conclusions

7.1 Results
Future planetary mission scenarios are shifting from robotic exploration towards
colonization of satellites and planets. As a result, robots capable of supporting
tasks for construction activities are required. In these circumstances, engineers can
rely on cooperative robots that can collaborate with each other to accomplish tasks
that individual robotic systems cannot achieve.

Major companies interested in space exploration and colonization are developing
advanced technologies for ground control centers to support planning and control of
complex robots. Mobile manipulators, consisting of robotic arms mounted on mov-
ing platforms, are used in the present dissertation as an example of representatively
complex robotic systems that are not trivial to control.

The aim of the present dissertation is to contribute to the development of these
technologies, setting two objectives:

1. to build a plugin for the inverse kinematics of mobile manipulators

2. to generalize a redundancy resolution service for optimal trajectory planning
The present activity has resulted in the attainment of both the predefined objectives
in the measure of:

• building a kinematics plugin for the handling of forward and inverse kinematics
of mobile manipulators

• providing a basic interface for platform joints transformation due to the terrain
shape

• allowing the management of multi-dimensional grids through an appropriate
data structure

• generalizing a DP-inspired algorithm for the handling of multiple redundancy
parameters

69

7 – Conclusions

7.2 Future Works
Results presented in this dissertation pave the way to many future developments.
Some suggested improvements and analyses concern the:

• creation of use case with mobile manipulator to acquire data on final perfor-
mance indices values

• analysis through test suite of base-arm kinematics plugin with mobile manip-
ulators having different base models, such as Clearpath’s Jackal

• set of additional terrain shapes or take in numerical terrain structure when
handling the motion of the platform in presence of non-flat terrains

• analysis of 3-dimensional grids through slices at various waypoints

• improvement of base-arm kinematics plugin for the generation of homogeneous
grids

• parallelization of the reading process of grid nodes inside the DP algorithm in
order to decrease computational time

70

Appendix A

Calculus of Variations

A.1 Principal Problems in Calculus of Variations
The inverse kinematic problem for non-redundant manipulators brings to a finite
set of solutions. If the manipulator is redundant, there can be infinite solutions
and it is possible to select one among them by applying a criterion as an additional
constraint to the problem, such as, the minimization of a cost functional.

The optimal solution to the non-redundant kinematic inversion problem is sup-
ported by calculus of variations. In a broader sense, calculus of variations deals
with functional optimization problems. Before listing some of the main problems
found in calculus of variations, a key quantity has to be defined.

Considering a function x(t) defined in a certain time interval, then the scalar
variable F is called a functional of x(t) if for each value of x(t) corresponds a scalar
value of F :

F = F (x(t)) (A.1)

A classic example of a functional F is the definite integral:

F =
∫︂ t1

t0
x(t)dt (A.2)

For a fixed interval of integration [t0, t1], F only depends on x(t).

A.1.1 Fixed endpoint problem
The first problem explored here, proper of calculus of variations, consists in finding
the trajectory x(t) that minimizes a cost functional at a fixed endpoint.

71

A – Calculus of Variations

Given a function x(t) defined over the time interval [t0, t1], the problem can be
formulated this way:

min
x(t)

F (x) =
∫︂ t1

t0
f(t, x(t), ẋ(t))dt (A.3)

assuming f(t, x(t), ẋ(t)) integrable over [t0, t1] and differentiable with respect to
all its arguments. The trivial necessary condition for a function x∗(t) to be the
minimizer of a functional F is that F (x) ≥ F (x∗),∀x(t). However, this condition
is not useful from an application point of view: it is essential to find an alternative
condition that allows to determine the minimizing solution x∗(t).

First-order necessary condition

The optimal solution to the preceding problem, assuming free boundary values, is
the one that satisfies the Euler-Lagrange equation (A.4) with corresponding bound-
ary conditions (A.5):

∂f

∂x
− d

dt

(︄
∂f

∂ẋ

)︄
= 0 (A.4)

δx(t0)
(︄

∂f

∂ẋ

)︄
= δx(t1)

(︄
∂f

∂ẋ

)︄
= 0 (A.5)

where δx(t0) and δx(t0) are the variations at endpoints. On the contrary, if bound-
ary values x(t0) and x(t1) are constrained, then the boundary conditions for (A.4)
take values δx(t0) = δx(t1) = 0.

Second-order necessary condition

The previous result comes from an analysis on the derivative (or, first variation) of
F and gives a necessary condition at endpoints. However, it does not ensure that
x∗(t) is a minimizer for F , so it is essential to study the second variation of it.

A non-negative second variation of F guarantees a second-order necessary condi-
tion for a minimum, that is, the variation ∆F is always positive. The non-negativity
condition is satisfied if function f is convex in both variables (x(t), ẋ(t)).

Actually, it is possible to demonstrate that a non-negative second variation of
F , along the optimal trajectory, requires the convexity of f only in ẋ(t). Therefore,
the second-order necessary condition for function x∗(t) to be a minimizer of F is
that, along that whole trajectory, the following inequality holds:

∂f 2

∂x2 ≥ 0 (A.6)

72

A.1 – Principal Problems in Calculus of Variations

A.1.2 Fixed endpoint constrained problem
The second problem examined consists in finding a trajectory that satisfies a certain
constraint and minimizes a specified cost functional.

Considering a function x(t) defined over the time interval [t0, t1], the problem is
formulated as follows:

min
x(t)

F (x) =
∫︂ t1

t0
f(t, x(t), ẋ(t))dt

s.t. v(t) = g(x(t))
(A.7)

Then, defining a modified function f ′ that includes the constraint v(t) by means of
the Lagrange multiplier λ ∈ R:

f ′(t, x(t), ẋ(t)) = f(t, x(t), ẋ(t)) + λ (v(t)− g(x(t))) (A.8)

the previous problem is equivalent to:

min
x(t)

F (x) =
∫︂ t1

t0
f ′(t, x(t), ẋ(t))dt

s.t. v(t) = g(x(t))
(A.9)

which can be seen as a non-constrained fixed endpoint problem (A.3) plus an ad-
ditional constraint v(t) = g(x(t)).
At this point, assuming free boundary values, the minimizing solution satisfies the
following set of differential algebraic equations (DAE):

∂f ′

∂x
− d

dt

(︄
∂f ′

∂ẋ

)︄
= 0

δx(t0)
(︄

∂f ′

∂ẋ

)︄
= δx(t1)

(︄
∂f ′

∂ẋ

)︄
= 0

v(t) = g(x(t))

(A.10)

A.1.3 Fixed endpoint multidimensional problem
Considering the trajectories vector x(t) = [x1(t), x2(t), . . . , xn(t)] defined over the
time interval [t0, t1], and supposing non-constrained boundary values, the third
problem investigated consists in finding the optimal vector function x∗(t) that
minimizes the functional F (x):

min
x(t)

F (x) =
∫︂ t1

t0
f(t, x(t), ẋ(t))dt (A.11)

where f is a scalar function in x(t), ẋ(t) and t.

73

A – Calculus of Variations

As in the scalar case, it is possible to prove that the minimizer of F (x) satisfies the
boundary conditions of the Euler-Lagrange equation:

∂f

∂x
− d

dt

(︄
∂f

∂ẋ

)︄
= 0 (A.12)

δx(t0)
(︄

∂f

∂ẋ

)︄
= δx(t1)

(︄
∂f

∂ẋ

)︄
= 0 (A.13)

The generalization of these results is straightforward assuming a constrained tra-
jectory vector x(t), i.e., v(t) = g(x(t)). With the introduction of the modified
function f ′, where λ ∈ Rn is the Lagrange multipliers vector :

f ′(t, x(t), ẋ(t)) = f(t, x(t), ẋ(t)) + λ (v(t)− g(x(t))) (A.14)

the minimizer x∗(t) satisfies the following set of DAEs:

∂f ′

∂x
− d

dt

(︄
∂f ′

∂ẋ

)︄
= 0

δx(t0)
(︄

∂f ′

∂ẋ

)︄
= δx(t1)

(︄
∂f ′

∂ẋ

)︄
= 0

v(t) = g(x(t))

(A.15)

A.1.4 Isoperimetric problem
The fourth problem analyzed is the isoperimetric problem which consists in finding
the function x(t) that minimizes the integral functional F (x) and, at the same time,
satisfies another integral constraint. The problem can be formalized as follows:

min
x(t)

F (x) =
∫︂ t1

t0
f(t, x(t), ẋ(t))dt

s.t. G(x) =
∫︂ t1

t0
g(t, x(t), ẋ(t))dt = c

(A.16)

where c is a constant and the boundary conditions are written in the form x(t0) =
x0, x(t1) = x1. It is also possible to prove that a necessary condition for the
minimizer to be a solution to the isoperimetric problem takes place if x∗(t) is an
extremal solution of the functional:∫︂ t1

t0
(f(t, x(t), ẋ(t)) + λg(t, x(t), ẋ(t))) dt (A.17)

in which λ is a constant and its value depends on the considered problem.

74

Bibliography

[1] Altec. [Online]. Available: https://www.altecspace.it/en
[2] B. Bona, Modellistica dei robot industriali, ser. Strumenti per l’ingegneria.

CELID, 2002.
[3] Robotics simulation. [Online]. Available: https://www.intorobotics.com/

robotics-simulation-softwares-with-3d-modeling-and-programming-support/
[4] J. W. Burdick, “On the inverse kinematics of redundant manipulators: Char-

acterization of the self-motion manifolds,” in Advanced Robotics: 1989, K. J.
Waldron, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989, pp. 25–34.

[5] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Berlin, Heidelberg:
Springer-Verlag, 2007.

[6] L. Barinka and R. Berka. (2002, March) Inverse kinematics - basic methods.
[Online]. Available: http://old.cescg.org/CESCG-2002/LBarinka/paper.pdf

[7] C. R. Carignan, “Trajectory optimization for kinematically redundant arms,”
Journal of Robotic Systems, vol. 8, no. 2, pp. 221–248, 1991. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.4620080206

[8] A. Nedungadi and K. Kazerouinian, “A local solution with global
characteristics for the joint torque optimization of a redundant manipulator,”
Journal of Robotic Systems, vol. 6, no. 5, pp. 631–654, 1989. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.4620060508

[9] K. Kazerounian and Z. Wang, “Global versus local optimization in redundancy
resolution of robotic manipulators,” Int. J. Rob. Res., vol. 7, no. 5, pp. 3–12,
Oct. 1988. [Online]. Available: http://dx.doi.org/10.1177/027836498800700501

[10] Y. Nakamura and H. Hanafusa, “Optimal redundancy control of robot
manipulators,” Int. J. Rob. Res., vol. 6, no. 1, pp. 32–42, Mar. 1987. [Online].
Available: http://dx.doi.org/10.1177/027836498700600103

[11] H. Hanafusa, T. Yoshikawa, and Y. Nakamura, “Analysis and control of
articulated robot arms with redundancy,” IFAC Proceedings Volumes, vol. 14,
no. 2, pp. 1927 – 1932, 1981, 8th IFAC World Congress on Control Science
and Technology for the Progress of Society, Kyoto, Japan, 24-28 August
1981. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1474667017637546

[12] K. J. Kyriakopoulos and G. N. Saridis, “Minimum jerk path generation,” in

75

https://www.altecspace.it/en
https://www.intorobotics.com/robotics-simulation-softwares-with-3d-modeling-and-programming-support/
https://www.intorobotics.com/robotics-simulation-softwares-with-3d-modeling-and-programming-support/
http://old.cescg.org/CESCG-2002/LBarinka/paper.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.4620080206
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.4620060508
http://dx.doi.org/10.1177/027836498800700501
http://dx.doi.org/10.1177/027836498700600103
http://www.sciencedirect.com/science/article/pii/S1474667017637546
http://www.sciencedirect.com/science/article/pii/S1474667017637546

Bibliography

Proceedings. 1988 IEEE International Conference on Robotics and Automation,
April 1988, pp. 364–369 vol.1.

[13] L. Tsai and A. Morgan, “Solving the kinematics of the most general six-
and five-degree-of-freedom manipulators by continuation methods,” Journal
of Mechanisms Transmissions and Automation in Design, vol. 107, p. 189, 06
1985.

[14] J. Duffy and C. Crane, “A displacement analysis of the general spatial 7-link,
7r mechanism,” Mechanism and Machine Theory, vol. 15, p. 153–169, 12 1980.

[15] H.-Y. Lee and C.-G. Liang, “Displacement analysis of the general spatial 7-link
7r mechanism,” Mechanism and Machine Theory, vol. 23, pp. 219 – 226, 1988.

[16] R. Manseur and K. L. Doty, “A robot manipulator with 16 real inverse kine-
matic solution sets,” The International Journal of Robotics Research, vol. 8,
pp. 75–79, 1989.

[17] D. E. Whitney, “The mathematics of coordinated control of prostetic arms
and manipulators,” Journal of Dynamic Systems, Measurement, and Control,
vol. 94, 12 1972.

[18] A. Liegeois, “Liegeois, a.: Automatic supervisory control of the configuration
and behavior of multibody mechanisms. ieee trans. syst. man cybern. 7(12),
868-871,” IEEE Transactions on Systems, Man, and Cybernetics - TSMC,
vol. 7, pp. 868–871, 12 1977.

[19] D. N. Nenchev, “Redundancy resolution through local optimization: A
review,” Journal of Robotic Systems, vol. 6, no. 6, pp. 769–798, 1989. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.4620060607

[20] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed-loop inverse
kinematics schemes for constrained redundant manipulators with task space
augmentation and task priority strategy,” International Journal of Robotic
Research - IJRR, vol. 10, pp. 410–425, 08 1991.

[21] G. C. Calafiore and L. El Ghaoui, Optimization Models. Cambridge University
Press, 2014.

[22] M. Uchiyama, K. Shimizu, and K. Hakomori, “Performance evaluation of ma-
nipulators using the jacobian and its application to trajectory planning,” In-
ternational Journal of Robotic Research - IJRR, 01 1985.

[23] J. M. Hollerbach and K. C. Suh, “Redundancy resolution of manipulators
through torque optimization,” IEEE Journal on Robotics and Automation,
vol. 3, 08 1987.

[24] Boundary value problem. [Online]. Available: http://www.scholarpedia.org/
article/Boundary_value_problem

[25] E. Ferrentino and P. Chiacchio, “Redundancy parametrization in globally-
optimal inverse kinematics,” The 16th International Symposium on Advances
in Robot Kinematics (ARK), pp. 47–55, 01 2019.

[26] E. Ferrentino and P. Chiacchio, “Topological analysis of global inverse kine-
matic solutions for redundant manipulators,” CISM International Centre for

76

https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.4620060607
http://www.scholarpedia.org/article/Boundary_value_problem
http://www.scholarpedia.org/article/Boundary_value_problem

Bibliography

Mechanical Sciences, Courses and Lectures, pp. 69–76, 01 2019.
[27] E. Ferrentino and P. Chiacchio, “A topological approach to globally-optimal re-

dundancy resolution with dynamic programming,” CISM International Centre
for Mechanical Sciences, Courses and Lectures, pp. 77–85, 01 2019.

[28] A. Guigue, M. Ahmadi, R. Langlois, and M. J. D. Hayes, “Pareto optimality
and multiobjective trajectory planning for a 7-dof redundant manipulator,”
Trans. Rob., vol. 26, no. 6, pp. 1094–1099, Dec. 2010. [Online]. Available:
http://dx.doi.org/10.1109/TRO.2010.2068650

[29] A. Dolgui and A. Pashkevich, “Manipulator motion planning for high-
speed robotic laser cutting,” International Journal of Production Research,
vol. 47, no. 20, pp. 5691–5715, 2009. [Online]. Available: https:
//doi.org/10.1080/00207540802070967

[30] J. Gao, A. Pashkevich, and S. Caro, “Optimization of the robot and
positioner motion in a redundant fiber placement workcell,” Mechanism
and Machine Theory, vol. 114, pp. 170 – 189, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0094114X16306061

[31] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Di-
mensionality (Wiley Series in Probability and Statistics). New York, NY,
USA: Wiley-Interscience, 2007.

[32] P. Wenger, “A new general formalism for the kinematic analysis of all nonre-
dundant manipulators,” in Proceedings 1992 IEEE International Conference
on Robotics and Automation, May 1992, pp. 442–447 vol.1.

[33] E. Ferrentino and P. Chiacchio, “On the optimal resolution of inverse kinemat-
ics for redundant manipulators using a topological analysis,” unpublished.

[34] J. W. Burdick, “On the inverse kinematics of redundant manipulators:
characterization of the self-motion manifolds,” in Proceedings, 1989
International Conference on Robotics and Automation, May 1989, pp. 264–270
vol.1. [Online]. Available: http://dx.doi.org/10.1109/ROBOT.1989.99999

[35] Optimal planning. [Online]. Available: http://ompl.kavrakilab.org/
optimalPlanning.html

[36] Introduction to ros. [Online]. Available: http://wiki.ros.org/ROS/Introduction
[37] About ros. [Online]. Available: http://www.ros.org/about-ros/
[38] Esrocos. [Online]. Available: https://cordis.europa.eu/project/rcn/206157/

factsheet/en
[39] Ros concepts. [Online]. Available: http://wiki.ros.org/ROS/Concepts#ROS_

Computation_Graph_Level
[40] Ros nodes. [Online]. Available: http://wiki.ros.org/Nodes
[41] Ros master. [Online]. Available: http://wiki.ros.org/Master
[42] Ros parameter server. [Online]. Available: http://wiki.ros.org/Parameter%

20Server
[43] Ros messages. [Online]. Available: http://wiki.ros.org/Messages
[44] Ros services. [Online]. Available: http://wiki.ros.org/Services

77

http://dx.doi.org/10.1109/TRO.2010.2068650
https://doi.org/10.1080/00207540802070967
https://doi.org/10.1080/00207540802070967
http://www.sciencedirect.com/science/article/pii/S0094114X16306061
http://dx.doi.org/10.1109/ROBOT.1989.99999
http://ompl.kavrakilab.org/optimalPlanning.html
http://ompl.kavrakilab.org/optimalPlanning.html
http://wiki.ros.org/ROS/Introduction
http://www.ros.org/about-ros/
https://cordis.europa.eu/project/rcn/206157/factsheet/en
https://cordis.europa.eu/project/rcn/206157/factsheet/en
http://wiki.ros.org/ROS/Concepts#ROS_Computation_Graph_Level
http://wiki.ros.org/ROS/Concepts#ROS_Computation_Graph_Level
http://wiki.ros.org/Nodes
http://wiki.ros.org/Master
http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/Messages
http://wiki.ros.org/Services

Bibliography

[45] Ros topics. [Online]. Available: http://wiki.ros.org/Topics
[46] Moveit! [Online]. Available: https://moveit.ros.org/
[47] Ompl. [Online]. Available: https://moveit.ros.org/documentation/planners/
[48] Ompl planners. [Online]. Available: http://ompl.kavrakilab.org/planners.html
[49] Kdl. [Online]. Available: http://www.orocos.org/kdl
[50] Trac-ik inverse kinematics plugin. [Online]. Available: https://traclabs.com/

projects/trac-ik/
[51] Ikfast. [Online]. Available: http://openrave.org/docs/0.8.2/openravepy/

ikfast/
[52] Boost.multiarray. [Online]. Available: https://www.boost.org/doc/libs/1_

69_0/libs/multi_array/doc/index.html
[53] Unit testing. [Online]. Available: http://softwaretestingfundamentals.com/

unit-testing/
[54] White box testing. [Online]. Available: http://softwaretestingfundamentals.

com/white-box-testing/
[55] Googletest official repository. [Online]. Available: https://github.com/google/

googletest
[56] Googletest documentation. [Online]. Available: https://github.com/google/

googletest/blob/master/googletest/docs/primer.md

78

http://wiki.ros.org/Topics
https://moveit.ros.org/
https://moveit.ros.org/documentation/planners/
http://ompl.kavrakilab.org/planners.html
http://www.orocos.org/kdl
https://traclabs.com/projects/trac-ik/
https://traclabs.com/projects/trac-ik/
http://openrave.org/docs/0.8.2/openravepy/ikfast/
http://openrave.org/docs/0.8.2/openravepy/ikfast/
https://www.boost.org/doc/libs/1_69_0/libs/multi_array/doc/index.html
https://www.boost.org/doc/libs/1_69_0/libs/multi_array/doc/index.html
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/white-box-testing/
http://softwaretestingfundamentals.com/white-box-testing/
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest/blob/master/googletest/docs/primer.md
https://github.com/google/googletest/blob/master/googletest/docs/primer.md

	Introduction
	Background
	Focus
	Aims and Objectives
	Outline

	Robot Planning
	The Planning Problem
	Path Planning and Trajectory Planning

	State of the Art on Redundancy Resolution
	Robotic Manipulators
	Redundant Robots
	Kinematic Inversion
	Resolution Methods
	Inverse Kinematics of Redundant Manipulators
	Inverse Kinematics of Non-Redundant Manipulators

	Redundancy Resolution
	Locally-Optimal Inverse Kinematics
	Globally-Optimal Inverse Kinematics

	Redundancy Resolution with Euler-Lagrange Equation
	Euler-Lagrange Equation
	Analysis with Euler-Lagrange Equation
	Euler-Lagrange Boundary Conditions
	Reduced-Order Form

	Redundancy Resolution with Dynamic Programming
	Dynamic Programming
	Analysis with Dynamic Programming
	Redundancy Parametrization
	Minimum Number of Equations

	A DP-inspired algorithm
	Grid Representation
	Algorithm Formulation

	Analysis of Planning Technologies
	Optimal Trajectory Planning
	ROS
	Moveit!
	Optimal Planners and Redundancy Resolution
	Inverse Kinematics Solvers

	Design of an Optimal Planner
	Overview
	Mobile Manipulators
	Base-Arm Kinematics Plugin
	Redundancy Resolution Service
	Grid Generation and Generalized DP Algorithm
	Flowchart
	Example with Two Redundancy Parameters

	Implementation of the Modules
	Software Architecture
	Base-Arm Kinematics Plugin
	Redundancy Resolution Service

	Test Suites
	Test Suite for Base-Arm Kinematics Plugin
	Test Suite for Redundancy Resolution Service

	Conclusions
	Results
	Future Works

	Calculus of Variations
	Principal Problems in Calculus of Variations
	Fixed endpoint problem
	Fixed endpoint constrained problem
	Fixed endpoint multidimensional problem
	Isoperimetric problem

	Bibliography

