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Summary

In the last years, the progressively growing renewables’ production capacity has increased
the fluctuating infeed in the nodes of the electrical networks. Consequently, as the lines’
transmission capacities have not been upgraded simultaneously, this has resulted in the
increase of congestions in the electricity transmission grids across Europe. Thereby, coun-
tries like Germany have lately seen an enormous increase in their redispatch cost. There
in particular, for instance, the redispatch cost has more than tripled from 2012 to 2015.
Therefore, the need for an improved congestion management has day by day become more
impelling within the continent, to cope in an adequate way with the increase of congestions
in the short and medium term, namely, before the still necessary power networks upgrade.
As a result, having recognized inside the establishment of optimal zonal pricing mecha-
nisms the answer to this necessity, the European Union has emanated in 2011 through the
Agency for the Cooperation of Energy Regulators (ACER) the Framework Guidelines on
Capacity Allocation and Congestion Management for Electricity (CACM ), which among
other things have tried to clarify the rules for creating optimal zonal configurations. This
made sense, since current European electricity pricing schemes are all based on uniform
configurations or non-optimal zonal ones (namely, made up of price zones whose borders
are defined through national boundaries or Transmission System Operator’s experience on
most congestible power network’s lines, without any electrical or economic foundation).
With these zones, the congestion management is unavoidably non-optimal, because often
subject to cases in which the congestion alleviation requires to be made manually and
hence costly by the Transmission System Operator itself. Moreover, there are frequently
misleading economic signals, caused by a uniform price or non-optimal zonal prices un-
able to effectively reveal the power network’s specific condition, which are not capable
of driving the system’s performance improvement towards its highest possible increase.
Unfortunately, the aforementioned European guidelines only managed to provide general
rules on the topic, without being able to successfully carry out the search for an optimal
zonal configuration.

For this latter reason, the last years have seen progressively growing the scientific liter-
ature regarding the subject. And this thesis equally fits in this scenario, by trying to give a
methodology aimed at locating the most suitable technique to deterministically define an
optimal zonal configuration, unavoidably required to put in force an optimal zonal pricing
mechanism. In particular, in fact, this thesis contains a three-level methodology. At the
first level, the zonal configurations’ optimality requirements are clearly stated through
objective and quantitative parameters, which permit to better identify price zones’ op-
timality rather than the above said European general rules. In the second one, having
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uniquely recognized the desired output through tangible parameters, the apparently most
suitable clustering algorithms to reach it are presented. The algorithms tested differ with
respect to the simple geographical clustering, which could be used to produce price zones,
but actually has to be rejected because only capable of giving the zonal configurations
with transnational borders, different from the optimal ones above mentioned. Therefore,
the second level of this thesis describes the methodology used to run a K-means clus-
tering, a K-medoids one, a hierarchical one, a genetic algorithm and a price differential
clustering. These algorithms are executed in two versions, using the Local Marginal Prices
(LMPs) and Power Transfer Distribution Factors (PTDFs). The changes aimed at better
complying with the previously declared zonal configurations’ optimality requirements are
described in details. After that, the methodology’s third level provides a series of price
zones’ assessment criteria, both in terms of clustering validity indicators and economic
efficiency ones. These criteria intend to evaluate the newly defined zonal configurations’
optimality, and also to allow the comparison among the different price zones definition
techniques previously chosen inside the second level.

Eventually, the methodology created is applied to a real case study represented by a
reduced model of the European transmission grid, to test its effectiveness. The results
highlight that some of the considered clustering algorithms are clearly inappropriate to
work out the problem of defining an optimal zonal configuration, like the price differential
clustering and the genetic algorithm, while others have comparable performance in terms
of defined price zones’ optimality. Anyway, among these last the Matlab1 LMPs-based
hierarchical clustering and LMPs-based K-medoids seem to represent the best techniques
to fulfill this thesis’ objective, as proved by their respective 1st and 2nd place inside the
final ranking contained into Table 4.14. Nevertheless, further evaluations and researches
should be done on the subject, for instance by considering also other clustering algorithms
and distance metrics, in order to strengthen the aforementioned hypothesis.

KEYWORDS:
Clustering algorithm, Local marginal prices, LMPs, Power transfer distribution factors,
PTDFs, Optimal zonal configuration, Zonal pricing mechanism, CACM, Congestion

management, Price zone, Bidding zone, Bidding area, Market zone, Electricity market,
Power market, Energy market, Cluster analysis, Power system economics, Zonal
marginal prices, ZMPs, Grid partition, Zonal network model, K-means clustering,
K-medoids clustering, Hierarchical clustering, Genetic Algorithm, Price differential

clustering, Market modelling, Electricity market design, Nodal pricing, Uniform pricing.

1The distinction between “Matlab” and “customized” clustering algorithm is part of this work’s nomen-
clature. It is afterwards described into Section 3.2.
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Chapter 1

Introduction

1.1 The need for an optimal zonal configuration

Giving a price to electricity is one of the key aspects in electrical power systems, because
energy prices markedly influence both economic investments and operation decisions.
Nowadays, there are mainly three categories of pricing mechanisms used in competitive
electricity markets: uniform, nodal and zonal pricing.

The former, in which there is a single price for the whole power network for each hour
of a day, is still used in many countries mainly due to historical reasons [35]. Nevertheless,
despite being simple, it is an approach that conceals a series of disadvantages. On the one
hand, because the equilibrium set on its market does not take into account the security
requirements of the grid [26]. Thus, it frequently becomes unfeasible due to the occur of
congestions, which require manual, and hence costly, readjustments by the Transmission
System Operator (TSO) to be alleviated. On the other hand, because using a single price
for an entire power network may prevent the market players from always having correct
economic signals. In fact, these signals are in force when the electricity price reflects
in each network point the cost of producing and carrying that quantity of energy, from
the injection bus to the withdrawal one, plus the cost of associated losses and possible
congestions. And when these are present, they influence investments on the system by
driving its expansion towards the highest possible performance increase. But in a Uniform
Pricing (UP) scheme, this only happens when no congestion occurs inside the power
network. In that situation, all the Local Marginal Prices (LMPs) are equal to each
other, and thus with the uniform price that hence represents the correct economic signal
anywhere on the network. Otherwise, whether a transmission line’s power flow clashes
with its capacity constraint, system’s nodal prices generally differ and so the unique
uniform price starts giving misleading economic signals to the market players in the various
points of the network, which do not lead the system towards its performance highest
possible improvement. For these reasons, as also stated by Egerer et al. in [54], the UP
mechanism is the less efficient one and thus must be avoided if possible.

On the opposite extreme from the performance point of view, there is the Nodal
Pricing (NP) mechanism firstly proposed by Schweppe et al. in 1988 [39]. This mechanism
uses LMPs to price electricity inside the power network. The LMPs can have a twofold
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interpretation. In fact, on the analytical side they are the Lagrange multipliers associated
to the equality constraints of the market clearing optimization problem focused on the
nodal power balances. But more interestingly, from the physical viewpoint they represent
the local value of energy, namely, the marginal cost of supplying the next kWh load to
the specific system node. Within this marginal cost are included the cost of producing
and carrying this energy, from the generation point to the consumption one, plus the
losses-related cost and the one of avoidance of congestions arising from delivering it.
Therefore, LMPs always embody the aforementioned correct economic signals, which
address system’s growth towards its performance improvement. In addition to this, also
the congestion management inside a NP scheme reveals to be perfect, because the whole
grid’s security requirements are included inside the power network model of the nodal-
based market clearing. Hence, if a congestion occurs within the system, the nodal prices
diverge, so as to split locations that span congested lines into higher and lower price zones.
Consequently, the dispatching coming out from this market is always feasible, and does
never require any costly readjustments. All the possible congestions are recognized and
automatically alleviated by the nodal-based market clearing, as mentioned above. For
these reasons, the NP mechanism is worldwide recognized as the most performing way to
price electricity [9], as it embeds both a free-cost congestions management and the clearest
and most objective possible economic signals. Therefore, it should not be surprising that
it has been adopted in many countries or areas, such as Argentina, Chile, Russia, New
Zealand, PJM (Pennsylvania, New Jersey, Maryland) and New York in USA [39]. But
despite this, it also includes many drawbacks. In fact, firstly transmission networks are
usually very large and complex systems made up of thousands of nodes. Consequently,
adopting a NP scheme would often mean facing a too high computational burden [40].
Secondly, the implementation of a nodal-based market requires the establishment of an
Independent System Operator (ISO) able to combine the role of market operator with
at least part of the grid operation. But this latter is not still available in some areas,
like European countries [9]. Thirdly, too small Bidding Areas (BAs), like single-node
ones, might be inside a NP mechanism and are typically unacceptable due to the market
power that may arise inside them. Market power that would end up threatening the
power network’s perfect competition, the starting point for nodal system’s benchmark
performance. For these reasons, a network partition seems to be the most reasonable
choice in power market operation.

In fact, the remaining pricing mechanism is the Zonal Pricing (ZP) one introduced in
1999 [19]. This can be thought of as a compromise between the simplicity of a uniform
structure and the accuracy of a nodal one, since it introduces differentiation of prices
but between power network zones made up of several nodes [22]. And in particular, it
can become a very good compromise configuration as stated by Burstedde in [4]. He
demonstrates in fact that, if the adopted zonal configuration is optimally defined, the
performance loss faced by grouping system’s nodes inside BAs, when passing from the
initial benchmark NP scheme to the ZP one, is nearly negligible. This is because, on
the one hand the less there is LMP variance inside the various price zones, the more the
respective zonal prices retain the major part of LMPs’ benchmark economic signals able
to address the system’s expansion towards its performance highest possible improvement.
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On the other hand, the more there are only inter-zonal congestions instead of intra-zonal
ones, the more they can be identified by the zonal-based market clearing of the ZP scheme.
In fact, the ZP scheme automatically alleviates them by making zonal prices diverge,
without the need of any manual and hence costly readjustment by the TSO. Therefore,
not all the zonal configurations are the same. The more they are optimal, the more they
theoretically approach nodal configurations’ benchmark performance without acquiring
their drawbacks. On the contrary, the more they are inappropriate, the more they create
a series of market inefficiencies and arbitrage opportunities similar to UP mechanism’s
ones.

For these reasons, it ineluctably arises the question of how to define an optimal zonal
configuration. To which the European Union (EU ) has tried to response in 2011, with
the publication of Framework Guidelines on Capacity Allocation and Congestion Man-
agement for Electricity (CACM ) made by the Agency for the Cooperation of Energy
Regulators (ACER) [18]. Since in the last years, as proven by the scientific literature, the
ZP mechanism has progressively gained popularity across Europe. Meanwhile, the con-
tinuously growing production capacity of renewables has increased fluctuating infeed. As
the lines’ transmission capacities have not been upgraded simultaneously, this has resulted
in the increase of system’s congestions and thereby of related costly readjustments too.
Nowadays, all the European power networks are based on UP schemes or non-optimal
ZP ones, where consequently also intra-zonal congestions can occur, which are not able
to perform a free-cost congestions management. As a result, in Germany for instance the
redispatch costs caused by congestions alleviation have more than tripled from 2012 to
2015 [9]. Then, in the last years the EU has actually become more and more interested
in finding a way to define optimal zonal configurations. In this way, optimal ZP mech-
anisms can be used to quickly reduce congestions management’s costs, in order to face
better the recent congestions increase, while waiting for the still necessary transmission
lines upgrade. However, in this scenario the aforementioned European guidelines have not
given strict rules to create optimal BAs, but have only defined the general features which
they should have. Therefore, the target of finding a method to deterministically define an
optimal zonal configuration remains still open, and becomes the subject of this thesis.

1.2 How to define an optimal zonal configuration

There are mainly two ways of defining zonal configurations. On the one hand, there is the
geographical clustering. It consists in creating BAs by cutting the power network along
its statistically most congestible lines, identified through historical data or future scenario
simulations. The BAs creation attempts having only inter-zonal congestions inside the
resulting zonal configuration, in order to not impede this latter to become the aspired
optimal one. On the other hand, there is the clustering-based approach, which creates
price zones through a two-stage procedure. They firstly assign characteristic values to
each node of the system, and then create BAs by applying clustering algorithms to the
just defined nodal parameters database.

The so-called geographical clustering is not an actual clustering technique, because
it creates the price zones by directly acting on the power network structure according
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to a precise criterion, instead of applying data mining techniques on databases made up
of nodal features. Therefore, here the word “clustering” refers only to the final result of
the methodology, which is indeed the union of system nodes inside geographical areas
representing BAs. Secondly, this approach actually produces the zonal configurations of
the power networks which nowadays adopt a ZP mechanism. In fact, there are several
instances of these last around the world. The Scandinavian electricity market named
“Nord Pool” already established a market framework with multiple BAs in the nineties
[8] and currently is composed of different price zones belonging to various countries of
northern Europe [55]. The Italian market introduced BAs in 2006 due to its power grid’s
heterogeneous nature, and thus today is made up of six geographical price zones, which
also contain other virtual zones. Although, this second instance is a bit particular. In
fact, in case of congestion there is only a zonal price divergence on the supply side, namely
for generators, whereas the pricing scheme for the demand one, namely for loads, is al-
ways uniform thanks to the unique national price called “Prezzo Unico Nazionale” (PUN ).
The PUN has been introduced not to influence the energy consumption within the na-
tion through a geographically dependent price, and is obtained as the weighted average
of all the zonal prices, where the weights are given by the energy quantities consumed
in the various zones. But, beyond this particularity, it is important to note that all the
currently existing zonal configurations derive either from TSOs’ experience on the statis-
tically most congestible lines of their power networks, when dealing with within-national
BAs, or from national borders, when dealing with inter-national BAs [39]. Therefore,
for the former case it is obvious to get the link between the aforementioned geograph-
ical clustering and the nowadays zonal configurations. And for the second one it can
quickly be proven, by observing that over the last years there has been a steady rise
in the amount of cross border trades. But, simultaneously there has been a very little
growth in the cross border transmission capacities [17], which has ineluctably caused the
rise of frequency of trans-boundary transmission lines congestions. This is the reason why
the geographical clustering is actually able to produce also this second type of currently
existing BAs. Despite its simplicity, this first method of zonal configurations definition
has to be rejected to carry out the initial search for a deterministic way to set up optimal
zonal configurations, for two reasons. On the one hand, this first approach reveals to be
the representative of the nowadays BAs. Thus, it has to be rejected because, as proven by
Burstedde and Breuer respectively in [4] and [5], optimal zonal configurations markedly
differ from the currently existing ones. On the other hand, this geographical clustering
is actually used as partitioning method inside [53], where it also gives good results. But
there, the split power network is radially connected and hence it is completely different
from the transmission networks, which instead are never truly radial and are the object
of the here analysed optimal BAs definition.

For these reasons, the only remaining way to fulfill the thesis’ goal resides in using
clustering algorithms. These last belong to the data mining topic, and in particular are
processes of Knowledge Discovery in Databases (KDD). They provide the user with more
concise visions of big databases, which otherwise could not be so easily handled. In other
words, these algorithms are firstly fed with big sets of data. Then, based on observations’
features and a distance metric specified by the user, they merge these data into a series
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of clusters, whose number is usually user-defined. Therefore, the final result is a lighter
representation of the initial database. Only its most distinguishing observations accord-
ing to the user-defined specifications, which hence depend on the user’s interest towards
the database, are revealed as clusters’ centroids, which instead include all the others as
similar data. Among all the clustering algorithms, two of the most used types are the
connectivity-based clustering algorithms and the centroid-based ones [4]. Both of them
rely on a user-defined distance metric, which can be a classical Euclidean distance or
something else. The connectivity-based clustering algorithms evaluate distances between
all the couples of database’s observations, and then identify clusters in a hierarchical
process which can be agglomerative or divisive. Namely, they can proceed bottom-up
towards distance decrease among clusters, or top-down towards distance increase among
them. The centroid-based algorithms immediately define clusters’ centers and then mea-
sure the distances between them and the database’s observations, so as to put these last
inside the clusters whose centroid is the nearest one. Nevertheless, when using clus-
tering algorithms to attempt defining power network’s optimal zonal configurations, the
aforementioned classification of clustering techniques reveals to be not always effective.
Instead, it becomes clearer distinguishing them on the basis of the nodal parameter chosen
by the user to perform the clustering process. Therefore, always dealing with the most
diffused approaches, from this second point of view the clustering algorithms are divided
into LMPs-based and PTDFs-based. The rationale of the first group is straightforward
for a twofold possible interpretation. On the one hand in fact, the NP scheme is the
most performing one. And thus, when merging nodes to define BAs in order to move
to an optimal ZP mechanism, LMPs can surely be at the base of the clustering process
which defines the adopted optimal zonal configuration, to lose as little as possible of their
associated benchmark economic signals. On the other hand, LMPs start diverging when
congestions occur within the power network. Especially, they do it by separating system’s
areas which span congested lines into higher and lower price zones, which respectively
call for additional generation or load to alleviate the associated congestion. Therefore,
merging nodes on the basis of LMP similarity is likely to create a zonal configuration free
of intra-zonal congestions, because characterized by the congestible lines as inter-zonal
links, which may become the aspired optimal one. Regarding the second aforementioned
group, namely the PTDFs-based clustering algorithms, the reasoning is slightly longer
and hence subsequently provided inside Chapter 3 with the whole methodology.

1.3 Thesis’ backbone

Given this problem, namely the definition of an optimal zonal configuration, and the way
to solve it, namely the application of a clustering algorithm to system’s nodes, this thesis
firstly takes into account a group of broadly known clustering techniques. Then it modifies
them, trying to better fulfill the zonal configurations’ optimality requirements. Eventually,
it evaluates their performance, through the application on a real power network model
and the use of specific assessment criteria.

Therefore, the remainder of this thesis is organized as follows. Chapter 2 presents the
state of the art of this topic. Consequently, a series of tables and bulleted lists are there
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proposed to summarize the main aspects of the reference articles which both recognize the
need for a BAs redefinition and decide to apply clustering techniques to fulfill it, as here
done. Chapter 3 outlines the developed methodology. First of all, the zonal configura-
tions’ optimality requirements are clearly stated, by merging CACM ’s general guidelines
with the findings of previous state of the art’s reference articles. Then, the apparently
most suitable clustering algorithms are listed, together with their needed inputs, to run
the methods, and their relative changes, aimed at better satisfying the aforementioned
optimality requirements. Eventually, a series of zonal configurations’ assessment criteria,
both in terms of clustering validity indicators and economic efficiency ones, is provided.
In order to check the optimality of the newly defined price zones, and also to allow the
comparison among the different techniques which have produced them. The so obtained
methodology is then applied to a real power network model made up of 257 buses, reduced
version of the European transmission grid, inside Chapter 4. In this way, the algorithms’
performance is compared with varying numbers of BAs, since this latter is unfortunately a
parameter which always has to be directly or indirectly defined by the user. The compar-
ison aims at electing the reasonably most suitable clustering algorithm to carry out this
thesis’ goal, represented by the deterministic definition of an optimal zonal configuration.
Eventually, conclusions and future developments suggestions are contained in Chapter 5.
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Chapter 2

State of the art

This chapter contains the detailed overview of this thesis’ references which both take over
the current power networks’ need of undertaking optimal zonal configurations and use
clustering algorithms to attempt defining a technique to deterministically find them. This
overview is organized with both tables and bulleted lists, in order to ease the consultation
to the reader.

Within Appendix A it is proposed a state of the art analysis similar to the following
one, but in that case the same tables and bulleted lists deal with this thesis’ references
which adopt clustering techniques for purposes different from price zones definition.

2.1 References summary

The following bulleted list contains a short description for each of the considered papers
which deal both with clustering algorithms and optimal BAs definition. It is organized
with two subpoints for each reference, which respectively contain: the reason why optimal
zonal configurations are investigated inside it and its general description.

• [3] Breuer et al. (2013)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets Key Performance Indicator (KPI ).
Here the accent for zones creation is put on their static efficiency, namely the
efficiency of the adopted zonal configuration along years. This is important
since the temporal stability of the zones is one of the European criterion for an
optimal zonal configuration. For this reason, a multi-scenario analysis is here
carried out.

– Paper’s summary: This paper is aimed at presenting an approach to de-
termine optimal bidding areas in the European electricity system under the
perspective of static bidding area efficiency. In fact, it is worth remembering
that one of the rule published into the framework guidelines on CACM is just
the temporal stability with respect to uncertainties in the system (i.e. grid
extension or development of RES ). Therefore, to ensure a consideration of the
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desired inter-temporal stability of BAs, a multiple-period and scenario-based
method is here introduced and applied to a case study on a full European grid
model with all 400 kV substations. The target function of the BAs clustering
problem results from the basic principle of aggregating substations with simi-
lar nodal prices to one bidding area. This comes from the fact that LMPs are
the clearest and most objective economic signals, thereby able to provide an
optimal congestion management. Thus, the target function minimizes for each
hour the absolute difference between nodal prices and the average prices of the
zones in which the respective nodes are contained, like a sort of Ward’s mini-
mum variance criterion, that minimizes the total within-clusters variance. The
algorithm used for the solution of the aforementioned problem, and hence for
the zones creation, is a genetic one. With its genetic operators, like crossover
or mutation, and its heuristic functions, used to guarantee compliance with the
constraints. These last are both physical and operative bonds of the network
and some of the requirements for a good zonal configuration, like the minimum
zones dimension to prevent the rise of market power and the physical connec-
tion between nodes inside the same zone to avoid the definition of unfeasible
zonal configurations. The clustering inputs are the LMPs of each node of the
system, as hourly pattern along one year. Many years are considered during
the multi-scenario analysis, with different patterns for each node. Zonal con-
figurations are represented by gene strings inside the algorithm, where each
node is associated to one of the created zones. The genetic algorithm (GA)
arrives at convergence, and hence stops, when the objective function is mini-
mized under a certain user-defined threshold. The number of zones has to be
given beforehand by the user.

• [4] Burstedde (2012)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI.

– Paper’s summary: The research presented in this paper develops a set of
BAs for the Central Western European (CWE ) regions Switzerland and Aus-
tria, for both 2015 and 2020. On the basis of hourly LMPs patterns along year
for system nodes, used as clustering input, and a hierarchical cluster analysis,
driven by a Ward’s minimum variance criterion. The zonal configuration com-
ing out from the 2020’s LMPs dataset is used to validate the 2015’s partitioning
from a temporal stability point of view, since this latter is one of the key as-
pect for an optimal zonal configuration according to European disposals. Once
done this, the older zonal configuration, namely the 2015’s one, is applied and
used to compare the efficiency of a zonal configuration with the one of a nodal
configuration. This latter represents the benchmark for system performance,
since nodal prices are the clearest and most objective economic signals that can
be used to price energy in the power network. While, from the zonal configu-
ration’s point of view, three cases are considered. Respectively, a partitioning
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made up of six areas and another of nine, used to evaluate the system perfor-
mance sensitivity with respect to the number of zones. The reference is the
current zonal configuration, with zones’ boundaries coincident with national
borders. This comparison is done from an economic point of view, with the
evaluation of costs originating from the wholesale market dispatch and from
ex-post redispatch. The comparison of these annual costs shows small devia-
tions between nodal and zonal models, and a little dependence of total costs to
the number of zones. These results seem to suggest the non-profitability of an
optimized zonal configuration instead of the current one, nationally based. But
this is only due to the many costs neglected in this paper. Otherwise an opti-
mized zonal configuration would be markedly better than a non-optimized one,
and a nodal scheme would decidedly perform even better than these previous
two.

• [5] Breuer & Moser (2014)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or the
social welfare, typically used as markets KPI. This is the sequel of the previous
reference [3]. In fact, while this latter only presents a clustering method based
on a GA without giving any kind of zonal configurations evaluation. This paper
starts from zones obtained through the aforementioned GA, and provides the
assessment criteria which were previously missing.

– Paper’s summary: This paper provides the assessment criteria for the zonal
configurations coming out from previous reference [3], which were missing there.
Therefore, starting from the European indications for an optimal set of zones
included inside the Network Code on CACM, four evaluation criteria are ap-
plied within this paper. These last are categorized two each in monetizable
criteria and hardly monetizable ones. On the one hand, the first two are gen-
eration costs and redispatch costs, which respectively represent the cost of
the wholesale market dispatch and the cost of congestions alleviation. On the
other hand, the last two are the potential of market power and the violation of
network security. Both of these last have not directly a meaning of cost, con-
sequently they cannot be simply minimized like previous ones but they have
acceptable levels, namely, thresholds which define if the associated evaluation
criterion is satisfied or not. The potential of market power is avoided until
the Residual Supply Index (RSI ) is under a certain critical level, while the
violation of network security is prevented until the congestion energy remains
under a certain critical level. This latter represents the violations of security-
constraints after remedial actions are taken for congestion alleviation. It is
computed via the sum of non-transferable electricity due to security limits.
The four aforementioned assessment criteria are used to compare some zonal
configurations of the European simplified power network. Which are obtained
through the clustering algorithm presented in paper [3]. The most peculiar
features coming from this evaluation are:
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∗ Low numbers of BAs violate the assessment criterion about network secu-
rity.

∗ High numbers of BAs lead to a potential of market power because of too
small areas, violating the respective assessment criterion.

∗ Once verified the two hardly monetizable assessment criteria, the two re-
maining monetizable ones reveal a slight decrease of total system costs
with respect to the current zonal configuration. Unfortunately, these sav-
ings are firstly negligible compared to the typical total system costs. Then,
they even decrease when keeping a zonal configuration for more than three
or four years, which is likely to be done since temporal stability is an
important feature for system zones according to CACM ’s guidelines.

• [8] Felling & Weber (2016)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI.

– Paper’s summary: This paper is complementary to reference [9], indeed they
share the authors. This article’s peculiarity resides in the clustering algorithm
description. Here in fact, there is a clear flow chart which describes the whole
algorithm into third section point C. This latter is a hierarchical clustering
fed with hourly LMPs patterns along a year, that determines an optimal price
zone configuration which minimizes the total within-clusters variance. There-
fore, here again the Ward’s minimum variance criterion is used as distance
metric. Particularity of this algorithm resides in the weighting of nodes ac-
cording to their infeed and demand situation. The more they are energetically
relevant, the more their weight makes them considerable during the clustering
process. In this way price zones are defined with sufficient supply and demand
relevance and diversity or, in other words, there is an incentive to aggregate
smaller zones rather than larger ones at similar price differences. This leads
to BAs of similar dimensions that prevent the birth of isolated and too small
zones, unwanted by CACM ’s guidelines due to their possible market power.
Moreover, three important things are stated inside this paper. Firstly, as evi-
dent from its figure three, the within-clusters variance and the between-cluster
one are respectively inversely and directly proportional to the number of zones.
This was predictable by the fact that their sum gives the dataset variance per
definition. This latter is constant once given the group of data, for any num-
ber of zones. But here this is proven by the facts. Secondly, as evident from
this paper’s figure four, not correcting outlier prices from LMPs data set leads
to the definition of BAs which have: mainly the same shape of the ones de-
fined with corrected prices, but anyway some differences. That is why it is
still better to correct the initial database, by eliminating obviously unrealistic
prices related to the preliminary status of the grid and load models. Hence
as first thing to do, prices under 0 €/MWh and above a certain value chosen
as maximum, are respectively set to 0 €/MWh and the maximum. Thirdly,
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tests on the algorithm’s computational burden show a great performance of
this procedure in handling very large systems as the power networks.

• [9] Felling & Weber (2018)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or the
social welfare, typically used as markets KPI. Here much attention is laid on
the temporal stability of zonal configuration performance. Therefore, a robust
price zones configuration is computed taking into account six 2020’s scenarios.

– Paper’s summary: This paper presents a hierarchical cluster algorithm which
defines new BAs by grouping similar hourly LMPs patterns along a year. More-
over, two things are done in this paper. On the one hand, nodes are weighted
depending on their energy relevance. Therefore, the more they withdraw or
inject from or into the power network the more their weight makes them rel-
evant during the clustering process. In this way, it is avoided the birth of too
small BAs. As requested by CACM ’s guidelines for an optimal zonal config-
uration, since these zones could be characterized by the rise of market power.
On the other hand, six scenarios are considered for a single year (2020). Which
respectively reflect the main drivers that influence the future development of
European Electricity markets according to the trilemma of energy policy tar-
get. Namely security of supply, sustainability and economic efficiency. Each
of these scenarios returns a set of hourly LMPs pattern along the aforemen-
tioned year, through a Direct Current Optimal Power Flow (DCOPF ) in which
transmission lines’ capacity is curtailed of 15% in order to roughly satisfy the
N-1 security. Therefore, each of these databases is used as input in the hier-
archical clustering and so produces a sequence of zonal configurations for the
particular scenario. In fact, hierarchical clustering algorithms do not need the
number of groups beforehand. But meanwhile they do not return a single par-
titioning rather than a sequence of configurations. In addition to this, a robust
configuration is determined by simultaneously inserting the six LMPs sets to
the algorithm. In this way, each node is characterized by six trends coming
from the respective hourly LMPs patterns along the 2020 in different scenario
cases. The result is a zonal configuration that outperforms other single scenario
configurations, and particularly also the current BAs in CWE. This latter con-
figurations assessment is done looking at the within-clusters variance of each of
them. The less this within-clusters variance is, the better the BAs are. Since
their zonal prices approach as much as possible the nodal prices of the system,
and hence a minimum part of these reference economic signals are lost. Partic-
ularly interesting is the mixed evaluation of zonal configurations. Namely the
assessment of within-clusters variance, and so the BAs performance, using a
different set of LMPs from the one used as input into the hierarchical clustering
that produced the in question zonal configuration. This is an important anal-
ysis since the BAs choice has to be done nowadays but it has to be correct in
the future too, because of stability criterion requested by CACM ’s guidelines,
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and there is no certainty in the future. Interestingly the aforementioned robust
configuration outperforms all the others also in this latter mixed assessment.

• [15] Grimm et al. (2017)1

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI.

– Paper’s summary: This paper concerns with splitting a market area into a
given number of price zones such that the resulting market design yields good
social welfare results. This leads to a mixed-integer nonlinear trilevel model
for computing welfare-optimal price zones in electricity markets. For problems
of this kind no general-purpose solution algorithms exist. Consequently, this
article proposes two different global solution approaches. One is based on the
reduction of levels using problem-specific insights as well as standard Karush
Kuhn Tucker (KKT ) transformation. The other one is a problem-specific in-
stantiation of generalized Benders decomposition. The computational results
show that this latter significantly outperforms the former algorithm. It is worth
remembering that here BAs are created, but not by clustering nodal features
like LMPs or Power Transfer Distribution Factors (PTDFs). The optimal zonal
configuration comes out from the iterative simulation of the energy market with
different zonal schemes, as the one which maximizes the most the social welfare.
That is also why this BAs definition method has a too much high computa-
tional burden, and then it is discarded first. In fact, testing all the possible
zonal configurations of the power network one after the other is enormously
time-consuming and requires a huge computational effort. Therefore, it can
only be done in very small power networks, thus unrealistics.

• [17] Imran & Bialek (2008)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI.

– Paper’s summary: This paper analyses the effectiveness of the zonal conges-
tion management scheme on three zonal configurations, by using a model of the
first synchronous electricity grid region of Europe. The clustering algorithms
which respectively create the three aforementioned zones sets are: a geograph-
ical clustering, a fuzzy-c-means and a price differential clustering. The first
creates the areas in a way that the statistically more congested lines are at the
zones interfaces. This is done because one of the main criteria for forming good

1Actually this paper does not include a clustering algorithm aimed at defining an optimal zonal con-
figuration. Nevertheless, it is here included due to its purpose, which is always the search of optimal
BAs.
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BAs is actually the elimination of intra-zonal congestions in favour of inter-
zonal ones. Since only these last are automatically alleviated by a zonal based
market, through the zonal prices differentiation, while intra-zonal congestions
need a manual redispatch by the TSO with associated extra costs, that would
be avoided in a better zonal configuration. The second and the third clustering
algorithms both use a set of hourly LMPs pattern along a year as input. The
fuzzy-c-means clusters them according to Ward’s minimum variance criterion,
since the objective function which drives the Optimization Problem (OP) is
roughly aimed at minimizing the within-clusters variance. Whereas the price
differential clustering merges them according to their difference. Therefore,
the more two LMPs trends are similar, the more probably these two nodes
will be in the same zone. The hourly LMPs come out from a DCOPF of
the aforementioned European power network model, for the year 2004. The
effectiveness of the zonal congestion management scheme on the three zonal
configurations, and hence their assessment, is evaluated looking at the max-
imum range and standard deviation of within-clusters LMPs. This because:
the more the nodal prices differ from the zonal ones that approach them, the
more their economic signals aimed at congestions alleviations get lost, so the
congestion management worsens. For this reason, a good zonal configuration
from the zonal congestion management scheme’s point of view must have small
standard deviation and range of prices in the zones. This does not happen
with the geographical clustering zones, thus discarded, but it happens with the
other two clustering algorithms. Unfortunately, since no check at all is present
on physical connection between the merged nodes, these last two zonal config-
urations have firstly to be modified by dividing the detached zones into distinct
areas. And this leads to the definition of too small BAs, unacceptable because
the market power which could rise there. To summarize, the final result of this
paper is the almost impossible optimal BAs creation in the European market.
And if these zones are actually formed, they may create market inefficiencies
caused by arbitrage possibilities.

• [18] Jakubek et al. (2015)

– Paper’s rationale: To show the possible inadequacy of the LMPs-based BAs.
By means of a constructive example it is proven that the division obtained
from clustering of LMPs in some cases may not place the congested lines on the
zones’ borders. This is a con since it requires an additional costly readjustment
manually done by the TSO, after that the market coupling mechanism has
already found the supply/demand equilibrium of the zonal system.

– Paper’s summary: This paper asserts that LMPs clustering is one of the
most diffused approach aimed to BAs redefinition. And it seems to be rea-
sonable, since grouping LMPs should assign nodes that span a congested line
into two different clusters allowing then the market coupling to govern this
congestion as inter-zonal one. In fact, it is worth remembering that only these
last can be seen and hence automatically alleviated by a zonal-based energy
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market. The intra-zonal congestions cannot be seen by this latter, and then
they have to be manually alleviated by the TSO through a costly readjustment
of the market’s dispatching. However, by means of a constructive example, it
is here proven that BAs configuration obtained from LMP methodology might
not always be efficient. Since this approach may lead to zones identified not on
basis of congestion of transmission lines, but on the differences in nodal prices
arising from other reasons. Therefore, these widely diffused clustering meth-
ods should be used with care and compared to alternative approaches (like the
PTDFs-based ones). The LMPs-based clustering algorithm here used to create
the example is a hierarchical clustering algorithm based on Ward’s minimum
variance criterion, fed with hourly LMPs patterns along a year and modified
to keep the zones internally connected from the physical point of view.

• [19] Kang et al. (2013)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI.

– Paper’s summary: This paper shows a ZP mechanism based on sequential
network partition and congestion contribution identification. The first of these
two passages consists of dividing a BA into two parts each time there is a con-
gested line inside it, defining an intra-zonal congestion. While the second one
does the aforementioned split of the targeted zone by clustering the its nodes’
PTDFs coefficients of the same sign. Thereby the aforementioned congested
line is placed exactly on the border between the two newly defined zones. Ready
to define an inter-zonal congestion, instead of the previous intra-zonal one that
cannot be seen and hence automatically alleviated by a zonal-based market.
And consequently would require a costly and manual readjustment of the dis-
patching by the TSO. Which would mean an additional cost for the system
and thus an efficiency decrease of the energy market. PTDFs are considered
congestion contribution factors since they can be used to reflect the congestion
contributions of system nodes to the congested lines. In fact, PTDFs coeffi-
cients are expression of transmission lines’ power fluxes sensitivity with respect
to the system nodes’ injection of power. Consequently, a positive PTDF of a
node towards a congested line reveals an increase of the line’s power flux de-
riving from the increase of the generation injected by the node. Therefore, it
indicates an injection of power which aggravates the congestion of the specific
line. And the other way around negative PTDFs. Despite its computational
burden, this clustering algorithm is sure an innovative way of BAs defining.
Its main drawback is only represented by the consideration of a one-sided pool,
which is unrealistic in many nowadays energy markets. And dealing with a
two-sided pool would prevent the user to make the Node With/WithOut Gen-
erators (NWGs/NWOGs) distinction done in the paper. Which would even
increase the already high computational burden.
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• [21] Kiran et al. (2017)

– Paper’s rationale: To create new BAs, so to improve the energy market
efficiency from different points of view like the congestion management or the
social welfare, and meanwhile to automatically find the optimal number of
zones.

– Paper’s summary: This paper provides an approach to create BAs for their
application in congestion management zonal schemes, while simultaneously
providing an answer to the question asking for the optimal number of zones
which could partition a power network. This is done in two steps. In the first
one the network is repeatedly split into multiple zones, on the basis of hourly
LMPs patterns put into a classic genetic clustering algorithm, creating a set
of zonal configurations. It is worthwhile to remember that nodal prices are
commonly used as clustering feature for the BAs definition, since they inher-
ently capture the impact of congestion on every node by providing an economic
signal which aims towards the congestion alleviation itself. Once these zonal
configurations are obtained, they are fed in a cooperative-game-based decision-
making process for the identification of the optimal zones number that uses the
primal-dual linear programming model of the linear bottleneck games. The ef-
ficacy of the proposed clustering algorithm is shown on a six-bus system, a
IEEE 39-bus system, and a 193-bus practical Indian system. This methodol-
ogy may help regulator or policy maker in deciding the number of BAs to be
formed.

• [22] Klos et al. (2014)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI.

– Paper’s summary: This paper proposes a PTDFs-based clustering approach
called “BubbleClust algorithm”. It defines the new BAs by grouping power
network’s nodes in a multidimensional space, created by PTDF matrix, by
using coefficients related to power flows over the congested lines. The reason
of this energy market zonal division method stands inside satisfying both the
economic and system stability criteria. Therefore, either the control of inter-
zonal congestions in a transparent manner and the minimization of intra-zonal
congestions’ additional costs or the accuracy of prediction of flows on the crit-
ical and frequently congested lines are all optimized. The effectiveness of the
methodology is tested on an example of New England IEEE 39 bus system.
This reveals quite good overall results, although it is ought to make two impor-
tant remarks. On the one hand, the estimation of social welfare would be more
accurate if redispatching costs were included. And this is rather important,
since the social surplus is one of the criteria used to assess the effectiveness of
the newly defined BAs. On the other hand, the overall social surplus gain here
obtained is anyway small if juxtaposed with other parameters’ orders of magni-
tude. Though, the 39 bus system here considered may constitute a not complex
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enough space to illustrate all the potential benefits of this clustering algorithm.
Therefore, further analysis should be necessary to get a clearer evaluation of
this drawback. Eventually, as this paper’s merit it is worth remembering that
PTDFs are smartly weighted using lines’ congestion rate factors. In order to
be sure of finding the most congestible lines as inter-zonal connections when
clustering PTDFs. So as to produce only inter-zonal congestions rather than
the intra-zonal ones, which are unpleasant in zonal-based market since they
represent an additional cost. Due to their alleviation, which has to be manu-
ally done by the TSO and hence is costly. Congestion rate factors are obtained
as average of the transmission line’s average congestion cost over the sum of
all the other transmission lines’ average congestion costs. Each of these av-
erage congestion costs is the arithmetic average of several KKT multipliers,
namely Lagrange multipliers, all associated to the line’s maximum power flux
constraint and respectively deriving from several runs of DCOPF in different
load and generation scenarios.

• [25] Marinho et al. (2017)

– Paper’s rationale: To assess zonal configurations’ optimality through a newly
defined index named Redispatch Effort. It provides the order of magnitude of
costly actions which have to be done when the dispatching resulting from the
zonal market clearing based on a certain user defined BAs configuration is
likely to create congestions. Therefore, the less it is, the better. Because no
costly actions are needed, as for the reference congestion management scheme
of nodal-based energy markets.

– Paper’s summary: This paper proposes an indicator called Redispatch Effort
(RE ). It provides a quantitative measure of the level of congestion resulting
from a zonal market clearing and requires no arbitrary choice of sensitive pa-
rameters, hence it is totally objective. In other words, this metric represents
the order of magnitude of the costly actions, like changing the schedule of
the operational units such as power plants, which have to be done when the
dispatching resulting from the zonal market clearing based on a certain user
defined BAs configuration is likely to create congestions. Therefore, this pa-
rameter can effectively be used as BAs assessment criterion. And the more
a zonal configuration has a low RE, the more is a performing optimal zonal
configuration that well approaches the benchmark congestion management of
a nodal-based market. Which has no RE for definition, because all its power
network’s congestions are automatically alleviated by its nodal market clearing,
through the LMPs differentiation. The aforementioned indicator is computed
this way. Firstly, it is run a constrained OP which does the nodal market
clearing of the system. Secondly, as a result of the previous nodal dispatching,
it is assessed the net position, namely the difference between export and im-
port, for each candidate BA of the evaluated zonal configuration. Thirdly, a
new constrained OP as nodal market clearing is run for each of them. Paying
attention to always substitute the inequality constraints on the power fluxes
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of the BA’s transmission lines with the equality constraint on the BA’s over-
all power balance, set equal to the BA’s net position previously computed.
This has to be done in order to simulate the zonal-based markets’ behaviour
of considering the inner parts of BAs as copper plates, namely power network
portions without any physical limits. Eventually, once done the third step for
all the BAs of the zonal configuration under evaluation, the RE index is eval-
uated as absolute and relative difference of the zonal dispatching’s decisional
variables respect to the nodal dispatching’s ones treated as benchmark. This
newly defined index for BAs assessment is then applied inside the paper on two
operational problems. On the one hand it is used to judge the zonal configu-
rations coming out from three LMPs-based clustering algorithms. Which are
respectively a hierarchical clustering, a K-means clustering and a K-medoids
clustering. On the other one it is used to assess the profitability of splitting
or merging the current Western Europe’s BAs. Operation done respectively
by using a K-means clustering or a hierarchical one. From this latter point of
view, no particular advantage is observed. Since the RE index almost remains
constant by varying the number of the existing BAs. Instead, concerning the
first application of this indicator, it is interesting to note that for a single period
(namely a clustering made on a LMPs snapshot taken during a winter peak)
the K-means outperforms the hierarchical and K-medoids approaches with a
markedly lower RE. Whereas, for multiple periods (namely a clustering made
on hourly LMPs patterns along a year) the hierarchical approach proves to be
more effective. It is worth remembering that most of these considerations are
captured with few BAs, namely twenty or less zones. But this is perfect, since
optimal zonal configurations must always have the least possible number of
zones to actually preserve their optimality. Because increasing the zones num-
ber would make the system tend to a nodal-based market. And consequently
its performance would obviously increase, since nodal configurations have the
best performance per definition. But meanwhile this would not be acceptable
for many reasons, starting from the possibility of market power that can arise
in nodal configurations, hence a zonal configuration of compromise is necessary.
And to be so, that configuration has to minimize the number of zones not to
acquire the reasons which prevent the usage of a nodal scheme.

• [27] Jang et al. (2005)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI.

– Paper’s summary: This paper proposes an improved fuzzy-c-means approach
for the efficient zone clustering of Large-scale power systems, namely for defin-
ing an optimal BAs configuration. The adjective “improved” refers to the inter-
nal modification that here has been made on a classical fuzzy-c-means scheme,
in order to automatically prevent the algorithm from defining unfeasible zonal
configurations made up of zones with geometrically distant nodes put inside
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the same cluster. This condition was usually obtained in other papers through
an external check. Which, during the merge of a node in a cluster, controlled
the presence of at least one physical connection between them. And then, in
case of absence of it, it stopped the union. Here instead, this external check
is no longer necessary because implemented in the distance metric used by the
algorithm. Thereby, similarity between nodes and clusters centers is here eval-
uated by the combination of a Euclidean distance between LMPs snapshots,
used as clustering feature, and a geometric distance between nodes spatial po-
sitions, aimed at only merging physically linked nodes and clusters. Of course,
from the centroids’ point of view the spatial positions are obtained as average
of the nodes’ spatial positions inside the respective clusters. A real application
of this clustering algorithm is shown in real Korea power network, using differ-
ent weighting coefficients for the price distance and the geometric one inside
the newly defined similarity measure. So to observe eventual changes in the
clustering.

• [31] Zhang et al. (2008)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI.

– Paper’s summary: This paper creates a combinatorial optimization model
to represent the power-grid-partitioning problem. And then solves it through
a heuristic algorithm embedded by tabu search. This latter is a meta-heuristic
approach used inside many optimization problems. Which aims to prevent
the algorithm from assessing again already considered solutions, namely from
cycling, by memorizing the attributes of recently visited solutions in a tabu
list and forbidding them for a certain number of iterations. In this way the
tabu search speeds up the process. The remaining part of the method is a
heuristic clustering algorithm, named “imitating out-point method” because
of its similarity with the traditional out-point method. The nodal features
used for the clustering are single values of LMPs, both taken as averages of a
pattern or snapshots of certain circumstances. The main constraints enclosed
inside the clustering deal with the physical connection and the price closeness
among within-clusters nodes, the zones number limitation and the single-node
BAs prohibition. The first two of these constraints are respectively addressed
to prevent the algorithm from defining unfeasible zonal configurations made
up of physically detached BAs, and to preserve the benchmark economic sig-
nals of LMPs when passing from NP to ZP. The third of the aforementioned
constraints keeps the resultant zonal configuration away from the number of
zones of an unfeasible nodal configuration. The last impedes the possible rise
of market power that may occur in single-node areas. Both the model and the
algorithm to solve it are tested on some real examples from northeaster power
grid of China. The outcomes prove this method to be actually applicable for
the BAs definition problem.
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• [32] Van den Bergh et al. (2016)

– Paper’s rationale: To quantify the impact of the number of BAs on the
market outcomes of a zonal configuration. To do this: both a hierarchical
clustering algorithm, to define BAs, and an economic dispatch model for zonal-
based markets, to compute market outcomes, are developed.

– Paper’s summary: This paper defines new BAs through a hierarchical clus-
tering algorithm, based on Ward’s minimum variance criterion and fed with
nodal PTDFs of statistically most congestible lines. These last are logarithmi-
cally weighted using congestion rate factors, already used for that and described
in previous reference [22]. In this way, the most constraining transmission lines
are put between zones, ready to define inter-zonal congestions instead of intra-
zonal ones. Which are remembered to be unpleasant in zonal-based market
due to their alleviation, required to be manually done by the TSO and hence
costly. The usage of a logarithmic weighting, in disagreement with the previ-
ous reference [22], relies on the fact that proportional weighting can attribute a
disproportionately high importance to the most congested lines. The clustering
algorithm also includes the classical additional constraint on BAs’ contiguity
during the merging of clusters, so as to prevent the method from defining un-
feasible zonal configurations made up of physically detached BAs. To fulfil the
paper’s initial purpose, namely to quantify the impact of the number of BAs
on the market outcomes of a zonal configuration, the aforementioned process
is used to define several BAs sets of a portion of the European power net-
work. These zonal configurations with varying zones number are then assessed
through a comparison with both a reference nodal configuration, representing
the benchmark in terms of market performance, and the current zonal con-
figuration of European power network, representing the starting point. This
comparison is done from an economic perspective. Therefore, an economic dis-
patch model for zonal-based markets is developed inside this paper too in order
to define the market outcomes of each zonal configuration. According to the
results, these last have a marginal improvement that decreases with increasing
number of BAs. Hence there may be a suggested number of zones after which
the additional improvement brought by an additional BA would be overcome
by the additional costs deriving from the zonal configuration application. In
fact, these last are here proven to be directly proportional to the number of
zones. And this was predictable, since one of nodal configuration’s drawbacks
which hinder its enforcement is the too high maintenance cost which would be
associated to a such complex system. For all these reasons, this paper’s final
suggestion is that it is not always profitable to increase the number of zones.
A careful analysis is needed.

• [36] Wawrzyniak et al. (2013)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI. The clustering algorithm
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here proposed puts the focus on the temporal stability of the newly defined
BAs. Concerning with the weather conditions variability, which affects system’s
LMPs and hence the optimal zonal configuration definition too. Because this
latter can be based on the aforementioned prices, like happens in this clustering
method.

– Paper’s summary: This paper firstly points out an important lack in the lit-
erature of the time concerning the power network division into zones: the use
of usually stable levels of generation. Which remains in contradiction with the
increasing amount of renewable generation for which, as yet, wind farms, char-
acterized by highly variable power output, constitute the main source. This is
a problem because, the relative instability in the amount of power injected into
the system by wind farms significantly influences the energy prices even if the
rate of wind generation to total generation is relatively small. Hence, LMPs-
based clustering algorithms for the BAs definition would better to take into
account several wind scenarios with relative LMPs sets inside their processes.
So as to improve the optimal zonal configuration’s temporal stability with re-
spect to the weather conditions variability. For these reasons, this paper starts
from a hierarchical clustering algorithm based on Ward’s minimum variance
criterion and fed with hourly LMPs patterns along a year. Then it runs the
process using 722 different historical wind scenarios, leading to different wind
farms generations, LMPs sets and thus zonal configurations. And eventually it
aggregates all the clustering results using another clustering technique, named
“consensus clustering”, through which the final optimal zonal configuration is
found. Therefore, this latter additional clustering algorithm is the real inno-
vation of this paper. Thanks to which many power network’s future scenarios
can effectively be considered during the BAs definition, in order to improve the
temporal stability of the resulting zonal configuration as requested by CACM ’s
guidelines for optimal BAs sets.

• [39] Yang (2004)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI. And to deterministically
find the optimal number of zones. By using three assessment criteria on zonal
configuration’s price zones. Which are respectively BAs’ lifetime, compactness
and isolation.

– Paper’s summary: Firstly, the paper explains why LMPs-based clustering
algorithm may be less efficient than the ones based on PTDFs of statistically
most congestible lines. This is mainly due to the temporal stability of the final
optimal configuration, which is ineluctably lower in LMPs-based configurations
due to their clustering features’ dependence on time. For this reason, it is here
developed a new PTDFs-based clustering algorithm to create power network’s
BAs. Inside it, before creating price zones, all the potentially congested lines
are firstly determined in a period of time based on actual operating conditions
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of the system. This is done through a Monte Carlo simulation, thanks to which
it is analysed the congestion probability of transmission network also consid-
ering uncertainty in the power market. After that, the sensitivities of nodal
power injections to power flows on just located congested lines, namely PTDFs
to them referred, are computed for all the system’s nodes. And then, these
nodal features are used to place nodes inside a high-dimensional space whose
dimension is the number of congested lines. Forming this way an input dataset
for the here used clustering algorithm, which is a scale-space hierarchical clus-
tering. This latter in fact, is able to group points inside a space by simulating
the human visual system. Therefore, in this case it creates power network’s
BAs by merging nodes represented by points inside the aforementioned high-
dimensional space, respectively located by using as coordinates each node’s
PTDFs of most congestible lines. After having described this new clustering
algorithm, this paper analyses the clusters validity problem too. In order to
deterministically choose the optimal number of zones among the sequence of
zonal configurations, with different number and size of BAs, enclosed within
the resulting dendrogram. Therefore, price zones’ lifetime, compactness and
isolation are introduced inside this second part as parameters useful for the
user to make his choice on the number of zones of the final zonal configuration.
Which has to be done here like in any other hierarchical clustering algorithm.
Eventually, this methodology is applied to two congestion cases to prove its
effectiveness. These last are both taken from IEEE 118-node system, and
respectively consider two or four congested lines.

• [40] Yang et al. (2005)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI. And to deterministically
find the optimal number of zones. By using three assessment criteria on zonal
configuration’s price zones. Which are respectively BAs’ lifetime, compactness
and isolation.

– Paper’s summary: This paper is highly similar to previous reference [39].
This is reasonable since these two documents share some of the authors. Any-
way, there are slight changes here following. Firstly, previous reference [39]
has been published on a journal named “Periodica Polytechnica”. Whereas the
current article comes from a conference. Therefore, it is obvious for the former
one to propose a more in-depth analysis of the newly described PTDFs-based
scale-space hierarchical clustering. Secondly, previous reference [39] finds the
most congestible lines through a Monte Carlo simulation, thanks to which it
is analysed the congestion probability of transmission network also considering
uncertainty in the power market. Whereas this second paper identifies these
lines by using classic historical data on power system’s operation. This second
difference could be due to the easier nature of this second document. Beyond
these slight changes, all the rest remains the same. Even the final case study
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for the actual application of the clustering algorithm, which is here run again
on IEEE 118-node system.

• [41] Yang & Zhou (2006)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI.

– Paper’s summary: After the introduction, this paper explains why LMPs-
based clustering algorithm may be less efficient than the ones based on PTDFs
of statistically most congestible lines. This is mainly due to the temporal stabil-
ity of the final optimal configuration, which is ineluctably lower in LMPs-based
configurations due to their clustering features’ dependence on time. For this
reason, this paper defines new power network’s BAs by using a fuzzy-c-means
clustering algorithm fed with nodal PTDFs of statistically most congestible
lines. These last are identifies through a Monte Carlo simulation method be-
fore the run of the aforementioned clustering process, so as to analyze the
congestion probability of transmission network by considering the uncertain-
ties in the power market too. Whereas at its end, each system node is uniquely
assigned to the cluster to which it has the highest grade of membership. In fact,
it is worth remembering that peculiarity of fuzzy-c-means clustering algorithm
stands actually inside the possibility of assigning each point to more than one
cluster by using its grades of membership. But this is not useful for BAs defi-
nition. Because in this latter case each point, namely each system node, must
belong to only one cluster, namely one price zone, in order to create an appli-
cable zonal configuration. This is why it is necessary the previous placement
passage, where it is also embedded a control on within-clusters nodes’ physical
connection, so as to prevent the clustering algorithm from defining unfeasi-
ble zonal configuration made up of physically detached BAs. Eventually, this
complete method is applied on the IEEE 118-system to show its effectiveness.
The results seem to reveal a reasonable power network partitioning. Even if
no specific assessment criteria are here proposed.

• [42] Yong et al. (2000)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI.

– Paper’s summary: This paper describes the technical challenges in imple-
menting a cluster-based congestion management system. Therefore, to do so it
compares the performance of the two main representatives of this latter cate-
gory to the one of the nodal pricing method. Which results in the most efficient
operating point possible at any given instance, and hence represents the bench-
mark in terms of performance. The two cluster-based congestion management
systems here analyzed are respectively the “zonal pricing” method and the
“congestion-cluster pricing” one. The former one determines the zones based
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on price differentials in LMPs, whereas the last one merges nodes into BAs
based on their relative impacts of power injection on congested transmission
lines. This last quote could make think to nodal PTDFs of statistically most
congestible lines. But instead, in this paper they are replaced by Congestion
Distribution Factors (CDFs). Which anyway are derived from aforementioned
PTDFs. The nodes’ position information is obviously included inside the BAs
definition of both the two previous zonal-based markets. So as to prevent the
clustering algorithm from defining an unfeasible zonal configuration from the
physical point of view. The systems performance are evaluated, in order to
make the aforementioned comparison, through a zonal market clearing simula-
tion of a very simple 9-bus power network. Therefore, no clustering algorithm
for the BAs definition is actually employed inside the two zonal-based markets.
And their zonal configurations are simply defined by grouping nodes accord-
ing to the similarity of their LMPs, or CDFs. The final results in terms of
congestion management performance obviously elect the nodal scheme as the
benchmark. Followed by the congestion-cluster pricing method, namely the
zonal configuration based on CDFs, and then by the zonal pricing method,
namely the zonal configuration based on nodal LMPs.

• [44] Yao et al. (2016)

– Paper’s rationale: To create new BAs in order to improve energy market
efficiency from different points of view. Like the congestion management or
the social welfare, typically used as markets KPI.

– Paper’s summary: This paper defines power network’s price zones by us-
ing an improved K-means clustering algorithm fed with hourly LMPs patterns
along a certain period, in particular one or three months. The two improved
points compared with traditional K-means clustering algorithm reside in con-
sidering system’s topology, by looking at the existence of physical connections
among within-clusters’ nodes, and not choosing randomly the initial centroids.
The former betterment is included by checking, every time a node is going to
be put inside a cluster, the presence of at least one physical connection between
it and the nodes which are already inside the cluster. This measure aims to
prevent the clustering algorithm from defining unfeasible zonal configurations,
made up of physically detached BAs. Instead, the second amelioration tries
to fix the problem for which different runs of a K-means clustering algorithm
on the same input database can lead to completely different partitions. Since
the choice of the initial clusters’ centers hugely affects the final result of the
centroid-based clustering algorithms, like the K-means is. This is a problem
during BAs definition, because the perfect methodology should be able to de-
terministically find out the global optimum of the clustering problem. Namely
the best applicable zonal configuration of the power network in question. But
this does not always happen whether the clustering result depends on some
user-defined input data, like the aforementioned centroids are. Because, in
this latter case a wrong choice of them makes the clustering OP converge on
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a local optimum, instead of the desired global one. For this reason, here the
K-means’ initial centroids are not randomly chosen by the user. But they
are automatically indicated by the algorithm by maximizing the geographical
distance between them. So as to also cover as much as possible the power net-
work’s area, in order to minimize the number of failures of the previous check
on nodes’ physical connection. Therefore, here the user has only to define the
number of clusters like in any other K-means clustering algorithm. And then,
it is the algorithm which chooses the initial centroids among the nodes of the
input database. By indicating its group of nodes which maximizes, for that
user-defined number, the geographical distance between them. Beyond these
two improvements, the rest of the K-means clustering algorithm proceeds as
usual. Therefore, the Ward’s minimum variance criterion drives the points
sorting inside the various clusters during the process. And the clustering al-
gorithm stops when the user-defined convergence criterion is met. Which is
here represented as usual by the non-variance of clusters configuration for two
successive iterations. The aforementioned methodology is eventually applied
to two case studies, so as to assess its effectiveness. Therefore, both the IEEE
118-bus system and a realistic regional power system not better defined are
partitioned using this clustering algorithm. Respectively using hourly LMPs
patterns along three months or along one month as clustering input. In these
real cases the number of zones of the final zonal configuration is chosen by
looking at the maximum among the maximum differences of LMPs respec-
tively evaluated in each BA. The lower this parameter is, the better. Because
it means that few of the LMPs’ benchmark economic signals have been lost
when passing from nodal pricing to zonal one. Therefore, this index is obvi-
ously inversely proportional to the number of zones. Since having a number of
BAs equal to the number of nodes would give no loss of nodal economic signals.
But meanwhile, this latter situation is not acceptable due to the inapplicability
which characterizes nodal pricing schemes for many reasons. Consequently, a
trade-off zonal configuration is needed. And hence it is chosen by looking when
the marginal decrease of the aforementioned parameter begins to lessen less.
In other words, here the number of zones is set where one more BA does not
make the above LMPs dispersion diminish so much to consider profitable the
zonal configuration change.

2.2 Clustering features summary table

Table 2.1 portrays an overview of the user-defined nodal parameters which are used in-
side each of the considered papers as clustering feature, to run the respective clustering
algorithms.
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2.2 – Clustering features summary table
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2.3 Clustering techniques summary table and descriptions

Table 2.2 classifies the considered papers with respect to the adopted clustering algorithms.
This latter is followed by a bulleted list, which contains two things for each clustering
algorithm: its general description and the specific working processes which have been
undertaken of it during its various applications, inside the papers included in this chapter.

Table 2.2: Clustering algorithms summary table of references which deal with optimal
BAs definition using clustering algorithms.
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[3] Breuer et al. (2013) X
[4] Burstedde (2012) X
[5] Breuer & Moser (2014) X
[8] Felling & Weber (2016) X
[9] Felling & Weber (2018) X
[15] Grimm et al. (2017)2

[17] Imran & Bialek (2008) X X X
[18] Jakubek et al. (2015) X
[19] Kang et al. (2013) X
[21] Kiran et al. (2017) X
[22] Klos et al. (2014) X
[25] Marinho et al. (2017) X X X
[27] Jang et al. (2005) X
[31] Zhang et al. (2008) X
[32] Van den Bergh et al. (2016) X
[36] Wawrzyniak et al. (2013) X X
[39] Yang (2004) X
[40] Yang et al. (2005) X
[41] Yang & Zhou (2006) X
[42] Yong et al. (2000) X
[44] Yao et al. (2016) X

26



2.3 – Clustering techniques summary table and descriptions

• BubbleClust Algorithm: It is a space-based clustering algorithm based on the
so-called PTDF space. This latter is built this way: (a) take the PTDF matrix,
namely a MxN matrix where M represents the number of lines and N the number
of nodes. Each element inside it reveals the power flux contribution which results
on the M -th line, indicated by the row, from the injection of 1 additional MW by
the N -th node, pointed by the column. (b) These matrix columns are treated as
vectors of coordinates in a M -dimensional space. Therefore, each of these vectors
both corresponds to the space position of a certain node, from the overall point of
view, and to the fractions of power transmitted through the system lines deriving
from the injection 1 additional MW by that node, from the single elements’ point of
view. Having introduced PTDFs, it is worth remembering that they always imply
a withdrawal of energy from the slack bus. Namely they indicate the sensitivity
of transmission lines’ power fluxes respect to the injection of power from a system
node and the contemporary download from the slack bus of the same amount. And
this latter reference bus has to be arbitrarily decided beforehand, causing a PTDFs’
dependence on this choice. All this could become a drawback for PTDFs-based clus-
tering methods. But fortunately, as proven inside the appendix of reference [22], the
slack bus selection never affects the clustering result even changing the PTDFs on
which the algorithm is based. Therefore, PTDFs-based clustering approaches be-
come at first sight as reasonable as LMPs-based ones. (c) Going on with the PTDF
space creation, since zones borders want to be defined along most congestible lines
in order to only have inter-zonal congestions in the resulting partitioned system
instead of intra-zonal ones. Which are unwanted in zonal-based energy markets
due to their manual, and hence costly, alleviation. All the vectors of coordinates,
namely the PTDF matrix’s columns, are scaled through the respective congestion
rate factors. These last are one per transmission line and are obtained as average of
the transmission line’s average congestion cost over the sum of all the other trans-
mission lines’ average congestion costs. Each of these average congestion costs is
the arithmetic average of several KKT multipliers, namely Lagrange multipliers,
all associated to the line’s maximum power flux constraint and respectively deriv-
ing from several runs of DCOPF in different load and generation scenarios. And
moreover, these average congestion costs are so called for two reasons. On the one
hand, they are “averages” since they come from the average of several Lagrange
multipliers associated to different runs of the DCOPF algorithm. On the other one,
they are also “congestion costs”. Since each Lagrange multiplier firstly represents
the cost of the physical constraint referred to him, and this latter could become a
congestion cost in case of activation of the respective constraint. (d) After having
scaled PTDF matrix’s columns with the aforementioned congestion rate factors,
the nodes that embrace congested lines are spatially divided by the others. This
is because congested lines are scaled through higher congestion rate factors, and

2Actually this paper does not include a clustering algorithm aimed at defining an optimal zonal con-
figuration. Nevertheless, it is here included due to its purpose, which is always the search of optimal
BAs.
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hence obtain lower scaled vectors of coordinates. Whereas the nodes hugging rarely
congested lines are scaled through lower congestion rate factors, and hence obtain
higher scaled vectors of coordinates. (e) This split perfectly permits to shrink the
dimension of the problem. Because all the nodes with high coordinates are those
at the ends of rarely congested lines, which can be neglected since the method’s
purpose is to define zones’ borders along most congestible lines. Therefore, only
nodes at the ends of most congestible lines remain, namely those with smaller co-
ordinates. The aforementioned PTDF space has been found. At this point, it is
interesting to note that the remaining nodes are most distant when they are the
couple of extremes of one among the most congestible lines. Consequently, applying
now the BubbleClust clustering is perfect. Because it does not put these couples
of nodes into the same clusters but, as initially wanted, it makes these couples of
nodes become the edges of two adjoining BAs. In order to effectively obtain a zonal
configuration with power network’s most congestible lines along zones’ borders.

– [22] Working process: (a) In the above described PTDF space, initial single-
node zones are firstly considered in correspondence of the remained nodes,
which are most congestible lines’ extremes. Therefore, if the previously ob-
served most congestible lines are K, at this point there are 2K single-node
zones or less. Since there can be cases of nodes at the edge of two or more
usually congested lines. (b) Then it is entered a loop, where firstly they are
evaluated the Euclidean distances between the just evaluated centroids and the
not yet merged nodes, namely the ones that have been previously neglected
during the PTDF space creation. Then it is located the smallest of them, and
the respective node and cluster are merged together after having checked the
presence of at least one physical connection between them. In order to prevent
the algorithm from creating unfeasible zonal configurations made up of BAs
containing spatially detached groups of nodes. And eventually the cluster’ cen-
ter of the modified cluster, namely its so-called centroid, is updated also taking
in consideration the coordinates of the last added node. (c) This loop contin-
ues until no more unattributed nodes are present inside the PTDF space, and
there are only 2K clusters which derive from the as many initial single-node
zones. (d) At this point there are two possibilities. On the one hand, if the
user’s preference on the number of clusters has already been overcome by the
just reached 2K groups, the algorithm stops and issues the zonal configuration
requested by the user. On the other hand, if it is not, the algorithm continues
merging in each step the two closest and physically adjacent clusters. Until the
aforementioned user’s preference on the number of clusters is finally reached,
and thus the respective zonal configuration is issued.

• Fuzzy-c-means: The whole fuzzy clustering methods are soft clustering algorithms.
They differ from hard clustering ones, like the K-means, because they can assign
each point to more than one cluster through a grade of membership. The Fuzzy-
c-means is the most used among fuzzy clustering methods. It is very similar to
the K-means algorithm except for the result, which is here the typical “matrix of
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memberships” of fuzzy algorithms instead of K-means’ data clusters. In the matrix
of memberships: each row represents a datum while each column represents a cluster.
Thereby, each cell indicates the grade of membership of a particular point towards
a specific cluster from zero to one. Moreover, it is worth remembering that these
grades of memberships cannot be negative and have unit sum for each row. Since
each datum can only have an overall unitary membership, divided among all the
clusters.

– [17] Working process: (a) Choose the number of clusters k, like K-means
clustering algorithm. (b) Randomly or manually generate k cluster centers, also
called centroids. (c) Assign the grades of membership of each point towards
each cluster, through the objective function used to define the fuzzy member-
ship. Which represents the distance metric inside a fuzzy clustering method,
instead of the more classic Euclidean one used within K-means algorithm. (d)
Recalculate the centroids as clusters’ averages, like a K-means clustering, but
weighted through the clusters elements’ grades of membership. (e) Repeat the
two previous steps until some convergence criterion is met. Which is usually
the not variance of clusters composition between two following iterations, just
like K-means algorithm. Finally, two variations are done inside this paper. On
the one hand a proper zonal configuration is eventually created by assigning
each node to only one cluster, when its grade of membership to a cluster is
greater or equal than 0.95. In this way, each node cannot belong to more
than one zone at the end of the clustering and so the zonal configuration be-
comes actually applicable. On the other hand, only physically linked nodes are
merged into the same zone thanks to a check run at the end of the clustering
process. This latter verifies the physical connection between nodes inside the
same cluster. And in case modify the zonal configuration to guarantee it. In
order to preserve the physical feasibility of the resulting zonal configuration.

– [27] Working process: The same of previous reference [17], apart from the
distance metric here used to iteratively merge nodes and clusters at each step.
In fact, inside this paper it is used the improved fuzzy membership instead of
the classical one. Which combines, through two user defined coefficients with
unitary sum, the information of LMP similarity, normally used as clustering
feature, and the one of nodes spatial position, essential to prevent the clustering
algorithm from defining physically unfeasible zonal configurations. Namely
BAs sets made up of physically detached zones.

– [41] Working process: The same of previous reference [17], apart from the
nodal features chosen as input for the clustering algorithm. Which are here
the nodal PTDFs of statistically most congestible lines, identified through a
Monte Carlo simulation, instead of the previous hourly LMPs patterns along
a year.

• Genetic Algorithm: The GA is not a usual clustering algorithm, since it does not
belong to none of the two prominent families of clustering algorithms: the centroid-
based algorithms and the connectivity-based ones. Anyway, here it is used to solve
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the optimization problem which defines the clustering and hence states the new
BAs. This latter is the second optimization problem of the paper. Since there is
first a classic DCOPF aimed at finding out the LMPs of the system nodes, then
used as input for the GA. The objective function which drives the clustering process
points to minimize for each hour the absolute difference between nodal prices and
the average prices of the zones in which the respective nodes are contained. Like a
sort of Ward’s minimum variance criterion, that minimizes the total within-clusters
variance.

– [3, 5, 21] Working process: (a) It is randomly created a starting population
made up of I chromosomes. Where each of them is a solution, namely a zonal
configuration. This is because each of them is a code of N numbers, where N
is the number of system nodes, in which each number represents the cluster to
which a specific node belongs. The clusters, that is the zones, are M overall
and this number has to be defined beforehand by the user. (b) The starting
population enters a loop. Where genetic operators, like mutation and crossover,
modify the chromosomes’ genes and hence create a new population. This latter
is a new group of chromosomes, namely a new set of zonal configurations, which
better fit the objective function which regulates the clustering. Otherwise
the new chromosomes coming out from the aforementioned loop would have
been discarded, in favor of the initial population which entered the loop at
the beginning of the iteration. (c) The loop stops, and so the GA comes
to a convergence giving an optimized zonal configuration, when the objective
function reaches the target within a certain user defined tolerance. Namely in
this case, when it is minimized under a certain threshold indicated by the user.
(d) OP ’s constraints are considered both trying to change some chromosomes’
genes at the end of each iteration, so to fix the specific outlaw solution, or using
penalty terms in the target function, which move the objective function away
from the optimization and hence oblige the algorithm to go ahead looking for
new zonal configurations.

• Geographical Clustering: The geographical clustering creates zones by dividing
the power network along statistically most congestible transmission lines. Thereby,
in the resulting zonal configuration congested lines are at the interface or bound-
aries of the zones. And congestions can only occur between zones, as inter-zonal
congestions, rather than inside them, as intra-zonal ones. This would be an op-
timal condition for zonal configurations, since they are only able to automatically
alleviate inter-zonal congestions. While intra-zonal ones cannot be seen by the pool
of the zonal-based market, and hence they have to be manually alleviated by the
TSO. With associated extra costs. At this point it is worth remembering that, as
stated in the introduction of paper [17], the nowadays European power network is
bounded by intercontinental transmission lines since over the years there has been
a steady rise in the amount of cross border trade whereas there has been very little
growth in the cross border transmission capacities. Therefore, the aforementioned
geographical clustering algorithm which divides the European power network along
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statistically most congestible transmission lines, actually partitions this network
along intercontinental transmission lines. Namely along national borders. In fact,
the zonal configuration coming out from this clustering algorithm divides the Euro-
pean power network into seventeen zones. Which exactly reflect the current zonal
configuration based on a national reason. For all these reasons the geographical
clustering is roughly considerable as the current zonal configuration of power net-
works, where it is present of course. Eventually, please note that this clustering
algorithm has no need of any kind of distance metric. Since the clustering process
is not driven by the similarity of some nodal features, but by the statistically most
congestible transmission lines.

– [17] Working process: (a) Find the statistically most congestible lines. (b)
Use them as zones’ borders. (c) Obtain the power network division along these
lines. Which actually coincides with a national-based zonal configuration.

• Hierarchical Clustering: The algorithm here used for the creation of new BAs
is a connectivity-based and bottom-up clustering, also called hierarchical and ag-
glomerative clustering. This type of clustering methods firstly consider each data as
an independent cluster. And then they iteratively merge two clusters into a single
one at each step, until all the initial points are contained into a sole group. All
these algorithms proceed towards the increase at each step of the distance between
clustered data. But meanwhile they differ for the linkage criterion, used at each
clustering step to merge the couples of points. In this paper it is used the Ward’s
minimum variance criterion, according to which clusters are created by minimizing
the total within-clusters variance. In other words, groups are here created by joining
data as similar as possible.

– [4, 8, 18] Working process: (a) Each data is considered as an independent
cluster, as stated by bottom-up and hierarchical clustering algorithms. (b)
At the beginning of each step it is computed the sum of squared Euclidean
distances. They are one per node, and respectively calculated between the
price vector of each node (which contains the hourly values of its LMP) and
the average price vector of the cluster to which the considered node belongs.
Considering the sum of Euclidean distances coming from the nodes contained
into a sole cluster, it gives a measure of its homogeneity. Therefore, it is zero
at the beginning of the algorithm when each cluster is made up of just one
element and hence its homogeneity is total. And it grows during the clustering
process, where clusters start including stranger points and so their homogene-
ity decreases. (c) The linkage criterion used within this hierarchical clustering
is the Ward’s minimum variance criterion. Since it tends to minimize the total
within-clusters variance, an objective function is created using the aforemen-
tioned sum of squared Euclidean distances and it is minimized. (d) In this way,
at each step it is merged the couple of clusters which increases the objective
function, and so clusters’ homogeneity, as little as possible. Thereby, clusters
are actually created according to Ward’s minimum variance criterion. (d) The
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aforementioned OP is also constrained to avoid the physically incoherent sit-
uation of merging detached nodes into a single BA, namely a single cluster.
This is done through a Boolean variable, namely a binary parameter, equal to
one when the two nodes are adjacent and equal to zero otherwise. In this latter
case, the joining of the couple of nodes inside the same zone becomes forbidden.
(e) The merging of couples of nodes, and hence the clustering process, goes on
until all the initial points are contained into a sole group. In that moment, the
summary dendrogram is produced and one of the optimized zonal configura-
tions is chosen by the user. Among the sequence provided by the hierarchical
clustering. This choice becomes the final result of the clustering algorithm.

– [9] Working process: (a) Six scenarios of the future CWE power network
are considered, useful since there is no certainty in the future. (b) Each of
these scenarios is solved through a DCOPF on an annual basis, with transmis-
sion lines’ capacity curtailment to roughly verify the N-1 security, providing
hourly LMPs patterns along the year for that scenario. (c) The six resulting
LMPs sets are inserted into the clustering algorithm, both individually and
together. In the hierarchical clustering algorithm: (c.1) at the beginning each
node corresponds to one zone. (c.2) Then at each iteration the two zones
which increase the less the OP objective function, namely the within-clusters
variance with the nodes’ weights, are merged together. (c.3) In this way, a
sequence of zonal configurations is created. Which ends with the creation of
a single cluster and the issue of the dendrogram. (d) As a result, seven zonal
configurations sequences are produced: one for each scenario and the seventh
for all the scenarios together, hence called the “robust” configuration. In which
the user has then to choose the number of zones by cutting the dendrogram.

– [25] Working process: The same as previous reference [4], fed with both
hourly LMPs patterns along a year and LMPs snapshots.

– [32] Working process: The same as previous reference [4], fed with nodal
PTDFs of statistically most congestible lines. Evaluated through a DCOPF of
the European power network portion used inside the case study of the paper.
This latter covers a full year on an hourly basis, and it is based on national
load data for the year 2013 taken from ENTSO-E.

– [36] Working process: Basically the same as previous reference [4]. The
innovative part of this paper is represented by the final consensus clustering
run to put together the 722 zonal configurations, respectively associated to the
considered wind scenarios. The resulting optimal zonal configuration is char-
acterized by a better temporal stability towards weather conditions variability
than all the aforementioned zonal configurations only linked to one wind sce-
nario. This consensus clustering algorithm belongs to the problem known as
aggregation of clustering. In this latter there are a number of different cluster-
ing results that have been obtained from different runs of the same clustering
method. And the task of the algorithm is to create a single (consensus) clus-
tering which generalizes the results of a whole set of runs. The consensus
clustering works as following described. (a) If two objects are in the same
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cluster then they are considered to be fully similar, and if not they are marked
dissimilar. Similarity between two objects takes the value of one if they are
in the same cluster and zero otherwise. (b) Consequently a binary similarity
matrix can be created for each clustering result, namely for each wind scenario
in the paper’s case study. (c) The entry-wise average, namely the average in-
dependently performed on each matrix element, of such matrices representing
the sets of groupings yields an overall similarity matrix. (d) Starting from
highest value of this latter overall similarity matrix, and progressively going
down in descending order, couples of nodes are iteratively merged into the
same BAs until the user-defined number of clusters is achieved. Please note
that, if the additional check on within-clusters’ nodes physical connection is
already enclosed in the previous hierarchical clustering from which derive the
aforementioned 722 zonal configurations, it may not be necessary to include it
also in this consensus clustering. Because the bigger elements of the overall
similarity matrix are automatically referred to often merged nodes, which have
had to satisfy many times the just described additional check. Nevertheless,
it is suggested to include this control inside the final consensus clustering too.
So as to be sure of preventing the overall method from defining an unfeasible
zonal configuration made up of physically detached BAs.

• K-means: The K-means clustering is a centroid-based clustering algorithm. Its
name comes from considering each of the K clusters as average of his inner points.
These clusters representative values become the so-called cluster centres or centroids.
Which can actually correspond to one of the respective cluster’s points, like at the
beginning when there is just one datum per cluster, or not. These K centroids
have to be initialized by the user before the start of the clustering to values that
can belong or not to the input database, hence the number of clusters is a strong
input for this algorithm. After that, the process iteratively merges each of the
observations to the cluster with the nearest centroid and then updates these cluster
centers at the end of each step. The algorithm stops when a user defined converge
criterion is met, which is typically the non-change of clusters composition among
a certain number of consecutive steps. Therefore, the final outcome of a K-means
clustering is the partitioning of N observations coming from an input database
into K clusters in which each observation belongs to the cluster with the nearest
centroid. Since the number of clusters is an essential input for this algorithm, and
since it is usually a not available information beforehand, measures of clustering
adequacy like the Clustering Dispersion Indicator (CDI ) or Mean Index Adequacy
(MIA) are often used to suggest this value. A good clustering tool must both exalt
the difference between points belonging to different clusters, and make the points
inside the same cluster as similar as possible. This is more reached the more the
previous indices tend to zero. Consequently, analysis on their trends according to the
number of clusters are typically made. And the number of partitions is eventually
chosen when these indices start remaining almost constant. Obviously, they are both
inversely proportional to the number of clusters. Since increasing it to the number
of database’s observations, as extreme condition, would make a perfect clustering
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according to the previous disposals.

– [25] Working process: (a) Choose the number of clusters K. (b) Manually or
randomly initialize the respective K centroids. (c) Assign each dataset point to
the cluster with the nearest centroid according to the distance metric used by
the algorithm, which is usually a normal Euclidean one. (d) Update the clusters
centers by also taking in consideration the newly inserted points. (e) Iteratively
repeat the two previous steps until some convergence criterion is met, which
is usually that the clusters composition has not been changed between two
following cycles. The whole of these passages is done for several number of
clusters in the paper, in order to look at the RE index trend according to the
number of zones. Hence no CDI or MIA evaluations are done to find out the
advisable number of clusters for the input database in question.

– [44] Working process: In this paper, new BAs are created using a topology
based K-means clustering algorithm. This latter aggregates the buses with sim-
ilar dynamic LMPs, namely hourly, into zones by iterations. The improvement
over the classic K-means algorithm is twofold. On the one hand it is considered
the existence of connection between buses in one zone before merging nodes in
clusters. On the other one initial clusters centroids are not chosen randomly,
thereby the randomness of the solution is avoided. The number of clusters has
to be given beforehand, like any K-means algorithm. In this case this is found
by comparing the nodal prices’ losses of sufficient experiments, which have to
be minimized.

• K-medoids: This clustering algorithm is quite similar to K-means one, except for
the choice of clusters centroids. Which here have to correspond to one of the within-
clusters’ points. These medoids, so called to distinguish them from the previous
K-means’ centroids, are anyway user defined at the beginning of the process and
then updated during the clustering by modifying clusters composition. In this latter
passage, remembering medoids’ feature to be one of the within-clusters’ points, a
new method for updating the medoids has to be invented. Since centroids’ technique
of making the average among within-cluster points may give a value different from
any of them, and hence is not suitable anymore. Therefore, amongst the arbitrary
methods to solve this problem, this algorithm application based on power network
analysis chooses to define new medoids at each step by looking at nodes’ connections:
the more a node has a high number of electrical connections with other nodes, the
more its feature used for the clustering is likely to become the medoid of its cluster.
It is worth to remembering that within the rest of the clustering process, namely
during the partition of the N database observations into the K user defined clusters,
the distance metric used to put each point inside the cluster with the nearest medoid
is always the same of the previous K-means, namely a classic Euclidean distance.

– [25] Working process: It is basically a K-means clustering, hence the work-
ing process previously described in the above lines, with the aforementioned
modification on clusters centres, which are medoids instead of centroids.
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• Sequential Network Partition (SNP) With Congestion Contribution Iden-
tification (CCI ): This is an innovative BAs partitioning based on two steps. The
first consists of dividing a BA into two parts each time there is a congested line
inside it, defining an intra-zonal congestion. While the second one does the afore-
mentioned split of the targeted zone by clustering the its nodes’ PTDFs coefficients
of the same sign. Thereby the aforementioned congested line is exactly placed on
the border between the two newly defined zones. Ready to define an inter-zonal
congestion, instead of the previous intra-zonal one that cannot be seen and hence
automatically alleviated by a zonal-based market. And consequently would require
a costly and manual readjustment of the dispatching by the TSO. Which would
mean an additional cost for the system and thus an efficiency decrease of the energy
market.

– [19] Working process: (a) Take the power network of interest and look it
as a sole zone. (b) Considering a one-sided pool, namely an energy market
with perfect competition only on the generators’ side and an inelastic demand,
system nodes can be classified into two categories: NWGs and NWOGs. And
then, since just the ascriptions between NWGs can change zonal prices while
changing the ascriptions of NWOGs does not have any impact on them, only
ascriptions of NWGs are integrated as decision variables of the model which
simulates the market clearing of the system. Given the fact that the number of
NWOGs is approximately three or four times of NWGS in an actual network,
this action largely cuts the complexity and the size of the problem. But mean-
while it becomes one of the main drawbacks of the algorithm when it is treated
a more realistic two-sided pool. (c) Run a OP to make a numerical market
clearing. Only considering the NWGs and neglecting the NWOGs, including
both the physical and the operative power network constraints and using the
minimization of generation costs as objective function. It is worth remembering
that this latter action equals to maximize social surplus under the hypothesis
of a unilateral market, like the one here considered. (d) The aforementioned
OP defines the dispatching of the system. And hence states the generators’
outputs and the zonal prices, if there were more than one zone which for now
is not present. (e) Taking back the NWOGs, so to have a representation of
the whole power network, and applying the above dispatching to the complete
system. It is possible to check the existence of intra-zonal congestions. Which
are unwanted inside zonal-based market, since can only see and hence auto-
matically alleviate inter-zonal congestions. While intra-zonal ones ineluctably
require a costly and manual readjustment of the dispatching by the TSO in
order to be alleviated. (f) If these intra-zonal congestions are not present, then
the zonal configuration is given out as clustering algorithm’s final result. But
if they are noticed, the most serious of them is treated as following: the area
in which it is contained is appointed as “targeted zone” and the congested line
is indicated as “targeted congested line”. (g) Once had these two information,
the algorithm enters the second phase. Where the just defined targeted zone
is split in two parts by clustering the its nodes’ PTDFs coefficients, towards
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the targeted congested line, of the same sign. In order to exactly place this
targeted congested line on the border between the two newly defined zones,
ready to define an inter-zonal congestion instead of the previous intra-zonal
one that cannot be seen by zonal-based markets. (h) At this point, the number
of zones of the considered power network is increased of one. And then the
algorithm goes back to step “b”, giving to the market clearing the possibility
to divide the system in one more zone. The process continues in loop until no
more intra-zonal congestions are detected. In that moment the algorithm will
stop and give the final zonal configuration.

• Price Differential Clustering: This clustering algorithm merges nodes according
to their LMPs difference. Therefore, the more two LMPs trends are similar, the
more probably the two respective nodes will be in the same zone. Actually, this
price difference can also be either requested to be satisfied during all the hours of
the LMPs trends or as average value on the whole trends. It depends on the specific
algorithm.

– [17] Working process: (a) Take the hourly LMPs pattern along a year
as input data. (b) Use them to merge nodes. When the difference between
the respective average LMPs falls below a certain value, i.e. 5% as stated
into this paper. (c) Obtain power network’ zones. (d) Check the physical
connection between nodes inside the same cluster. And in case modify the zonal
configuration to guarantee it. In order to define a feasible zonal configuration.

– [42] Working process: Actually the same of previous reference [17]. But
both fed with LMPs on the one side, and with CDFs on the other one. Where
these last substitute the usage of nodal PTDFs.

• Scale-Space Hierarchical Clustering (HC ): It is a clustering process that mod-
els human visual system. Therefore, as in the process of human perception the
images perceived in the brain can be regarded as a set of light points in the space.
Where by increasing the scale the image is gradually blurred merging each light
point into smaller blobs and then into larger ones, until they are all contained into
only one big light blob and so does the relative image. Here the clusters are made
by progressively merging the input points placed in a space, whose dimensions cor-
respond to the number of features chosen for the clustering. So as to use these
last as points’ coordinates. This way of acting recalls the scheme of a hierarchi-
cal clustering algorithm, since couples of points are iteratively joint at each step
according to the distance metric adopted inside the method. Which is typically a
multi-dimensional Euclidean distance between points’ coordinates inside the afore-
mentioned high-dimensional space. Therefore, it should not be surprising that the
final result of this clustering process is a dendrogram again.

– [39, 40] Working process: (a) The input dataset made up of N points,
namely the N power network’s nodes in this case, is placed in a space whose di-
mension correspond to the number of features chosen for the clustering. There-
fore, these last are used as points’ coordinates. (b) Each of these points can
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be regarded as a light point, mathematically expressed by a Dirac delta func-
tion, which belongs to a bubble, namely a cluster, with a certain center. (c)
During the first iteration, each light point belongs to a bubble whose center
coincides with the light point itself. Hence N small bubbles can be seen in-
side the aforementioned high-dimensional space. (d) Then, going on with the
iterations, these bubbles are progressively merged according to the distance
metric adopted inside the algorithm and bubbles’ centers are simultaneously
updated. The distance metric here used is a classical multi-dimensional Eu-
clidean distance between points’ coordinates at the beginning, when there are
single-point bubbles, or between the coordinates of bubbles’ centers then, when
the merging process has started. (e) The clustering algorithm stops when all
the light points are contained inside a single big bubble. In that moment, due
to this clustering approach’s similarity with hierarchical clustering algorithms,
a summary dendrogram is issued again. (d) Once this latter has been pro-
duced, BAs’ lifetime, compactness and isolation can be used to assess clusters
validity. So as to choose the zonal configuration to keep as optimal among the
sequence of BAs sets provided by the dendrogram.

• Consensus Clustering (CSP): This kind of clustering algorithms are of a higher
level. Thy take many clustering results and combine them in order to create a single
(consensus) clustering result. They refer to the situation in which a number of
different clustering results have been obtained either from different runs of the same
clustering method in different scenarios or from different runs of different clustering
methods working on the same dataset. Therefore, their task is to create a single
(consensus) clustering which generalizes all the previous partial results. This thing
can be done through different Consensus Clustering algorithms, here it is used one
of the most famous ones which is the Cluster-based Similarity Partitioning (CSP)
algorithm.

– [36] Working process: Essentially (a) it takes the clustering results from
previous partial runs and (b) it uses them to compose the so-called similarity
matrix. This latter is a matrix with dataset data points along both the columns
and the rows, so that it is symmetrical. Its elements are coefficients enclosed
between 0 and 1 which express the number of times that those two data points
have been clustered into the same group during previous partial runs. Having
1 means always, otherwise having 0 means never. (c) Hence in this situation
the CSP algorithm starts from the higher elements of the similarity matrix
and clusters respective data points, to continue then creating clusters with the
same criteria.

• Imitating Out-Point (IOP) Method With Tabu Search (TS): This BAs
definition method is based on four features which characterize the resultant zonal
configuration. They are: the physical connection and the price closeness among
within-clusters nodes, the zones number limitation and the single-node BAs pro-
hibition. The first two of these conditions are respectively addressed to prevent
the algorithm from defining unfeasible zonal configurations made up of physically
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detached BAs, and to preserve the benchmark economic signals of LMPs when
passing from NP to ZP. The third of the aforementioned characteristics keeps the
resultant zonal configuration away from the number of zones of an unfeasible nodal
configuration. While the last feature impedes the possible rise of market power that
may occur in single-node areas. All these things are modeled as constraints inside
the heuristic clustering algorithm, named imitating out-point method, whereas the
taboo search is enclosed in the method too to speed up the process.

– [31] Working process: (a) Find the lower bound of the number of zones,
namely the minimum number able to produce a feasible solution according
to aforementioned clustering algorithm’s constraints. (b) Initialize the power
network partitioning with this number of BAs. (c) Use the taboo search to
find alternative zonal configurations, able to meet the problem’s constraints
too while keeping fixed the BAs number. (d) If no alternative solution is found,
then divide in two the zone with the maximum nodal prices dispersion and go
back to step “c” finding alternative zonal configurations with one additional
BA. (e) Once an alternative solution is met, the algorithm stops and issues it
as optimal zonal configuration. The taboo search enclosed in step “c” is made
up of five passages, which are following. (i) Coding: where the input feasible
configuration from step “b” is encoded in a vector of numbers. Where each
element assigns a node to a BA. (ii) Neighborhood structure: where alternative
zonal configurations are searched, by moving one node at a time. (iii) Tabu list:
where the previously made moves are recorded. In order to avoid cycling while
finding alternative solutions. (iv) Aspiration criterion: where the alternative
zonal configuration of passage (ii) is kept as best one until it maximizes the
clustering algorithm’s objective function. (v) Stop rule: which defines the stop
of the taboo search after a certain number of moves, recorded on the tabu list.

2.4 Distance metrics summary table

Table 2.3 distinguishes the papers considered inside this chapter according to the similarity
metric used inside their clustering algorithms. Afterwards, a quick description of these
distance measures is provided inside a bulleted list, which contains also the reference to
where the specific metric has been used.
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Table 2.3: Distance metrics summary table of references which deal with optimal BAs
definition using clustering algorithms.
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[3] Breuer et al. (2013) X
[4] Burstedde (2012) X
[5] Breuer & Moser (2014) X
[8] Felling & Weber (2016) X
[9] Felling & Weber (2018) X
[15] Grimm et al. (2017)3

[17] Imran & Bialek (2008) X X
[18] Jakubek et al. (2015) X
[19] Kang et al. (2013) X
[21] Kiran et al. (2017) X
[22] Klos et al. (2014) X
[25] Marinho et al. (2017) X X X
[27] Jang et al. (2005) X
[31] Zhang et al. (2008) X
[32] Van den Bergh et al. (2016) X
[36] Wawrzyniak et al. (2013) X
[39] Yang (2004) X
[40] Yang et al. (2005) X
[41] Yang & Zhou (2006) X
[42] Yong et al. (2000) X
[44] Yao et al. (2016) X
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• Multidimensional Euclidean Distance:

– Definition: Eij =
√∑Ndim

v=1 (xvi − xvj)2

– Applications:

∗ [3, 4, 5, 8, 9, 18, 21, 25, 36, 44]: Multidimensional Euclidean distance
between hourly LMPs patterns of system nodes along years. It is computed
between nodal prices and the respective average zonal prices coming from
the BAs to which the nodes belong. It wants to be minimized, like a sort
of Ward’s minimum variance criterion. In fact, the clustering algorithms
which admittedly use this latter linkage criterion as distance metric are
here included too. Since the final result is always the minimization of
within-clusters variance.

∗ [22]: Multidimensional Euclidean distance between vectors’ coordinates,
one per node, which define nodes positions inside the so-called PTDF
space. Created starting from the PTDF matrix.

∗ [32]: Multidimensional Euclidean distance between sets of statistically
most congestible lines’ PTDFs, one per each node of the power network.

∗ [39, 40]: Multidimensional Euclidean distance between vectors’ coordi-
nates, one per node, which define nodes positions inside the high-dimensional
space created by using the features chosen for the clustering. Namely the
nodal PTDFs of the most congestible lines.

• Monodimensional Euclidean Distance:

– Definition: Eij =| xi − xj |
– Applications:

∗ [17]: Monodimensional Euclidean distance between single values of aver-
age LMPs.

∗ [19]: Monodimensional Euclidean distance between single values of nodal
PTDFs relative to the “targeted congested line” and belonging to the nodes
inside the “targeted zone”.

∗ [25]: Monodimensional Euclidean distance between single values of LMPs
taken from a system snapshot of a winter load peak.

∗ [31]: Monodimensional Euclidean distance between single values of LMPs.
Obtained as averages or peak values of actual hourly trends.

∗ [42]: Monodimensional Euclidean distance between single values of LMPs,
obtained from time snapshots in certain power network conditions, or
CDFs, which substitute the more typical use of nodal PTDFs of most
congestible lines.

3Actually this paper does not include a clustering algorithm aimed at defining an optimal zonal con-
figuration. Nevertheless, it is here included due to its purpose, which is always the search of optimal
BAs.
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• Fuzzy Membership:

– Definition: The fuzzy membership is the distance metric used within fuzzy
clustering algorithms. It classifies the input data in a unitary scale based on
the possibility of being a member of a specified set. One is assigned to those
points that are definitely a member of the specified set. While the entire
range of possibilities from one to zero is used to express intermediate grades
of membership of the point to the set. Of course the larger the number, the
more the point is likely to belong to the specified set. The sum of all the fuzzy
memberships of a point, respect to all the available clusters, must be one.
Since any point’s total membership must be unitary towards the database of
belonging. In this paper, the above described fuzzy membership is evaluated
among power network nodes’ hourly LMPs patterns along a year.

– Applications:
∗ [17]: Here the fuzzy membership is evaluated between the hourly LMPs

patterns along a year.
∗ [41]: Here the fuzzy membership is evaluated between the nodal PTDFs

of statistically most congestible lines, evaluated through a Monte Carlo
simulation run before the clustering algorithm.

• Improved Fuzzy Membership:

– Definition: Improved fuzzy membership. It derives from the previous clas-
sical fuzzy membership. Therefore, it equally classifies the input data in a
unitary scale based on the possibility of being a member of a specified set.
And thereby it gives to each database’s point K grades of membership: which
cannot be negative, have unitary sum, are directly proportional to the point’s
membership to the cluster and are respectively referred to the K clusters of the
partitioning. But moreover, there is a change in how these grades of member-
ship are assigned. In fact, while in the previous fuzzy membership they only
depended on a simple Euclidean distance between the nodes’ features and the
centroids’ ones, in this improved fuzzy membership they are based on a combi-
nation of the just cited Euclidean distance between clustering features and the
geometric distances between nodes spatial positions. This combination is done
through two user defined coefficients with unitary sum, which determine the
relevance of these two aforementioned distance metrics during the clustering
process, and it is aimed at only merging physically linked nodes and clusters,
so to prevent the algorithm from defining physically unfeasible zonal configu-
rations made up of internally detached BAs. For these reasons, this “improved
fuzzy membership” represents an alternative way to check nodes’ physical con-
nection with respect to the previous external check, based on the adjacency
matrix and always run before merging points in clusters.

– Applications:
∗ [27]: Improved fuzzy membership evaluated between single values of LMPS,

deriving from ad-hoc snapshots of their hourly trends.
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• Connectivity Based Distance:

– Definition: It is a way of updating the medoids during the K-medoids clus-
tering steps. Using this distance metric, they are iteratively chosen by looking
at the number of nodes’ electrical connections: the more a node has a high
number of electrical connections with other nodes, the more its feature used
for the clustering is likely to become the medoid of its cluster.

– Applications:

∗ [25]: The connectivity based distance is here used, inside the adopted
K-medoids clustering.

2.5 Clustering algorithms’ strengths and weaknesses

The following bulleted list presents for each of the clustering algorithms, which have been
used inside the papers considered in this chapter, its strengths and weaknesses. Each
of these last is also endowed with a reference to where the specific comment can been
observed.

• BubbleClust Algorithm:

– Pros:

∗ [22]: PTDFs are smartly weighted using lines’ congestion rate factors. In
order to be sure of finding the most congestible lines as inter-zonal connec-
tions when clustering PTDFs. So as to produce only inter-zonal conges-
tions rather than the intra-zonal ones, which are unpleasant in zonal-based
market since they represent an additional cost. Due to their alleviation,
which has to be manually done by the TSO and hence is costly. Conges-
tion rate factors are obtained as average of the transmission line’s average
congestion cost over the sum of all the other transmission lines’ average
congestion costs. Each of these average congestion costs is the arithmetic
average of several KKT multipliers, namely Lagrange multipliers, all asso-
ciated to the line’s maximum power flux constraint and respectively deriv-
ing from several runs of DCOPF in different load and generation scenarios.

∗ [22]: It seems one of the best PTDFs-based clustering algorithm. Because,
computing the social welfare of the zonal configuration resulting from this
clustering algorithm and comparing it to the ones obtained by two other
zonal configurations coming from else articles’ algorithms. Which respec-
tively create the BAs by merely merging the highest absolute values of
PTDFs, or by using also the PTDF matrix in order to obtain a clear-
cut distinction whether a power injection in a node increases or not the
power flow in a given direction over a line. This clustering algorithm’s
social welfare reveals to be the highest of all. And therefore, remembering
that the social surplus is usually considered the most representative KPI
of a market, it can be deduced that the BubbluClust algorithm seems to
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be most performing clustering method within its category that deals with
PTDFs-based approaches.

∗ [22]: This clustering algorithm also gives the possibility not to allow zones
without generator. This is important since these purely importer zones are
badly seen by regulators, and thus not accepted, for many reasons. First of
all, the impossibility to create an energy market without the presence of a
generator. Which would be paradoxical for a BA, that must obviously be
able to have its personal zonal market in case of system’s congestions and
consequent power network zonal division. And secondly, the market power
opportunity that would be clearly given in zones without generators. It is
worth remembering that, the activation of this extra constraint decreases
the social welfare of the output zonal configuration. But this is obvious
and predictable, since OP ’s constraints always move the solution away
from its global optimum. Therefore, the more constraints are put, the less
the outcome is optimized.

– Cons:
∗ [22]: The social welfare estimation would be more accurate if redispatching

costs were included. And this is rather important, since the social surplus
is one of the criteria used to assess the effectiveness of the newly defined
BAs.

∗ [22]: The overall obtained social surplus is anyway small if juxtaposed
with other parameters’ orders of magnitude. Though, the 39 bus system
here considered may constitute a not complex enough space to illustrate
all the potential benefits of this clustering algorithm. Therefore, further
analysis should be necessary to get a clearer evaluation of this drawback.

∗ [22]: The Generation Shift Key (GSK ) matrix is extensively used to trans-
late zonal injections into power flows. But it has two drawbacks. On the
one hand it contains many a priori assumptions about the load and gener-
ation levels. And so it can be wrong with a certain error percentage. On
the other one, this matrix becomes meaningless if there is a self-sufficient
zone. Namely a zone with net position equal to zero. Therefore, these two
reasons explain why the using of the GSK matrix can be considered an
Achilles heel for this clustering algorithm. And thus, it would be necessary
an alternative to its use.

∗ [22]: Over and under estimations of most congestible lines’ power fluxes
are symmetrically treated in this algorithm. Still, a forecast power flow
which overestimates the actual value is “safer” than reality. Whereas,
a forecast power flow with underestimates the actual value is physically
dangerous for the entire power system. Therefore, prediction errors which
underestimate the actual power flows should be penalized much more than
the ones overestimating them.

∗ [22]: No check on the physical connection between nodes inside the same
cluster is naturally enclosed. So that, even physically unfeasible zonal
configuration can be created. Therefore, an additional control to prevent
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this situation has to be enclosed. But this means more complexity, namely
a drawback for the clustering algorithm, and the need to have a deeper
knowledge of power network structure, in order to make nodal connections
evaluations.

∗ [22]: The number of zones has to be user defined in advance of the algo-
rithm run. Because the stop criterion of the process relies on it.

• Fuzzy-c-means:

– Pros:
∗ [17]: Large dataset can be easily handled like in K-means clustering, which

is quite similar to this algorithm. Optimal thing for power networks anal-
ysis, actually associated with big databases.

∗ [17]: Small standard deviation and maximum range of prices for LMPs
associated to nodes inside the same clusters. This is a pro. Because having
very different nodal prices from the zonal prices which approach them,
reveals a high loss of economic signals by moving from the benchmark nodal
configuration to the zonal one. Which is actually the trade-off between
the ideal nodal pricing and the worst uniform one. This is why an optimal
zonal configuration should have as low as possible standard deviation and
maximum range of prices, namely within-clusters variance, for the LMPs
associated to nodes within the same zone.

∗ [41]: By using the sensitivities of nodal power injections to power flows on
congested lines as clustering input, namely the nodal PTDFs referred to
these lines, the resulting zonal configuration acquires an improved tempo-
ral stability. Which is definitively a pro according to CACM ’s guidelines
on optimal zonal configurations. This happens because, as proven in refer-
ence [39], nodal PTDFs of congested lines can be linked to nodes’ LMPs.
Therefore, they firstly can be effectively used to create BAs in alternative
to more typical nodal prices. But moreover, PTDFs do not vary with
system operating conditions. Since they only depend on power network’s
topology. Consequently, it becomes obvious that using these parameters
as clustering input leads to define a relatively more stable final zonal con-
figuration.

– Cons:
∗ [17]: Number of zones has to be given by the user beforehand like in

K-means clustering, which is quite similar to this algorithm.
∗ [17]: The clusters centroids must be user defined or randomly chosen at

the beginning of the process, like in K-means clustering which is quite
similar to this algorithm. Therefore, also here this initialization makes the
clustering result depend on the initial assignments. Ruining the original
idea of automatically finding an optimal zonal configuration using a clus-
tering algorithm. Because here, if these initial assignments are not well
chosen, the algorithm only converges to a local optimum and not to the
global one desired by the user.
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∗ [17]: No check on the physical connection between nodes inside the same
cluster is naturally enclosed. So that, even physically unfeasible zonal
configuration can be created. Therefore, an additional control to prevent
this situation has to be enclosed. But this means more complexity, namely
a drawback for the clustering algorithm, and the need to have a deeper
knowledge of power network structure, in order to make nodal connections
evaluations.

∗ [17]: The split of detached BAs at the end of the clustering process aimed
at defining a feasible zonal configuration made up of zones with physically
linked within-cluster nodes, namely the aforementioned extra control on
this feature, is counterproductive and hence should be substituted. Be-
cause it leads to the definition of too small BAs, unacceptable because of
the possible rise of market power that could happen there.

• Genetic Algorithm:

– Pros:

∗ [3]: GA easily handles very large systems. Optimal thing for power net-
works analysis, actually associated with big databases.

∗ [3]: Hourly LMPs patterns along years are easy to find. It is enough a
DCOPF of the analysed system.

∗ [3]: Unstable zones borders would be typical for LMPs-based zonal config-
urations, since prices are variant time variables. But, this is here prevented
through a multi-scenario analysis. From which a good temporal stability
of the zones is ensured.

∗ [3]: No initial clusters centroids have to be defined by the user as input.
∗ [5]: Clear assessment criteria for the newly defined zonal configurations are

provided inside this paper. Divided between monetizable criteria, which
want to be minimized since they are costs, and hardly monetizable ones,
which are verified when inside a certain range.

– Cons:

∗ [3]: The GA needs the number of zones to be user defined as input data.
This is a con, since it is physically impossible to know the optimal number
of zones in advance of the clustering algorithm’s execution.

∗ [3]: No check on the physical connection between nodes inside the same
cluster is naturally enclosed. So that, even physically unfeasible zonal
configuration can be created. Therefore, an additional control to prevent
this situation has to be enclosed. But this means more complexity, namely
a drawback for the clustering algorithm, and the need to have a deeper
knowledge of power network structure, in order to make nodal connections
evaluations.

∗ [5]: The optimized BAs coming out from this GA seem not to be so
profitable. Since the decrease of the total system costs, respect to the initial
ones of the reference current BAs, is not so marked. This saving nearly
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disappears when a multi-year cadence is chosen to redefine zone borders.
Whereas it lightly increases when a quarterly changing delimitations is
instituted, but this situation is not acceptable for two reasons. On one
side from a political point of view, just think of CACM ’s guidelines for
an optimal zonal configuration which ask for a temporal stability of BAs.
And on the other one from an economic perspective, since a faster changing
zonal definition would certainly lead to higher costs here neglected. That
would end up erasing the saving increase. For these reasons, a trade-off
has to be found even to preserve the aforementioned small savings of the
optimized BAs respect the current zonal configuration.

• Geographical Clustering:

– Pros:

∗ [17]: No number of clusters has to be user defined beforehand, like the
majority of clustering algorithms, or at the end of the process, like hierar-
chical clustering. Because here the zones number is naturally derived from
the statistically most congestible lines. And particularly, it is directly pro-
portional to them. Since a higher number of congestible lines would lead
to a higher number of zones borders and hence to a higher number of areas.

∗ [17]: The zonal configurations which result from this clustering algorithm
are certainly feasible from the physical point of view. Because they are
sure made up of zones with physically linked nodes, since here the areas
are defined by cutting the existing power network along the statistically
most congestible lines.

– Cons:

∗ [17]: High standard deviation and maximum range of prices for LMPs
associated to nodes inside the same clusters. This is a con. Because having
very different nodal prices from the zonal prices which approach them,
reveals a high loss of economic signals by moving from the benchmark nodal
configuration to the zonal one. Which is actually the trade-off between
the ideal nodal pricing and the worst uniform one. This is why an optimal
zonal configuration should have as low as possible standard deviation and
maximum range of prices, namely within-clusters variance, for the LMPs
associated to nodes within the same zone. In other words: the more the
within-cluster LMPs’ heterogeneity increases, the worse. Because LMPs
contain the clearest and most objective economic signals. Thus the more a
node has to accept a zonal price different from its natural LMP, the more
it loses the correct economic signal coming from its natural LMP in favour
of a misleading one. That is why, being aware of the fact that economic
signals deriving from LMPs go towards the alleviation of congestion, losing
these signals bring the power network to a higher inefficiency for worse
congestion management.
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• Hierarchical Clustering:

– Pros:

∗ [4]: LMP hourly patterns along years are easy to find. It is enough a
DCOPF of the analysed system.

∗ [4, 9]: The number of zones has not to be defined by the user beforehand,
as input. Though, at the end of the clustering it is always the user who
must decide the number of zones. The only pro is the possibility of doing it
in front of an overview of zonal configurations with different zones number,
represented by the dendrogram.

∗ [4]: No initial clusters centroids have to be defined by the user as input.
∗ [8]: BAs of similar dimensions can be easily obtained by using weight-

ing factors for nodes according to their energy relevance. The more they
withdraw or inject from or into the power network, the more their weight
makes them relevant during the clustering process. Avoiding in this way
the birth of too small BAs, which could be characterized by the rise of
market power.

∗ [9]: The hierarchical clustering algorithm is a non-linear optimization
problem. So that it would not be suitable for large dimension systems
like power networks, since their solution would take too much time. A
heuristic clustering algorithm like the GA would be more recommended
from this point of view. Although modifying the hierarchical clustering,
by only considering at each iteration the couples of adjacent zones as fea-
sible for the merging. Namely the zones which are distinct but linked by
a transmission line at least. The result is that at each step there is no a
full recalculation of the objective function, but there is only an update of
it. Thereby, the solution time is enormously reduced. Making the hierar-
chical clustering algorithm a profitable choice in power networks too. And
moreover, this automatically ensures that any newly formed zone will only
consist of nodes that are physically connected. From which, no physically
unfeasible zonal configurations will be defined.

∗ [9]: Unstable zones borders would be typical for LMPs-based zonal config-
urations, since prices are variant time variables. Nevertheless, this is here
prevented through a multi-scenario analysis. From which a good temporal
stability of the zones is ensured.

∗ [25]: In terms of RE index, it shows better performance than K-means
and K-medoids clustering algorithms. The RE index represents the costly
redispatch effort needed in a certain BAs configuration, after its dispatch-
ing has been defined by its zonal market clearing, with respect to the one
needed in a nodal pricing power system. This latter is null, since nodal-
based markets automatically do the short-term congestion management.
Without any need of redispatch. Thus the lower the RE is, the better for
the zonal configuration. Having recalled this, in paper [25] the RE index
of zonal configurations based on multi-periods and with less than twenty

47



2 – State of the art

or thirty zones is proven to be the minimum when the BAs derive from
a hierarchical clustering. Instead of a K-means or K-medoids clustering,
also considered within the paper. Therefore, hierarchical algorithm out-
performs both the K-means and the K-medoids one in this category. And
this is very important. Because this class indicates a feasible number of
zones, since zonal configurations always have to contain their number of
zones to actually be optimal, and creates zonal configurations with a good
temporal stability, by considering more than a single snapshot of time as
input for the clustering.

∗ [36]: Thanks to a consensus clustering algorithm is easily possible to define
an optimal zonal configuration with improved temporal stability, because
based on several power network’s scenarios. In this paper this possibility
is applied on 722 zonal configurations respectively associated to different
wind scenarios. In order to improve the temporal stability towards weather
conditions variability.

– Cons:

∗ [4]: The main con of this clustering algorithm is reported in table thirteen.
In this latter the first column is nodal pricing performance, followed by
the zonal pricing one with nine or six optimized zones, and finally the
zonal pricing performance with six reference zones. Where “reference”
stands for the current zonal configuration, based on national borders. It
is worth remembering that both six and nine optimized zones schemes
are considered, in order to investigate the impact of the BAs number on
system performance. This analysis reveals a small dependence of market
efficiency by the number of zones. From which six areas are chosen, in order
to keep the number of zones inside the current BAs definition. Beyond this,
the first table row is the wholesale cost of the system market, the second
is the redispatch cost and the third is the total cost which includes the
previous two. All of these being costs, the less the better. Consequently, as
predictable the nodal pricing becomes the benchmark. Namely the system
with the highest performance, as confirmed by its lowest total cost. But
also, the reference zonal pricing total costs do not reveal to be so higher
than the ones from nodal pricing and optimized zonal pricing. Therefore,
remembering that some system costs are even neglected into this paper
like costs deriving from the adjustment of the system. And they could
even erode the small savings of optimized zonal pricing respect the current
reference BAs delimitations. It realistically does not seem to be profitable
to define newly born BAs using this clustering algorithm.

∗ [4]: No check on the physical connection between nodes inside the same
cluster is naturally enclosed. So that, even physically unfeasible zonal
configuration can be created. Therefore, an additional control to prevent
this situation has to be enclosed. But this means more complexity, namely
a drawback for the clustering algorithm, and the need to have a deeper
knowledge of power network structure, in order to make nodal connections
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evaluations.
∗ [18]: LMPs-based clustering algorithms for BAs redefinition do not always

place the congested lines on the zones’ borders. This is a con for two
reasons. On the one hand since it requires an additional manual and costly
readjustment done by the TSO, after that the market coupling mechanism
has already found the supply/demand equilibrium of the zonal system. On
the other hand, because it works against the main idea the zonal market
should serve. That is keeping the transactions in market equilibrium in
close relation to the physical flows of power in the grid.

∗ [25]: Higher computational effort with respect to the K-means and K-
medoids clustering also used in this paper. This was predictable since,
generally speaking, all the connectivity-based clustering algorithms are
heavier than centroid-based ones from the computational point of view.
This is because, in every step they have to recalculate the objective func-
tion for each of the possible connections between clusters. And then, only
the most profitable of them in terms of objective function optimization
is done at the end of the step. This is the time consuming part of the
connectivity-based clustering algorithms.

∗ [36]: Many too small BAs are observed inside the optimal zonal config-
uration coming out from last consensus clustering algorithm. They are
unacceptable for mainly three reasons here explained. The first one is the
market power, which could arise in these too small zones. Because the hy-
pothetical sole generator within one of them would automatically be able
to make the price of that zone, gaining an infinite market power and ruin-
ing the perfect competition of the desired reference market. Secondly, tiny
clusters usually include only few loads and no generators. Consequently,
they constitute purely importer zones which can only be fed through en-
ergy readjustments made by the TSO in neighbouring zones. But these
last are manual, hence costly and so unwanted in an optimal zonal config-
uration. Thirdly, tiny BAs are hard to be accepted from the sociological
point of view. In fact, it may be difficult for the society to accept a small
zone where the price is usually higher than in neighbouring areas. Because
of the typical lack of generators which characterizes these zones for the
aforementioned consideration. That is why too small BAs are never ac-
cepted into optimal clustering algorithms. And it is always suggested to
eliminate by merging them with a neighbouring zone. The choice of this
latter depends on the adopted methodology. For instance, in this paper
the too tiny BAs are respectively merged to neighbouring zones for which
the within-clusters variance of the resulting newly defined BA increases
the less. Anyway, it is worth remembering that it is not sure the connec-
tion between their presence and the hierarchical clustering algorithm here
executed. They can also depend on the additional consensus clustering
run at the end of the method. Therefore, further analyses are necessary.
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• K-means:

– Pros:

∗ [25]: It is able to handle very large dataset, like all the centroid-based
algorithms. Optimal thing for power networks analysis, actually associated
with big databases.

∗ [25]: Since it is well known that K-means algorithm’s clustering results
strongly depend on the centroids initialization made at the beginning of
the process. Here the clustering process is run several times, respectively
with different clusters centers initialization, and then only the best result
is kept for each category. In order to avoid as much as possible finding a
local optimum instead of the global one.

∗ [25]: Its zonal configurations always reveal lower RE indices, hence worse,
respect to the ones associated to BAs configurations coming from K-
medoids clustering.

∗ [25]: It requires less computational effort than the K-medoids and hierar-
chical clustering also used within this paper.

∗ [44]: It is possible to fix the problem for which different runs of a K-means
clustering algorithm on the same input database can lead to completely
different partitions. Which is caused by the strong influence that the choice
of the initial clusters’ centers has on the final partitioning result of all the
centroid-based clustering algorithms, like is the K-means. And it becomes
a problem during BAs definition. Because the perfect methodology should
be able to deterministically find out the global optimum of the cluster-
ing problem, namely the best applicable zonal configuration of the power
network in question. But this cannot always happen whether the clus-
tering result depends on some user-defined input data, like typically are
the aforementioned centroids. Because, if these last are not chosen prop-
erly the clustering OP only converges on a local optimum, instead of the
desired global one. For this reason, in all the centroid-based clustering al-
gorithms like K-means, fuzzy-c-means or K-medoids it would be better to
automatically initialize the clusters’ centroids through the process itself,
rather than doing it manually. So as to remove any uncertainty on the
final clustering result once given the input database, and to permit the
clustering OP to always reach its global optimum, if it is able to do so.
This is actually done inside this paper. Where cluster’s centers are not
manually defined at the beginning of the process, but they are automati-
cally indicated by the algorithm by maximizing the geographical distance
between them. So as to also cover as much as possible the power network’s
area, in order to minimize the number of failures of the subsequent check
on within-clusters nodes’ physical connection. Which is often included in
order to prevent the clustering algorithm from defining unfeasible zonal
configurations. Therefore, inside this improved K-means the user has only
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to define the number of clusters like in any other centroid-based cluster-
ing algorithm. And then, the algorithm itself chooses the initial centroids
among the nodes of the input database. By indicating its group of nodes
which maximizes, for that user-defined number, the geographical distance
between them.

– Cons:

∗ [25]: It requires the number of clusters as user input. And moreover it has
to be given in advance of the process, instead of at the end like hierarchical
clustering.

∗ [25]: The resulting clusters strongly depend on the clusters centroids which
are randomly or manually selected at the beginning of the clustering pro-
cess. It is a con because: if these initial assignments are not well chosen,
the algorithm only converges to a local optimum. And not to the global
one, that would obviously be desired by the user. In other words, the
outcome quality depends on a user’s input. That is not acceptable in an
optimization algorithm like this one for the find of an optimal BAs con-
figuration. For these reasons, some measures would be needed to contain
this drawback. But this means more complexity, namely a con for the
clustering algorithm.

∗ [25]: No check on the physical connection between nodes inside the same
cluster is naturally enclosed. So that, even physically unfeasible zonal
configuration can be created. Therefore, an additional control to prevent
this situation has to be enclosed. But this means more complexity, namely
a drawback for the clustering algorithm, and the need to have a deeper
knowledge of power network structure, in order to make nodal connections
evaluations.

• K-medoids:

– Pros:

∗ [25]: It is able to handle very large dataset, like all the centroid-based
algorithms. Optimal thing for power networks analysis, actually associated
with big databases.

∗ [25]: Since its clustering results strongly depend on the medoids initial-
ization made at the beginning of the process, like for the similar K-means
clustering. Here the clustering process is run several times, respectively
with different clusters centers initialization, and then only the best result
is kept for each category. In order to avoid as much as possible finding a
local optimum instead of the global one.

– Cons:

∗ [25]: All the K-means’ drawbacks. Since this clustering algorithm is quite
similar to the previous one, except for the choice of clusters centroids.
Which here have to correspond to one of the within-clusters’ points.
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∗ [25]: It has a more intensive computational burden than a K-means clus-
tering.

∗ [25]: Its zonal configurations always reveal higher RE indices, hence worse,
respect to the ones associated to BAs configurations coming from both K-
means and hierarchical clustering.

• Sequential Network Partition With CCI:

– Pros:
∗ [19]: The physical connection between nodes inside the same zone is

granted, and hence only physically feasible zonal configurations are de-
fined. This is because the new BAs are defined by cutting the existing
power network along the congested lines. In order to eliminate intra-zonal
congestions in favour of inter-zonal ones, which are the only one that can
be seen and thus automatically alleviated by a zonal-based market.

∗ [19]: The zones borders are sure composed of congestible lines. Since
these last are actually used to define areas boundaries. Therefore, the
zones number is theoretically the minimum to efficiently do the congestion
management of the power network. Because new zones are created only
when an intra-zonal congestion occurs, and are aimed to its removal. This
is a pro, since finding the optimal zonal configuration is always important
to limit the number of zones. Because if this latter tended to its maximum,
namely the number of system nodes, there would obviously be only inter-
zonal congestions. But this would become a nodal configuration, which
is unacceptable for many reasons. From the computational burden to the
possible rise of market power that may happen inside nodes. Therefore,
an optimal zonal configuration should give the benchmark performance of
nodal configuration as much as possible. But with the possible minimum
number of zones. So to actually become the optimal trade-off between
the nodal pricing’s highest performance and complexity, and the uniform
pricing’s highest inefficiency and simplicity.

∗ [19]: In an ideal NP mechanism, the distribution of nodal prices is exactly
consistent with their PTDFs to congestion lines. This is even proven inside
reference [39]. Therefore, since the here used approach clusters nodes with
the same sign of PTDF into the same zone, nodes within the same zone
would have relatively close nodal prices. Confirming the consistency of
using these zones as BAs, namely group of nodes with LMPs similar to
the zonal price which approaches them. So to lose as little as possible of
the reference economic signals embedded inside LMPs when moving from
them to the zonal prices of the ZP mechanism.

∗ [19]: PTDFs are not time dependent variables. Therefore, the result-
ing zonal configuration is automatically stable from the temporal point of
view. That is one of the requested criteria for an optimal partitioning,
according to CACM ’s guidelines. And moreover, it is not granted with
LMPs-based zonal configurations due to their relying on time dependent
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variables (LMPs are hourly functions). Which obliges those clustering
algorithms to embed complicated multi-scenario analysis, to guarantee a
satisfactory temporal stability of their BAs.

∗ [19]: No number of zones has to be user defined beforehand, like the ma-
jority of clustering algorithms, or at the end of the process, like hierarchical
clustering. Because here the zones number is naturally derived from the
lines defining an intra-zonal congestion. And particularly, it is directly
proportional to them. Since every time that a new intra-zonal congestion
is detected, the associated targeted congested line automatically becomes
the border between two newly defined BAs.

– Cons:

∗ [19]: The classification between NWGs and NWOGs, with the consequent
simplification of the problem by neglecting the last ones, is an action which
largely cuts the complexity and the size of the OP that represents the nu-
merical market clearing of the power network. But meanwhile, it is a huge
drawback of the clustering algorithm. Because treating a nowadays more
realistic two-sided energy market would enormously increase the computa-
tional burden of the method. Which is already high even considering the
aforementioned simplification.

∗ [19]: The computational burden of this clustering process is quite high. It
may be useful to use a more efficient algorithm to make the dispatching of
the system, namely to solve the OP which defines the numerical market
clearing.

• Price Differential Clustering:

– Pros:

∗ [17]: No number of cluster has to be user defined beforehand, like the
majority of clustering algorithms, or at the end of the process, like hierar-
chical clustering. Because here the zones number is naturally derived from
maximum allowed difference between average LMPs. And particularly it
is inversely proportional to it. Since a lower maximum allowed difference
between average LMPs would lead to a stricter zonal division and hence
to a higher zones number.

∗ [17]: Small standard deviation and maximum range of prices for LMPs
associated to nodes inside the same clusters. This is a pro. Because having
very different nodal prices from the zonal prices which approach them,
reveals a high loss of economic signals by moving from the benchmark nodal
configuration to the zonal one. Which is actually the trade-off between
the ideal nodal pricing and the worst uniform one. This is why an optimal
zonal configuration should have as low as possible standard deviation and
maximum range of prices, namely within-clusters variance, for the LMPs
associated to nodes within the same zone.
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– Cons:

∗ [17]: Many single-node and two-nodes zones are defined. Even if differen-
tial price percentage is increased from 5% to 10%. Since this latter action
increases two-nodes areas while decreasing single-node ones. This is a con,
because too small areas are economically unacceptable due to the gener-
ators’ market power that could arise inside them. That would move the
energy market away from the reference perfect competition.

∗ [17]: The split of detached BAs at the end of the clustering process, aimed
at defining a feasible zonal configuration made up of zones with physically
linked within-cluster nodes, is counterproductive. Because it leads to the
definition of too small BAs, unacceptable because of the possible rise of
market power that could happen there.

• Scale-Space Hierarchical Clustering:

– Pros:

∗ [39]: Using the sensitivities of nodal power injections to power flows on
congested lines as clustering features, namely the nodal PTDFs to them
referred, this algorithm manages to create zonal configurations which do
not only reflect nodal prices (since here it is proven that clustering the
PTDFs of most congestible lines is actually comparable to clustering the
system LMPs). But which also do not vary with operating conditions.
Thus improving the temporal stability of the BAs configuration, by pro-
viding a relatively stable price zone partition in a period of time. Thanks
to this algorithm’s similarity to classical hierarchical clustering algorithms,
this pro could be extended to these last too.

∗ [39]: No number of zones has to be user defined beforehand, like the
majority of clustering algorithms, or at the end of the process, like clas-
sical hierarchical clustering algorithms from which this method derives.
Because here the zones number of the optimal zonal configuration is deter-
ministically chosen by using three newly defined parameters for the BAs
assessment, which are respectively BAs’ lifetime, compactness and isola-
tion. Through them it is automatically chosen the best zonal configuration
among the sequence of BAs sets provided by the final summary dendro-
gram.

– Cons:

∗ [39]: Higher computational effort than centroid-based clustering algo-
rithms like K-means or fuzzy-c-means. This drawback derives by the algo-
rithm’s similarity with classical hierarchical clustering algorithms. Which
typically suffer this situation.

∗ [39]: No check on the physical connection between nodes inside the same
cluster is naturally enclosed. So that, even physically unfeasible zonal
configuration can be created. Therefore, an additional control to prevent
this situation has to be enclosed. But this means more complexity, namely
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a drawback for the clustering algorithm, and the need to have a deeper
knowledge of power network structure, in order to make nodal connections
evaluations.

• Imitating Out-Point Method With Tabu Search:

– Pros:

∗ [31]: The proposed clustering algorithm is automatically finished. Hence
no number of zones has to be user defined in advance, like the majority
of clustering algorithms, or at the end of the process, like hierarchical
clustering. This is important, because it is a not known a priori information
for the desired optimal zonal configuration.

∗ [31]: Fast BAs definition method despite its heuristic clustering algorithm.
This is thanks to the enclosed taboo search, which speeds up the process.

– Cons:

∗ [31]: LMPs snapshots here used as input feature for the clustering, either
obtained as averages of hourly trends or instant values of certain moments,
ask for an additional preliminary process on input data. Moreover, the
resulting zonal configurations are likely to be worse than hourly trends-
based BAs from the temporal stability point of view.
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Chapter 3

Methodology

This chapter describes the methodology created inside this thesis, in order to attempt
finding a deterministic approach to define an optimal power network zonal configuration.

The rationale behind this process is firstly proposed in Fig. 3.1 through a block dia-
gram, which actually represents the organization of this chapter. More in-depth analyses
follow in the subsequent sections.

Figure 3.1: Block diagram of the thesis’ methodology.
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3.1 Optimality requirements for zonal configurations

In the introductory chapter it has been recognized a lately growing interest in optimal ZP
mechanisms by the European Union (EU ). This latter has been caused by the increase of
power networks’ congestions, which consequently has led to the rise of respective system
costs in the sense of redispatch ones. As previously mentioned, current European power
networks are all based on UP schemes or non-optimal ZP ones, where also intra-zonal
congestions can occur. For this reason, these market structures are not able to perform
a free-cost congestion management, since they often end up requiring a manual and thus
costly readjustment by the TSO to alleviate their intra-zonal congestions. Therefore, this
increasing interest towards the optimal zonal configuration definition has caused two con-
sequences. Firstly, the scientific literature concerning the subject has grown, as shown in
the previous chapter, which actually collects papers that already tried to deterministically
define optimal BAs using clustering algorithms. Secondly, the EU has emanated in 2011
the Framework Guidelines on Capacity Allocation and Congestion Management for Elec-
tricity, through the Agency for the Cooperation of Energy Regulators. These guidelines
aimed at precisely clarifying the features that a zonal configuration should have in order
to be optimal. But actually, they only managed to give general indications on the subject,
failing to close the game of optimal BAs definition. To demonstrate this, the main lines
of this document are hereunder reported.

. . . The CACM Network Code(s) shall ensure that, when defining the zones, the TSOs
are guided by the principle of overall market efficiency. This includes all economic,
technical and legal aspects of relevance, such as, socio economic welfare, liquidity,
competition, network structure and topology, planned network reinforcement and
redispatching costs. The definition of zones shall further contribute towards correct
price signals and support adequate treatment of internal congestion. . .
. . . The CACM Network Code(s) shall foresee stable and robust zones over time. . .

Having therefore noted the current absence of strict rules on zonal configurations’ opti-
mality, it firstly results necessary to make up for this lack to proceed towards this thesis’
goal. In fact, only clearly stating the requirements that a zonal configuration must fulfill
to be optimal, it becomes possible to quantitatively and objectively define the optimal
BAs definition goal through unequivocal parameters, which then permit to set up a prob-
lem from the engineering point of view. For these reasons, the following lines propose a
bulleted list which tries to strictly review the features requested to a zonal configuration
in order to be optimal. This latter has been created by mixing CACM ’s general provi-
sions with case studies’ findings, taken from the analyzed papers. Therefore, it does not
claim to become the dogmatic truth on the subject. But anyway, in the current state of
things it seems to be the most exhaustive treatment on zonal configurations’ optimality
requirements.

1. “Any optimal zonal configuration should be as stable as possible from the
temporal point of view”.
This requirement derives from the European guidelines [52] on the subject, contained
inside the aforementioned ACER’s document. In fact, the final quote of the above
reported lines talks about “stable and robust zones over time”. In fact, having an
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often changing zonal configuration would be unacceptable for many reasons, like the
additional costs linked to bureaucracy, which would arise whenever the BAs shape
is changed. Or the market players’ contrariness towards this situation, due to their
inability to define profit-maximizing bidding strategies with an acceptable certainty.
Anyway, it is worth remembering that it is not possible to define an optimal zonal
configuration able to preserve its optimality forever, because the power network’s
structure unavoidably changes over time, for instance due to the market players’
investments driven by the economic signals automatically embedded in energy prices.
In addition in the meanwhile the power network’s users change as well, just think
to the unpredictable future expansion of renewables. Still, this is not what the
here considered requirement asks. In fact, this latter just states the impossibility to
define zonal configurations changing in a too little range of time, namely lower than
three or four years, because the other way around they would be affected by the
above reported drawbacks. But, in the same time, it does not close the door to the
possibility of a zonal configuration regularly changing at reasonable time intervals,
aimed at preserving its optimality despite of contour changes. Because otherwise
there would be a risk of ending up in the Californian power market situation, where
electricity prices are distorted and intra-zonal congestions are severe due to the use
of three invariable price zones in the long term [39].

2. “Any optimal zonal configuration should not hinder network security, for
instance intended as N-1 security”.
This security requirement is unavoidably included in any power network manage-
ment, and hence in any of its pricing schemes too, as proven by the role of the TSO.
Which, among other things, has exactly to coordinate the supply of and demand
for electricity in order to guarantee the respect of its power network’s security and
reliability criteria.

3. “Any optimal zonal configuration should boost as much as possible mar-
ket efficiency”.
This requirement derives from the European guidelines [52] on the subject, con-
tained inside the aforementioned ACER’s document. In fact, the first quote of the
above reported lines talks about defining zones “guided by the principle of overall
market efficiency”. This because, as previously stated within the introductory chap-
ter, the ZP mechanism is a trade-off between the UP scheme’s simplicity and poor
performance and the NP scheme’s complexity and excellent performance. Hence,
the more a zonal configuration is optimal, the more the associated ZP scheme ap-
proaches NP benchmark performance without acquiring its drawbacks. Since these
last are mainly due to the use of single-node price zones, which are not allowed in-
side optimal ZP mechanism as it will be following stated. Therefore, it goes without
saying that, in order to have an optimal zonal configuration, its market efficiency
has to be as high as possible, theoretically equal to the benchmark one of nodal
configuration whether the newly defined BAs are completely optimal.
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4. “Any optimal zonal configuration should cope in adequate way with con-
gestion management, by only having inter-zonal congestions instead of
intra-zonal ones”.
This requirement does not clearly derive from the above reported European provi-
sions [52] on the subject. Since these last both deal with an “adequate treatment
of internal congestion” and consider redispatch costs as an “aspect of relevance” in
the BAs definition. But meanwhile, they do not distinguish between inter-zonal
congestions and intra-zonal ones. Nevertheless, it is important to make this distinc-
tion. Because, as it results from the case studies’ findings of the considered papers,
only the inter-zonal congestions, which affect transboundary connections, can be
seen and hence automatically free-cost alleviated by a zonal-based power market,
through the divergence of zonal prices. Whereas the intra-zonal congestions, which
affect within-zone lines, cannot be located in the same way and thus require to be
manually alleviated by the TSO, through a costly readjustment of the dispatching
already defined by the zonal-based market clearing. This happens because the power
network model adopted within a ZP mechanism, whose physical limits become part
of the inequality constraints inside the aforementioned zonal-based market clearing,
consider all the inner parts of the various BAs as copper plates1. And thereby it
does not include the transmission lines congested in the intra-zonal congestions, but
only the ones congested in the inter-zonal ones. Therefore, in an optimal zonal con-
figuration the price zones should always reflect areas where the transfer of energy
is not limited by internal congestions, so as to permit the zonal-based power mar-
ket to control the system’s power flows, keeping them in the grid security limits.
This is just like a NP mechanism would do, through a perfectly efficient congestion
management, free of any additional redispatch costs.

5. “Any optimal zonal configuration should be obtained by an easy to un-
derstand method”.
This requirement does not derive from the above reported European provisions on
the subject [52], but can be read between the lines of many studied papers. In fact,
it is worth remembering when dealing with the economic world, which is unavoid-
ably interested here talking about electricity pricing mechanisms, that the emanated
measure’s simplicity always becomes the discriminant of its application’s success. As
a proof of this, just think of the losses allocation problem. Even if in a completely
precise method able to assign to each market player the exact quote of the system
losses attributable to him is not currently available, there are many approaches able
to make a better system losses partitioning among market players rather than the
usually adopted postage stamp method. Still, all these last are based on quite dif-
ficult algorithms, which therefore end up impeding their actual put in force. For
this reason, when trying to define an optimal zonal configuration it is important to
preserve the simplicity of its creation method. Because otherwise the newly defined

1In electrical systems this terminology is used to point out power network portions where physical
constraints are so high to be neglectable, because practically they never curtail the system’s power flows.
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optimal BAs could reveal to be actually impracticable in the real world, thwarting
the work done.

6. “Any optimal zonal configuration should limit as much as possible the
number of BAs”.
This requirement neither derive from the above reported European provisions [52]
on the subject, nor is patently present in studied papers. Anyway it is important to
be remembered. Since, given the fact that as previously mentioned ZP mechanism
is a compromise between UP and NP one, it is obvious to imagine that increasing
the number of BAs of a zonal configuration would progressively make this latter
tend to a nodal configuration. And this would end up simultaneously improving
the system’s performance too. Nevertheless, this is not the correct way to find
an optimal zonal configuration. Because having a number of price zones near to
NP mechanism’s one would also give to the ZP scheme in question all the nodal
configurations’ drawbacks which have been listed in the introductory chapter and
nowadays prevent their put if force. Therefore, the resulting zonal configuration
would actually result not to be optimal. Still having an optimal efficiency thanks
to its similarity to a nodal configuration.

7. “Any optimal zonal configuration should limit as much as possible the
within-clusters variance of LMPs”.
This requirement derives from the European guidelines [52] on the subject, contained
inside the aforementioned ACER’s document. In fact, this latter states that “The
definition of zones shall further contribute towards correct price signals”. And, given
the fact that LMPs represent the clearest and most objective price signals which
could be defined, since they bring all the information about generation, demand,
congestion and loss-costs to a nodal resolution. It naturally derives that, when
merging nodes inside BAs in order to pass from a starting NP scheme to a ZP one,
the less within-clusters LMP variance, the better. Because it means keeping inside
the final zonal prices as much as possible of the nodal prices’ benchmark economic
signals. So as to actually render the zonal configuration in question an optimal one,
namely able to imitate NP ’s optimal performance without acquiring its drawbacks.

8. “Each BA inside any optimal zonal configuration should have a minimal
size, i.e. number of substations”.
This requirement neither derives from the above reported European provisions [52]
on the subject, nor is patently present in studied papers. And moreover it can be
linked to the previous one, since it goes without saying that when increasing the
number of BAs while keeping the power network dimensions fixed, the price zones’
sizes simultaneously decrease. Nevertheless, this requirement focuses the attention
on another aspect compared to the previous one. In fact, while the aforementioned
rule fixes a limit on the BAs number aimed at preventing the resulting zonal con-
figuration from acquiring the NP schemes’ drawbacks, the here reported principle
defines a bound on BAs dimensions intended to shield the zonal configuration in
question from an additional issue. In fact, in a nodal configuration there are only
single-node price zones and thereby the associate market power is inevitably gifted
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with ad-hoc measures aimed at avoiding the rise of market power in the system’s
BAs. In a zonal configuration the single-node price zones are not the normal, and so
the associated market power is often devoid of any of the aforementioned measures.
This is the reason why too small price-zones, e.g. made up of just one node, cannot
be accepted when defining an optimal zonal configuration. So as to prevent this
latter from suffering from non-null market power in certain BAs, which would end
up threatening system’s perfect competition and hence its performance.

9. “Each BA inside any optimal zonal configuration must be made up of
physically linked nodes”.
This requirement does not derive from the above reported European provisions [52]
on the subject, but can be clearly read within several studied papers. In fact, having
a zonal configuration made up of physically detached BAs is not acceptable for many
reasons. First of all, from the practical point of view there is an organizational
problem represented by the difficulty of managing price zones which are actually
split on the territory. Though, this latter could be overcome through the use of a
centralized control. Nevertheless, from the electricity pricing point of view, there
is also a problem of having zonal prices divergence even when congestions actually
happen in other parts of the grid. As proof of this, just think of an inter-zonal
congestion between two price zones, one of which composed of physically detached
nodes. This congestion would be successfully recognized by the zonal-based market
clearing. And hence it would be automatically free-cost alleviated by the same,
through the zonal prices divergence of the two interested BAs. Nevertheless, this
latter action would provoke the change of electricity zonal price also in power network
areas which actually have not seen the congestion in question at all. Namely the
detached BA’s parts that are not linked to the congested transmission line. And
this would create misleading economic signals in the system, preventing the adopted
zonal configuration from being an optimal one.

10. “Each node inside any optimal zonal configuration must belong to only
one BA”.
This requirement does not derive from the above reported European provisions [52]
on the subject, but it is stated inside reference [44]. In fact, inside that paper it is
clearly pointed out that each node of the system must belong to only one BA, in
order to avoid the emergence of uncertainties during the electricity price attribution
to the various power network’s parts.
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3.2 Suitable clustering algorithms

Having theorized the target features desired for the output through both quantitative and
objective parameters, namely having listed the requirements that a zonal configuration
must fulfill in order to be optimal, the question becomes now how to obtain outputs skilled
this way. To answer this necessity, remember that BAs definition could theoretically
be done in two ways, which are respectively the geographical clustering and the actual
clustering algorithms. But only the latter can actually be used to produce optimal zonal
configurations, as already mentioned inside the introductory chapter. The following lines
rattle off the clustering algorithms which reveal to be most suitable for the aforementioned
request. These last have been chosen by the author of this thesis by both looking at most
diffused methods inside the scientific literature which deals with the subject, namely the
papers described into the previous state of the art chapter. And picking out the clustering
algorithms which, although not used so much in the previous researches, seemed to be
particularly innovative but still applicable. Thus, the selected clustering algorithms are:

K-means clustering. It is a centroid-based hard clustering algorithm. The input da-
tabase’s observations are split out into K clusters, whose number is user-defined,
according to the distance between each of them and the clusters’ centroids, com-
puted as average of each cluster’s components. Therefore, in order to make the first
algorithm iteration, once given the input database and the number of clusters, the
user must initialize the clusters’ centroids before running the process. This latter
action can be done manually by the user, with a certain criterion, or randomly by
the algorithm itself. But in both cases it becomes the main drawback of the final
clustering result, because its quality turns out to be heavily dependent on the afore-
mentioned initialization. Eventually, here like in many other clustering algorithms,
it is up to the user to define the clustering features, namely the observations’ skills
that will be considered for their comparison, and the distance metric, namely the
way of defining the observations’ proximity or distance.

K-medoids clustering. It is another centroid-based hard clustering algorithm. Very
similar to the previous one apart from the centroids. Here the centroids have always
to be equal to one of the cluster’s observations, and thereby are iteratively chosen for
each cluster as its nearest observation to its observations’ average. In the previous
K-means the centroids were simply computed, at each iteration, as average of each
cluster’s observations.

Hierarchical clustering. It is a connectivity-based bottom-up and hard clustering al-
gorithm. The input database’s observations are initially considered as independent
clusters. Then, they are progressively merged in pairs, following a user-defined link-
age criterion, until they are all included inside a unique group. Therefore, once
given the input database, this clustering technique should theoretically ask the user
to specify only the aforementioned linkage criterion to run the process. In addition
to nearest neighbors, farthest neighbors or average linkage criteria, the Ward’s min-
imum variance criterion based on Euclidean distance as distance metric has often
been used, as actually done inside this thesis’ methodology. The final dendrogram,
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summary of the partitioning sequence from many to only one cluster, is produced,
giving then the possibility to the user to horizontally cut it to obtain an input
database division in a certain number of clusters. Nevertheless, actually available
hierarchical clustering algorithm codes do not allow this possibility, and require
instead the number of clusters to be user-defined beforehand.

Genetic algorithm. It is not a usual clustering algorithm, since it comes into being
as an optimization algorithm. However, it can be used to make an optimal zonal
configuration, by writing an ad-hoc objective function able to embody as much as
possible the aforementioned zonal configurations’ optimality requirements. As a re-
sult, in this thesis it has been written an objective function aimed at minimizing the
within-clusters LMP variance for each hour. The objective function has also been
equipped with a penalty factor to make it difficult to merge physically detached
nodes, which would end up producing unfeasible BAs. Once done this, the rest of
the genetic algorithm proceeds as usual. Therefore, starting from a population of
a certain user-defined number of chromosomes, which can be partially or totally
randomly initialized, these last are iteratively undergone to genetic operations such
as mutation or crossover. During these operations the unfitting chromosomes, ac-
cording to the previously defined objective function, are gradually discarded due to
the survival of the fittest ones, until the algorithm stops and gives out the fittest
chromosome, namely the best solution of that moment. This latter convergence can
be reached in two ways, because the user-defined maximum number of iterations
has been reached, or because the algorithm has found a chromosome, i.e. a solution,
able to optimize the objective function within a user-defined range of tolerance.
Anyway, for having a deeper description of this algorithm’s working process, please
look at previous Section 2.3. Also in this clustering algorithm it is up to the user to
define the number of clusters, which then could become BAs in the resulting zonal
configuration. In fact, when defining the optimization problem that will be subse-
quently solved through the aforementioned genetic algorithm, the user must set up
the lower and upper boundaries of its integer decisional variables which respectively
assign each system node to one of the various clusters. Therefore, the lower limit
will always be equal to unity while the upper one will time to time be equal to the
user-desired number of BAs. Eventually, it is worth remembering that according
to the scientific literature it is “genetic algorithm” when chromosomes’ genes are
bit, which hence can acquire either 1 or 0 as value. Whereas, it is “evolutionary
algorithm” when chromosomes’ genes are variables which can assume any integer
value. Nevertheless, since the reference papers’ authors always talk about “genetic
algorithm”, it is decided to preserve this nomenclature for coherence with the treated
topic.

Price differential clustering. It is not a usual clustering algorithm. Like the previ-
ous genetic algorithm, it cannot be framed into one of the two main clustering
algorithms categories, namely centroid-based and connectivity-based clustering al-
gorithms, which otherwise include the first three aforementioned techniques. More-
over, it is a quite simple process which apparently tries to obtain an optimal zonal
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configuration in the easiest possible way, namely, by merging power network nodes
when both their LMPs difference drops below a certain user-defined range and they
result to be physically connected. The just cited difference is evaluated between
LMPs’ averages over the simulation time. The main advantage of this clustering
technique lies in not needing the number of clusters, namely BAs of the resulting
zonal configuration, to be user-defined before the run of the process. In fact, this
latter automatically derives by the algorithm execution itself once having set the
range of tolerance between average LMPs.

The first three of the aforementioned algorithms, i.e. K-means, K-medoids and hi-
erarchical clustering, are applied in a twofold version. On the one hand they are used
in their standard versions, provided by the respective Matlab commands. And on the
other hand, they are used in modified versions, obtained through the manual alteration
of the respective source codes. This has been done in order to assess the effectiveness
of a technique, often used inside the scientific literature dealing with this thesis’ subject,
aimed at satisfying one of the most critical requirements among the previously reported
zonal configurations’ optimality criteria, namely, the need of creating physically connected
BAs so as to prevent the final zonal configuration being unfeasible, and thereby obviously
non-optimal. According to many of the analyzed papers in fact, by using penalty factors
during the clustering process to increase the distance of physically detached nodes, the
resulting zonal configuration will be made up of only physically cohesive price zones, so
complying with the above optimality requirement.

With regard to the last two clustering algorithms instead, they are applied in a sole
version for two reasons. Firstly, because both of them are not based on a distance matrix,
namely, a symmetrical and square matrix, with the number of rows and columns equal to
the number of input database’s observations. The distance matrix is instead computed in
the above three methods before the process execution, and contains in the various cells
the distances between all the possible couples of observations, computed between precise
user-defined clustering features through a certain user-defined distance metric. Therefore,
missing this distance matrix, it is impossible to think of applying penalty factors between
physically detached nodes in order to make unlikely their merge in a common price zone.
Secondly, because both of them are not available in terms of a Matlab command. In fact,
as far as the genetic algorithm is concerned, the respective Matlab command is purely
designed for being the solver of an optimization problem. Consequently, when trying
to make it a clustering algorithm by using the aforementioned objective function, many
errors occur with regard to the inputs syntax preventing the process fruition. Whereas,
talking about the price differential clustering, there is really no Matlab command able to
perform it. For these reasons, both of these two clustering algorithms are subsequently
applied only in the customized version. That still contains the above approach of penalty
factors as regards genetic algorithm, even if slightly modified since there a penalty factor
is added to the objective function every time it is associated to a zonal configuration
made up of physically detached BAs, in order to decrease its fitness and hopefully oust
it from the surviving solutions. Whereas it does not contain at all the same with regard
to the price differential clustering, because there the optimality requirement in question
is straightaway complied by the process itself, which merges couples of nodes only when
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their LMPs difference drops below a certain user-defined range and at the same time they
result to be physically connected.

So, to summarize, the clustering algorithms which will be afterwards applied because
chosen as the most suitable ones for this thesis’ goal, represented by the deterministic
definition of an optimal zonal configuration, are listed here below:

• Matlab K-means clustering

• Matlab K-medoids clustering

• Matlab Hierarchical clustering

• Customized K-means clustering

• Customized K-medoids clustering

• Customized Hierarchical clustering

• Customized Genetic algorithm

• Customized Price differential clustering

3.2.1 Suitable clustering algorithms’ inputs

Firstly, the overwhelming majority of the aforementioned suitable clustering algorithms
require to directly receive the number of clusters, which then becomes the number of
BAs of the produced zonal configuration, as user input. The only algorithm that makes
exception is the price differential clustering. Because there, as already said in the above
lines, the price zones number naturally derives by the process execution itself once having
set the range of tolerance between average LMPs. But actually, since this last parameter
must be anyway defined by the user, also this exception ends up giving zonal configura-
tions with user-dependant numbers of BAs. Therefore, directly or indirectly, it is always
up to the user to choose the price zones number inside this methodology’s algorithms. It
is worth remembering this fact, because it also happens inside all the scientific literature
which deals with clustering algorithms aimed at defining an optimal zonal configuration.
And unfortunately, it constitutes one of the biggest obstacles in reaching these papers’
goal. That is because, even once given the power network, it is impossible to know before-
hand the exact number of BAs that will be associated to its optimal zonal configuration.
But nevertheless, the user must still choose a number of clusters, as clustering algorithms
require it as input. As a result, the scientific literature previously described inside Chap-
ter 2 has differently tried to overcome this impasse, also using algorithms external to the
clustering ones aimed at price zones definition. But actually, the most performing ways
for setting this hard-to-find input have revealed to be only two. On the one hand in fact,
the TSO ’s experience or needs regarding its power network can sometimes fix a priori the
zonal configuration’s BAs number. On the other one instead, it can be better to choose it
by looking at some parameters’ trends according to the number of price zones. Inside this
thesis, since the subsequent case study will be based on a reduced model of the European
transmission grid which hence interests the competence areas of several TSOs, the choice
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between these two approaches is straightforward on the second. Even if, according to
this thesis’ author, this latter should always be preferred to the other because founded on
power network’s physical behavior instead of its past functioning or some bureaucratic re-
quirements. Therefore, inside the following chapter, the zonal configurations’ assessment
criteria that will be subsequently described within the third level of the here outlined
methodology will provide the basis for the aforementioned evaluation. This will suggest a
reasonable number for a set of optimal BAs for each of the adopted clustering algorithms.

Secondly, the totality of the aforementioned suitable clustering algorithms needs to
be fed with a nodal database of clustering features. Namely a set of data which fixes for
each node a parameter, that will then be used inside the partitioning process to make
the clusters, according to a certain user-defined distance metric that will eventually result
high between different clusters’ observations and low between same cluster’s ones. The
choice of this nodal database of clustering features is straightforward as regards the genetic
algorithm and the price differential clustering. In fact, this latter method exactly bases
its partitioning on average LMPs. Therefore, it necessarily requires as input a database
made up of hourly patterns of system nodes’ LMPs, so as to compute for each of them the
average value over a certain period of time, which will then be used as discriminant of nodes
union. As far as the genetic algorithm is concerned, it needs to be fed with the same nodal
database of clustering features because its aforementioned objective function, that has to
be written in order to transform it from an optimization algorithm to a clustering one,
is exclusively imaginable aimed at minimizing the within-clusters LMP variance for each
hour. And consequently, it goes without saying that the here considered genetic algorithm
requires as input the same LMP hourly patterns of the price differential clustering. The
genetic algorithm needs them to compute the above objective function, so as to carry
out the desired power network partitioning. With regard to the other three clustering
algorithms instead, namely the K-means, K-medoids and hierarchical clustering, which
are afterwards applied both in a Matlab version and in a customized one, the choice of this
nodal database of clustering features is not so obvious. In fact, it still makes sense to use
LMP hourly patterns as clustering feature, since they always represent the clearest and
most objective price signals that could be defined. These price signals moreover diverge
when a congestion occurs, making the resulting zonal configuration have most congestible
lines as transboundary connections ready to define inter-zonal congestions instead of the
unwanted intra-zonal ones. It also becomes possible to use as clustering feature the nodal
PTDFs of most congestible lines. In order to prove the validity of this latter statement,
the next lines report a small demonstration, inspired by reference [39].

When writing the optimization problem aimed at doing the numerical market clearing
of a power market in perfect competition, the first thing to do is to write an objective
function. This latter is normally represented by the social surplus maximization or, if the
market is based on a one-sided pool (i.e. a market with competition only on the suppliers’
side which thereby is characterized by an aggregated demand with null elasticity), by the
generators’ costs minimization. After that, they have to be written the OP ’s constraints,
distinguishable in equality and inequality constraints. These last include the physical
limits of system’s generators, loads and transmission lines, and are one by one associated
to a Lagrange multiplier of type µ inside the Lagrangian function that then permits to
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solve the problem, which differs from zero when the associated constraint is activated.
The equality constraints define the system’s power balance between overall generation
and demand, indispensable to keep stable the electricity frequency, and can be written
in two ways. On the one side, it can be written a sole equality constraint containing all
the OP ’s decisional variables, represented by the various energy quantities respectively
injected and withdrawn by the system’s generators and loads. In this case, there will be
a unique Lagrange multiplier of type λ, which will represent the LMP of the slack bus.
On the other side, N equality constraints can be written, with N equal to the number of
system nodes. N-1 constraints will put in relation the net quantity of energy injected from
that node with the loads and generators there present, while the N -th constraint will put
in relation the net quantity of energy injected from the slack bus with all the ones coming
from the other N-1 nodes of the system. In this case, there will be N Lagrange multipliers
of type λ, which will respectively represent the LMPs of all the system’s nodes. This latter
approach is the most interesting one, to proceed with the here provided demonstration.
In fact, using this second way of writing the OP ’s equality constraints, the whole nodal
prices are obtained. By assuming to use a DC power-flow-model, it can be noted that
they are composed as follows:

LMPN = λN (3.1)

{
LMPj = λj = λN +

−→
h Tj ∗

−→µ
j = 1, . . . , N − 1

(3.2)

Where
−→
h j ∈ <L,1 is a column vector, with L equal to the number of power network’s

transmission lines, that contains the PTDFs of system’s lines referring to the j -th node.
The PTDFs represent the sensitivities of that node’s power injection to system’s lines
power flows having assumed to take the energy in question from the slack bus. Further-
more, −→µ ∈ <L,1 is a column vector that contains the Lagrange multipliers associated to
the various inequality constraints of the power network’s transmission lines. As previously
said, the Lagrange multipliers differ from zero when the respective constraint is activated,
and hence the respective line is congested. Therefore, by making the difference between
two different nodal prices it results:

LMPj − LMPi = λj − λi = (
−→
h
′T
j −

−→
h
′T
i ) ∗ −→µ ′

i /= j

i = 1, . . . , N − 1

j = 1, . . . , N − 1

(3.3)

Where
−→
h
′
j ∈ <L

′
,1 and

−→
h
′
i ∈ <L

′
,1 are two column vectors, with L′ equal to the number

of power network’s congested transmission lines, which contain the PTDFs of system’s
congested lines which respectively refer to the j -th and the i-th node. Furthermore,
−→µ ′ ∈ <L

′
,1 is a column vector that contains the Lagrange multipliers associated to the

various inequality constraints of the power network’s congested transmission lines, because
all the others are null for the aforementioned reason. Thus, from (3.3) it derives that the
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difference between two nodal prices can be traced back to the sum of the differences be-
tween the two nodes’ PTDFs associated to power network’s congested lines, each of them
weighted through the Lagrange multiplier µ of the respective congested line’s inequality
constraint. The only case of ambiguity could derive from the difference between the nodal
price of a normal node and the one of the slack bus. But in that case it would result:{

LMPj − LMPN = λj − λN =
−→
h
′T
j ∗
−→µ ′

j = 1, . . . , N − 1
(3.4)

That once again proves the direct proportion between LMPs difference and congested
lines’ PTDFs one. Since here, the only dissimilarity is represented by having a node with
null PTDF on whatever lines, namely the slack node. For these reasons, it has almost
been explained the aforementioned statement. Which identifies in nodal PTDFs of most
congestible lines a clustering feature able to compose the nodal database of clustering
features for some of the suitable clustering algorithms reported inside this chapter, in
alternative to the more typical LMP hourly trends. The only missing part resides in the
“most congestible” adjective, since the aforementioned demonstration deals with actually
congested lines. Nevertheless, this difference is simply due to the temporal shift that
always characterizes the zonal configuration, namely, the fact that zonal configurations
must be defined in the present, with the currently available information, but then they
must work in the future, with unknown system conditions. Therefore, just as future
LMP hourly patterns are statistically estimated by historical data and future scenarios
simulations, which together try to make up for the lack of their exact trends. The future
congested lines required for choosing nodal PTDFs also are statistically estimated through
the same technique. From this it derives the above mentioned talking of “most congestible”
lines, instead of actually congested ones.

For these reasons, summarizing, inside this thesis’ methodology the previously chosen
suitable clustering algorithms are fed as afterwards reported inside Table 3.1.

3.2.2 Suitable clustering algorithms’ changes

The suitable clustering algorithms of the here presented methodology, now even classified
according to their inputs, still require some changes to attempt fulfilling this thesis’ goal,
which is always the deterministic definition of an optimal zonal configuration. Because
to get this latter, the zonal configurations produced by the aforementioned partitioning
methods should comply as much as possible with the zonal configurations’ optimality
criteria previously listed inside Section 3.1. But unfortunately, none of these clustering
algorithms is exactly designed for this purpose. Apart from the price differential clustering,
which anyway requires some interventions to increase its chance to define an optimal zonal
configuration. Therefore, the following lines take up the previous zonal configurations’
optimality requirements and show, for each of them, the eventual changes that have been
necessary to methodology’s algorithms to make them comply with it, acknowledged it was
possible.
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1. “Any optimal zonal configuration should be as stable as possible from the
temporal point of view”.
There are mainly two ways of fulfilling this requirement according to the scientific
literature which deals with the subject. On the one hand in fact, few papers compute
zonal configurations by using clustering algorithms only fed with actual historical
data. And then they check their BAs’ temporal stability by comparing their first
zonal configurations with new ones exclusively based on future scenarios data. On
the other one instead, the majority of papers straightaway computes temporal stable
zonal configurations. By immediately giving as input to the respective clustering
algorithms both actual historical data and future scenarios ones. Inside this thesis
it is adopted this second approach, much more effective as proven by the papers’
case studies themselves, but only with the LMPs-based clustering algorithms. Be-
cause to use it, these last require historical data and future estimations of LMP
hourly patterns, which usually can be easily evaluated through power network’s his-
torians and system simulations on future scenarios. The PTDFs-based clustering
algorithms require historical data and future estimations of nodal PTDFs, which
are typically hard to define as regards the future PTDFs. Because PTDFs depend
on grid topology, and thereby future scenarios of it would be needed in order to
estimate the aforementioned future PTDFs. But usually they are not available, as
also in this thesis, and thus that estimation becomes impossible. In conclusion,
it is still worth remembering that actually the above said historical data of LMP
hourly patterns or nodal PTDFs may derive from system’s simulations as well, like
normally already do the future estimations of these parameters, instead from real
power network’s historians. In particular, this is exactly what has been done inside
this thesis’ methodology, where power network’s historical data and future scenarios
ones have always been obtained through system’s simulations, respectively based on
the current and the future most valid scenarios. It is important to provide now this
clarification, since some of the following requirements, like the next one, will exactly
deal with system’s simulations used to produce both power network’s historical data
and future scenarios ones.

2. “Any optimal zonal configuration should not hinder network security, for
instance intended as N-1 security”.
This requirement is easily fulfilled by all the methodology’s suitable clustering algo-
rithms. By simply reducing the available lines’ transmission capacity to 70% within
the Matlab script which simulates the power network operation, and thereby gives
all its necessary information on historical data and future scenarios ones.

3. “Any optimal zonal configuration should boost as much as possible mar-
ket efficiency”.
This requirement cannot be complied beforehand the partitioning execution, through
the manipulation of the associated clustering algorithm. Because to assess the mar-
ket efficiency of a certain zonal configuration it is firstly necessary to have the
BAs set itself, so as to somehow evaluate its performance from the economic point
of view. Therefore, since the methodology’s suitable clustering algorithms cannot
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be changed ex-ante to fulfill this requirement, their resulting zonal configurations
are judged ex-post through the afterwards described economic efficiency indicators.
Which are exactly aimed at evaluating BAs’ optimality from the here considered
market efficiency point of view. In this way, it can be said that the whole of the
aforementioned clustering algorithms complies with this requirement.

4. “Any optimal zonal configuration should cope in adequate way with con-
gestion management, by only having inter-zonal congestions instead of
intra-zonal ones”.
This requirement is automatically respected when using LMPs as clustering feature.
Because they diverge when a congestion occurs, in particular at the two nodes which
span the congested link. Thereby, they permit the zonal configurations deriving
from them to have most frequently congested transmission lines as transboundary
connections, ready to define optimal inter-zonal congestions instead of unwanted
intra-zonal ones. But moreover, having previously shown the direct proportion be-
tween LMPs difference and the one computed by nodal PTDFs of most congestible
lines, it can be stated that this requirement is as much satisfied when using the
PTDFs-based suitable clustering algorithms. For these reasons, the whole of the
methodology’s partitioning methods complies with this requirement.

5. “Any optimal zonal configuration should be obtained by an easy to un-
derstand method”.
According to the thesis’ author, by also referring to the level of the clustering algo-
rithms normally adopted inside the scientific literature which deals with the subject
of defining optimal zonal configurations, it can reasonably be affirmed that all the
methodology’s suitable clustering algorithms are simple enough to comply with the
requirement in question.

6. “Any optimal zonal configuration should limit as much as possible the
number of BAs”.
According to the considerations previously reported inside Section 3.2.1, the num-
ber of BAs is a particularly hard-to-find input which unfortunately has always to
be user-defined and can only be suggested by TSO ’s needs or some parameters’
trends. Therefore, since anyway its final assignment depends on the user, it could
be said that this requirement’s fulfillment is always up to the user’s responsibility.
Nevertheless, this thesis’ methodology wants to do more to render this achievement
more likely. And hence it provides a criterion to define the BAs number’s extremes,
which could ultimately meet the here considered requirement. Consequently, the
minimum number of BAs should obviously be two, since having just one price zone
would mean having a uniform configuration instead of a zonal one. Whereas, the
maximum number of BAs should reasonably be lower than about the 5% of the
power network’s nodes, as regards national electricity grids, or about the 8% of the
same, as regards continental electricity grids. This because these last experimen-
tally reveal to be sensible upper limits for keeping the respective zonal configurations
away from the nodal ones and their relative unwanted drawbacks. In fact, by looking
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for instance at the Italian transmission grid, as closer to this thesis’ author sensi-
tiveness, it is made up of 873 nodes, according to Terna’s data updated to 2013 on
electricity power stations. Therefore, a number of price zones equal to the 5% of the
power network’s nodes would mean having a national zonal configuration with 44
BAs. This reasonably becomes the upper limit for defining a new and optimal zonal
configuration aimed at improving system’s performance, since the currently exist-
ing starting one is composed of only six zones, namely more than seven times less.
Whereas, by looking at the reduced model of the European transmission grid which
will be afterwards used within the case study, it is made up of 257 nodes. Therefore,
a number of price zones equal to the 8% of the power network’s nodes would mean
having a continental zonal configuration with 20 BAs. Which again becomes a rea-
sonable upper limit for defining an optimal zonal configuration. Because slightly
bigger than the 13 BAs that would have emerged if it had been considered also here
the upper limit as the 5% of power network’s nodes, like in the previous national
electricity grids. Which would have not reckoned the existence of transboundary
energy exchanges and relative congestions. The so created BAs number’s extremes
permit to consider satisfied the here considered optimality requirement for all the
methodology’s suitable clustering algorithms. In particular, they will afterwards
represent in the fourth chapter the limits of the zonal configurations’ assessment
criteria trends according to price zones number, which will be used to suggest the
input number of BAs to each of the adopted methods.

7. “Any optimal zonal configuration should limit as much as possible the
within-clusters variance of LMPs”.
This requirement is automatically respected when using LMPs-based clustering al-
gorithms. On the one side, the K-means clustering, the K-medoids one and the hi-
erarchical one are traditional clustering techniques. Therefore, they naturally make
the clusters by merging highly similar observations and keeping divided different
ones. Acting this way, they unavoidably end up defining data groups, which then
could become BAs, with small inner variance of the user-defined clustering feature,
here represented by the LMPs. On the other side, the genetic algorithm and the
price differential clustering have respectively an objective function exactly aimed at
minimizing the within-clusters LMP variance for each hour, and a clustering process
which maybe merges couples of nodes only whether their average LMPs difference
drops below a certain user-defined range of tolerance, which actually still makes
them produce price zones with small LMP variance inside them. With regard to
PTDFs-based clustering algorithms instead, the same things cannot be said. Be-
cause their traditional clustering algorithms, which are remembered to be the only
one existing in the methodology’s PTDFs-based partitioning techniques, obviously
produce clusters with small inner PTDFs variance, for a reasoning similar to the
previous one, but simultaneously nothing can be said on their inner LMP variance.
As a result, in order to still make these PTDFs-based clustering algorithms comply
with the here considered optimality requirement, their resulting zonal configurations
are judged ex-post through the clustering validity indicators afterwards described.
These criteria, fed with the LMP hourly trends, are exactly able to evaluate the
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within-clusters LMP variance, so as to limit it as expressed by this requirement. At
this point though, it is worth remembering that this last judgment, even if surely
used for making the PTDFs-based suitable clustering algorithms fulfill the afore-
mentioned optimality criterion, is then anyway applied to all the methodology’s
partitioning techniques. Because the zonal configurations’ assessment criteria are
introduced not only to check the BAs’ optimality, which would hence justify the
above said evaluation of PTDFs-based methods, but also to allow the comparison
among the different price zones definition techniques.

8. “Each BA inside any optimal zonal configuration should have a minimal
size, i.e. number of substations”.
First of all, in the previous description about zonal configurations’ optimality cri-
teria, contained in Section 3.1, it has already been noted that this requirement is
closely linked to the previous one. In fact, when increasing the number of BAs
while keeping the power network dimensions fixed, the price zones’ sizes simulta-
neously decrease. Therefore, as well as the previous requirement’s fulfillment has
been initially entrusted to the user’s responsibility, here it could be done the same.
Nevertheless, within this methodology it has been inserted an additional check on
this optimality requirement. In fact, all the zonal configurations produced by the
various suitable clustering algorithms are always subject to a “handwritten” func-
tion, named “NoSingleNodesBAs”, before being given on screen as clustering results.
The latter function firstly looks for single-node BAs inside the input zonal config-
uration, and then removes these last if present by merging the respective nodes to
the geographically nearest price zones. Therefore, thanks to this additional check
in post processing, it can firmly be stated that the optimality requirement here con-
sidered, dealing with price zones’ minimum dimensions, is surely satisfied by all the
methodology’s suitable clustering algorithms. Because its fulfillment is no more left
to user’s responsibility but is automatically achieved by an ad-hoc change of the
partitioning methods, just like it has been done for the previous optimality require-
ment through the BAs number’s extremes. The only drawback is that, the usage
of the just described handwritten function can produce final zonal configurations
characterized by a number of price zones smaller than the one initially given by the
user as input. This however can be neglected, since experimentally this decrease
reveals to be always limited to few price zones and because there are no particular
reasons to behave strictly towards the BAs number, given the fact that the BAs
number has already been recognized as an input without a clearly definable optimal
value.

9. “Each BA inside any optimal zonal configuration must be made up of
physically linked nodes”.
This is one of the most hard-to-satisfy optimality requirements, since the overwhelm-
ing majority of the suitable clustering algorithms completely neglects this criterion
when making clusters, but simultaneously it is one of the most important ones too,
because having physically detached BAs renders unfeasible and hence useless the
produced zonal configuration, for reasons previously shown inside Section 3.1 The
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only clustering algorithm which fortunately makes an exception, by naturally fulfill-
ing the here considered requirement, is the price differential clustering, because it
merges couples of nodes only when their average LMPs difference drops below a cer-
tain user-defined range and at the same time they result to be physically connected.
As far as all the other clustering algorithms are concerned instead, manual alter-
ations of them are required to only produce physically connected and hence feasible
price zones. In this sense, many of the scientific literature’s papers regarding the
optimal BAs definition through the use of clustering algorithms, which have been
previously described inside Chapter 2, affirm that using a penalty factor to increase
the distance of physically detached nodes would impede their merge and thereby
would make the respective partitioning method comply with the here considered
optimality requirement. Therefore, in order to assess the effectiveness of this tech-
nique, as previously said inside Section 3.2 the clustering algorithms both based
on a distance matrix, which hence can be modified through the penalty factors in
question and available in terms of source code, necessary to change the clustering
process, are altered this way inside ad-hoc customized versions, which consequently
theoretically fulfill the here considered optimality requirement. These last are, as
already mentioned, the customized K-means clustering, the customized K-medoids
clustering and the customized hierarchical one. As regards the genetic algorithm
instead, also included inside the customized algorithms because not available in
terms of Matlab command like the price differential clustering, as previously better
explained inside Section 3.2, the aforementioned distance matrix is not present and
hence seems to prevent the application of the just described penalty factor tech-
nique. But actually, thanks to slight modifications it is still adopted also there,
thus making the genetic algorithm too comply with the here considered optimality
requirement. In fact, the only difference inside this latter case is represented by the
summing of a penalty factor to the objective function, instead of to the distances
of physically detached nodes, every time it is associated to a zonal configuration
made up of physically detached BAs, so as to decrease its fitness and hopefully oust
it from the surviving solutions. For these reasons, all the methodology’s suitable
clustering algorithms, apart from those based on Matlab commands, seem to respect
the optimality requirement in question. Therefore, in order to make also these last
conform to the here considered criterion, an ad-hoc handwritten function named
“CheckBAsConnection” has been developed. This latter, once received as input a
zonal configuration, checks its BAs’ physical integrity by using the power network’s
adjacency matrix (namely a NxN symmetrical matrix, with N equal to the number
of system’s nodes, which has 1 between physically linked nodes and 0 otherwise).
Then, if it finds some detached price zones, it separates them into completely dif-
ferent BAs, so obtaining a surely feasible final zonal configuration. Thanks to this
change of zonal configurations in post processing, also the methodology’s suitable
clustering algorithms based on Matlab commands are now claimable conform to the
here considered optimality requirement. The only drawback is that the usage of the
just described additional function can produce final zonal configurations character-
ized by a number of price zones larger than the one initially given by the user as
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input. This however can be neglected, since experimentally this increase reveals to
be always limited to few price zones, and because there are no particular reasons
to behave strictly towards the BAs number, given the fact that it has already been
recognized as an input without a clearly definable optimal value.
Finally, it is still worth remembering one thing before proceeding to the next opti-
mality requirement: the above described additional function aimed at checking BAs’
physical integrity is not only capable of treating zonal configurations produced by
methodology’s Matlab clustering algorithms, but it can also operate on any other
BAs set. That is because it is an additional function external to the partitioning
processes, which hence acts on their results without considering how they have been
actually obtained. It is important to emphasize now this fact because, if within the
subsequent case study the aforementioned penalty factor technique will reveal to be
unable to really make the customized clustering algorithms only produce physically
connected BAs, it will be just necessary to pass also these last’s zonal configura-
tions through the above “CheckBAsConnection” function in order to surely make
them comply with the here considered optimality requirement. Without compro-
mising the reason for their presence among the methodology’s suitable clustering
algorithms. For this reason, since nothing has already been stated regard the case
study and hence nothing can currently be said upon the above penalty factor tech-
nique’s effectiveness too, the following summary table of the changes applied to
the methodology’s algorithms will contain, inside the column referred to the here
considered optimality requirement, both the modifications as far as the customized
partitioning techniques are concerned (except for the price differential clustering
that albeit customized automatically satisfies this optimality requirement). On the
one side, the internal change to the clustering process represented by the aforemen-
tioned penalty factor technique, still devoid of a sure effectiveness. And on the other
one, the possible additional function to insert downstream in case of insufficiency
of the previous measure. Which anyway will always remain, at least making lighter
the zonal configurations’ alteration made by the function in question.

10. “Each node inside any optimal zonal configuration must belong to only
one BA”.
This optimality requirement is automatically fulfilled by all the methodology’s suit-
able clustering algorithms. Because all of them are hard clustering techniques, which
hence strictly put each of the input database’s observations inside one and only one
cluster. This is also the reason why inside the previously chosen suitable cluster-
ing algorithms is missing a fuzzy-c-means, despite being sometimes used inside the
scientific literature dealing with this thesis’ subject. In fact, this latter is a soft clus-
tering technique. Therefore, it does not uniquely place each of the input database’s
observations inside a sole cluster like the previous hard clustering algorithms do,
rather, it gives to each of them a number of membership grades, between zero and
one and with unitary sum, equal to the user-defined number of clusters. Conse-
quently, using a fuzzy-c-means as clustering algorithm aimed at defining an optimal
zonal configuration, would mean having to add something to fulfill the here consid-
ered optimality requirement, otherwise not naturally satisfied. Like a downstream
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process, actually used inside the papers which adopt this partitioning method for the
optimal BAs definition, in which the final matrix of membership grades is queried to
put each of the system’s nodes inside the price zone, namely the cluster, to which it
has the highest membership grade. Nevertheless, since the fuzzy-c-means clustering
is actually a K-means clustering apart from the aforementioned matrix of member-
ship grades, it is much more reasonable to avoid using this soft clustering technique
in favor of a K-means clustering. This automatically satisfies the here considered
optimality requirement, without needing anything in post processing.

In order to conclude this section, the changes of methodology’s suitable clustering
algorithms are summarized in Table 3.3, whose legend is provided in Table 3.2.

Table 3.2: Legend of the modifications summary table of the methodology’s suitable
clustering algorithms.

Symbol Meaning

O Optimality requirement impossible to satisfy for the clustering algorithm
- Optimality requirement naturally satisfied by the clustering algorithm
Xi Optimality requirement by the ex-ante inputs alteration or simply thanks

to their usage
Xo Optimality requirement satisfied by the ex-post outputs alteration or eva-

luation. Obtained respectively through the use of additional handwritten
functions, downstream to the clustering process, or of ad-hoc assessment
criteria

Xp Optimality requirement satisfied by the internal alteration of the clustering
process itself

1 Zonal configuration temporal stability
2 Power network security (N-1)
3 Zonal-based market efficiency boost
4 Inter-zonal congestions rather than intra-zonal ones
5 Clustering algorithm simplicity
6 Limited number of BAs
7 Minimal within-clusters LMP variance
8 BAs minimal sizes
9 BAs physical integrity
10 BAs membership exclusivity
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Table 3.3: Modifications summary table of the methodology’s suitable clustering algo-
rithms.

1 2 3 4 5 6 7 8 9 10

LMPs-based Matlab
K-means Xi Xi Xo Xi - Xi - Xo Xo -
PTDFs-based Matlab
K-means O Xi Xo Xi - Xi Xo Xo Xo -
LMPs-based Matlab
K-medoids Xi Xi Xo Xi - Xi - Xo Xo -
PTDFs-based Matlab
K-medoids O Xi Xo Xi - Xi Xo Xo Xo -
LMPs-based Matlab
Hierarchical clustering Xi Xi Xo Xi - Xi - Xo Xo -
PTDFs-based Matlab
Hierarchical clustering O Xi Xo Xi - Xi Xo Xo Xo -
LMPs-based Customized
K-means

Xi Xi Xo Xi - Xi - Xo Xp/(Xo) -

PTDFs-based Customized
K-means

O Xi Xo Xi - Xi Xo Xo Xp/(Xo) -

LMPs-based Customized
K-medoids

Xi Xi Xo Xi - Xi - Xo Xp/(Xo) -

PTDFs-based Customized
K-medoids

O Xi Xo Xi - Xi Xo Xo Xp/(Xo) -

LMPs-based Customized
Hierarchical clustering

Xi Xi Xo Xi - Xi - Xo Xp/(Xo) -

PTDFs-based Customized
Hierarchical clustering

O Xi Xo Xi - Xi Xo Xo Xp/(Xo) -

LMPs-based Customized
Genetic algorithm

Xi Xi Xo Xi - Xi - Xo Xp/(Xo) -

LMPs-based Customized
Price differential clustering

Xi Xi Xo Xi - Xi - Xo - -
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3.3 Assessment criteria for zonal configurations

Having theorized the target features desired for the output, within the first section of
this chapter, and moreover having chosen the apparently most suitable techniques to find
results skilled that way, inside the second section of the same, the questions become now
how to evaluate the quality of the produced outputs and how to compare the performance
of the different approaches used to obtain them. The answer to these queries comes from
the subsequently described third level of this thesis’ methodology. In fact, the following
lines provide a series of zonal configurations’ assessment criteria. These criteria are in-
tended to both evaluate the BAs optimality, according to some of the previously reported
optimality requirements which thereby become satisfied for the associated clustering algo-
rithm (assuming it was still necessary), and to allow the comparison among the different
price zones definition techniques adopted inside the here outlined methodology.
These zonal configurations’ assessment criteria are discernible in two categories, namely
the clustering validity indicators and the economic efficiency ones.

3.3.1 Zonal configurations’ clustering validity indicators

These indices are commonly used when evaluating the goodness of a clustering result.
When they are fed with the user-defined clustering feature, they give a measure of its
within-clusters variance, which is remembered being small when the partitioning process
is successful. Since normally a clustering algorithm merges the highly similar observations
of the input database and simultaneously keeps distinct the markedly different ones. In
particular, these clustering validity indicators directly proportional to the within-clusters
variance of the input parameter are:

Mean Index Adequacy (MIA).

Clustering Dispersion Indicator (CDI).

Similarity Matrix Indicator (SMI).

Davies-Bouldin Index (DBI).

An in-depth description of each of them is provided inside reference [60]. For the
here described BAs evaluation goal, they are always fed with the LMP hourly patterns,
whichever is the user-defined clustering feature within the suitable clustering algorithm
that has produced the under judgment price zones. This because one of the zonal config-
urations’ optimality requirements, previously reported inside Section 3.1, exactly asks to
limit as much as possible the within-clusters LMP variance. Therefore, by actually using
nodal prices to fed the aforementioned clustering validity indicators with both PTDFs-
based and LMPs-based partitioning techniques, firstly there can be an interesting com-
parison between their performance based on a zonal configurations’ optimality criterion.
Moreover, this latter can be fulfilled by the PTDFs-based clustering algorithms as well,
which otherwise would not naturally satisfy it as previously better explained inside Section
3.2.2. Finally, it is still worth remembering that, since all the above mentioned parameters
are directly proportional to the within-clusters variance of their input parameter, during
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the following assessments the lower these indices will be the more optimal the evaluated
zonal configuration will prove to be. Especially, since each of these parameters will case
by case be normalized respect its maximum value among the zonal configurations’ ones
of the compared clustering algorithms, each of these indices will have a unitary value in
correspondence of its worst zonal configuration, several minor values in correspondence of
the intermediate ones, a minimum value in correspondence of its best zonal configuration.

3.3.2 Zonal configurations’ economic efficiency indicators

As regards the second category of zonal configurations’ assessment criteria which is made
up of economic efficiency indicators, these last are indices commonly used to make market
power evaluations. That is because one of the zonal configurations’ optimality require-
ments, previously reported inside Section 3.1, actually asks to boost as much as possible
the market efficiency of the zonal configuration in order to make it optimal. And hence,
for this latter’s validation by all the methodology’s algorithms and for these last’s com-
parison, the above economic efficiency indicators become useful. In fact, theoretically the
most efficient market ever is the one characterized by an absolute perfect competition,
and because this latter parameter is the opposite of the aforementioned market power.
Therefore, going down in particular, the here adopted economic efficiency indicators are:

Concentration ratio (Rm). With m equal 4, as this is the most frequently used version
of the index. According to which there is perfect competition under R4 = 0.0001
and monopoly over R4 = 0.71.

Herfindahl-Hirschman Index (HHI). According to which there is perfect competi-
tion with HHI = 10000/P, where P represents the number of market’s producers,
and monopoly with HHI = 10000.

Entropy Coefficient (EC). According to which there is perfect competition whether
EC = ln(P ), where P again represents the number of producers, and monopoly
when EC = 0.

Local Herfindahl-Hirschman Index (L-HHI). According to which there is perfect
competition with L-HHI = 0 and monopoly with L-HHI = 1.

An in-depth description of each of them is provided inside reference [57]. Among
these, the first and the fourth index have a unitary range, where 0 and 1 respectively
represent the best and the worst situation according to the above cited zonal configura-
tions’ optimality requirement about market efficiency. Consequently, they represent again
the same situation already seen for the previous clustering validity indicators, once nor-
malized respect to their maximum values among the compared algorithms. Therefore, it
would be useful to bring also the HHI and the EC in the same rating scale, so as to ease
the partitioning methods’ evaluation and comparison. Consequently, on the one hand the
HHI is considered divided by its maximum possible value, namely HHI = 10000 repre-
senting a monopolistic market, in order to have once more a unitary range where 0 and 1
respectively represent the best and the worst situation. And on the other one the EC is
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considered divided by its maximum possible value too, namely EC = ln(P ) representing
a perfect competition market, ending up having again a unitary range. Nevertheless, this
latter has 0 and 1 respectively on the worst and the best situation according to the above
cited zonal configurations’ optimality requirement about market efficiency. Therefore, it
is still necessary to reverse its scale, by considering 1 − EC/ln(P ) as real entropy coef-
ficient, in order to have once more the same rating scale of the other indicators. At this
point, that all the aforementioned economic efficiency indicators have the same unitary
range with 0 and 1 respectively best and worst situation, it is worth mentioning that
making also a normalization for each of them respect to their maximum values among
the compared algorithms, like previously done for the clustering validity indicators, would
be counterproductive in this case. In fact, the just outlined parameters already have a
unitary rating scale, unlike the prior ones before their normalization, and moreover this
latter holds a physical sense in its extremes, since 0 and 1 respectively represent a perfect
competition or a monopoly. Therefore, making here the above said normalization would
only mean losing part of the information, without acquiring any advantage in terms of
algorithms’ evaluation or comparison. In fact, the resulting economic efficiency indicators
would maintain their unitary rating scale, as they already had before the normalization,
and would always have a quartet of unit values among the compared clustering algorithms.
Which, however, would not reveal the presence of monopolies, but would only indicate the
worst partitioning methods according to the respective economic efficiency indicators. For
this reason, in order to preserve the physical sense of their unitary rating scale, this sec-
ond category of zonal configurations’ assessment criteria is not normalized respect to the
maximum values among the compared algorithms. Thus, having one of these indicators
equal 1 or 0 would always mean having a monopoly or a perfect competition.

Eventually, it must be considered that the R4, the HHI and the EC are only capable of
evaluating the market power presence inside uniform-based markets, and not zonal-based
ones. Therefore, for the here described zonal configurations’ evaluation goal, they will be
applied once on each price zone of the assessed BAs set, so having a triple measure of
the perfect competition level for each of them. Then, among these last it will be kept
only the highest value for each of the evaluation parameters, namely the one referring
to the most monopolistic and hence worst price zone according to it. Instead, as far as
the L-HHI is concerned, it is the only economic efficiency indicator exactly designed for
evaluating the market power presence inside a zonal-based market. In fact, it becomes 1
whether inside this latter there are various BAs all characterized by absolute monopolies
or there is a sole price zone which holds the whole of the market shares and is an absolute
monopoly. Therefore, it is the only assessment parameter which manages to evaluate
the market power presence on two levels, i.e. both within and between the various BAs.
However, the L-HHI has still to be firstly computed once per each price zone and secondly
kept for its maximum value, by definition for having a market power evaluation of the
total zonal-based market. As a result, in the following economic assessments of the zonal
configurations, each of these last will be represented by one value per each of the four
aforementioned economic efficiency indicators. The first three of these last will refer to
the zonal configuration’s worst BAs according to them, whereas the last one will give an
overall evaluation of the zonal-based market’s efficiency.
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Chapter 4

Case Study

The thesis’ methodology previously described inside Chapter 3, aimed at locating the most
suitable clustering algorithm for deterministically define an optimal zonal configuration,
is here below applied to a real power network model, in order to test its effectiveness.
Therefore, this chapter will initially give a portrait of the used electricity grid model
inside Section 4.1. Then it will make some a priori considerations within Section 4.2,
useful to make before the methodology execution so as to prevent the repetition of some
of its parts, which unavoidably would become necessary at the end of the same if the
aforementioned a priori considerations were not be done beforehand. And eventually it
will deal with the actual methodology application inside Section 4.3, together with the
associated considerations.

4.1 Description of the case study’s electricity grid

This section contains a description of the power network model on which it has been
afterwards applied the thesis’ methodology. In particular, it is a reduced model of the
European transmission electricity grid composed of 257 nodes, that has been obtained
by applying a K-means clustering algorithm to the original 380 kV European network
made up of more than 6000 bus. Hence, this model spans 33 out of 36 ENTSO-E coun-
tries, which are inter alia: Albania, Austria, Bosnia and Herzegovina, Belgium, Bulgaria,
Estonia, Finland, Croatia, Czech Republic, Denmark, France, Germany, Great Britain,
Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Norway, Poland, Portugal, Romania,
Serbia, Slovakia, Slovenia, Spain, Sweden and Switzerland. Thanks to the above cited
K-means clustering, it ends up having 460 branches, 24 DC lines, 1448 generators and
roughly 360 GW of load, scattered on the above said 257 nodes. Inside Fig. 4.1 it is
provided a representation of the electricity grid model in question.

The choice of the power network model to be used for testing the thesis’s methodology
has fallen on this one for two reasons. On the one hand because it concerns an area large
enough for giving to the following considerations, on the previously chosen methodology’s
suitable clustering algorithms, the generic meaning desired for this thesis’ goal. On the
other hand, because it has been used inside reference [56] for creating a Matlab program
able to simulate its hypothetical day ahead market, on the basis of bids and offers referred
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Figure 4.1: Map of the case study’s reduced model of European transmission network.
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to a specific user-defined scenario. This latter in fact, based on Matpower, becomes a
particularly powerful tool for this thesis’ needs. Since it manages to provide all the data
required as input by the methodology’s algorithms, from the LMP hourly patterns to the
nodal PTDFs of the most congestible lines. The only drawback to this apparently perfect
situation, is represented by the computation time of the aforementioned script. Indeed, a
24-hour market simulation actually requires 8 hours on a 64-bit desktop PC driven by a i5-
6500 processor of 3.19 GHz and equipped with 16 Gb of RAM. Therefore, the initial idea
of simulating two years, respectively arising from the current and the future most valid
scenario among the available ones (to be used for zonal configurations’ temporal stability
reasons previously explained inside Section 3.2.2 ), has been unavoidably abandoned in
favor of a more reasonable simulation time of a week. As a result, the Matlab program in
question has been run twice, with the following settings:

• 1st run: 2017’s scenario from Monday 8 May to Sunday 14 May.

• 2nd run: 2040DG’s scenario from Monday 8 May to Sunday 14 May.

Both times the extracted results have been the LMP hourly patterns along the week
and the list of at-least-once congested lines over the simulation time. The choice of May
and that particular week has been done in order to consider a continental load level as
close as possible to its annual average value, so as to imitate at least the original idea of us-
ing years as simulation time. In this sense, the aforementioned week does not contain any
particular festivity at European level, and its typical weather on the continent is markedly
away from the extremes summer and winter. Thereby, the continental load level of that
period is actually close to its annual average value, as proven by the load profiles provided
inside reference [56], which inter alia reveal a maximum and a minimum European load
level respectively during winter and summer. Instead, with regard to the second run’s sce-
nario year, it has been chosen the 2040DG because inside the Matlab program in question
it is the latest future scenario available which represents a prosumer-centric development,
namely, a system’s growth oriented towards events as the distributed generation increase
or the electrical vehicles penetration. The actual realization of this scenario indeed, would
likely sharpen the congestions problem and consequently the associated nodal prices diver-
gences. Thus, since the most congestible lines on the one side and the LMPs on the other
one represent the two input kinds which can be used to feed clustering algorithms aimed
at defining optimal BAs sets, it is better to consider beforehand this scenario, during
the optimal zonal configurations definition itself, so as to make the resulting price zones
fulfill their optimality requirement about temporal stability even in case this particularly
challenging future scenario is realized. Finally, in order to conclude this overview on the
electricity grid model which will be used in the here outlined case study, two things must
still be said. Firstly, as better explained inside Section 3.2.2 to which reference is made
for further details, during both the aforementioned Matlab program’s runs the transmis-
sion capacity of the power network’s lines has been reduced of 30%, to comply with the
zonal configurations’ optimality requirement regarding the application of the N-1 security
criterion. Secondly, it would have been better if the future scenario (i.e. the 2040DG) had
been endowed with a prospective on the European electricity grid future topology, and not
only with estimations on future bids, offers and lines’ transmission capacities, this latter
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evaluated downstream to the ENTSO-E ’s investment plan on the continental power net-
work up to 2040. Acting that way, it would have been obtained also an estimation on the
future system’s PTDFs, otherwise only present for the future LMP hourly patterns, which
could have been used together with the 2040’s list of the at-least-once congested lines in
order to have a future estimation of the nodal PTDFs of most congestible lines. This
could have made the PTDFs-based methodology’s suitable clustering algorithms comply
with the previously reported zonal configurations’ optimality requirement on temporal
stability, that otherwise is only fulfilled by the LMPs-based methodology’s algorithms,
as better explained inside the previous Section 3.2.2. Beyond these auspices, this future
topology estimation is not available in the power network model in question. Therefore,
the PTDFs matrix does not vary from one scenario to the other, and consequently it is
only computed once, by arbitrarily using the ad-hoc Matpower command at the end of
the first simulation, and by obviously setting the slack node in correspondence of the one
gifted with the highest level of generation. Conventionally, this is done to simulate at best
the power network’s live keeping of active and reactive power balances, even if actually,
this latter behavior is unthinkable to be borne by a sole node, however big its generation
may be. Hence in reality the power balance is obtained through the contribution of several
nodes of the system, by doing what is technically called a “distributed slack node”.

4.2 A priori considerations

This section contains some a priori considerations useful to make before the methodology
execution. In fact, these considerations would anyway appear at the end of the discus-
sion, thereby ending up forcing the repetition of some parts of the methodology. These
considerations are distinguishable in three, and hence are separately treated within the
sections hereafter reported. Inside these last, it is firstly described the insufficiency of the
penalty factor technique for defining only physically cohesive BAs. Secondly, it is shown
the inadequacy of the GA’s starting population random initialization. And thirdly, it is
faced the K-means and K-medoids initialization problem.

4.2.1 Insufficiency of the penalty factor technique

In Section 3.2.2, about the zonal configurations’ optimality requirement concerning the
price zones’ physical integrity, it has been stated that many of the scientific literature’s
papers, regarding the optimal BAs definition through the use of clustering algorithms,
affirm that using a penalty factor to increase the distance of physically detached nodes
would impede their merge. Thereby, it would make the respective partitioning method
comply with the optimality requirement in question. Therefore, as better explained in-
side Section 3.2.2, in order to assess the effectiveness of this approach, the methodology’s
customized suitable clustering algorithms have actually been endowed with this penalty
factor technique (apart from the price differential clustering, which already fulfills natu-
rally this optimality requirement). This has been done hoping to manage to easily define
physically feasible zonal configurations, without the need of modifications in post pro-
cessing through the usage of the handwritten function “CheckBAsConnection” previously
described in Section 3.2.2. Nevertheless, experimental tests show the absolute inability
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of this penalty factor technique in making the customized suitable clustering algorithms
comply with the zonal configurations’ optimality requirement in question. This happens
whichever is the user-defined BAs number, that directly or indirectly must be always de-
fined by the user as better explained in Section 3.2.1. Proof of this is afterwards provided
inside Fig. 4.2, Fig. 4.3 and Fig. 4.4, which respectively portray the zonal configurations
of the case study’s electricity grid produced by the methodology’s customized suitable
clustering algorithms with a low, medium and high number of BAs. These figures in fact,
are already obtained by giving as input to the various partitioning methods the LMPs
hourly patterns or the most congestible lines’ nodal PTDFs deriving from the aforemen-
tioned 1st and 2st run of the [56]’s Matlab program, and reveal several cases of physically
detached price zones. Like the zone 1 and the zone 2 within LMPs-based customized
K-means’ zonal configuration of Fig. 4.2, the zone 1 within PTDFs-based customized K-
means’ zonal configuration and PTDFs-based customized K-medoids’ one of Fig. 4.2, the
zone 4 within PTDFs-based customized K-medoids’ zonal configuration and LMPs-based
customized hierarchical clustering’s one of Fig. 4.3, and the zone 4 within PTDFs-based
customized hierarchical clustering’s zonal configuration of Fig. 4.4. Therefore, the penalty
factor technique reveals to be always insufficient to carry out the purpose for which it has
been created. Whether the user-defined BAs number is low, namely 5 as in Fig. 4.2,
or intermediate, namely 13 as in Fig. 4.3, or maximum according to the limits previ-
ously declared inside Section 3.2.2 (in order to comply with the 6th zonal configurations’
optimality requirement), namely 20 as in Fig. 4.4.

Moreover, with respect to these just mentioned three figures, it is worth noting that
there are some cases, like the LMPs-based customized K-means’ zonal configuration of
Fig. 4.3, in which there is a “Final BAs”, tacit “number”, differs from the input one defined
by the user and reported inside “Requested BAs”, again tacit “number”, box. This could
seem to be an incorrectness, since the whole of the here adopted customized algorithms
should be only endowed with the aforementioned penalty factor technique according to
the overlying lines (reason why the price differential clustering is missing within this sec-
tion, since as already said it does not include this technique), and hence should be devoid
of any zonal configurations’ change in post processing. But actually, it is not so. In fact,
as better explained inside Section 3.2.2, all the methodology’s suitable clustering algo-
rithms, and thereby also the customized ones, are downstream modified by an additional
handwritten function named “NoSingleNodeBAs”. This function is exactly aimed at pre-
venting the presence of single-node price zones inside the produced zonal configurations,
that otherwise would compromise the zonal-based market’s efficiency due to market power
reasons. As a result, this is the reason why within the LMPs-based customized K-means’
zonal configuration of Fig. 4.3 there is a “Final BAs” number different and especially lower
than the input one defined by the user and reported inside the “Requested BAs” box.
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For these reasons, having proved the insufficiency of the penalty factor technique for
defining only physically cohesive price zones, the aforementioned handwritten function
“CheckBAsConnection” is from here on out applied downstream of all the methodology’s
suitable clustering algorithms apart from the price differential clustering (PDC ). It was
already applied on Matlab’s partitioning techniques, and now it has also been enabled
on customized algorithms apart from the PDC, due to the insufficiency of their penalty
factor technique. The only exception remains the PDC because, thanks to its nature,
it has always automatically complied with the zonal configurations’ optimality require-
ment concerning the price zones’ physical integrity, without the need of any penalty factor
technique or handwritten function used in post-processing. By acting this way, as already
hinted inside Section 3.2.2 when alluding to the possible penalty factor technique’s fail-
ure, the methodology’s Matlab suitable clustering algorithms will only produce physically
feasible zonal configurations thanks to the invasive intervention of the aforementioned
additional handwritten function “CheckBAsConnection”. Whereas, the customized ones
will do the same through a less invasive intervention of the function in question, thanks
to a preliminary reduction of the union possibility of physically detached nodes obtained
through the above said penalty factor technique.

As a final remark, it is useful to try giving a reason to the just described penalty factor
technique’s failure. Especially for the future developments, in order to make everybody
convinced on it, so as to prevent from making the same error of many scientific literature’s
papers. Therefore, it is important to note that using a penalty factor to increase the
distance of physically detached nodes could not become in principle the definitive solution
to avoid their merge. Because this measure does only make less probable this situation,
without strictly preventing it. And hence, if the generic clustering algorithm does not
find reasonable alternatives to the aforementioned union, it still ends up doing it, thereby
producing physically unfeasible zonal configurations. Since one way or the other it needs
to find a convergence, with the user-defined number of clusters.

4.2.2 Inadequacy of the GA’s starting population random initialization

The genetic algorithm comes into being as an optimization algorithm but, as already ex-
plained inside Section 3.2, it can be transformed into a clustering algorithm able to poten-
tially define optimal zonal configurations by simply writing an ad-hoc objective function
aimed at minimizing the within-clusters LMP variance for each hour (which moreover
is endowed with the penalty factor technique, as all the customized suitable clustering
algorithms except the PDC one). However, beyond the effectiveness of this newly defined
clustering algorithm in finding optimal BAs which will be afterwards assessed inside Sec-
tion 4.3, it first must be noted one thing regarding its setting. In fact, a classical GA
requires to be defined:

The population size. It defines the number of best chromosomes which are preserved
at each iteration. The more it is, the better, as the GA expands its solutions’ space
and thus increases its possibility to find the global optimum. But simultaneously,
the growth of this population also increases the algorithm’s computational burden.
Hence, a trade-off has to be found.

91



4 – Case Study

The population initialization. It defines how to create the GA’s starting population.

The crossover probability. In a unitary range, it defines the probability to which po-
pulation’s chromosomes are subject to this genetic operator (crossover).

The mutuation probability. In a unitary range, it defines the probability to which
chromosomes’ genes are subject to this genetic operator (mutation).

The maximum iteration number with the same fittest solution. It is the GA’s
primary stop criterion. In fact, if the population’s fittest chromosome according
to the user-defined objective function does not vary for a number of successive it-
erations equal to this parameter, the GA stops and gives it out as optimization
result.

The maximum iterations number. It is the GA’s secondary stop criterion. In fact,
if the algorithm executes a number of iterations equal to this parameter without
converging for the aforementioned primary stop criterion, it finally stops and gives
out the population’s fittest chromosome of that moment as optimization result.

According to what is normally done, these last parameters are set as follows inside the
methodology’s GA:

The population size. Sufficiently high to create a reasonably large solutions’ space of
the GA, and sufficiently small not to threaten the process’ performance. Therefore,
in this case study’s instance of a 257-bus power network, it could be rational to have
a population of 300 chromosomes.

The population initialization. Randomly done, as usual in the literature to solve gen-
eral problems.

The crossover probability. Set to 0.9. Hence quite high.

The mutuation probability. Set to 0.1. Hence quite low, as usual because more than
this would make this genetic operation provoke more chaos than benefit.

The maximum iteration number with the same fittest gene. Set to 10. Hence a
number in the order of tens, as usually done.

The maximum iterations number. Set to a very high number, much greater than the
number of OP ’s decisional variables as usually done, just to provide an emergency
stop criterion to the algorithm. Therefore, in this case study’s instance of a 257-bus
power network and hence 257 integer decisional variables, it is set to 20∗257 = 5150.
Namely twenty times the OP ’s decisional variables.

But, proceeding this way, the methodology’s GA produces totally senseless zonal con-
figurations, much more similar to a color palette rather than an electricity grid’s BAs
set. And this, was already visible in the previous Fig. 4.2, Fig. 4.3 and Fig. 4.4, in cor-
respondence of the GA’s boxes. But moreover, it is still visible in the following Fig. 4.5,
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which only portrays the GA’s zonal configurations obtained with the same user-defined
numbers of BAs (namely 5, 13 and 20) but after having enabled the downstream passage
through the additional handwritten function “CheckBAsConnection”. This function is re-
membered to be essential to run for all the methodology’s suitable clustering algorithms
apart from the PDC, in order to obtain from them physically feasible zonal configurations
due to reasons previously described inside Section 4.2.1, whose presence is proven by the
“Final BAs” boxes’ numbers greater than the “Requested BAs” ones, that furthermore
reveal the typical prevalence of the handwritten function “CheckBAsConnection” over the
“NoSingleNodeBAs” one.

This phenomenon was realistically predictable in advance, because actually the genetic
algorithm is basically an optimization algorithm with a strong random nature, which has
just been adapted to a clustering purpose. Therefore, it is surely difficult to succeed in
obtaining optimal zonal configurations through its usage. But this latter becomes even
harder if the starting population is randomly initialized, even though the algorithm’s
stop criteria are set to very huge values, which obviously are not acceptable due to the
consequences that this action would have on the process’ computational burden. For these
reasons, in order to actually create zonal configurations instead of color palettes through
the methodology’s GA, it has been decided to steer this latter’s initial exploration of the
solutions’ space. The aim is not to lose its random contribution, anyway useful to try
finding a more optimal zonal configuration, which instead would have been lost if its zonal
configurations would have only been rejected as senseless, and to still get a reasonable
zonal configuration despite of not huge stop criteria. As a result, from here on out the
GA’s starting population will be whenever half initialized using the zonal configuration
coming from the LMPs-based customized K-means, ex-ante the application of both the
additional handwritten functions “NoSingleNodeBAs” and “CheckBAsConnection”. In
order to be sure of having a number of clusters, inside the inherited zonal configuration in
question, actually equal to the user-defined one. So as to properly execute the GA, whose
fittest chromosome will be finally passed anyway through the aforementioned additional
handwritten functions. Which are remembered to be essential to make the GA comply
with the 8th and the 9th zonal configurations’ optimality requirement.

4.2.3 The K-means and K-medoids initialization

The previous Section 4.2.2 has proved the inadequacy of using randomness to initialize
the starting population of the methodology’s GA. However, this is not the only case among
the suitable clustering algorithms in which a random initialization must be refused. In
fact, also the centroids of Matlab and customized K-means or the medoids of Matlab and
customized K-medoids require to be initialized somehow. Doing it randomly is not the
most correct approach, for a twofold reason. On the one hand, because choosing them
without any physical or numerical criterion could lead the final zonal configurations being
senseless, as the previous GA’s ones during its population’s random initialization, or at
least less performing than BAs sets based on smart criteria. On the other hand, because
choosing them in a random way would deprive the following findings of any repeatability,
fundamental piece of whatever scientific research.
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For these reasons, from here on out the centroids and medoids of Matlab K-means and
K-medoids will be always initialized using the K-means++ algorithm, naturally embedded
inside Matlab and used by default by these commands if no random initialization is
specifically required by the user. The centroids and medoids of customized K-means and
K-medoids will be always initialized using an external algorithm able to compute a certain
user-defined number of most distant observations, according to the Euclidean distance
evaluated between them on the basis of a specific user-given database of features. In
this case, the features will be obviously made up of LMP hourly trends or nodal PTDFs
of most congestible lines, depending on whether the algorithm used is LMPs-based or
PTDFs-based.

4.3 Methodology application

This section contains the actual methodology application, together with the associated
considerations. Therefore, first of all within the next Section 4.3.1 the previously de-
scribed zonal configurations’ assessment criteria will be deeply investigated with varying
number of BAs. This will allow to decide a reasonable input number of BAs for each of
the methodology’s algorithms, as formerly decided in Section 3.2.1, since this parameter
has always to be user-defined, directly or indirectly. Subsequently, inside Section 4.3.2 the
just decided BAs numbers will be actually used to make the various zonal configurations.
And eventually, within the last Section 4.3.3 the best methodology’s algorithms will be
presented, together with the associated considerations.

4.3.1 An input BAs number for each clustering algorithm

This section shows trends of both the clustering validity indicators and the economic
efficiency ones as a function of the number of BAs. These last indeed, as previously
stated inside Section 3.2.1, are the best way to suggest the user a reasonably optimal BAs
number for each of the methodology’s clustering algorithms. Or a reasonably optimal
average LMPs tolerance, which however defines indirectly the price zones number and is
the user-defined input as regards the PDC. Therefore, being aware of the BAs number’s
extremes of 2 and 20 which have been previously defined inside Section 3.2.2, the following
pages provide the aforementioned evaluation indicators’ trends from 2 to 10 BAs and from
11 to 20 BAs, so as to facilitate the reading of the graphs. Inside these last, it is worth
remembering three things.

Firstly, each of the clustering validity indicators has been normalized respect to its
maximum value among the ones of the same algorithms family evaluated along the various
number of BAs here considered. In other words, for instance the MIA values of all the
customized clustering algorithms’ zonal configurations will be normalized respect to the
maximum MIA value emerged among them. Whereas, the MIA values of all the Matlab
clustering algorithms’ zonal configurations will be normalized respect to their separate
maximum.
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Secondly, the economic efficiency indicators have not been normalized, so as not to
lose the physical sense of their unitary rating scale. But however, their unitary range
has the same meaning of the above normalized clustering validity indicators’ one, i.e. a
progressively improving condition going from 1 to 0.

Thirdly, all the following plots are endowed with semitransparent vertical lines, which
born along the horizontal axis, in correspondence of the various “Requested BAs” values,
and hold numbers on the lower right-sides. These last, reveal quite important informa-
tion. In fact, each of them represents the final number of price zones that populates
the zonal configuration created by the respective clustering algorithm, which entitles the
origin graph, when this latter is run with that specific number of requested BAs. In other
words, taking for example the Clustering Validity Indicators’ (CVIs) trends from 2 to
10 requested BAs referring to the Matlab LMPs-based K-means’ zonal configurations,
contained inside Fig. 4.6, when looking at 6 requested BAs the semitransparent vertical
line reports the number 8. It means that the partitioning technique in question has been
actually run with 6 requested BAs but, due to the additional handwritten functions “NoS-
ingleNodeBAs” and “CheckBAsConnection” downstream executed in order to make the
algorithm comply with the 8th and the 9th zonal configurations’ optimality requirement,
the final zonal configuration has revealed 8 BAs. Moreover, the fact that this latter “Final
BAs“ number is greater than the initial user-defined one, contained inside the “Requested
BAs“ horizontal axis, shows the typical prevalence of the handwritten function “Check-
BAsConnection” over the “NoSingleNodeBAs” one, which however is not compulsory as
afterwards demonstrated. As a final remark, the same semitransparent vertical lines are
also present inside the CVIs and Economic Efficiency Indicators’ (EEIs) trends referred to
the customized PDC ’s zonal configurations. Nevertheless, in that case their numbers only
represent the final price zones numbers of the various BAs sets produced, just influenced
by the handwritten function “NoSingleNodeBAs”, since the other one is never applied on
this clustering algorithm as previously remarked inside Section 4.2.1. Moreover, there is
no possibility of comparison respect to the horizontal axis’ values, which contains instead
the average LMPs ranges of tolerance.
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Figure 4.6: Clustering validity indicators’ trends from 2 to 10 BAs for zonal configura-
tions coming from methodology’s Matlab algorithms.
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Figure 4.7: Clustering validity indicators’ trends from 11 to 20 BAs for zonal configu-
rations coming from methodology’s Matlab algorithms.
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Figure 4.8: Economic efficiency indicators’ trends from 2 to 10 BAs for zonal configu-
rations coming from methodology’s Matlab algorithms.
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Figure 4.9: Economic efficiency indicators’ trends from 11 to 20 BAs for zonal configu-
rations coming from methodology’s Matlab algorithms.
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Figure 4.10: Clustering validity indicators’ trends from 2 to 10 BAs and from 4% to 16%
average LMPs tolerance for zonal configurations coming from methodol-
ogy’s customized algorithms.
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Figure 4.11: Clustering validity indicators’ trends from 11 to 20 BAs and from 18% to
32% average LMPs tolerance for zonal configurations coming from method-
ology’s customized algorithms.
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Figure 4.12: Economic efficiency indicators’ trends from 2 to 10 BAs and from 4% to
16% average LMPs tolerance for zonal configurations coming from method-
ology’s customized algorithms.
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Figure 4.13: Economic efficiency indicators’ trends from 11 to 20 BAs and from 18% to
32% average LMPs tolerance for zonal configurations coming from method-
ology’s customized algorithms.
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For the aforementioned reasons, since all the zonal configurations’ assessment indica-
tors reveal better results the more they are close to zero, the just reported trends have to
be investigated towards their minimums, in order to find reasonably optimal BAs num-
ber for each of the methodology’s clustering algorithms, or a reasonably optimal average
LMPs tolerance for the PDC. Therefore, Table 4.1 firstly contains the overall minimum
points for all the Matlab suitable clustering algorithms, according to both their clustering
validity indicators trends and economic efficiency ones, and then it shows the same points
for all the customized suitable clustering algorithms.

Table 4.1: Overall minimum points of the zonal configurations’ assessment indicators
trends, as a function of the BAs number.

Clustering algorithm CVIs’ Minimum EEIs’ Minimum

Mtlb LMPs K-means 7 Requested BAs 2 Requested BAs
Mtlb LMPs K-medoids 3 Requested BAs 2 Requested BAs
Mtlb LMPs HC 3 Requested BAs 2 Requested BAs
Mtlb PTDFs K-means 14 Requested BAs 3 Requested BAs
Mtlb PTDFs K-medoids 14 Requested BAs 2 Requested BAs
Mtlb PTDFs HC 13 Requested BAs 2 Requested BAs
Cmzd LMPs K-means 11 Requested BAs 2 Requested BAs
Cmzd LMPs K-medoids 15 Requested BAs 2 Requested BAs
Cmzd LMPs HC 20 Requested BAs 2 Requested BAs
Cmzd LMPs GA 11 Requested BAs 2 Requested BAs
Cmzd LMPs PDC 18% Avg LMPs RoT 6% Avg LMPs RoT
Cmzd PTDFs K-means 20 Requested BAs 2 Requested BAs
Cmzd PTDFs K-medoids 5 Requested BAs 2 Requested BAs
Cmzd PTDFs HC 16 Requested BAs 3 Requested BAs

By looking at the overlying table, the first thing that stands out is the huge concentra-
tion of EEIs’ minimum points around 2 and 3 requested BAs. This was predictable, since
all the economic efficiency indicators are respectively close to the maximum 1 or close to
the minimum 0 whether the evaluated zonal configuration is similar to a monopoly or a
perfect competition. And hence, if the whole reduced model of the European transmis-
sion network is divided into only 2 or 3 zones, each of these last unavoidably results to be
composed of a high number of producers. This holds likely a limited market share and con-
sequently a nearly null market power, so ending up giving to their respective zonal-based
market an almost complete perfect competition. However, since having just so few BAs
would realistically be unacceptable for a such vast territory as the European continent,
the 2 or 3 requested BAs in question have always to be refused, necessarily in favor of at
least 5 requested BAs. In other words, inside Section 3.2.2 it has been chosen 2 as lower
boundary of the user-defined BAs number’s extremes, intended to make the methodol-
ogy’s algorithms comply with the 6th zonal configurations’ optimality requirement. But
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actually, this number can only be the theoretical lower limit of the aforementioned range.
In fact, a such vast territory as the European continent must ineluctably be divided into
a minimum of 5 price zones, at least for obvious bureaucratic reasons linked to their man-
agement. For the same reason, the couple of CVIs’ minimums in correspondence of 3
requested BAs, deriving from Matlab LMPs-based K-medoids and HC, has to be equally
refused in favor of a greater number, which will be afterwards investigated.

At this point, that both the CVIs’ minimums and the EEIs’ ones have been evaluated
for all the methodology’s suitable clustering algorithms, it is necessary to intersect the
above findings, in order to find a sole reasonably optimal user-defined BAs number for
each of the partitioning methods. Or a sole reasonably optimal average LMPs tolerance
for the PDC. Therefore, the following bulleted list contains some comments for each of
the clustering techniques, and eventually gives a trade-off number for each of them, which
then are eventually summed up inside Table 4.2.

Mtlb LMPs K-means. The CVIs’ minimum would indicate 7 requested BAs, while the
EEIs’ one would suggest 2 requested BAs. Therefore, since the 2 requested BAs
must be refused for the aforementioned reason and between 3 and 18 requested BAs
the EEIs remain almost constant, the final choice falls on 7 BAs, because instead
the CVIs have small values only in correspondence of few cases, among which there
is 7 requested BAs.

Mtlb LMPs K-medoids. The CVIs’ minimum would indicate 3 requested BAs, while
the EEIs’ one would suggest 2 requested BAs. Therefore, since both of these values
must be refused for the aforementioned reason, the EEIs remain almost constant
from 3 to 15 requested BAs, hence not giving a so relevant contribution for the
choice, and the CVIs do not vary so much from 3 to 6 requested BAs, the final
choice falls on this latter number. Namely 6 requested BAs, acceptable because
greater than the above mentioned realistic lower limit of 5 price zones.

Mtlb LMPs HC. The CVIs’ minimum would indicate 3 requested BAs, while the EEIs’
one would suggest 2 requested BAs. Therefore again, since both of these values must
be refused for the aforementioned reason, the EEIs remain almost constant from 3
to 20 requested BAs, hence not giving a so relevant contribution for the choice, and
the CVIs do not vary so much from 3 to 7 requested BAs, the final choice falls on 6
requested BAs, to both share the number of the previous clustering algorithm and
leave as little as possible the initial minimum points of EEIs and CVIs.

Mtlb PTDFs K-means. The CVIs’ minimum would indicate 14 requested BAs, while
the EEIs’ one would say 3 requested BAs. Therefore, since the 3 requested BAs
must be refused for the aforementioned reason and between 12 and 15 requested BAs
the EEIs remain almost constant, the final choice falls on 14 BAs, because instead
the CVIs have particularly minimum values in correspondence of 14 requested BAs,
while all the surrounding cases have higher values.
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Mtlb PTDFs K-medoids. The CVIs’ minimum would indicate 14 requested BAs, while
the EEIs’ one would suggest 2 requested BAs. Therefore, since the 2 requested BAs
must be refused for the aforementioned reason and between 13 and 20 requested
BAs the EEIs remain almost constant apart from the 15 BAs case, the final choice
falls on 14 BAs, because instead the CVIs have particularly minimum values in
correspondence of 14 requested BAs, while all the surrounding cases have higher
values.

Mtlb PTDFs HC. The CVIs’ minimum would indicate 13 requested BAs, while the
EEIs’ one would suggest 2 requested BAs. Therefore, since the 2 requested BAs
must be refused for the aforementioned reason and between 8 and 13 requested BAs
the EEIs remain almost constant, the final choice falls on 13 BAs, because instead
the CVIs have minimum values only from 13 to 15 requested BAs, while all the
surrounding cases have higher values.

Cmzd LMPs K-means. The CVIs’ minimum would indicate 11 requested BAs, while
the EEIs’ one would suggest 2 requested BAs. Therefore, since the 2 requested BAs
must be refused for the aforementioned reason and between 4 and 11 requested BAs
the EEIs remain almost constant, the final choice falls on 11 BAs, because instead
the CVIs have minimum values only from 11 to 13 requested BAs, while all the
surrounding cases have higher values.

Cmzd LMPs K-medoids. The CVIs’ minimum would indicate 15 requested BAs, while
the EEIs’ one would suggest 2 requested BAs. Therefore, since the 2 requested BAs
must be refused for the aforementioned reason and between 13 and 14 requested
BAs the EEIs have relatively small values, the final choice falls on 14 BAs, because
from 15 to 14 requested BAs the CVIs reveal only a limited increase, which can be
endured to find a trade-off value.

Cmzd LMPs HC. The CVIs’ minimum would indicate 20 requested BAs, while the
EEIs’ one would suggest 2 requested BAs. Therefore, since the 2 requested BAs
must be refused for the aforementioned reason and between 13 and 20 the CVIs
remain almost constant, the final choice falls on 14 BAs, because instead the EEIs
have relatively small values from 10 to 16 requested BAs, and then reveal higher
values.

Cmzd LMPs GA. The CVIs’ minimum would indicate 11 requested BAs, while the
EEIs’ one would suggest 2 requested BAs. Therefore, since the 2 requested BAs
must be refused for the aforementioned reason and between 4 and 11 requested BAs
the EEIs remain almost constant, the final choice falls on 11 BAs, because instead
the CVIs have minimum values only from 11 to 13 requested BAs, while all the
surrounding cases have higher values.

Cmzd LMPs PDC. The CVIs’ minimum would indicate 18% Avg LMPs RoT, while
the EEIs’ one would suggest 6% Avg LMPs RoT. Therefore, since from 16% to 32%
of Avg LMPs RoT the CVIs remain almost constant and between 26% and 32%
of Avg LMPs RoT the EEIs have values comparable to their own ones from 4%

103



4 – Case Study

to 10%, the final choice falls on 26% of Avg LMPs RoT, because it is the trade-off
value nearest to both the CVIs’ minimum and the EEIs’ one.

Cmzd PTDFs K-means. The CVIs’ minimum would indicate 20 requested BAs, while
the EEIs’ one would suggest 2 requested BAs. Therefore, since the 2 requested BAs
must be refused for the aforementioned reason, from 20 to 15 requested BAs the
CVIs show just a slight increase of MIA and in correspondence of 15 requested BAs
the EEIs have relatively small values, the final choice falls on this latter number.
Namely 15 requested BAs.

Cmzd PTDFs K-medoids. The CVIs’ minimum would indicate 5 requested BAs, while
the EEIs’ one would suggest 2 requested BAs. Therefore, since the 2 requested BAs
must be refused for the aforementioned reason and the EEIs’ values do not vary
so much from 2 to 5 requested BAs, the final choice falls on 5 requested BAs as
required by CVIs’ minimum.

Cmzd PTDFs HC. The CVIs’ minimum would indicate 16 requested BAs, while the
EEIs’ one would suggest 3 requested BAs. Therefore, since the 3 requested BAs
must be refused for the aforementioned reason and between 14 and 17 the CVIs
remain almost constant, the final choice falls on 14 BAs, because instead the EEIs
have intermediate values from 8 to 14 requested BAs, and then reveal higher values.

Table 4.2: Trade-off user-defined inputs of the methodology’s clustering algorithms, in
terms of BAs numbers or Avg LMPs RoT.

Clustering algorithm Trade-off user-defined input

Mtlb LMPs K-means 7 Requested BAs
Mtlb LMPs K-medoids 6 Requested BAs
Mtlb LMPs HC 6 Requested BAs
Mtlb PTDFs K-means 14 Requested BAs
Mtlb PTDFs K-medoids 14 Requested BAs
Mtlb PTDFs HC 13 Requested BAs
Cmzd LMPs K-means 11 Requested BAs
Cmzd LMPs K-medoids 14 Requested BAs
Cmzd LMPs HC 14 Requested BAs
Cmzd LMPs GA 11 Requested BAs
Cmzd LMPs PDC 26% Avg LMPs RoT
Cmzd PTDFs K-means 15 Requested BAs
Cmzd PTDFs K-medoids 5 Requested BAs
Cmzd PTDFs HC 14 Requested BAs
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Therefore, having stated a trade-off user-defined input for each of the methodology’s
algorithms, it is now necessary to list the necessary tests, which unavoidably require
to be executed to locate the best partitioning techniques. Each of these last indeed,
derives from one of the aforementioned trade-off user-defined inputs and hence has a
physical foundation, since it represents the condition in which at least one of the adopted
clustering algorithms has had particularly good performance in terms of zonal configu-
rations’ assessment indicators. Moreover, it permits an in-depth comparison among all
the methodology’s partitioning techniques, both coming from Matlab commands and cus-
tomized codes. As a result, the following Table 4.3 contains the tests in question, which
will be subsequently shown and commented inside Section 4.3.2.

Table 4.3: Trade-off user-defined inputs of the methodology’s clustering algorithms, in
terms of BAs numbers or Avg LMPs RoT.

Number of test Requested BAs Optimal clustering algorithms
in that condition

1st 5 Cmzd PTDFs K-medoids
Cmzd LMPs PDC

2nd 6
Mtlb LMPs K-medoids
Mtlb LMPs HC
Cmzd LMPs PDC

3rd 7 Mtlb LMPs K-means
Cmzd LMPs PDC

4th 11
Cmzd LMPs K-means
Cmzd LMPs GA
Cmzd LMPs PDC

5th 13 Mtlb PTDFs HC
Cmzd LMPs PDC

6th 14

Mtlb PTDFs K-means
Mtlb PTDFs K-medoids
Cmzd LMPs K-medoids
Cmzd LMPs HC
Cmzd PTDFs HC
Cmzd LMPs PDC

7th 15 Customized PTDFs K-means
Cmzd LMPs PDC

The customized LMPs-based PDC has been inserted inside all the tests. Because its
user-defined input is the average LMPs tolerance. Which is linked to the BAs number
required by other algorithms, but numerically it is different from this latter. Therefore,
it can always be used as term of comparison during the tests in question. And so it
is done by time after time setting the Avg LMPs RoT which gives to the PDC ’s zonal
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configuration the “Final BAs” as near as possible to the test’s requested one (assessable
from the semitransparent vertical lines of Fig. 4.10, Fig. 4.11, Fig. 4.12 and Fig. 4.13). So
as to evaluate the PDC in different situations like all the other methodology’s algorithms.
Not only where it has the best performance, namely with 26% of Avg LMPs RoT as
previously reported inside Table 4.2.

4.3.2 Resulting zonal configurations and their assessment

This section contains the 7 tests previously decided inside Section 4.3.1. Therefore, for
each of them it will be provided 4 figures respectively containing:

• The geographical representation of the Matlab algorithms’ zonal configurations.

• The geographical representation of the customized algorithms’ zonal configurations.

• The all zonal configurations’ assessment through the CVIs.

• The all zonal configurations’ assessment through the EEIs.

Test 1: 5 Requested BAs and 26% of Avg LMPs RoT

Figure 4.14: Geographical representation of the Matlab algorithm’s zonal configurations
which result from 5 requested BAs.
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Figure 4.15: Geographical representation of the customized algorithm’s zonal config-
urations which result from 5 requested BAs and 26% of average LMPs
tolerance.
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Figure 4.16: CVIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 5 requested BAs and 26% of average LMPs
tolerance.
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Figure 4.17: EEIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 5 requested BAs and 26% of average LMPs
tolerance.

Therefore, remembering that for all the aforementioned zonal configurations’ assess-
ment indicators the more they are close to zero the more optimal is the judged BAs set,
it is interesting to look for the minimum values of both the CVIs and the EEIs. They
reveal the methodology’s best algorithms of this test, according to the adopted evaluation
criteria. Table 4.4 provides the information for each assessment indicator, with more than
one clustering algorithm if there is a dead heat.

Table 4.4: Methodology’s best clustering algorithms of test 1.

Assessment indicator Best clustering algorithm according to the indicator

DBI Mtlb LMPs HC

SMI Mtlb LMPs K-means, Mtlb LMPs K-medoids,
Mtlb LMPs HC, Cmzd LMPs PDC

CDI Cmzd LMPs PDC
MIA Cmzd LMPs PDC
L-HHI Cmzd PTDFs K-medoids

EC Mtlb PTDFs K-means, Cmzd PTDFs K-means,
Cmzd PTDFs K-medoids

HHI Cmzd PTDFs K-means, Cmzd PTDFs K-medoids
R4 Cmzd PTDFs K-means, Cmzd PTDFs K-medoids
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Test 2: 6 Requested BAs and 26% of Avg LMPs RoT

Figure 4.18: Geographical representation of the Matlab algorithm’s zonal configurations
which result from 6 requested BAs.

Figure 4.19: Geographical representation of the customized algorithm’s zonal config-
urations which result from 6 requested BAs and 26% of average LMPs
tolerance.
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Figure 4.20: CVIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 6 requested BAs and 26% of average LMPs
tolerance.
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Figure 4.21: EEIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 5 requested BAs and 26% of average LMPs
tolerance.
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Therefore, remembering that for all the aforementioned zonal configurations’ assess-
ment indicators the more they are close to zero the more optimal is the judged BAs set,
it is interesting to look for the minimum values of both the CVIs and the EEIs. They
reveal the methodology’s best algorithms of this test, according to the adopted evaluation
criteria. Table 4.5 provides the information for each assessment indicator.

Table 4.5: Methodology’s best clustering algorithms of test 2.

Assessment indicator Best clustering algorithm according to the indicator

DBI Mtlb LMPs HC
SMI Cmzd LMPs PDC
CDI Cmzd LMPs PDC
MIA Cmzd LMPs PDC
L-HHI Cmzd PTDFs K-medoids
EC Cmzd PTDFs K-medoids
HHI Cmzd LMPs K-medoids
R4 Cmzd LMPs K-medoids

Test 3: 7 Requested BAs and 26% of Avg LMPs RoT

Figure 4.22: Geographical representation of the Matlab algorithm’s zonal configurations
which result from 7 requested BAs.
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Figure 4.23: Geographical representation of the customized algorithm’s zonal config-
urations which result from 7 requested BAs and 26% of average LMPs
tolerance.

log scale

MIA

CDI

SMI

DBI

log scale

MIA

CDI

SMI

DBI

log scale

MIA

CDI

SMI

DBI

log scale

MIA

CDI

SMI

DBI

log scale

MIA

CDI

SMI

DBI

log scale

MIA

CDI

SMI

DBI

log scale

MIA

CDI

SMI

DBI

log scale

MIA

CDI

SMI

DBI

log scale

MIA

CDI

SMI

DBI

log scale

MIA

CDI

SMI

DBI

log scale

MIA

CDI

SMI

DBI

log scale

MIA

CDI

SMI

DBI

log scale

MIA

CDI

SMI

DBI

log scale

MIA

CDI

SMI

DBI

Figure 4.24: CVIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 7 requested BAs and 26% of average LMPs
tolerance.
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Figure 4.25: EEIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 7 requested BAs and 26% of average LMPs
tolerance.

Therefore, remembering that for all the aforementioned zonal configurations’ assess-
ment indicators the more they are close to zero the more optimal is the judged BAs set,
it is interesting to look for the minimum values of both the CVIs and the EEIs. They
reveal the methodology’s best algorithms of this test, according to the adopted evaluation
criteria. Table 4.6 provides the information for each assessment indicator, with more than
one clustering algorithm if there is a dead heat.

Table 4.6: Methodology’s best clustering algorithms of test 3.

Assessment indicator Best clustering algorithm according to the indicator

DBI Mtlb LMPs HC
SMI Cmzd LMPs PDC
CDI Cmzd LMPs PDC
MIA Cmzd LMPs K-means, Cmzd LMPs GA
L-HHI Cmzd PTDFs K-means
EC Cmzd LMPs K-medoids
HHI Cmzd LMPs K-medoids
R4 Cmzd LMPs K-medoids
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Test 4: 11 Requested BAs and 12% of Avg LMPs RoT

Figure 4.26: Geographical representation of the Matlab algorithm’s zonal configurations
which result from 11 requested BAs.

Figure 4.27: Geographical representation of the customized algorithm’s zonal configu-
rations which result from 11 requested BAs and 12% of average LMPs
tolerance.
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Figure 4.28: CVIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 11 requested BAs and 12% of average LMPs
tolerance.
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Figure 4.29: EEIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 11 requested BAs and 12% of average LMPs
tolerance.
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Therefore, remembering that for all the aforementioned zonal configurations’ assess-
ment indicators the more they are close to zero the more optimal is the judged BAs set,
it is interesting to look for the minimum values of both the CVIs and the EEIs. They
reveal the methodology’s best algorithms of this test, according to the adopted evaluation
criteria. Table 4.7 provides the information for each assessment indicator, with more than
one clustering algorithm if there is a dead heat.

Table 4.7: Methodology’s best clustering algorithms of test 4.

Assessment indicator Best clustering algorithm according to the indicator

DBI Cmzd LMPs K-means, Cmzd LMPs GA
SMI Mtlb LMPs K-medoids
CDI Cmzd LMPs K-means, Cmzd LMPs GA
MIA Cmzd LMPs K-means, Cmzd LMPs GA
L-HHI Cmzd PTDFs K-medoids
EC Cmzd PTDFs K-means
HHI Cmzd LMPs K-medoids
R4 Cmzd LMPs K-medoids

Test 5: 13 Requested BAs and 10% of Avg LMPs RoT

Figure 4.30: Geographical representation of the Matlab algorithm’s zonal configurations
which result from 13 requested BAs.
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Figure 4.31: Geographical representation of the customized algorithm’s zonal configu-
rations which result from 13 requested BAs and 10% of average LMPs
tolerance.
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Figure 4.32: CVIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 13 requested BAs and 10% of average LMPs
tolerance.
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Figure 4.33: EEIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 13 requested BAs and 10% of average LMPs
tolerance.

Therefore, remembering that for all the aforementioned zonal configurations’ assess-
ment indicators the more they are close to zero the more optimal is the judged BAs set,
it is interesting to look for the minimum values of both the CVIs and the EEIs. They
reveal the methodology’s best algorithms of this test, according to the adopted evaluation
criteria. Table 4.8 provides the information for each assessment indicator, with more than
one clustering algorithm if there is a dead heat.

Table 4.8: Methodology’s best clustering algorithms of test 5.

Assessment indicator Best clustering algorithm according to the indicator

DBI Mtlb LMPs K-medoids
SMI Mtlb LMPs K-medoids, Mtlb LMPs HC
CDI Mtlb LMPs K-medoids
MIA Mtlb LMPs HC
L-HHI Cmzd PTDFs K-medoids
EC Cmzd LMPs HC, Cmzd PTDFs HC
HHI Cmzd PTDFs K-means, Cmzd PTDFs K-medoids
R4 Cmzd LMPs K-medoids
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Test 6: 14 Requested BAs and 8% of Avg LMPs RoT

Figure 4.34: Geographical representation of the Matlab algorithm’s zonal configurations
which result from 14 requested BAs.

Figure 4.35: Geographical representation of the customized algorithm’s zonal config-
urations which result from 14 requested BAs and 8% of average LMPs
tolerance.
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Figure 4.36: CVIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 14 requested BAs and 8% of average LMPs
tolerance.
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Figure 4.37: EEIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 14 requested BAs and 8% of average LMPs
tolerance.

120



4.3 – Methodology application

Therefore, remembering that for all the aforementioned zonal configurations’ assess-
ment indicators the more they are close to zero the more optimal is the judged BAs set,
it is interesting to look for the minimum values of both the CVIs and the EEIs. They
reveal the methodology’s best algorithms of this test, according to the adopted evaluation
criteria. Table 4.9 provides the information for each assessment indicator.

Table 4.9: Methodology’s best clustering algorithms of test 6.

Assessment indicator Best clustering algorithm according to the indicator

DBI Mtlb LMPs K-means

SMI Mtlb LMPs K-means, Cmzd LMPs K-means,
Mtlb LMPs HC, Cmzd LMPs GA

CDI Mtlb LMPs K-means
MIA Cmzd LMPs K-means, Cmzd LMPs GA
L-HHI Cmzd PTDFs K-medoids
EC Cmzd PTDFs K-means
HHI Cmzd PTDFs K-means, Cmzd PTDFs K-medoids
R4 Cmzd PTDFs HC

Test 7: 15 Requested BAs and 6% of Avg LMPs RoT

Figure 4.38: Geographical representation of the Matlab algorithm’s zonal configurations
which result from 15 requested BAs.
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Figure 4.39: Geographical representation of the customized algorithm’s zonal config-
urations which result from 15 requested BAs and 6% of average LMPs
tolerance.
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Figure 4.40: CVIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 15 requested BAs and 6% of average LMPs
tolerance.
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Figure 4.41: EEIs of the zonal configurations produced by both Matlab and customized
clustering algorithms, with 15 requested BAs and 6% of average LMPs
tolerance.

Therefore, remembering that for all the aforementioned zonal configurations’ assess-
ment indicators the more they are close to zero the more optimal is the judged BAs set,
it is interesting to look for the minimum values of both the CVIs and the EEIs. They
reveal the methodology’s best algorithms of this test, according to the adopted evaluation
criteria. Table 4.10 provides the information for each assessment indicator, with more
than one clustering algorithm if there is a dead heat.

Table 4.10: Methodology’s best clustering algorithms of test 7.

Assessment indicator Best clustering algorithm according to the indicator

DBI Mtlb LMPs HC
SMI Mtlb LMPs HC, Cmzd LMPs PDC
CDI Mtlb LMPs HC
MIA Mtlb LMPs HC
L-HHI Cmzd PTDFs K-means
EC Cmzd PTDFs K-means
HHI Cmzd PTDFs K-means, Cmzd PTDFs K-medoids
R4 Cmzd PTDFs HC
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4.3.3 Methodology’s best suitable clustering algorithms

This section contains the best methodology’s algorithms emerged by the previous zonal
configurations assessment which has been executed inside Section 4.3.2, by using both
clustering validity indicators and economic efficiency ones. These most performing par-
titioning techniques have been distinguished into different categories, according to the
criterion used to declare their supremacy over the others. Therefore, the following sec-
tions contain and comment:

• The best methodology’s clustering algorithm according to the CVIs.

• The best methodology’s clustering algorithm according to the EEIs.

• The best methodology’s clustering algorithm according to the CVIs
and EEIs together.

• The best methodology’s clustering algorithm according to the sum of
all the CVIs and EEIs for each clustering algorithm over the 7 tests.

After these rankings, the final part of the section provides the Pareto front, which puts
together, and hence permits to compare, all the zonal configurations previously emerged
by the 14 methodology’s algorithms during the 7 tests. In fact, these zonal configura-
tions constitute 98 points, which are placed on a Cartesian plane with CVIs sum on the
horizontal axis and EEIs sum on the vertical one. The points are shown in two versions,
in order to ease the understanding to the reader:

• In the first version, the 98 zonal configurations’ points are colored
depending on the origin test.

• In the second version, the 98 zonal configurations’ points are colored
according to the clustering algorithm.

124



4.3 – Methodology application

The clustering validity indicators’ best

This category orders the methodology’s clustering algorithms depending on how many
times they have been the best within the CVI assessment. As a result, Table 4.11 provides
the ranking in question.

Table 4.11: Ranking of the methodology’s clustering algorithms over the 7 tests.
According to CVIs.

Ranking Number of times best Clustering algorithm

1st 11 Mtlb LMPs HC
2nd 9 Cmzd LMPs PDC
3rd 6 Cmzd LMPs K-means
3rd 6 Cmzd LMPs GA
4th 5 Mtlb LMPs K-medoids
5th 4 Mtlb LMPs K-means
6th 0 Cmzd LMPs K-medoids
6th 0 Cmzd LMPs HC
6th 0 Mtlb PTDFs K-means
6th 0 Cmzd PTDFs K-means
6th 0 Mtlb PTDFs K-medoids
6th 0 Cmzd PTDFs K-medoids
6th 0 Mtlb PTDFs HC
6th 0 Cmzd PTDFs HC

Therefore, according to CVIs, the methodology’s suitable clustering algorithms which
have been deployed during the previous seven tests are roughly discernible in three groups:

1. The partitioning methods that outperform all the others, namely the Matlab LMPs-
based HC and the customized LMPs PDC.

2. The methods with intermediate performance, from the 3th to the 5th position, i.e.
the customized LMPs-based K-means, the customized LMPs-based GA, the Matlab
LMPs-based K-medoids and the Matlab LMPs-based K-means.

3. All the other methods, namely, the algorithms tied for the 6th place, whose zonal
configurations reveal the weakest optimality by being 0 times the best ones.

Moreover, it is glaring to observe that the PTDFs-based clustering algorithms never
manage to be the best according to CVI assessment. In fact, all of them are equal and
are assigned the 6th position with number of times best null, together with the Matlab
and the customized PTDFs-based K-means.
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The economic efficiency indicators’ best

This category orders the methodology’s clustering algorithms depending on how many
times they have been the best within the EEI assessment. As a result, Table 4.12 provides
the ranking in question.

Table 4.12: Ranking of the methodology’s clustering algorithms over the 7 tests. Ac-
cording to EEIs.

Ranking Number of times best Clustering algorithm

1st 12 Cmzd PTDFs K-medoids
2nd 11 Cmzd PTDFs K-means
3rd 8 Cmzd LMPs K-medoids
4th 3 Cmzd PTDFs HC
5th 1 Mtlb PTDFs K-means
5th 1 Cmzd LMPs HC
6th 0 Mtlb LMPs K-means
6th 0 Cmzd LMPs K-means
6th 0 Mtlb LMPs K-medoids
6th 0 Mtlb LMPs HC
6th 0 Cmzd LMPs GA
6th 0 Cmzd LMPs PDC
6th 0 Mtlb PTDFs K-medoids
6th 0 Mtlb PTDFs HC

Therefore, according to EEIs, the methodology’s suitable clustering algorithms which
have been deployed during the previous seven tests are roughly discernible in three groups:

1. The partitioning methods that outperform all the others, namely the customized
PTDFs-based K-medoids, the customized PTDFs-based K-means and the customized
LMPs-based K-medoids.

2. The methods with low performance, from the 4th to the 5th position, i.e. the cus-
tomized PTDFs-based HC, the Matlab PTDFs-based K-means and the customized
LMPs-based HC.

3. All the other methods, namely, the algorithms tied for the 6th place, whose zonal
configurations reveal the weakest optimality by being 0 times the best ones.

Moreover, apart from rare exceptions like the customized LMPs-based K-medoids and
the HC, it is glaring to observe that the LMPs-based clustering algorithms never manage
to be the best according to EEI assessment. In fact, all of them are equal and are assigned
the 6th position with number of times best null, together with the Matlab PTDFs-based
K-medoids and HC.
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The best of all the zonal configurations’ assessment criteria

This category orders the methodology’s clustering algorithms depending on how many
times they have been the best within the CVI and EEI assessments together. As a
result, Table 4.13 provides the ranking in question.

Table 4.13: Ranking of the methodology’s clustering algorithms over the 7 tests. Ac-
cording to CVIs and EEIs together.

Ranking Number of times best Clustering algorithm

1st 12 Cmzd PTDFs K-medoids
2nd 11 Mtlb LMPs HC
2nd 11 Cmzd PTDFs K-means
3rd 9 Cmzd LMPs PDC
4th 8 Cmzd LMPs K-medoids
5th 6 Cmzd LMPs K-means
5th 6 Cmzd LMPs GA
6th 5 Mtlb LMPs K-medoids
7th 4 Mtlb LMPs K-means
8th 3 Cmzd PTDFs HC
9th 1 Cmzd LMPs HC
9th 1 Mtlb PTDFs K-means
10th 0 Mtlb PTDFs K-medoids
10th 0 Mtlb PTDFs HC

Therefore, according to the CVIs and the EEIs together, the methodology’s suitable
clustering algorithms which have been deployed during the previous seven tests are roughly
discernible in four groups:

1. The partitioning methods that outperform all the others placed from the 1st to the
4th position, i.e. the customized PTDFs-based K-medoids, the Matlab LMPs-based
HC, the customized PTDFs-based K-means, the customized LMPs-based PDC, and
the customized LMPs-based K-medoids.

2. Those which have intermediate performance, from the 5th to the 7th position,
namely, the customized LMPs-based K-means, the customized LMPs-based GA,
the Matlab LMPs-based K-medoids and the Matlab LMPs-based K-means.

3. Those which have low performance, represented by the 8th and the 9th position.

4. All the other methods tied for the 10th place, whose zonal configurations reveal the
weakest optimality by being 0 times the best ones.

127



4 – Case Study

The best of the sum of all the zonal configurations’ assessment criteria

This category orders the methodology’s clustering algorithms depending on the sum of all
their CVIs and EEIs during the previously shown 7 tests. This is an interesting sorting,
since for all the zonal configurations’ assessment indicators, the more they are small, the
more the judged BAs set is optimal, and hence the associated clustering algorithm is
efficient in power networks partitioning. As a result, Table 4.14 provides the ranking in
question.

Table 4.14: Ranking of the methodology’s clustering algorithms over the 7 tests. Ac-
cording to the sum of both CVIs and EEIs for each partitioning technique.

Ranking Sum result Clustering algorithm

1st 18.5251 Mtlb LMPs HC
2nd 19.4009 Mtlb LMPs K-medoids
3rd 19.4728 Cmzd LMPs K-means
3rd 19.4728 Cmzd LMPs GA
4th 20.7950 Cmzd PTDFs K-means
5th 21.3574 Mtlb PTDFs HC
6th 21.6084 Mtlb LMPs K-means
7th 22.4036 Mtlb PTDFs K-medoids
8th 23.2655 Cmzd PTDFs K-medoids
9th 24.0593 Mtlb PTDFs K-means
10th 26.7088 Cmzd LMPs HC
11th 30.4496 Cmzd PTDFs HC
12th 33.1477 Cmzd LMPs PDC
13th 33.8623 Cmzd LMPs K-medoids

Therefore, according to the sum of both CVIs and EEIs for each partitioning tech-
nique over the 7 tests, the methodology’s suitable clustering algorithms which have been
deployed during the previous seven tests are roughly discernible in three groups:

1. The top three algorithms of the ranking, which outperform the others having a sum
result lower than 20, i.e. the Matlab LMPs-based HC, the Matlab LMPs-based
K-medoids, the customized LMPs-based K-means and the customized LMPs-based
GA.

2. The partitioning methods whose zonal configurations reveal an intermediate opti-
mality, namely those that have a sum result between 20 and 25.

3. All the other methods, having a final sum greater than 25, show the worst perfor-
mance.
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Combined view with colors by origin test

The combined view of the two types of indicators gathers, and hence permits to compare,
all the 98 zonal configurations previously produced by the 14 methodology’s algorithms
during the 7 tests. In this first version the BAs sets are colored depending on the origin
test, in order to ease the understanding of the reader. The non-dominated solutions found
in this plot form the Pareto front. The 7 non-dominated points are specifically shown in
Fig. 4.43.
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Figure 4.42: Combined view where the 98 zonal configurations’ points are colored de-
pending on the origin test.

As a result:

• The best zonal configurations are concentrated in the leftmost part of the points
cloud and derive from different tests. The two solutions belonging to the Pareto
front located in that area correspond to 7 and 11 requested BAs.

• The points of the second group of good zonal configurations stand on the central
part of the Pareto front. Inside it there are BAs sets made up again of 7 and 11
requested BAs, plus a solution with 6 requested BAs.
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• The third group of good zonal configurations, which closes the Pareto front, is placed
in the lower part of the points cloud, roughly on the coordinates (2,0.5). It contains
a sole zonal configuration coming from the first test, made up of 5 requested BAs.

For these reasons, it is interesting to note the absence from the Pareto front of any
zonal configuration composed of 13, 14 or 15 requested BAs, whichever is the clustering
algorithm that produce it.

The Fig. 4.43 provides an enlargement of this first colored version of the Pareto front,
to facilitate its reading.
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Figure 4.43: Enlargement of the Pareto front where the 98 zonal configurations’ points
are colored depending on the origin test.
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Combined view with colors by clustering algorithm

The combined view of the two types of indicators gathers, and hence permits to compare,
all the 98 zonal configurations previously produced by the 14 methodology’s algorithms
during the 7 tests. In this second version the BAs sets are colored according to the
clustering algorithm, in order to ease the understanding of the reader. The Pareto front
is the same as before, its 7 non-dominated points are specifically shown in Fig. 4.45 by
using the coloration of this section.
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Figure 4.44: Combined view where the 98 zonal configurations’ points are colored ac-
cording to the clustering algorithm.

As a result:

• The best zonal configurations are concentrated in the leftmost part of the points
cloud and derive from different tests. The two solutions belonging to the Pareto
front located in that area are respectively produced by the Matlab LMPs-based HC
and the customized LMPs-based GA. Nevertheless, the customized LMPs-based
GA must be rejected as non-suitable clustering algorithm for defining optimal zonal
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configurations, and must be substituted by the customized LMPs-based K-means,
due to reasons that will be afterwards described inside Section 5.1.

• The points of the second group of good zonal configurations stand on the central
part of the Pareto front. Inside it there is a BAs set produced by the Matlab
PTDFs-based HC, two BAs sets created by the customized PTDFs-based K-means,
and a BAs set coming from the customized PTDFs-based K-medoids.

• The third group of good zonal configurations, which closes the Pareto front, is placed
in the lower part of the points cloud, roughly on the coordinates (2,0.5). It contains
a sole zonal configuration produced by the customized PTDFs-based K-means.

For these reasons, it is interesting to note an affinity between LMPs-based clustering
algorithms and CVI assessment or between PTDFs-based clustering algorithms and EEI
assessment. This phenomenon will be subsequently described more in-depth inside Section
5.3, but anyway it is already visible inside Fig. 4.44. Since in that graph the LMPs-based
zonal configurations and the PTDFs-based zonal configurations are respectively placed in
the leftmost part of the points cloud, namely, where the CVIs sum is minimum, and in
the lowest part of the points cloud, namely, where the EEIs sum is minimum.

The Fig. 4.45 provides an enlargement of this second colored version of the Pareto
front, to facilitate its reading.
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Figure 4.45: Enlargement of the Pareto front where the 98 zonal configurations’ points
are colored according to the clustering algorithm.
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Eventually, by joining the considerations deriving from Fig. 4.44 with the ones previ-
ously done for the first version of the Pareto front portrayed inside Fig. 4.42, it results
a group of compromise solutions which could be passed to a decision maker for the final
choice. These zonal configurations, from left to right, are summed up into Table 4.15.

Table 4.15: Summary of compromise zonal configurations.

Number 2nd version information 1st version information

P1 Mtlb LMPs-based HC with 7 requested BAs
P2 Cmzd LMPs-based K-means with 11 requested BAs
P3 Mtlb PTDFs-based HC with 7 requested BAs
P4 Cmzd PTDFs-based K-means with 11 requested BAs
P5 Cmzd PTDFs-based K-means with 7 requested BAs
P6 Cmzd PTDFs-based K-medoids with 6 requested BAs
P7 Cmzd PTDFs-based K-means with 5 requested BAs

Moreover, there are mathematical mechanisms which can help the decision maker du-
ring his/her choice. One of these mechanisms is the Analytic Hierarchy Process (AHP),
which is subsequently applied to the just described Pareto front. The theoretical founda-
tions of the following process come from reference [61].

The here considered Pareto front is made up of 7 points, previously summed up in
Table 4.15 and recalled inside Fig. 4.46, to better understand the next steps.
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Figure 4.46: Pareto front recall, for the analytic hierarchy process
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These 7 points have (x,y) coordinates contained into (4.1), which constitute the B matrix
of the AHP.

B =



0.6424 1.7471
0.6589 1.7294
1.2517 1.5971
1.3032 1.3983
1.3323 1.3453
1.6235 1.2077
1.9684 0.5075


(4.1)

Each column of the B matrix is thus associated to an objective. In particular, the CVIs
sum objective is contained into the first column, whereas the EEIs sum objective is
represented by the second column. It is necessary to look for both the minimum and the
maximum value for each of these two columns, in order to pass from the B matrix to the
B’ one. Therefore, the minimum and maximum values for the two objectives are:

• bCV Imin = 0.6424

• bCV Imax = 1.9684

• bEEImin = 0.5075

• bEEImax = 1.7471

These values, respectively using the equation (4.2) and the equation (4.3) for the first and
the second column of the B matrix, namely, for the CVIs sum objective and for the EEIs
sum one, permit to pass from the B matrix to the B’ one, which is shown inside (4.4).b′i1 = 1 +

8∗(bi1−bCV I
min )

bCV I
max−bCV I

min

i = 1, . . . ,7
(4.2)

b′i2 = 1 +
8∗(bi2−bEEI

min )

bEEI
max−bEEI

min

i = 1, . . . ,7
(4.3)

B’ =



1.0000 9.0000
1.0999 8.8857
4.6759 8.0318
4.9865 6.7489
5.1625 6.4066
6.9189 5.5188
9.0000 1.0000


(4.4)
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By using the B’ matrix, it is possible to obtain the “pair comparison matrix” D for each
objective. Therefore, the DCVI and the DEEI are respectively provided within (4.5)
and (4.6).

DCVI =



1 1 1/5 1/5 1/5 1/7 1/9
1 1 1/4 1/5 1/5 1/6 1/8
5 4 1 1 1 1 1/2
5 5 1 1 1 1 1/2
5 5 1 1 1 1 1/2
7 6 1 1 1 1 1
9 8 2 2 2 1 1


(4.5)

DEEI =



1 1 1 1 1 2 9
1 1 1 1 1 2 9
1 1 1 1 1 1 8
1 1 1 1 1 1 7
1 1 1 1 1 1 6

1/2 1/2 1 1 1 1 6
1/9 1/9 1/8 1/7 1/6 1/6 1


(4.6)

The maximum eigenvalue of the DCVI matrix is 7.0511. Whereas, the maximum eigen-
value of the DEEI matrix is 7.0776. The eigenvectors corresponding to these eigenvalues
are used to produce the decision matrix A, which is provided inside (4.7).

A =



0.0704 0.4579
0.0756 0.4579
0.3540 0.4044
0.3647 0.3968
0.3647 0.3892
0.4405 0.3245
0.6356 0.0540


(4.7)

Eventually, by giving a weight coefficient equal to 0.5 to both the CVIs sum objective
and the EEIs sum one, the −→z vector is calculated and shown within (4.8).

−→z =



0.2641
0.2668
0.3792
0.3808
0.3770
0.3825
0.3448


(4.8)

The minimum value of vector −→z is 0.2641, which suggests to the decision maker the
solution “P1” as the best one, namely, the zonal configuration created by the Matlab
LMPs-based HC with 7 requested BAs. In order to strengthen this point of view, it
is interesting to use also another mathematical mechanism called Technique for Order
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of Preference by Similarity to Ideal Solution (TOPSIS ). Therefore, the following lines
present this mechanism’s process, whose theoretical foundations are again contained in-
side reference [61]. The TOPSIS multi-criteria decision analysis method starts from the
normalized decision matrix R, which can be easily taken equal to the previous A matrix
of the AHP, since this latter was already normalized.

R = A =



0.0704 0.4579
0.0756 0.4579
0.3540 0.4044
0.3647 0.3968
0.3647 0.3892
0.4405 0.3245
0.6356 0.0540


(4.9)

Starting from the R matrix, which is provided into (4.9), it is created the auxiliary
decision matrix Z, that is shown within (4.10). This passage is done by multiplying the
two columns of the R matrix, which respectively stand for the CVIs sum objective and
the EEIs sum one, for the respective weight coefficient, which are both set equal to 0.5
as already mentioned in the overlying lines.

Z =



0.0352 0.2289
0.0378 0.2289
0.1770 0.2022
0.1824 0.1984
0.1824 0.1946
0.2202 0.1622
0.3178 0.0270


(4.10)

Inside the Zmatrix the highest values of each column constitute the ideal positive solutions
for each objective, which are gathered inside

−→
z+ vector provided within (4.11), whereas

the lowest values of each column constitute the ideal negative solutions for each objective,
which are collected inside

−→
z− vector shown into (4.12).

−→
z+T =

[
0.0352 0.0270

]
(4.11)

−→
z−T =

[
0.3178 0.2289

]
(4.12)

The Euclidean distances from the ideal positive solutions, contained inside
−→
z+ vector, are

calculated for each point by summing the Euclidean distances obtained for each objec-
tive, as shown within (4.13). In this way it is created the

−→
δ+ vector, which is provided

into (4.14). {
δ+i =

√∑2
j=1 ∗(zij − z

+
j )

2

i = 1, . . . ,7
(4.13)
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−→
δ+ =



0.2020
0.2020
0.2254
0.2259
0.2231
0.2292
0.2826


(4.14)

In the same way, the Euclidean distances from the ideal negative solutions, contained in-
side
−→
z− vector, are calculated for each point by summing the Euclidean distances obtained

for each objective, as shown within (4.15). In this way it is created the
−→
δ− vector, which

is provided into (4.16). {
δ−i =

√∑2
j=1 ∗(zij − z

−
j )

2

i = 1, . . . ,7
(4.15)

−→
δ− =



0.2826
0.2800
0.1433
0.1388
0.1397
0.1182
0.2020


(4.16)

Eventually, the normalized distances from the ideal negative solution are calculated for
all the points, by using the equation contained inside (4.17). In this way it is created the
final vector

−→
δ−rel, which is provided within (4.18).δ−i,rel =

δ−i
δ−i +δ+i

i = 1, . . . ,7
(4.17)

−→
δ−rel =



0.5832
0.5809
0.3886
0.3806
0.3851
0.3402
0.4168


(4.18)

Inside
−→
δ−rel vector the maximum value indicates the solution that has the highest nor-

malized distance from the ideal negative solution. This latter solution is the “best among
the worst”, which thereby becomes the best solution according to TOPSIS procedure.
Therefore, in this case the TOPSIS process suggests to the decision maker the solution
“P1” as the best one, namely, again the zonal configuration created by the Matlab LMPs-
based HC with 7 requested BAs, as already stated by the previous AHP method.
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Chapter 5

Conclusions

This chapter contains both the findings emerged by the application of this thesis’ method-
ology on a real case study, which can be ascertained in the previous Chapter 4, and the
suggestions for a possible future development of this work.

5.1 The GA’s false optimality

According to the rankings of methodology’s clustering algorithms previously reported
within Section 4.3.3, the customized LMPs-based GA is one of the most performing par-
titioning techniques. In fact, it reaches the 3rd position inside Table 4.14 based on the
sum of both CVIs and EEIs, which will be subsequently proved to be the most relevant
ranking among the available ones for what concerns the higher placements. Consequently,
it should be considered as one of the best clustering algorithms that have been used. Nev-
ertheless, the GA’s good performance along the aforementioned 7 tests must be actually
rejected as fake ones, and thereby the algorithm in question must be labeled as non-good
at all.

This because, into the previous Section 4.2.2 it has been stated the inadequacy of the
GA’s starting population random initialization. Therefore, from there on out it has been
decided to steer its initial exploration of the solutions’ space, by half initializing its starting
population through the zonal configuration coming from the customized LMPs-based K-
means (before the application of both the additional handwritten functions “NoSingle-
NodeBAs” and “CheckBAsConnection”). This action was hence aimed at finally making
the GA a performing clustering algorithm, without setting its stop criteria to very huge
values. But actually, it just revealed to be the copy and paste of the customized LMPs-
based K-means’ zonal configurations to the customized LMPs-based GA’s ones. This
can be easily seen by the previous Fig. 4.10, Fig. 4.11, Fig. 4.12 and Fig. 4.13, which
contain the CVIs and EEIs’ trends of customized algorithms’ zonal configurations from
2 to 20 requested BAs, that reveal totally equal patterns for the two above mentioned
algorithms. This is also seen in any of the figures provided within the 7 tests, where the
GA shows always the same values and zonal configurations of its starting population’s
initializer. In other words, if the customized LMP-based GA’s starting population is
randomly initialized, its zonal configurations become totally senseless as previously proven
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inside Section 4.3.3. But meanwhile, if the same starting population is not randomly
initialized, the customized LMPs-basedGA does not add anything respect to the clustering
algorithm which partly initializes its population. Thereby, its resulting price zones still
remain useless and devoid of any interest.

At this point, it could be asserted that also this latter problem may be solved by
setting huge stop criteria to the GA, just like already said for the first problem linked to
the population random initialization. Nevertheless, it seems more likely to see the GA as
a good OP solver but a bad clustering algorithm. Because experimentally, during all the
tests which have been done during these months of research, the GA used as clustering al-
gorithm has never created particularly optimal zonal configurations. Indeed, it has always
revealed very poor performance, whether randomly initialized or not. Therefore, the GA
understood as this thesis’ one must realistically be refused as non-suitable technique for
defining optimal zonal configurations. The only possibility to re-evaluate it as clustering
algorithm for the aforementioned purpose may come from some modifications, like for
instance:

• The mutation process change, so that it becomes a genetic operator working only
on BAs’ border nodes.

• The crossover process change, so that it becomes a genetic operator moving physi-
cally cohesive BAs’ portions from one prize zone to another adjacent one.

• The crossover probability change, so that the associated genetic operator becomes
less probable than the current high value of 90%.

Using a GA customized this way would surely give better results than the ones obtained
through this thesis’ methodology because, thanks to these changes, the algorithm’s ran-
domness would be both limited to avoid defining unfeasible zonal configurations, similar
to color palettes, and effectively used to explore the solutions’ space, to try finding better
zonal configurations.

5.2 The outsider PDC

This section has the overlying strange title because, as already explained within the pre-
vious Section 3.2, the PDC is the clustering algorithm which tries to obtain an optimal
zonal configuration in the easiest possible way. Namely, it merges the power network
nodes when both their average LMPs difference drops below a certain user-defined range
and they result to be physically connected. Therefore, due to its extreme simplicity, this
partitioning technique could have been even regarded as an outsider at the beginning of
this thesis.

Made this clarification, the ranking included inside Table 4.13 points out the PDC as
one of the methodology’s best algorithms. But actually, since this latter sorting will be
afterwards labeled as non-accurate for what concerns the higher positions in favor of the
one contained into Table 4.14, the 3rd place in question must be rejected as non-relevant
one, and must be substituted with the algorithm’s 12th placement of Table 4.14. As a
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result, the PDC ’s bad positioning inside this latter ranking becomes the first reason of
its inaccuracy.

Moreover, by looking at the geographical representations of the PDC ’s zonal con-
figurations contained into the 7 tests, these last never reveal BAs sets which may be
effectively applicable. Because from having 8 price zones, associated to a 26% of average
LMPs tolerance, to having 15 of them, associated to a 6% of the same parameter, there
is always an excessive contrast between a too high majority of very small BAs (especially
concentrated into the higher part of Scandinavian countries) and a too small quantity of
big price zones. In other words, the BAs’ sizes sensibility towards the user-defined average
LMPs tolerance is too low. And consequently, he cannot prevent the PDC from defining
too different price zones in terms of dimensions. This condition, which is obviously non-
optimal for many reasons, can be avoided only naturally thanks to the intrinsic features
of the partitioned power network (thing that does not happen inside this case study’s re-
duced model of the European transmission network). Therefore, this is the second reason
of the PDC ’s inaccuracy, which furthermore had already been noted within reference [17]
as previously reported inside pros and cons of Chapter 2.

Eventually, as can be seen from the Pareto front portrayed within Fig. 4.44, the PDC ’s
zonal configurations obtained during the 7 tests outlined in Section 4.3.2 are markedly
worse than all the other clustering algorithms’ BAs sets, whichever is the requested BAs
number. For these three reasons, it is reasonable to refuse the PDC as non-suitable
technique for defining optimal zonal configurations.

5.3 PTDFs-based algorithms vs LMPs-based ones

It is interesting to note that the LMPs-based clustering algorithms, both coming from
Matlab commands or customized source codes, create zonal configurations with better
optimality performance from the CVIs’ point of view. Conversely, the Matlab and cus-
tomized PTDFs-based clustering algorithms produce BAs sets with better optimality per-
formance from the EEIs’ point of view. This can be easily seen by the previous Table 4.11
and Table 4.12. In the first one, all the partitioning techniques which have been the best
for at least once are LMPs-based clustering algorithms. In the second one, the same bests
for at least once are PTDFs-based clustering algorithms 4 times out of 6.

It is difficult to give a reason to this phenomenon, but empirically it seems that using
the nodal PTDFs of most congestible lines as clustering feature makes the respective
algorithm produce price zones with lower market power and hence higher competition
level, which thereby are more performing from the EEIs’ point of view. On the contrary,
using the LMP hourly trends as clustering feature permits to obtain BAs that retain
better the nodal prices’ benchmark economic signals. This is proven by their small values
of CVIs, which are remembered to be always computed on LMP hourly trends, whether
the judged algorithm is LMPs-based or PTDFs-based, and consequently they give an
estimation of the within-clusters LMP variance.
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5.4 The optimality exclusivity

By looking at the previous Table 4.11 and Table 4.12, it emerges that there is no method-
ology’s suitable clustering algorithm which has been at least once best inside both the
categories of zonal configurations’ assessment indicators. Namely, if a partitioning tech-
nique has been the best inside CVIs’ evaluations for a certain number of times greater
than zero, it has never been the best according to EEIs along all the 7 tests made. Ob-
viously, it is the other way around for the clustering algorithms which have been the best
inside EEIs’ evaluations for at least once. Therefore, in other words, for all the method-
ology’s partitioning techniques having been the best for even just once within one of the
two assessment indicators’ categories has then precluded it the possibility to be the best
in the other category, during all the case study’s tests.

This consideration becomes even more interesting when read as an extension of the
previous one, reported inside Section 5.3. In fact, whether on the one side this latter
concerns the affinity between LMPs-based clustering algorithms and CVIs or between
PTDFs-based ones and EEIs, which anyway is not so severe as proven by the customized
LMPs-based K-medoids and HC within Table 4.12. The here outlined observation widens
the aforementioned point of view and simultaneously becomes more strict. By saying
that, whichever is the nature of the partitioning technique, it can only be the best inside
one of the two assessment indicators’ categories, and never in the other one.

For these reasons, the ranking portrayed inside Table 4.13 slightly loses its importance.
In fact, it proves to be not a classification that truly points out the overall best partitioning
technique, according to both CVIs’ evaluations and EEIs’ ones. But instead, just a
comparison among the algorithms’ first places which however have been merely collected
within their respective optimality fields. Therefore, from this latter point of view the best
clustering algorithm can also emerge due to the remarkable inadequacy of the opponents
inside the two separated optimality fields in question (namely the CVI assessment and
the EEI one), rather than for its real merit within a common evaluation field, as instead
it should be in order to make relevant the ranking contained into Table 4.13.

From the above discussion, it emerges that the sum of CVIs and the sum of EEIs can
be considered to some extent as conflicting objectives, to be handled together by drawing
the Pareto front.

5.5 The methodology’s worst clustering algorithms

At the end of the above Section 5.4 it is stated that the ranking contained into Table 4.13
is not so accurate, because of reasons explained there. Nevertheless, this is only true for
the higher placements, namely to elect the overall best partitioning technique. In fact, the
lower part of the ranking is completely truthful. Therefore, it is perfect to point out the
methodology’s worst clustering algorithms. As a result, the table in question nominates
the Matlab PTDFs-based K-medoids and HC as worse, closely followed by the Matlab
PTDFs-based K-means and the customized LMPs-based HC, that manage to be the best
for only once during all the case study’s seven tests.
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Before making considerations on this result, which could be distorted by particular
conditions of that specific ranking, it is better to also look for the worst clustering algo-
rithms emerged by another sorting. Therefore, according to Table 4.14 where the final
ranking has been created by summing all the zonal configurations’ CVIs and EEIs along
the seven tests, the worst partitioning techniques have been the customized LMPs-based
K-medoids, PDC, HC and the customized PTDFs-based HC. It is worth remembering
that it is not necessary to also look for the worst clustering algorithms inside the two
Pareto fronts of Fig. 4.42 and Fig. 4.44, because these last have been created using CVIs
sum on the horizontal axis and EEIs sum on the vertical one. Hence, they roughly provide
the same information of Table 4.14, just represented in another way.

For these reasons, the aforementioned assertions lead to the following considerations:

• The customized LMPs-based HC shows poor performance according to both Ta-
ble 4.13 and Table 4.14. Therefore, there are valid reasons to consider it as one of
the methodology’s worst clustering algorithms, together with the customized LMPs-
based GA and PDC, for reasons previously reported respectively inside Section 5.1
and Section 5.2.

• The clustering algorithms which outperform on the long run, namely considering
the sum of all their zonal configurations’ CVIs and EEIs along the case study’s
seven tests, typically perform worse in the one-shot bests, whose ranking is reported
inside Table 4.13. This can be easily seen by looking for instance at the Matlab
PTDFs-based K-medoids and HC. That, from the 10th positions within Table 4.13,
respectively pass to the 7th and the 5th place into Table 4.14. Or even the other
way around, by looking at the customized LMPs-based K-medoids, PDC and HC.
That, from the 13th, 12th and 11th position within Table 4.13, respectively pass to
the 4th, 3rd and 8th place into Table 4.14.

5.6 The methodology’s best clustering algorithms

Since the higher part of the ranking contained inside Table 4.13 must be rejected as
non-accurate, for reasons previously explained inside Section 5.4 and Section 5.5, the
methodology’s best clustering algorithms have to be nominated by looking at the sorting
of Table 4.14. Thereby, this latter points out a podium made up of:

• 1st place: Matlab LMPs-based HC

• 2nd place: Matlab LMPs-based K-medoids

• 3rd place: Customized LMPs-based K-means

The equal merit in the third place between the customized LMPs-based K-means and
GA is voluntarily missing, because of GA’s fake optimality reasons previously explained
inside Section 5.1. Moreover, the aforementioned podium is also confirmed by Fig. 4.44,
where the best zonal configurations concentrated in the leftmost part of the points cloud
actually derive from Matlab LMPs-based HC, K-medoids and customized LMPs-based
K-means. As previously stated inside Section 4.3.3. Consequently, in order to comment
this twice obtained result, the following sections contain some considerations.
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5.6.1 Nodal PTDFs of most congestible lines as valid clustering feature

First of all, the aforementioned podium does not reveal an important feature, which how-
ever is worth remembering. In fact, even if not placed in the first three positions, the
PTDFs-based clustering algorithms show good performance, as proved for instance by the
customized K-means and the Matlab HC fed through this clustering feature, which man-
age to reach respectively the 4th and the 5th placement within the ranking of Table 4.14,
furthermore detached of few units respect to the first three clustering algorithms. There-
fore, this can be considered as the consistency proof in using the nodal PTDFs of most
congestible lines as clustering feature, in alternative to the classical LMP hourly patterns.
Action which has been explained previously from the theoretical point of view, within
Section 3.2.1, and moreover has already been used for many years inside the scientific
literature regarding the optimal price zones definition subject. But nevertheless, it had
never been compared to LMPs-based zonal configurations to assess its effectiveness, as
instead has been done inside this thesis.

5.6.2 The penalty factor technique’s double face

The penalty factor technique, previously explained inside Section 3.2.2, has been proved to
be insufficient to make the clustering algorithms comply with the zonal configurations’ 9th

optimality requirement, within Section 4.2.1. As a result, from this latter section on out
the methodology’s customized partitioning techniques have added to their processes the
downstream application of the additional handwritten function “CheckBAsConnection”,
in order to preserve their reason for being among the methodology’s suitable clustering
algorithms (apart from the customized LMPs-based PDC, for reasons above reported
inside Section 3.2.2 ).

Made this premise, it is interesting to note how the penalty factor technique conserva-
tion within the customized partitioning techniques (apart the PDC ) has had both good
and bad consequences in terms of resulting zonal configurations’ optimality, as proven
by the ranking of Table 4.14. In fact, for instance, the PTDFs-based and LMPs-based
K-means respectively pass from the 9th and 6th position to the 4th and 3rd one, by pass-
ing from the Matlab versions to the customized ones of their clustering algorithms. But
the other way around, there are partitioning techniques like the Matlab LMPs-based HC
and K-medoids, which respectively pass from the 1st and 2nd placement to the 10th and
13th one, by making the same change. Therefore, according to these results, on the one
hand it seems that actually the K-means clustering gains benefit from the preliminary
application of the penalty factor technique. Which, even if not exhaustive respect to
the compliance towards the zonal configurations’ 9th optimality requirement, manages
to render less invasive the alteration of its final BAs set, coming from the usage of the
handwritten function “CheckBAsConnection”. Whereas, on the other hand, it seems that
other partitioning techniques like the HC and the K-medoids actually acquire drawbacks
by the presence of the penalty factor technique in addition to the downstream application
of the aforementioned handwritten function.

Given these facts, it is not yet possible to assert a complete affinity between clus-
tering algorithms like HC or K-medoids and the preliminary usage of the penalty factor

144



5.7 – Final thoughts and future developments

technique, because of the exiguity of the data on which the consideration in question
would be founded. Nevertheless, in addition to this technique’s insufficiency in making
the clustering algorithms comply with the zonal configurations’ 9th optimality require-
ment previously reported inside Section 4.2.1, the overlying findings prove that even its
additional use ex-ante may not be always profitable to be done. Therefore, it must only
be undertaken after having proved its effectiveness through comparisons like this thesis’
one.

5.6.3 The podium

According to the scientific literature regarding the subject of this thesis, namely the usage
of clustering algorithms for defining power networks’ optimal zonal configurations, the
most frequently used partitioning technique for the aforementioned purpose is the HC, as
indicated in Table 2.2, where this latter algorithm shows to be used seven times within
the papers considered in that chapter. Therefore, the 1st place obtained by the Matlab
LMPs-based HC within the ranking of Table 4.14 is surely important because it gives a
practical demonstration of the validity of what is usually done in the scientific literature
from many years.

Nevertheless, the 2nd placement of the same ranking contains a K-medoids clustering.
Which instead has been used only once inside the above mentioned documents, i.e., this
thesis’ references previously summed up into Chapter 2. Consequently, this second result
becomes equally interesting, because it proves the existence of a not yet traveled direction
of research that could reserve particularly interesting performance.

Thirdly, the 3rd position of the customized LMPs-based K-means inside the aforemen-
tioned ranking of Table 4.14 still offers the possibility for a twofold consideration. In fact,
on the one hand it demonstrates the possible advantage that a clustering algorithm can
acquire from the joint use of the penalty factor technique and an ex-post control of its
BAs’ physical integrity, which however has already been outlined inside Section 5.6.2. On
the other hand, it proves the rationale of using the K-means clustering for making opti-
mal zonal configurations, which is an already widespread approach thanks to K-means’
notoriety as proven by Table 2.2.

Eventually, it is still worth remembering that the whole of the podium’s partitioning
techniques is LMPs-based. Therefore, this unavoidably becomes the tangible validity
proof of the highly diffused behavior of using LMP hourly trends as clustering feature.

5.7 Final thoughts and future developments

The ultimate goal of this thesis was not the creation of a truly optimal zonal configura-
tion for a certain power network, but rather the search for “the most suitable technique to
deterministically define an optimal zonal configuration”, as already stated inside the Sum-
mary. In fact, it has not been especially commented any absolute best zonal configuration
emerged inside Section 4.3.3 by joint analysis of Fig. 4.44 and Fig. 4.44.
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Therefore, in this sense the previous pages undertake this path by using clustering
algorithms, since these last reveal to be the only rational possibility to carry out the afore-
mentioned purpose, and hence they compare the performance of some of them through
the usage of a real case study, based on a reduced model of the European transmission
electricity grid. From this latter, several findings emerge, like the praise of customized
LMPs-based K-means and Matlab LMPs-based HC and K-medoids, or the rejection of
customized LMPs-based GA and PDC. But nevertheless, it is not possible to distinguish
the whole of the available clustering algorithms into a multitude of totally inappropriate
partitioning technique and a sole completely perfect algorithm. Because all of their per-
formance are roughly comparable, and hence it is difficult to entirely discard one of them
(apart few cases like the aforementioned GA and PDC ).

In other words, the final consideration of this thesis should be “the clustering algo-
rithms are not the magical box”. Because, in order to define electricity grids’ optimal
zonal configurations, many of them may be suitable, whether in their Matlab or cus-
tomized version, according to the nomenclature many times adopted inside this work,
and fed with nodal PTDFs of most congestible lines or LMP hourly trends. It is all up to
the specific real power network, which however cannot be defined a priori, and the zonal
configurations’ optimality assessment criteria that wants to be used. But this latter, as
far as this thesis’ author is concerned, is the real Achilles heel on which the EU should
work in order to improve the optimal BAs definition within the electricity grids around
the continent. Because once that the zonal configurations’ optimality requirements will be
clearly classified through unique tangible parameters, both objective and quantitative, the
price zones assessment and thereby their optimal definition will become much more easier
for all the European TSOs. But at the same time, until this lack will not be filled up,
the clustering algorithms will not be able to define uniquely optimal zonal configurations,
and hence they will not be discernible in totally good or bad ones.

From this latter point of view, the actual contribution of this thesis lies in having
created a three-level methodology aimed at clearly stating the zonal configurations’ opti-
mality requirements, finding the most suitable clustering algorithms to comply with the
just mentioned criteria (modified if necessary) and comparing the performance of these
last through univocal zonal configurations’ optimality assessment indicators (discernible
into CVIs and EEIs).

Beyond this considerations, in order to hereafter improve this research of the most
suitable clustering algorithm to deterministically define an optimal zonal configuration,
some suggestions are afterwards presented.

• To expand the time window.
Making an analysis similar to this thesis’ one on a time window greater than a
week indeed, maybe considering also an higher number of future scenarios, could
bring to a twofold betterment. On the one side, the resulting zonal configurations
would acquire a better temporal stability and thereby would improve from the zonal
configurations’ 1st optimality requirement point of view. On the other side, the final
considerations of a research of that type would unavoidably have a wider general
sense.
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• To spread the view on clustering algorithms and distance metrics.
In fact, especially this latter field has been little explored inside this work, since it
has only been used the Euclidean distance. As a result, it could be surely interesting
to see how the usage of other distance metrics, like those more typical of load profiles
clustering, may change and perhaps improve the zonal configurations definition.
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Appendix A

Secondary references analysis

This appendix contains the detailed overview of this thesis’ references which adopt clus-
tering techniques for purposes different from BAs definition. This overview is organized
with both tables and bulleted lists, in order to ease the consultation to the reader.

A.1 References summary

The following bulleted list contains a short description for each of the considered papers
which deal with clustering algorithms but do not define any zonal configurations. It is
organized with two subpoints for each reference, which respectively contain its rationale
and its general description.

• [6] Cao et al. (2018)

– Paper’s rationale: To define a reduced model of the power network. Based
on preserving system’s congestions, and aimed at simulating its operation with
less computational effort.

– Paper’s summary: This papers firstly states that the models used for analyz-
ing and developing future energy systems must be simplified, due to their too
high computational burden, and must include the modeling of power network’s
congestions, which are often ignored. Therefore, it is presented a new method-
ology for aggregating, hence simplifying, spatially highly resolved transmission
grid information for energy system models, which is based on preserving sys-
tem’s congestions, and is aimed at simulating its operation with less compu-
tational effort. The aforementioned reduction process is mathematically done
through a spectral clustering algorithm, fed with LMPs snapshots of significant
power network’s moments from the congestions point of view. In fact, these
last are respectively evaluated:

∗ at the hour of the year for which the maximum of the sum of the generated
power from wind onshore and the load can be observed, representative of
a particularly loaded moment for the power network;

∗ at the hour of the year for which the maximum of the nodal price differences
can be observed;
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∗ at the hour of the year for which the maximum of the relative grid transfer
capacity usage can be observed.

• [7] Cotilla-Sanchez et al. (2013)

– Paper’s rationale: To present a hybrid clustering method to do electrically
coherent partitionings of power networks. It adopts Electrical Distance (ED)
as distance metric. Most of all, it is a general purpose algorithm, which can be
tailored to most of specific applications thanks to its multi-attribute objective
function.

– Paper’s summary: This papers observes that conventional partitioning algo-
rithms, such as spectral and K-means clustering, are computationally efficient,
but they are not easily adaptable to produce solutions aimed at optimizing ob-
jectives beyond those of maximizing between-clusters distances or minimizing
within-clusters ones. Therefore, this document presents a hybrid clustering al-
gorithm to cover this deficiency, made up of a preliminary K-means process and
a subsequent genetic algorithm. The former is used to generate an initial set
of candidate solutions. The latter is used to improve these solutions according
to the fitness function, namely the user-defined multi-attribute objective func-
tion focused on pushing the final clustering result beyond the aforementioned
two typical clustering objectives. This last multi-attribute objective function
is composed of the weighted product of the partitioning quality measures ini-
tially defined by the user, which are here five indices dealing with ED, clusters
sizes and nodes’ connection. The distance metric used inside the here pro-
posed methodology is the ED, also used within some of the previous clusters
assessment criteria. This differs substantially from the more typical topological
distance in power grids, by relating network topology to active-power sensitiv-
ities. For more information about its definition, please look at the following
section A.4.

• [10] Ferreira et al. (2011)

– Paper’s rationale: To divide power network’s nodes into clusters according
to their LMPs, to take advantage of their economic signals in helping the TSO
in defining future investments and network expansions.

– Paper’s summary: The LMPs are the clearest and most objective economic
signals which can be used to price energy inside a power network. Thus, they
represent the benchmark in this field, reason why they want to be preserved as
much as possible when passing from NP to ZP. For this reason, in this paper
power network’s nodes are divided in groups by using a K-means clustering
and a two-step one, both fed with LMPs. The goal is to find sets of nodes
where, according to aforementioned benchmark economic signals, it would be
profitable for system’s performance improvement to increase generation or de-
mand. These information become then useful to allow the TSO to choose
the future expansion plan which increases the most the system’s performance,
e.g. improving its congestion management. The aforementioned methodology
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is eventually applied to a real case study, namely the Californian database of
2009’s hourly LMPs patterns, in order to assess its effectiveness.

• [11] Ferreira et al. (2010)

– Paper’s rationale: To divide power network’s nodes into clusters according
to their LMPs, to take advantage of their economic signals in helping the TSO
in defining future investments and network expansions.

– Paper’s summary: Broadly speaking, this paper is quite similar to previous
reference [10]. Indeed, they share all the authors and the period of publication
is rough the same. Just slight differences are present, and thus are subsequently
reported. On the one hand, here more attention is laid on pre-processing of in-
put data, which are always the 2009’s hourly LMPs patterns of the Californian
power network. In this preliminary phase, all the physically incoherent trends
are ousted from the input database. Namely LMPs with too many missing
points in their course or with patently senseless values. On the other one, here
it is also included a comment on the computational performance of both the
used algorithms, namely, the two-step method and the K-means. This new
comparison oddly reveals a faster performance of K-means clustering, even if
two-step algorithm should be actually born to speed up the clustering of large
databases like the one here used. Nevertheless, this comparison is not truthful
because made between different software. Therefore, it must not be considered.
Beyond these two differences, the remaining part of the paper roughly says the
same things of previous reference [10]. Also the case study is the same.

• [16] Hong et al. (2002)

– Paper’s rationale: To forecast power network LMPs, so as to give market
participants helpful information to develop their bidding strategies. In this
scenario, a fuzzy-c-means clustering algorithm is used on load levels, in order
to classify them in three categories, before a Recurrent Neural Network (RNN )
is trained on each load level.

– Paper’s summary: This papers tries to instruct a neural network focused on
LMPs forecasting. This could give helpful information to market participants,
in defining their bidding strategies. Therefore, firstly the transaction periods
are divided into three clusters by a fuzzy-c-means clustering algorithm. These
last are respectively peak load periods, medium-peak load ones and off-peak
load ones. Then a RNN is trained on each of them, using historical data from
PJM (Pennsylvania, New Jersey and Maryland) power network. Eventually,
these neural networks are tested, revealing to be capable of efficiently fore-
casting LMPs values. It is worth remembering that, also a more traditional
Neural Network (NN ) is here studied for comparison. But this latter always
shows worse performance. And this was predictable, since RNN is capable of
modelling nonlinear and fast variations as well as complicated input/output
relationships, just like the here considered LMPs forecasting is.
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• [20] Kiran et al. (2016)

– Paper’s rationale: To produce the archetypes of the twenty-four BAs’ zonal
prices of both the two power exchanges which separately operate in India, so
as to give respective market participants helpful information to develop their
bidding strategies.

– Paper’s summary: This papers firstly admits the importance of predicting
market clearing prices inside a deregulated environment. In fact, this infor-
mation can help market participants to optimize their bidding strategies so as
to maximize their profits. Nevertheless, this forecast is quite challenging due
to energy price’s unpredictability. And moreover, it is even harder in some
cases, like the Indian system. In this latter indeed, the power network is split
in two and separately operated by two independent power exchanges, respec-
tively named the Indian Energy Exchange and the Power Exchange of India
Limited. In this scenario, this paper uses clustering techniques to obtain the
typical zonal prices profiles over a year of the twenty-four Indian BAs, respec-
tively divided between the two aforementioned markets. These last come out as
clusters’ centroids of a K-means clustering algorithm, fed with Zonal Marginal
Price (ZMP) patterns of the twenty-four Indian BAs along a year and speeded
up by a preliminary Principal Component Analysis (PCA) process run before
the K-means. The resulting seven archetypal patterns can be used by Indian
players for strategic bidding purposes.

• [23] Klos et al. (2015)

– Paper’s rationale: To propose a clustering approach aimed at modifying a
starting zonal configuration, in order to decrease its internal loop flows. These
last are unscheduled power flows, which compromise system efficiency, stability
and security, and hence they should be reduced as much as possible inside an
optimal zonal configuration.

– Paper’s summary: This paper presents a clustering method aimed at min-
imizing the loop flows of a power network. These last are unscheduled flows,
consisting of power flows transmitted through neighbouring zones but due to
some intra-zonal transactions. They are not desired for many reasons, e.g. they
introduce additional losses and they decrease transfer capacity of the affected
lines, thus threatening even some reserve zones not to provide all the reserve
capacity they were attributed with, by the TSO. Therefore, loop flows are un-
wanted since they decrease both system’s stability and security. Anyway, there
is also another type of unscheduled flow, which is called transit flow. This
latter is less worrying, because it is an inter-zonal power flow which involves
the two zones where it takes place respectively the injection and withdrawal
of the exchanged amount of power. So that it is naturally managed by the
OP which defines the zonal market clearing of the zonal-based market. This is
why this paper proposes a clustering method to modify a starting zonal con-
figuration in order to transform its loop flows, hardly manageable, into transit
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ones, naturally managed by the zonal market clearing. For doing this, the
aforementioned methodology has firstly to identify the power network’s BA
which is responsible for the most of system’s loop flows, so as to straightaway
operate on the zone which most affects system performance, namely the zone
with the highest number of these unscheduled flows. Then, each node of this
targeted zone is labeled with the impact that its power injection or withdrawal
has on the zone’s loop flows, which are so much present into this zone. There-
fore, these aforementioned nodes are classified through something that recalls
PTDFs. After that, these nodal features are put inside a hierarchical clustering
algorithm, to split out this targeted zone into two BAs, in the way that the
largest possible part of the previous loop flows is transformed into transition
ones, more manageable. Thus increasing system performance as much as pos-
sible. It is worth remembering that, the here proposed methodology aimed
at minimizing the loop flows, comes as an additional step in the problem of
BAs redefinition. Indeed, its starting point is a zonal configuration which has
to be previously defined in whatever way. Therefore, it has to be intended as
a clustering algorithm for zonal configuration improvement rather than zonal
configuration definition.

• [24] Koivisto et al. (2012)

– Paper’s rationale: To cluster Finnish load profiles, by using a K-means
algorithm speeded up by a preliminary PCA, and to create a model of the
main customer groups, by using a multiple repression analysis based on two
largest clusters of the load profiles partitioning.

– Paper’s summary: In this paper, it is performed a clustering of Finnish
load profiles using a classical K-means algorithm preceded by a PCA, aimed
at speeding up the clustering process. After this first partitioning, a multiple
regression analysis is carried out on the two largest clusters, to find the most
important explanatory factors for the load modeling. These last reveal to be
the temperature, the day length, mainly in a linear way or close to it through
a piecewise linear approximation, and the day type, modeled by using dummy
variables so as to reproduce sudden changes in the load profiles. This model
of the main customer groups, since it is based on two largest clusters of the
load profiles partitioning, reveals to be very important to assist the Distribu-
tion System Operator (DSO) during the long-term development of the power
system.

• [28] Sanchez-Garcia et al. (2014)

– Paper’s rationale: To partition the power network in order to create a re-
duced model of it, which is both able to reduce the computational effort needed
to treat it, and to preserve a user-defined feature of the actual power network.
This latter can be the internal connectivity structure of the underlying network,
when choosing lines admittances as lines’ weight, or the existence of islands,
when choosing average real power flows as lines’ weight.
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– Paper’s summary: This paper’s aim is to partition the power network into
smaller parts, so as to manage it in an easier way. Hence it does not deal with
BAs redefinition, but with system treatment simplification. This concept goes
back to the 1950s, when computers’ memory was limited and so the systems’
dimensions had to be contained to become more easily manageable. Therefore,
here it is proposed a spectral clustering algorithm aimed at reducing the power
network’s model. Inside this latter, depending on the chosen lines’ weight,
different Laplacian matrices are obtained, and hence different features of the
original power network are maintained in the final reduced model. Therefore,
when using lines admittances, it is obtained a certain Laplacian matrix. The
resulting final reduced model reveals the static internal connectivity structure
of the underlying network. When using average real power flows, it changes the
Laplacian matrix. The resulting final reduced model highlights the presence of
islands, namely energetically autonomous zones.

• [30] Shayesteh et al. (2014)

– Paper’s rationale: To create a reduced model of power network, able to sim-
ulate its operation in an easier way meanwhile preserving its overall behavior.
This is done through a spectral clustering algorithm fed with nodes’ Available
Transmission Capacity (ATC ) coefficients and embedded with a K-means.

– Paper’s summary: This paper aims to define a methodology to create re-
duced models of existing power networks. This must be able to simulate in
an easier way the operation of the respective power networks, meanwhile pre-
serving their behaviors as much as possible. This analysis is important since
simulations of prices, power flows and production costs are all crucial inputs to
generation and transmission planning studies. Moreover, to calculate average
system performance for many alternatives over long time periods, namely for
different scenarios, it is necessary to simulate large numbers of hourly com-
binations of renewable production and loads across large regions. But all of
these things require to simulate the power network’s operation along a certain
period, and this is usually impractical for full networks, due to the too high
computational burden associated to their detailed models. Therefore, a power
network reduction is needed in order to simplify the simulation of system’s op-
eration. This paper actually deals with this problem. In particular, it describes
an innovative spectral clustering algorithm fed with nodes’ ATC coefficients
and embedded with a K-means as clustering step. This methodology is even-
tually applied on two case studies, to test its effectiveness. These last are the
IEEE 118-bus test system and the Polish 3121-bus power system. There, the
method’s assessment is done by comparing total operation costs, total losses
and nodal prices of the actual systems, with the ones obtained by the reduced
models. The less there are differences between these two parameters families,
the more the reduced models are truthful. This comparison’s results reveal the
adequacy of this power network reduction method.
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A.2 Clustering features summary table

Table A.1 portrays an overview of the user-defined nodal parameters which are used
inside each of the considered papers as clustering feature, to run the respective clustering
algorithms.
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LMP hourly patterns X X
LMP snapshot X
ZMP hourly patterns X
Load levels X
Nodal influence on loop flows X
Load profiles X
Lines’ average real power flows X
Lines’ admittances X
ATC coefficients X
System admittance matrix X

Table A.1: Clustering features summary table of references which deal with clustering
algorithms for purposes different from BAs definition.
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A.3 Clustering techniques summary table and descriptions

Table A.2 classifies the considered papers with respect to the adopted clustering algo-
rithms. This latter is followed by a bulleted list, which contains two things for each
clustering algorithm: its general description and the specific working processes which
have been undertaken of it during its various applications, inside the papers included in
this chapter.
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[6] Cao et al. (2018) X
[7] Cotilla-Sanchez et al. (2013) X
[10] Ferreira et al. (2011) X X
[11] Ferreira et al. (2010) X X
[16] Hong et al. (2002) X
[20] Kiran et al. (2016) X
[23] Klos et al. (2015) X
[24] Koivisto et al. (2012) X
[28] Sanchez-Garcia et al. (2014) X
[30] Shayesteh et al. (2014) X

Table A.2: Clustering algorithms summary table of references which deal with clustering
algorithms for purposes different from BAs definition.

• Fuzzy-c-means: This clustering algorithm has already been encountered inside
papers dealing with BAs redefinition. Therefore, look at previous Chapter 2 to find
a general description of it.

– [16] Working process: It has already been included inside chapter Chapter 2,
in particular when dealing with the working process of reference [17, 27, 41].
Therefore, it is not repeated here.

• Hierarchical Clustering: This clustering algorithm has already been encountered
inside papers dealing with BAs redefinition. Therefore, look at previous chapter
Chapter 2 to find a general description of it.
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– [23] Working process: The working process of classical hierarchical cluster-
ing algorithm has already been included inside chapter Chapter 2, in particular
when dealing with the working process of references [4, 8, 18, 9, 25, 32, 36].
Therefore, it is not repeated here. The only difference of this paper resides in
the external part of the aforementioned algorithm, which permits to use that
clustering method for reducing power network’s loop flows. This additional
part is subsequently described. (a) Several Direct Current Optimal Power
Flows (DCOPFs) are run in multiple scenarios, so as to identify transmission
lines’ power flows in different conditions of bids and offers. This allows to esti-
mate the magnitude of each zone’s average loop flows. (b) In fact, each of the
aforementioned DCOPFs gives a different power network dispatching, related
to its associated scenario. (c) Then for each of these dispatching the transmis-
sion lines’ power flows are decomposed into their components, so as to classify
the scenario’s transitions among internal exchange, import/export, transit flow
or loop flow. This is done through the Bialek’s Proportional Sharing Principle,
which constitutes the main assumption of this methodology, together with the
lossless power flows analysis of DCOPFs. (d) The aforementioned decompo-
sition gives to each transmission line the so-called “matrix of mutual power
exchanges”, which is a table containing the fractions of different transitions
types that compose the line’s power flux in that scenario. (e) At this point,
through the average between these scenarios, the magnitude of each zone’s aver-
age loop flows is found. In particular, it is also located the line with the highest
average fraction of loop flows, which becomes the targeted line. The zone to
which this latter belongs becomes the targeted zone, which has to be split due
to its loop flows concentration. (f) Therefore, looking at this targeted-zone and
taking the average of the targeted-line’s matrices of mutual power exchanges
(respectively associated to the various scenarios), it is stated the influence of
each node of the targeted-zone on the targeted-line’s loop flow. (g) Then these
parameters, which represent something that recalls nodal PTDFs, are given
as input to a classical hierarchical clustering algorithm, to divide in two the
targeted-zone: one mainly importer and the other mainly exporter. In this
way, the methodology comes to an end. Hence, the zone of the starting zonal
configuration which contained the most of system’s loop flows has correctly
been split in two parts. In order to transform the zone’s loop flows into transit
ones, which are still unscheduled power flows but at the same time they are
automatically handled by a zonal based market clearing.

• K-means: This clustering algorithm has already been encountered inside papers
dealing with BAs redefinition. Therefore, look at Chapter 2 to find a general de-
scription of it.

– [10, 11] Working process: It has already been included inside Chapter 2, in
particular when dealing with the working process of reference [25, 44]. There-
fore, it is not repeated here. The only difference of this paper is that the
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number of clusters, which unfortunately is a parameter that has to be user-
defined beforehand even if it is always impossible to know its optimal value for
the specific clustering application, is chosen by looking at clustering adequacy
measures like Clustering Dispersion Indicator (CDI ) or Mean Index Adequacy
(MIA). The less these measures are, the better the partitioning is. Conse-
quently, by measuring these indices for different number of zones it is seen that
they significantly decrease up to thirty clusters in this case. After this value,
they both remain mostly stable, which means that no relevant improvement of
the partitioning is there ascertainable. Therefore, thirty clusters are then asked
to the K-means clustering algorithm. Which is eventually elected as the best
one, revealing better performance than the two-step one, and hence applied to
the case study.

– [20, 24] Working process: It has already been included inside Chapter
2, in particular when dealing with the working process of reference [25, 44].
Therefore, it is not repeated here. The only difference of this paper is that
there is also a preliminary PCA process run before the K-means, so as to speed
it up. Consequently, here the input database made up of the ZMP patterns
of the twenty-four Indian BAs along a year is firstly put inside a PCA. This
latter is a statistical tool which has the objective to replace the set of original
input variables with a smaller set of artificial ones, able to retain most of the
properties of the former variables. Then, once the PCA has ended and hence
has issued the Principal Components (PCs) of the input database (four in this
case), these last are given as new input to the following clustering algorithm.
Which is here a traditional K-means clustering algorithm. This latter reveals to
be markedly accelerated by having to deal with a reduced number of input data,
namely the PCs instead of the whole original database. In this description it is
worth pointing out that the PCA does not change the number of points inside
the clustered database. It only permits not to consider them as independent
variable, but as linear combination of PCs. So as to speed up the clustering
algorithm that wants to be used to partition the aforementioned database.

• Spectral Clustering: By clustering it is meant the identification of groups in a
dataset, which are created by merging highly correlated points. The correlation
between two points depends on both the feature which has been chosen for the clus-
tering, and the distance measure which has been adopted within the algorithm. A
good clustering result must have: highly connected intra-clusters’ points and weakly
connected inter-clusters’ ones. The spectral clustering algorithm tries to create that
partitioning by using the Laplacian matrix, and particularly its eigenvalues and
eigenvectors. The general idea of spectral clustering process is following.

– [6] Working process: (a) A dataset made up of N points is given to the
algorithm as input. Its data are called “vertices”, and are the observations to
cluster. (b) It is chosen the correlation criterion to be used among data, and
then it is used to fill the NxN matrix called Laplacian. Hence inside this latter,
each cell contains the correlation between a couple of dataset’s points. Which
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is actually called “edge” between those observations. This is why, also choosing
the correlation criterion is actually indicated as choosing “edges’ weight”. (c) At
this point it is typically suggested to normalize the Laplacian matrix, so as to
reduce the computational effort of the clustering algorithm, but it is not com-
pulsory. (d) After that the Laplacian matrix is reduced by using its eigenvalues
and eigenvectors. So that it passes from a NxN matrix to a Nxk’ one, where
k’ is the number of Laplacian matrix’s eigenvectors. (e) Now the number of
partitioning’s clusters has to be user-defined. A suggestion for this choice can
come by looking at eigengaps equation included inside reference [28]. Because,
the k -th index which maximizes that formula indicates the clusters number
of the approximated optimal database partitioning. (f) And moreover, by us-
ing Cheeger inequality reported inside reference [28] too, you also understand
how this latter database partitioning is actually close to the actual optimal
database partitioning. (g) Once user-defined the number of clusters, indicated
as k, the previous reduced and maybe normalized Laplacian matrix is taken
again and only considered for its first k columns. Thereby it becomes a Nxk
matrix, where each line refers to a dataset’s observation and can be regarded
as its coordinates vector. (h) This group of vectors, representing observations’
coordinates, is eventually given as input to any one of the typical clustering
algorithm. This latter is usually a K-means clustering algorithm, which adopts
the Ward’s minimum variance criterion as distance metric and hence uses the
classical multi-dimensional Euclidean distance between observations’ vectors to
create database’s clusters. The working process of this last clustering algorithm
is not included here, since already proposed inside Chapter 2.

– [28] Working process: The same of previous reference [6], apart from the
last step, namely the “h” one. In this paper the final clustering algorithm,
which does the final clustering after having received as input the observations’
coordinates contained inside the reduced and maybe normalized Laplacian ma-
trix, is a hierarchical clustering algorithm instead of K-means. Its capacity of
eventually giving out the summary dendrogram is particularly useful in this
methodology, because it includes in a sole graphic the whole power network’s
behavior with respect to the feature chosen for the clustering.

– [30] Working process: (a) Historical data and forecasts are used to iden-
tify possible loads, renewable productions, and other power network’s features.
These information are clustered into scenarios groups. In this methodology
many scenarios are used to create the equivalent and reduced model of the
power network, to give more accuracy to the model. (b) For each scenario of
the aforementioned scenarios groups, the ATC coefficients between all its cou-
ples of system buses are calculated. (c) Average ATC coefficients are computed
for each group of scenarios, so that for each of them an average ATC matrix is
produced. (d) This latter is used, for each group of scenarios, to partition the
power network into zones, whose number has to be defined by the user through
his experience on the system. This zonal split is done for each group of scenar-
ios, and it is produced by a spectral clustering algorithm. This algorithm is fed
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with the aforementioned nodes’ ATC coefficients and embeds K-means as the
clustering algorithm. (e) Once these zonal configurations are declared, one per
group of scenarios, essential and non-essential buses are identified for each zone
of these partitionings. The former ones are located along the zones’ borders or
are user-defined, in case of the user wants to focus on the behavior of a specific
group of nodes of the system. The latter ones, namely non-essential nodes,
are all the others. (f) All the generators and loads within non-essential buses
are moved to respective nearest essential buses. Then, non-essential nodes are
eliminated. (g) In this way, it is obtained a network reduction for each zonal
configuration respectively associated to one group of scenarios. (h) These re-
ductions are the initially desired power network’s reduced models. Hence they
can be used to simulate system’s operation. In that situation, the more the
simulation requirements are close to the features of one of the scenarios groups,
the more the associated reduced model will be suitable for the simulation and
then will produce accurate outcomes.

• Two-step: This clustering algorithm differs from typical ones, usually divided in
connectivity-based and centroid-based methods. It came out after having observed
that traditional clustering algorithms are usually effective and accurate on small or
medium datasets, especially the connectivity-based ones. But then, they do not scale
up efficiently to very large datasets. Therefore, the two-step clustering algorithm
tries to compensate this lack.

– [10, 11] Working process: (a) It is firstly applied a quick sequential cluster-
ing to the input dataset. Large or not it does not matter, since this first step
is a rough process able to handle large datasets. In this way the input points
are split into many subclusters, organized into a tree of features. The number
of subclusters is user-defined, and affects the quality of the overall clustering
itself. The more subclusters are used, the more precise this first partitioning
becomes. But meanwhile, having more subclusters also causes a longer second
clustering step. And this is not good, because the two-step clustering algorithm
is actually born to speed up the clustering of very large databases. Therefore,
when choosing the number of subclusters a trade-off is necessary between first
step’s precision and second one’s speed, since both of them affect the perfor-
mance of the overall two-step clustering algorithm. (b) Once the first step is
ended and thus the features tree is done, the second step starts. This latter
takes the subclusters as input dataset, and clusters them through one of the
classical clustering algorithm, which is often a hierarchical and agglomerative
clustering process, like in this paper. (c) Therefore, according to the input
required by this second classical clustering algorithm, the number of clusters of
the final partitioning has to be chosen also in this second step. At the latest,
the clustering algorithm has ended and the summary dendrogram has been is-
sued, as made possible by hierarchical algorithms. Inside this second step this
choice is much more relevant, because it compromises the final partitioning
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of the primary dataset. (d) Inside the second step, as normally happens in-
side traditional clustering algorithms, it can be adopted an arbitrary distance
metric. In this paper it is chosen “the closest neighbor” one.

• Hybrid Clustering: This new clustering algorithm is actually just the combina-
tion of two well-known clustering algorithm, which are respectively the K-means
clustering and the genetic one. Detailed description of both of them is individually
provided in previous Chapter 2. Hence, it is not presented here anymore. From
the combination’s point of view, it just has to be specified that the output of the
preliminary phase, thus the K-means algorithm in this case, is given as input to
the following process, namely the genetic algorithm here used. This latter’s result
represents the final partitioning of the whole hybrid clustering.

– [7] Working process: (a) Look at the power network nodes and merge the
leaf-nodes, namely those with just one connection, with their immediately con-
nected neighbors. This permits to shrink the dimension of the problem, which
hence becomes lighter to be solved, without changing its nature, since anyway
these nodes would have been ineluctably merged to their immediate upstream
neighbors by the clustering algorithm. (b) Generate an initial population of
both random and K-means clustering solutions. They can be for instance fifty
percent each. On the one hand, the random clustering solutions must only have
the prerequisite of having a Cluster Size Index (CSI ) score greater than 0.9, to
produce big enough zones, because too small ones are not acceptable for many
reasons. On the other hand, the K-means clustering solutions have been pro-
duced through a classical K-means algorithm fed with the system admittance
matrix, by which the EDs needed for the clustering can be computed, and
provided by the user with choice of the number of clusters and their centroids.
(c) Choose the quality measures of the multi-attribute objective function, and
their respective weighting factors too. These last coefficients are directly pro-
portional, with a range that goes from 0 to 1, to the relative importance that
the user wants to give to each of the aforementioned assessment criteria, with
respect to the specific application. For instance, in this paper it is suggested
to set cluster count index exponent equal to unity, since the number of clusters
is usually a very strict request by the user, and CSI ’s exponent greater than
0.8, since too small clusters are not acceptable for many reasons. (d) Run the
genetic algorithm, using the aforementioned initial population of step “b” as
input and considering the previous multi-attribute objective function as fitness
function. (e) According to the genetic algorithm’s process, a new population
is produced at each step, by starting from the initial one and iteratively us-
ing genetic operations like crossover or mutation. (f) Calculate the Pareto set
of solutions from all the clustering results produced by the genetic algorithm.
Choose the best one as power network final partitioning.
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A.4 Distance metrics summary table

Table A.3 distinguishes the papers considered inside this appendix according to the sim-
ilarity metric used inside their clustering algorithms. Afterwards, a quick description of
these distance measures is provided inside a bulleted list, which contains also the reference
to where the specific metric has been used.
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[6] Cao et al. (2018) X
[7] Cotilla-Sanchez et al. (2013) X
[10] Ferreira et al. (2011) X X
[11] Ferreira et al. (2010) X X
[16] Hong et al. (2002) X
[20] Kiran et al. (2016) X
[23] Klos et al. (2015) X
[24] Koivisto et al. (2012) X
[28] Sanchez-Garcia et al. (2014) X
[30] Shayesteh et al. (2014) X

Table A.3: Distance metrics summary table of references which deal with clustering
algorithms for purposes different from BAs definition.

• Multidimensional Euclidean Distance:

– Definition: Eij =
√∑Ndim

v=1 (xvi − xvj)2

– Applications:
∗ [6, 28, 30]: Multidimensional Euclidean distance between the coordinates

vectors of the database’s observations. Represented by the lines of the
reduced and maybe normalized Laplacian matrix.
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∗ [10, 11]: Multidimensional Euclidean distance between hourly LMPs pat-
terns along a year.

∗ [20]: Multidimensional Euclidean distance between the ZMPs patterns
along a year, described as linear combination of four PCs coming out from
the preliminary PCA.

∗ [24]: Multidimensional Euclidean distance between the hourly Finnish
load profiles along a year.

• Monodimensional Euclidean Distance:

– Definition: Eij =| xi − xj |
– Applications:

∗ [23]: Mono dimensional Euclidean distance between the nodes’ influences
on the loop flows of their targeted zone.

• Fuzzy Membership:

– Definition: For a detailed description please look at Chapter 2.

– Applications:

∗ [16]: Fuzzy membership between aggregated demands at different hours.
It is used inside the fuzzy-c-means which makes the clustering of transition
periods. Thus for instance, if the aggregated demand at hour “x” of the
day “y” is among the highest observed during the time window of the
input database. Then the system’s LMPs set of that hour is put inside the
cluster of peak-load periods. And so on with other aggregated demands at
different hours.

• Electrical Distance:

– Definition: There are mainly two methods to define this distance metric,
which are respectively a sensitivity method and an impedance one. The former
is based on the sensitivity study between voltage and reactive power. The
latter is based on examining the relationship between the voltage drop due to
injecting a unit of current at one bus and withdrawing it at the receiving bus.
This second version, where the larger the voltage drop the larger the electrical
distance, is the one actually used inside these papers. It can be evaluated by
starting from the system admittance matrix. That is why, in the previous table
references which adopt this distance metric use it as clustering input.

– Applications:

∗ [7]: The electrical distance, computed through the impedance method, is
here used as distance metric inside the preliminary K-means clustering of
the proposed hybrid method.

∗ [35]: The first aforementioned definition of electrical distance is here used
to define newly born reserve zones. The couples of nodes with lower EDs
are merged into the same cluster.
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• The Closest Neighbor:

– Definition: the distance between one cluster and another one is considered
equal to the shortest distance from any member of the former to any member
of the latter.

– Applications:

∗ [10, 11]: It is used as distance metric during the hierarchical agglomerative
clustering algorithm used inside the second step, of the two-step algorithm
here used. In this way, inside each step the two clusters with the two
closest members placed at the smallest distance are merged.

A.5 Clustering algorithms’ strengths and weaknesses

The following bulleted list presents for each of the clustering algorithms, which have been
used inside the papers considered in this chapter, its strengths and weaknesses. Each of
these last is also endowed with a reference to where the specific comment can be observed.
In case the clustering algorithm has already been used by references described into the
previous Chapter 2, the following pages contain only the additional pros and cons, which
can specifically be recognized within the articles here outlined.

• K-means:

– Pros:

∗ [10]: Good clustering adequacy indices, namely CDI and MIA, on a large
input dataset made up of LMPs, which could actually be the situation of
BAs redefinition.

∗ [20]: The insertion of a preliminary PCA, before the K-means clustering
algorithm, effectively speeds up the overall partitioning process. Although
it could not be necessary, due to its intrinsic speed even with large datasets.

• Spectral Clustering:

– Pros:

∗ [6]: It is able to handle very large dataset. Optimal thing for power
networks analysis, actually associated with big databases.

– Cons:

∗ [6]: Obtaining the power network partitioning by using LMPs snapshots
as input for the clustering algorithm risks to compromise the temporal
stability of the final zonal configuration. This is an important feature for
zonal configurations to be optimal, according to CACM ’s guidelines in the
field.

∗ [6]: It requires the number of clusters as user-defined input. This is a
drawback, since it is not possible to know it for the desired optimal zonal
configuration in advance.
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∗ [6]: No check on the physical connection between nodes inside the same
cluster is naturally enclosed. So that, even physically unfeasible zonal
configuration can be created. Therefore, an additional control to prevent
this situation has to be enclosed. But this means more complexity, namely
a drawback for the clustering algorithm, and the need to have a deeper
knowledge of power network structure, in order to make nodal connections
evaluations.

∗ [6]: When a K-means clustering algorithm is used in the second part of the
spectral clustering, an important drawback of that centroid-based cluster-
ing algorithm is here inherited. This drawback is the strong dependence
of the resulting clusters by the clusters centroids which are randomly or
manually selected at the beginning of the clustering process. It is a con be-
cause: if these initial assignments are not well chosen, the algorithm only
converges to a local optimum, and not to the global one, that would obvi-
ously be desired by the user. In other words, the outcome quality depends
on a user’s input. That is not acceptable in an optimization algorithm like
this one for the find of an optimal BAs configuration. For these reasons,
some measures would be needed to contain this drawback. But this means
more complexity, namely a con for the clustering algorithm.

• Two-step:

– Pros:

∗ [10]: It is able to handle very large dataset. This is a positive aspect for
power networks analysis, actually associated with big databases.

– Cons:

∗ [10]: It requires the number of clusters as user-defined input, and it is a
drawback, since it is not possible to know it for the desired optimal zonal
configuration in advance.

∗ [10]: No check on the physical connection between nodes inside the same
cluster is naturally enclosed. So that, even physically unfeasible zonal
configuration can be created. Therefore, an additional control to prevent
this situation has to be enclosed. But this means more complexity, namely
a drawback for the clustering algorithm, and the need to have a deeper
knowledge of power network structure, in order to make nodal connections
evaluations.

∗ [10]: According to two clustering adequacy indices used inside this paper,
namely MIA and CDI, this clustering approach does not reveal to be as
efficient as a more traditional K-means algorithm. K-means is also used
inside this reference, fed with the same group of data and eventually elected
as the clustering approach adopted on the real case study, because of its
better above mentioned clustering assessment criteria.
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• Hybrid Clustering:

– Pros:

∗ [7]: Using the electrical distance as distance metric, it produces zonal
configurations where the loop flows are minimized. This is more important
in reserve zones definition rather than in BAs one. But anyway it is a pro
of the resultant zonal configurations.

∗ [7]: It is able to handle very large dataset. It includes two clustering
algorithms, respectively a K-means clustering and a genetic algorithm,
which are both able to do it. This is a positive aspect for power networks
analysis, actually associated with big databases.

∗ [7]: No check on the physical connection between nodes inside the same
cluster is naturally enclosed. So that, even physically unfeasible zonal
configuration can be created. Therefore, an additional control to prevent
this situation has to be enclosed. This would usually be a con of the
methodology, since it would mean more complexity, namely a drawback
for the clustering algorithm, and the need to have a deeper knowledge of
power network structure, in order to make nodal connections evaluations.
Nevertheless, it is put on this side as point in favor of the algorithm. In fact,
here the aforementioned additional check on nodes’ physical connection,
which moreover has to be included in many of the clustering algorithms
used to redefine power network’s BAs, is easily includable. In fact, inside
the previously mentioned multi-attribute objective function, it is enough
to include the Cluster Connectedness (CC ) index with weighting factor
equal 1. In this way, if one of the system nodes was not physically linked
to any of the other nodes included in its own cluster, this parameter would
become zero. Then, through multiplication with all the other assessment
indices, the fitness function associated to this zonal configuration would
become zero, thus rejecting this actually unfeasible system partitioning.

– Cons:

∗ [7]: The clustering method here described is not a finalized clustering al-
gorithm, but a general partitioning approach which can be efficiently tai-
lored on the specific application. This could seem to be a point in favour.
Nevertheless, using the electrical distance as distance metric overall leads
the clustering algorithm to define a final zonal configuration where buses
within a zone are strongly connected, and buses between zones are weakly
connected; from the electrical point of view. And this kind of partitioning
reveals to be efficient when identifying closely-tied buses is advantageous.
Like, for instance, when want to be defined new optimal reserve zones and
hence ensuring deliverability between them is an important criterion. In-
deed, this algorithm is perfectly able to minimize power network’s loop
flows, which would row against the aforementioned quote. But otherwise,
the aforementioned zonal configurations are not suitable when the parti-
tioning’s aim depends on system’s specific operating conditions and not
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on network topology. Therefore, since defining an optimal BAs configura-
tion is primarily focused on improving system’s congestion management.
This latter refers to a system’s specific operating condition, namely the
congestion of one or more of its transmission lines. This clustering algo-
rithm is probably not well suitable for the BAs redefinition here analyzed,
due to its poor efficiency in those applications where system dynamics are
important, like the congestion management is.

∗ [7]: It requires the number of clusters as user-defined input, like the K-
means and genetic algorithm included by it. This is a drawback, since it
is not possible to know it for the desired optimal zonal configuration in
advance.
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