

VEHICLE MANAGEMENT UNIT:
FROM MODEL-BASED DESIGN TO

CODE GENERATION

Master of Science in Mechatronic Engineering

Instructor: Professor Stefano Carabelli

Fargham Ahmad

1

ABSTRACT

The aim is to determine the feasibility and implementation of a vehicle management unit on a

RCP or an embedded ECU, following a model-based design and code generation for

implementation. With an embedded system there arises the problem of I/O interfaces as they

are always adapted from system to system according to signal dynamics. The feasibility study is

conducted by following the V-model scheme. Since control strategies are already well known,

the thesis presents the problem of simulating the delays introduced at the I/O interfaces of an

embedded system. In addition, digital filters introduce delays, which may cause the system to be

unstable, mitigation of this issue is also addressed to have a well-tuned system.

To understand the effects of the I/O interfaces and the signal conditioning components used to

adapt the signal, a model-based scheme is used to form a base model. The base model

represents the concept. In the next cycle of the development an enhanced model is produced

containing the signal conditioning and conversion components, such as ADC, S/H units, to

consider the delays due to I/O interfaces. Upon completion the enhanced model is validated by

comparing the results with the base model. Using target hardware support package from

Matlab/Simulink, ADC and DAC blocks are used as means of I/O for code generation model. The

core part of enhanced model that performs the core functionality is reused to complete the

code generation model and code is generated automatically. Following it, experiments are

conducted to determine the exact the delays for signal traversal. The enhanced model is

calibrated by adding the delay to the system model, this way the model is valid as the delays at

the I/O interfaces are also taken into consideration.

For tuning the digital signal at input and output, the input signal is averaged periodically and at

the output the signal is smoothened. The signal is acquired at a higher frequency than the

computation frequency, this way the input signal is an average value for every computation

period. Furthermore, at the output the signal is linearly smoothened to have smooth signal.

Also, the input signal is automatically scaled to it’s native values and units upon acquisition and

then rescaled to bits after core functions are performed. All the strategies are implemented

using model-based design and are compatible for automatic code generation for any target

hardware, that is supported by Matlab/Simulink.

In conclusion, a model is produced that is parameterized to model any target hardware with it’s

specifications. However, this model will only have to be calibrated once for every target

hardware. The calibration can be done by knowing the I/O delay of the target by experimenting

once. For the input and output signal conditioning in code generation model, code can be

generated and deployed automatically for any supported target. This makes the model reusable

for any RCP or embedded ECU supported by Matlab/Simulink for code generation.

2

CONTENTS

Abstract __ 1

INTRODUCTION ___ 4

A. Objective __ 4

B. Framework For Development Cycle ___ 5

CHAPTER 1-MODEL DESCRIPTIONS __ 6

CHAPTER 2-DEVELOPMENT CYCLE IMPLEMENTATION EXAMPLE FOR AN EMBEDDED ECU ______ 8

2.1 Base Model __ 8
2.1.1 Introduction And Objective __ 8
2.1.2 Description ___ 8
2.1.3 Theoretical Behavior ___ 9
2.1.4 Simulated Behavior __ 9

2.2 Enhanced Model ___ 11
2.2.1 Introduction And Objective ___ 11
2.2.2 Description __ 11

2.2.2.1 Reference Signal Conditioning block __ 11
2.2.2.2 Analog to digital converter block __ 13
2.2.2.3 Digital Filter ___ 15
2.2.2.4 Digital to analog converter block___ 16
2.2.2.5 Scaling output to Reference Signal Values ___ 17

2.2.3 System Parameter Selection and Behavior___ 18

2.3 Code generation model ___ 21
2.3.1 Introduction And Objective ___ 21
2.3.2 Description __ 21
2.3.3 Model Description __ 21
2.3.4 Code Generation Steps & Code Mapping __ 23
2.3.5 System Behavior and Output signal __ 24

2.4 Testing ___ 25
2.4.1 Setup __ 25
2.4.2 Observed Results ___ 26
2.4.3 Comparing the results ___ 28

2.5 Model Validation and Calibration ___ 29
2.5.1 Delay Analysis in simulation and testing __ 29
2.5.2 Calibration __ 30

CHAPTER 3-VMU AND PLANT MODELLING SCHEME __________________________________ 31

3

3.0 Introduction __ 31

3.1 System Layout Concept Model ___ 31
3.1.1 Objective ___ 31
3.1.2 Description __ 31

3.2 System Layout Enhanced Model __ 32
3.2.1 Objective ___ 32
3.2.2 Description __ 32

3.3 Vehicle Management Unit Layout Model For Code Generation _____________________________________ 34
3.3.1 Objective ___ 34
3.3.2 Description __ 34

CHAPTER 4-TEST BENCH AND VMU IMPLEMENTATION ________________________________ 36

4.0 Introduction __ 36

4.1 Base Model ___ 38

4.2 Enhanced Model ___ 39
4.2.1 A/D Interface __ 39
4.2.2 D/A Interface __ 41

4.3 Comparison Of Base Model And Enhanced Model Results ___ 42

4.4 Code Generation Model Of Dynamic Test Bench ___ 44
4.4.1 Discretization Of the Controller ___ 45
4.4.2 Clock Generator And Interrupt Routines __ 46
4.4.3 Digital Signal Pre-Processing For Code Generation Model ______________________________________ 47
4.4.4 Digital Signal Post-Processing For Code Generation Model ______________________________________ 48
4.4.5 Simulation Result Validation __ 50

4.5 Code Generation Model Expected Outcomes ___ 50

REFERENCES __ 51

4

Introduction

A. OBJECTIVE

Vehicle management unit comprises of powertrain control and vehicle management. The thesis

addresses the production of such a unit from model-based design to code generation for

production. As the product is for production, it’s mandatory that it meets the standard

requirements for certifications, in particular vehicle functional safety. Hence, all the

development phases must be carried out following the V-model scheme set by ISO-26262 Road

Vehicles-Functional safety.

To go from concept to production in an industry standard approach results in a more acceptable

product, which reduces cost in terms time, there is no need to map the development cycle to

industry standard. The figure below outlines the steps for the product development cycle, which

is ISO-26262 compliant.

Figure A: The V-model Scheme by ISO-26262.

5

B. FRAMEWORK FOR DEVELOPMENT CYCLE

Since, the domain of thesis lies towards software, hardware design is not addressed, only

hardware selection is of importance to meet the specifications. The development cycle scheme

issued by ISO-26262, is the basis for vehicle management unit production. All the development

is done by following a model/based design. The 5 steps in which the development cycle is

iterated, as follows:

1) Concept Phase:

It involves developing an ideal model, which simulates the basic idea for prototyping. This phase

deals with feasibility of the project. This is step 3 in the scheme issued by ISO-26262.

2) Product development at the system level:

The concept phase is realized to meet design specifications, that includes all the components of

the system. The model created is to replicate the real behavior of the system. This model is

developed after iterations and testing, until the model is a proper fit. This is step 4 in the

scheme issued by ISO-26262.

3) Product development at the hardware level:

The hardware for prototyping can be an embedded ECU by Texas Instruments or an ECU that is

bypassed externally by a RCP by dSPACE, also RCP by dSPACE can be a standalone ECU. The

later allows for more functionality, however there are some latencies in the I/O as the signals

are exchanged between RCP and ECU, also ECU is still the controller that is closing the feedback

loop. Bypassing ECU externally can run new control functions on the RCP, and the original

control functions on the existing ECU. Furthermore, RCP can be used for control optimizations

and data collection for analysis, as it’s a more capable device in terms of computation. This is

step 5 in the scheme issued by ISO-26262. However, no development is done at hardware level.

Figure B: The ECU bypass or Standalone Scheme.

4) Product development at the software level:

The software is C code that is generated from Simulink after following a model-based design.

This is step 6 in the scheme issued by ISO-26262.

5) Final-Testing:

It consists of comparing the results obtained from simulation and the behavior of the

plant(vehicle). For unsatisfactory results, the complete process is iterated after applying fixes.

6

Chapter 1-Model Descriptions
This chapter outlines the modelling strategy used and the motivation for considering and

developing an enhanced model. As it is known that the model-based design follows a V-cycle

scheme, the following is based on the framework introduced previously. The figure below

mentions the different stages of the development cycle. The different stages represent different

models. Each model is approached in sequence to have a model in the end that simulates the

system in similar way. All the simulations are conducted on Matlab/Simulink environment,

following a model-based design.

Figure 1.1: The adapted development scheme.

1. Base Model

The simplest model that transforms the idea to a model. This phase is the concept phase in the

framework, and it is the most crucial part of the development and it contains, only the main

task. As this is the simplest model, the tradeoff is in neglecting the model details, the operation

conditions, etc. The results obtained from this model are not enough to have a complete

behavior. The model is not valid as it doesn’t simulate the system entirely. Also, base model is a

reference model for validation of the enhanced model and the code generation model.

2. Enhanced Model

The enhanced model takes into consideration the base model and adds to it the components

which enhance the model in such a way that it represents the system. This phase is product

development at the system level. This model is the model that is required to have in order to

completely understand the system and its behavior. For example, sampling and hold unit, A/D

and D/A units. All these components are modelled for model simulation, as they include the I/O

interfaces

1.Base Model

2.Enhanced Model

3.Code Generation Model

4.Testing

5. Calibrated

Model

7

Furthermore, the figure below depicts exactly what the enhanced model takes into

consideration.

Figure 1.2: Model highlighting the I/O interface.
This model enables to analyze if the selected target hardware is the right choice. The model can

replicate any embedded system’s I/O interfaces. It models the latencies introduced at the I/O

interfaces between the controller (target hardware) and the plant. The controller operates in

the digital time domain, and the components used for the interfacing of controller and plant

introduce time delays. This way all the sources of delays are considered, and the model is valid.

3. Code Generation Model

The following model is the model that will be model-based, and the development will be carried

out on Simulink. This phase is product development at the software level. In this part, the model

for target deployment is carried out. This model differs the enhanced model by just I/O interface

blocks, because the I/O i.e. signal acquisition and transmission is done via Simulink blocks.

However, the core functionality part of model is exactly that of the enhanced model.

4. Testing

An experiment is setup to observe the hardware behavior for which code is generated. This part

is required to assess the performance of the system with the enhanced model. Experimental

data is collected for model calibration.

5. Calibrated Model

The final part is the calibration of the enhanced model to make adjustments so that the

enhanced model is completely valid. Gains and delays are adjusted in the enhanced model to

have a better model.

8

Chapter 2-Development Cycle Implementation

Example For An Embedded ECU

2.1 BASE MODEL

2.1.1 INTRODUCTION AND OBJECTIVE
The base model takes into consideration the concept. Since, the objective is to determine the
I/O latency, it is sufficient to use a simple lowpass filter on the microcontroller and observe the
delay. However, this is just base model that is not meant for target deployment, rather it is
transforming the idea to the concept model. Also, worth noting is that in the simulation the
hardware details are completely neglected.

The concept is to implement a lowpass filter to observe the signal behavior at the input/output

boundary of interface. The concept of the modelling is to determine the output on an

oscilloscope from a lowpass filter when a reference signal is applied. The reference signal and

filtered output are compared to draw conclusions.

2.1.2 DESCRIPTION
The model is composed of a signal generator block, an analog low pass filter and a scope from

the Simulink library. Beneath is the description of signals and the signal parameters.

Table 2.1: The description of Signals

Name Symbol UNIT RANGE

Reference Signal u(t) V [-5 to 5]

Filtered Output Signal yf(t) V -

Figure 2.1: The Simulink Scheme for the base model.

The scheme shown above comprises of a signal generator, a lowpass filter and a scope.
The table below provides the model parameters.

Table 2.2: The description of Parameters

Parameter Name Unit Value

Amplitude_Signal Signal Amplitude (Generator) V 5
Bias_Signal Signal Offset (Generator) V 0

Frequency_Signal Signal Frequency (Generator) Hz 1/2

CutOff_Freq Cutoff Frequency (Filter) Hz 8 × ½ = 4

9

 The low pass transfer function is given by
1

0.03979𝑠+1
 . Where the cutoff frequency is 4Hz.

Figure 2.2: The frequency response of the analog lowpass filter.

2.1.3 THEORETICAL BEHAVIOR
The Filtered Output signal y(t) is expected to be different from u(t) in two aspects:

1. The phase shift is due to the time it takes to charge the plates of the capacitor, as the

input increases. Thus, resulting in the output voltage lagging behind that of the input

signal. The higher the input frequency applied to the filter the more the capacitor lags

and the circuit becomes more and more out of phase.

2. The amplitude attenuation is because a first-order filter has a gain of -3 dB at the cut-off

frequency, but it’s ideally approximated to 0 db (flat) in the passband region.

2.1.4 SIMULATED BEHAVIOR
The simulation is done at 3 different frequencies to know the outcome at different frequencies.

It can be seen that there is a phase delay in all the cases, however there is a significant

attenuation in the region that’s not passband.

10

Table 2.3: Frequencies at which simulation performed

Figure 2.3: The input and output signals of the low pass filter at ½ Hz.

Figure 2.4: The input and output signals of the low pass filter at ¼ Hz.

Figure 2.5: The input and output signals of the low pass filter at 2 Hz.

Signal Frequency Value Symbol Unit Delay Attenuation Figure

½ × 2pi W1 rad/s 41.4 ms 0.8% 1.1

¼ × 2pi W2 rad/s 60.4 ms 0.23% 1.2

2 × 2pi W3 rad/s 49.2 ms 12.5% 1.3

11

2.2 ENHANCED MODEL

2.2.1 INTRODUCTION AND OBJECTIVE

The enhanced model is enhanced version of the base model as explained before. This model
accounts for the components of the microcontroller or any RCP by considering acquisition and
transmission specifications, which are added to the base model to enhance it. Hence, the
enhanced model, models the ADC and DAC components of the hardware. This is used to study
delays introduced that are risen by these components. All the components will be simulated in
detail to have a reliable enhanced model. Also, the model is not hardware specific. The
hardware specifications are parameters in the model, that can be changed to have a model of
any target hardware. A lowpass filter is implemented, with same specifications that are in base
model, but also considering models of the components of the target hardware.This model is
based on Texas Instruments TMS320F28335 microcontroller with 12-bit ADC.

Furthermore, in the enhanced model the following components are to be modelled in addition

to the base model:

1. Signal Conditioning block to adapt the input dynamics of the microcontroller.

2. Analog to digital converter block.

3. Digital filter, which can be implemented on any target by code generation.

4. Digital to analog converter block (A PWM based, with a lowpass filter).

5. Signal Conditioning block to adapt the reference input dynamics for the filtered output.

2.2.2 DESCRIPTION

2.2.2.1 Reference Signal Conditioning block

The signal conditioning block can be realized by 2 terms.

1. Scaling coefficient times the input signal.
2. Offset term.

Table 2.4: The description of Signal Conditioning block parameters used in Simulink

Name Description Symbol Unit Range

Reference Signal Input signal from signal generator u(t) V [-5 to 5]

Scaled Reference
Signal

Input signal scaled to adapt microcontroller
dynamics

us(t) V [0 to 5]

Scaling Coefficient Scaling term, scales reference signal m - -

Offset Term Offset term c V -

Analog_Input_Max Microcontroller max input voltage (Parameter) AM V 3

Analog_Input_Min Microcontroller min input voltage (Parameter) Am V 0

Max_Signal Reference Signal maximum value MS V +5

Min_Signal Reference Signal minimum value Ms V -5

Digital_Output Max digital output voltage from
microcontroller (Parameter)

DO V 3.3

12

The equation will be a simultaneous equation of 2 variables ‘m’ and ‘c’ ,which can be solved by

having at least 2 equations. The approached used in determining the coefficients is by finding a

solution by substitution method.

The equation to determine Scaling coefficient is given by the following equation:

Figure 2.6: The scaling coefficient Simulink scheme.

The equation to determine Offset term is given by the following equation:

Figure 2.7: The offset term Simulink scheme.

𝑐 = 𝐴𝑚 − 𝑀𝑠 × 𝑚

𝑚 =
𝐴𝑀 − 𝐴𝑚

𝑀𝑆 − 𝑀𝑠

13

The equation of input-output relation of block is given by:

 Figure 2.8: The signal conditioning between Reference signal and scaled output signal.

2.2.2.2 Analog to digital converter block

The Scaled Reference signal is converted from the analog form into the digital form to be

filtered by the digital filter.

Figure 2.9: The ADC Simulink scheme.

𝑛 = 2𝐵𝑖𝑡𝑠 − 1

𝑢𝑑(𝑧) =
𝑢𝑠𝑝𝑞(𝑧) × 𝑛

𝐹𝑆𝑅

𝑢𝑠(𝑡) = 𝑚 × 𝑢(𝑡) + 𝑐

14

Table 2.5: The description of ADC block

Name Description Symbol UNIT RANGE

Total Discrete Values 2^Bits-1 n [0 to 2^Bits-1]

Sampling Time Sampling period of S/H block Ts s 80 mS

Full Scale Reading Difference between maximum
and minimum amplitude

FSR V -

Bits The number of bits of the ADC Bits - 12

Sampled Signal Signal sampled in time usp(z) V [0 to 3]

Quantized and
Discretized Signal

Signal sampled in time and
quantized in values

uspq(z) V [0 to 3]

Digitalized Input Signal Digital Signal ud(z) - [0 to 4095]

The ADC subsystem consists of different modules and is modelled by Simulink blocks as follows:

1. Signal Clamper:

To protect the microcontroller from any voltage that exceeds the input bounds. A

saturation block is used from the Simulink library, which has the upper bound of

the maximum allowed voltage, and a lower bound of the minimum allowed

voltage of the microcontroller.

2. Time Sampling:

Time sampling simulation can be achieved by using a zero-order hold block at the

required sampling time.

3. Quantizer:

Discretization of the amplitude is achieved by using a Quantizer block from

Simulink library. The Quantization Interval (LSB) can be determined by the

following equation.

4. Digital Output:

The digital signal can acquire discrete values from [0 to 2^#Bits-1]. The following

equation is implemented by using math blocks from Simulink library.

5. Zero-order Hold:

This block has to implement to make the signal digital for the Simulink

environment. The sampling time must be that of the sampling period.

𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =
𝐹𝑆𝑅

2𝐵𝑖𝑡𝑠 − 1

15

2.2.2.3 Digital Filter

The digital filter is lowpass filter block from the Simulink library, with the cut off frequency 4

times the reference signal frequency. As the filter is lowpass, following bode plot describes the

filter behavior.

Figure 2.10: The Frequency response of digital filter of first order type IIR.

The digital filter type chosen is of type IIR for the following reasons:

1. As the microcontroller has a floating point capable processor, IIR is a better choice.

2. IIR requires less processing power as well as a low amount of RAM is sufficient for good

results.

Figure 2.11: The digital filter.

Table 2.6: Signals at I/O of digital filter

Name Symbol Unit Range

Digital Signal ud(z) - [0 to 4095]

Filtered Digital Output yd(z) - [0 to 4095]

16

2.2.2.4 Digital to analog converter block

The readings must be downscaled to board dynamics before the beginning of digital to analog

process. The following equation gives the mathematical relation. The equations is implemented

in Simulink by using the math blocks.

Table 2.7: Digital signal scaling to microcontroller dynamics before producing analog output

Name Description Symbol UNIT RANGE

Total Discrete Values 2^Bits-1 n [0 to 2^Bits-1]

Full Scale Reading Difference between maximum
and minimum amplitude

- V -

Filtered Digital Output - yd(z) - [0 to 4095]

Scaled Filtered Digital
Output

Filtered Digital Output scaled
to range [0 to 3]

yds(z) V [0 to 3]

For generating PWM signal, PWM generator block is used which acquires duty cycle as the input

and produces PWM output with the amplitude one, which is multiplied by the gain of 3.3 to

produce a digital signal. For PWM the amplitude of the signal is scaled to width of the pulse,

which is why Scaled Filtered Digital Output is divided by maximum value to produce outputs that

are in the range [0 to 3].

In addition, PWM block requires 2 parameters, the carrier frequency(PWM) and the clock

frequency. Both of these parameters are also used to determine the DAC resolution in bits.

Table 2.8: PWM Characteristics

Symbol/Parameter Name UNIT RANGE
ypwm Output Analog signal after range

limiter
V [0 to 3.3]

ya(t) Analog output signal V [0 to 3.3]

fclk The PWM clock frequency Hz 150 MHz max
Simulated at 10e4

fpwm The PWM carrier frequency Hz 50Mhz max
Simulated at 24

DAC_Bits/BitsPWM The number of bits of the PWM - 12

𝑦𝑑𝑠(𝑧) =
𝑦𝑑(𝑧) × 𝐹𝑆𝑅

2𝐵𝑖𝑡𝑠 − 1

𝐷𝐴𝐶_𝐵𝑖𝑡𝑠 = log2 [
𝑓𝑐𝑙𝑘

𝑓𝑝𝑤𝑚
]

17

Given a number of bits of 12 and a clock frequency of 150 MHz (according to the board data
sheet), the carrier frequency “fpwm” was set to 36 KHz. However, in the simulation fclk used is
10e4 Hz and fpwm is 24.4 Hz, these parameters result in a resolution of 12 bits.

Finally, the PWM signal must pass through a lowpass filter to generate the analog output signal
ya(t).

 Figure 2.12: The DAC Simulink scheme.

2.2.2.5 Scaling output to Reference Signal Values

The last step requires to scale the signal back in the dynamics of the reference signal. The

equation below the table identifies the equation used in scaling the signal.

Table 2.9: Signal Conditioning Block Characteristics

Name Description Symbol Unit Range

Output Signal Analog output signal (Scaled) y(t) V [-5 to 5]

Analog output signal Analog output signal (Unscaled) ya(t) V [0 to 3.3]

Scaling Coefficient Scaling term, scales reference signal m - -

Offset Term Offset term c V -

Analog_Input_Min Microcontroller min input voltage (Parameter) Am V 0

Max_Signal Reference Signal maximum value MS V +5

Min_Signal Reference Signal minimum value Ms V -5

Digital_Output Max digital output voltage from
microcontroller (Parameter)

DO V 3.3

The function of this block is given by the following equation:

𝑦(𝑡) = 𝑦𝑎(𝑡) × 𝑚 + 𝑐

18

2.2.3 SYSTEM PARAMETER SELECTION AND BEHAVIOR

For choosing the right parameters, i.e. number of bits and sampling time, the reference signal is

digitized with 4-bits sampled at 0.1s and for comparison the digitization is done with 4-bits and

0.01 sampling frequency. From the picture below it’s distinctly visible that high number of bits

and lower sampling time translates to better signal representation. For our activity we have

microcontroller that supports 12 bit ADC, which is compared with the previous parameters to

conclude that indeed 12-bits contribute to a relatively better signal representation.

 Figure 2.13: Parameter selection for number of bits and sampling time

As for the sampling the frequency, it must be at least 20 times that of the fundamental frequency.

𝐹𝑠 = 𝐹0 × 20

19

From the theory it is expected that in the bandpass region of the filter there will be a phase

delay and a slight attenuation, which can be observed in the scope below.

Figure 2.14: The input and output relation between reference signal and analog/digital filter.

It can be observed that there is a delay of about 40ms between the reference signal (Dashed line

in blue) and the output due to an analog filter (solid line in green (from Base model)). Moreover,

there is no delay between the analog filter output and the digital filter output.

In the scope output below the output of the enhanced model and the reference model is

discussed.

 Figure 2.15: The input and output relation between reference signal and enhanced model output.

20

The delay between the reference signal and the enhanced model output is about 159 ms, which
can be denoted from the picture above. The reason for a relatively large amount of delay is due
to the analog filter that must be used at the output of digital PWM output to produce an Analog
signal. The delay introduced by this lowpass filter is of about 116 ms, which is displayed in the
figure below. The attenuation in the signal amplitude is approximately of the same magnitude as
that of the output from the filters.

Figure 2.16: The delay introduced by 2nd order lowpass filter, used for demodulating PWN signal.

21

2.3 CODE GENERATION MODEL

2.3.1 INTRODUCTION AND OBJECTIVE
The model-based approach is carried out in Simulink for the microcontroller using hardware
support package available for Simulink. In this stage, data acquisition Simulink blocks are used to
acquire a signal via ADC, that is filtered with lowpass filter and then there is DAC block. For this
activity, only the code generation part from enhanced model is chosen, as it contains the digital
filter. After model competition the code is generated and deployed on target. It must be noted
that the model between the I/O interface blocks is the same as that of the enhanced model,
because it performs the core functionality of the task.

2.3.2 DESCRIPTION
The model setup requires to place an ADC block to acquire an analog signal and eCAP block to

generate PWM output, both the blocks are obtained from the embedded coder support library.

The sample time chosen is the same as that of the enhanced model.

Furthermore, the model is to be implanted in EXTERNAL mode to monitor the signal data

through a scope block in Simulink. For this purpose, the signal acquired from ADC module is

scaled to reference signal values in Simulink before connecting the signal to scope so that the

signals are consistent. Similarly, a scope is connected after the digital filter to view the changes

to signal in run time.

Lastly, the digital filter implemented is the same filter used for simulation in the enhanced

model. The complete model is to be used for code generation and deployment on target.

2.3.3 MODEL DESCRIPTION
The microcontroller Simulink blocks are available by downloading hardware support package for

C2000 microcontrollers.

Table 2.10: Signals description in code generation model.

Name Description Symbol Unit Range

Adc Output Signal Digital Signal From Analog Pin A0 dy(z) - [0 to 4095]

Filtered Output Signal Filtered Digital Signal From Analog Pin A0 u(z) - [0 to 4095]

ScaledSignalBoard Signal scaled to board dynamics s(z) V [0-3]

Values All possible values, 2^Bits-1 vu - -

Scaled input Scaled in Reference Signal Dynamics y(z) V [-5 to 5]

The ADC block is chosen for C2833x microprocessor. The sampling time parameter is chosen the

same as the one used in Enhanced model ADC i.e. 0.01s and the data type chosen is uint16. The

obtained signal is a digital signal which must be scaled to represent the reference signal from

the signal generator. The scaling process is done by first scaling the digital values to board

voltage dynamics and then to reference signal dynamics.

Scaling the signal to board dynamics is done by using math operations that are given by the

following equation.

22

 The digital signal is scaled in reference signal values by the following equation.

Two scopes are used to view the reference signal that is acquired by ADC. Scopes are used to

monitor the effects of the digital filter.

The input data-type for the digital filter must be double precision, single precision, signed

integer, which is why data type conversion block must be used. For the code generation model

the block that is the same as the enhanced model is the digital filter. Before converting the

signal to PWM, it’s converted to duty cycle percentage. The relation is given below. Finally, the

PWM period is set to 0.04 which is the same period used in enhanced model.

 Figure 2.17: The Simulink scheme of the code generation model.

𝑠(𝑧) =
𝑢(𝑧) × 𝐹𝑆𝑅

𝑣𝑢

𝑦(𝑧) = 𝑢(𝑧) × 𝑚 + 𝑐

𝐺𝑎𝑖𝑛 =
100

2𝑏𝑖𝑡𝑠 − 1

23

2.3.4 CODE GENERATION STEPS & CODE MAPPING
For the code generation, Model Configuration Parameters must be selected and in the

Hardware Implementation tab TI Delfino F2833x must be selected as indicated in the picture

below.

 Figure 2.18: Code Generation settings.

Code can be then deployed to board by clicking Deploy to hardware.

The code generation report clearly provides a mapping between the Simulink blocks, Signals and

the generated code.

Figure 2.19: Signals defined in the header file.

24

 Figure 2.20: Constants defined in the header file.

All the blocks used to assign constants and signals are denoted as parameters in the header file

generated from code generation. Moreover, from the Model configuration parameters, under

the code generation tab in the report section, generate model web view can be selected to

provide a direct mapping in graphical form with the Simulink blocks and generated code.

2.3.5 SYSTEM BEHAVIOR AND OUTPUT SIGNAL
Following the code generation and deployment, the acquired signals can be monitored by

running the Simulink model in external mode, and they can be compared with the reference

signal from signal generator by an Oscilloscope.

25

2.4 TESTING

This phase is carried out in a laboratory to observe the code generated model’s performance
and to collect data, that is used for iterating the design for enhanced model.

2.4.1 SETUP
The testing setup is composed of the following:

1. Texas Instruments C2000 Microcontroller F28335 Delfino Experimental Kit.

2. A breadboard, few jumper wires, 2 resistors(1Mohm) and 2 capacitors(68nF) to convert

PWM to an analog signal.

3. A signal generator and an Oscilloscope, to generate and observe the signal respectively.

4. A windows pc to run the generated code in external mode to observe.

5. Figure 2.21: The experimental Setup.

26

2.4.2 OBSERVED RESULTS
The results obtained from the external model is show below.

Figure 2.22: The experimental scope output in Simulink external mode.

The acquired signal from ADC is in blue and the digitally filtered signal is depicted in purple. The

delay between the two is 75.404ms.

Moreover, the results observed on the oscilloscope are discussed below.

Figure 2.23: The oscilloscope output of reference signal and the PWM output signal.

27

 The signal in the upper part of the figure is the reference signal from the generator and PWM

signal is in the lower part which is produced from the microcontroller after the implementation

of the generated code.

To know the delay between the two a passive 2nd order lowpass filter (as first order has a lot of

ripples) is used to demodulated the signal.

I select Cutoff frequency to be 5 times that of the generated signal, and by imposing R to 1MΩ C

is about 64nF. After passing the signal through a lowpass filter the result is given in the picture

below.

Figure 2.24: The oscilloscope output of reference signal and the demodulated output signal.

The delay between the reference signal and output signal is about 180ms.

𝐶𝑢𝑡𝑜𝑓𝑓 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
1

2𝜋𝑅𝐶

28

2.4.3 COMPARING THE RESULTS

Table 2.11: Table of observed Delays.

Name of Signals to measure delay Delay[ms]

Simulated Output 159

Code generation Output 180

Simulated lowpass filter delay 40

Digital lowpass filter delay in external mode 75.404

It can be observed that there are more delays observed in the real experiments when compared

with the simulations. Also, when Simulink starts the simulation in external mode, the output on

the Simulink scope is delayed due the connection setup time between the Simulink and the

microcontroller.

29

2.5 MODEL VALIDATION AND CALIBRATION

2.5.1 DELAY ANALYSIS IN SIMULATION AND TESTING

Based on the experimental data from the testing phase, the enhanced model is calibrated to
match the performance of the microcontroller.

The main reasons for delay in the simulation are digital lowpass filter (40 ms) and the analog low

pass filter (116 ms), which adds up to the total in the simulation output. However, in the

simulation the delays introduced don’t consider the time needed for ADC and DAC conversion.

This issue is discussed below.

In the testing to determine the delay acquired by the microcontroller to convert the reference

signal from analog to digital PWM, and then to demodulated signal through 2nd order lowpass

filter takes about 140 ms, which is measured by an oscilloscope.

Figure 2.25: The time acquired for analog to digital conversion.

30

It must be noted that 140 ms is the time acquired by microcontroller traversal and analog

lowpass filter. To know the microcontroller traversal time, testing for time delay introduced by

the lowpass filter is done by measuring delay between the reference signal from signal

generator and analog lowpass filter output signal on the oscilloscope.

Figure 2.26: The delay produced by analog lowpass filter.

The delay by analog lowpass filter is 110 ms. Hence, the microcontroller traversal delay is the

difference, which is 30 ms. From previous testing of code generation model, the total delay was

180 ms. To sum up, the ADC + DAC delay is about 30 ms.

2.5.2 CALIBRATION
There must be a delay of about 30 ms introduced in the enhanced model to have a calibrated

valid model that considers delay of ADC-DAC found in the microcontroller. The delay is

introduced by a Simulink block.

 Figure 2.27: The Simulink delay block to maintain the simulation model.

31

Chapter 3-VMU And Plant Modelling Scheme

3.0 INTRODUCTION

This chapter introduces the model-based scheme of vehicle management unit and the plant to

be controlled. The scheme is going to be used for system simulation and code generation for

vehicle management unit, that is to be deployed on the target.

The models will be discussed in three models, namely:

1. System Layout Concept Model.

2. System Layout Enhanced Model.

3. Vehicle Management Unit Layout Model for Code Generation.

The model is based on the framework outlined in the introduction of the thesis.

3.1 SYSTEM LAYOUT CONCEPT MODEL

3.1.1 OBJECTIVE
The objective of the system layout concept model is to model the main blocks in the system.

3.1.2 DESCRIPTION
The model is composed of 2 subsystems, controller and plant. However, there is a I/O boundary

between them which is discussed in the next topic. The following table mentions the signal

connections between the blocks.

Table 3.1: The description of Signals of plant in concept model

Name Description Symbol

Disturbances Disturbance Signals input to plant dt)

States State outputs from plant x(t)

Commands Commands input from controller to plant u(t)

Measurements Plant output values y(t)

Table 3.2: The description of Signals of Controller in concept model

Name Description Symbol

References Reference Signals input to Controller rt)

Estimated States Estimated States output from Controller xe(t)

Commands Commands output from controller to plant u(t)

Measurements Plant output values as input to Controller y(t)

32

Figure 3.1: The Simulink Scheme for the System Layout Concept Model.

3.2 SYSTEM LAYOUT ENHANCED MODEL

3.2.1 OBJECTIVE
The objective of this model is to represent the I/O boundary in a modelled scheme. The entire

scheme is enhanced to simulate the real system.

3.2.2 DESCRIPTION
This scheme adds I/O blocks, i.e. ADC and DAC blocks, these are the same blocks which are

described in the chapter one. It should also be noted that the controller operates in the discrete

domain and the plant in the continuous domain. The following table mentions the signal

connections between the blocks.

Table 3.3: The description of Signals of plant in enhanced model

Name Description Symbol

Disturbances Disturbance Signals input to plant dt)

States State outputs from plant x(t)

Commands Analog Commands input from DAC to plant ua(t)

Measurements Analog Plant output values ya(t)

33

Table 3.4: The description of Signals of controller in enhanced model

Name Description Symbol

References Digital Reference Signals input to Controller from HMI rd(z)

Estimated States Digital Estimated States output from Controller to HMI xed(z)

Commands Digital Commands output from controller to DAC to plant ud(z)

Measurements Digital Plant output values from ADC to Controller yd(z)

Figure 3.2: The Simulink Scheme for the System Layout Enhanced Model

Also, it must be realized that there is human machine interface which enables real-time

monitoring of signals and modifications to parameters.

34

3.3 VEHICLE MANAGEMENT UNIT LAYOUT MODEL FOR CODE GENERATION

3.3.1 OBJECTIVE
This section deals with modelling VMU, which consists of 7 subsystems. The purpose is to model

the VMU for simulation and then excluding the I/O boundary of the VMU from the model to

generate code for the remaining part, which will be deployed on the target.

3.3.2 DESCRIPTION
The VMU scheme comprises of VMU input and output blocks, these blocks are only included for

simulation of input and output signal of VMU. The Simulink model compromises of 7 blocks of

which 4 are selected for which code is generated, the rest are required for simulation.

1. VMU Input:

This block models the analog input of the VMU. This input model is composed of a signal

source and an ADC, which uses the same scheme addressed in chapter one. In other words

this is the hardware modelling, as we are going to proceed with code generation for our

system this part need not included.

2. Signal Preprocessing:

At this stage, the signal is in digital form, however it must be scaled in the reference signal

values. The scaling Simulink scheme is the same one addressed in the chapter one,

nonetheless the parameters must be chosen as required.

3. Controller:

The discrete controller block composes of suitable control strategies that meet the system

requirements.

4. Signal Postprocessing:

Finally, the controller output signals must be conditioned back to DAC specifications.

5. Clock Counter:

The clock counter is used to simulate the internal clock of the target.

6. Interrupt Routines:

The interrupt routines are confined to this block to configure the embedded system to

respect the task priority and deadline requirements.

7. VMU Output:

This block simulates the DAC hardware behavior, which is used for simulation but not used

for code generation.

35

Figure 3.3: The Simulink Scheme for the VMU Model.

36

Chapter 4-Test Bench and VMU Implementation

4.0 INTRODUCTION

The Test Bench is setup to monitor the motor under test, which is countered by the bench

motor. The aim is to develop a model-based control strategy for VMU in Matlab/Simulink, which

controls both the motors, and to monitor the key variables, such as current, shaft speed, bench

motor torque and test motor torque. Also, the development cycle includes automatic code

generation. Both the motors are torque controlled, having same speed.

Figure 4.1: The external ECU bypass by dSPACE.

The bench is a dynamic test bench, meaning the applied torque can be either in direction. The

setup is comprised of 2 test motors and 2 bench motors, with a torsiometer linking each test

motor with bench motor. The test motor and the bench motor are connected to double

inverters for acquiring the power. The inverters are connected via a common DC bus which

supplies the power only for the losses during the testing. Thus, the testing system is based on

power circulation.

The test motor control model and the bench motor control model can be simultaneously

deployed on dSPACE target, as it can manage 2 ECUS concurrently. In addition, to have more

control functionalities test motor model can be deployed on TI embedded ECU and have dSPACE

target to bypass embedded ECU externally to support more functions and optimizations. With

dSPACE system it’s more convenient to use dSPACE ControlDesk for monitoring the system.

Matlab/Simulink has full support for dSPACE software and hardware, which makes the model-

based design to code generation a seamless process.

37

Figure 4.2: The Simulink mode of the dynamic test bench.

The model above is the Simulink model of the test bench. The bench motor and the test motor

are torque controlled, meaning the command inputs are torques, and the shaft speed is a

common input to both the motors. The test motor torque is acquired using a drive cycle, which

simulates a driver input. On the other hand, the test bench motor torque command is the

output of a PID controller that takes as input the error, that is the difference of the reference

speed and the current shaft speed. This model is the model of the plant which is to be controlled

by an embedded ECU or RCP. In the base model, the plant and controller (VMU) are used to

acquire the results in simulation, which are used to validate the enhanced model.

The task is implemented using the same V-cycle scheme adapted in the introduction, which

divides the development cycle in multiple stages and iterations. Also, along this chapter the base

model and the enhanced model will be introduced. The Base model includes an ideal VMU,

which disregards I/O interfaces, and the Simulink blocks representing the test bench setup. The

enhanced model is based on the target hardware specifications. In this chapter dSPACE

MicroAutoBox II is selected for reference. After the presentation of the 2 models the simulation

results are discussed, and a conclusion made.

38

4.1 BASE MODEL

The base model of VMU takes into account only the control outputs and inputs. In the model,

the drive cycle provides vehicle speed and acceleration. These are used as inputs in Vehicle Body

Total Road Load Block to give the total force on the vehicle, which is transformed to as

requested torque demanded by the driver. The vehicle speed is converted to [rad/s], because

this speed is used as a reference speed which must be tracked by the shaft. The controller takes

the reference as speed requested by user, which is subtracted by the shaft speed to close the

control loop, obtaining the error by difference in speed. A simple PID controller has error in

speed as input and output is the bench motor torque. The controller minimizes the speed

difference and controls the test bench motor counter torque. The test motor receives a direct

input from the VMU, i.e. requested torque by the driver.

Figure 4.3: The VMU Simulink Model.

39

4.2 ENHANCED MODEL

The enhanced model mainly considers the I/O interfaces of an embedded ECU or RCP. Since, the

target is dSPACE MicroAutoBox II, it is known from the user manual, that the acquisition 16 Bits

and signal input/output range is from -10 to +10 [V]. This is achieved in the simulation by

introducing the ADC and DAC interface boundary. The new VMU scheme is as follows:

Figure 4.4: The VMU Simulink Model with I/O interfaces.

The I/O boundary at A/D side discretizes the signal, and D/A side makes the signal continuous

time.

4.2.1 A/D INTERFACE
The A/D interface comprises of 5 blocks, they are described respectively after the layout figure.

Figure 4.5: The A/D Interface Simulink Scheme.

The first block is a linear transducer that converts the measured physical quantity to an

electrical signal in Volts. It is assumed that it is linear and introduces no delay. As it is just a

transformation, it is composed of an input scaling term with an addition to offset term. Similarly,

Signal Scaling to Adapt Target Input Dynamics block is an amplifier that scales the voltage to fit

the input dynamics of dSPACE MicroAutoBox II. Again, it is simply composed of an input scaling

term with an addition to offset term. The same is true for DigitalSignalPreProcessing block that

converts the discrete digital value in the units the signal is acquired in, by scaling and offsetting

the inputs.

These are the same blocks which are described in chapter 2 very clearly. Since all the blocks are

parameterized, the specifications can be initialized from the Matlab script by entering

specifications. Just for clarity the linear equation used for input/output relation is given below.

40

where m and c, are slope and offset terms, respectively.

The above equation is translated to Simulink scheme for linear transducer that converts speed

to an electrical voltage, which is depicted below. The input signal is ShaftSpeed [rad/s] and the

output signal is SpeedSensorOutputVoltege [V].

Figure 4.6: Linear Scaling of an input with offset addition.

The ADC block is the same as block used in Chapter 2, with just new specifications parameters.

Here it worth noting, that the same enhanced model can be used for enhancing models

seamlessly.

The signal averaging block is introduced here to clean the data by computing averages. The ADC

is set to acquire the signal at 0.1 [ms] which is averaged after every 1 [ms]. This way the signal

obtained is a clean signal that appears every 1ms for computation. A digital filter is not used as it

may introduce unwanted delays to the signal.

Figure 4.7: Simulink Scheme to obtain signal average at periodic interval.

The idea is to acquire a signal every 1ms and integrate over a period of 1 [ms]. Then dividing the

integral value by computed time gives the average value over the interval. The integral reset

cycle takes mod of a ramp function and a constant, thus the output always stays from zero to

the set constant value. For the application, it is required to obtain an average over an internal of

1ms, hence the constant is set to 0.001. Since, the integral is continuous and the only value

𝑂𝑢𝑡𝑝𝑢𝑡 𝑆𝑖𝑔𝑛𝑎𝑙 = 𝐼𝑛𝑝𝑢𝑡 𝑆𝑖𝑔𝑎𝑙 × 𝑚 + 𝑐

41

interesting is the value at the time T + 0.001, the signal is multiplied by a periodic signal of

period 0.001 that has amplitude one. The previous step gives the integral values at the required

time period. Finally, it must be multiplied by the integration time to get the average value. Zero-

order hold blocks are used to smoothen the signal.

This picture below illustrates what is described above. In the test condition, the test signal is a

ramp, the sampling time is 0.1 [s] and averaging time is 1 [s].

Figure 4.8: An example of periodic signal averaging.

4.2.2 D/A INTERFACE
The D/A interface comprises of 4 blocks, they are described respectively after the layout figure.

Figure 4.9: The D/A Interface Simulink Scheme.

42

The right most block is a linear Actuator that converts the electrical signal in to torque. It is assumed

that it is linear and introduces no delay. As it is just a transformation, it is composed of an input scaling

term with an addition to offset term. Similarly, Signal Scaling to Bench Dynamics block is an amplifier

that scales the analog voltage that is output of dSPACE MicroAutoBox II, to fit the input dynamics of the

bench motor. Again, it is simply composed of an input scaling term with an addition to offset term. The

DigitalSignalPostProcessing block converts the signal in digital values from the signal, that was previously

scaled to values of real measurement, by scaling and offsetting the inputs.

Also, the DAC is the same block from the chapter 2, with new specifications that are of the dSPACE

MicroAutoBox II. Furthermore, the signal is smoothened by first order hold block in

DigitalSignalPostProcessing block. This is performed to smoothen the signal before it is converted to

analog signal.

 Figure 4.10: First-order hold for signal smoothening at output.

4.3 COMPARISON OF BASE MODEL AND ENHANCED MODEL RESULTS

The images below are of the shaft speed [rad/s] and Torques [Nm], from the base model and

the enhanced model, respectively. The enhanced model takes into consideration the I/O

interfaces with 16 Bits A/D and D/A sampled at 0.1 [ms]. The results are exactly the same in

simulation, which leads to the conclusion that the dSPACE MicroAutoBox II is a good choice.

43

Figure 4.11: Base Model and Enhanced Model Speed and Torque Outputs.

It can be easily observed that the results of the enhanced model are almost identical to that of

the base model. Hence, the enhanced model is valid. Also, the error between the 2 models at

max is ± 0.04.

Figure 4.12: Error in Speed and Torque outputs, computed between base and enhanced model.

44

4.4 CODE GENERATION MODEL OF DYNAMIC TEST BENCH

The following section of the chapter is dedicated for implementing code generation model. Few

things are to be followed to achieve this. From the enhanced model, which is the model of the

entire system, only VMU part and the signal Pre and Post processing blocks are required for

code generation, since this is the part which must be deployed on the target.

This problem is not so trivial, because the blocks from Simulink used for modelling must be

discretized and those blocks must be compatible for code generation. Also, when using

subsystem blocks in Simulink, the sample time must be consistent. In addition, the code

generation part must have some sort of interrupt routine, because the embedded systems lack

enough resources, which is why, by scheduling code generation part is resource efficient. The

model scheme is presented in chapter 3, titled as VMU model scheme.

Figure 4.13: Code Generation Simulink model.

The code generation part of the system model has 5 blocks. In the next sections of this chapter,

these blocks will be described, along with the changes made to these blocks to make them

suitable for code generation. The 2 blocks on the bottom of the figure must be triggered and

one enabled at accordingly. There are 3 periodic times, one for core computation, signal pre-

processing, the last is for signal post-processing.

45

4.4.1 DISCRETIZATION OF THE CONTROLLER
The PID controller must be discretized, if it is to be used inside a triggered subsystem in

Simulink. This is simply achieved by separating the drive cycle block and the VMU block, so that

a triggered subsystem could be created for VMU. In the newly created subsystem, the

continuous PID controller block is replaced by discrete PID controller.

Figure 4.13: Discrete VMU Simulink model.

Figure 4.14: VMU Simulink model.

Furthermore, the VMU block must be triggered using clock signal. It should also be considered

that the zero-order hold block is used here as it has a sampling time equal to core computation

time, and it cannot be used inside signal pre-processing block due to different sample time. The

need of smoothening the signal is necessary for the closed loop. Rapid fluctuations cause

controller to behave aggressively.

46

4.4.2 CLOCK GENERATOR AND INTERRUPT ROUTINES

The clock generator is comprised of pulse generator, which is used to simulate clock in the

model. The pulse is generated at 100 [kHz], this is the clock frequency. The amplitude and the

pulse period are set to one, since this is minimum pulse period that can be set. Furthermore,

pulse generator block is suitable for code generation.

Figure 4.15: Clock Generator.

The interrupt routines should be done using the Simulink blocks that are provided for the target

device. However, since we are dealing with only 3 processes, the following scheme is compatible

for code generation.

Figure 4.16: Interrupt Routine Scheme.

The clock signal is configured to generate a signal of amplitude 1 at the frequency of 100 [kHz],

and a pulse period of 1%, this is the base frequency used. Only the frequency of other pulse

generators will be changed to generate a pulse at a synchronous rate for individual process. For

the signal pre-processing, it is required to be triggered at the frequency of 10 [kHz] and a pulse

generator is used, because the signal is acquired at the same frequency using ADC. The logic is

implemented using an AND block and a switch block, which is described as follows for the VMU

core computation. For the VMU, to run at 1 [kHz], another pulse generator is used to generate a

47

pulse at the frequency of 1 [kHz] with amplitude and pulse period set to one. The AND block

outputs a Boolean true, i.e. 1 when both the inputs have the amplitude one. This is used to

control the switch block, when the threshold condition that is the middle input to switch block is

true, it lets the upper signal through otherwise it lets the lower signal through, which is a

constant set to zero. Thus, the switch block outputs a clock signal at the frequency of 1[kHz].

The same is true for pre-processing clock, when both the generators produce an output of 1,

than a trigger is send to the block. The idea is based on sending a clock signal when the slowest

generator and the sends a signal.

4.4.3 DIGITAL SIGNAL PRE-PROCESSING FOR CODE GENERATION MODEL

The Pre-processing block is used for scaling the signal from bits to the actual signal values in its

units. And to compute signal average periodically. The scaling block has math blocks from

Simulink library, and they are compatible for code generation. However, for the enhanced

model the periodic signal averaging is done using a continuous-time integrator. This is a

problem, as the continuous-time integrator cannot be placed inside a triggered subsystem. This

is done in a triggered subsystem.

Replacing the continuous-time integrator with discrete-time integrator is not an effective

choice, as the results are not correct. The new strategy that must be implemented needs to be

supported by Simulink for code generation and it must be suitable for use inside a triggered

subsystem.

Figure 4.17: Periodic Signal Averaging scheme.

The goal is to acquire signal at the frequency of 10 [kHz], and compute average over 1 [kHz],

meaning sampling every 0.1 [ms] and averaging every 1 [ms]. This can be done by using a

tapped delay block, to acquire 10 samples and then arrange them in a vector using vector

concatenate block. Now that the sample are stored in a vector, sum of all the elements is

performed using the sum block. To compute an average of 10 samples the value obtained must

be divided by 10. Finally, the values must be extracted from signal periodically, for this the signal

is multiplied with the core trigger clock which operates at 1 [kHz]. Furthermore, a zero-hold is

required to smoothen signal, because multiplying a signal with periodic pulses can cause rapid

sudden fluctuations, which are unwanted in a closed loop control.

48

The plot on the following page, illustrates a linear ramp signal acquired every 0.1 [s]. An average

must be computed every 1 [s]. The samples are delayed 10 samples, can be seen in the second

subplot. Following this, sum is computed of these samples after they have been converted to a

vector format. The sum must be divided by 10, as there are 10 samples. Then every 1 [s] the

average value must be extracted from the signal. In the subplot, it can be clearly seen that the

average of first 10 values is 0.45.

 This hereby proves the strategy is effective and suitable for code generation because all the

Simulink blocks are compatible.

Figure 4.18: Periodic Signal Averaging example.

4.4.4 DIGITAL SIGNAL POST-PROCESSING FOR CODE GENERATION MODEL

For the signal post-processing, it is necessary that the blocks are used inside an enabled

subsystem. It is crucial since, the enable block lets the blocks run for the next sample period,

however a triggered subsystem runs only at the instant of triggering. The Post-processing block

is used for scaling the signal from actual signal values in its units to bits, and signal smoothening

periodically. The scaling block has math blocks from Simulink library, and they are compatible

for code generation. Also, it has been discussed in the previous chapters and sections. However,

for the enhanced model the signal smoothening is done using a first-order hold block. First-

order hold cannot be used for discrete system as it contains few blocks which are not

recommend for code generation. Moreover, first order hold blocks are not a good choice for

using for signal smoothening, because it increases/decreases the current value linearly over the

sampling period.

49

The plot on the next page addresses this issue visually. The black curve is the function to be

smoothened, in red is the output from zero-order hold block from Simulink. In blue is the output

from the signal smoothening implemented. It can be observed that the reference signal is

smoothened in a linear manner. Also, it must be noted both the options, the first-order hold and

the new strategy introduce a delay of one sample. Since the system to be controlled is

mechanical delay of 1 [ms] is tolerable.

Figure 4.19: Signal smoothening comparison with first-order hold.

Figure 4.20: Simulink Scheme for signal smoothening.

The upper part of the Simulink model determines the difference between the current sampled

value and the previous value, which is multiplied by -1 to invert the sign of the difference. The

lower part generates a ramp for an interval of the sampling time. The idea is to add linearly to

the sample before the current sample, the difference between the 2 sample points to obtain a

first-order smooth function.

50

4.4.5 SIMULATION RESULT VALIDATION
The result from the code generation model in simulation is identical to the one from the

enhanced model. This step is necessary because of changes made to the model for code

generation. The adaptions are a good fit.

Figure 4.21: Code generation model results of simulation.

4.5 CODE GENERATION MODEL EXPECTED OUTCOMES

It is expected that there will be some unexpected delays introduced at the I/O interfaces. This is

expected because in chapter 2, it is shown that a delay in order of [ms] is introduced in the code

generation model. After through experimentations, the data collected can be used to calibrate

the enhanced model by adding adequate amount of delays.

51

References
1.https://www.dSPACE.com/en/inc/home/products/systems/functp/bypassing.cfm
2.DataSheet For F28335 microcontroller.

http://www.ti.com/lit/ds/symlink/tms320f28235.pdf
http://www.ti.com/lit/ds/symlink/tms320f28235.pdf

