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POLITECNICO DI TORINO

Abstract
Techniques for attitude determination using GNSS carrier phase

observations

by Vincenzo CENTRONE

Global Navigation Satellite Systems(GNSS) are the cornerstone and main in-
formation supplier for PNT (Positioning, Navigation and Timing ) informa-
tion. With the growing interest towards autonomous vehicles, it is of great
importance to guarantee the accuracy and reliability of navigation estimates
provided by GNSS. Other than providing the absolute localization and tim-
ing, GNSS signals can be also used to compute the orientation of a platform
when multiple antennas are used. Attitude determination is the process of
estimating the orientation of a rigid body with respect to its environment
and it constitutes a fundamental task for the navigation of spacecraft and
other vehicles of large inertia. GNSS represents an appealing alternative
for attitude determination. Employing a setup of multiple GNSS antennas
rigidly mounted on a vehicle, one seeks to find the rotation which relates the
local and global navigation frames. Accurate attitude estimation based on
GNSS requires the use of GNSS carrier phase observations. In depth exam-
ination on the direct estimation of the attitude has not been yet addressed.
Among the wide variety of attitude parametrizations, quaternion rotation
has become the standard and most widely applied rotation characterization
for robotic or computer vision applications. This knowledge or expertise
has not been fully exploited for navigation purposes, or at least for GNSS
carrier phase-based attitude determination. This work explores the possibil-
ities of this approach and investigates how the Ambiguity Resolution pro-
cedure can be enriched with a constrained attitude problem already during
the phase of float estimation.

Keywords: Attitude determination; Quaternion; LAMBDA method; Carrier phase
observations; GNSS
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Chapter 1

Introduction

Global Navigation Satellite Systems(GNSS) are the cornerstone and main
information supplier for Positioning, Navigation and Timing (PNT) infor-
mation. With the growing interest towards autonomous vehicles, it is of
great importance to guarantee the accuracy and reliability of navigation esti-
mates provided by Global Navigation Satellite Systems (GNSS). Other than
providing the absolute localization and timing, GNSS signals can be used
to compute the orientation of a platform when multiple antennas are used.
Attitude determination is the process of estimating the orientation of a rigid
body with respect to its environment and it constitutes a fundamental task
for the navigation of spacecraft and other vehicles of large inertia. GNSS
represents an appealing alternative for attitude determination, providing a
drift-less absolute orientation solution while posing minimal requirements
in terms of cost, weight and power consumption. Employing a setup of
multiple GNSS antennas rigidly mounted on a vehicle, one seeks to find
the rotation which relates the local and global navigation frames. Accurate
attitude estimation based on GNSS requires the use of GNSS carrier phase
observations.

On their series of work (like [7] [5]), Teunissen and Giorgi introduced
the Multivariate-Constrained LAMBDA (MC-LAMBDA) for carrier phase-
based attitude determination. MC-LAMBDA modifies the traditional pro-
cess of integer search to also account for the nonlinear constraints that fol-
low from knowing a-priori the relative positions of the antennas in a lo-
cal frame. However, in depth examination on the direct estimation of the
attitude has not been yet addressed. Among the wide variety of attitude
parametrizations, quaternion rotation has become the standard and most
widely applied rotation characterization for robotic or computer vision ap-
plications. This knowledge or expertise has not been fully exploited for
navigation purposes, or at least for GNSS carrier phase-based attitude de-
termination. This work explores the possibilities of this approach and in-
vestigates how the Ambiguity Resolution procedure can be enriched with a
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constrained attitude problem already during the phase of float estimation.

1.1 Objectives

The aim of this thesis is to study attitude problem, first from a general point
of view and, then, for in GNSS. Moreover, it has the goal of comparing the
results, in terms of success ratio, between the classical LAMBDA method
and the Quaternion based one.
This work is composed by the following tasks:

1. Study and review the methods for attitude determination using base-
line observations, applying a variety of methods

2. Getting the basis of GNSS-based positioning and attitude approaches

3. Implementation of quaternion based algorithm

4. Evaluation

The development of this work has been financed and supported by the
department of Nautical Systems, which is part of the Institute of Communi-
cation and Navigation of the German Aerospace Center (DLR) for a period
of six months. The initial schedule established in order to fulfil all the pro-
posed tasks evolved as new techniques were investigated and some other
were considered as a dead-end.

All the algorithms have been built in MATLAB, as it is convenient for
fast prototyping, as well as presenting several advantages such as its large
database of statistical functions, the capability to work with matrices or its
appealing debugging process.

1.2 Thesis outline

The rest of this work is organized as follows:
In the Chapter 2, a brief introduction on GNSS is provided. This is done

only to introduce the terms and the notation, related to GNSS, which are
used and mentioned in the thesis. It is not meant to be an exhaustive expla-
nation of the working principle of GNSS.
After that, the Chapter 3, takes into account account what is the attitude
problem. At the beginning, a definition of the attitude problem and why it
is important. Then, the most famous algorithms developed to solve it and

https://www.dlr.de
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how this problem can be related to the GNSS. It means, how to use the infor-
mations on the antenna positions to estimate the orientation of a rigid body
and what parameters can affect the accuracy of the results.
Following, in the Chapter 4, the GNSS attitude problem is faced together
with the issues derived by the usage of the phase measurements, which are
more precise. Thus, the concept of single and double differences is intro-
duced, as well as, a linearized model for them, using the unit line of sight
vectors. Then, the classical approach (LAMBDA method) is analysed, de-
scribed and compared to a new approach. The latter has been called Quater-
nion approach.
Then, in the last Chapter, the simulations and the final results are displayed
and commented. This Chapter is divided in three parts. The first two of
them refers to the theory explained in the third Chapter, i.e. to the algo-
rithm to solve the attitude and on the parameters affecting the accuracy on
the estimated Euler angles. On the contrary, the last part is related to the
fourth Chpater. So, the two different approaches for the actual GNSS at-
titude problem are compared and the effect of some parameters, like the
accuracy of the code measurements and the baseline length, is studied.
Finally, a brief Conclusion, with the next steps to follow in this research
topic is reported.
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Chapter 2

GNSS

In this first Chapter a small introduction on the main idea of GNSS is pre-
sented. It is meant to give only an introduction to the terminology and
concepts used in the following chapters, but without the usage of many
mathematical solutions and equations. For a more detailed explanation it
is suggest to read one (or more) among the books [10] [31] [12] [20] of the
bibliography.

First of all, GNSS stands for Global Navigation Satellite Systems. It relies
on a constellation of satellites, which follow an elliptical orbit (with small
eccentricity) around the Earth, broadcasting signals in direction of the Earth
surface, with the goal of providing a full coverage.

FIGURE 2.1: Example of satellites constellation to provide a
full coverage [34].

There are different system constellations available at the moment. The
most important ones are surely [31]:

• GPS - United States of America



6 Chapter 2. GNSS

• GLONASS - Russia

• Galileo - European Union

• Beidou - China

Using these signals is, then, possible to estimate the position, velocity
and time (PVT) of a user. How is it possible?

2.1 Reference Coordinate Systems

First of all, a position has some meaning only if it is referred to a reference.
For this reason, is very important to present what are the existing coordinate
systems. Moreover, their relation has to be understood, because GNSS mea-
sures the position of the receiver with respect to a constellation of satellites,
but the inertial sensors, like the gyroscopes, take measurements related to a
body frame. Here the main coordinate systems are presented.

Geodetic Coordinate System. To characterize the position of a user three
coordinates are necessary and in this case they are defined as latitude (ϕ),
longitude (λ) and height (h). See Figure 2.2. The longitude is defined as
the angle between the Prime meridian and the point in which we have the
user position. The latitude is the angle between the equatorial plane of the
ellipsoid and the normal to the surface, passing for the measured point. To
conclude, the height is the distance, measured over the perpendicular line
to the ellipsoid, between the measured point and the ellipsoid itself [20].

Earth-Centered Inertial Coordinate System. It is useful for the representa-
tion of the orbits of the satellites. In fact, in the ECI frame the origin is at the
center of gravity of the Earth and the axes are fixed and defined with respect
to the stars, creating an orthogonal coordinate system [12]. See Figure 2.2.

Earth-Centered Earth-Fixed Coordinate System.The idea is really similar
to the ECI frame. The difference is that for the ECEF frame all the axes are
fixed with respect to the Earth and not to the "sky". As can be seen in Figure
2.2, the x axis passes through the intersection of the Greenwich meridian
(defining the 0◦ longitude) with the equatorial plane. The z axis points to
the North Pole and the y axis forms an orthogonal frame with the other two
axes and it is in the equatorial plane [9]. The ECEF it is used, usually, as
reference frame (in particular in this thesis work).

Local North-East-Down Coordinate System. This is known as local nav-
igation frame and it is fixed with respect to the Earth surface. In fact, the



2.1. Reference Coordinate Systems 7

origin (denoted as On in Figure 2.2) is an arbitrary point on the the Earth
(generally the user position or the centre of gravity of the vehicle). The x
and y axes point toward the geodetic north and east directions, whereas the
z axis points along the normal to the ellipsoid, in the downward direction
[9].

Prime 
meridian

𝑍𝑒 ≡ 𝑍𝑖

𝑋𝑒

𝑌𝑒

i: Inertial
e: ECEF
n: local NED
b: Body 

𝑌𝑛

𝑋𝑛

𝑍𝑛

(Down)

𝑂𝑒

𝑂𝑛 (East)

(North)

𝜆

𝜑

𝜑

ℎ

Equator

𝜆 - Longitude

𝜑 – Latitude

𝑌𝑖
𝑋𝑖

FIGURE 2.2: Coordinate systems: Geodetic {λ, ϕ, h }, ECI {Xi,
Yi, Zi }, ECEF {Xe, Ye, Ze } and NED {Xn, Yn, Zn } represented

[2].

Body Coordinate System. It is also known as vehicle frame. The origin is
the same as the local NED frame, but the axis do not depend on the position
on the Earth surface, but they remains fixed with respect to the vehicle. They
are usually defined as in Figure 2.3 and they are also called roll, pitch and
yaw (or heading) axes [9]. However, in reality, the position and the axis
of the sensors are not perfectly aligned with the rest of the body. For this
reason, the body of the vehicle and the body of the measured sensors are
not exactly the same.
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𝑍𝑏

𝑋𝑏

𝑌𝑏

𝑂𝑏

roll
yaw

pitch

FIGURE 2.3: An example of body coordinate system [2].

2.2 Estimating the position

Now, how is it possible to estimate the position of a body using GNSS? The
idea is really simple. In fact, the position of satellites are known and they
all broadcast a signal. Moreover, their clocks are synchronous. So, the user
can measure the time needed to receive it. It means that the TOA (time
of arrival) is utilized. In this way, to each measurement a sphere can be
associated by multiplying the time with the speed of light in order to obtain
the distance between the user and satellite:

ρ = c τj (2.1)

where τj is the measured time of arrival from the satellite j, Rj is the
estimated distance (pseudorange) and c the speed of light.

Finally, by collecting measurements from different satellites is possible to
discover the position as intersection of these spheres (spherical positioning),
as represented in Figure 2.4.
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FIGURE 2.4: Spherical positioning concept in a 2D case.

It can seem that in a 3D case to find a solution at least 3 spheres, and
so 3 satellites in view are needed, because the only unknowns are the co-
ordinates of the user (xu, yu, zu) in the reference frame. However, in a real
scenario at least 4 satellites are needed. In fact, the user is not synchronized
with the transmitters. This leads to a clock offset, which has to be estimated,
and, consequently, to a new unknown (δtu).

ρj = c τj + c δtu (2.2)

Through a linearization process, using the LOS vectors uj (linking the
user to the satellite j) the problem can be easily solved in a fast iterative way
[10].

2.3 Sources of errors and DOP

Actually, it is not all so easy. Indeed, the pseudorange measurements in a
real scenario are affected by many kinds of error. They are [10]:

• Ionospheric delay. The propagation speed through the ionosphere (a
part of the atmosphere) depends on the frequency of the signal and on
the TEC (total electron content). In particular, for higher frequencies
the delay is lower. However, the difficult part is to estimate the TEC,
which depends on the Sun radiation.

• Tropospheric delay. in few words, it depends on the weather conditions
(wet or dry, pressure, etc.).
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• Relativistic effects. Caused by the change of the gravitational potential
and the eccentricity of the satellite’s orbit. Due to these factors, the
clocks on board clocks and the ones on the Earth differs.

• Multipath. Reception of delayed replicas of the same signal, which is
reflected by obstacles.

• Noise at the receiver and instrumental delays.

• Errors regarding the control systems. For example, errors on ephemeris,
for code generations, etc.

Each one of these error is modelled as a Gaussian noise with zero mean.
In fact, all the biases of are estimated and, in some way, removed to avoid
accuracy problems. In fact, it would be an issue to have solution with high
precision but low accuracy. Moreover, all the errors are considered to be
independent. As a consequence the total error contribution, which is called
UERE (User equivalent range error), is also modelled as a Gaussian random
variable with zero mean and variance σ2

UERE, given by the combination of
all the single variances.

By the way, there is another factor which can cause a worsening of the per-
formance of GNSS. This is a geometrical factor, called DOP (Dilution of Pre-
cision). In fact, it is also really important how the satellites in view are dis-
tributed in the sky. A graphical representation of this problem is present in
Figure 2.6.

FIGURE 2.5: Representation of the uncertainty region for the
position. ε represents the measurements error [10].
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FIGURE 2.6: Effect of the displacement of the satellites in the
sky (DOP) on the uncertainty region of the position [10]. On
the right a worse DOP is obtained and, so, the uncertainty re-

gion is larger.

2.4 Code and phase measurements

So, from what said before, the final model for the pseudorange is :

ρi
k =

∥∥∥pi − pk

∥∥∥+ cδtk − cδti + Tri + Ii
0 + εi

k (2.3)

where pi and pk are the position of the satellite i and the receiver k. δtk
and δti are the clock errors, Tri is the tropospheric delay, Ii

0 the ionospheric
delay and, finally, εi

k is a noise term which takes into account multipath ef-
fects, instrumental delays, phase biases, etc.
By the way, what has been described until now is only the code measure-
ment. In fact, in GNSS there are 2 kinds of measurements:

• code measurements. In this case is measured the difference, in time (∆t),
between the code received by the transmitter and a replica generated,
locally, at the receiver. ρ = c∆t

• phase measurements. It is found the difference, in phase (θ), between
a local carrier and the one received by the satellite. However, since
the carrier wavelength (λ) is very small, is also important to estimate
the number of times in which the carrier has been repeated (a), while
travelling in direction of the receiver. Φ = (a + θ)λ

The model for the phase measurement, which is given in meters, is:

Φi
k =

∥∥∥pi − pk

∥∥∥+ cδtk − cδti + Tri − Ii
0 + λai

k + εi
k (2.4)

where λ is the wavelength of the signal, which is 19cm for GPS L1, and N is
the ambiguity. These are the only new terms with respect to the code obser-
vations.
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To conclude, the main difference, for what concerns this thesis work, can
be described as follow: code measurements are noisy but unambiguous,
whereas phase observations are precise but affected by ambiguity. It means
that phase observations are characterized by a noise which is two orders of
magnitude lower than code pseudorange observations, but are ambiguous
by an unknown number of integer ambiguities [10].
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Chapter 3

Attitude determination

The position is not the only thing we could be interested in. For many ap-
plication is also very important to know the orientation of an object (body).
This is not an easy task and this issue is known as attitude determination prob-
lem. The goal of attitude determination is, in general, to estimate the orien-
tation of a moving body (spacecrafts, vessels, airplanes, etc.), with respect
to a reference frame or some specific object of interest. To achieve this, the
rotation which carries a set of reference unit vectors into a set of observation
unit vectors has to be found (see Figure 3.1). Attitude determination has
been a recurrent problem in spacecraft systems, where the two vectors are
typically the unit vector to the Sun and the Earth’s magnetic field vector for
coarse "sun-mag" attitude determination or unit vectors to two stars tracked
by two star trackers for fine attitude determination [15] [37].

FIGURE 3.1: Reference and body frame example. The goal of
attitude determination is to estimate the rotation relating the

two frames.
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FIGURE 3.2: Practical example of the importance of attitude
determination [8].

But, first of all, why could it be important to determine the attitude?
Some examples could be the following ones: to point solar panels (for power
generation), to point directional antennas, to orient spacecraft for orbit ma-
neuvers, to orient vessels or airplanes for maneuvers and to reduce the risk
of collisions.

3.1 Attitude Parametrization

Euler angles

So, the simplest approach would be, from a very intuitive point of view,
to find the Euler angles defining the rotation from the local frame to the
reference one. In fact, a rotation can be seen as 3 consecutive rotations ap-
plied over the three axis of the body coordinate system. The three angles,
as showed in Figure 3.3, are called Roll (ϕ), Pitch (θ) and Heading (ψ) and
they are respectively the rotations around the longitudinal, transverse and
vertical axis. Although, the usage of the Euler angles is really easy to under-
stand, they suffer from the so called gimbal lock, i.e. a singularity problem
when the pitch angle is close to the ±90◦ value, since the other two axis get
aligned.
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FIGURE 3.3: Representation of the Euler angles together with
the axis of rotation [35].

Rotation matrix

This problem of the Euler angles is solved using a representation which is
not affected by the singularities, i.e. the rotation matrix R. It is a 3 × 3
matrix, i.e. it contains nine elements, representing a 3D rotation. It can be
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simply obtained as product of the single rotations defined by the 3 Euler
angles, as shown in the following equations.

R = R123(ϕ, θ, ψ) = R1(ϕ)R2(θ)R3(ψ) = (3.1) cθcψ cθsψ −sθ

sϕsθcψ − cϕsψ sϕsθsψ + cθcψ cθsϕ

cϕsθcψ + sϕsψ cϕsθsψ − sϕcψ cθcϕ


where cθ, cϕ, cψ, sθ, sϕ and sψ are the cosine and sine of the angles:

cϕ = cos(ϕ); cθ = cos(θ); cψ = cos(ψ)
sϕ = sin(ϕ); sθ = sin(θ); sψ = sin(ψ)

It is important to highlight that there are many possible rotation se-
quences [3]. The one used in this thesis work is the (1,2,3) and, so, the above
representation is true only in this case.

Quaternions

In R3, the rotation group SO (3) denotes the group of rotations around the
origin under the operation of composition. Rotations are linear operations
preserving vector length and the relative vector orientation. Generally, the
rotation operation is performed using rotation matrices. The rotation ma-
trices are not the only way to represent a rotation. However, an alternative
way to represent the rotation group is introduced, i.e. the quaternions.
Briefly, for what concern this thesis work, a quaternion q is formed by a
scalar term and vectorial one. So, it si a 4 elements vector:

q =

[
qs
qv

]
=


qs
qx
qy
qz

 (3.2)

And a rotation, defined by an axis u and an angle Θ, is represented as

q =

[
qs
qv

]
=

[
cos(Θ/2)

usin(Θ/2)

]
(3.3)

It is important to highlight that the Hamilton notation is used here. In-
deed, there are different definitions and conventions for the quaternions,
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which depend on the order of the components, the multiplication definition
(right or left handed) and the rotation of frames. A much more accurate ex-
planation is given in the article of Joan Sola [27].
Moreover, a quaternion, in order to be part of the quaternion spaceH has to
respect the following condition:

qTq = q2
s + |qv|

2 = 1 (3.4)

This is in someway the equivalent of the orthogonality constraint for the
rotation matrices, for whic RTR = I = RRT. Of course there is also an
expression linking the quaternions with the rotation matrices and viceversa
[3]:

R(q) =

q2
s + q2

x − q2
y − q2

z 2qxqy + 2qsqz 2qxqz − 2qsqy

2qxqy − 2qsqz q2
s − q2

x + q2
y − q2

z 2qyqz + 2qsqx

2qxqz + 2qsqy 2qyqz − 2qsqx q2
s − q2

x − q2
y + q2

z

 (3.5)

qs =
1
2

√
1 + r11 − r22 − r33 (3.6)

qx =
1

4qs
(r12 + r21)

qy =
1

4qs
(r31 + r13)

qz =
1

4qs
(r23 − r32)

Then, the rotation matrix R operating a rotation on the vector v is equiv-
alent to the rotation using the quaternion q

Rv = q� v� q∗ . (3.7)

where� indicates a quaternion multiplication and q∗ is the quaternion con-
jugate operation. It is important to say that, generally, the quaternion mul-
tiplication is represented as ⊗, but in this work ⊗ will be used to represent
the Kronecker product.

So now, the advantages of the quaternions with respect to the rotation ma-
trices can be summarized:

X More compact representation. Only 4 elements, instead of 9. At the same
time, since there are 3 unknowns, it means to have only one constraint instead
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of six, as in the case of rotation matrices;

X More numerically stable. Unit normalization of the quaternions presents less
problems due to the rounding than the rotation matrix;

X Easier interpolation between quaternions;

X Faster multiplications;

Disadvantages:

× Less intuitive and more mathematical representation.

By the way, for a comprehensive explanation on quaternion algebra, the
author suggest consulting the work of Solà in [27].

3.2 Davenport’s algorithm

The statement of the attitude determination is simple. However, there is
a problem. In fact, the observation vectors (i.e. the measurements) are af-
fected by some errors. This means that, generally, is not possible to find the
exact rotation that brings them into the reference frame. Therefore, what
can be done is to try to minimize a loss function defined by Wahba as:

J(R) =
1
2

N

∑
i=1

ai |bi − Rli|2 (3.8)

Where bi are the baselines in the body frame and li the baselines in the
ECEF frame. While ai are some positive weights. For simplicity they can be
set in order to have

N

∑
i=1

ai = 1

In fact, their sum will not affect in any way the minimization problem. They
are generally chosen to be proportional to the baseline length. Thus, longer
baselines are assumed to be more reliable.
To sum up, the problem in equation 3.8 is equal to find the optimal rotation
that allow to have the best possible correspondence between the two set of
vectors in a least-squares sense.

The optimal solution to the Wahba problem was proposed by Davenport,
with the so called q-algorithm or Davenport’s algorithm.
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First of all, the minimization problem of equation 3.8 is translated into a
maximization problem of the corresponding gain function

G(R) = 1− J(R) =
N

∑
i=1

aib
T
i Rli = Tr[RBT] (3.9)

where

B =
N

∑
i=1

aibil
T
i

as showed in Shuster’s paper [25].

Now, using the quaternions, because of the advantages previously explained,
the expression of the gain function of equation 3.9 becomes, after some op-
erations [25]:

G(q) = qTKq (3.10)

where K is a 4×4 matrix defined as

K =

[
S− σI Z

ZT σ

]
(3.11)

where:

• S is a 3×3 matrix obtained as B + BT

• σ is the trace of B, i.e a scalar value

• Z is 3×1 matrix defined as the sum of the vector products of the refer-
ence and observation vectors

Thus, the problem to be solved is the one in equation 3.10, but taking
into account the constrain of equation 3.4, because the final solution has to
be part of the quaternion space q ∈ H. Through the usage of the Lagrange
multiplier method, an equivalent unconstrained problem is found and the
following equation is derived [25]:

Kq = λq (3.12)
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It is clear that this is an eigenvalue problem. Thus, the optimal quater-
nion is one of the eigenvectors of the K matrix. In particular it is the eigen-
vector corresponding to largest eigenvalue of K. This result is optimal in a
least-squares sense.

3.2.1 QUEST algorithm

The Davenport’s algorithm was tested and also used in some space mis-
sions, giving very good results for the attitude estimation. By the way,
there was one problem. In fact, it was really expensive from a computa-
tional point of view and, so, time consuming (it was developed in 1970s).
This could not be acceptable for daily attitude mission operations, like for
the Magsat mission [26]. This problem is related to the fact that the eigen-
value/eigenvector problem is directly solved. For this reason a more effi-
cient algorithm was developed, i.e. the QUEST (QUaternion ESTimator).
It is an approximation of the Davenport’s one but still it gives very good
results, but in a faster way. The difference is that QUEST algorithm ap-
proximates the largest eigenvalue and, from that, it finds the corresponding
optimal eigenvector.
Combining the original problem with the equation 3.10 an approximation
for the optimal λ is found

λopt = 1− J(q) (3.13)

Nevertheless, the quadratic loss function J(q) should be very small for
the optimal quaternion. For this reason a good approximation of the max-
imum eigenvalue of the K matrix should be λopt = 1. From this point a
Newton-Raphson method can be applied to the characteristic equation of
the matrix K

det(K− λI4) = 0 (3.14)

At the end, the final solution is expressed in function of the Rodrigues
vector Y = qv

qs
= [(λ + σ)I − S]−1Z as [26]:

q =
1√

(1 + |Y|2)

[
1
Y

]
(3.15)
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Of course, other algorithms have been developed, through the years, for
solving the attitude problem. A list of some of the most used one is here
reported:

• SVD (single value decomposition) [17]

• ESOQ (estimators of the optimal quaternion) [21]

• FOAM (Fast Optimal Attitude Matrix) [16]

• TRIAD [1]

The most robust algorithm is the Davenport’s one. The others are less
robust and are used when the time consumption has to be taken into ac-
count [18] . However, all these algorithm are able to give very good results,
depending on the applications.
In this work, the QUEST and Davenport’s algorithm have been used.

This problem can also be related to the GNSS positioning. In fact, in
a multi-antenna GNSS system, finding the attitude corresponds to find the
rotation relating baseline vectors across the body frame and the ECEF (Earth
Centered Earth fixed) frame (equation 3.16). It is important also to give a
definition of baseline. It is simply a vector connecting two different receivers
(see Figure 3.4).

le = R lb = q� lb � q∗ (3.16)

where R is the rotation matrix, q the quaternion, le the baseline in the
ECEF frame and lb the one in the body frame.

FIGURE 3.4: Example of a vessel with 3 antennas and, so, 3
baselines.
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3.3 Factors affecting the attitude estimation

Now, let’s see from a conceptual point of view what are the parameters that
can affect the attitude estimation using the estimated GNSS positions of the
receivers.
To find the optimal rotation the baselines in the ECEF frame are needed.
This can be easily obtained by differencing the positions of the single re-
ceivers. Indeed, is possible to relate this problem to the general GNSS posi-
tioning, in case the individual position of each of the antennas is estimated
using different positioning techniques, which give different performances:

• SPP (single point position) [24]

• PPP (precise point position) [11]

• RTK (Real-Time Kinematic) [4] [22]

Notice that they have been sorted starting from the less precise one.

Another factor affecting the accuracy of the attitude determination is the
baseline length. This can be shown very easily through a geometrical ap-
proach [19]. In fact, suppose to have a situation in which there are only 2
antennas, i.e. only one baseline of length l, like the one in Figure 3.5.

FIGURE 3.5: Representation of the geometrical approach sce-
nario used for finding the estimation of the attitude error with

respect to the baseline length l.

The heading error δψ can be simply estimated using the positioning error
δp

sin(δψ) =
δp√

l2 + δp2
(3.17)
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Then, if l in much larger than the positioning error, the square root can
be approximated to the baseline length. At the same time, the small angle
assumption can be used, leading to the simple approximation :

δψ ' δp
l

(3.18)

It is now easy to see that when l increases the error on the heading esti-
mation will be smaller. In Figure 3.6 an example of this behaviour is showed.

FIGURE 3.6: Example of the standard deviation of the heading
error using the geometrical approach described above, chang-
ing the baseline length. An accuracy of 1 meter has been con-

sidered.

Another important factor regards the geometry of the antennas. As before,
considering only 2 antennas, an intuitive proof that the geometry is very
important can be given, looking at the car in Figure 3.7. In fact, it is easy to
understand that a rotation around the y axis (pitch angle) can’t be tracked.
This is because the two antennas have the same x and z coordinates. So, in
the xz plane, is like having a point. Thus, the pitch angle can’t be estimated,
because a point can’t be rotated, but only shifted.
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FIGURE 3.7: Example of a car with two antennas aligned over
the y axis. In this case, the rotation around the y axis, i.e. the
pitch angle can not be estimated, because there is not a vector

to rotate.

This means that the geometry has to be taken into account to allow good
results. By the way, the geometry will also depend on the applications, be-
cause of the shape of the vehicles and the importance of the angles to es-
timate. In fact, maybe, for cars the most important angle is the heading,
while roll and pitch are less relevant. Therefore, the geometry could be cho-
sen with this goal. However, for other applications, like in aviation, all the
angles have to be well estimated, especially during the landing, to avoid a
crash.

To summarize, the following factors could affect in some way the estimation
of the attitude:

• Accuracy of the positioning;

• Baseline length;

• Geometry and number of the antennas.

The impact of all these factors will be analysed, through some simula-
tions, in the result section (chapter 4).
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Chapter 4

GNSS attitude problem using
phase measurements

GNSS represents an appealing alternative for attitude determination, pro-
viding a drift-less absolute orientation solution while posing minimal re-
quirements in terms of cost, weight and power consumption. Employing a
setup of multiple GNSS antennas rigidly mounted on a vehicle, one seeks to
find the rotation which relates the local and global navigation frames. Ac-
curate attitude estimation based on GNSS requires the use of GNSS carrier
phase observations.
Although GNSS attitude determination provides substantially higher accu-
racy than other systems, generally based on magnetic effects, its implemen-
tation poses some constraints. On one hand, at least a couple of GNSS re-
ceivers providing carrier phase are needed. Although receivers capable of
providing carrier phase are currently costly, the technology for the produc-
tion of low-cost receivers is rapidly growing. On the other hand, attitude
accuracy is inversely proportional to the separation between the antennas,
making this system impractical for small/miniaturized vehicles.

Previously, the attitude solving has been investigated, as well as the code
and phase measurements and the working principle of GNSS. Now, the real
GNSS attitude determination scenario has to be analyzed. A way to find a
solution could be to estimate the position of the antennas and, then, com-
pute the baselines (this is what is done in the first simulations of Chapter
5). However, for GNSS attitude determination, we are only interested in
the relative orientation of the baselines and not really in the position of the
antennas in the ECEF frame. Thus, the question is how to use as better as
possible the GNSS measurements to get this information. As seen in Chap-
ter 2, the code and phase measurements have many errors contribution. By
the way, there is a mode to mitigate them, the so called Double-Differencing
(DD).
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i SATELLITE 
r PIVOT SATELLITE 

VEHICLE 

SURFACE 

FIGURE 4.1: Scenario example for Double Differences com-
putation.

Supposing to have m + 1 antennas and n + 1 GNSS tracked satellites in
view (see example in Figure 4.1), first the Single Difference (SD) is com-
puted. It means that, for each satellite in view, the difference between the
measurements at two antennas are calculated. However, it is also very im-
portant to notice that the following results are good only under a short base-
line assumption (shorter than 1 km) [5]. In fact, only in this case the signals
can be said to have approximately the same path, which means to have very
correlated atmospheric delays.
So, the SD, for the code measurements is:

ρi
j = ρi

j − ρi
m =

∥∥∥pi − pj

∥∥∥+ cδtj − cδti + Tri − Ii
0+ (4.1)

+εi
j −
∥∥∥pi − pm

∥∥∥− cδtm + cδti − Tri + Ii
0 − εi

m =

=
∥∥∥pi − pj

∥∥∥− ∥∥∥pi − pm

∥∥∥+ c(δtj − δtm) + (εi
j − εi

m)

And for the phase is:

Φi
j = Φi

j −Φi
m =

∥∥∥pi − pj

∥∥∥+ cδtj − cδti + Tri − Ii
0 + λNi

j+ (4.2)

+εi
j −
∥∥∥pi − pm

∥∥∥− cδtm + cδti − Tri + Ii
0 + λNi

m − εi
m =

=
∥∥∥pi − pj

∥∥∥− ∥∥∥pi − pm

∥∥∥+ c(δtj − δtm) + λ(Ni
j − Ni

m) + (εi
j − εi

m)

Where i indicates the i-th satellite, while j and m refers to the two anten-
nas. In particular m is considered as the master antenna. It is also good to
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notice that, from a model point of view , the only difference between code
and phase is the presence of the ambiguities.
Thanks to the SD many of the error sources can be eliminated or enormously
reduced. Then, also the receiver clock offset can be eliminated by choosing
a pivot (or reference) satellite (usually the one with highest elevation) and
computing the DD:

DDρi
j = ρr

jm − ρi
jm =

∥∥pr − pj
∥∥− ‖pr − pm‖+ c(δtj − δtm) + εr

jm+ (4.3)

−
∥∥∥pi − pj

∥∥∥− ∥∥∥pi − pm

∥∥∥+ c(δtj − δtm)− εi
jm =

=
∥∥pr − pj

∥∥− ‖pr − pm‖ −
∥∥∥pi − pj

∥∥∥+ ∥∥∥pi − pm

∥∥∥+ εi
j

DDΦi
j = Φr

jm −Φi
jm =

∥∥pr − pj
∥∥− ‖pr − pm‖+ c(δtj − δtm) + λNr

jm+

(4.4)

+εr
jm1 −

∥∥∥pi − pj

∥∥∥− ∥∥∥pi − pm

∥∥∥+ c(δtj − δtm)− λNi
jm − εi

jm =

=
∥∥pr − pj

∥∥− ‖pr − pm‖ −
∥∥∥pi − pj

∥∥∥+ ∥∥∥pi − pm

∥∥∥+ λai
j + εi

j

Where the notation εi
j is equivalent to εi

j − εi
m. The notation ai

j stands for
the double difference ambiguities.

This model can be linearized, considering the line of sight vectors [19]. Be-
sides, considering the close distance between the receivers, one might con-
sider the unit LOS vectors to be the same among the vehicle.

∥∥pr − pj
∥∥ = −u>r pj (4.5)

So that the model for the double differences is :

DDρi
j = −(u

i − ur)>(pj − pm) + εi
j (4.6)

DDΦi
j = −(ui − ur)>(pj − pm) + λai

j + εi
j (4.7)

where ai
j are the double difference ambiguities. However, the difference

between the positions of the antennas represents, exactly, a baseline in the
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ECEF frame!

le
j = (pj − pm) (4.8)

Thus, this is the final expression for the DD model:

DDρi
j = −(u

i − ur)>le
j + εi

j (4.9)

DDΦi
j = −(ui − ur)>le

j + λai
j + εi

j (4.10)

It can be written in a more compact and general form [6]:

y = Aa + Bb + ε (4.11)

where a ∈ Zm·n and b ∈ R3·m are the unknowns, respectively the ambi-
guities and the baselines coordinates. A ∈ R2nm·nm and B ∈ R2nm·3m are the
design matrices, dependent respectively by λ and the unit LOS vectors ui. ε
is the observation noise. To conclude, y is the observation vector, formed by
all the phase and code DD.

y =



DDΦ1:n
1

...
DDΦ1:n

m
DDρ1:n

1
...

DDρ1:n
m


(4.12)

where the notation DDΦ1:n
m indicates all the phase measurements for the

m-th baseline.
Given the observation model, a solution to this problem could be found

applying a Least Squares (LS) (equation 4.13) [29]. Indeed, since there is a
Gaussian noise, it should give an optimal solution.

min
a,b
‖y− (Aa + Bb)‖2

Qyy
(4.13)

where, in general

‖·‖Q = (·)TQ−1(·)
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What can be noticed is that, in practice, a constraint over the ambiguities
(which are known to be integer values) is applied.

However, solving this minimization problem, is not so trivial due to the
integer nature of the ambiguities. Although no analytical solution exists for
4.13, in [33] it was suggested the decomposition of the LS into a sum of three
consecutive least squares as follows:

‖y− (Aa + Bb)‖2
Qyy

= ‖er‖2
Qyy

+ ‖â− a‖2
Qââ

+
∥∥∥b̂(a)− b(a)

∥∥∥2

Qb̂(a)b̂(a)

(4.14)

where er represent the residuals. Qyy, Qââ and Qb̂(a)b̂(a) are the variance

covariance matrices. â and b̂(a) are the float solutions, i.e. the solution of
the unconstrained problem.

FIGURE 4.2: LAMBDA scheme.

So, to sum up the classical approach for finding the solution is the so
called LAMBDA (Least squares AMBiguity Decorrelation Adjustment) method
[30]. This procedure is illustrated on Figure 4.2.

The first stage is the computation of a standard least-squares adjustment,
where the integer constrained is dropped, and the output estimation is of-
ten referred to as float solution. Then, the estimated float ambiguities and
the corresponding variance-covariance matrix is used for the AR process.
Among the methods for AR, one counts (sorted based on the quality of the
results) [36] [28]:

• Integer rounding. Simply, all the float solutions are rounded to the near-
est integer value.

• Integer bootstrapping. A sequential least squares adjustment is used in
this case. The most precise ambiguity is rounded to the closest integer
value. The other float solutions are then corrected by taking into ac-
count their correlation with the rounded one. And so on, until all the
ambiguities are fixed.
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• Integer Least Squares (ILS). This is the optimal search method [32]. For
this reason, its the methodology applied in this work. It consists of
finding, in a search space defined through the variance-covariance ma-
trix, an integer vector a which minimizes the distance from the float
solution â. See Figure 4.3 for a graphical representation of the work-
ing principle. The ILS will be explained in much more detail in the
next section.

Finally, the computed integer ambiguities are used to improve the so-
lution for the vector of dynamical parameters b. Such estimate is realized,
once again in a least-squares sense, to obtain the fixed solution. The fixed
solution generally inherits a much higher precision than the previously ob-
tained float solution. The state reconstruction, or solution fixing, is finally
accomplished.

FIGURE 4.3: ILS search representation. [5]

Once the fixed solutions are computed the attitude can be easily deter-
mined. In fact, knowing the baselines in the ECEF frame b, the QUEST algo-
rithm can be applied to find the rotation that carries them into the baselines
in the body frame, as described in Chapter 3.

4.1 LAMBDA guide

As explained before, it is really important to have good fixed solutions for
the baselines b̌. But, they depend on the fixed solution ǎ. For this reason
is really important to understand well, in detail, the working principle of
the LAMBDA method. Since it could be tricky and not really easy to un-
derstand, a "LAMBDA guide" has been written, with the goal of providing
a more easy and practical explanation with respect to the papers that can
be found in the literature. To do this, a simple numerical example will be
used, too. Since it is a simulation, the true values of the ambiguities (a) are
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known.
Let’s suppose to have 3 observations and, so, 3 ambiguities:

a =

5
3
4


Through a Least Squares (LS) the float (because they are real numbers) so-
lutions are found:

â =

5.45
3.10
2.97

 Qââ =

6.290 5.978 0.544
5.978 6.292 2.340
0.544 2.340 6.2880


where Qââ is the variance matrix.

However, the ambiguities are integer numbers. Using this information a
more accurate estimation of the ambiguities can be obtained (fixed solution
ǎ ). The LAMBDA method has the goal of searching for these integer vector.
In practice the goal is to solve this Integer Least Square (ILS) problem [5]:

ǎ = min
a∈Zn

‖â− a‖2
Qââ

How is it done?

LAMBDA

FIGURE 4.4: Input and final output of the LAMBDA method.

4.1.1 Decorrelation

Preliminary operations

The integer vector minimizer for the problem has to be found in the search
space, defined as:

Ω = {‖â− a‖2
Qââ
≤ χ2}

It is clear that this equation represents an n-dimensional hyper-ellipsoidal
space, centered at â, and whose shape depends on the variance matrix [5].
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First of all, the ambiguities are highly correlated. For this reason, in or-
der to have a more efficient search, a decorrelation is needed. Moreover, for
convenience from a computational point of view, the integer part of the float
solution is removed, so that all the values are between -1 and 1, since only
the decimal part remains.

Decimal part 

Integer part

Decorrelation

FIGURE 4.5: Processing of the float ambiguity and decorrela-
tion

In our numerical example this means to have:

â =

5.45
3.10
2.97

 ã =

0.45
0.10
0.97

 ȧ =

5
3
2


So, the values used for the decorrelation are not the original float solu-

tions â, but their decimal part ã (see Figure 4.5).

Performing the decorrelation

To obtain the decorrelation a reparametrization is performed. Thus, the
original ambiguities are transformed into new ones through a Z-transformation.
For this reason the output of this operation, as can be seen in Figure 4.5, are
[36]:

• Z, the matrix that defines the transformation;

• z, the transormed amiguities;

• Qzz, the variance matrix of the new decorrelated ambiguities;
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• L and D, the matrices used for the LTDL-decomposition of Qââ.

Supposing to have n ambiguities Z, Qzz, L and D are n-by-n matrices. As
a result, in the numerical example they simply are 3-by-3. In addition, it
is important to highlight that D is a diagonal matrix and each value dj =

D(j, j) represents the variance σ2
âj|j+1,..,n

of the j-th ambiguity conditioned on
all the next ones (i.e. from j + 1 to n). Besides, the elements are sorted in
order to have dn < ... < dk < ... < d1. This is equal to say that the last
ambiguity zn is the most precise one. Then, L is the correlation matrix and
it is a lower triangle one [36].
In the analyzed example these matrices are:

z =

−1.57
2.02
0.35

 L =

 1 0 0
0.2677 1 0
0.3674 0.1310 1


D =

4.3102 0 0
0 1.1353 0
0 0 0.6260

 Z =

−2 3 1
3 −3 −1
−1 1 0


where z, D and L are used in the search, whereas Z and Qz are used only for
the inverse transformation (see Figure 4.17 at page 51).

FIGURE 4.6: Graphical representation of the decorrelation of
the search space in a 2D scenario.

4.1.2 ILS with shrinking search

Now let’s see the most important part of this method, i.e. the search.

Search

FIGURE 4.7: Inputs and outputs for the search operation.



34 Chapter 4. GNSS attitude problem using phase measurements

As it is possible to see in Figure 4.7, this operation is carried out after the
decorrelation. The matrices L, D and the ambiguities z are needed as input.
The output are:

• the two best candidates ž1 and ž2;

• the square norms, N1 and N2, of the two candidates (the square norm
is the metric used to evaluate the distance between the float solution
and an integer vector of the search space).

The next pages will be completely focused on the explanation of the
shrink and search algorithm. As the name can suggest, the goal of this algo-
rithm is to reduce the number of computations, by properly shrinking the
search space.
In Figure 4.8 is showed a flow chart of all the operations performed. All the
blocks and functions will be explained, in a general way, in different sub-
sections.
Finally, the previously discussed numerical example will be analyzed, step
by step, to give a more clear idea about the working principle of the algo-
rithm.
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Start  
search and 

shrink

End 
search and 

shrink

Inside the  
Search space

k = 1 
(ambiguity 1)

k = n 
(ambiguity n)

Yes No

YesNo
Yes

No

Try next valid  
integer value

Move down 
(k = k-1) Store candidate Move up 

(k = k+1)

Compute new
distance from
float solution

Initialization 
(k=n)

FIGURE 4.8: Flow chart of the "Search and shrink" algorithm.
k is the counter used to take track of the current analyzed am-

biguity.

Initialization

In Algorithm 1 are represented the steps of the initialization in the general
case of n ambiguities.
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All of them will be explained better and with the help of the numerical ex-
ample.

Algorithm 1: Initialization for the search and shrink (general for n
ambiguities).

1 χ2 −→ ∞;
2 count = 0;
3 k = n;
4 S = On,n;
5 distn = 0;
6 zC

n = zn;
7 zR

n = round(zn);
8 le f t = zC

n − zR
n ;

9 stepn = sign(le f t);

Let’s remember that, in the example, the transformed ambiguities are 3:

z =

z1
z2
z3

 =

−1.57
2.02
0.35


All the parameters are initialized in the following way:

1. χ2 = 1018

Set the to a very high value (ideally infinite), like 1018. In this way,
the initial search space is large enough to contain at least two possible
integer vector candidates for the ambiguities;

2. count = 0
Counter to take track of the number of candidates found;

3. k = 3
Counter used to track the current searched ambiguity;

4. S = O3,3 =

0 0 0
0 0 0
0 0 0


3-by-3 matrix used to compute the conditioned ambiguities. In the
initialization step it is only a null matrix;
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5. dist = O3,1 =

0
0
0


This is the metric used to define the distance of the integer vector am-
biguities from the corresponding float ones. The values used for the
initialization will not affect the result, but for simplicity an all 0 vector
is used;

6. zC
3 = z3 = 0.35

Due to the disposition of the ambiguities, the starting point will be the
last ambiguity (the 3rd one z3), because it is the most precise one (as
written in section 4.1.1);

7. zR
3 = round(zC

3 ) = 0
There is the need to choose an integer number to start the search pro-
cess for z3. The choice is the one of rounding the conditioned ambi-
guity, which in this case is simply the original float solution. For this
reason it is important to start with the most precise ambiguity!

8. le f t = zC
3 − zR

3 = 0.35− 0 = 0.35
In general le f t represents the distance between a single conditioned
ambiguity and the corresponding rounded one. In this case, it is clear
that it refers to the third ambiguity z3.
However, notice that this difference is not weighted on the variance!
This comment will be more clear in the next pages, as well as the usage
of this variable;

9. step 3 = sign(le f t) = 1
Generally, step is a vector n-by-1 (3-by-1 in this example). It is funda-
mental for the success of the searching algorithm. The reason of that
will be exhaustively explained in the next pages.
Anyway, it is important to highlight that in case the sign of le f t is 0 (it
can happen only in the case le f t = 0), this value should be set to 1. If
not, the search could not be able to find the best two candidates.

Computing the distance and verifying the belonging to the search space

After the initialization, the search loop starts.
The search is mainly based on two parameters, i.e. newdist and χ2, which
are compared, one to the other, at the beginning of the loop.

The metric newdist is computed in the following way:
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newdist = dist k +
le f t2

dj
(4.15)

distk =
n

∑
j=k+1

le f t2

dj
(4.16)

Where distk is the distance of the last integer ambiguities (from k + 1 to
n) with respect to the conditioned float solutions (check the definition of the
le f t variable).
This means that newdist is the distance referred to the ambiguities from k to
n. It is really important to notice the presence of the element dj. In fact, it
is the j-th element of the diagonal matrix D (dj = D(j, j)) and, as explained
before, it represents the variance σ2

j|j+1,...,n of the j-th ambiguity conditioned
on all the successive ones.
Once this is done, this metric is compared to the χ2. Of course there are two
possibilities:

• newdist < χ2

This means that we are inside the ellipsoidal search space. Thus, a
good candidate could still be found. This condition will lead either to
the "move down" function or to the "store candidate" one;

• newdist ≥ χ2

This means that we are out of the ellipsoidal search space and, so, a
candidate can’t be found for this combination of integer ambiguities!
This condition, dependently from the actual value of k, will lead either
to the "move up" function or to the "end search" one.

A pseudo code of the searching loop is represented (algorithm 2), to bet-
ter understand the conditions and the order of execution of all the functions.

It will possible to better understand it in the practical example with the
numerical values.
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Algorithm 2: While loop for the general case of the search and
shrink algorithm.
1 Initialization;
2 while search do
3 COMPUTE newdist;
4 if newdist < χ2 then
5 if k == 1 then
6 Function STORE CANDIDATE;
7 Function TRY NEXT VALID INTEGER;
8 else
9 Function MOVE DOWN (k←− k− 1);

10 end
11 else
12 if k == n then
13 Function END SEARCH/EXIT FROM WHILE LOOP;
14 else
15 Function MOVE UP (k←− k + 1);
16 Function TRY NEXT VALID INTEGER;
17 end
18 end
19 end

Before diving in the next steps, it is better to highlight something that
could be tricky. Indeed, during the search, the ambiguities will be seen in a

different order from the usual vectorial form

a1
a2
a3

 . In fact, since the starting

point is the last ambiguity, the disposition is like in Figure 4.9. The expres-
sions "move down" and "move up" refer to this displacement. Surely, this
is something used only for convenience and it is not mandatory.
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FIGURE 4.9: Graphical representation of the ambiguities dur-
ing the search algorithm. Notice that it is not the same as their

positions in the classical vectorial form ǎ.

Move down

When inside the search space and when the distance is not computed over
all the ambiguties (i.e. k 6= 1), the "move down" operations are performed.
As the name suggests the counter k is decremented and this means that the
next element (k− 1) of the ambiguity vector will be taken into account (see
Figure 4.10). The current distance is stored and an update of some variables
is realized.

FIGURE 4.10: "Move down" example. For the integer values
[a3; a2] = [2; 3] we are still inside the search space. We have to
"move down" to check if, for a1 = 7, we can have an integer

vector candidate.

Here the S matrix is finally used to compute the conditioned ambigu-
ity zC

k . Let’s remember that S is a n × n matrix (3× 3 in the example). A
graphical representation of the S matrix is given in Figure 4.11. It is easy to
understand why it is like this. In fact, we use the last row (n) to compute,
employing the correlation matrix L and the variable le f t, the previous row
(n − 1). Then, the row n − 1 is used to get the row n − 2 and so on, until
the first row. Therefore, a row will be dependent on all the previous ones,
like a cascade. For example, the j-th row will depend on all the rows from
j − 1 to n. In the meanwhile, the conditioned ambiguity is computed as
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zC
k = zk + S(k, k). In this way, the relationship of dependency among all the

ambiguities, previously described, is always preserved.

FIGURE 4.11: S matrix update in a 3 ambiguities example. b,
c and d are real numbers. Notice the cascade effect. The 1st
row depends on the 2nd one, which in turn depends on the

3rd one.

After the update of S and the calculation of the conditioned ambiguity,
the integer ambiguity zR

k is got, through a rounding. New values for the
variables le f t and stepk are found.

Store candidate

If we are inside the ellipsoid and the ambiguity for which the distance has
been computed is the first one (z1), it means that a complete integer vector
has been found (see Figure 4.12). As a result, it is stored as suitable candi-
date and its distance from the float solution is saved. Moreover, if this is not
the first candidate, an important operation has to be done. A new value for
χ2 is set, equal to the distance of the current second best candidate from the
float solution. In this way, the search space is enormously reduced. If there
is a candidate inside this new ellipsoid, then, it will be surely better than the
current one (see Figure 4.13).

FIGURE 4.12: Example: store the candidate [7; 3; 2].
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FIGURE 4.13: Shrinking the search space. ž2 is at the edge of the
new ellipsoid, since it is defined by its distance χ2

2. If another
candidate, ž3, is found in this new ellipsoid, then, it will be
surely better than ž2 in terms of distance from the float solu-
tion. Therefore, ž2 will be discarded and a new, smaller, search
space will be defined. The procedure will stop when an el-
lipsoidal search space with only 2 candidates inside will be

found.

Move up

This function is executed when there is a so called "dead end" for an ambi-
guity which is not the last one (zn). It means that the vector is already out of
the ellipsoid and, so, there is not the possibility of finding a proper candi-
date with those integer values (see Figure 4.14). For this reason, the counter
k is incremented by 1 (k = k + 1) and a new integer value for zk+1 will be
tested.

FIGURE 4.14: "Move up" example. A dead end is found, i.e.
is not possible to find a candidate for that combination of inte-
ger values. The only solution is to "move up" to the previous

ambiguity a2 and try a new integer value for it.
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Try next valid integer

It is executed either after "store candidate" or "move up". The only differ-
ence is that in the first case there is always k = 1, i.e. the first ambiguity
zR

1 is modified (see Figure 4.15). On the contrary, in the second one, any
other value of k is possible. Thus, this function is carried out every time
there is the need to extend the search to other possible integer values for an
ambiguity.

FIGURE 4.15: Try next valid integer example after "store can-
didate".

The procedure is really simple:

• Find next integer value zR
k to test, using the stepk variable, i.e. zR

k =

zR
k + stepk (see Figure 4.16);

• Update the le f t variable;

• Update the step variable using its previous value (see Figure 4.16 for a
better understanding).
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FIGURE 4.16: Example: choosing the next integer value to
test for an ambiguity. Here it is also clear how the step vari-
able is updated. At the beginning ai = 3 and step = 1. Thus,
the integer value to test becomes ai = 4. At this point step
will be updated to the value −2 and, so, at the next execution
of the "try next integer" function for that particular ambiguity,
the integer value to be tested will become 2. It is clear that the
goal is to scan the set of the integer numbers in both the direc-
tions, starting from the initial value (ai = 3 in this graphical

example).

End search

This can happen only if we are out of the ellipsoid and with the condition
of taking into account only the last ambiguity (zn).
In easy words, this means that you are already too far from the float solu-
tion, while considering only the distance of the most precise ambiguity (zn).
Therefore, it is not possible to find any new suitable integer vector candi-
date. The search has to end.

Following the example

Now that all the operations and the motivations have been explained, the
numerical example will be analyzed step by step to make the search algo-
rithm more clear.
In subsection 4.1.2 the initialization for the example has already been pre-
sented. That one is the starting point. Consequently, in this subsection, only
the search loop will be analyzed.
The suggestion is to check, in the meanwhile, the flow chart of Figure 4.8 at
page 35 or the Algorithm 2 at page 39.

Inizialization

• See subsection 4.1.2;
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Compute newdist

• newdist = 0.1957;

Is it inside the search space?

• χ2 = 1018 =⇒ newdist < χ2 =⇒ Inside the search space

What is the value of k? Is k = 1?

• No, k = 3 =⇒ Execute "Move down"

Move down

• Decrement k =⇒ k = k− 1 =⇒ k = 3− 1 = 2

• Save the distance =⇒ dist2 = newdist = 0.1957;

• Update S matrix (used for the conditioned ambiguities) =⇒

 0 0 0
−0.1286 −0.0458 0

0 0 0


• Compute the conditioned ambiguity ⇒ zC

2 = z2 + S(2, 2) = 2.02 +
(−0.0458) = 1.9742

• Round the conditioned ambiguity⇒ zR
2 = round(zC

2 ) = round(1.9742) =
2

• Compute le f t⇒ le f t = zC
2 − zR

2 = 1.9742− 2 = −0.0258

• Find step2 = sign(le f t) = −1

Compute newdist

• newdist = 0.1963;
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Is it inside the search space?

• χ2 = 1018 =⇒ newdist < χ2 =⇒ Inside the search space

What is the value of k? Is k = 1?

• No, k = 2 =⇒ Execute "Move down"

Move down

• Decrement k =⇒ k = k− 1 =⇒ k = 2− 1 = 1

• Save the distance =⇒ dist1 = newdist = 0.1963;

• Update S matrix (used for the conditioned ambiguities) =⇒

−0.1217 0 0
−0.1286 −0.0458 0

0 0 0


• Calculate the conditioned ambiguity⇒ zC

1 = z1 + S(1, 1) = −1.57 +
(−0.1217) = −1.6917

• Round the conditioned ambiguity⇒ zR
1 = round(zC

1 ) = round(−1.6917) =
−2

• Compute le f t⇒ le f t = zC
1 − zR

1 = −1.6917− (−2) = 0.3083

• Find step1 = sign(le f t) = 1

Compute newdist

• newdist = 0.2183;

Is it inside the search space?

• χ2 = 1018 =⇒ newdist < χ2 =⇒ Inside the search space

What is the value of k? Is k = 1?
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• Yes, k = 1 =⇒ Execute "Store candidate"

Store candidate

• What is the value of count? count = 0⇒ This is the first candidate we
have found.

• Increment count⇒ count = count + 1 = 1;

• Save the candidate and its square norm ⇒ ž1 = zC =

−2
2
0

 and

metric1 = newdist = 0.2183

• execute "try next integer value"

Try next integer value

• Try the next integer for zR
1 = zR

1 + step1 = −2+ 1 = −1, because k = 1

• Compute le f t = zC
1 − zR

1 = −0.6917

• Update step1 = −step1 − sign(step1) = −2

Compute newdist

• newdist = 0.3073;

Is it inside the search space?

• χ2 = 1018 =⇒ newdist < χ2 =⇒ Inside the search space

What is the value of k? Is k = 1?

• Yes, k = 1 =⇒ Execute "Store candidate"

Store candidate

• What is the value of count? count = 1⇒ This is the second candidate
we have found
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• Save the candidate and its square norm ⇒ ž2 = zC =

−1
2
0

 and

metric2 = newdist = 0.3073

• Update χ2 ⇒ χ2 = max(metric1, metric2) = max(0.2183, 0.3073) =
0.3073
We are sure there are at least 2 candidates in the search space defined
by the new value of χ2. If we are able to find another candidate inside
this ellipsoid, then it will be the new (second or first) best candidate.

• execute "try next integer value"

Try next integer value

• Try the next integer for zR
1 = zR

1 + step1 = −1− 2 = −3, because k = 1

• Compute le f t = zC
1 − zR

1 = 1.3083

• Update step1 = −step1 − sign(step1) = 3

Compute newdist

• newdist = 0.5934;

Is it inside the search space?

• χ2 = 0.3073 =⇒ newdist > χ2 =⇒ Outside the search space!

What is the value of k? Is k = 3?

• No, k = 1 =⇒ Execute "Move up"

Move up

• Increment k =⇒ k = k + 1 = 2

• execute "try next integer value"

Try next integer value

• Try the next integer for zR
2 = zR

2 + step2 = 2− 1 = 1, because k=2;
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• Compute le f t = zC
2 − zR

2 = 0.9742

• Update step2 = −step2 − sign(step2) = 2

Compute newdist

• newdist = 1.0316;

Is it inside the search space?

• χ2 = 0.3073 =⇒ newdist > χ2 =⇒ Outside the search space!

What is the value of k? Is k = 3?

• No, k = 2 =⇒ Execute "Move up"

Move up

• Increment k =⇒ k = k + 1 = 3

• execute "try next integer value"

Try next integer value

• Try the next integer for zR
3 = zR

3 + step3 = 0 + 1 = 1, because k=3;

• Compute le f t = zC
3 − zR

3 = −0.6500

• Update step3 = −step3 − sign(step3) = −2

Compute newdist

• newdist = 0.6749;

Is it inside the search space?

• χ2 = 0.3073 =⇒ newdist > χ2 =⇒ Outside the search space!

What is the value of k? Is k = 3?

• Yes, k = 3 =⇒ Execute "End search"
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End search

• Sort the two found candidates based on their square norms

and return them =⇒ ž1 =

−2
2
0

 and ž2 =

−1
2
0

 .

Back-transformation

• Come back to the original domain. Change again the parameters, from

z to a (see section 4.1.1)⇒ ã = Z−1 · ž =

1 1 0
1 1 −1
0 1 −3

 ·
−2 −1

2 2
0 0

 =0 1
0 1
2 2



• Let’s remember, from section 4.1.1, that ȧ =

5
3
2



• Finally, the best candidate is: ā1 = ã1 + ȧ =

5
3
4



• The second best candidate is: ā2 = ã2 + ȧ =

6
4
4



In figure 4.17 the general scheme of the operations for the LAMBDA method
is showed to make more clear the last part of the example.

4.1.3 Ratio test. Open question. Empirical approach

Ratio test

Using the previously explained method is it possible to find the two best
candidates, but how to use them? How is it possible to know if the best
candidate is good or not? In fact, the integer ambiguity fixing should also
involve an acceptance test on the integer solution. This can be done through
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Decimal part 

Integer part

Decorrelation Search

Back 
transformation

Composing the 2 
final candidates

Ratio Test

FIGURE 4.17: General scheme for LAMBDA method.

a Ratio Test, i.e. a discrimination test to check how much closer is the best
integer candidate to the float solution, compared to the second best one. In
practice, indicating with N1 and N2 the metric of the two candidates ā1 and
ā2, what is done is to check if:

N2

N1
≥ γ (4.17)

where γ is the threshold value, which is often a fixed value like 2 or 3 [36].
This value determines the size of the acceptance regions (see Figure 4.18).
Intuitively and with the help of detection theory analysis, it is easy to under-
stand that a larger value of γ corresponds to a lower false alarm probability,
but, at the same time, to a lower detection probability.
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FIGURE 4.18: Acceptance regions with Ratio Test [36].

Open questions

However,some questions about the choice of the threshold should be asked.

• First of all, is it dependent on the number of the double differences
and, so, of the ambiguities present in the ambiguity vector? In fact,
an higher number of ambiguities should imply more integer values to
test. Can this affect the probability of having a second best candidate
which is more far from the first one, or not? Probably yes, but its
impact on the performances should be properly analyzed.

• Does it depend on the max e min values of the float ambiguities? No,
because, as showed before, the algorithm is applied for the decimal
part of the float ambiguity only.

Setting the threshold

Finally, how to properly set a value for the threshold?
As previously said, there is not a correct way to do it. It all depends on
the false alarm probability that we want to achieve. Therefore, this would
depend on a statistical analysis. In fact, an higher threshold means lower
false alarm, but also a lower detection! But, what could be done is to use
an empirical approach. A large number of Montecarlo simulations for dif-
ferent ambiguity vectors, in order to have statistically meaningful results,
and compare the success rate with the fixing rate! The first one is the per-
centage of times in which the best candidate is equal to the true ambiguity
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vector, while the latter, represents the times in which the ratio is bigger than
the threshold γ and, consequently, the best candidate is accepted as a good
solution. In this way, if the fixing rate is much lower than the success rate it
means that the condition on the ratio test is too tight, hence the value of γ
should be decreased. On the contrary, if the success rate is lower than the
fixing rate the threshold is too low.

Finally, the results for different ambiguity vector sizes should be com-
pared, in order to check how much this parameter is important.

4.2 A new approach. Quaternion-based Constrained
LAMBDA

A new approach will now be proposed. In fact, from equation 4.9 and 4.10
the double difference is

DDρi
j = −(u

i − ur)>li
j + εi

j

DDΦi
j = −(ui − ur)>li

j + λai
j + εi

j

But the baseline in the ECEF frame can be seen as the baseline in body
frame to which a rotation is applied. As said in the prevoius chapters, a
rotation can be represented in different ways. One of them is using the
quaternions q

le
j = Rlb

j = q� lb
j � q∗

where � is the quaternion multiplication. Usually, it is denoted as ⊗,
but in this thesis that symbol would collide with the Kronecker product.
Now, the new expression for the DD model is

DDρi
j = −(u

i − ur)>q� lb
j � q∗ + εi

j

DDΦi
j = −(ui − ur)>q� lb

j � q∗ + λai
j + εi

j

Tracking the quaternion orientation allows for exploiting the prior infor-
mation on the baselines length, as well as the relative orientation between
them. As explained, this is a new approach, which will be called "Quater-
nion approach" or "Tracking quaternion" in the rest of the thesis. In practice
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the first advantage that can be seen is that it is already constrained by the
baseline length! But let’s see what are really the differences with respect to
the classical approach. To do this, the models have to be defined first.

The model can still be written in a more compact form with respect to
the one in the previous sections. In fact it can be written as:

y = Hx + ε (4.18)

where H is the Jacobian matrix of the observation model, y the observa-
tions and x the unkowns. The observation is always the union of the code
and phase measurements.

But, for H and x the expression is different based on the kind of approach
used.

• Classical approach.

min
b∈R3m×1, a∈Zmn×1

‖y− Hx‖2
Qy

(4.19)

The state x contains all the baselines (it depends on the number of
antennas) and, of course, the ambiguity vector a

x =


b1
...

bm
a

 (4.20)

The Jacobian is instead (for single frequency case)

H =

[
HΦ
Hρ

]
=

[
Im ⊗U Im ⊗ λIn
Im ⊗U Im ⊗On

]
(4.21)

where the symbol ⊗ in this case is the Kronecker product. Im and
On represents respectively the m-size unitary matrix and the n-by-n
null matrix. U is the m-by-3 matrix fo the LOS vectors of the double-
differences:
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U =

−(u
1 − ur)>

...
−(um − ur)>

 (4.22)

In Figure 4.19 a less compact, but easier to understand, representation
of the H matrix is shown in the case of 3 baselines.

FIGURE 4.19: Representation of the H matrix for the classical
approach in the case of 3 baselines, without the usage of the

Kronecker product.

• Quaternions approach.
To avoid redundancy notation problems the parameters for this ap-
proach will be defined with a ′ sign. Thus

min
q∈H, a∈Zmn×1

∥∥y− H′x′
∥∥2

Qy
(4.23)

The state x′ contains the quaternion and, again, the ambiguity vector
a:

x′ =
[

q
a

]
(4.24)

The Jacobian is

H′ =
[

H′Φ
H′ρ

]
=

[
Jm,1 ⊗U F1:m

q Im ⊗ λIn

Jm,1 ⊗U F1:m
q Im ⊗On

]
(4.25)
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where Jm,1 is a m-by-1 all ones vector. U is the same as in the classical
approach, i.e. the matrix of the unit LOS vectors of the DD. Finally, Fq
is a 3× 4 matrix defined as the derivative of the rotated baseline in the
body frame with respect to the quaternion itself:

Fi
q =

∂(q� bi � q∗)
∂q

(4.26)

For a comprehensive explanation on quaternion algebra, the author
suggest consulting the work of Solà in [27].
In Figure 4.20 the H′ matrix is written in a less compact to form, in the
case of 3 baselines, to allow a better understanding.

FIGURE 4.20: Representation of the H matrix for the quater-
nion approach in the case of 3 baselines, without the usage of

the Kronecker product.

Now that the matrices have been explicitly derived, an analysis of the ad-
vantages and disadvantages of this new apporach can be easily explained.
Advantages:

X Higher redundancy of observations. This come from the difference in
the state vector. While the number of ambiguities remains the same,
the number of unknowns for the quaternion approach is independent
from the number of the baselines. On the contrary, in the classical ap-
proach there is the presence of 3 unknowns for each baseline. This
results in a larger number of unknowns, but with the same amount of
DD equations.

X Better float solution. Since in the quaternion approach the baseline length
and relative orientation is preserved.

X Better for multi-sensory systems. It can be easily integrated with other
kinds of measurements, e.g. gyroscopes. [13] [14] [23]
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× Non-linear equation for the float finding procedure. Unlike the estimation
of the baselines in the ECEF frame, where the equations are fully lin-
ear, the quaternion equations results in a non-linear problem, which is
to be either estimated iteratively using a Gaussian-Newton method, or
in a single step using a Recursive estimator (i.e., an Extended Kalman
Filter).

Finally, in the next chapter the results obtained through the simulations will
be showed and analyzed.
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Chapter 5

Simulations and results

In this last chapter, the results obtained will be showed and explained. For
the simulations and the plots Matlab has been employed. In particular, the
first two sections refers to the topics of the Chapter 3, whereas the last sec-
tion regards the Chapter 4.

5.1 Attitude Determination using Vector Obser-
vations

A simulation has been set. There is a rigid body (a vessel in this case), with
a body frame with axis x, y and z, which are respectively the roll, pitch and
heading (or yaw) axis. The system is displayed in Figure 5.1.

B 

C 

A 

x 

y 

z 

x 
C 

 A ≡ 𝐵 

FIGURE 5.1: Body frame definition for testing the attitude
solver. A "triangular geometry" for the antennas is used.

There are 3 antennas (A, B and C), which means to have 3 baselines (AB,
AC, BC). A and B are alligned over the y axis and share the same height (z
coordinate). On the contrary, C is aligned over the x axis with A and has a
different height. Moreover, the baseline lengths are all the same (5m). This
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kind of configuration has been chosen because it is simple and the antennas
are geometrically well distributed. Indeed, as explained in Chapter 2, the
geometry used should affect in someway the results.
Knowing the position in the body frame is, then, possible to simulate the
position in the ECEF frame by: adding some random noise, computing the
new baselines and applying a rotation to them.

First, a random zero mean Gaussian noise is added to each of the an-
tenna ECEF positions. Different standard deviations are considered for the
random additive noise, based on the expected accuracy of different posi-
tioning techniques, as in the following table.

Positioning technique Error standard deviation σ

SPP 1 m
PPP 1 dm
RTK 1 cm

TABLE 5.1: Different accuracy for the positioning techniques.

To test the attitude solver an error with a standard deviation of 1 dm has
been initially used, which corresponds to the PPP noise. In figure 5.2 its
probability density function is plotted.

FIGURE 5.2: Pdf of the PPP noise used during simulation.

Then, the baselines in the ECEF frame are found by differentiating the
antenna positions in the same frame. At this point, a rotation has to be
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applied. Of course, being a simulation, the real rotations are known. In
particular, to approximate a real movement of a vehicle over the time and to
be sure that the results are good not only for a particular numerical value,
the references angles are defined as sinusoidal functions, as shown in Figure
5.3.

FIGURE 5.3: Definition of the reference Euler angles for each
epoch.

Thus, for every epoch the reference angles for roll, pitch and yaw (or
heading) are defined.

Both QUEST and Davenport have been applied, but since the differences
are not significant, from now on, Davenport will be the algorithm realizing
the attitude estimation. The results are showed in figure 5.4.
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FIGURE 5.4: Estimated Euler angles.

The estimation is good for all the 3 angles and it perfectly follows the
behaviour of the real ones.

By the way, it is very important to highlight that all the results are acquired
through Montecarlo simulations. This is because a random noise is added.
Therefore, it is important to have meaningful results from a statistical point
of view. In dact, they do not have to be linked to a particular sample func-
tion (or realization) of the stochastic process representing the noise.

5.2 Factors affecting the attitude

Once has been verified that the attitude solver works properly, various sim-
ulation have been realized with the goal of understanding the impact of the
different parameters on the attitude accuracy. In fact, as explained in Chap-
ter 2, it will depend on:

• baseline length;

• accuracy of the positioning;

• geometry and number of the antennas.
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However, before showing the next results is better to point out what is
the meaning of the abscissa and ordinate axis of all the following plots. In
fact, on the abscissa there are the distances between the antennas on the xy
plane. This means that, the z coordinates are not changed. Thus, it is not
really the baseline length, but still it has the same decreasing or increasing
behavior. This is done with the purpose of allowing an easier view of the
plots (the range of the values of the attitude error is lower). Finally, on the
ordinate the mean value of the standard deviations of the 3 rotation angles
is represented. In this way, it is much easier to see the impact of the different
parameters on the overall attitude.

5.2.1 Varying baseline length

As showed at the end of Chapter 2, a geometrical approach can be used
to check the behaviour of the attitude accuracy when the baseline length
is changed. The model used is present in Figure 3.5, at page 22, and its
mathematical representation, using the small angle assumption (l >> δp),
is:

δψ ' δp
l

(5.1)

where l represents the baseline length, δp the positioning error and δψ is
the heading error. Since there is this model available, it is possible to check
if the results obtained by the simulation are good and consistent, i.e. if the
behavior is still descendant when the baseline length increases.
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FIGURE 5.5: Comparison between the geometrical model and
the simulation results, for an error with standard deviation of

1 m, varying the baseline length.

In figure 5.5 is showed the comparison between the simulation results,
using the "triangular configuration" described in Figure 5.1, and the math-
ematical model when the SPP technique for the positioning is used (σ = 1
m). It is clear that the curves are different, especially for small baseline
lengths, but this is not important. In fact, it depends on the very different
assumptions between the simulation and the model, which are: 3 baselines
instead of 1, estimation of the overall attitude error instead of the heading
error and usage of the small angle assumption. However, the aim of this
result is only to show that, also in the simulations, the error on the attitude
decreases when the baseline length is increased. Another interesting aspect
of the result in Figure 5.5 is that, for baseline lengths below 1 m, the behav-
ior of the curve (for the simulation) is increasing. Anyway, this is due to the
error on the positioning, which is comparable to the baseline length, and
probably to a numerical error. In fact, this "strange" effect is not visible, or
at least reduced, in case a smaller error is used, as is plotted in Figure 5.6).
This is because the standard deviation of the error is now 10 cm (PPP error)
and the smallest baseline length tested in the simulations is 0.5 m.
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FIGURE 5.6: Comparison between the geometrical model and
the simulation results, for a smaller error with a standard de-

viation of 10 cm, varying the baseline length.

5.2.2 Varying the accuracy

Another factor affecting the results can be the accuracy of the positioning
technique. Using the configuration described at the beginning of this chap-
ter, the results obtained from the simulation are showed in Figure 5.7. This
is done for all the values of table 5.1.

FIGURE 5.7: Standard deviation of the attitude error, for dif-
ferent accuracy of the positioning. See also table 5.1.
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As expected, the error decreases when a better solution for the position-
ing is available. Furthermore, it is important to highlight that, when the SPP
is used, the attitude error for a baseline length of 20 m is still larger than the
one achieved for PPP when the baseline is long 2 m. Thus, it is clear that
the accuracy has an higher impact on the results with respect to the baseline
length.

FIGURE 5.8: Zoom of the figure 5.7. In this figure it is easier
to see the difference for large baseline lengths.

5.2.3 Varying the geometry

Again, as explained in Chapter 2, also the geometry can be relevant for the
results. By the way, it is important to say that all the next results, for dif-
ferent geometries, are compared to the initial 3 antennas configuration of
Figure 5.1, that will be called "Triangular configuration" or "Triangular ge-
ometry".
Moreover, all the curves, if not differently written, refers to the case of SPP
accuracy. In practice, it is kind of a worst-case scenario analysis. In fact,
with better accuracy, as proved previously, better results are expected.
First of all, to verify the importance of this parameter, a "bad" (from a the-
oretical point of view) configuration can be used, like the one in Figure 5.9,
in which all the antennas are aligned over the x axis.
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FIGURE 5.9: Bad configuration, with all the antennas aligned
on the x axis.

Now, comparing the standard deviation of the attitude error achieved
in this case with the one for the initial configuration of figure 5.1, a worse
result is evident (see Figure 5.10).

FIGURE 5.10: Comparison of the 2 different configurations for
the antenna positions.

The error, for the "alligned" geometry, is never below the 25◦. This is due
to the fact that we are almost blind to x axis and, so, the roll angle cannot be
well estimated. The overall performance is not acceptable.
Therefore, in every application the geometry has to been properly chosen.
But, of course, the possible geometry depends on the shape of the rigid
body.
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However, changing the geometry means also changing the number of
antennas. In fact, it is really interesting to understand what happens when
one or more antennas are added to the configuration. For example, a geom-
etry with 4 antennas, like the one in Figure 5.11 can be chosen. This kind
of geometry can be called "Square geometry", because of its shape on the xy
plane.
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 C ≡ 𝐷 B 
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D 
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y 

FIGURE 5.11: "Square geometry". 4 antennas system.

At the same time, another geometry with 4 antennas can be tested. This
is done to avoid to have results bounded only to one particular configura-
tion. For this reason the "Rhombus geometry" of Figure 5.12 is also evalu-
ated.
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FIGURE 5.12: "Rhombus geometry". 4 antennas system, but
with a different shape.

Through the same simulations as before, the results of figure 5.13 are
obtained.
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FIGURE 5.13: Comparison among the results attained using a
different number of antennas (3 or 4).

This results clearly show that with 4 antennas (in both the "square" and
the "rhombus" configurations) the estimation is better than the one using 3
antennas ("triangular configuration"). Thus, it is easy to understand that an
higher number of well placed antennas allow better results.

Surely, the number of antennas can be still increased. For example, a
"Penthagon configuration" with 5 antennas, like the one in Figure 5.14, can
be used.
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FIGURE 5.14: "Penthagon geometry". 5 antennas system.

Again, as showed in Figure 5.15, the results for this new configuration
are better than the previous ones. However, an important trend is showed
here. The impact of a new antenna on the final results is much smaller when
the number of available antennas is larger. In fact, the distance between the
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curve related to the "Penthagon" and the "Square" configurations, is lower
than the one between the "Triangular" and "Square" ones.

FIGURE 5.15: Comparison among the results attained using
3, 4 and 5 antenna systems.

5.3 Remarks

So, in these first simulations has been proved that, for the attitude estima-
tion, is fundamental to take into account:

• accuracy of the positioning (higher accuracy means better attitude es-
timation);

• baseline length (the accuracy improves for higher baseline length);

• geometry of the antennas (as well as their number).

Finally, an important remark has to be state after seeing the previous
results. Indeed, having many antennas does not always mean huge im-
provements in the accuracy. When the accuracy of the positioning is good,
there is very small gain and this is not worth compared to the cost. Thus,
the usage of many antennas could be justified only in the case of the relative
positioning of 2 moving platforms.
At the same time, the number of antennas is bounded to the size of the ve-
hicle. Indeed, having many antennas, on a very small vehicle would mean
to have many short baselines, i.e. there would not be any improvement. For
example, having 5 antennas on a car would be impossible.
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It is clear that the positioning accuracy is the most relevant factor. Thus, the
use of GNSS phase observations is justified.

5.4 GNSS attitude simulation

In this last section, differently to the previous ones, a simulation related to
the Chapter 4 is analyzed.
The body and reference frame of Figure 5.16 is taken into account. It means
that there are 3 antennas and, consequently, 3 baselines.
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 A ≡ 𝐵 

FIGURE 5.16: Body frame and system used for the simulation.

Then, a reference rotation is chosen. This value does not affect the re-
sults. Thus, a simple rotation of values [ϕ, θ, ψ] = [0◦, 0◦, 90◦] can be applied
to our body frame with respect to the ECEF one. But, in order to simulate
a real scenario behavior, some random noise has to be added to it. It is re-
ally important to point out that a non recursive simulation is done. In other
words, the results are focused on a single epoch, to which corresponds the
sky plot of Figure 5.17. It is understandable that there are 10 satellites in
view.
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FIGURE 5.17: Sky plot of the satellites in view for the single
epoch analyzed in the simulation.

Besides, the code and phase measurements, as well as, the ambiguities
are fixed for that epoch.
At last, the goal of the following simulation is to check what is the effect of
the:

• baseline length;

• PDOP (it can be changed varying the number of satellites available);

• accuracy of the code measurements (the one of the phase observations
is kept fixed to 3 mm);

on the fixing ratio and the success rate, for both the "Classical approach"
and the "Quaternion approach", and to compare their performance.
In table 5.2 all the necessary parameters are displayed. All the possible com-
bination have been simulated through Montecarlo simulations, in order to
have meaningful outcomes.
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TABLE 5.2: The different simulated measurement scenarios.

UTC time and date Date XXX

Frequency L1
Number of satellites Corresponding PDOP
5 / 6 / 7 / 8 / 9 6.413 / 2.403 / 2.041 / 1.988 / 1.811

Code noise σR [cm] 30 - 15 - 5
Phase noise σΦ [mm] 3
Baseline length [m] 0.5 - 2 - 5 - 10 - 20 - 50 - 100
Samples simulated 104

The outcomes of the simulations, for both the approaches, are present in
Figure 5.18. These are the results for an accuracy of σρ = 30cm and for a
number of satellites that goes from 5 to 10. What is plotted is, then, the per-
centage of the success ratio, i.e. the number of times in which the estimated
ambiguity vector is equal to the nominal one, when the baseline length is
increased.
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FIGURE 5.18: Success ratio vs baseline length for n = 5 to
n = 10 satellites in view, code accuracy σ = 30cm, for both
the classical LAMBDA method (orange) and the quaternion

based(blue).

It is clearly visible that the success ratio increases together with the num-
ber of satellites in view, i.e. when a better PDOP is achieved. For example,
for the classical LAMBDA method, the ratio goes from 0%, in case of 5 satel-
lites, up to 63%. For what matters the Quaternion based approach the incre-
ment, for very long baselines (100m), is also better: from 8% to 100%. But,
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for short baselines this is not true anymore.
Here it comes one of the biggest differences between these methods. The
new proposed one is, as a matter of fact, dependent from the baseline length.
In particular, when the distance between the antennas is larger the success
rate increases, as well. The explanation for this trend, has to be found in the
model of Chapter 4. In fact, it depends on the matrix Fi

q =
∂(q�bi�q∗)

∂q , which
creates a dependence on the baselines. It is also interesting to notice that the
curve has a really high slope up to a 20m length. On the contrary, the success
ratio for the classical approach remains constant over the length. This means
that for some applications this method could give better performance, as is
visible in the case of 10 satellites in Figure 5.18. In this situation, indeed,
for baselines shorter than 5m the results for the quaternion based approach
start to be worse.
It is also interesting to see what is the effect of the code accuracy on the re-
sults. An accuracy σ = 15cm has been tested and the outcome is the one in
Figure 5.19.
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FIGURE 5.19: Success ratio vs baseline length for n = 5 to
n = 10 satellites in view, code accuracy σ = 15cm, for both
the classical LAMBDA method (orange) and the quaternion

based(blue).

The behaviour with respect to the baseline length is always the same,
i.e. it grows, but better success ratio are achieved, as expected. The best
improvements, however, are obtained fir the quaternion based approach. In
fact, now, it is always better than the classical one for baselines longer than
3m.
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Some remarks can now be done. The quaternion based gives usually better
results, especially in worse conditions, i.e. for a bad PDOP. However, due to
its dependence on the baseline length l, at some point the success ratio for
the classical LAMBDA starts to be better. This crossing point depends on
the simulation parameters. This means that the choice of the best method to
be used depends on the specific application.
Moreover, with these results is also proved that the linearization, using the
line of sight vectors, is a good approximation. In fact, the accuracy for the
attitude is very good. Checking, the standard deviation of the error, it is
always below 0.5◦ for the quternion based, while it is usually below 1◦ for
the classical method.

It is also interesting what happens to the fixing ratio. Its behavior is
showed in Figure 5.20. To decide if the solution is fixed or not a threshold
of value γ = 3 is used.
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FIGURE 5.20: Fixing ratio vs baseline length for n = 5 to
n = 10 satellites in view, code accuracy σ = 30cm, for both
the classical LAMBDA method (orange) and the quaternion

based(blue).

It is clear that the value chosen as threshold is not the optimal one for this
simulation. By the way, to set it properly a statistical analysis, based on the
target false alarm probability, should be performed. In addition, it is really
interesting to observe that the threshold should not be the same for the two
methods. In fact, for the classical LAMBDA approach the chosen value is
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too optimistic, because the fix ratio is much larger than the success ratio.
On the contrary, for the quaternion based method, the threshold seems to
be close to the optimal value. Indeed, the fix ratio is accurate enough.
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Conclusion

To sum up, in this thesis, the attitude problem for GNSS has been faced.
First of all, it has been showed how some parameters affects the results and
the accuracy of the estimated Euler angles. In particular, it has been showed
the importance of using phase measurements.
After that, a new approach for finding a better estimation has been pro-
posed, i.e. the Quaternion approach. It shows better results, in terms of suc-
cess ratio, with respect to the classical LAMBDA method, but not for short
baselines.
Still, many steps have to been done in this research topic. In particular, a
comparison with the MC-LAMBDA method should be done. In fact, MC-
LAMBDA (Multivariate Constrained LAMBDA) [5] [6] is an evolution of
the LAMBDA method and it differs for the addition of a new constraint. In-
deed, the baseline length in the body frame are known and this information
can be used to get an improvement of the performance in the MC-LAMBDA.
Moreover, all these methods should be studied and analysed into an actual
dynamical scenario. In fact, this behaviour and the performance should be
validated using real GNSS data, because, in real life, better or worse results
could be obtained.
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