
POLITECNICO DI TORINO

Quality of Transmission Estimation
For An Open Line System

USING MACHINE LEARNING

Author: Supervisor:

Bilal Muhammad Vittorio Curri

A Master’s thesis is submitted in fulfillment of the
requirements for the degree of CCNE

in the

OPTCOM GROUP - DET

March 30, 2019

Abstract
The adoption of Machine Learning techniques in optical communication is moti-

vated by extraordinary growth of network traffic. Various machine learning models
are used to predict the quality of transmission (QoT-E) of an unestablished light
path and their performance is evaluated. Estimation of (QoT) is vital for diminish-
ing provisioned margins and for optimizing design of optical network. It could be
during design phase of network or in an already deployed network.

In this thesis, 11-span OLS is established to simulate 35 channels at 100 GHz with
largest spectral hole burning effects. Machine Learning based simulation using LR
and DNN regression by using TensorFlow R© library as well as interpolated simulation
is performed on synthetic data taken from line emulator. It is also applied on
dataset collected from real line system. It is demonstrated that, mean and standard
deviation are very high when OSNR is predicted by using interpolation as compare to
ML-based OSNR estimation. ML regression is investigated that predicts, whether
the OSNR of unestablished light paths fulfills system requirements or not. It is
trained and tested on synthetic data and as well as on real data. Its performance
is assessed by using different algorithms and also by using different combinations of
features.

3

Dedication

To my parents,
Without whom non of my success would be possible.

4

Acknowledgements

I would like to thank Prof. Vittorio Curri, my supervisor for his guidance and
thoughtful advices.

5

Contents

1 Introduction, Motivations and Goals 17
1.1 Introduction . 17
1.2 Motivation . 17
1.3 Research Objective . 18
1.4 Organization of Thesis . 19

2 Background & State of the Art 20
2.1 Background &Theoretical Concepts 20

2.1.1 IP over WDM network: . 20
2.1.2 Erbium-Doped Fiber Amplifier (EDFA) 21
2.1.3 Variable Optical Alternator’s (VOA) 21
2.1.4 Software Defined Network (SDN) 22
2.1.5 Machine Learning (ML): . 23

2.2 State of Art - ML in Optical Network 25

3 Methodology 29
3.1 Emulator Design . 29

3.1.1 EDFA Design: . 30
3.1.2 VOA Design: . 32
3.1.3 Emulator Schematic: . 33
3.1.4 Results From Emulator . 35

3.2 Experimental Line System: . 37
3.2.1 Optical Power Meter (OPM) 37
3.2.2 ML-Based QoT-Estimation 38

3.3 Dataset Preparation . 44

4 Simulation and Results 46
4.1 Synthetic Data Results . 46

4.1.1 Interpolation based OSNR Estimation 46
4.1.2 ML Models . 46

4.1.2.1 Model-I : Linear Regression 46
4.1.2.2 Model-II : DNN Regression 48

4.1.3 ML based OSNR Estimation: 49
4.1.3.1 Linear Regression Algorithm: 50

4.1.3.1.1 Case 1: 70% training 500 steps 50
4.1.3.1.2 Case 2: 70% training 1,000 steps 50
4.1.3.1.3 Case 3: 70% training 5,000 steps: 51
4.1.3.1.4 Case 4: 70% training 10,000 steps 51

4.1.3.2 DNN Regression Algorithm 52

6

4.1.3.2.1 Case 1: 70% training 500 steps 52
4.1.3.2.2 Case 2: 70% training 1,000 steps 52
4.1.3.2.3 Case 3: 70% training 5,000 steps 53
4.1.3.2.4 Case 4: 70% training 10,000 steps 53

4.2 Real Line System data based: . 54
4.2.1 Interpolating OFF channel OSNR: 54
4.2.2 Impact of Normalization . 55
4.2.3 Impact of Reliability . 56

4.2.3.0.1 Calculation of Reliability Factor 56
4.2.3.0.2 Comparison based on Reliability factor . . . 56

4.2.4 Correlation Matrix with heat-map: 58
4.3 QoT-Estimation . 60

4.3.1 Prediction of Pout . 60
4.3.1.1 Fixing single label 61
4.3.1.2 Fixing 35 labels . 62

4.3.2 Approach-I . 62
4.3.2.1 Dataset Preparation 62

4.3.2.1.1 Normalization 63
4.3.2.1.2 Cubic Interpolation 64

4.3.2.2 Prediction Types . 64
4.3.2.2.1 Training with OFF-Channel 34 64

4.3.2.2.1.1 Method-I Normalization 64
4.3.2.2.1.2 Method-I Cubic Interpolation 65

4.3.2.2.2 Training with mixed ON & OFF-Channel 34 65
4.3.2.2.2.1 Method-I Normalization 65

4.3.3 Approach-II . 66
4.3.3.1 Dataset Preparation 66

4.3.3.1.1 Separate Normalized Tf and ASE 66
4.3.3.1.2 Single Normalized Array 67

4.3.3.2 Prediction Types . 67
4.3.3.2.1 Training with mixed ON & OFFChannel 34 67

4.3.3.2.1.1 Predict TF and ASE 67
4.3.3.2.2 Training with mixed ON & OFFChannel 34 67

4.3.3.2.2.1 Predict TF and ASE 68
4.3.4 Approach-III . 69

4.3.4.1 Dataset Preparation 69
4.3.4.1.1 Separate Normalized Tf and ASE 69
4.3.4.1.2 Single Normalized Array 69

4.3.4.2 Prediction Types . 70
4.3.4.2.1 Training with mixed ON & OFF-Channel 34 70

4.3.4.2.1.1 Predict TF and ASE 70
4.3.4.2.1.2 Predict Tf and single normalized array 70

4.3.5 Hidden Layers . 72
4.3.6 Data Analysis . 72

4.3.6.1 Data Analysis of Approach-II 75
4.3.6.2 Data Analysis of Approach-III 77

4.3.6.2.1 Two Hidden Layers 77
4.3.6.2.2 Three Hidden Layers 77

4.3.6.2.3 Four Hidden Layers 77

5 Conclusion 79

6 Future Work 83

List of Figures

2.1 An IP over WDM Architecture. 20
2.2 Operation of Variable Optical Attenuator 21
2.3 Simplified View of SDN Architecture 22
2.4 Supervised learning . 23
2.5 Random Forest . 26

3.1 Chain of EDFA’s . 30
3.2 Ripples Gain without tilt . 31
3.3 Ripples Gain with tilt. 31
3.4 Spectral hole Burning . 32
3.5 Attenuation . 32
3.6 Emulator Schematic Phase-I . 33
3.7 Emulator Schematic Phase-II . 33
3.8 EDFA’s Chain . 34
3.9 Emulator Parameters . 34
3.10 Output after the 1st EDFA . 35
3.11 Output after the 10th EDFA . 35
3.12 Output at the end of EDFA chain . 36
3.13 OSNR vs Number of EDFA’s . 36
3.14 Experimental setup Diagram . 38
3.15 Lab Experimental setup . 38
3.16 Optical Spectrum Analyzer(OSA) . 39
3.17 Schematic Diagram of OPM . 39
3.18 Overall Model . 40
3.19 Feature and Label Parameters.png 40
3.20 OSNR of CuT provided by the Line Emulator 40
3.21 Diagram for OSNR prediction . 40
3.22 Dataset Preparation . 41
3.23 ML Model . 41
3.24 Dataset for simulation . 44
3.25 Dataset for simulation with hyperparameters 45

4.1 OSNR Prediction Based on Interpolation 47
4.2 OSNR Interpolation Histogram . 47
4.3 Model-I: OSNR Comparison . 48
4.4 Model-II: OSNR Comparison . 49
4.5 Case 1 : Linear Regression with 500 steps 50
4.6 Case 2 : Linear Regression with 1000 steps 50
4.7 Case 3 : Linear Regression with 5,000 steps 51

10

4.8 Case 4 : Linear Regression with 10,00 steps 51
4.9 Case 1 : DNN Regression with 500 steps 52
4.10 Case 2 : DNN Regression with 1,000 steps 52
4.11 Case 3 : DNN Regression with 5,00 steps 53
4.12 Case 4 : DNN Regression with 5,000 steps 53
4.13 Mean by using Linear Regression . 54
4.14 Standard Deviation by using Linear Regression 55
4.15 Mean by using DNN Regression . 55
4.16 Standard Deviation by using DNN Regression 56
4.17 Mean after Normalization and Linear Regression 56
4.18 Standard Deviation after Normalization and Linear Regression 57
4.19 Mean after Normalization and DNN Regression 57
4.20 Standard Deviation after Normalization and DNN Regression 58
4.21 Mean after Linear Regression With & without Reliability factor . . . 58
4.22 Mean after DNN Regression With & without Reliability factor 59
4.23 Standard Deviation after Linear Regression With & without Relia-

bility factor . 59
4.24 Standard Deviation after DNN Regression With & without Reliability

factor . 60
4.25 Correlation between all features using Heat-Map 61
4.26 Correlation between Reliability and OSNR using Heat-Map 61
4.27 Previous Dataset . 62
4.28 New Dataset . 62
4.29 Fixing single label (pout34) . 62
4.30 Fixing 35 labels . 63
4.31 Modified Dataset . 63
4.32 OSNR by using Normalization . 64
4.33 OSNR by using Interpolation . 65
4.34 OSNR Mixed ON & OFF Data . 66
4.35 Approach-II OSNR Mixed ON & OFF Data 68
4.36 Normalized Array . 68
4.37 OSNR - Mixed Every Combinations 69
4.38 OSNR - Prediction of Tf & ASE . 70
4.39 Prediction of Normalized Array, Tf & ASE 71
4.40 OSNR - Predict Tf and Single Normalized Array 71
4.41 Comparison between different Hidden-Layers 72
4.42 Effect of Hidden Layers . 73
4.43 OSNR Delta DNN Histogram with 3-Hidden Layers 73
4.44 Number of ON-Channel . 74
4.45 Data Fraction . 74
4.46 OSNR Delta DNN Histogram . 75
4.47 Number of ON-Channels . 75
4.48 Number of ON-Channels . 76
4.49 DATA Analysis osnr channel34 Linear curve 76
4.50 DATA Analysis osnr channel34 DNN histogram 77
4.51 DATA Analysis 2 hidden layers . 78
4.52 DATA Analysis 3 hidden layers . 78
4.53 DATA Analysis 4 hidden layers . 78

5.1 LaTeX Error: There’s no line here to endSee the LaTeX manual or
LaTeX Companion for explanation.Your command was ignored.Type
I ¡command¿ ¡return¿ to replace it with another command,or ¡return¿
to continue without it.

81

List of Tables

3.1 OSNR vs Number of EDFA’s . 37

4.1 Hyperparameter of Model-I . 47
4.2 RMS comparison Linear Regression 48
4.3 Hyperparameter of Model-II . 48
4.4 RMS comparison DNN Regression . 49
4.5 Approach 1 (Normalization) . 64
4.6 Approach 2 (Cubic Interpolation) . 65
4.7 OSNR Mixed ON & OFF Data . 66

14

Chapter 1

Introduction, Motivations and
Goals

1.1 Introduction

Artificial intelligence will shape the future more effectively than any other innova-
tion. Machine learning (ML) is a branch of artificial intelligence that precipitate
the idea that, by giving access to right data and by using right algorithm, machine
can learn by themselves how to solve a peculiar problem. ML is a technique that is
being hailed as a new direction of innovation to address many emerging challenges
in department of optics. Over the years, its demand has unquestionably been on
rise.

1.2 Motivation

Application based on internet, which fully rely on mesh of optical network to fulfill
connectivity requirements. To achieve this kind of support a lot of innovations have
been seen like amplifier, laser and fibers etc. Traditionally, industry was using hard-
ware equipment like photonic integration and space division multiplexing etc. then
moved toward SDN. It also captured interest of service provider, now a day’s net-
work configuration is under control of SDN in large data centers, due to operational
challenges in service provider, faster provisioning and to achieve high scalability it
requires automation. A lot of challenges in optical network have been resolved fully
or partially using machine learning paradigm.

A wider range of degrees of freedom (parameters) is available to system engi-
neers like path, spectrum, modulation format, baud rate, single or multi carrier
transmission, non-linearity mitigation solution and combinations of these light path
parameters grow dramatically. Possibly, for all of these combinations QoT should
be calculated. Marginated formulas like Power Budget and Gaussian model etc.
works faster and more scalable but they are inaccurate, high margination, under-
utilization of network resources (up to extra 2 dB for design margins [3]). Machine
Learning exploits knowledge extracted from field data like QoT of established light-
paths for example using monitors (OPM’s) at the receiver to predict the QoT of
un-established light-paths. by using ML its not required to use complex analytical
models, its fast and scale-able but it requires training phase with historical data.

17

Optical network is built to last and that is achieved by fail-safe approach. Which
is feasible for design of traditional network but its in-feasible specially in terms of
OLS. An intelligent network is essential for planning and controlling operations
and parallel computing. ML algorithms have ability to learn from past and can
predict future responses based on trained model. Therefore, application of ML in
optical network to predict an OSNR of unestablished light path in OLS is vital
during planning phase of network architecture. Using machine learning techniques
to predict the Quality of transmission not a new strategy. A few researches have
been conducted on machine learning in bettering the estimation. (references)

1.3 Research Objective

Main objective of thesis is to predict OSNR of an unestablished light. Machine
learning technique depends upon data set having different system parameters. One
approach is to setup hardware implementation to get system parameters. Although,
it requires a lot of time for implementation. While alternative approach is to design
emulator to get dummy data-set. Which is comparatively easy and require less time.

An Emulator is designed which consists of two main blocks EDFA (Erbium-
doped fiber amplifiers) and VOA (variable optical attenuator). It’s used to calculate
gain, generate noise, amplify signal and noise of input spectrum. VOA are placed
after each span’s EDFA is used to emulate a 10-dB transmission loss per span. It
attenuates signal as well as noise. A Supervised ML technique is used for prediction.
ML basically estimates the output of an unknown function.

• features: the input of function

• Labels: the values to be estimated.

During the training phase ML learns from a dataset having features and labels
generated by the line emulator which provides telemetry. Once the model is trained,
set of new inputs containing those features is fed. In prediction phase labels are
predicted by ML. For QoT-E possible scenarios are following.

• Improving QoT-E of already deployed light path, in which light path depends
on card flex-rate. In this case ML prediction uses both spectral load and
telemetry on ILAs. ML-assisted QoT-E improvement enables larger rate.

• Improving QoT-E prediction during planning phase where light path is not
deployed yet. ML prediction can use only on spectral load.

• reduced margin LP deployment feasibility.

Wider the exploration of machine learning potentialities, leaded by a deeper aware-
ness of its mechanisms, which is helpful for getting reliable predictions with less
computational cost. It also useful in achieving low latency. So, OSNR is predicted
for an unestablished light path by using interpolation on telemetry data has in-
accuracy of 1.5dB on the other hand by implying ML techniques on 3000 cases,
significant difference reduced to ±2dB.

1.4 Organization of Thesis

The thesis is structured as follows:

• Chapter 1 Introduces the thesis topic and relevant concepts.

• Chapter 2 Provides the background and literature survey.

• Chapter 3 Methodology

• Chapter 4 Simulation and results

• Chapter 5 Conclusion

• Chapter 6 Future Work

• References

Chapter 2

Background & State of the Art

2.1 Background &Theoretical Concepts

2.1.1 IP over WDM network:

With the devolvement of internet technology, Packet based data transfer be- came
more popular in the mature technologies such as an Internet Protocol. Different
kinds of network technologies have been developed to provide supportive bandwidth
and transmission rate to an Internet Protocol. WDM is the most promising tech-
nology that enables IP for long haul network. Optical layer uses the Asynchronous
Transfer Mode (ATM) and Synchronous Digital Hierarchy (SDH) for the IP over
WDM integration. This implementation of IP over WDM by using of intermediate
layers not only reduced the bandwidth due to the addition large header information
but also restrict the transmission rate as each intermediate layer support some spe-
cific transmission rate. In order to remove the limitation of both IP over ATM and
IP over SDH, now IP packets are passed directly to WDM layer.

Fig. below illustrates the IP over WDM network architecture. The IP over the
WDM network comprises of two basic folds, the IP fold and the WDM fold.

Figure 2.1: An IP over WDM Architecture.

Each node is equipped with an IP router at the IP layer while optical switches,
OADM, EDFA and transponders are present at WDM layer. Basic function of the IP
router is the traffic aggregation and its routing according to the requests. Similarly,
the optical/WDM layer can supply huge bandwidth capacity to support high traffic

20

exchange among the IP routers. OXC’s are inter-connected by means of optical
fibers. OADM are used on each fiber to add/drop wavelengths. The transponders
perform OEO conversion process. Finally, the EDFA’s are deployed to magnify the
optical signals on each link for a long-haul communication.

2.1.2 Erbium-Doped Fiber Amplifier (EDFA)

EDFA is an optical repeater device which is used to increase strength of signal. As
fiber is doped with erbium and according to glass property light can be absorbed at
a frequency and can be emitted at another frequency. To excite atom of erbium, a
semiconductor laser couples light with fiber at infrared wavelength. A signal enters
the fiber and stimulate the excited erbium to emit photons at the same wavelength
as the incoming signal. By doing so, weak signal is amplified.

Usually, 10-span of EDFA’s are used. EDFA’s are placed after 80 km span so in
total 800km can be covered by using chain of EDFA’s. After 800km a repeater is
required to reshape the incoming signal. First optical amplifier is EDFA’s and its
deployment was growing in 1990’s.

The study presented in [10] author used chain of EDFA’s to improve wavelength
dependent power excursions in gain-controlled erbium doped EDFA. In another
study [11] author presented his experiment in which evaluation of optical circuit
switching is performed. It is said that by policing wavelength assignment gain offset
can be reduced upto 0.7dB after chain of 5 EDFA’s.

2.1.3 Variable Optical Alternator’s (VOA)

Variable Optical Alternator’s are used for controlling optical signal level. VOA’s can
be controlled electronically. In optical communication insertion loss and dynamic
attenuation range are crucial. Typically insertion loss is less than 1 and dynamic
attenuation range is in between 15-25. Attenuation in VOA’s is manually tune-able.
Figure 2.2 illustrates working principle of VOA.

Figure 2.2: Operation of Variable Optical Attenuator

In figure 2.2 to collimate the light from input a lens is used an another lens is
used at output of VOA to couple light. There is a blocking device in between lenses

it adjustment is manual. to obtain required attenuation coupling efficiency is tuned.
Main applications of VOA’s are following:

• Optical power equalization

• Channel transmission equalization in WDM networks

• Automatic gain configuration for optical amplifiers

• Protection of the optical receivers

2.1.4 Software Defined Network (SDN)

Traditional networks are vertically integrate in which control and data planes are
within each device and control plane distributed across the switches/routers. its
complex and hard to manage because control plane is distributed.Its difficult to
understand the state of the network and its history every vendor has its own specific
commands so is not easy to manage switches/routers from different vendors.

SDN is an Emerging networking paradigm in which control and data plane
are separated. Routers and switches just acts as forwarding elements. Instead of
destination-based forwarding SDN implements flow-based forwarding. A software
platform running on commodity servers which is logically centralized.

Figure 2.3: Simplified View of SDN Architecture

Network architectures of SDN is flexible, which is useful for complex and dynamic
scenarios. In application of SDN it can be seen that, Google is using SDN in WAN
to interconnect data centers and also within the data center. 5G networks are
based on SDN. Moreover, ML is being used to make configuration of network more
optimized in terms of feasibility and resource management. It can be seen that
in study [13] author combines SDN with ML techniques and showed the benefits
of Machine learning. Another study presented in [1] author introduced dynamic
routing in SDN by using ML.showed that model performed much better on huge
data-set and results are compared with historical methods.

2.1.5 Machine Learning (ML):

ML is branch of Artificial intelligence, it gives ability to learn without being explicitly
programmed. In real world we have human and computers. Being a human, we use
our body parts as an input to extract data from surroundings, then this data is used
for meaningful purposes and in other words we learn, and we use this experience in
future which we learned from past. Similarly, computers can learn as human do but
we have to give learning ability to computer. So, by using that it can predict future
events. That’s what ML does. There are different ML techniques and algorithms
are used for prediction. Main distinction of ML approaches are following

• Supervised learning

In supervised learning, “labeled” data (i.e., “ground truth” input/output re-
lationship) is given. For instance given traffic exchanges to or from a Data
Center in past months or years and its task is to Predict traffic for the next
period (regression problem) or Predict if available resources will be sufficient
(classification problem) another example is where SNR is observed, Predict if
quality of transmission will be degraded. some other examples are speech/im-
age recognition, spam classifier and house prices prediction/estimation.

Figure 2.4: Supervised learning

• Unsupervised learning

In unsupervised learning, available data is not “labeled”. Main objective of un-
supervised learning is to derive structures (patterns) from the available data,
finding “groups” in data according to a similarity measure and anomaly de-
tection. For example, traffic traces in different cell sites are given, its task is

to understand if some cells provide similar patterns or not. They might cover
same type of urban areas (theatre, cinema, stadium etc). This information
can be used to make network resources planning. some other examples are,
Group people according to their interests to improve advertisement and group
together different genes if they provide similar information

• Semi-supervised learning

Semi-supervised learning approaches are mixture of the previous two (super-
vised and un-supervised) presented in above section, this approach address
toward problems where majority samples of the training are unlabeled, even
though only limited data points with label are available. Advantage of this
is that in various areas a huge amount of unlabeled data points is willingly
available. Applications where semi-supervised learning is used are nearly same
as supervised learning. This type of learning is mostly beneficial when the la-
beled data points we have are not too common or so exclusive to get then
using of that unlabeled available data points can rise the performance.

• Reinforcement learning

Reinforcement Learning (RL) is one of the machine learning technique used
in general, in applications such as robotics, finance, and record management,
the ultimate objective here is to learn a policy. For example, a mapping be-
tween states of the environment into actions to be performed, while directly
interacting with the environment. The RL allows the agents to learn by expe-
riencing the available actions and decontaminating their conduct by only using
an evaluative response, referred to as the return. The ultimate objective of the
agents are to increases its performance for long time. Therefore, the agents
does not only consider the instant reward, but even it assess the penalties of
its actions on the future. Late reward and trial and error establish two of the
most significant features of RL. The context of performance of RL is typically
Markov decision processes (MDP).

Widely used ML algorithms are following,In general these are applicable on any kind
of data.

• Linear Regression

Main goal is to predict a line with smallest prediction error that fits the data.
LR is used to find linear relationship between target and predictors. LR is sub
divided into two categories, Simple LR and Multiple LR. In simple LR a single
variable is used for the prediction. It is used when relationship between two
continuous variables is required like predictor and response. While multiple
LR is used when two or more than variables are used to predict a variable.

• Support Vector Machine(SVM)

This approach is presented by Luis Gonz in 2005 as SVM implements clas-
sification by building N different Dimensional hyper plane which efficiently

splits data into two different classes. Support Virtual Machine models are
thoroughly correlated to neural networks. It is obvious, that the use of a SVM
model with a sigmoid kernel function is comparable to a two layer, also known
as perceptron neural network. SVM models are very close to classical multi-
layer perceptron neural networks. By using a kernel function, SVM’s are an
alternate training technique for , multi-layer perceptron classifiers and polyno-
mial where the heaviness of the network are establish by resolving a quadratic
programming problem with linear constraints, comparatively by solving a non-
convex, unconstrained minimization problem in a standard neural network
training. In phraseology of SVM literature, an interpreter variable is known
as an attribute, while a transformed attribute which is used to define the hyper
plane is known as a feature. The job of selecting the utmost fit demonstration
is called feature selection. A group of features that defines one case is known
as vector. In nutshell the objective of SVM modelling is to find the best hyper
plane which splits bunches of vector in a manner that fall in one group of the
targeted variables in one cases and the other group are on the other side of
the plane. The vectors which fall nearer to the hyper plane are the support
vectors.

• Random Forest

Mechanism of Random forest is to built multiple decision trees and merge them
as illustrated in 2.5. Merged decision tree is used to predict, its prediction is
more accurate and stable than simple decision trees.it can solve classification
problem as well as regression problems.Random forest algorithm is also used
to check importance of features like which feature is contributing more to
make prediction accurate. Feature importance is vital for ML because if more
features are used for prediction the more chances are that model will suffer
from over fitting. so features that are not contributing toward the prediction
can be removed to get more accurate prediction. Random forest is much better
in prediction as compare to decision tree because in random forest prevents
model to over-fit by creating sub-set of features and these sub-sets are used as
trees. but there is no surety of this to happen every time.

• Logistic Regression

• Naive Bayes

• K-Means

• Dimensionality Reduction Algorithms

• Gradient Boosting algorithms

In [18] author performed anomaly detection and compared different ML algo-
rithms like (SVM), (RF) and neural networks.

2.2 State of Art - ML in Optical Network

Use of ML in optical networks is an area under research to improve performance.
Main purpose of this section is to overview applied techniques in optics. Firstly,

Figure 2.5: Random Forest

wide range of ML algorithms are applied on EDFA. Basic responsibility of EDFA
is to regenerate incoming signal by using DWDM (dense wavelength division mul-
tiplexing). EDFA plays an important role in optical transport network but it also
poses some challenges to optimize performance of link. ML proposes an efficient
solution to these challenges.

A regression problem is described in [9] by using ML techniques and multi span
EDFA’s to model the dependence of channel on power excursion. This model based
on historical data. To reduce power disparity in between channels obtained from
AGC (automatic gain controller), it’s recommendations to add or drop channel
are accurate. But it’s not suitable for live network in which configurations are
changing dynamically - Is it Suitable for an EDFA network having different design
– to cope with problem of power excursion in live network an extended study [10]
is proposed. This research emphasizes on improving spectral efficiency in which
dynamic defragmentation plays a key role on its improvement. Ridge regression and
logistic regressions are used for magnitude of sub-channel and to compute weather
its addition will increase or decrease power discrepancy. Then ML algorithms is
applied to determine power adjustments. Post EDFA power discrepancy among
channels are showed by 62%.

Finally, an automatic approach is presented in [2] by using a MLP (multilayer
perceptron) neural network to adjust operating point of amplifiers in cascade of
EDFA’s. performance of link is optimized by reducing noise figure and ripple of
frequency response of transmission system while it ensures predefined power levels
of input and output. As compare to previous studies [17], The main endowment
of ML is integration of ensuring predefined power levels of input and output to
adjustment process. Indeed, A link is returned having noise figure 30.06 dB and
frequency response 5.2 dB by defining the gain of 6 amplifiers to maintain input and
output power levels around 3dB. Presented error is less than 0.1dB in this study.

Another broadly used trend is to review compatibility of ML applications tech-
niques in monitoring and mitigating the effects which degrades the performance
of links like (PMD) polarization mode dispersion, (CD) chromatic dispersion and

(OSNR) optical signal to noise ratio. due to use of higher transmission rates and
advanced modulation formats, the transmission nature inside the optical fiber is be-
coming nonlinear, which is causing dynamic and heterogenous transmission systems.

An approach presented in [6] to cope with tendency described above is to use
(OPM) optical performance monitoring to estimate physical parameters of optical
signal. Which ensures efficiency and robustness of network operation. It diagnoses
network to detect malfunctions, damages and their repairment. It also reroutes
traffic where link is non-optimal in network.

In order to monitor OSNR, another study presented in [19] in which DNN is
trained on previous raw data. Although this study has limited scalability but OSNR
is predicted in range of 7.5 to 31 dB correctly. In order to improve accuracy of this
model DNN should be trained around 400,000 samples, and it must be configured
with 5-layers at least. For this kind of training it requires a lot of time to train
the model. More advanced OSNR estimator presented in [20] which is useful for
the systems having modulation (up to 64-QAM). Author applied neural network
and SVM. It can be seen that, predicted OSNR from modulation format classifier
achieves 94 % accuracy on the other hand estimator reaches at 0.7dB error. which
is total mean estimation error, in worst case it is 3.5dB. in this approach only, white
Gaussian noise is considered while nonlinear and linear optical fiber impairments
are ignored.

In another study same trend has been Followed but it emphasizes more on the
mitigation of nonlinearities in optical fibers transmissions, last year extensive re-
search has been done on NLPN (nonlinear phase noise). Which plays an important
role. To solve this issue an electronic method is used which rely on deterministic in-
formation of fixed fiber link. It can be found in [12] and [16] as maximum likelihood
estimation and digital back propagation respectively. Now a days, ML techniques
are being applied on digital signal processing to mitigate nonlinearities in a more
efficient way which allows more accurate symbol detection.

ML techniques are also being used to improve the performance of optical network
in Cognitive dynamic optical networks [14] which describes the current situation of
network. To make it an adaptive network it modifies the configuration of network. It
makes use of past history to make decision. If situation is different than past, it can
act differently. As this approach is using past experience in making decision so to
cope with heterogeneity, it a perfect candidate for improving quality of transmission
and services.

Usually, cognition is developed in CHRON (Cognitive Heterogeneous Reconfig-
urable Optical Network) to extract state of art its subdivided into two categories.

• Reconfiguration of virtual topologies.

• Quality of transmission estimation.

Reconfiguration of virtual topologies is related to LP which optimize the per-
formance of network by tuning the different parameters like by reducing energy

consumption, congestion controlling, delay, QoT and blocking probability etc. In-
stead of configuring network statically it is reconfigured dynamically according to
traffic pattern. To design virtual topologies genetic algorithm is used in [10]

to control congestion and energy consumption. Additionally, by using genetic
algorithm up to 20-25% savings can be made in operational cast and also in capital
have been presented in [7]. To reconfigure virtual network, monitored data is used
to estimate that is useful to cope with dynamic changings in traffic proactively.
Another approach for reconfiguration the virtual network presented in [15] is based
on volume of traffic and a direction is predicted based on destination by neural
network. Time to time data collection is performed to train model for prediction in
near future.

Finally, quality of transmission estimation is very important in network design
and operation. A quality estimator “QTool” is presented in [3]. It evaluates quality
factor of LP’s in a topology. Accuracy of this estimator is admirable, but it requires
a lot of time for computation. To overcome this, researcher have proposed cognitive
approach.

Chapter 3

Methodology

In this study, main goal is to estimate transmission multivendor optical open line
system using machine learning techniques. ML technique needs a data set of different
system parameters. In order to achieve this, an emulator is designed to get synthetic
dataset of system parameters. Firstly, interpolation is applied on synthetic data to
predict OSNR as well as ML algorithms like LR and DNN regression are applied
for estimation. Results are compared, it is observed that ML performs much better
than interpolation. Secondly, after preparing experimental setup in lab telemetry
data is collected and again interpolation is applied on telemetry data to predict
OSNR as well as ML algorithms are applied for estimation. During the comparison,
results showed that QoS Estimation by ML performs much better on telemetry data
as compare to interpolation.

3.1 Emulator Design

Emulator consists of two main blocks which are following.

• EDFA

• VOA

As described in study presented in [26], Numerous EDFA’s are cascaded in testbed
having different brands and models. A brief review of system model is shown in figure
1.1 each EDFA exhibits different gain tilt and shows different behavior. To attain
20dB attenuation per span, VOA are placed after each span’s EDFA. A regression
model is used to predict OSNR by using channel OFF and ON states and also the
power levels. The SNR of light path over several OLS is following.

1

SNR
=

∑
i

1

SNRi

Here SNRi is the contribution of SNR of every crossed OLS. In general SNR is
following.

1

SNR
=

1

SNRNL

=
1

OSNR

Where 1
SNRNL

is calculated using Non-linear model but in this case, it is 0. While
1

SNRNL
is calculated using Machine Learning.

29

Figure 3.1: Chain of EDFA’s

3.1.1 EDFA Design:

Cascaded EDFA’s are being used between spans of transmission fiber. Advantage
of using EDFA’s in fiber is that it compensates transmission loss without letting the
power level low, which can cause fiber non-linearities and destroy SNR ratio. To
implement EDFA two parameters are considered.

• Gain (G)

• Noise Figure (NF)

Two modes of emulator are considered

• Mode 1 = Fixed Gain

• Mode 2 = FixedPoutTarget

Polynomial expansion is used to calculate noise figure considering frequency depen-
dent Gain.

NF (f) = nf0 + G(f)nf1 + G(f)2nf2 + G(f)3nf3 + . . .

Where G(f) is gain of EDFA, dependent on frequency and nfi is its noise figure
coefficients. On the other hand, flat (NF) noise figure have fixed value. Gain
ripples Grpp is generated using circular shift, to generate it for each EDFA three
modifications are following.

• Change the range between the maximum and the minimum of the gain ripple
for every EDFA.

• Shift the gain ripple by a certain amount of wavelength for every EDFA.

Figure 3.2: Ripples Gain without tilt

Figure 3.3: Ripples Gain with tilt.

• Introduce a certain tilt in the Gain of each EDFA to compensate the tilt
introduced in VOA.

Ripples Controlling Parameter are following
Grpp k = kGrpp

Where

k =
∆Gm

∆G

GSHB∆(f) is depended on input power so it is not the characteristic of EDFA
on the other hand Grpp k(f) is independent of input power so it is considered as
characteristic parameter of EDFA. Equations are following

g(f) = GSHB∆(f).Grpp k(f)

K =
GTarget

g(f)avg

G(f) = K.g(f)

Spectral hole Burning (SHB) having parameters

• GSHB = 1 1528.1nm -1568nm

• GSHB = f(sin) for particular wavelength window (centering at 1531nm)

Slice size parameter is GSHB ∆ = ∆G.GSHB

Figure 3.4: Spectral hole Burning

In EDFA design ASE Noise is

PN(f) = hfc(G(f) − 1)NF (f)Bref

Where, “h” is Plank’s Constant, ”fc ” is Central Frequency of C band, “Bref” is
Reference bandwidth And OSNR is

OSNR(f) = Ps

PN (f)

3.1.2 VOA Design:

Variable optical attenuators are used to reduce power level of optical signal. Output
of VOA are signal and noise. Signal can be described as

Pout Signal = PSignal
Attenuation

Pout Noise = PNoise
Attenuation

And Attenuation is as following,

Attenuation(f) = Loss + tilt(∆f)

Figure 3.5: Attenuation

3.1.3 Emulator Schematic:

During first phase gain ripple is generated.

Figure 3.6: Emulator Schematic Phase-I

During secound phase

Figure 3.7: Emulator Schematic Phase-II

Finally, the developed line emulator is providing synthetic telemetry data. OSNR
is calculated at the end of emulator chain.

Figure 3.8: EDFA’s Chain

Figure 3.9: Emulator Parameters

3.1.4 Results From Emulator

Figure 3.10: Output after the 1st EDFA

Figure 3.11: Output after the 10th EDFA

Figure 3.12: Output at the end of EDFA chain

Test channel is central channel and OSNR values are depicted in table 1.1. Figure
below shows OSNR comparison when only 10 channels are on and with full spectral
load.

Figure 3.13: OSNR vs Number of EDFA’s

At start 0 is booster, after that number of EDFA’s are added. Curves shows that
with the increase in number of EDFA’s OSNR decreases. Usually span between two
adjacent EDFA’s is 80 km for single mode fiber. As OSNR is decreasing, at some

point it requires to regenerate the signal. When test channel is in Spectral hole

After EDFA Case 1 (10 channels) Case 2 (full load)
1 43.458496 43.4434
2 32.72673 32.8459
3 29.848955 29.9409
4 28.073635 28.1551
5 26.778596 26.8566
6 25.881328 25.9552
7 25.094825 25.1662
8 24.457289 24.5278
9 23.885648 23.9545
10 23.369646 23.439
11 22.92556 22.9955
12 22.517102 22.5882
13 22.139528 22.2117
14 21.78349 21.8567
15 21.440825 21.5147
16 21.103212 21.1756
17 20.777925 20.8497
18 20.476569 20.5471
19 20.189682 20.2581
20 19.906613 19.9713

Table 3.1: OSNR vs Number of EDFA’s

burning (SHB) Region then OSNR comparison is shown in figure 3.13. while values
are depicted in table 3.1

3.2 Experimental Line System:

To simplify the problem under investigation a line system is deployed with variable
optical attenuator in place of the fiber, in order to avoid non-linear effects. This
experimental setup is based on commercial EDFAs [commercial EDFAs]. The optical
line is composed by 11 spans, in each span VOA is followed by an EDFA. VOA is
placed for span attenuation of 10 dB.

Optical Spectrum Analyzer (OSA) is an instrument which measures and displays
the distribution of power of an optical source over a specified wavelength span. It
has bandwidth of 3.5[TH]. In graph 3.16, it can be seen that where channel is ON
we have power of channel (Showed as peaks) but where channel is OFF, peak is not
observed and there is ASE noise as power received.

3.2.1 Optical Power Meter (OPM)

Wavelength Selective Switch (WSS) has a single optical port as an input and N
opposing multi-wavelength as output ports. where input can be switched to any

Figure 3.14: Experimental setup Diagram

Figure 3.15: Lab Experimental setup

port independently from other routed channels. Filters are added to 100GHz power
of each channel. So, in total it produces 35 channels.

3.2.2 ML-Based QoT-Estimation

Training ML: After developing line emulator next step is to train the ML with a
subset of cases by providing spectral load, telemetry and corresponding OSNR val-
ues. Basically, ML estimates the output of an unknown function so here “Feature”
is input of our function and “Label” is the value that we want to estimate. During
training phase ML learns from dataset of Features and Labels, which are generated
by line emulator. While on the other hand during prediction phase set of features
are feeded in ML to estimates their corresponding label. As shown in schematic
figure 3.17 During the training phase 99 channels are used in wavelength of 1528-
1568nm. Fifteen EDFA’s are used having working mode with “Fixed Power” which
is 0 dBm. Frequency at center of spectral hole burning is most affected by EDFA
during amplification and that frequency is 1531. So, CuT is fixed for central chan-

Figure 3.16: Optical Spectrum Analyzer(OSA)

Figure 3.17: Schematic Diagram of OPM

nels, the channels with spectral hole burning. By keeping CuT ON, progressively
spectrum is loaded with interfering channels Nint . Nint starts from 0 to Nch − 1
, where Nch = 99. Interfering channels frequencies are generated randomly. And
to grow the dataset with different cases, each Nint is repeated for Ntry times which
is 10. Line Emulator provides Telemetry and OSNR of CuT for this configuration,
used to train the ML.

After training the ML, the OSNR of CuT is predicted in a general case. Then
OSNR of CuT provided by the Line Emulator is compared to the ML prediction.
To predict OSNR only telemetry and spectral load of the test case are given to
ML and ML estimation is compared with Line Emulator OSNR. Synthetic Data
generated from emulator is subdivided into training data and prediction data. Its
main purpose of this division is to make data rich enough and flexible for machine
learning estimator. This data is in numerical form.

Figure 3.18: Overall Model

Figure 3.19: Feature and Label Parameters.png

Figure 3.20: OSNR of CuT provided by the Line Emulator

Figure 3.21: Diagram for OSNR prediction

Selection of hyperparameters is vital in machine learning estimation. Some ML
algorithms explicitly defines hyperparameters which controls the execution of al-
gorithm. In order to achieve best results in prediction practitioners tunes a lot
hyperparameters. In this study shuffle, batch and step sizing is used and tuned as
hyperparameters. Overall ML model is depicted in Figure 3.23

Figure 3.22: Dataset Preparation

Figure 3.23: ML Model

An open source ML library “TensorFlow” is used in the following DNN and
Linear Regression algorithms.

Algorithm 1 Linear Regression Algorithm

1: InputParameters:
2: features(fr), T rainingRatio(Tr), T rainingData(Td), Shuffle, Batch
3: (PredictionData(Pd), Delta(), RootMeanSquare(rms), Steps(Sp)

4: Build the training:
5: (Train, Test) = TrainTestSeperator(Tr, Td)
6: InputTrain = ShufflingAndBatching(Train, Shuffle, Batch)
7: InputTest = ShufflingAndBatching(Test, Shuffle, Batch)

8: Build the Estimator:
9: model = tf.estimator.LinearRegresson(fr)

10: Train the model:
11: model.train(InputTrain, steps)

12: Evaluation of model:
13: evaluate result = model.evaluate(InputTest)
14: rms = CalculateRMS(res)
15: Predict results = model.predict(Pd)

The algorithm 1 Builds, trains, and evaluates the model. Procedure InputTrain
Builds the training input function. While InputTest Builds the validation. At line
7 and 12 data is shuffled with a buffer larger than the data set ensures, that the
examples are well mixed. Line 8 is to repeat forever. During Training of the model,
the Estimators log output every 100 steps by default. But this hyperparameter is
tuned with different number of steps. At the end root mean square error of model
is calculated, then prediction is performed.

Algorithm 2 DNN Regression Algorithm

1: InputParameters:
2: features(fr), T rainingRatio(Tr), T rainingData(Td), Shuffle, Batch
3: (PredictionData(Pd), Delta(), RootMeanSquare(rms), Steps(Sp)

4: Build the training:
5: (Train, Test) = TrainTestSeperator(Tr, Td)
6: InputTrain = ShufflingAndBatching(Train, Shuffle, Batch)
7: InputTest = ShufflingAndBatching(Test, Shuffle, Batch)

8: Build the Estimator:
9: model = tf.estimator.DNNRegressor(

10: fr, HiddenUnits = [32, 64, 128]
11: optimizer=lambda: tf.train.AdamOptimizer(
12: learningRate=tf.train.exponentialDecay(
13: learningRate=0.001,
14: globalStep=tf.train.getGlobalStep(),
15: decaySteps=10000,
16: decayRate=0.096))
17:)

18: Train the model:
19: model.train(InputTrain, steps)

20: Evaluation of model:
21: evaluate result = model.evaluate(InputTest)
22: rms = CalculateRMS(res)
23: Predict results = model.predict(Pd)

Mini batch training technique is used, in which data is shuffled and batch are
made to converge fast training. To avoids model from learning the order of the
training. It also helps to avoid biasness during training phase.

• Shuffle: The size of data taken from Training data set to be shuffled in a single
step.

• Batch size : Batch size of dataset from the shuffled Training Data for a single
training step.

• Steps: Tshe total number of training iterations done. One step calculates the
loss from one batch and uses that value to modify the model’s weights once.

Total number of trained samples = Batch size x Steps

• Learning Rate: The amount that the weights are updated during training is
referred to as the step size or the “learning rate”, it’s a tunable hyperparameter
used in the training of neural networks and it has small positive value. In
general, learning rate should be which is low enough that the network converges
to something useful, but high enough that don’t take too much time to train
the model. When learning rate increases training time increase respectively.

• Hidden Layers: Inspired by biological neural network, in terms of computer
science its represented as a set of layers. These layers are categorized into three
layers input, output and hidden layer, in between input and output. Every
network has single input and output layer but different number of hidden
layers. It’s a big challenge to identify number of hidden layers. In DNN
algorithm defined above default number of hidden layers are used.

• Root Mean Square Error: RMS value is calculated for the test data set on the
basis of difference of actual value and predicted one.

3.3 Dataset Preparation

35 channels are randomely selected from the specterum of 97 channaels. Approxi-
mately 1152 samples are used to train the model. As shown in figure 3.24 in-circled
channel under test is label and rest are features.

Figure 3.24: Dataset for simulation

Total number channels are 97, Max number of channels (ON)= 25 and allowable
channels on fixed slots are 25. Here “n” represents number of emulator iterations
for each number of active interfering channels.

Samples = Dataset size

Samples (Size of Dataset) = 15x25 = 360 (n = 15 for case 1)

• Training + Test samples = 360

• Training Samples = 70 % of 360

• Test Samples = 30% of 360

Main goal is to Predict OSNR of Test Channel, which is at the center of Spectral
Hole Burning range. Then to deviation is computed by following formula.

Deviation = Predicted OSNR (from ML) – Telemetry OSNR (from Emulator)

From given samples ML shuffle and makes batchs of 1152 samples. To improve
ML quality and it also improves predictive performance of model.

Figure 3.25: Dataset for simulation with hyperparameters

Chapter 4

Simulation and Results

To evaluate the performance of the different machine learning algorithms proposed,
simulations have been carried out with different parameters and cases. Firstly, Ma-
chine Learning based simulation as well as interpolated simulation is performed on
synthetic data taken from line emulator. Secondly, it is applied on data collected
from real line system. LR and DNN Regression are used for estimation. Then both
type of Predictions are compared using mean and standard deviation. In given
dataset some channels are ON and some of them are OFF, OSNR of OFF channel
is interpolated for ML based predication by using linear interpolation cubic inter-
polation. Then this interpolated OSNR is used as feature in ML based estimation.
ML algorithms are applied and compared. Normalization is applied on dataset and
Removal of Reliability factor from data set. Then the correlation between feature is
found using Heat-map. ML techniques are applied on different cases with reliability
and without reliability. Results shows that by adding reliability factor prediction is
less bias while on the other hand reliability factor does not affect standard deviation.

4.1 Synthetic Data Results

4.1.1 Interpolation based OSNR Estimation

In figure 4.1 red points show the OSNR of ON-Channels. While OSNR of channel
under test is not known so that value is interpolated from OSNR of adjacent nearest
channel.

Delta = Interpolated value – Real value
In figure 4.2 values of OSNR is predicted by using interpolation but mean and

S.D are very high as compare to ML-based OSNR estimation.
Simulation scenario as shown in table 4.7 where parameters are tuned, and cases

are made with both linear and DNN regression models.

4.1.2 ML Models

4.1.2.1 Model-I : Linear Regression

• RMS error for the Model: 0.2903

• Max Delta = = 0.691

46

Figure 4.1: OSNR Prediction Based on Interpolation

Figure 4.2: OSNR Interpolation Histogram

Hyperparameter Model-I
Data Size 2000

Steps 5000
Shuffle 1100

Batch Size 100

Table 4.1: Hyperparameter of Model-I

• Min Delta = -0.012

The table 4.7 shows RMS comparison between different Training & Test Ratio by
applying Linear Regression on 2000 samples.

Figure 4.3: Model-I: OSNR Comparison

Steps Samples Training Data Test Data RMS
5000 2000 50% 50% 0.33
5000 2000 70% 30% 0.17
5000 2000 80% 20% 0.21
5000 2000 90% 10% 0.33

Table 4.2: RMS comparison Linear Regression

4.1.2.2 Model-II : DNN Regression

Hyperparameter Model-I
Data Size 2000

Steps 5000
Shuffle 1100

Batch Size 100

Table 4.3: Hyperparameter of Model-II

• RMS error for the Model: 0.06

• Max Delta = 0.090

• Min Delta = 0.001

The table 4.4 shows RMS comparison between different Training & Test Ratio
by applying DNN regression on 2000 samples.

Results shows that lowest RMS is found when 70% Training Ratio used along
with 30% Test Ratio. So, this ratio is selected for further simulations.

Figure 4.4: Model-II: OSNR Comparison

Steps Samples Training Data Test Data RMS
5000 2000 50% 50% 0.07
5000 2000 70% 30% 0.06
5000 2000 80% 20% 0.08
5000 2000 90% 10% 0.07

Table 4.4: RMS comparison DNN Regression

4.1.3 ML based OSNR Estimation:

To predict OSNR using machine learning, sufficient large dataset is required from
which (training+test) data and prediction data chunks are extracted. Hyperparam-
eters, Input parameters and out parameters are following for OSNR estimation.

• Input

Training Set = 70% of the Dataset
Test Set = 30% of the Dataset

• Hyper parameters
Model Training Steps = 500,1000,5000,10000
Shuffle = 1100
Batch = 100

• Output
OSNR Prediction

LR and DNN ML algorithms are used for estimation. And results are depicted
in the form of histograms with different steps.

Figure 4.5: Case 1 : Linear Regression with 500 steps

4.1.3.1 Linear Regression Algorithm:

4.1.3.1.1 Case 1: 70% training 500 steps :

Prediction RMS (Delta) Histogram along with Mean = -0,077 S.D = 0,3677
which shows frequency percentage of delta in bin. For instance, 34.0% of all delta’s
falls between (-0.1 to 0.1).

4.1.3.1.2 Case 2: 70% training 1,000 steps :

Figure 4.6: Case 2 : Linear Regression with 1000 steps

Prediction RMS (Delta) Histogram along with Mean = -0,118 S.D= 0,319 which
shows frequency percentage of delta in bin. For instance, 29.3% of all delta’s falls
between (-0.1 to 0.1). As it can be seen that case 2 is comparatively better than
case 1.

4.1.3.1.3 Case 3: 70% training 5,000 steps: :

Figure 4.7: Case 3 : Linear Regression with 5,000 steps

Prediction RMS (Delta) Histogram along with Mean = -0,109 S.D= 0,214 which
shows frequency percentage of delta in bin. For instance, 50.1 % of all delta’s falls
between (-0.1 to 0.1). which is showing that case 3 is better than case 2 and case 1.

4.1.3.1.4 Case 4: 70% training 10,000 steps :

Figure 4.8: Case 4 : Linear Regression with 10,00 steps

Prediction RMS (Delta) Histogram along with Mean -0,109 S.D= 0,188 which
shows frequency percentage of delta in bin. For instance, 58.4 % of all delta’s falls
between (-0.1 to 0.1). here it can be seen that 10000 steps are optimal for dataset
when LR algorithm is used, above this threshold model starts to over trained.

4.1.3.2 DNN Regression Algorithm

4.1.3.2.1 Case 1: 70% training 500 steps :

Figure 4.9: Case 1 : DNN Regression with 500 steps

Prediction RMS (Delta) Histogram along with Mean = -0,164 S.D = 0,323 which
shows frequency percentage of delta in bin. For instance, 32.7% of all delta’s falls
between (-0.1 to 0.1).

4.1.3.2.2 Case 2: 70% training 1,000 steps :

Figure 4.10: Case 2 : DNN Regression with 1,000 steps

Prediction RMS (Delta) Histogram along with Mean = -0,121 S.D = 0,189 which
shows frequency percentage of delta in bin. For instance, 59.5% of all delta’s falls
between (-0.1 to 0.1). S.D and Mean is reduced, which is much better than the case
having 500 steps.

4.1.3.2.3 Case 3: 70% training 5,000 steps :

Figure 4.11: Case 3 : DNN Regression with 5,00 steps

Prediction RMS (Delta) Histogram along with Mean = = -0,103 S.D = 0,201
which shows frequency percentage of delta in bin. For instance, 48.0% of all delta’s
falls between (-0.1 to 0.1). S.D and Mean is reduced, which is much better than the
case having 500 & 1000 steps.

4.1.3.2.4 Case 4: 70% training 10,000 steps :

Figure 4.12: Case 4 : DNN Regression with 5,000 steps

Prediction RMS (Delta) Histogram along with Mean = -0,095 S.D = 0,178 which
shows frequency percentage of delta in bin. For instance, 61.5% of all delta’s falls
between (-0.1 to 0.1). S.D and Mean is reduced, which is much better than the all
previous cases. So like Linear Regression 70% training ratio with 10,000 steps is
optimal when DNN regression is used.

4.2 Real Line System data based:

After using synthetic data for OSNR Estimation, Interpolation and ML-based es-
timation is applied on data extracted from experimental line system described in
section 3.2. Instead of getting ”0” as output power where channel is OFF, Linear
and cubic interpolation is used to overcome this issue.

4.2.1 Interpolating OFF channel OSNR:

Two types of Interpolations are used to interpolate OSNR of channels whose are
turned OFF.

• Linear Interpolation

• Lagrange Interpolation (Cubic)

After applying interpolation, interpolated OSNR is used as a feature in ML-
Based Prediction for both Linear Regression and DNN Regression. Results of Linear
Regression are depicted in figures 4.13 and 4.14. While by DNN Regression Mean
and SD is showed in figures 4.15 and 4.16.

Figure 4.13: Mean by using Linear Regression

After the interpolation DNN Regression is applied and Mean and standard de-
viation is observed. As DNN is more intelligent than linear regression so it shows
significant variation in standard deviation. Results shows that Mean calculated
by Cubic Interpolation is more negative as compare to linear interpolation. While
standard deviation calculated by using Cubic Interpolation is small as compare to
linear interpolation. Linear Regression is the simplest type of regression algorithm
therefore it shows small variation in standard deviation.

Figure 4.14: Standard Deviation by using Linear Regression

Figure 4.15: Mean by using DNN Regression

4.2.2 Impact of Normalization

Different normalization factors are applied to achieve optimal Mean and Standard
deviation. Like here three different Normalization factors used are 1000, 3000, 6000.

After normalization, Linear Regression is applied and Mean and SD is depicted
in figures 4.17 & 4.18

Results shows that, higher the Reliability Normalization factor lower will be the
bias. In dataset total channels are 35 and each of them has band width of 100 giga.
So, in total band width is 3500 so normalization factors used here is 3500.

Figure 4.16: Standard Deviation by using DNN Regression

Figure 4.17: Mean after Normalization and Linear Regression

4.2.3 Impact of Reliability

4.2.3.0.1 Calculation of Reliability Factor : When channel is ON reliability
is 1 but when channel is OFF reliability is calculated by following formula.

1 − change in frequency of adjacent channel
Normalization factor

4.2.3.0.2 Comparison based on Reliability factor :

Figure 4.18: Standard Deviation after Normalization and Linear Regression

Figure 4.19: Mean after Normalization and DNN Regression

• Case 1:
Prediction of OSNR by using ML techniques where reliability factor is

considered.

• Case 2:
Prediction of OSNR by using ML techniques where reliability factor is

not considered.

In figure 4.21 & 4.22 it can be seen that, by adding reliability factor decrease
the bias in the QoT-Estimation.

Figure 4.20: Standard Deviation after Normalization and DNN Regression

Figure 4.21: Mean after Linear Regression With & without Reliability factor

While on the other hand, In figure 4.23 & 4.24 it can be seen that by adding
reliability factor has no significant effects on the standard deviation of the prediction.

4.2.4 Correlation Matrix with heat-map:

Correlation states how the features are related to each other or the target variable.
There are two types of Correlation.

Figure 4.22: Mean after DNN Regression With & without Reliability factor

Figure 4.23: Standard Deviation after Linear Regression With & without Reliability
factor

• Positive

• Negative

Positive correlation states that if there is an increase in one value of feature, it
will increase the value of the target variable. While negative states that if there
is an increase in one value of feature as consequences there will be decrease in the
value of target variable. Figure 4.25 shows the correlation between features by using
heat-map, which makes it easy to identify which features are most related to the

Figure 4.24: Standard Deviation after DNN Regression With & without Reliability
factor

target variable.

In figure 4.26 correlation between reliability and OSNR is depicted. Where
strongly correlated vales are goes towards (+0.8) on y− axis. And those values are
represented in green.

For instance, figures 4.26 shows that, reliability 01 is strongly correlated with
osnr 01 because then value is +0.36 while on the other hand reliability 01 is not
correlated with osnr 02 because its value is (-0.93) represented in red color.

4.3 QoT-Estimation

At this point real data is collected from experimental line system and pre-processed
by normalization with optimal normalization factor. In order to fill empty spaces in
dataset, OSNR of OFF channels is interpolated. As it is known that OPM provides
the output power of 100 GHz per channel only. So, OSNR can not be measured
directly. Therefore, dataset is modified to estimate QoT.

In modified dataset OSNR is replaced with out-power of every channel. If input
channel is OFF Pin is zero and Pout is equal to the Power of ASE. Similarly, if
input channel is ON, then Pin is channel input power and Pout is received output
power of channel.

4.3.1 Prediction of Pout

Three types of predications are made with dataset depicted in 4.28

Figure 4.25: Correlation between all features using Heat-Map

Figure 4.26: Correlation between Reliability and OSNR using Heat-Map

4.3.1.1 Fixing single label

In this section ML model is set to predict only single label. In the figure 4.29 Pout34
is predicted by using Linear and DNN Regression.

Figure 4.27: Previous Dataset

Figure 4.28: New Dataset

4.3.1.2 Fixing 35 labels

In this section ML model is predicting set of labels and prediction results of (Pout34)
are depicted in 4.30 .

Pout of all the 35 channels is predicted while in the figure 4.30 Pout34 is depicted
only in order to compare the differences by predicting only only one label or set of
labels. Is can be seen that in both cases ML algorithms performed very well. There
is no significant difference by using Linear and DNN Regression. But here difference
is that, By using Linear Regression the difference between SD is (0.588-0.510)=0.078
so its doesn’t make significant difference while predicting single label and predicting
set of labels.

While on the other hand, DNN Regression shows significant difference between
SD (1.572-0.707)=0.865. As it is known that DNN works better when complexity
increases.

4.3.2 Approach-I

4.3.2.1 Dataset Preparation

Dataset illustrated in 4.28 can predicted Pout only so in order to estimate OSNR
dataset is modified and illustrated in 4.31 where Transfer Function and PASE are
added to previous dataset. The transfer function is basically the ratio between

Figure 4.29: Fixing single label (pout34)

Figure 4.30: Fixing 35 labels

output power and ASE.

Transferfunction = Pout/Pin (4.1)

To prepare this dataset two approaches are used as following

Figure 4.31: Modified Dataset

• Normalization

• Cubic Interpolation

4.3.2.1.1 Normalization

• Create an array of 35 elements having tf and ASE. Put tf for on channels and
ASE for off channels

• Separate the array into two arrays one is tf array leave off channel empty in
this array and other is ASE array leave the on channel empty.

• After getting Transfer function array and ASE noise array we normalize tf
array by the mean of transfer function and ASE noise array mean of ASE

• Merge the two arrays togethers to get combined normalized array

• Tf array is obtained by multiplying the normalized combined array with the
mean of transfer function

• Tf array is obtained by multiplying the normalized combined array with the
mean of transfer function

• ASE array is obtained by multiplying the normalized combined array with the
mean of ASE

Figure 4.32: OSNR by using Normalization

4.3.2.1.2 Cubic Interpolation

• Create an array of transfer functions, for on channels we get tf from the ratio
of pout and pin. For the off channels we get it by using cubic interpolation.

• Create an array of ASE, for off channels we get ASE power from OPM. For
the on channels we get it by using cubic interpolation.

4.3.2.2 Prediction Types

With the above data-set, two types of predication are made.

4.3.2.2.1 Training with OFF-Channel 34 During training of model label
(channel 34) is OFF and in prediction channel 34 is ON.

4.3.2.2.1.1 Method-I Normalization

• Linear

• DNN

Normalization Linear Regression DNN Regression
Mean S.D Mean S.D

Pout 0.01977 0.5591 0.00432 0.5105
ASE -0.00882 0.45156 0.00603 0.73084

OSNR 0.02859 0.23205 -0.001721 0.29458

Table 4.5: Approach 1 (Normalization)

Figure 4.33: OSNR by using Interpolation

Interpolation Linear Regression DNN Regression
Mean S.D Mean S.D

Pout -0.00238 0.35 -0.028136 0.65668
ASE - 0.49955 2.0116 0.10413 2.3811

OSNR -0.50194 2.0949 -0.13227 2.6665

Table 4.6: Approach 2 (Cubic Interpolation)

4.3.2.2.1.2 Method-I Cubic Interpolation

• Linear

• DNN

Form results of figure 4.7 it is observed that, Normalization is much better than
Interpolation. Because in every case standard deviation & Mean values by using
1st approach is less than 2nd approach. For instance in figure 4.33 S.D of predicted
OSNR is much higher than S.D of OSNR illustrated in 4.32

4.3.2.2.2 Training with mixed ON & OFF-Channel 34 Model is trained
with mixed data where 34 is ON & OFF. Half of the data is randomly chosen when
the channel under-test is ON and mixed with data when the channel under test is
OFF. then Normalization is applied as it performed much better than Interpolation.

4.3.2.2.2.1 Method-I Normalization

• Linear

• DNN

Changes are made in previous dataset to incorporate the calculation of OSNR.
As its already described that the OPM only provides the output power and is not
dealing with any kind of OSNR measurements. To calculate the OSNR it is necessary
to have noise power along with signal power. Therefore, new dataset is introduced

Normalization Linear Regression DNN Regression
Mean S.D Mean S.D

Pout -0.015713 0.35667 0.0039115 0.35829
ASE - 0.010758 0.30987 0.13081 0.63013

OSNR -0.0049582 0.20734 -0.1269 0.41408

Table 4.7: OSNR Mixed ON & OFF Data

Figure 4.34: OSNR Mixed ON & OFF Data

having ASE and Transfer Function (Tf). The Transfer Function is basically the
ratio between output power and ASE. Along with this, An approach is selected
which selects randomly half of the data when the channel under-test is on, mixed
with data when the channel under test is OFF and starts training the machine
learning with dataset depicted in figure 4.31.

4.3.3 Approach-II

4.3.3.1 Dataset Preparation

To prepare the dataset, two approaches are used.

4.3.3.1.1 Separate Normalized Tf and ASE Normalization and separate
array of Tf and ASE is created by following,

• Create an array of 35 elements having tf and ASE. Put tf for on channels and
ASE for off channels

• Separate the array into two arrays one is tf array leave off channel empty in
this array and other is ASE array leave the on-channel empty.

• After getting Transfer function array and ASE noise array we normalize tf
array by the mean of transfer function and ASE noise array mean of ASE

• Merge the two arrays togethers to get combined normalized array

• Tf array is obtained by multiplying the normalized combined array with the
mean of transfer function

• Tf array is obtained by multiplying the normalized combined array with the
mean of transfer function

• ASE array is obtained by multiplying the normalized combined array with the
mean of ASE

• Here both tf and ASE are used as a separate array to train machine learning

4.3.3.1.2 Single Normalized Array Normalization to get single normalized
array by following,

• Create an array of 35 elements having (Tf) and ASE. Put (Tf) for on channels
and ASE for off channels

• Separate the array into two arrays one is (Tf) array leave off channel empty
in this array and other is ASE array leave the on-channel empty.

• After getting Transfer function array and ASE noise array we normalize (Tf)
array by the mean of transfer function and ASE noise array mean of ASE

• Merge the two arrays togethers to get combined normalized array

• A single normalized array in used this case not (Tf) and ASE to train machine
learning

4.3.3.2 Prediction Types

With the above dataset two types of predication are made.

4.3.3.2.1 Training with mixed ON & OFFChannel 34 Half of the data has
been chosen randomly when the channel under test is ON and rest half is chosen
when the channel under test is OFF, mixed and TF and ASE are predicted.

4.3.3.2.1.1 Predict TF and ASE

• Linear

• DNN

4.3.3.2.2 Training with mixed ON & OFFChannel 34 Half of the data
has been chosen when the channel under test is ON and rest half is chosen when
the channel under test is OFF, mixed and Tf and ASE are predicted. Instead of
choosing randomly, half of the data from every case when the channel under test is
ON is selected and mixed with data when the channel under test is OFF Tf and
ASE are predicted.

Figure 4.35: Approach-II OSNR Mixed ON & OFF Data

Figure 4.36: Normalized Array

4.3.3.2.2.1 Predict TF and ASE

• Linear

• DNN

• Predict single normalized array

Single normalized array is predicted depicted in figure 4.36 using machine learn-
ing. After prediction, got the Tf array by multiplying the normalized predicted array
with the mean of transfer function. Similarly, ASE array is obtained by multiplying
the normalized predicted array with the mean of ASE.

OSNR =
ChannelPin X Transfer Function (Tf)

ASE

delta = OSNRpredicted −OSNRtelemetry

It is observed that, In figure 4.37 SD. is 0.28336 for DNN Regression while in
figure 4.35 SD. is 0.41408 when data is mixed randomly. It can be clearly seen that

Figure 4.37: OSNR - Mixed Every Combinations

prediction of OSNR is much better in figure 4.37 when half of the data from every
case when the channel under test is ON is selected. so this approach is selected for
further simulation.

4.3.4 Approach-III

4.3.4.1 Dataset Preparation

To prepare the data-set two approaches are used.

4.3.4.1.1 Separate Normalized Tf and ASE Normalization and separate ar-
ray of Tf and ASE is created by following,

• Create an array of 35 elements having Tf and ASE. Put Tf for on channels
and ASE for off channels

• Separate the array into two arrays one is Tf array leave off channel empty in
this array and other is ASE array leave the on-channel empty.

• After getting Transfer function array and ASE noise array we normalize Tf

array by the mean of transfer function and ASE noise array mean of ASE

• Merge the two arrays togethers to get combined normalized array

• Tf array is obtained by multiplying the normalized combined array with the
mean of transfer function

• ASE array is obtained by multiplying the normalized combined array with the
mean of ASE

• Both Tf and ASE are used as a separate array to train machine learning.

4.3.4.1.2 Single Normalized Array To get single normalized array, procedure
is following.

Figure 4.38: OSNR - Prediction of Tf & ASE

• Create an array of 35 elements having Tf and ASE. Put Tf for on channels
and ASE for off channels

• Separate the array into two arrays one is Tf array leave off channel empty in
this array and other is ASE array leave the on-channel empty.

• After getting Transfer function array and ASE noise array we normalize Tf

array by the mean of transfer function and ASE noise array mean of ASE

• Merge the two arrays togethers to get combined normalized array

• Tf array is obtained by multiplying the normalized combined array with the
mean of transfer function

• Tf array is used along with the normalized array instead of ASE array to train
machine learning.

4.3.4.2 Prediction Types

With the above data-set, two types of predictions are made.

4.3.4.2.1 Training with mixed ON & OFF-Channel 34 During the training
of model, channel 34 mixed ON and OFF while in prediction channel 34 ON. Half of
the data has been chosen when the channel under test is ON and rest half is chosen
when the channel under test is OFF, mixed and Tf and ASE are predicted. Instead
of choosing randomly, half of the data from every case when the channel under test
is ON is selected and mixed with data when the channel under test is OFF. Then
Tf and ASE are predicted.

4.3.4.2.1.1 Predict TF and ASE

4.3.4.2.1.2 Predict Tf and single normalized array

OSNR =
Channel Pin X Transfer Function (Tf)

Mean of ASE X Normalized value

Figure 4.39: Prediction of Normalized Array, Tf & ASE

delta = OSNRpredicted −OSNRtelemetry

On base of standard deviation it is observed that prediction of Normalized Array
& Tf is the best prediction type and will be used for further experiments.

Form now on selected approach is to Predict Tf and single normalized array
using DNN and will be used for further experiments.

Figure 4.40: OSNR - Predict Tf and Single Normalized Array

4.3.5 Hidden Layers

After adding hidden layers significant improvements in prediction of OSNR is ob-
served figure 4.42 shows that standard deviation decreases with increase of hidden
layer. in figure 4.41 it can be seen that with two hidden layers SD is ”0.13892” and
with 5 hidden layer SD is ”0.06692”

(a) OSNR 2-Hidden Layer (b) OSNR 3-Hidden Layer

(c) OSNR 4-Hidden Layer (d) OSNR 5-Hidden Layer

Figure 4.41: Comparison between different Hidden-Layers

As shown in figure 4.42 standard deviation decrease with the increase of number
of hidden layer but after the specific number of layer the difference is negligible. It
can b observed that in figure 4.42 after 3rd hidden layer difference between standard
deviation of 3rd and 4th layer is 0.003. Similarly for 4th and 5th layer. So its better
to use three hidden layers with DNN Regression.

4.3.6 Data Analysis

It is observed that, DNN Regression works much better with three hidden layers.
The distribution of OSNR is given in figure 4.43. On the basis of previous distribu-
tion of OSNR depicted in figure 4.43. Difference between predicted and telemetry
OSNR = (Std = 0.067355) is selected and illustrated histogram in figure 4.44.

On the basis of the distribution depicted in figure 4.44 there are maximum 2/3
of the the cases where delta is maximum and only 1/2 cases where delta is minimum

Figure 4.42: Effect of Hidden Layers

Figure 4.43: OSNR Delta DNN Histogram with 3-Hidden Layers

(0.067355) figure 4.45. Previously, half of data has been chosen when channel under
test was ON. Instead of fixing data selection, flexibility in data selection is introduced
on base of figure 4.45. For instance, to predict OSNR of case number (30 to 35) 50%
of data is chosen (from every case where channel under test is ON) for training and
rest for prediction and similarly 66% for case number (3 & 5).

Figure 4.44: Number of ON-Channel

Figure 4.45: Data Fraction

On the basis of selected data, another distribution shown in figure 4.46.On the
basis of that distribution, number of ON-Channels are shown in 4.47.On the basis
of new distribution of OSNR 4.46 Selected difference between the predicted and
telemetry is OSNR = (Std = 0.070271). Number of on channels are showed in
figure 4.48. With the new data and difference between predicted and telemetry
shown in figure 4.43 OSNR = (Std = 0.067355) number of ON channels are
illustrated in 4.47. It can be seen that both histograms are same even threshold is
different.

By creating new data-set with different way of data selection, there is no sig-
nificant improvement in standard deviation is observed as shown in figure 4.43 and
4.46. but number of cases are reduced with this new method of creating data-set. it

Figure 4.46: OSNR Delta DNN Histogram

Figure 4.47: Number of ON-Channels

can be seen in figure 4.47 where case number 4 and 5 have 4 channels ON but with
the new data-set its reduce to 3 figure 4.48

4.3.6.1 Data Analysis of Approach-II

In order to find out which combination contributes a lot in prediction of OSNR
and which contributes to make prediction worst. To do so, all combinations (of
telemetry) are sorted in increasing order with respect to OSNR while predicted
OSNR combinations are sorted with respect to telemetry OSNR. Each combination
has a unique ID as can be seen on xaxis in figure 4.49 while on yaxis represents
OSNR.

Figure 4.48: Number of ON-Channels

Figure 4.49: DATA Analysis osnr channel34 Linear curve

After applying DNN Regression, line curve shows telemetry data while on that
curve fluctuations represents prediction. A threshold is set to filter cases where
difference between the predicted and telemetry OSNR = 0.5 to observe behavior
of combination towards prediction. Only 35 cases are found depicted in figure 4.50

Here half of the data has been chosen when the channel under test is ON and
rest half is chosen when the channel under test is OFF. In figure 4.49 it can be seen
that combination having ID=99 is a worst prediction.

Figure 4.50 represents number of ON channels in in each combination, for in-
stance there were only 4 channels were ON in case 34. It is observed that when
number of ON channels decreases, prediction is more close to original value and ∆

Figure 4.50: DATA Analysis osnr channel34 DNN histogram

is very small but can not be not conversely.

4.3.6.2 Data Analysis of Approach-III

In section approach III, this type of prediction is already described in which ran-
domly the half of the data from every case is chosen where the channel under test
is ON, mixed with data when the channel under test is OFF and data is analyzed
with different number of layers.

4.3.6.2.1 Two Hidden Layers :
In figure 4.51 DNN Regression is used to predict OSNR. Predicted values and

telemetry values of OSNR are compared, It can be seen that fluctuation are very less
as compare to figure 4.49. Its just because in figure 4.51 used dataset is different and
number of ON-Channels are are very few as compare to previous case so prediction
is more close to telemetry.

4.3.6.2.2 Three Hidden Layers :
In figure 4.52 same dataset is used but DNN Regression with three hidden layers.

it can be seen that fluctuations are reduced are compare to case where 2 hidden layers
were used. Another factor of reducing fluctuations is very few number of channels
are ON. There is only one case in which number of ON channel is one.

4.3.6.2.3 Four Hidden Layers :
In figure 4.53 same experiment is performed but with four hidden layers. it can

be seen that fluctuations are reduced but the difference is not significant as compare
to 3 layers. Also here only one case found which have OSNR greater than 0.5 and
in that case there is only one channel is ON.

Figure 4.51: DATA Analysis 2 hidden layers

Figure 4.52: DATA Analysis 3 hidden layers

Figure 4.53: DATA Analysis 4 hidden layers

Chapter 5

Conclusion

Abrupt increase in network traffic demands open and flexible network on basis of
optical network.In order to cope with heavy data traffic, intention of operators is
to develop an optical network with lowest possible cost by using open line system
(OLS). In state of the art network its is explained that QoT figure is SNR which is
computing BER in OLS [8]. Therefore, it is important to predict QoT-Estimation
a light path before its deployment. In study [5] author presented an approach for
network planning, signaling and recovery. In this thesis, 11-span OLS is established
to simulate 35 channels at 100 GHz with largest spectral hole burning effects [4].

Firstly, Machine Learning based simulation using LR and DNN regression by us-
ing TensorFlow R© library as well as interpolated simulation is performed on synthetic
data taken from line emulator. Secondly, it is applied on dataset collected from real
line system. It is demonstrated that, mean and S.D are very high when OSNR is
predicted by using interpolation as compare to ML-based OSNR estimation. Three
different approaches are proposed to prepare dataset and to make prediction on real
data extracted from experimental setup. Data is pre-processed by normalization
with optimal normalization factor. In order to fill empty spaces in dataset, OSNR
of OFF channels is interpolated. Basic data set depicted in 4.27 have OSNR but as
it is known that OPM provides the output power only so, OSNR can not be mea-
sured directly. Therefore, dataset is modified to estimate QoT 4.28. In modified
dataset OSNR is replaced with out-power of every channel. If input channel is OFF
Pin is zero and Pout is equal to the Power of ASE. Similarly, if input channel is ON,
then Pin is channel input power and Pout is received output power of channel. By
using ML, Pout of all the 35 channels is predicted while in the figure 4.30 Pout34
is depicted only in order to compare the differences by predicting only one label or
set of labels. Is can be seen that in both cases ML algorithms performed vey well.
There is no significant difference observed in S.D when LR is used for predicting
single label or predicting set of labels. But when DNN Regression is used it showed
significant difference in SD because DNN works better when complexity increases.

In first approach, dataset illustrated in 4.28 can predicted Pout only so in order to
estimate OSNR dataset is modified and illustrated in 4.31 where Transfer Function
and PASE are added in previous dataset. The transfer function is basically the ratio
between output power and ASE. To prepare this dataset two approaches are used
as following

• Normalization

79

• Cubic Interpolation

Model is trained with two different ways and applied on both normalization and
interpolation. In first method, during the training of model label Channel-34 is OFF
and in prediction Channel-34 is ON. Form 4.7 results its observed that normalization
is much better than interpolation. Because in every case standard deviation & Mean
values by using normalization are less than interpolation. In second method, model
is trained with mixed data where Channel-34 is ON & OFF where half of the data
is randomly chosen when the channel under-test is ON, and mixed with data when
the channel under test is OFF then Normalization is applied as it performed much
better than Interpolation. In second approach, same dataset is prepared but with
two different methods.

• Separate arrays for Tf and ASE

• A single normalized array

Tf and ASE is predicted by using two methods. Firstly, prediction is performed
by choosing randomly half of the data when the channel under test is ON and rest
when the channel under test is OFF. After mixing and Tf and ASE are predicted.
Secondly, Instead of choosing randomly, half of the data is chosen, from each subset
(on basis of how many channels are ON) of dataset where channel under test is
ON and mixed with data when the channel under test is OFF then Tf and ASE
are predicted. To increase performance of ML model, ASE is normalized before
prediction in order to be in same range with Tf in single normalized array depicted
in figure ??. After prediction, denormalization is performed by multiplying the
normalized predicted array with the mean of transfer function to get original values
of Tf array . Similarly, ASE array is denormalized by multiplying the normalized
predicted array with the mean of ASE. OSNR is calculated by following.

OSNR = POUT (=Pinx(Tf)
ASE

It is observed that, In figure 4.37 SD. is 0.28336 for DNN Regression while in
figure 4.35 SD. is 0.41408 when data is mixed randomly. It can be clearly seen that
prediction of OSNR is much better in figure 4.37 when half of the data from every
case when the channel under test is ON is selected.

In third approach, dataset preparation is modified to train ML in such a way so
that is it can predict with more accuracy. It’s prepared by using Tf array along with
the normalized array instead of ASE array to avoid normalization before prediction
and denormalization after prediction. As its described above during the training
half of the data is chosen, from each subset (on basis of how many channels are ON)
of dataset where channel under test is ON and mixed with data when the channel
under test is OFF. With this dataset two types of predication are made in order to
compare their performances.

• Predict TF and ASE

• Predict Tf and single normalized array

On base of standard deviation it is observed that prediction of Normalized Array
& Tf is the best prediction type with DNN among all others.

After implementing different techniques for dataset preparation and prediction
types number of hidden layers in DNN is tuned. From experiments it is observed
that with the increasing of number of hidden layers can cause significant decrease
in standard deviation. Figure 4.41 shows the comparison between different hidden
layer with DNN. Remarkable improvements can be seen when number of hidden
layer stepped from 2 to 3 standard deviation reduces from 0.13892 to 0.06692. But
from hidden layer 3 to onward till 5, there is no such notable difference is standard
deviation. So its better to use three hidden layers with DNN Regression for QoT-
Estimation. The distribution of OSNR is given in figure 5.1. Data analysis is also
investigated by tuning number of hidden layers. Consequences are same as described
above. In figure 4.52 DNN with three hidden layers is performed and it can be seen
that fluctuations are reduced are compare to case where 2 hidden layers were used.

Figure 5.1:
OSNR Delta DNN Histogram with

3-Hidden Layers

In order to find out which combina-
tion gives more ∆ (difference between
predicted value and original value) data
analysis is performed in which a filter is
applied to examine the cases where dif-
ference between predicted and teleme-
try OSNR in more than 0.5. Only 35
cases are found and depicted in figure
4.50. The distribution depicted in figure
4.44 is used to reproduce new dataset
by giving flexibility between 1/2 of the
cases over 2/3 cases. Previously, half of
data has been chosen when channel un-
der test was ON. Instead of fixing data
selection, flexibility in data selection is
introduced on base of figure 4.45. For
minimum number of cases 1/2 is chosen
and for maximum number of cases 2/3.
Selection will vary between this range of
minimum and maximum.

On the basis of new distribution of OSNR 4.46 Selected difference between the
predicted and telemetry is OSNR = (Std = 0.070271). Number of on channels
are showed in figure 4.48. With the new data and difference between predicted and
telemetry shown in figure 5.1 OSNR = (Std = 0.067355) number of ON channels
are illustrated in ??. It can be seen that both histograms are same even threshold is
different. By creating new dataset with different way of data selection, there is no
significant improvement in standard deviation is observed as shown in figure 5.1 and
4.46. But number of cases are reduced with this new method of creating dataset. it
can be seen in figure ?? where case of four ON-Channels and five ON-Channels but
with the new dataset its reduce to 3 figure 4.48

Finally, OSNR of un-established light path in open line system is predicted with
prediction error 1.5(dB) by using telemetry data but by using ML techniques there is

significant decrease in prediction error and it is reduced to 0.06(dB). The distribution
of OSNR is given in figure 5.1.

Chapter 6

Future Work

Further work will be to automate the measurement process of operational parameters
from network equipment, especially optical amplifiers, to streamline the overall QoT
estimation process.

83

Bibliography

[1] Abdelhadi Azzouni, Raouf Boutaba, and Guy Pujolle. “NeuRoute: Predictive
dynamic routing for software-defined networks”. In: 2017 13th International
Conference on Network and Service Management (CNSM). IEEE. 2017, pp. 1–
6.

[2] Erick de A Barboza et al. “Self-adaptive erbium-doped fiber amplifiers using
machine learning”. In: 2013 SBMO/IEEE MTT-S International Microwave &
Optoelectronics Conference (IMOC). IEEE. 2013, pp. 1–5.

[3] Luca Barletta et al. “QoT estimation for unestablished lighpaths using ma-
chine learning”. In: Optical Fiber Communication Conference. Optical Society
of America. 2017, Th1J–1.

[4] Maxim Bolshtyansky. “Spectral hole burning in erbium-doped fiber ampli-
fiers”. In: Journal of lightwave technology 21.4 (2003), pp. 1032–1038.

[5] Vittorio Curri, Mattia Cantono, and Roberto Gaudino. “Elastic all-optical net-
works: A new paradigm enabled by the physical layer. How to optimize network
performances?” In: Journal of Lightwave Technology 35.6 (2017), pp. 1211–
1221.

[6] Zhenhua Dong et al. “Optical performance monitoring: A review of current
and future technologies”. In: Journal of Lightwave Technology 34.2 (2016),
pp. 525–543.

[7] Natalia Fernández et al. “Techno-economic advantages of cognitive virtual
topology design”. In: 39th European Conference and Exhibition on Optical
Communication (ECOC 2013). IET. 2013, pp. 1–3.

[8] Mark Filer et al. “Multi-vendor experimental validation of an open source
QoT estimator for optical networks”. In: Journal of Lightwave Technology
36.15 (2018), pp. 3073–3082.

[9] Yishen Huang et al. “A machine learning approach for dynamic optical channel
add/drop strategies that minimize EDFA power excursions”. In: ECOC 2016;
42nd European Conference on Optical Communication. VDE. 2016, pp. 1–3.

[10] Yishen Huang et al. “Dynamic power pre-adjustments with machine learn-
ing that mitigate EDFA excursions during defragmentation”. In: 2017 Optical
Fiber Communications Conference and Exhibition (OFC). IEEE. 2017, pp. 1–
3.

[11] Kiyo Ishii, Junya Kurumida, and Shu Namiki. “Wavelength assignment depen-
dency of AGC EDFA gain offset under dynamic optical circuit switching”. In:
Optical Fiber Communication Conference. Optical Society of America. 2014,
W3E–4.

84

[12] Alan Pak Tao Lau and Joseph M Kahn. “Signal design and detection in pres-
ence of nonlinear phase noise”. In: Journal of Lightwave Technology 25.10
(2007), pp. 3008–3016.

[13] Álvaro López-Raventós et al. “Machine Learning and Software Defined Net-
works for High-Density WLANs”. In: arXiv preprint arXiv:1804.05534 (2018).

[14] Ignacio de Miguel et al. “Cognitive dynamic optical networks”. In: Journal of
Optical Communications and Networking 5.10 (2013), A107–A118.

[15] Fernando Morales et al. “Virtual network topology adaptability based on data
analytics for traffic prediction”. In: IEEE/OSA Journal of Optical Communi-
cations and Networking 9.1 (2017), A35–A45.

[16] Antonio Napoli et al. “Reduced complexity digital back-propagation methods
for optical communication systems”. In: Journal of lightwave technology 32.7
(2014), pp. 1351–1362.

[17] Juliano R Oliveira et al. “Demonstration of EDFA cognitive gain control via
GMPLS for mixed modulation formats in heterogeneous optical networks”. In:
Optical Fiber Communication Conference. Optical Society of America. 2013,
OW1H–2.

[18] Shahin Shahkarami et al. “Machine-learning-based soft-failure detection and
identification in optical networks”. In: 2018 Optical Fiber Communications
Conference and Exposition (OFC). IEEE. 2018, pp. 1–3.

[19] Takahito Tanimura et al. “OSNR monitoring by deep neural networks trained
with asynchronously sampled data”. In: 2016 21st OptoElectronics and Com-
munications Conference (OECC) held jointly with 2016 International Confer-
ence on Photonics in Switching (PS). IEEE. 2016, pp. 1–3.

[20] Jakob Thrane et al. “Machine learning techniques for optical performance
monitoring from directly detected PDM-QAM signals”. In: Journal of Light-
wave Technology 35.4 (2017), pp. 868–875.

