POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettrica

Tesi di Laurea Magistrale

Criticità legate alla frenatura rigenerativa nelle reti tranviarie

Relatori

Prof. Enrico Pons Prof. Pietro Colella Ing. Roberto Rizzoli

> Candidato Luca Abrate

Aprile 2019

1	INTRODUZIONE E OBIETTIVI4			
2	RET	FE TRANVIARIA DI TORINO	6	
	2.1	INTRODUZIONE	6	
	2.2	SOTTOSTAZIONI ELETTRICHE (SSE)	8	
	2.3	BINARI E LINEE DI CONTATTO	12	
	2.4	SCARICATORI DI SOVRATENSIONI	14	
3	MO	DTRICI	16	
	3.1	Serie 2800		
	3.2	Serie 5000		
	3.2	2.1 Circuiti di trazione:		
	3.3	Serie 6000	24	
4	IL PI	PROBLEMA DELLE SOVRATENSIONI SULLE MOTRICI DELLA SERIE 5000 CHE HANNO	PORTATO	
AI	LL'ESPLO	OSIONE DEGLI SCARICATORI DI TENSIONE	27	
	4.1	MISURA DELLE SOVRATENSIONI DURANTE IL FUNZIONAMENTO ORDINARIO		
	4.2	ANALISI STATISTICA DELLE SOVRATENSIONI	30	
	4.3	INFLUENZA DELLE MOTRICI DELLA SERIE 5000 SULLE SOVRATENSIONI	35	
5	IL SO	OFTWARE DI SIMULAZIONE ATP		
	5.1	ATP		
	5.1	1.1 Equazioni generali su cui si basa ATP-EMTP	42	
	5.2	ATPDraw	45	
	5.3	ΡιοτΧΥ	49	
	5.4	GENERALITÀ ED INTERFACCIA	50	
	5.5	TRASFORMATORE TRIFASE A TRE AVVOLGIMENTI	53	
	5.6	GENERALITÀ SUI MOTORI A CORRENTE CONTINUA	54	
	5.6	GENERATORE PILOTATO	57	
6	REA	ALIZZAZIONE DEL MODELLO IN ATP	59	
	6.1	Cabina di trasformazione	59	
	6.1	1.1 Trasformatore trifase a tre avvolgimenti	61	
	6.1	1.2 Raddrizzatore a doppio ponte di Graetz	63	
	6.1	1.3 Sistema di filtraggio	65	
	6.2	LINEA DI CONTATTO	67	
	6.3	Modello semplificato della motrice serie 5000	68	
	6.4	Modello equivalente della motrice serie 5000	71	
6.4.1		Filtro d'ingresso del motore		
	6.4	1.2 Chopper e sistema di controllo		
	6.4	1.3 Modello equivalente elettrico	77	

6.4	.4 Modello equivalente meccanico				
7 SIMULAZIONI					
7.1 S	MULAZIONI PER IDENTIFICARE LE SOVRATENSIONI IMPULSIVE				
7.2 S	MULAZIONI PER IDENTIFICARE LE SOVRATENSIONI LUNGHE				
8 CONCL	USIONI				
8.1 S	/ILUPPI FUTURI				
ELENCO	DELLE TABELLE				
ELENCO DELLE FIGURE97					
BIBLIOG	3AFIA				
ALLEGA	O A100				
ALLEGATO B					
ALLEGAT	O C				
ALLEGAT	O D				
ALLEGAT	O E				

Capitolo 1

Introduzione e obiettivi

Questa tesi analizza le criticità delle sovratensioni legate alla frenatura rigenerativa delle motrici tramviarie ed è stata sviluppata con la partecipazione e la collaborazione di GTT (Gruppo Torinese Trasporti) ed InfraTo. Queste due aziende si occupano rispettivamente della gestione del sistema di trasporto pubblico di Torino e della gestione delle infrastrutture.

Nella prima parte dell'elaborato vado ad illustrare la composizione della rete tranviaria torinese: dalla cabina di trasformazione e conversione nella quale arriva l'alimentazione dalla rete in Media Tensione fino alla descrizione delle tre motrici presenti nel parco cittadino, i modelli serie 2800, 5000 e 6000. Il mio studio si concentrerà in modo particolare sulla motrice serie 5000 in quanto è quella che crea maggior problemi durante la fase di frenatura. Infatti la motrice serie 2800 non esegue la frenatura di tipo rigenerativo, ma soltanto quella reostatica ed i problemi legati allo sviluppo delle sovratensioni sono nati quando l'utilizzo del modello serie 5000 è stato esteso a gran parte della città. Inoltre la motrice serie 6000 non viene presa in considerazione in questo elaborato, in quanto è dotata di un inverter che tramite la sua logica interna è in grado di gestire la frenata reostatica e rigenerativa, in modo da evitare che si generino sovratensioni. Per questo motivo riporto con maggior cura gli azionamenti e gli schemi elettrici di potenza del modello 5000.

In seguito sono andato a descrivere quali sono le principali sovratensioni registrate in una sottostazione in un arco di tempo di 15 giorni, andando a specificare quali sono le differenze tra i due tipi di sovratensioni riscontrate, quali sono le più dannose per i circuiti elettrici tramviari e durante quale orario sono più frequenti.

Per tutte le simulazioni e gli schemi elettrici realizzati in questa tesi ho adoperato il software gratuito ATP-EMTP e l'interfaccia grafica ATPDraw. Per questo motivo ho descritto in modo molto dettagliato il programma utilizzato, specificandone la logica interna, le sue funzionalità e potenzialità, tutti i settaggi e le impostazioni da me impiegate, in modo tale che questo elaborato possa essere d'aiuto per un futuro sviluppo dei modelli.

L'obiettivo principale di questa tesi è lo studio e l'analisi delle cause che portano alla nascita delle sovratensioni durante la frenata rigenerativa della motrice serie 5000. E' importate capire da cosa siano generate tali sovratensioni perché negli ultimi anni si è verificato lo scoppio di diversi scaricatori di sovratensioni, dispositivi adottati per la protezione dei circuiti da questi anomali livelli di tensione. Queste esplosioni, oltre ad essere un pericolo per eventuali operatori tecnici che possono trovarsi al momento dello scoppio nella sottostazione elettrica (SSE), causano anche disservizi sulle linee tranviarie e quindi devono verificarsi nel minor numero possibile.

Questo studio è stato reso possibile grazie alla realizzazione del modello dei componenti della rete tranviaria. Il software ATP-EMTP ci ha permesso di studiare nel dettaglio i transitori di tensione e corrente durante le fasi critiche di accelerazione e frenata. Per questo motivo ho realizzato ogni componente nel modo più fedele possibile alla realtà in modo da non trascurare nessun dettaglio. Tutti i componenti modellizzati sono descritti nel Capitolo 6.

Infine nella parte conclusiva di questo documento ho tratto alcune ipotesi su quali possano essere le cause che generano le sovratensioni analizzate nella parte iniziale del mio studio. Successivamente ho eseguito diverse simulazioni per motivare e giustificare tali ipotesi. Ho riportato tramite alcuni grafici i confronti tra i risultati in uscita dai modelli di simulazione eseguiti con ATP-EMTP con le sovratensioni registrate nella sottostazione Duca d'Aosta, in modo tale da poter convalidare le mie ipotesi.

Capitolo 2

Rete tranviaria di Torino

2.1 Introduzione

In questo capitolo vado a descrivere la rete tranviaria torinese . Espongo tutto il sistema di alimentazione, dall'arrivo in cabina della media tensione alla trasformazione e conversione in bassa tensione per arrivare a parlare della rete tranviaria.

La città di Torino possiede una delle più estese e capillari rete tranviarie d'Italia, come si vede in Figura 1. La rete di Torino possiede: 188 Km di binari singoli (167 Km attivi di linea e 21 Km in deposito), 500 Km di cavi sotterranei, 49 sottozone elettriche alimentate da circa 20 cabine di conversione, 550 fermate e 175 semafori.

Le linee sono percorse da tre modelli differenti di vetture. Il modello più vecchio è la serie 2800 che è caratterizzata dall'assenza di elettronica a bordo. Il secondo modello è la motrice 5000 che fece la sua comparsa in occasione del mondiali di calcio del 1990, è equipaggiata da due grandi azionamenti composti da un chopper e un motore DC. L'ultimo, nonché il più moderno modello, è la motrice 6000 che è movimentata da motori trifase alimentati da inverter.

I tram ricevono l'alimentazione in DC grazie al pantografo, un organo mobile presente sulla parte alta della motrice, il quale mette in contatto la motrice con le linee aeree dedicate presenti in città. Il pantografo è rivestito da uno strato di grafite, materiale conduttore che permette in questo modo l'alimentazione della motrice. Invece le rotaie costituiscono il circuito di ritorno.

Figura 1: Sviluppo delle rete tranviaria torinese

2.2 Sottostazioni elettriche (SSE)

La rete tranviaria cittadina è suddivisa in 49 zone, che sono alimentate ad una tensione nominale di 600 V DC da diverse sottostazioni elettriche. In tutta la città sono presenti una ventina di cabine di trasformazione e conversione ed ognuna alimenta un certo numero di zone. In queste strutture la tensione in entrata è pari a 22 kV mentre quella in uscita è intorno ai 600 V pronta per essere utilizzata dalle motrici tramviarie.

In ogni SSE troviamo un trasformatore trifase a tre avvolgimenti con rapporto 22 kV /0.47 kV. Inoltre è presente anche un altro trasformatore che funge da riserva fredda. A valle del doppio trasformatore (i cui dati di targa tipici sono disponibili nell' Allegato A) troviamo un raddrizzatore con doppio ponte di Graetz con bobina interfasica. I dati di targa del raddrizzatore Ansaldo sono consultabili nella Tabella 1. In uscita dal raddrizzatore sono presenti due sbarre: la sbarra positiva e quella negativa. La prima, chiamata anche sbarra Omnibus va ad alimentare i pannelli positivi, uno per zona da alimentare. Invece la sbarra negativa viene collegata ai quadri negativi. Riporto a titolo d'esempio lo schema della SSE Trapani in Figura 2.

Modello	Raddrizzatore Ansaldo tipo RD 7899 NP
P [kW]	200
Vcc [V]	600
Classe	IV (secondo norme CEI 22-1, edizioni 1968) 50% per 2 ore 100% per 1' non successivo alle 2 ore
Tensione lato CA [V]	470 (tensione efficace concatenata)
Tensione nominale lato CC [V]	600
Schema di collegamento	Doppio ponte di Graetz con bobina interfasica
Reazione	Dodecafasica
Connessione	I ponti sono collegati in parallelo attraverso la reattanza di assorbimento
Diodi	Diodi Ansaldo tipo AR 749 S20
Coefficiente di sicurezza di tensione (K)	3

Tabella 1 Dati di targa del raddrizzatore

In ogni pannello positivo troviamo i principali strumenti di diagnostica e protezione della rete:

- lo scaricatore di sovratensioni
- l'interruttore extrarapido;
- i sezionatori di linea e di terra;
- i trasduttori per gli strumenti di misura;
- il complesso test di linea e il dispositivo per il controllo dell'isolamento del cavo.

Un esempio di pannello positivo è riportato in Figura 3.

La corrente di linea viene misurata grazie allo shunt SH1 che è possibile osservare in Figura 3. Grazie a questa misura il relè DIA-IGTv, è in grado di riconoscere le correnti di guasto da quelle permesse durante il normale funzionamento. Questo avviene per mezzo della logica interna che il relè DIA-IGTv possiede.

Gli interruttori extrarapidi di linea installati a Torino sono della serie IR600 (i cui parametri di targa sono riportati in Figura 4), originariamente prodotti da Ansaldo, ma adesso prodotti da EMC Traction. Sono interruttori di tipo unipolare per corrente continua, in aria, a soffio magnetico e sgancio libero. L'automatismo di richiusura è indipendente e a sgancio libero con servomotore. L'aggancio è magnetico con bobina di ritenuta. Tali interruttori aprono il circuito entro i 150 ms quando la corrente misurata supera il valore di soglia, intorno ai 4000 A. Esiste anche uno sganciatore primario di massima corrente incorporato nell'interruttore ed una bobina di apertura rapida (circa 5ms) che può essere comandata da un segnale esterno (per esempio DIA-IGTV).

Figura 2 Schema generale della sottostazione Trapani

Figura 3 Pannello positivo della SSE Trapani

Modello	IR 6003	
Corrente nominale [A]	3150	
Tensione nominale [V]	750 (CC)	
Potere di interruzione [kA]	120	
Campo di taratura [A]	$4000 \div 7500$	

Figura 4 Dati di targa dell'interruttore IR600

Come precedentemente descritto oltre ai pannelli positivi, ci sono anche i pannelli negativi. Questi ultimi sono in numero minore rispetto ai positivi e permettono il collegamento della sbarra negativa del raddrizzatore ai cavi negativi. Nei pannelli negativi troviamo solamente il sezionatore di linea e un amperometro, in quanto il loro unico scopo è la richiusura del circuito tramite i binari posizionati a terra. Sono inoltre presenti

alcuni contattori comandati da opportuni relè, il cui compito è controllare e garantire che la differenza di potenziale tra i binari e la terra sia inferiore ad un determinato limite imposto. Qualora questo limite venisse superato i binari verrebbero connessi a terra tramite questi contattori. Tutto questo per garantire l'assoluta incolumità dei pedoni che vengono a contatto con i binari del tram. In Figura 5 vado a mostrare un esempio di pannello negativo.

Figura 5 Pannello negativo della SSE Trapani

2.3 Binari e linee di contatto

Il binario è una struttura costituita da due rotaie fisse e parallele tra loro, collegate tra loro da un buon numero di elementi trasversali chiamate appunto traverse. Queste non sono sempre visibili perché vengono ricoperte dall'asfalto in quanto in buona parte della città i tram non godono di una corsia apposita, ma devono condividere lo stesso tratto di carreggiata con bus del servizio pubblico e taxi. Le traverse, oltre a garantire che la distanza tra le due rotaie rimanga immutata nel tempo, servono anche a ridistribuire il carico in maniera uniforme al passaggio del tram, al fine di evitare cedimenti di tipo strutturale. Lo scartamento, cioè la distanza tra i due bordi interni della rotaia, varia da un minimo di 1445 mm nei rettilinei fino ad arrivare ad un massimo di 1450 mm nelle curve e negli incroci. In Figura 6 riporto un esempio dove sono ben visibili traverse e binari.

Figura 6 Binari con traverse ben visibili

Per l'alimentazione delle linee di contatto e per il ritorno si usano conduttori in rame il cui isolamento più essere fatto sostanzialmente in due modi:

- isolamento in carta e olio (metodo usato in passato);
- isolamento estruso in gomma.

Le linee di contatto (come mostrato in Figura 7) sono poste ad un'altezza compresa tra i 4.8 m e i 5.6 m. Grazie al pantografo la motrice rimane collegata alla rete anche quando si hanno piccoli scalini perché c'è una molla che spinge in alto il pantografo e lo fa aderire alla linea di contatto. La sezione minima delle linea di contatto parte da 95 mm² fino ad arrivare a sezioni maggiori multiple di 95 mm². Le linee di contatto sono sospese grazie

ad una fitta rete di tiranti in parafil, ottimo materiale isolante con buona resistenza alla trazione, che ha sostituito la ceramica, utilizzata in passato.

Figura 7 Linee aeree con tiranti

2.4 Scaricatori di sovratensioni

Nella cabina di trasformazione e conversione vengono installati gli scaricatori di sovratensioni. Questi dispositivi permettono di salvaguardare i componenti del sistema elettrico dalle sovratensioni causate da fulminazioni durante eventi temporaleschi oppure da guasti derivanti da un malfunzionamento. Gli scaricatori sono caratterizzati da due aspetti positivi:

- sono relativamente economici
- possono essere montati su un impianto già esistente senza modificare il funzionamento di quest'ultimo.

Questi dispositivi di protezione hanno un' impedenza che tende ad infinito nel normale funzionamento, per non andare a modificare nessun aspetto del circuito. In presenza di una o una serie di sovratensioni, l'impedenza dello scaricatore diminuisce in modo da assorbire la corrente elevata generata dalla sovratensione. Questo drenaggio della corrente di guasto permette di mantenere una tensione contenuta ai capi degli altri componenti del circuito elettrico. Non è facile scegliere lo scaricatore corretto da installare in uno specifico punto del circuito. Devono essere fatte considerazioni di natura economica e di natura tecnica, cioè viene fatta un'analisi per individuare quali sono le sovratensioni più frequenti che possono andare a danneggiare l'impianto elettrico. Se scegliamo un dispositivo con una tensione nominale troppo bassa questo esploderà al primo guasto o dopo breve tempo con la possibilità di danneggiare la cabina e ferire eventuali tecnici presenti in loco al momento dello scoppio. Se invece andiamo ad installare scaricatori con una tensione nominale molto alta (per esempio 2000 V) non avremo problemi dovuti alle esplosioni, ma in questo modo il circuito non sarà protetto per sovratensioni comprese tra i 1000 V e i 2000 V, con conseguente deterioramento e danneggiamento dei componenti.

Gli scaricatori installati per proteggere la rete tranviaria torinese dalle sovratensioni sono del tipo SBKB. Questi sono progettati appositamente per impianti a corrente continua, in modo particolare per la trazione elettrica. Nella Tabella 2 riporto le principali caratteristiche, mentre nell'Allegato E è possibile visionare tutti i dati tecnici forniti dall'azienda di produzione.

Corrente nominale di scarica	10 kA
Tensioni nominali	Da 1.2 kV a 4.8 kV
Impulso di forte corrente	100 kA 4/10 μs
Impulso di corrente di lunga durata	1000 A 2000 μs
Isolatore	In gomma/ silicone HTV
Temperatura ambiente	Da -40°C a +55°C

Tabella 2 Dati scaricatori di tensione

Capitolo 3

Motrici

In questo capitolo vado a descrivere le principali motrici che possiamo trovare nei vari percorsi cittadini. Le motrice presenti a Torino si chiamano: 2800, 5000 e 6000. Dal momento che questo elaborato tratta le criticità dovute alle sovratensioni generate nella fase di frenatura delle motrici della serie 5000, questo tipo di veicolo viene descritto con un maggior approfondimento.

3.1 Serie 2800

E' la serie più vecchia presente in città. Sono stati acquistati circa 80 veicoli di questa serie (solo 70 sono rimasti in funzione) e anche se datati rappresentano la colonna portante del sistema tramviario. Furono acquistate in due lotti separati: il primo lotto tra gli anni 1958-1960 e comprende i veicoli 2800-2857; mentre il secondo agli inizi degli anni Ottanta contempla 44 veicoli dal 2858 al 2902. Anche se tra i due lotti ci sono delle piccole differenze circuitali, queste sono minime e possiamo considerare la 2800 come una serie unica. Lo schema in Allegato B è rappresentativo di entrambe le versioni.

Questa serie si contraddistingue facilmente dalle successive, infatti mentre le seguenti sono di color grigio, questa è di uno spiccato arancione acceso, come documentato nella Figura 8.

Queste motrici sono dotate di sei motori in corrente continua da 24 kW ciascuno con avviamento reostatico. A bordo non è presente nessun tipo di elettronica. A valle del pantografo si trova l'interruttore rapido IR che ha il compito di proteggere i circuiti elettrici del tram in caso di cortocircuito o sovraccarico. A valle abbiamo una rete di resistenze che consentono al tram di partire senza un assorbimento eccessivo di corrente, quindi dannoso e stressante per i componenti. Solo dopo un prestabilito transitorio iniziale queste resistenze si cortocircuiteranno per evitare inutili sprechi di energia. Su questa motrice sono montati tre diversi sistemi di frenatura:

- freno pneumatico;
- freno elettrico;
- pattini elettromagnetici.

3- Motrici

I primi due sistemi di frenatura intervengono durante il normale funzionamento, mentre i pattini elettromagnetici sono attivati solo in caso di frenata di emergenza. Purtroppo in questa tipologia di tram non è prevista la frenata con recupero di energia di rete sia nel normale funzionamento che in quello di emergenza.

Figura 8 Serie 2800

3.2 Serie 5000

Questo modello fu acquistato dalla GTT in occasione dei mondiali di calcio, che si tennero in Italia nell'estate del 1990. Furono acquistati 54 esemplari di questo modello. Questi tram portarono una novità particolarmente apprezzata da tutte quelle persone che per muoversi in città avevano bisogno di una carrozzina: infatti a differenza della 2800, la motrice 5000 (in Figura 9) è dotata di un pianale ribassato (ovvero non ci sono più i faticosi gradini per salirci sopra) e consente un facile accesso a tutte le persone, inoltre agevola anche l'accesso e la discesa dei passeggeri, riducendo così i tempi di fermata. La prima linea sui cui comparve questa nuova motrice fu la 9, la linea che collega la città all'ormai demolito Stadio delle Alpi. Successivamente svolsero il loro compito anche su altre linee, la 10 e la 4. Dall'estate del 2003 furono impiegate anche su altre due linee quali la 15 e la 18, dove finora vi era solamente la 2800. Infine dal 1° gennaio 2016 le 5000 sono state messe in servizio su tutta la rete della città, esclusi i brevi tratti che non dispongono di un anello di inversione.

Attualmente sono disponibili solo 53 vetture in quanto la motrice 5021 è stata demolita, dopo essere stata protagonista di un incidente con un'altra vettura: la 5000. Proprio la 5021 ebbe la peggio nello scontro, la semicassa anteriore fu irrecuperabile e demolita, mentre la semicassa posteriore fu utilizzata per riparare la vettura 5000.

Il colore originario di questi tram era l'ardesia per il sottocassa ed i montanti dei finestrini, bianco per le fiancate ed il grigio per l'imperiale. In seguito sono state riverniciate con una nuova livrea ardesia-giallo-blu-grigio.

3- Motrici

Figura 9 Serie 5000

Questo modello è costituito da due casse, che poggiano su tre carrelli, con pavimento ribassato. Nello schema elettrico principale (Allegato C) la corrente prelevata dal pantografo si divide in due circuiti elettrici uguali e indipendenti tra loro. Ciascun circuito alimenta un gruppo motore di trazione composto da un motore in serie a quattro poli da 150 kW a corrente continua Ogni motore è regolato tramite un chopper di tipo "FULL CHOPPER". Il chopper, oltre a regolare la corrente in partenza e in frenata, consente anche il recupero di energia in rete nelle frenatura con un benevolo guadagno dal punto di vista del rendimento. Oltre al già citato freno elettrodinamico la motrice 5000 possiede altri due tipi di impianti frenanti:

- pneumatica;
- a pattini elettromagnetici.

Sono possibili quattro tipologie di frenature differenti:

- la frenatura di servizio è l'azione combinata del freno pneumatico più il freno elettrodinamico. La frenatura elettrodinamica va in funzione dalla velocità massima fino ai 10 km/h dopodiché è disattivata e quindi la frenatura sotto tale soglia è puramente pneumatica. E' comandata dal rubinetto freno nel settore "Frenatura" e ha sforzo proporzionale all'angolo di rotazione del manubrio.
- la frenatura di emergenza è attuata dall'azione triplice di freno elettrodinamico, pneumatico e pattini elettromagnetici. Questa tipologia di frenata è messa in azione quando si ruota il rubinetto freno in posizione "Frenatura di emergenza".

- la frenatura di soccorso è la massima frenata pneumatica possibile e non è graduabile. Viene attivata premendo il pulsante rosso, posto sul banco di manovra a fianco del rubinetto del freno.
- la frenatura di allarme è comandata dai passeggeri in caso di grave necessità tramite un'apposita manopola. Consiste nella massima frenatura pneumatica ed elettrodinamica possibile.

Inoltre sul veicolo è presente il freno di stazionamento a molla che interviene in caso di malfunzionamento degli impianti elettrici e pneumatici.

I circuiti elettrici presenti a bordo si possono distinguere in:

- carichi Bassa Tensione con alimentazione non privilegiata.
- carichi Bassa Tensione con alimentazione privilegiata (24 V a corrente continua);
- ausiliari Alta Tensione (600 V a corrente continua);
- circuiti di trazione (600 V a corrente continua);

Gli ausiliari Alta Tensione sono derivati a valle del pantografo, prima degli interruttori rapidi e comprendono:

- motocompressore aria impianto pneumatico;
- convertitore statico carica batterie 600/24 V corrente continua;
- resistenza per il comando scambi;
- riscaldamento cabina.

I carichi con alimentazione non privilegiata sono tutti quei componenti che in caso di malfunzionamento o rottura del convertitore statico carica batteria vengono automaticamente staccati. In particolare sono scaldacristalli frontale e laterale, elettroventilatori aerotermo cabina di guida e illuminazione fluorescente di servizio.

Al contrario i carichi con alimentazione privilegiata in caso di guasto del convertitore statico sono direttamente alimentati dalle batterie presenti sul veicolo.

3.2.1 Circuiti di trazione:

I circuiti di trazione sono composti da due circuiti identici (azionamento cassa A e azionamento cassa B) che funzionano in modo indipendente fra di loro. Per evitare danneggiamenti dovuti ad cortocircuiti vengono protetti da un interruttore rapido.

Ciascun circuito di trazione è composto da diversi componenti, classificabili in base al loro impiego:

 Linea di alimentazione e organi di protezione: Questo blocco è composto dagli interruttori rapidi di protezione 1Q3 e 1Q5, i contattori di filtro 1K1 e 1K2 (entrambi visibili in Figura 10), le resistenze di precarica dei condensatori di filtro 1R2 e 1R3, i contattori di ramo motorico 1K3 3- Motrici

Figura 10 Schema di potenza motrice 5000

e 1K6 e quelli di marcia 1K5 e 1K8 ed infine lo scaricatore 1F2. Sono visibili nello schema elettrico di potenza della motrice 5000 in Figura 10.

Gli interruttori bidirezionali 1Q3 e 1Q5 sono dotati della protezione di massima corrente, questo significa che quando la corrente supera il valore della soglia (800 A) avviene l'apertura ultrarapida in modo da evitare possibili guasti all'impianto elettrico della motrice del tram Questi interruttori hanno un duplice compito: sezionare l'azionamento di potenza in caso di guasto e intervenire prontamente in caso di irregolarità a monte del pantografo.

Le resistenze di precarica dei condensatori di filtro 1R2 e 1R3 servono per caricare i condensatori di filtro con una appropriata costante di tempo.

I contattori di filtro 1K1 e 1K2 servono per cortocircuitare la resistenza di precarica all'avvio del tram, quando la tensione ai capi del condensatore di filtro è superiore a 400 V.

I contattori di marca 1K5 e 1K8 vengono chiusi in marcia mentre sono aperti quando il tram è in coasting, in frenatura e in sosta. I contattori di ramo motorico 1K3 e 1K6 sono perennemente chiusi, si aprono soltanto quando vi sono sovracorrenti o sovratensioni.

Lo scaricatore 1F2, posizionato a valle del pantografo, tutela i circuiti AT dalle sovratensioni causate da fenomeni atmosferici, limitando la cresta del fronte d'onda e diminuendone la rapidità. Lo scaricatore utilizzato è formato da più resistenze non lineari ad ossidi metallici collegate in serie. Queste resistenze possiedono una caratteristica di tensione-corrente fortemente non lineare. Alla tensione di servizio continuativo Uc passa una debole corrente di conduzione capacitiva dell'ordine del milliampere. Se la tensione aumenta, le resistenze ad ossidi metallici passano allo stato di conduzione praticamente senza ritardo. In questo modo l'ulteriore aumento della tensione è limitato ai valori di tensione residua specificati. Quando la sovratensione è passata, lo scaricatore ritorna immediatamente nello stato di non conduzione o di bassa conduzione. Lo scaricatore ad ossidi metallici trasforma l'energia della sovratensione in calore ceduto all'ambiente. La pila di resistenze ad ossidi metallici e delle armature di collegamento viene fissata da robusti cappi di resina epossidica rinforzata con fibra di vetro. L'involucro in gomma siliconica viene vulcanizzato direttamente sullo scaricatore proteggendolo dalle influenze ambientali ed atmosferiche. Questa tipologia si è dimostrata estremamente efficiente da anni in tutte le condizioni ambientali

Filtro di linea e induttanza di spianamento

Il compito di attenuazione delle armoniche trasmesse in rete a monte del chopper è svolto dal filtro di linea 1L2 e C1 (riferito allo schema elettrico della cassa A). Questo filtro, inoltre, consente l'assorbimento degli impulsi di corrente (nonostante sia presente l'induttanza di linea) e riduce le sovratensioni in ingresso al sistema di potenza. In parallelo ai condensatori di filtro è collocata la

3- Motrici

resistenza R3 (sempre con riferimento all'azionamento della cassa A) che consente loro di scaricarsi rapidamente non appena il circuito di potenza è isolato dalla linea di alimentazione. L'induttanza di spianamento 1L3,collegata in serie al motore di trazione, (con riferimento all'azionamento della cassa A) ha la funzione di limitare il ripple di corrente motorica entro un certo margine.

Chopper

Come accennato in precedenza, il convertitore di potenza è di tipo "full chopper" ed è l'elemento fondamentale dell'azionamento poiché controlla e regola la corrente in avviamento e frenatura del motore di trazione in funzione degli ordini impartiti dal banco di manovra.

Tramite i tiristori è possibile passare dalla configurazione "marcia avanti" a quella di "marcia indietro", dalla "trazione" alla "frenatura" ed infine eseguire lo shuntaggio del campo motore. Inoltre i tiristori, insieme ai componenti del chopper e del sistema di controllo delle resistenze di frenatura e tampone, compongono il blocco principale della parte di elettronica.

I semiconduttori di potenza sono immersi in Freon liquido all'interno di un contenitore a tenuta stagna, il quale viene raffreddato tramite ventilazione naturale. In questo modo tale sistema di raffreddamento non richiede alcuna manutenzione.

Motore di trazione

Il motore di trazione è un motore serie a quattro poli, non compensato, autoventilato. La sua carcassa e i poli ausiliari sono particolarmente indicati per un servizio con correnti pulsanti.

Resistenza tampone, di frenatura e di shuntaggio permanente del campo motore Le resistenze tampone e di frenatura vengono inserite secondo questa logica: nella frenata con recupero entra in gioco solo la resistenza tampone 1R5 che serve per compensare la differenza di tensione tra motore e linea. Invece nella frenatura reostatica, quando la tensione di linea è vicino al valore di soglia, è inserita la resistenza di frenatura 1R7 in serie alla resistenza tampone. Per mezzo del GTO V9 la 1R7 viene shuntata in modo progressivo ed arrivati al massimo grado di parzializzazione si esclude la resistenza tampone 1R5 grazie al contattore 1K4. Dopodiché il processo è ripetuto sulla resistenza di frenatura 1R7.

I nomi delle resistenze e dei componenti utilizzati sono riferiti allo schema elettrico della cassa A.

In Figura 11 vado a riportare lo schema di ponza dell'azionamento della motrice e possiamo osservare:

- CF- Condensatore filtro rete;
- CCF- Contattore filtro rete;
- CH- Chopper;
- CM- Contattore di marcia, è chiuso quando la motrice è in trazione;
- CRM- Contattore ramo motorico;
- CT- Contattore esclusione resistenza tampone, essa non è inserita né durante le accelerazioni né in certe fasi della frenatura;
- D1- Diodo di frenatura marcia avanti;
- D2- Diodo di frenatura marcia indietro;
- D3- Diodo di ricircolo campi motore;
- DR-Diodo di ricircolo;
- FUS- Fusibile precarica filtro linea;
- IP-Interruttore di linea (IR o equivalente);
- LF-Induttanza di filtro;
- LS-Induttanza di spianamento;
- PAN-Pantografo;
- RF-Reostato di frenatura;
- RT-Resistenza tampone;
- T1-Tiristore configurazione marcia avanti;
- T2-Titistore configurazione marcia indietro;
- T3-Tiristore configurazione marcia indietro;
- T4-Tiristore configurazione marcia avanti;
- TF-Tiristore G.T.O. frenatura;
- TS-Tiristore G.T.O. shuntaggio campo motore;
- R- Resistenza di precarica filtro.

3- Motrici

Figura 11 Schema di potenza motrice 5000-Particolare azionamento cassa A

3.3 Serie 6000

Le motrici 6000 (chiamate anche "Cityway", in Figura 12) sono i più moderni e lunghi tram posseduti dalla società GTT, costruiti dall'Alstom negli ex impianti della Fiat Ferroviaria di Savigliano (Cn). Il primo lotto di 55 veicoli è stato consegnato nei primi mesi del 2004 ed è stato impiegato inizialmente sulla linea 4 e poi sulla 5. Successivamente dall'aprile del 2015 questa tipologia di tram è stata messa in servizio anche sulla linea 7. L'ordine iniziale prevedeva un grande lotto da 180 tram, ma purtroppo dopo i primi 55 veicoli non ne sono stati acquistati altri. Delle 55 vetture in circolazione nel capoluogo piemontese solo le prime sei (6000-6005) sono monodirezionali, mentre tutte quelle successive hanno la doppia cabina di guida per permetterne l'uso su tutta la rete.

Se si considerano i guasti, questa serie non si può considerare fortunata. Infatti i primi modelli in prova sulla rete cittadina evidenziarono un problema all'impianto frenante che fece ritardare la consegna ,ma non fu questo l'unico problema. Le officine GTT sono intasate da questi tram a causa della complessa elettronica presente a bordo: è sufficiente che una pinza di un freno non chiuda in modo perfetto oppure che uno degli otto condizionatori presenti sul veicolo non funzioni a dovere che il sistema ne segnala il guasto e blocca la motrice finché il guasto non viene risistemato. Questo permette di avere in circolazione solamente vetture perfettamente funzionanti, ma anche di averne

3- Motrici

ferme alcune per dei guasti irrisori che fanno perdere diverse ore alle squadre di riparazione.

Sono dotate di un pianale completamente ribassato e tutti gli apparati di bordo sono collocati in fondo al veicolo in modo da favorire la salita e la discesa dei passeggeri.

Figura 12 Serie 6000

Questo modello è equipaggiato con due convertitori alimentati dallo stesso pantografo e protetto da un fusibile AT ciascuno. Questo fusibile protegge contro le sovracorrenti e i cortocircuiti, come mostra la Figura 13.

Figura 13 Schema fusibile delle serie 6000

Entrambi i convertitori (realizzati mediante IGBT) sono dotati di un filtro d'ingresso, dotato di un' induttanza e di un condensatore che servono per limitare:

- le correnti di picco a fronte di transitori di tensione provenienti dalla linea;
- le corrente assorbita dalla linea durante la chiusura dell'IR.

A valle del filtro sono connessi i moduli di potenza degli inverter (i quali alimentano i sei motori asincroni trifase da 41 kW ciascuno), del chopper di frenatura e del convertitore ausiliario.

Questo modello è dotato di tre impianti di frenatura: il freno meccanico, il freno elettrico e i pattini elettromagnetici. Come nei modelli precedenti i primi due sistemi intervengono nella frenata ordinaria, mentre i pattini elettromagnetici intervengono solo in caso di emergenza. Anche in questa vettura la frenata elettrica consente di convertire l'energia cinetica del veicolo in energia elettrica da mandare in rete, in modo da minimizzare gli sprechi.

A differenza della serie 5000, l'energia in uscita è gestita da un inverter che è in grado di capire, tramite la logica di controllo interna, se mandare potenza in rete o dissiparla tramite un'apposita resistenza. Quindi questa motrice è in grado di comprendere se in zona ci sono motrici in marcia o avviamento che possono sfruttare la sua energia; in caso contrario va ad eseguire una frenatura reostatica. In questo modo non andrà a creare sovratensioni sulla rete, creando picchi di tensioni che posso portare all'esplosione degli scaricatori di tensione.

Capitolo 4

Il problema delle sovratensioni sulle motrici della serie 5000 che hanno portato all'esplosione degli scaricatori di tensione

Negli ultimi anni si sono verificate numerose esplosioni degli scaricatori di sovratensioni installati nelle cabine della rete tranviaria. Bisogna specificare che gli scaricatori hanno il compito di proteggere rete e componenti elettrici da sovratensioni di natura atmosferica, come per esempio i fulmini. E' importante precisare che l'esplosione degli scaricatori può essere pericolosa per gli operatori che si trovano all'interno di una sottostazione elettrica, i quali possono rimanere feriti da detriti del corpo ceramico dello scaricatore che vengono scagliati nello spazio circostante a grande velocità in seguito all'esplosione. Inoltre l'esplosione di uno di questi dispositivi di protezione causa un disservizio sulla rete tranviaria.

Siccome il numero di esplosioni è aumentato notevolmente, anche in assenza di eventi temporaleschi, si è andato a ricercare la causa scatenante che porta allo scoppio di questi dispositivi di protezione. Gli studi si sono concentrati attorno alla motrice 5000, il cui utilizzo dal 2016 è stato esteso a tutta la rete torinese.

Gli scaricatori di tensione possono esplodere principalmente per due motivi:

- sovratensioni singole con contenuto energetico molto elevato rispetto al valore per cui sono progettate.
- molteplici sovratensioni con un contenuto energetico ridotto, che portano all'usura del componente, fino a portarlo all'esplosione.

In Figura 14 si riporta un esempio di scaricatore esploso in cabina.

Figura 14 Esempio di scaricatore esploso

4.1 Misura delle sovratensioni durante il funzionamento ordinario

Le misure sono state eseguite dal 30/10/17 al 14/11/17 e analizzate dal mio collega Riccardo Sinatra nella sua tesi di laurea "Le motrici in servizio sulla rete tranviaria torinese: prestazioni e criticità".[2]

Dal momento che era impossibile effettuare le misure di sovratensioni su tutta la rete tranviaria torinese, la ricerca si è concentrata nella zona Sabotino. I rilevamenti sono stati eseguiti durante il funzionamento ordinario grazie ad un registratore digitale Hioki di proprietà di InfraTO. Questo strumento è stato collocato a fondo linea (in cabina Duca d'Aosta) ed è stato tarato in modo che registrasse solo i dieci secondi precedenti e i dieci successivi ad una sovratensione con valore superiore ad 800 V, in modo da aver la situazione completa del fenomeno transitorio. Il valore di soglia pari a 800 V è stato scelto perché tarando il registratore digitale ad una valore più basso si sarebbero memorizzati troppi dati che per la nostra analisi sarebbero stati poco importanti. In totale, nei 15 giorni durante i quali sono avvenute le registrazioni, sono state memorizzate 207 sovratensioni.

Lo strumento è stato posizionato a fine linea in quanto questo punto rappresenta la condizione peggiore delle sovratensioni sia per la linea che per lo scaricatore di tensione. In Figura 15 riporto lo schema semplificato dall'alimentazione della zona delle misure e di come è stato posizionato lo strumento digitale.

Figura 15 Schema semplificato dell'alimentazione della zona delle misure

Le sovratensioni sono state classificate in due categorie in base alla loro durata [2]:

- sovratensioni impulsive;
- sovratensioni lunghe.

Le sovratensioni impulsive hanno una durata di qualche millisecondo, possono raggiungere picchi elevati ma non possiedono un contenuto energetico rilevante. Invece le sovratensioni lunghe possono avere dei picchi abbastanza importanti, ma sono più pericolose perché hanno una durata che supera qualche secondo e di conseguenza un contenuto energetico ben superiore rispetto a quelle impulsive. Questo le indica come possibili cause del danneggiamento e distruzione degli scaricatori di sovratensioni.

Riporto un esempio di sovratensione impulsiva nella Figura 16 e di sovratensione lunga in Figura 17.

Figura 17 Esempio di sovratensione di tipo lungo

4.2 Analisi statistica delle sovratensioni

Il totale delle registrazioni è stato precedentemente analizzato in modo statistico distinguendole in tre classificazioni [2]:

- statistica oraria;
- statistica dei picchi;
- statistiche delle durate.

La statistica oraria mette in luce che le sovratensioni sono distribuite in modo uniforme durante tutta la giornata, non trovando un periodo la cui frequenza delle sovratensioni è maggiore rispetto ad un altro. Nell'orario compreso dall'1:00 alle 4:00 le sovratensioni riscontrate sono dovute al movimento delle motrici fuori servizio che entrano ed escono dal deposito. Riporto il grafico della statistica oraria in Figura 18

La statistica dei picchi fa vedere il valore massimo raggiunto dalle sovratensioni analizzate. Viene messo in evidenza (in Figura 19) che l'80% della sovratensioni registrate hanno un picco compreso tra gli 800 V e i 900 V. Tuttavia sono state rilevate sovratensioni il cui valore di picco ha raggiunto i 1450V. Come nel caso precedente i picchi non compaiono in uno specifico periodo della giornata ma sono distribuite uniformemente su tutto il periodo in cui sono state eseguite le misurazioni. Non vi è neppure distinzione tra giorni feriali e giorni festivi. In Figura 20 vado a riportare l'occorrenza delle sovratensioni nel periodo dal 30 novembre 2017 al 15 novembre 2017.

Figura 20 Diagramma giornaliero dei picchi

In ultimo la statistica delle durate ordina le sovratensioni in base alla loro durata temporale. La durata è calcolata come il tempo in cui la sovratensione ha un valore superiore a 700 V (il valore nominale di tensione è 600 V, ma è stato considerato 700 V perché altrimenti ci sarebbe stata un'enormità di dati poco importanti per il nostro studio).

Come è visibile in Figura 21 la quasi totalità delle sovratensioni ha una durata inferiore ad 1 secondo. Ciò nonostante sono state rilevate delle sovratensioni con una durata fino a 6 secondi e che quindi possono avere un contenuto energetico importante.

In Figura 22 viene evidenziato il rapporto delle sovratensioni di tipo lungo durante l'arco della giornata. Si vede molto bene come le sovratensioni di lunga durata siano concentrate nelle ore notturne (dalle 20:00 all'1.30) quando le motrici in circolazione sono in numero ridotto.

Figura 22 Diagramma orario delle durate

Infine vado a riportare la statistica combinata di picchi e durate delle sovratensioni.

Questa statistica serve a mettere in relazione il picco e la durata delle sovratensioni censite in modo tale da poter farsi un'idea del loro contenuto energetico. Nel grafico riportato in Figura 23 sull'asse delle ascisse è riportata l'ora della rilevazione mentre sull'asse delle ordinate il valore del picco. La durata di ciascuna rilevazione è proporzionale all'area della circonferenza che la identifica. Si nota che le sovratensioni con un contenuto energetico maggiore avvengono in orario notturno e con picchi compresi tra i 900 V e i 1000 V.

In conclusione possiamo dire che l'analisi statistica sulle tensioni in zona Sabotino, durante il funzionamento ordinario, ha portato alla luce la differenze tra le sovratensioni di tipo impulsivo e quelle di tipo lungo.

Le sovratensioni impulsive sono caratterizzate da picchi elevati fino a 1450 V. Questo genere di sovratensione è ben distribuito non solo durante tutto l'arco della giornata, ma anche durante tutto il periodo di misurazione, indipendentemente che si tratti di un giorno feriale o festivo. E' plausibile che questo tipo di fenomeno abbia origine dagli archi elettrici che si creano durante il funzionamento ordinario della rete e che possono essere ricondotti a due motivi:

- passaggio di una motrice sotto il divisore di zona
- passaggio di una motrice sotto un incrocio

Tuttavia le sovratensioni impulsive hanno una durata molto ristretta e il loro contenuto energetico è ridotto. Per questo motivo non sono ritenute responsabili degli scoppi degli scaricatori.

Le sovratensioni lunghe sono caratterizzate da picchi che oscillano tra i 900 V e i 1000 V, ma con una durata che può arrivare fino ai 6 secondi. Dal momento che nel periodo di registrazione sono state memorizzate sovratensioni lunghe, ma nessun scoppio degli scaricatori, è stato ipotizzato che l'esplosione sia la conseguenza di un progressivo deterioramento del dispositivo di protezione. L'analisi fatta ha messo in luce che questo tipo di sovratensione è più frequente negli orari serali e notturni, quindi con un numero inferiore di motrici in circolo. Questo ha portato a pensare ad un errata gestione della frenata rigenerativa: quando in rete sono assenti motrici in accelerazione capaci di assorbire l'energia di recupero, dovrebbe attivarsi la frenata reostatica in modo da dissipare l'energia della frenata. Questo perché i raddrizzatori delle sottostazioni elettriche sono unidirezionali e l'energia recuperata dalla frenatura non può essere immessa nella rete MT. Il problema riscontrato è che quando un tram frena, immettendo energia in rete, ed in quell'istante non vi è un'altra motrice che accelera in quella sottozona, la corrente immessa andrà a caricare i condensatori presenti e di conseguenza innalzare i livelli di tensione.

4.3 Influenza delle motrici della serie 5000 sulle sovratensioni

Riprendendo quanto avevo detto nel Capitolo 2, la frenatura elettrodinamica della serie 5000 è costituita da due modalità: la frenatura rigenerativa e quella reostatica. Quando l'operatore che guida il tram frena, i poli dell'armatura del motore vengono invertiti e conseguentemente si inverte anche il verso della corrente. Nella frenata rigenerativa questa corrente viene immessa in rete, invece nella frenata reostatica viene dissipata su una resistenza dedicata. La gestione del tipo di frenata da utilizzare è governato da un

sistema automatico di logica di controllo, il quale è basato sulla tensione ai capi della motrice. Quando questo valore di tensione è inferiore ad un determinato limite verrà azionata le frenatura rigenerativa, mentre se questo valore viene superato si commuterà in frenatura reostatica andando ad inserire una resistenza di frenatura. Sulla base delle sovratensioni lunghe registrate è plausibile un non perfetto coordinamento tra i due tipi di frenatura descritti sopra. Nel caso in cui vi sia di una motrice 5000 in frenata e non sia presente nessun altro tram in trazione e vi sia un certo ritardo nel passare dalla frenatura con recupero a quella dissipativa, la corrente iniettata in rete, non potendo transitare nelle rete MT, va a caricare le capacità del circuito innalzando il livello di tensione. Quando la frenatura reostatica entra in gioco le capacità si scaricano e i livelli di tensione vengono ridotti. La fase di scarica è molto più lenta ed è per questo che le sovratensioni lunghe possono durare fino a qualche secondo.

In Figura 24 vado a riportare lo schema elettrico dell'azionamento della cassa A di una motrice serie 5000. Su questo schema sono mostrati il percorso della corrente durante la fase di marcia avanti (in rosso) e durante la fase di frenatura (in verde e in azzurro). Il percorso della corrente nella frenata di recupero è quello verde, mentre nella frenata dissipativa bisogna aggiungere il tratto colorato in azzurro

4- Il problema delle sovratensioni sulle motrici della serie 5000

Figura 24 Percorso marcia e frenatura

Capitolo 5

Il Software di simulazione ATP

Lo scopo principale di questo capitolo è spiegare il funzionamento del software di simulazione ATP. Vado a specificare passo a passo tutte le impostazioni che ho utilizzato e modificato, in modo tale che per una futura implementazione del modello equivalente della motrice serie 5000 questo capitolo possa essere d'aiuto per una migliore comprensione del programma di calcolo.

Con questo elaborato sono andato a modellizzare tutto il sistema di alimentazione della rete tranviaria torinese. Il mio lavoro parte dall'arrivo dell'alimentazione in Media Tensione nella cabina di trasformazione MT/BT. Ho proseguito realizzando la cabina di trasformazione e conversione con il doppio ponte di Graetz, concludendo con il modello elettrico e meccanico equivalente del motore della motrice della serie 5000 e di tutte le sue componenti (capacità e induttanza di filtro, capacità parassite, chopper).

Per poterli realizzare nel modo più realistico possibile ho utilizzato il software di simulazione ATP-EMTP (Alternative Transient Program-ElectroMagnetic Transients Program). Il programma si appoggia ad una comoda interfaccia grafica chiamata ATPDraw. Un esempio della logica del software si può osservare in Figura 25. Nei due paragrafi successivi vado a spiegare nel dettaglio il funzionamento di ATP-EMTP e ATPDraw.

Figura 25 Logica del software

5.1 ATP

ATP-EMPT è il cuore del software, il cui compito è eseguire i calcoli per ottenere i risultati finali. Questo programma viene utilizzato per l'analisi di simulazione dei sistemi elettrici ed è stato progettato per la risoluzione di problemi quali:

- transitori e sovratensioni;
- analisi a breve termine dei disturbi;
- calcoli di sovracorrente;
- controllo di azionamenti elettrici;
- analisi delle performance di protezione;
- stima della power quality.

Questo software è stato sviluppato all'inizio degli anni Sessanta da un gruppo di programmatori guidati dal Professore Herman Dommel. La prima versione era basata sul codice sorgente Fortran. Tutto il pacchetto del programma è possibile scaricarlo gratuitamente dal loro sito <u>www.emtp.org</u>, previa registrazione tramite posta prioritaria, ed è supportato dai principali sistemi operativi (Windows, Linux, MS-DOS). ATP-EMTP consente di realizzare circuiti con un' elevata complessità, data la sua grande capacità di calcolo che permette di creare modelli con:

- numero massimo di nodi pari a 6000;
- numero massimo di rami pari a 10000;
- numero massimo di interruttori pari a 1200;
- numero massimo di sorgenti di alimentazione pari a 900;
- numero massimo di elementi non lineari pari a 2250;
- numero massimo di macchine sincrone pari a 90.

Il programma ATP comprende tre file:

- TPBIGx.exe è il compilatore del software. La lettera "x" identifica il compilatore utilizzato: x=G: GNUMingw32, x=S: Salford, x=W: Watcom;
- LISTSIZE.DAT: file di testo disponibile per l'utente per l'impostazione di alcuni parametri, ad esempio il massimo numero di nodi;
- STARTUP: file di testo disponibile all'utente per il controllo di alcuni parametri come: estensione del file di dati di input, formato dei dati di input, ecc.

La logica di risoluzione del software è riportata in Figura 26

Figura 26 Logica dettagliata del software

Al fine di costruire dei particolari circuiti, ATP ha implementato nel suo software dei linguaggi di programmazione come ausilio per disegnare alcuni modelli noti come: macchine rotanti ,trasformatori, linee di trasmissioni aeree e in cavo.

I modelli dei circuiti di controllo sono raggruppati in due tipologie (come si vede in Figura 27):

- TACS: Analisi transitoria dei circuiti di controllo;
- MODELS: Modellazione del controllo programmata e di altri circuiti.

Entrambe le tipologie facilitano la modellizzazione degli elementi descritti da funzioni di trasferimento, interruttori di tensione temporizzati, elementi non lineari come gli archi o l'effetto corona. Inoltre il programma è in grado di riprodurre disturbi simmetrici o asimmetrici come guasti, operazioni di chiusura ed apertura e sovratensioni atmosferiche. I Models sono più versatili perché possono essere implementati da un linguaggio di programmazione simbolico.

I risultati della simulazione sono forniti sotto forma di file di output quali:

- File .pl4 che contiene i risultati in funzione del tempo o della frequenza sotto forma di testo o file binario;
- File .pch con dati ausiliari;
- File di testo .lis o .dbg con l' archivio di esecuzione del programma.

Per il calcolo dei dati del file di input di modelli più complessi il software si avvale di molteplici procedure ausiliare. Nel mio elaborato mi sono appoggiato ad una di queste: la BCTRAN, la quale esegue il calcolo del circuito lineare sulla base dei dati di misura per la rappresentazione di un trasformatore multi-avvolgimento monofase o trifase.

Figura 27 Struttura funzionale del programma

Il parser interno è un processo che analizza un flusso continuo di dati in ingresso, letti per esempio da un file di input, in modo da determinarne la struttura dei dati prima di eseguire ATP. Il parser interno produrrà un file con un'estensione .log (verrà salvato nella stessa cartella e con lo stesso nome di quel file) che contiene le informazioni dei dati

effettivi inviati come parametri per ogni esecuzione. Grazie al parser interno, quando ATP viene eseguito, in caso di errore compare una finestra di diagnosi e la simulazione viene bloccata.

5.1.1 Equazioni generali su cui si basa ATP-EMTP

L'algoritmo su cui si basa il software consiste nel risolvere le equazioni che descrivono la relazione dinamica tra le grandezze fisiche osservate nei rami con elementi lineari R, L, C ossia rispettivamente resistenza, induttanza e capacità. Le tensioni dei nodi vengono utilizzate come variabili di stato e sono necessarie per scrivere l'equazione della corrente nei rami.

Se prendiamo come esempio la Figura 28 possiamo affermare che la corrente immessa nel nodo 1 è equivalente alla somma delle correnti uscenti dal nodo 1:

$$i_1 = i_{12} + i_{13} + i_{14} + i_{15} \tag{5.1}$$

Ogni corrente può essere riscritta in funzione delle componenti che si trovano sul ramo relativo, attraverso precise formule riportate di seguito.

La corrente nel ramo 2 può essere calcolata come riportato nell'equazione (5.2):

$$i_{12}(t) = \frac{1}{R} \left[v_1(t) - v_2(t) \right]$$
 (5.2)

Figura 28 Dettaglio di rete vicino al nodo 1

La corrente nel ramo 3 viene ricavata mediante l'equazione (5.3):

$$i_{13}(t) = \frac{\Delta t}{2L} \left[v_1(t) - v_3(t) \right] + hist_{13}(t - \Delta t)$$
 (5.3)

Dove $hist_{13}$ è stato calcolato nel time step precedente come riportato nell'equazione (5.4):

$$hist_{13}(t - \Delta t) = i_{13}(t - \Delta t) + \frac{\Delta t}{2L} \left[v_1(t - \Delta t) - v_3(t - \Delta t) \right]$$
(5.4)

La corrente nel ramo 4 è calcolata come riportato nell'equazione (5.5):

$$i_{14}(t) = \frac{2C}{\Delta t} \left[v_1(t) - v_4(t) \right] + hist_{14}(t - \Delta t)$$
 (5.5)

Dove $hist_{14}$ è stato calcolato nel time step precedente come riportato nell'equazione (5.6):

$$hist_{14}(t - \Delta t) = -i_{14}(t - \Delta t) + \frac{2C}{\Delta t} \left[v_1(t - \Delta t) - v_4(t - \Delta t) \right]$$
(5.6)

Per ultimo la corrente nel ramo 5 può essere dedotta utilizzando l'equazione (5.7)

$$i_{15}(t) = \frac{1}{Z} v_1(t) + hist_{15}(t-\tau)$$
 (5.7)

Dove $\tau e hist_{15}(t - \tau)$ sono definiti rispettivamente come riportato nelle equazione (5.8) e (5.9)

$$\tau = \frac{lunghezza \ linea}{capacità}$$
(5.8)
$$hist_{15}(t-\tau) = -\frac{1}{Z} v_5(t-\tau) - i_{51}(t-\tau)$$
(5.9)

Quindi andando a sostituire ogni componente trovato nell'equazione (5.1) otteniamo l'equazione (5.10):

$$\left(\frac{1}{R} + \frac{\Delta t}{2L} + \frac{2C}{\Delta t} + \frac{1}{Z} \right) v_1(t) - \frac{1}{R} v_2(t) - \frac{\Delta t}{2L} v_3(t) - \frac{2C}{\Delta t} v_4(t) = = i_1(t) - hist_{13}(t - \Delta t) - hist_{14}(t - \Delta t) - hist_{15}(t - \tau)$$
(5.10)

Questo breve esempio ci permette di ricavare una regola generale per un generico nnodo, in quanto l'equazione risolutiva che si ottiene è un'equazione lineare algebrica che ha come incognita la tensione v(t) e ha sempre una forma ben precisa:

$$[G][v(t)] = [i(t)] - [hist]$$
(5.11)

Dove:

[G] è una matrice [nxn] simmetrica;
n è il numero dei nodi contenuti nel circuito;
[v(t)] è il vettore incognito della tensione dei nodi, di dimensione n;
[i(t)] è il vettore della corrente, anch'esso di dimensione n;
[hist] è il vettore dei valori conosciuti e calcolati allo step precedente

Normalmente non tutte le tensioni dei nodi sono incognite, ma alcune sono conosciute o possono essere ricavate molto facilmente, come ad esempio nel caso in cui un nodo sia collegato a terra. Per cui risulta più efficiente suddividere l'equazione (5.11) nell'insieme A, che definisce le tensioni incognite e nell'insieme B ,che definisce le tensioni note. A questo punto possiamo riscrivere la formula nel seguente modo:

$$[G_{AA}][v_A(t)] = [i_A(t)] - [hist_A] - [G_{AB}][v_A(t)]$$
(5.12)

Il processo che utilizza EMPT è quello di triangolarizzare la matrice $[G_{AA}]$ grazie al metodo di eliminazione. Ad ogni passaggio i valori della corrente, del vettore [hist] e della tensione contenuti nel secondo membro della formula (5.11) vengono aggiornati con i valori ottenuti. Si procede per step fino a quando non si trova la soluzione $[v_A(t)]$. Inizialmente ATP-EMPT era stato creato per casi con condizioni iniziali a zero e quindi i termini [hist] venivano semplicemente posti a zero. Con il tempo, però, si è riscontrato che molte simulazioni richiedono come condizione iniziale stazionaria una frequenza di 50 o 60 Hz. Per facilitare l'utente si è quindi implementato nel programma la ricerca delle soluzioni stazionarie. Per farlo si è iniziato a considerare la corrente come un fasore:

$$I = |I|e^{i\alpha} \qquad (5.13)$$

La nuova espressione che definisce il nodo 1 riferito alla Figura 28 è:

$$I_{12} + I_{13} + I_{14} + I_{15} = I_1 \qquad (5.14)$$

Un generico circuito di n -nodi viene risolto quindi un sistema di n equazioni che ha come espressione:

$$[Y][V] = [I]$$
 (5.15)

Dove:

[Y] è una matrice complessa simmetrica di dimensione[nxn];

[V] è il vettore complesso incognito della tensione;

[I] è il vettore complesso della corrente.

Vale di nuovo il discorso della suddivisione in A e B a seconda delle tensioni già note o meno. Quindi il sistema finale che ATP-EMPT si prefissa di risolvere tramite la triangolarizzazione della matrice [Y] è:

$$[Y_{AA}][V_A] = [I_A] - [Y_{AB}][V_B]$$
 (5.16)

5.2 ATPDraw

La prima versione di questo preprocessore grafico è stato sviluppata presso il Norwegian Institute of Technology nel 1991 per scopi didattici. Negli anni successivi si sono apportati notevoli miglioramenti ed è stato velocizzato di molto il processore, fino ad arrivare all'interfaccia grafica utilizzata e conosciuta al giorno d'oggi: ATPDraw. I diritti di proprietà del programma appartengono alla Bonneville Power Administration, USA, la società che ha finanziato lo sviluppo del programma e alla SINTEF Energy Research, Trondheim, Norvegia. ATPDraw è royality free e ha una propria pagina web gestita all'indirizzo <u>https://www.atpdraw.net</u>. Il programma è scritto in Borland Pascal.

ATPDraw ha un layout standard di Windows, per cui l'utente può costruire un'immagine grafica di un circuito elettrico andando a selezionare i componenti di cui necessita e può inserire i parametri da utilizzare semplicemente selezionando i componenti dalla barra dei menù (si veda la Figura 29). Sono disponibili la maggior parte dei servizi di modifica che siamo abituati ad utilizzare, come copia/incolla, ruota, importa/esporta, raggruppa/separa, salva, annulla e stampa. Altre funzionalità di ATPDraw sono:

- un editor integrato per la modifica dei file ATP;
- il supporto degli appunti di Windows per bitmap/metafile;
- l'output nel formato di file Metafile/Bitmap di Windows o file PostScript.

le Edit View ATP Library T 🗋 🧭 🕶 🔝 🔛 🖓 📸 🛉 🄊	ools Windows Web (* 🏃 🍡 🏠 + 🛱	Help	4 🛛 🗎 🏔 🕰	A 2 5	3 🔒	7 7 🖸	k le	🍠 🎤 🛛 100	~ 100
	¶ <u>P</u> robes & 3-phase	۰							
	Mr Branch Linear	F	Resistor						
	Branch Nonlinear	•	<u>C</u> apacitor						
	∏ _© <u>L</u> ines/Cables	×	<u>Inductor</u>						
	-X- S <u>w</u> itches	•	RLC						
		•	RLC 3-ph						
	⊛ M <u>a</u> chines	F	RLC-Y 3-ph						
		•	RLC- <u>D</u> 3-ph						
	I MODELS	•	C: <u>U(</u> 0)						
	ttr TACS		L: 1(<u>0</u>)						
	Ser Specified	٦Ľ							
	Steady-state								
	Power system tools	F							
	All standard comp								

Figura 29 Interfaccia ATPDraw

Il menù principale, consultabile nella parte superiore della Figura 29, fornisce accesso a tutte le funzioni offerte dal software:

-FILE: crea un nuovo file di circuito, importa/esporta file di circuito da una cartella esterna con estensione .acp, salva i dati, stampa il circuito corrente ed esce.

-EDIT: apporta modifiche al circuito come copia, incolla, elimina, duplica, capovolgi, ruota, seleziona, sposta etichetta, ripristina, ecc.

-VIEW: permette di visualizzare o meno mediante flag la barra degli strumenti, la barra di stato e la linea di commento.

-ATP: è l'opzione che permette di impostare il delta T più opportuno, lanciare l'esecuzione del programma e plottare i risultati. Questa parte sarà spiegata con maggior cura e dettaglio nel capitolo successivo.

-LIBRARY: contiene le opzioni per la manutenzione dei file di supporto (* .sup) nella libreria dei componenti esterni. I file di supporto contengono informazioni su dati e valori dei nodi, icone e testo di aiuto. Il menu contiene anche le opzioni per creare e modificare i file Models (* .mod).

-TOOLS: contiene le opzioni che consentono di modificare le icone dei componenti e i testi di aiuto, creare o modificare file di testo. Comprende anche l'opzione per memorizzare o personalizzare le opzioni del programma.

-WINDOWS: racchiude le opzioni per attivare o riorganizzare le finestre della schermata e per mostrare o nascondere la finestra della pianta in scala ridotta.

-WEB: permette di collegarsi direttamente al sito web <u>https://www.atpdraw.net</u> dove gli utenti possono pubblicare direttamente il loro progetto per condividerlo con altri programmatori. Questa opzione è una soluzione a lungo ricercata per condividere e archiviare conoscenze preziose e potrebbe aprire una nuova area di cooperazione.

-HELP: contiene le opzioni per la visualizzazione della guida di ATPDraw e delle informazioni sul copyright e sulla versione ATPDraw installata.

Il pacchetto ATPDraw include anche il programma ATP_LCC per il supporto delle costanti di linea/cavo , che rende possibile l'utilizzo di file di circuiti creati con versioni precedenti del programma (DOS/GIGS).

Quando si lancia il programma, selezionando *RunATP* dall'opzione *ATP* nella barra dei menù oppure premendo il tasto F2, ATPDraw genera il file di input con estensione *.atp da fornire al motore di calcolo, come spiegato in precedenza. E' possibile modificare questo file direttamente dall'editor senza passare dall'interfaccia di ATPDraw, andando a

selezionare la voce *Edit ATP file* dalla tendina di *ATP* oppure premendo il tasto F4. In Figura 30 è riportata una schermata generica dell'editor ATP dove nella parte superiore vengono mostrati i valori scelti del delta T, Tmax, X_{opt} e C_{opt}, Epsilon e Print Frequency. Questi parametri vado a spiegarli nel dettaglio nel capitolo 5.4. Nella parte sottostante vengono elencati per righe tutti i collegamenti tra i nodi, i quali possono avere un nome definito dall'utente oppure uno generico scelto dal programma di calcolo (numerazione sequenziale). Oltre a questo viene evidenziato quali tipi di componenti (resistenza, induttanza e capacità) sono presenti tra i relativi nodi con il rispettivo valore.

Text Editor: Trasformator	re+ponte+diodi-nonlineari.	atp								<
File Edit Character Hel	р									
C A Bonneville Powe C by H. K. Høidalen	r Administration p at SEfAS/NTNU - N	rogram IORWAY 1	994-2016							^
C X Tmax X X	ont V Cont VEnsi	1								
	opt X copt X rpsi	-12								
500 1	1 1	1	0	0	1	0				
C 1	2 3	4	5		-	7	8			
C 34567890123456789	012345678901234567	8901234	56789012	34567890	123456	789012345	67890			
/BRANCH										
C < nl >< n2 > <refl< td=""><td>><ref2>< R >< L</ref2></td><td>× C ></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></refl<>	> <ref2>< R >< L</ref2>	× C >								
C < nl >< n2 > <refl< td=""><td>><ref2>< R >< A</ref2></td><td>>< B ></td><td><leng><></leng></td><td><>0</td><td></td><td></td><td></td><td></td><td></td><td></td></refl<>	> <ref2>< R >< A</ref2>	>< B >	<leng><></leng>	<>0						
XX0001	5.E3						0			
TERB XX0019	1.E3	1.E3								
XX0019IX0002	5.E-7									
TERC XX0020	1.E3	1.E3								
XX0020IX0003	5.E-7									
XX0015TERB	1.E3	1.E3								
TERB IX0004	5.E-7									
XX0015TERC	1.E3	1.E3								
TERC IX0005	5.E-7									
SECB XX0016	1.E3	1.E3								
XX0016IX0006	5.E-7									
SECC XX0017	1.E3	1.E3								
XX0017IX0007	5.E-7									
XX0015TERA	1.E3	1.E3								
TERA IX0008	5.E-7									
XX0014SECB	1.E3	1.E3								
SECB IX0009	5.E-7									
04004-0401 000020000000000										Y
<									>	

Figura 30 Editor ATP

ATP fornisce anche un file di output che ha come estensione *.LIS in cui vengono visualizzati i messaggi di debug e di errore e in cui sono contenuti tutti i calcoli eseguiti dal compilatore. Il processore grafico, però, nasconde tutti i passaggi intermedi che ci sono tra il disegno del circuito e i risultati della simulazione, in modo che l'utente possa lavorare direttamente con i parametri del modello da simulare. Qualora si volesse visualizzare questo file, è possibile selezionare *View LIS file* dalla tendina di *ATP* oppure premere il tasto F5. Nella Figura 31 viene mostrato un esempio di *LIS file*. Nel dettaglio si può notare che nella sezione superiore sono presenti dettagli informatici sulla dimensione e struttura del file di output, la data e l'ora della creazione, il tipo di compilatore usato e il nome del file del grafico risultante. Scorrendo il file troviamo nella sezione di sinistra i valori dei componenti RLC e nella sezione a destra vengono riportati nuovamente i parametri con il relativo valore già presenti nell'Editor ATP, che abbiamo

trattato precedentemente: delta T, Tmax, X_{opt} e C_{opt} , Epsilon e Print Frequency. Nella parte finale del file .LIS si trova la stampa ordinata per righe del numero di step in ordine crescente, il relativo tempo e tutti i valori richiesti dall'utente.

134 <==> Done wi Alternative Tr Date (dd-mth- Consult the 86	cards of di ith "/"-card ransients Pro -yy) and time 60-page ATP R	sk file rea sorting by gram (ATP), of day (hh tule Book of	d into c data cl F77 GN .mm.ss) : the Can	ard cac ass. U Linux = 17-Ma /Am EMT	che cel Remer cor D(cr-19 CP User	lls 1 mber that DS. All 21:51:07 r Group 1	onward. the sour rights re 7 Name in Portlan	ce file served b of disk p d, Oreg	appears o y Can/Am plot filo on, USA.	differe user g e is o Sourc	ent fro group ormato ce cod	om in of Po re+po e dat	terpre rtland nte+d: e is 2	eted i d, Ore iodi-n 25 Sep	nput o gon, l online tembe:	data. USA. eari.pl4 r 2016.
10tal size of 120K 2250	3800 720 2	K 72800 5	10 800K	800	90 25	54 800K	100K 3K	15K 1	: 6002 92K 120	45K	260K	600	420K	1200	15K 19	200K
Descriptive ir	nterpretation	n of input d	lata card	s. 0 01	Input 23456	t data ca 1 789012345	ard images 2 5678901234	are sho 3 56789012	wn below 4 34567890	, all 8 1234567	0 col 5 89012	umns, 34567	char 6 89012:	acter 345678	by ch 7 90123	aracter 8 4567890
Comment card.	Card index	= 1.		10	data	C:\ATP\/	ATPDraw\At	p\Trasfo	rmatore+	oonte+d	liodi-	nonli	neari	.atp		
Done keyword	d load. NUMR	EO, N18 = 1	12 119	10			8	20	85	20				8522		
Marker card pr	receding new	EMTP data o	ase.	IB	EGIN N	NEW DATA	CASE									
Comment card.	Card index	= 3.		ic									-			
Comment card.	Card index	= 4.		ic	Gener	ated by	ATPDRAW	marzo, d	omenica .	17. 201	.9					
Comment card.	Card index	. = 5.		i c	A Bor	neville	Power Adm	inistrat.	ion prog	ram						
Comment card.	Card index	= 6.		i c	by H.	K. Høid	ialen at S	EfAS/NTN	U - NORWA	AY 1994	-2016					
Comment card.	Card index	. = 7.		ic	;								-			
Comment card.	Card index	. = 8.		ic	dT	>< Tmax	>< Xopt >	< Copt >	<epsiln></epsiln>							
Misc. data.	1.000E-05	1.000E+00	0.000	E+00	1.E-	-5 1	L.	873/2	1.E-12							
Misc. data.	500 1 1	. 1 1 0	0 1 0	0 1	50	00	1 1	1	1		0	0		1	0	
Comment card.	Card index	= 11.		10		1	2	3	4		5		6		7	8
Comment card.	Card index	r = 12.		10	3456	789012345	678901234	56789012	34567890	1234567	89012	34567	89012	345678	90123	4567890
Comment card.	Card index	. = 13.		10	< nl	>< n2 ><	refl> <ref< td=""><td>2>< R ></td><td>< L >< (</td><td>c ></td><td></td><td></td><td></td><td></td><td></td><td></td></ref<>	2>< R >	< L >< (c >						
Comment card.	Card index	a = 14.		10	< nl	>< n2 ><	refl> <ref< td=""><td>2>< R >-</td><td>< A >< 1</td><td>B ><le< td=""><td>ng><></td><td><>0</td><td></td><td></td><td></td><td></td></le<></td></ref<>	2>< R >-	< A >< 1	B > <le< td=""><td>ng><></td><td><>0</td><td></td><td></td><td></td><td></td></le<>	ng><>	<>0				
Series R-L-C.	5.000E+03	0.000E+00	0.000E+	00		XX0001		5.E3			1.5					0
Series R-L-C.	1.000E+03	0.000E+00	1.000E-	03	TERB	XX0019		1.E3		1.E3						
Series R-L-C.	5.000E-07	0.000E+00	0.000E+	00	XX001	19IX0002		5.E-7								
Series R-L-C.	1.000E+03	0.000E+00	1.000E-	03	TERC	XX0020		1.E3	2	1.E3						
Series R-L-C.	5.000E-07	0.000E+00	0.000E+	00	XX002	20IX0003		5.E-7								
Series R-L-C.	1.000E+03	0.000E+00	1.000E-	03	XX001	L5TERB		1.E3	1	1.E3						
Series R-L-C.	5.000E-07	0.000E+00	0.000E+	00	TERB	IX0004		5.E-7								
Series R-L-C.	1.000E+03	0.000E+00	1.000E-	03	XX001	L5TERC		1.E3		1.E3						
Series R-L-C.	5.000E-07	0.000E+00	0.000E+	00	TERC	IX0005		5.E-7								
Series R-L-C.	1.000E+03	0.000E+00	1.000E-	03	SECB	XX0016		1.E3		1.E3						
Series R-L-C.	5.000E-07	0.000E+00	0.000E+	00	XX001	L6IX0006		5.E-7								
Series R-L-C.	1.000E+03	0.000E+00	1.000E-	03	SECC	XX0017		1.E3	4	1.E3						
Series R-L-C.	5.000E-07	0.000E+00	0.000E+	00	XX001	L7IX0007		5.E-7								
Step T	ime PRI	MA PRI	IMB	PRIMC	1	TERA	TERB	TER	z	SECA	2	SECB		SECC		TERA TERB
	SEC	A POS	5													

		SECB	NEG								
0	0.0	17962.9245	-8981.462	-8981.4625	383.75187	-191.88581	-191.86606	332.333098	-332.34465	.011548742	575.637678
		664.677745	.271479E-8								
500	.5E-3	17741.7678	-6437.3322	-11304.436	822.375099	305.786978	201.820823	747.775314	91.3095382	329.51768	516.588122
		656.465776	845.880915								
1000	.1E-2	17083.7587	-3734.7054	-13349.053	749.607808	304.836899	99.4589556	741.267305	109.115008	247.328852	444.770909
		632.152298	762.773054								
1500	.0015	16005.0813	-940.10311	-15064.978	685.241847	323.240329	21.5250157	688.892565	96.6952376	131.501752	362.001517
		592.197327	688.892998								
2000	.002	14532.3117	1877.63405	-16409.946	661.571287	391.068611	.284701787	661.569353	123.604103	54.1595216	270.502676
		537.96525	661.569663								
2500	.0025	12701.7057	4649.14975	-17350.855	640.524869	468.249663	2190021	640.524852	171.179202	.206475947	172.275206
		469.34565	640.524727								
3000	.003	10558.3408	7306.17768	-17864.519	602.853531	533.342408	-5.4859901	667.835863	276.453265	5.46915031	69.5111235
		391.382598	667.833849								
3500	.0035	8154.99884	9783.31196	-17938.311	557.613117	592.36599	.113247855	663.67841	361.870282	12993589	-34.752873
		301.808128	663.676822								
4000	.004	5550.8458	12019.5413	-17570.387	495.246638	633.408182	1.51639838	648.339849	443.057592	-1.5258135	-138.16154
		205.282256	648.339524								
4500	.0045	2810.02377	13959.8152	-16769.839	415.682163	653.682114	-2.4689566	622.733413	518.720532	2.47000803	-237.99995
		104.012882	653.679343								
5000	.005	0045145	15556.3485	-15556.344	328.115087	660.006183	-3.8339343	578.772456	578.739163	3.83061268	-331.8911
		.033292986	660.005322								

Figura 31 Esempio di LIS file

5.3 PlotXY

Da ATPDraw è possibile selezionare *PlotXY* dalla tendina dell'opzione *ATP* nella barra dei menù oppure premere Ctrl+0, per far si che venga lanciato un software esterno che consente di plottare i risultati ottenuti dalla simulazione in un grafico. Questo programma si chiama PlotXY. Verrà aperta una nuova finestra (si veda la Figura 32) in cui è presente il grafico d'interesse. È necessario, però, che l'utente definisca dapprima le grandezze che si vorranno visualizzare in funzione del tempo, andando ad inserire nel circuito, prima di lanciare la simulazione, le sonde di corrente, tensione e TACS nei nodi o nei rami di interesse. La capacità fondamentale di *PlotXY* è quella di creare grafici con le seguenti caratteristiche:

- I grafici possono avere centinaia di migliaia di punti ciascuno e contenere diverse curve;
- dallo stesso set di file possono essere visualizzate contemporaneamente curve diverse in un singolo grafico; inoltre il programma è in grado di gestire fino a quattro diversi grafici (ciascuno con più curve);
- oltre a tracciare i dati dai file ottenuto con la simulazione, *PlotXY* può anche creare nuove funzioni utilizzando formule matematiche quali: somme, prodotti, divisioni, integrali, ecc. Nella Figura 32 l'elemento cerchiato di rosso mette in evidenza questo aspetto, che può tornare utile quando si confrontano due differenti curve.
- può eseguire l'analisi di Fourier di un grafico e creare grafici a barre per le componenti armoniche di Fourier;
- i grafici prodotti possono essere esportati come immagini negli appunti del sistema o come file SVG (Scalable Vector Graphics). Possono anche essere direttamente stampati o convertiti in un file pdf;
- è possibile ottenere nuovi file (in diversi formati) salvando solo alcune variabili, per essere utilizzate in altri programmi di calcolo, come ad esempio Matlab.

5- Il software di simulazione ATP

Load Refresh	+ +			
f Fil x 1 Trasformatore+ponte+di	eName odi-nonlineari.pl4	# of vars 11	# of points 1000001	Tmax 1
A <-> Z	plot1 plot2 /	plot3 \/ p	lot4	
01 t 02 v:PRIMA 03 v:PRIMB 04 v:PRIMC 05 v:TERA 06 v:TERB 07 v:TERC 08 v:SECA 09 v:SECB	a 1 t 1 2 v:PRIMA 1 3 v:PRIMB			
10 v:SECC 11 v:XX0013-XX0006		Fou	urier 🗰	Plot
		S	ave vars	Reset
	Equalise plot wind	ow sizes		Equate
	O to:		1	Arrange

Figura 32 Interfaccia PlotXY

5.4 Generalità ed interfaccia

In questo paragrafo spiego le impostazioni generali che ho utilizzato nel mio elaborato. Dall'interfaccia principale di ATPDraw nella barra dei menù seleziono la voce ATP si apre un menù a tendina. A questo punto scelgo la voce *Settings* e si apre la finestra di dialogo riportata in Figura 33.

5- Il software di simulazione ATP

Simulation	Output	Format	Switch/UM	Load flow	Variables	
<u>d</u> elta T:	5E-7	022				
<u>T</u> max:	20		Simulatio	n type		
∐opt:	0	67	● Time	domain		
<u>C</u> opt:	0		() Frequ	iency scan		
<u>E</u> psilon:	1E-12	1	() Harm	onic (HFS)		

Figura 33 ATPDraw Settings: Simulation

Nell'opzione *Simulation* (riportata *in* Figura 33) è possibile andare a modificare alcune variabili chiave per la simulazione. Il primo parametro dell'elenco è il delta T che rappresenta il time step della simulazione ed è espresso in secondi.

Il secondo parametro Tmax indica il tempo totale della simulazione che vado a considerare. Questo tempo lo scelgo in base alle mie esigenze e necessità di lavoro.

La terza e la quarta variabile,(X_{opt} e C_{opt}) sono impostate entrambe a zero per poter esprimere induttanze e capacità rispettivamente in mH e in μ F. Il software, però, permette di inserire induttanza e capacità anche con unità di misura differenti, rispettivamente in Ω e in μ S, purché si impostino X_{opt} e C_{opt} in base alla frequenza di alimentazione (50 Hz).

L'ultimo parametro della finestra di dialogo è Epsilon, che rappresenta la tolleranza di calcolo numerico. Minore sarà questo parametro, maggiore sarà la precisione del risultato ottenuto. Questo valore deve essere scelto in maniera ragionevole perché se vado ad impostarlo troppo piccolo, richiede tempi di calcolo eccessivi.

Rimanendo nella dialog box ATP *Settings* ci spostiamo nella voce *Output*, consultabile in Figura 34.

5- Il software di simulazione ATP

	Format	Switch/UM	Load flow	Variables
Output contro Print freq.= Plot freq.= Plotted or MemSave Auto-detect s Detect ERROR/ KILL COD ++++	l 500 5000 utput e imulation (Prir 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4	ntout Network col Stead Extremal val Extra printou	nnectivity y-state phasors ues it control

Figura 34 ATPDraw Settings: Output

In questo menù ho utilizzato un valore di *Print frequency* pari a 500 e *Plot frequency* pari a 5000. Ho aumentato notevolmente questi due parametri rispetto ai rispettivi valori di default, perché le simulazioni eseguite sono molto lunghe. In questo modo evito di memorizzare un numero eccessivo di dati, occupando spazio di memoria preziosa, che sono superflui per il risultato finale.

Con questi valori di *Print frequency* e *Plot frequency* viene stampato un punto ogni 500 step di calcolo e viene plottato un punto ogni 5000 step di calcolo. Voglio specificare che in questo modo non vado a pregiudicare l'affidabilità della soluzione finale.

Mettendo il flag ad *Auto-detect simulation errors* il programma rileva automaticamente errori di simulazione e fa comparire un messaggio di errore sul monitor se il processo di calcolo si arresta in modo anomalo.

Nella voce *Switch/UM* è possibile andare a modificare l'inizializzazione automatica o manuale dei modelli che simulano in motori a corrente continua o alternata. Questo menù ci tornerà utile nel capitolo successivo.

Per ultimo riporto in Figura 35 la voce *Variables*: in questa tabella vado ad inserire le variabili di input più ricorrenti, in modo che, durante le varie prove di simulazione sia più rapido ed efficiente poterne modificare il valore. Questo procedimento mi è stato particolarmente utile per realizzare simulazioni successive al fine di migliorare la configurazione iniziale, cambiando con un solo comando tutti quei parametri di cui non

conoscevo l'esatta grandezza, per esempio i valori delle capacità di snubber (in Figura 35 sono riportate con la lettera C).

Simulation	Output	Format	Switch/UM	Load flow	Variables	
\$PARAME	ETER set	tings				
NAME	EXPR	ESSION				٨
TA	1					
ТВ	19					
TC	19					
TD	21					
Т	18					
CPAR	1					
С	20					
R	1000					
						Y
Number of	<u>s</u> imulatio	ns: 1		+	Delete	9
🗹 Use int	ernal pars	er				

Figura 35 ATPDraw Settings: Variables

5.5 Trasformatore trifase a tre avvolgimenti

Come già accennato ATPDraw fornisce un'interfaccia user-friendly per rappresentare trasformatori multi-avvolgimento monofase o trifase per la modellazione del componente trasformatore BCTRAN. Questo componente, una volta forniti gli input necessari, genera in modo automatico un "punch file" con il quale viene modellizzato il trasformatore trifase desiderato. Questo file prodotto sarà poi utilizzato per la risoluzione finale del circuito su ATP.

Nella finestra di dialogo, riportata in Figura 36, sotto la voce *Structure* è possibile impostare il numero di fasi, il numero di avvolgimenti, il tipo di nucleo e la frequenza del test. Anche la configurazione di tensione nominale (espressa in kV) e potenza apparente in (MVA) è molto semplice ed intuitivo da implementare. Inoltre per ogni avvolgimento è possibile scegliere il tipo di connessione tra quelli preimpostati dal software. E' possibile scegliere tra una connessione di tipo A (autotrasformatore), Y (connessione a stella) e D(connessione a triangolo). Se la connessione è di tipo A o Y il valore di tensione è automaticamente diviso per $\sqrt{3}$ per ottenere il valore di tensione nominale da utilizzare per a creazione del punch file.

I dati reali provenienti dalla prova a vuoto e dalle prove in cortocircuito vanno inseriti nelle specifiche tabelle andando a selezionare dal menù a tendina "open circuit" per i dati della prova vuoto oppure "short circuit" per quelli delle prove in cortocircuito. I dati derivanti dalla prova a vuoto sono tensione nominale applicata ai capi dei morsetti primari (in percentuale),corrente a vuoto che circola a primario (in percentuale) e le perdite registrate.

Per quanto riguarda le prove in cortocircuito sono necessari i valori dell'impedenza di cortocircuito (in percentuale), potenza apparente e perdite.

BCTRAN							×
Structure				Ratings			
Number of phase	es	3 、		1.1	HV	LV	IV
Number of windi	ngs	3 ~	-	L-L voltage [KV]	320	145	12.5
Type of core		Other 🗸		Power [MVA]	200	200	10
Test frequencu I	H-1	50		Connections	Α ~	A ~	Α ~
AB Output				Phase shift [deg]		0 ~	0 ~
				AutoTrafo b	y ATP	Ext. neutra	al connections
Factory tests							
Open circuit g	Short circuit						
pos	itive sequ	ence	4 10 2010				
Volt (%)	- Curr (%)	Loss (kW)	~	1			
100	0.75	160					
	100000	0					
			¥				
Positive core n	nagnetization			-	View/C	ору	
Linear inter	nal 🔿 E	xternal Lm	() External Lm∥R	m ORm	Em-rm:	s 🔿 Lm-flux
Order: 0	Labe	el:					🗌 Hide
Comment:							
OK Car	ncel Imp	ort Expo	t	Run ATP Vie	w + Copy	+ Edit defi	n. Help

Figura 36 Finestra di dialogo del trasformatore BCTRAN

5.6 Generalità sui motori a corrente continua

Compito di non facile risoluzione è stata la realizzazione del motore a corrente continua con eccitazione in serie.

ATP-EMTP dispone di diverse macchine universali:

-macchina sincrona trifase;
-macchina induzione trifase;
-macchina induzione trifase con rotore trifase;
-macchina induzione bifase;
-macchina AC monofase (sincrona o induzione) con eccitazione monofase;
-macchina AC monofase (sincrona o induzione) con eccitazione bifase;
-macchina DC con eccitazione separata;
-macchina DC con eccitazione compound in serie;
-macchina DC con eccitazione in serie;

Tuttavia su ATPDraw sono supportate solamente la macchina sincrona (tipo $UM\underline{1}$), due tipi di macchine a induzione (modelli UM<u>3</u> e $UM\underline{4}$), una macchina monofase (tipo $UM\underline{6}$) e una macchina DC (modello $UM\underline{8}$). La finestra di dialogo del componente $UM\underline{8}$ è mostrata in Figura 37.

Compone	ent: UM_8					ż
Attribute	s					
General	Magnet St	ator Rotor	Init	NODE	PHASE	NAME
		P	ole pairs:	Stator	1	
				M_Node	1	
Botor	coile			FieldA	1	
d F	1 <u> </u>			FieldB	1	
	<u>ч</u>	L Fr	equency:	BUSM	1	
Global	l-	<u> </u>	<u>.</u>	BUSF	1	
🗹 Au	tomatic	Ic	olerance:	Neut	1	
⊡ Pre	ediction	0				
Co <u>m</u> ment:			(Drder: 0	Label:	
Output	17		монт			☐ Hide
● 0	01 02	O3 (THOUT CURR	
Edit def	initions			OK	Cancel	Help

Figura 37 Finestra di dialogo del modello UM8

Una volta selezionato il modello più adatto al proprio utilizzo è possibile inserire i dati specifici della macchine in cinque pagine diverse, come si può vedere in Figura 38. Si possono inserire dati riguardati :

- generalità della macchina dove si indica il numero di poli di macchina, la frequenza, il numero di bobine a rotore, la tolleranza e l'accoppiamento di statore;
- statore: si inseriscono resistenza e induttanza di statore con la trasformata di Park riportata nell'equazione (5.1):

$$\begin{pmatrix} I_{\alpha}(t) \\ I_{\beta}(t) \\ I_{o}(t) \end{pmatrix} = \sqrt{\frac{3}{2}} \begin{pmatrix} \sqrt{\frac{2}{3}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \\ 0 & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} I_{a}(t) \\ I_{b}(t) \\ I_{c}(t) \end{pmatrix}$$
(5.1)

- rotore: vengono elencate le bobine sull'asse d e sull'asse q in modo tale da permettere di mettere i rispettivi valori di resistenza e induttanza. Sia per il rotore che per lo statore i valori vanno espressi sempre in Henry e non in sottomultipli;
- curva di magnetizzazione: in questa scheda è possibile specificare l'induttanza di magnetizzazione sull'asse d e sull'asse q e tramite un flag è possibile attivare o disattivare la saturazione;
- inizializzazione della macchina: l'inizializzazione dipende dalle condizioni iniziale del motore e può essere manuale o automatica. Per settare l'inizializzazione della macchina dalla schermata principale bisogna aprire il menù a tendina di ATP, selezionare la voce *Settings* ed aprire la finestra di dialogo *Switch/UM*. Se si sceglie l'opzione automatica si deve specificare la fase della tensione iniziale della bobina statorica. Invece nel caso in cui si scelga l'inizializzazione manuale bisogna indicare la corrente negli assi d, q e 0 a statore e quella nelle bobine di rotore; bisogna anche dichiarare la velocità iniziale del motore.

heral	Magnet	Stator	Rotor	Init	Genera		Magnet	Stator	Rotor	Init
, ,		A H	c F	ole pairs:			0.016			
d: [iloba	coils 1 q:	1	F	requency: 60	Sa O	nc d	ation one			
Au Pr	itomatic ediction		T	olerance:).1885	000	ч bo sy	oth Imm			
heral	Magnet	Stator	Rotor	Init	Genera	1	Magnet	Stator	Rotor	Init
	R [ohm]	L (H	/pu]				R [ohm]	L [H/	/pu]	
0	0	0			1	Num	0.075	0.00	D4	
d	0.095	0.00	05		2		0.075	0.00	D4	
q	0.095	0.00	05							
neral 1anu	Magnet	Stator	Rotor		Genera	il ma	Magnet	Stator	Rotor	Init
	or I [A]		Rotor	I [A]	SL	IP	[%]:			
State	73 5597		1	169.6725			8			
State 0	10.0001		-	19 285	-					
State 0 d	80.545		2	10.200						
State 0 d 9	80.545	34	2	13.203						

Figura 38 Interfaccia per l'introduzione dei parametri

5.6 Generatore pilotato

La configurazione del modello esistente nel software è stata complicata sotto diversi aspetti e ha generato diversi errori nel lancio delle simulazioni. Inoltre ATPDraw non mi ha permesso di realizzare un motore a corrente continua con l'eccitazione in serie. Ho quindi optato per uno studio tramite un doppio modello equivalente: un modello elettrico ed uno meccanico. Questi due modelli combinati insieme mi hanno permesso di sostituire il modello *UM<u>8</u> DC*.

Per la realizzazione del modello elettrico equivalente ho utilizzato un TACS di tensione per simulare la forza elettromotrice del motore elettrico. Purtroppo in ATPDraw questo componente ha sempre un polo connesso a terra. Di conseguenza ho dovuto collegare il TACS di tensione ad un trasformatore ideale monofase con rapporto di trasformazione pari ad uno. Con questo escamotage sono riuscito ad avere due poli in modo tale da poter collegare il modello elettrico equivalente al resto del circuito. Per motivi dati dal software ho dovuto aggiungere due resistenze di costruzione (distinte dalla sigla Rp in Figura 39) all'elemento trasformatore: una in uscita dal polo del secondario (marcato con una S in Figura 39) e l'altra in entrata al polo del primario (segnato con una P in Figura 39). Le due resistenze aggiuntive di costruzione hanno un valore molto ridotto pari a $1\cdot10^{\Lambda}$ -6 Ω , in questo modo le cadute di tensioni risultano essere ininfluenti. Quindi il contributo delle resistenze aggiuntive durante le diverse simulazioni si può considerare trascurabile.

Figura 39 Generatore pilotato

Capitolo 6

Realizzazione del modello in ATP

In questo capitolo vado a spiegare come ho modellizzato ogni singolo componente della rete tranviaria torinese. Ho cercato di essere il più fedele possibile alla realtà, andando a considerare tutti i fattori reali nello studio componentistico. Alcuni dati di riferimento sono stati presi dalla tesi di dottorato dell'ing. Enrico Pons e dalle tesi di laurea di Riccardo Sinatra e di Simone Aral.[1] [2] [3].

Per tutte le simulazioni e le analisi eseguite ho impostato un delta T pari a 5E-7 nel software di calcolo ATP-EMTP, per non avere errori dovuti ad imprecisioni durante la fase di calcolo ed ottenere così risultati il più accurati possibile. Ho eseguito anche simulazioni con intervallo di tempo maggiore, per ridurre il numero di dati, ma i risultati ottenuti non erano soddisfacenti in quanto discostanti dalla realtà. Ovviamente se si va a ridurre ulteriormente l'intervallo di campionamento si otterranno risultati ancora più precisi, ma richiederebbe un tempo di calcolo nettamente superiore e non compatibile con le mie tempistiche.

6.1 Cabina di trasformazione

La rete tranviaria cittadina è suddivisa in 49 zone, che sono alimentate ad una tensione nominale di 600 V DC da diverse sottostazioni elettriche. In tutta la città sono presenti una ventina di cabine di trasformazione e conversione ed ognuna alimenta un certo numero di zone. In queste strutture la tensione in entrata è pari a 22 kV mentre quella in uscita è intorno ai 600 V pronta per essere utilizzata dalle motrici tramviarie. I componenti più importanti che partecipano alla conversione della tensione sono:

- trasformatore trifase a tre avvolgimenti con rapporto 22 kV/0.47 kV, con un secondario connesso a stella ed il terziario connesso a triangolo;
- raddrizzatore a doppio ponte di Graetz con bobina interfasica;
- sistema di filtraggio.

In Figura 40 riporto lo schema completo realizzato in ATP della cabina di trasformazione.

6.1.1 Trasformatore trifase a tre avvolgimenti

Il trasformatore trifase a doppio secondario (riportato in Figura 41) è alimentato da un generatore ideale di tensione che simula l'alimentazione reale in Media Tensione a 22 kV. Il componente RLC simula le cadute di tensione e le capacità verso terra di tutta la rete in Media Tensione che è presente a monte del trasformatore.

Figura 41 Trasformatore trifase

I parametri di linea sono stati calcolati tramite un catalogo di riferimento per valori di resistenza, induttanza e capacità per cavi dedicati alla Media Tensione. In Tabella 3 vado a riportare i parametri utilizzati, mentre nell'Allegato D riporto il catalogo di riferimento.

R+	0.6 Ω/km
L+	0.4 mH/km
C+	0.234 µF/km
Ro	0.42 Ω/km
Lo	0.315 mH/km
Со	0.231 μF/km

Tabella 3 Parametri linea in cavo MT

Il trasformatore trifase a tre avvolgimenti è così composto:

- avvolgimento primario connesso a triangolo;
- avvolgimento secondario connesso a stella con neutro isolato;
- avvolgimento terziario connesso a triangolo.

I parametri del trasformatore sono stati calcolati dai valori delle prove a vuoto e in corto circuito eseguiti nella cabina Trapani. In Tabella 4 vado a riassumere i valori dell'impedenza (espressa in percentuale), della potenza apparente e delle perdite riferiti alle prove di corto circuito.

Avvolgimento	Impedenza (%)	Potenza (MVA)	Perdite (kW)		
Primario-Secondario	10.75	1.14	7.954		
Primario-Terziario	10.65	1.14	7.947		
Secondario-Terziario	0.96	1.14	7.051		

Tabella 4 Valori delle prove in cortocircuito

Invece in Tabella 5 riporto i parametri della prova a vuoto, eseguita con i terminali del secondario e del terziario aperti. La prova è stata eseguita con tensione a morsetti del primario pari al 100% del valore nominale. Ovviamente la corrente che circola nel trasformatore a vuoto è molto piccola.

Tensione (%)	Corrente (%)	Perdite (kW)		
100	0.7	3		

Tabella 5 Valori delle prove a vuoto

In Figura 42 riporto le tensioni del secondario a vuoto in uscita dal modello quando il doppio ponte di Graetz non è collegato. Ho fatto questo al fine di valutare la tensioni in uscita dal solo modello del trasformatore, senza disturbi dovuti ad elementi a valle del trasformatore trifase a doppio secondario.

In Figura 43 riporto il confronto tra le tensioni concatenate a vuoto della fase B del secondario con la fase B del terziario. Anche questo confronto è stato realizzato con il doppio ponte di Graetz non collegato per gli stessi motivi descritti precedentemente.

6.1.2 Raddrizzatore a doppio ponte di Graetz

A valle del trasformatore a tre avvolgimenti troviamo il raddrizzatore a doppio ponte di Graetz (in Figura 45) che ha il compito di raddrizzare un segnale alternato in un segnale unidirezionale. Il doppio ponte di Graetz è composto da due ponti, ciascuno dei quali utilizza sei diodi reali. Ho adoperato i diodi reali per tenere conto di tutte le perdite e le cadute di tensione. In Figura 44 vado a mostrare un ingrandimento del doppio ponte di Graetz dove si può osservare un diodo con la sua resistenza in serie, mentre in parallelo troviamo la resistenza e la capacità dello snubber.

Figura 45 Doppio ponte di Graetz

Per tenere conto delle cadute di tensione del diodo la resistenza in serie ha un valore molto piccolo pari a $1 \cdot 10^{-6} \Omega$. Invece i valori della resistenza e dalla capacità degli snubber sono rispettivamente di 1000 Ω e di 10 μ F. Tutte le capacità degli snubber sono modellizzate tenendo presente il fattore di smorzamento in modo da ridurre il più possibile l'idealità del componente. Come fattore di smorzamento ho scelto il valore 0.1.

Ci tengo a precisare che i valori adottati per la resistenza e la capacità di snubber non sono i valori reali in quanto di difficile identificazione, ma si tratta di valori scelti empiricamente e in modo accurato dopo un buon numero di simulazioni. Inoltre ogni diodo ha una tensione di soglia impostata a 0.7 V.

Come si vede dalla Figura 45 oltre ai dodici diodi reali ho messo anche tre resistenze in serie dal valore di $1m\Omega$ per tenere conto di tutte le cadute di tensioni dovute ai cavi, collegamenti, contatti, ecc.

6.1.3 Sistema di filtraggio

A valle del raddrizzatore troviamo un sistema di filtraggio (si veda la Figura 46) che serve per ridurre il ripple ed eliminare gli spike di tensione e corrente.

Figura 46 Filtro in uscita dal raddrizzatore

In uscita da ciascun ponte troviamo un doppio filtro in parallelo. Essi sono identici e quindi in totale avremo quattro filtri. Il sistema di filtraggio è realizzato mediante resistenze e capacità. I valori di questi parametri ci sono stati gentilmente forniti dalla GTT e sono riassunti nella Tabella 6.

R1	5.6 Ω	
R2	39 Ω	
R3	47 kΩ	
C1	3.3 μF	
C2	0.47 μF	

Le capacità C1 e C2 sono modellizzate tenendo presente il fattore di smorzamento in modo da ridurre il più possibile l'idealità del componente. Come fattore di smorzamento ho scelto il valore 0.1.

Dopo i filtri troviamo la bobina interfasica che serve per collegare le uscite dei due trasformatori. Ha un valore di 1.2 mH, anche questo parametro è stato fornito dalla GTT.

Le tensioni in uscita dal secondario del trasformatore con il raddrizzatore in funzione sono riportate in Figura 47.

Figura 47 Tensioni secondario con raddrizzatore in funzione

La tensione sulla sbarra in continua, misurata a valle del blocco trasformatore, raddrizzatore e filtro è rappresentata dal grafico in Figura 48. Nella Figura 49, invece, si riporta un confronto grafico tra la tensione simulata dal software ATP a valle del raddrizzatore e la tensione reale misurata sulla sbarra in continua in una sottostazione elettrica della rete tranviaria torinese.

6.2 Linea di contatto

Questo componente modellizza il tratto di cavo che dalla sbarra positiva del raddrizzatore arriva fino alla motrice, passando dagli alimentatori, grazie alla linea di contatto. Le linee di contatto hanno il compito di portare l'alimentazione a tutte le motrici della rete tranviaria. Sono in rame e sostenute da tiranti in parafil, hanno una sezione che parte da 95 mm² fino ad arrivare a sezioni maggiori multiple di 95 mm².

Questo elemento l'ho modellizzato con un semplice componente RLC (vedere Figura 50).

Figura 50 Modello equivalente linea di contatto

I valori scelti per la resistenza e l'induttanza sono derivati da valutazioni empiriche e sono riportati in Tabella 7.

Resistenza di linea	0.1 Ω	
Induttanza di linea	0.01 mH	
Capacità di linea	1 μF	

Tabella 7 Parametri linea di contatto

6.3 Modello semplificato della motrice serie 5000

Questo modello è costituito dalla cabina di trasformazione e conversione completa di trasformatore trifase a tre avvolgimenti, doppio ponte di Graetz e sistema di filtraggio, linea di contatto, filtro della motrice 1L2, la resistenza di precarica 1R3, induttanza di protezione –L1,la resistenza di scarica del condensatore –R3 e il condensatore di filtro –C1. E' anche presente il ramo della frenatura reostatica composto dal GTO di frenatura e dalla resistenza di frenatura 1R7. La resistenza R_{bin} rappresenta la resistenza del binario. I valori di questi componenti sono riportati in Tabella 8.

1L2	2.4 mH	
-L1	1 mH	
-C1	2200 μF	
1R3	100 Ω	
-R3	6000 Ω	
1R7	1.577 Ω	
R _{bin}	0.2 Ω	

Tabella 8 Valori dei parametri del modello semplificato

Tutti i valori di resistenze, induttanze e capacità ci sono stati forniti dalla GTT e si possono recuperare nell'Allegato C. L'unico parametro di cui non si conosce l'esatto valore è l'induttanza -L1, la quale durante le simulazioni è stata fissata ad 1mH.

Il motore è rappresentato da un generatore empirico di corrente che funziona in due fasi distinte. Nella prima fase il generatore di corrente assorbe corrente e quindi simula l'accelerazione del tram. I valori di corrente assorbita sono reali e provengono da misurazioni realizzate in una sottostazione elettrica. Nella seconda fase il generatore eroga corrente e simula la frenatura del mezzo elettrico.

In Figura 51 è possibile vedere la parte della motrice del modello semplificato.

Pag. 70

6.4 Modello equivalente della motrice serie 5000

Per la realizzazione del modello complessivo della motrice serie 5000 mi sono avvalso degli schemi riportati nell' Allegato C. Tutti i nomi dei parametri citati in questo sotto-capitolo si riferiscono allo schema in Figura 52, i cui valori numerici sono riportati in Tabella 9.

A valle del pantografo che è rappresentato da un interruttore troviamo la resistenza di precarica 1R3 che viene cortocircuitata dal contattore di filtro 1K2 non appena il condensatore di filtro è carico. In serie al contattore 1K2 troviamo l'induttanza di filtro 1L2. A valle del ramo con il condensatore di filtro e la resistenza di scarica del condensatore -R3 è posta l'induttanza di protezione –L1; proseguendo troviamo il ramo con la resistenza di frenatura 1R7, la quale conduce solo quando il GTO di frenatura –V9 viene impulsato. Questo componente viene impulsato solamente in frenatura. Gli elementi a monte dell'induttanza –L1 sono descritti nel dettaglio nel paragrafo 6.4.1.

L'interruttore posto a valle del ramo di frenatura è un TACS switch, cioè è un interruttore comandato da un segnale esterno al circuito, nel nostro caso un chopper. Questo tipo di interruttore è chiuso quando il segnale di comando è positivo, mentre è aperto, non permettendo il passaggio di corrente, quando il segnale di comando è minore di zero.

Nella fase di frenatura la corrente passa dal diodo di ricircolo –V11, fluisce nel gruppo di eccitazione con lo stesso verso della fase di accelerazione per poi entrare nel modello equivalente del motore tramite il tiristore di marcia indietro –V6 che viene impulsato solamente in questa fase, diversamente il tiristore –V6 si presenta come un circuito aperto. La corrente in uscita dal modello elettrico equivalente percorre Ra, La, il contattore 1K4 e 1L3 con verso opposto rispetto alla fase di accelerazione. Per mezzo del diodo di frenatura –V4 la corrente fluisce in rete. Nella Figura 53 questa corrente è riportata con il colore rosso. Il ramo di frenatura 1R7 entra in gioco quando vado ad eseguire la frenata di tipo reostatico, la cui corrente nella Figura 53 è rappresentata di color azzurro.

Il diodo –V8 è un diodo di ricircolo ed entra in funzione in entrambe le fasi. Tutti i tiristori e i GTO citati sono dotati di uno snubber composto da una resistenza Rsnub e una capacità Csnub, i cui valori sono stati dedotti empiricamente. Per la realizzazione degli schemi di marcia avanti e frenatura ho utilizzato gli schemi elettrici riportati in Figura 54.

1L2	2.4 mH	Lecc	1 mH	
1R7	1.577 Ω	1R6	0.32 Ω	
Rsnub	1000 Ω	1L3	2 mH	
Csnub	1 μF	Ra	0.0195 Ω	
-L1	1 mH	La	1.75 mH	
Recc	0.002 mH	Rp	1·10^-6 Ω	
1R5	0.912 Ω	1R3	100 Ω	
-C3	2200 μF	-R3	6000 Ω	

Tabella 9 Valori delle variabili utilizzate per motrice serie 5000

Pag. 75

6.4.1 Filtro d'ingresso del motore

A valle del pantografo, subito prima del chopper e del motore elettrico della motrice troviamo un sistema di filtraggio per la riduzione di spike ed armoniche. Il sistema è composto da una induttanza, da due resistenze e da una capacità di filtro. La resistenza 1R3 serve per la precarica del condensatore di filtro, dopo un breve intervallo è cortocircuitata dal contattore 1K2 (per l'azionamento della cassa A), in modo da evitare sprechi di energia. La resistenza –R3 è la resistenza di scarica del condensatore. I valori dei componenti li riporto in Tabella 10 e sono consultabili in Figura 52.

Non ho considerato nell'analisi le resistenze di cortocircuito di linea dei due azionamenti 1R8 e1R12, dal momento che sono state eliminate dai tecnici della GTT a causa dei numerosi guasti provocati (infatti nell'Allegato C sono contrassegnate con una X).

1L2	2.4 mH
-C1	2200 μF
1R2	100 Ω
-R3	6000 Ω

Tabella 10 Valori dei componenti del filtro del motore

6.4.2 Chopper e sistema di controllo

Il controllo delle fase di accelerazione viene rappresentato tramite alcuni componenti che cercano di simulare i comandi di un chopper reale.

Per la realizzazione del chopper(ne riporto lo schema di comando in Figura 55) ho utilizzato un semplice controllo fornito di un proporzionale integrale basato sul controllo della coppia. Innanzitutto in entrata del controllo ho il rapporto tra la coppia uscente dal modello elettrico equivalente, come specificato nell'equazione (6.2), ed una costante. A questo rapporto viene sottratto il valore di una costante pari ad uno. Il valore di questo risultato è l'ingresso del proporzionale integrale. Infine all'uscita del proporzionale integrale viene sommata una sinusoide di ampiezza pari ad 1 con frequenza 1000 Hz e sottratta una quantità fissa pari ad 1. Viene fatta tutta questa serie di operazioni per ottenere un duty-cycle con un T_{on} via via crescente, fino ad arrivare ad un T_{on} uguale ad uno.

Non sapendo esattamente quando viene tolta la resistenza tampone 1R5 e quando inizia lo shuntaggio del campo motore tramite il GTO –V7 diventa difficile riprodurne il comportamento preciso.

Figura 55 Sistema di controllo

6.4.3 Modello equivalente elettrico

In questo paragrafo spiego come ho realizzato il modello elettrico equivalente (consultabile in Figura 56) e come ho scelto i parametri che lo caratterizzano. Il motivo per cui l'ho realizzato con una TACS di tensione e un trasformatore monofase con rapporto di trasformazione uguale ad 1, è riportato nel Capitolo 5.

Si tratta di una motore elettrico alimentato in corrente continua con eccitazione in serie. I valori delle resistenze Ra, Recc e delle induttanze La e Lecc sono state scelte da un apposito catalogo. Non avendo a disposizione i valori esatti di questi parametri, ho consultato un catalogo di motori a corrente continua con caratteristiche simili al motore elettrico della motrice serie 5000, in modo tale da scegliere valori di resistenze e induttanze verosimili.

Le correnti I_{ecc} e I_a ·presentano lo stesso modulo (a meno di una piccola corrente di ricircolo sul diodo di ricircolo campo motore –V8) e verso in fase di accelerazione, ma hanno verso opposto nella fase di frenatura.

La sonda TACS misura sul primario del trasformatore ideale la forza elettromotrice indotta ai capi del motore. Tale f.e.m è calcolata seguendo le leggi del modello del motore a corrente continua:

$$f.e.m = K_T \cdot I_{ecc} \cdot \omega \qquad (6.1)$$

dove ω è la velocità meccanica del tram riportata al motore, mentre I_{ecc} ·è la corrente che viene misurata tra i parametri dell'eccitazione tramite una sonda che si può osservare nell'ingrandimento di Figura 57.

Figura 57 Particolare che mostra dove è prelevata la corrente d'eccitazione

6.4.4 Modello equivalente meccanico

Il modello equivalente meccanico (ne riporto l'ingrandimento in Figura 58) è composto sostanzialmente da quattro componenti:

- coppia motrice;
- inerzia;
- velocità del motore;
- perdite meccaniche.

Figura 58 Modello meccanico equivalente

Siccome la coppia motrice viene generata dal motore elettrico, per realizzarla ho utilizzato l'equazione di un motore in corrente continua con eccitazione in serie ed è riportata nell'equazione (6.2):

$$C = K_t \cdot I_a \cdot I_{ecc} \quad (6.2)$$

 I_a è la corrente misurata prima di passare nella resistenza e induttanza di armatura. I_{ecc} è la corrente misurata in serie alla resistenza di eccitazione. Queste due correnti, a meno di una piccola corrente che passa nel diodo di ricircolo –V8 e nel ramo della resistenza di shuntaggio del campo motore 1R6, hanno lo stesso verso e modulo in accelerazione, ma in frenatura hanno lo stesso modulo ma verso opposto. Questo mi permette di invertire la coppia motrice quando il tram esegue una frenata.

 K_t è una costante ed è stata dedotta dall'equazione (6.3):

$$C_{NOM,AVV} = K_t \cdot \left(I_{NOM,AVV} \right)^2 \qquad (6.3)$$

La coppia e la corrente nominale di avviamento ci sono state fornite dalla GTT e riporto i valori in Tabella 11.

	Tabella 11	Valori di	coppia e	corrente a	all'avviament
--	------------	-----------	----------	------------	---------------

C _{NOM,AVV}	1275 Nm
I _{NOM,AVV}	400 A

Grazie a questi valori ho potuto calcolare K_t che risulta essere pari a 0.008 Nm/A².

L'inerzia è modellizzata tramite una condensatore, che simula appunto l'inerzia meccanica propria del tram in partenza e in frenata. L'inerzia totale è calcolata per mezzo della formula (6.4):

$$J_{TOT} = J_{MOTORE} + J_{TRAM} \qquad (6.4)$$

L'inerzia del motore l'ho calcolata considerando il motore un semplice cilindro e calcolando quindi la sua inerzia come riportato nell'equazione (6.5):

$$J_{MOTORE} = 0.5 \cdot M \cdot R^2 \qquad (6.5)$$

dove con M si indica la massa del motore e con R il suo raggio. Anche questi dati ci sono stati forniti dallo studio tecnico della GTT e li riporto in Tabella 12.

Massa motore	280 kg
Raggio motore	0.235 m

Tabella 12 Valori della massa e del raggio del motore

Di conseguenza l'inerzia del motore risulta essere 7.73 kg·m².

L'inerzia del tram l'ho calcolata mediante l' equazione (6.6):

$$J_{TRAM} = \frac{M_{TRAM} \cdot R_{RUOTA}^2}{N^2} \quad (6.6)$$

Come massa del tram (M_{TRAM}) ho fatto la media tra tram vuoto e tram con il massimo numero di passeggeri dichiarati. Il parametro N indica il rapporto di riduzione applicato dal riduttore tra il numero di giri del motore e il numero di giri delle ruote del tram. Anche per questi calcoli alcuni dati ci sono stati forniti dalla GTT e li riporto in Tabella 13.

M _{TRAM}	35.65·10 ³ kg
M _{TRAM} R _{RUOTA}	0.34 m
Rapporto di riduzione (N)	6

Tabella 13 Valori della massa, raggio della ruota e rapporto di riduzione del tram

In conclusione l'inerzia totale calcolata è pari a 122 kg·m². Dal momento che nel circuito equivalente 1 kg·m² corrisponde ad 1 Farad, la capacità che va a modellizzare l'inerzia totale è pari a 122 Farad

Ho trascurato l'inerzia delle ruote e dell'albero motore perché molto ridotte ed ininfluenti in questo calcolo.

La velocità finale del tram, riportata al motore, l'ho ricavata dal diagramma di moto (riportato in Figura 59) che è presente sul manuale di utilizzo del veicolo che mi è stato fornito dalla GTT.

Da questi grafici ho potuto ricavare i dati iniziali necessari al mio modello. Grazie a questi dati (riportati in Tabella 13) ho potuto calcolarmi la velocità meccanica ω e la velocità riportata al motore come descritto dalle equazioni (6.7) e (6.8).

Velocità finale del tram (v_F)	14,72 m/s
R _{RUOTA}	0.34 m
Rapporto di riduzione (N)	6
Tempo totale	18 s

Tabella 14 Parametri per il calcolo della velocità finale

$$\omega = \frac{v_F}{R_{RUOTA}} = 43.3 \frac{rad}{s} \qquad (6.7)$$

Velocità riportata al motore =
$$\omega \cdot N = 260 \frac{rad}{s}$$
 (6.8)

Siccome nell'equivalente meccanico 1 rad/s corrisponde ad 1 Volt, la tensione finale (dopo un intervallo di 18 secondi, che il tram impiega in fase di accelerazione) misurata dal voltmetro nel punto "Speed" (vedere schema in Figura 58) deve essere pari a 260 V.

Le perdite meccaniche sono riprodotte da una resistenza, nella quale passa una corrente. Questa corrente rappresenta la coppia necessaria per vincere gli attriti meccanici. Il valore di resistenza scelto deriva dalle legge di Ohm (6.9):

$$R = \frac{V}{I} \tag{6.9}$$

Nel modello meccanico la tensione V corrisponde alla velocità meccanica ω riportata al motore, che è stata calcolata precedentemente ed è pari a 260 rad/s. Invece la corrente I, sempre nel modello meccanico, rappresenta la coppia per vincere gli attriti. Come coppia persa a causa di attriti meccanici ho ipotizzato un valore pari all'1% rispetto

alla coppia nominale di avviamento che vale rispettivamente 1275 Nm. Di conseguenza la corrente I ha una valore pari a 12.75 A.

Grazie ai valori di tensione e corrente appena trovati posso facilmente ricavarmi la resistenza precedentemente citata. Tale resistenza ha un valore pari a:

$$R = \frac{V}{I} = \frac{260}{12.75} = 20.4 \ \Omega \tag{6.10}$$

Capitolo 7

Simulazioni

In questo capitolo vado a riportare i risultati che ho ottenuto durante le mie simulazioni. Spiegherò nel dettaglio alcune possibili ipotesi che danno origine alle sovratensioni che sono state registrate in [2] e andrò ad analizzarle per poterle accettare o scartare.

7.1 Simulazioni per identificare le sovratensioni impulsive

In questa prima serie di simulazioni sono andato ad utilizzare il modello della motrice semplificato. Il mio obiettivo è quello di verificare la presenza di sovratensioni di tipo impulsivo all'inizio della fase di frenatura, cioè quando il generatore di corrente inizia ad immettere corrente in rete. Dal momento che la logica interna con cui è comandato il GTO è sconosciuta, come prima ipotesi ho supposto che la causa delle sovratensioni sia dovuta ad un ritardo di comando del GTO di frenatura. Per questa simulazione sono andato ad utilizzare un T_{on} del GTO pari al 100%; questo significa che dopo l'arrivo del segnale di conduzione il GTO conduce in modo continuo.

Il ritardo di chiusura del GTO di frenatura è stato impostato pari a 1 millisecondo. Si vede molto bene nella Figura 60 che il ritardo di chiusura del GTO produce una sovratensione sulla linea. Ottengo una sovratensione di tipo impulsivo che raggiunge un picco di circa 740V con una durata molto limitata. Riporto un ingrandimento della sovratensione per osservare meglio il fenomeno nella Figura 61.

Figura 61 Ingrandimento della sovratensione ottenuta dalla simulazione

Nel grafico riportato in Figura 62 riporto i tempi di comando dell'interruttore di linea, del generatore di corrente di frenatura e del GTO di frenatura. Si osserva che l'interruttore di linea è sempre chiuso: questo significa che la motrice non cambia sezione tra la fase di

accelerazione e quella di frenatura. Con il termine "Generatore di corrente di frenatura" si vuole indicare quando il motore inizia la fase di frenatura e quindi il generatore empirico di corrente del modello in Figura 51 smette di assorbire corrente ed inizia ad erogarla. Nel grafico dei tempi di comando in Figura 62 si vede come il GTO viene comandato con un ritardo di un millisecondo rispetto al generatore di corrente di frenatura.

Figura 62 Tempi di comando interruttori e GTO

Nel grafico riportato in Figura 63 vado a mostrare un confronto tra una sovratensione registrata nella sottostazione Duca d'Aosta e la sovratensione in uscita dal modello di ATP-EMTP. Nel confronto riportato si vede come il ritardo della chiusura del GTO di frenatura può essere una delle possibili cause della presenza di sovratensioni impulsive: infatti non appena il GTO viene comandato e si chiude, la tensione scende quasi istantaneamente e si riporta ai livelli di tensioni ammissibili e non dannosi per i componenti che compongono il circuito elettrico.

Un'altra delle possibili cause che porta alla nascita di sovratensioni di tipo impulsivo è che la tra la fase di accelerazione e quella di frenatura si ha un cambio di zona. Specificatamente il tranviere accelera in una zona, ma poi la fase di frenatura avviene in un'altra tratta. Il GTO si chiude correttamente scaricando la capacità della motrice, ma in questo modo le capacità parassite della linea, che vengono caricate nella fase di accelerazione, dal momento che il tram cambia sezione, non possono scaricarsi tramite la resistenza di frenatura 1R7 e di conseguenza causano una sovratensione. E' un caso molto particolare ma che può accadere durante l'arco della giornata.

Per realizzare questo tipo di prove l' interruttore a valle dei parametri RLC della linea di contatto viene aperto dopo 10 millisecondi dall'inizio della fase di frenatura in modo da scollegare la linea di alimentazione dal modello della motrice. Come si vede nel grafico riportato in Figura 64 anche in questo caso vengono generate delle sovratensioni di tipo impulsivo. A differenza del caso precedente il picco della sovratensione è più elevato, a parità di corrente erogata dal generatore di corrente.

Anche in questo caso riporto (in Figura 65) i tempi di apertura e chiusura degli interruttori in modo da rendere chiara la dinamica di comando degli interruttori.

Figura 65 Tempi di comando degli interruttori

Dal momento che non conosco la capacità della linea, ho simulato le sovratensioni al variare delle capacità parassite della linea. I tempi di comando di apertura e chiusura degli interruttori sono gli stessi riportati in Figura 65. Presento il confronto tra sovratensione impulsive al variare delle capacità parassite nell'ingrandimento del grafico

in Figura 66. Si può notare molto bene che il valore di picco viene raggiunto quasi istantaneamente, mentre il ritorno al valore standard avviene con tempi più lunghi. L'intervallo di durata di questo fenomeno è molto limitato e non supera i 25 millisecondi.

Figura 66 Sovratensione al variare della capacità di linea

Siccome le sovratensioni sono sempre presenti e hanno sommariamente lo stesso andamento al variare della capacità della linea, sono andato ad eseguire una serie di simulazioni dove le capacità parassite della linea sono fisse e pari a 5µF, ma varia il tempo di apertura dell'interruttore. Nel grafico in Figura 67 vado a riportare un confronto delle sovratensioni ottenute al variare del tempo di apertura dell'interruttore che collega la linea alla motrice della serie 5000.

Figura 67 Confronto tra sovratensioni al variare del tempo di apertura dell'interruttore

7.2 Simulazioni per identificare le sovratensioni lunghe

Come precedentemente illustrato la logica di comando del GTO di frenatura è a noi sconosciuta. Se nelle simulazioni precedenti il T_{on} era fisso e pari al 100%, in questa serie di simulazioni vado a comandare il GTO con un segnale ad onda quadra con una frequenza di 1 kHz e un T_{on} pari al 90% del duty-cycle. Lo schema elettrico utilizzato è sempre quello semplificato, i valori di corrente assorbita ed erogata dal generatore che simula la fase di accelerazione e frenatura non sono cambiati.

I risultati ottenuti sono molto diversi rispetto ai precedenti. Infatti a monte del pantografo vado a rilevare una sovratensione "lunga". Questa sovratensione (che si può osservare in Figura 68) raggiunge quasi i 1000 V, ma ha un durata di circa tre secondi. Questo tempo così lungo la rende molto pericolosa, perché questo tipo di sovratensioni ha un contenuto energetico molto elevato che può portare all'esplosione degli scaricatori di sovratensioni installati nella cabine di conversione e alimentazione.

Il risultato in uscita da questa simulazione è compatibile con l'ipotesi che una delle possibili cause delle sovratensioni lunghe è lo scorretto comando del GTO di frenatura. Infatti se vado ad aumentare il T_{on} durante il quale il GTO è chiuso, la sovratensione si riduce notevolmente con benevoli effetti per tutto il sistema elettrico.

Nella Figura 69 vado a riportare un confronto tra la sovratensione "lunga" in uscita dal mio modello e una sovratensione registrata nella cabina Duca d'Aosta. Sebbene la sovratensione in uscita dal mio modello ha un picco leggermente più elevato, il confronto mette in evidenza che la forma d'onda delle due sovratensioni è compatibile.

In Figura 70 sono riportati i tempi di comando dell'interruttore di linea del GTO di frenatura e del generatore di corrente di frenatura. Si può osservare che l'interruttore della linea è sempre chiuso e quindi non vi è un cambio si sezione tra la fase di accelerazione e quella di frenatura. Un'altra cosa importante è che in questa simulazione generatore di corrente e GTO di frenatura entrano in funzione nello stesso istante di tempo e quindi non vi è nessun ritardo fra questi due componenti.

Figura 70 Tempi di comando di interruttori e GTO

Capitolo 8

Conclusioni

Nella prima parte di questo documento ho descritto quali sono le sovratensioni che sono presenti quotidianamente nelle rete tranviaria, distinguendole in sovratensioni impulsive e sovratensioni lunghe. Ho riportato, inoltre, l'analisi che spiega come e quando si verificano durante l'arco della giornata.

Nel capitolo successivo ho illustrato la composizione della rete elettrica tranviaria di Torino, andando a realizzare nel dettaglio tutti gli elementi che la compongono. Dai risultati in uscita dalle simulazioni ottenute possiamo dedurre che i modelli che rappresentano l'intera cabina di trasformazione e conversione sono stati riprodotti in maniera corretta ed accurata, in quanto i valori di tensione simulata sono molto simili ai valori di tensione registrate nelle cabine fisiche. Successivamente ho spiegato come ho realizzato il modello semplificato e completo della motrice serie 5000. Ho illustrato anche come mi sono ricavato tutti i parametri per poter modellare e calibrare il modello equivalente meccanico.

Infine nella parte conclusiva di questo studio ho descritto come si sono verificate alcune ipotesi che possono dare origine alle sovratensioni. Le sovratensioni di tipo impulsivo possono essere causate da un ritardo di comando del GTO di frenatura o da un cambio di sezione tra la fase di accelerazione e quella di frenatura. Invece per quanto riguarda le sovratensioni di tipo lungo la loro origine può essere ricondotta ad un duty-cycle di comando troppo piccolo ed una possibile soluzione è quella di aumentare l'intervallo (T_{on}) di conduzione del GTO di frenatura.

In questa tesi il mio lavoro si è concentrato sulle simulazioni con il modello semplificato, perché durante lo studio ho trovato delle difficoltà nella realizzazione del modello completo del motore partendo dal circuito preciso di GTT, dal momento che senza conoscere la logica di controllo del GTO di frenatura e senza eseguire le adeguate misure di corrente e tensione all'interno della motrice in funzione risulta difficile, se non impossibile, controllare i componenti. Inoltre durante la fase di studio è emersa la necessità di eseguire delle misure mirate per le correnti di eccitazione e di armatura del motore del modello 5000, in modo da comprendere al meglio come e quando entra in

funzione il GTO che controlla lo shuntaggio del campo motore ed il conseguente deflussaggio. Diversamente risulta molto difficile poter eseguire questo tipo di controllo.

8.1 Sviluppi futuri

Per il proseguimento del lavoro in prima battuta sono necessarie delle misurazione interne alla motrice serie 5000 per comprendere come viene controllato il GTO di frenatura e come variano all'interno, non solo al pantografo, ma anche all'interno della motrice stessa, in modo particolare sull'armatura e sull'avvolgimento di eccitazione. In questo modo è possibile controllare al meglio le fasi di accelerazione e frenatura del tram.

Ringraziamenti

Ringrazio sinceramente il professor Enrico Pons e il professor Pietro Colella, relatori di questa tesi di laurea per tutto l'aiuto fornitomi durante la realizzazione dei modelli e per l'enorme pazienza e disponibilità nei miei confronti.

Desidero inoltre ringraziare la mia famiglia per il sostegno, sia morale che economico, durante tutto il periodo di studi. Un ringraziamento particolare va ad Arianna e a mia zia Giusy per i loro preziosi consigli.

Elenco delle tabelle

Tabella 1 Dati di targa del raddrizzatore	8
Tabella 2 Dati scaricatori di tensione	15
Tabella 3 Parametri linea in cavo MT	61
Tabella 4 Valori delle prove in cortocircuito	62
Tabella 5 Valori delle prove a vuoto	62
Tabella 6 Parametri filtri	65
Tabella 7 Parametri linea di contatto	68
Tabella 8 Valori dei parametri del modello semplificato	69
Tabella 9 Valori delle variabili utilizzate per motrice serie 5000	72
Tabella 10 Valori dei componenti del filtro del motore	76
Tabella 11 Valori di coppia e corrente all'avviamento	80
Tabella 12 Valori della massa e del raggio del motore	80
Tabella 13 Valori della massa, raggio della ruota e rapporto di riduzione del tram	81
Tabella 14 Parametri per il calcolo della velocità finale	81

Elenco delle figure

Figura 1: Sviluppo delle rete tranviaria torinese	7
Figura 2 Schema generale della sottostazione Trapani	. 10
Figura 3 Pannello positivo della SSE Trapani	. 11
Figura 4 Dati di targa dell'interruttore IR600	. 11
Figura 5 Pannello negativo della SSE Trapani	. 12
Figura 6 Binari con traverse ben visibili	. 13
Figura 7 Linee aeree con tiranti	. 14
Figura 8 Serie 2800	. 17
Figura 9 Serie 5000	. 18
Figura 10 Schema di potenza motrice 5000	. 20
Figura 11 Schema di potenza motrice 5000-Particolare azionamento cassa A	. 24
Figura 12 Serie 6000	. 25
Figura 13 Schema fusibile delle serie 6000	. 25
Figura 14 Esempio di scaricatore esploso	. 28
Figura 15 Schema semplificato dell'alimentazione della zona delle misure	. 29
Figura 16 Esempio di sovratensione di tipo impulsivo	. 29
Figura 17 Esempio di sovratensione di tipo lungo	. 30
Figura 18 Statistica oraria	. 31
Figura 19 Istogramma delle occorrenze dei picchi	. 31
Figura 20 Diagramma giornaliero dei picchi	. 32
Figura 21 Occorrenze delle durate	. 32
Figura 22 Diagramma orario delle durate	. 33
Figura 23 Statistica combinata di picchi e durate	. 34
Figura 24 Percorso marcia e frenatura	. 37
Figura 25 Logica del software	. 39
Figura 26 Logica dettagliata del software	. 40
Figura 27 Struttura funzionale del programma	. 41
Figura 28 Dettaglio di rete vicino al nodo 1	. 42
Figura 29 Interfaccia ATPDraw	. 45
Figura 30 Editor ATP	. 47
Figura 31 Esempio di LIS file	. 48
Figura 32 Interfaccia <i>PlotXY</i>	. 50
Figura 33 ATPDraw Settings: Simulation	. 51
Figura 34 ATPDraw Settings: <i>Output</i>	. 52
Figura 35 ATPDraw Settings: Variables	. 53
Figura 36 Finestra di dialogo del trasformatore BCTRAN	. 54
Figura 37 Finestra di dialogo del modello UM8	. 55

Figura 38 Interfaccia per l'introduzione dei parametri	57
Figura 39 Generatore pilotato	. 58
Figura 40 Schema elettrico cabina tipo	60
Figura 41 Trasformatore trifase	61
Figura 42 Tensioni in uscita dal secondario	62
Figura 43 Confronto fra tensioni	63
Figura 44 Diodo reale utilizzato	63
Figura 45 Doppio ponte di Graetz	64
Figura 46 Filtro in uscita dal raddrizzatore	65
Figura 47 Tensioni secondario con raddrizzatore in funzione	66
Figura 48 Tensione a valle dei filtri	67
Figura 49 Confronto tra tensione simulata e tensione reale misurata	67
Figura 50 Modello equivalente linea di contatto	. 68
Figura 51 Modello semplificato della motrice serie 5000	. 70
Figura 52 Modello equivalente della motrice serie 5000	.73
Figura 53 Percorsi della corrente in marcia e frenatura	.74
Figura 54 Possibili configurazioni in marcia e in frenatura per motrici serie 5000	. 75
Figura 55 Sistema di controllo	. 77
Figura 56 Modello elettrico equivalente	. 78
Figura 57 Particolare che mostra dove è prelevata la corrente d'eccitazione	. 79
Figura 58 Modello meccanico equivalente	.79
Figura 59 Diagramma di moto motrice serie 5000	. 82
Figura 60 Sovratensione ottenuta dalla simulazione	. 85
Figura 61 Ingrandimento della sovratensione ottenuta dalla simulazione	. 85
Figura 62 Tempi di comando interruttori e GTO	. 86
Figura 63 Confronto tra sovratensioni di tipo impulsivo	. 87
Figura 64 Sovratensione all'apertura dell'interruttore	. 88
Figura 65 Tempi di comando degli interruttori	. 88
Figura 66 Sovratensione al variare della capacità di linea	. 89
Figura 67 Confronto tra sovratensioni al variare del tempo di apertura dell'interruttore	90
Figura 68 Esempio di sovratensione lunga	91
Figura 69 Confronto tra sovratensioni di tipo lungo	. 92
Figura 70 Tempi di comando di interruttori e GTO	. 92

Bibliografia

[1] Pons E., La sicurezza elettrica delle persone nei sistemi di alimentazione della rete tranviaria torinese, Tesi di dottorato, Politecnico di Torino, Torino, 2008

[2] Sinatra R., Le motrici in servizio sulla rete tranviaria torinese: prestazioni e criticità, Tesi di Laurea, Politecnico di Torino, Torino, 2018

[3] Aral S., Perfezionamento e validazione sperimentale delle tarature delle protezioni per la rete tranviaria torinese, Tesi di Laurea, Politecnico di Torino, Torino, 2018

[4] Scolamiero F., Ottimizzazione dei sistemi di protezione della rete tranviaria torinese, Tesi di Laurea Magistrale, Politecnico di Torino,2016

[5] Bramardi L., Studio sperimentale delle correnti ordinarie e di guasto nella rete tranviaria torinese per l'ottimizzazione delle protezioni, Tesi di Laurea Magistrale, Politecnico di Torino 2017.

[6] Electromagnetic Transients Program Theory Book, Professor Hermann W. Dommel & all, July 1994.

[7] Electromagnetic Transients Program Rule Book. Bonneville Power Administration, Portland, Oregon, April 1982

[8] Motrici tranviarie a pavimento ribassato, Descrizione e norme di guida

[9] D.Paul, "Light rail transit DC traction power system surge overvoltage protection"

IEEE Trans. on Industry Applications, Vol. 38, No. 1, pp. 21-28, Jan./Feb. 2002

[10]Maxime Berger, Jean-Pierre, CarlLavertu, Ilhan Kocar, Jean Mahseredjian, Daniele Ferrara "Modeling, Simulation, and Testing of Switching Surge Transients in Rapid Transit Vehicles DC Power Systems" IEEE Trans. on Industry Applications, Vol. 54, No. 1, Jan./Feb 2018

[11]Enrico Pons, Riccardo Tommasini, Pietro Colella, "Fault Current Detection and dangerous Voltages in DC Urban Rail Traction Systems", IEEE Trans. on Industry Applications, Vol. 53, No. 4, Jul./Aug. 2017

[12] Enrico Pons, Pietro Colella, R. Rizzoli, "Overvoltages in DC Urban Light Railway Systems: Statistical Analysis and Possible Causes", IEEE Trans. on Industry Applications, Torino,2018

Allegato A

Dati di targa del trasformatore

0.000. 41260511 Chiassa Sape	DO C LAA. (- C.C.LAA. (eriore (Ar) Its	S AR) N ^o 73343		SPETT.LE	Corso T Torino 10128 Telefono	TO 11 5764	6	Fax	011 5764330
-Mail: tesarcom@	Fax +39 0579 Strafo.it http:	(www.trafo.it		01220	5/01/0	01			IEC 60076-1 IEC 60076-3
vs. Riferin	mento	Riferimento Ord	ine		DATI OF	RDINE	MAN DERCE		Data
Numero di Si	erie I	Codice Articolo	DA Fasi		ATORE	t] Altitudio	[m] CL	Ambientale	Raffreddamente
012205/0	1/01	TRP-0005-242	500 3	7900	50	100	DE	2-C2-F1	AN
Potenza Nomi	nale [kVA]			Alta te	insione		E	assa ter	nsione
2.20	00	Potenza {kV/	4]	2.200,0	(Charles and Charles and Charl	TRANSPORT OF	1.140,0	1.140	0,0
3		Tensione [V]		22.000	El Stander		470	470	
Conduttore		Regolazione	(+	57,74 2)(-4) x 2.5%	THE REAL	the proved	1.400,38	1.400,	,38
√ AL	Cu	Collegament	0	Tria	ngolo	Contraction of Contraction	e official states of the	stella/tria	angolo
		Gruppo Vetto Sovratemper	atura [K]	et : % - ;	THE SHARES	Dy11 /	Dd()	ENGLASSIO.	CONCRETE CARDON OF THE
	and the second second	Nucleo	75	80			80	新科学	Salat State and and
	Uvello	Tensione Ma	x [kV]	24,00			3,60	La constantino	and all and a second
	Isolament	Applicata [k\ Impulso [kV]		50			10,0	SHIP AND	Polar President Constant
		Bashanaha ala	AN DESCRIPTION	GARANZI				- Annon	Separate Sector Sector
and shares the second	Po [W	Pcc [W]	Po+Pcc [W]	Vcc [%]	10 [%]	S.par.[pC]	1 million and	and the second second	And the second second second
aranoco olleranza [%]	3.000	25.000	28.000	- Lange of the second	0,7	<10	1		
an und be	the second state of the second	25 701	28,630	BARKERSKEN	0,32				
viazione (%)	2.839	3.16	3.75	BERTANDERS CRAMERS	-54 20				
surato sviazione [%]	-5,37	3,16	2,25		-54,29				
PROV	2.839 -5,37 A TENSIO	3,16 NE APPLICAT	2,25	PROVA TENSI	-54,29	ATTO	RE	NDIMEN	ITO [%]
PROV/ Efficace [1 AT verso	2.839 -5,37 A TENSIO kV] Corr o bt a terra	3,16 NE APPLICAT etto [kV] Altru	2,25	PROVA TENSI	-54,29 IONE IND 94		RE Carico (%) 100	NDIMEN Cosfi' = 1 98.41	ITO [%] 0.8 Cosfi'=1 0 98.72
PROV Efficace [1 AT verso .1 50	2.839 -5,37 A TENSIO kV] Com o bt a terra	3,16 NE APPLICAT etto [kV] 50	2,25 A dine (m) 1000	PROVA TENSI V2 [V] Frequenza[H Tempo [s]	-54,29 IONE IND 94 2] 10	ATTO 0 0	RE Carico (%) 100 75	NDIMEN Cosfi' = 1 98,40 98,70	ITO [%] 0.8 Cosh'=1 0 98,72 0 98,96
PROV Efficace [%] AT verse 1 50 bt verse 2 10	2.839 -5,37 A TENSIO kV] Corro o bt a terro o At a terro	3,16 NE APPLICAT etto [kv] 50 10	2,25 A rdine [m] 1000 o (s) 60	PROVA TENSI V2 [V] Frequenza[Hi Tempo [s]	-54,29 IONE IND 94 2] 10 60		RE Carico (%) 100 75 50 C.d.L.a.Co	NDIMEN Cosfi"=1 98,40 98,70 98,90	TO [%] 0.8 Cosh'=1 0 98,72 0 98,96 6 99,16
2viazione (%) PROV/ Efficace () AT versu .1 50 bt versu 2 10 3	2.839 -5,37 A TENSIO kV] Corr o bt a terra o At a terra	25/91 3,16 NE APPLICAT etto [kV] 50 10	2,25 A dine (m) 1000 o (s) 60	PROVA TENSI V2 [V] Frequenza[H] Tempo [s]	-54,29 IONE IND 94 z] 10 60	OTTA 0 0	RE Carico (%) 100 75 50 C.d.t. a Co C.d.t. a Co	NDIMEN Cosfi'=1 98,40 98,70 98,90 sti'=0.8 (%) cosfi'=1(%)	ITO [%] 0.8 Cosfi = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38
2viazione [%) PROV/ Efficace [AT versu 1 50 bt versu 2 10 3	2.839 -5,37 A TENSIO kV] Corr o bt a terra o At a terra	23,16 NE APPLICA1 etto [kV] 50 10 Temp	2,25 A dine (m) 1000 o (s) 60	PROVA TENSI V2 (V) Frequenza(H Tempo [s]	-54,29 IONE IND 94 z] 10 60	0 0 0	RE Carico (%) 100 75 50 C.d.t. a Co C.d.t. a Co	NDIMEN Cosfi = 1 98,40 98,70 98,90 csfi = 0.8 (%) Cosfi = 1(%)	ITO [%] 0.8 Cosfi = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38
2 10 2 10 2 10 2 10 2 10 2 10 2 2 10 2 2 10	2.839 -5,37 A TENSIO kV] Com o bt a terra	25/91 3,16 NE APPLICAT etto [kv] 50 10 10 10 M	2,25 (A) deline (m) 1000 o (s) 60 ISURA DEL F	PROVA TENSI V2 (V) Frequenza(H: Tempo (s)	-54,29 IONE IND 2] 94 2] 10 60 TRASFOR	OTTA	RE 2010 (%) 100 75 50 C.d.t. a Co C.d.t. a Co	NDIMEN Cosfi = (98,4(98,7(98,9(98,9(sti = 0.8 (%) cosfi = 1(%)	ITO [%] 0.8 Cosfi =1 0 98,72 0 98,96 6 99,16 1 17,12 4,38
eviazione [%] PROV/ Efficace [1 AT vers: 1 50 bt vers: 2 10 3 Reg	2.839 -5,37 A TENSIO kV] Corr o bt a terra o bt a terra o At a terra Tensione	25/97 3,16 NE APPLICAT etto [kv] 50 10 Temp 10 MAT [V] Tensione	2,25 (A 1000 0 (s) 60 ISURA DEL F BT [V] Pos.Co	PROVA TENSI V2 (V) Frequenza[H. Tempo [s] KAPPORTO DI mm. Calcolato	-54,29 IONE IND 2] 10 60 TRASFOR	POTTA	RE Carico (%) 100 75 50 C.d.t.a Co C.d.t.a Co C.d.t.a C	NDIMEN Cosfi = 1 98,4(98,7(98,9(51;-0.8 (%) cosfi = 0.8 (%)	ITO [%] 0.8 Cosff = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38 Err.% max
Suracione [%] PROV/ Efficace [%] AT verse .1 50 bt verse 2 2 10 3 Reg -4 V.1/V.3	2.839 -5,37 A TENSIO kV] Com o bt a terra o At a terra Tensione 2	23,797 3,16 NE APPLICAT etto [kV] 50 10 10 M. AT [V] Tension Dd0 0.240	2,25 A ddine [m] 1000 o [s] 60 ISURA DEL F BT [V] Pos.Co 470	PROVA TENSI V2 (V) Frequenza[H. Tempo [s] tAPPORTO DI mm. Calcolato 43.064	-54,29 IONE IND 2] 100 50 TRASFOR	RMAZIONE	RE 2arico [%] 100 75 50 C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co 2.45 V(2) 2.45 V(2) 2.45 V(2) 2.45 V(2) 2.45 V(2) 2.45 V(2) 2.45 V(2) 2.45 V(2) 2.45 V(2) V(2) V(2) V(2) V(2) V(2) V(2) V(2)	NDIMEN Cosfi = 1 98,4(98,7(98,90 stf = 0.8 (%) cosfi = 1(%) 1051V/22 43	ITO [%] 0.8 Cosfi = 1 0 98,72 0 98,96 99,16 99,16 1 17,12 4,38 Err.% max UDEV 0.316
Suracione [%] PROV/ Pficace [i AT versi .1 50 bt versi 50 2 10 3 Reg -4 V.1/V.3	2.839 -5,37 A TENSIO kV] Com o bt a terra o bt a terra o At a terra Tensione 2	23,797 3,16 NE APPLICAT Alteru 50 10 10 M. AT (V) Tensione 10 0.240 DV11	2,25 A dine (m) 1000 o (s) 60 ISURA DEL F BT [V] Pos.Co 470	PROVA TENSI V2 (V) Frequenza[H: Tempo [s] CAPPORTO D1 mm. Calcolato 43,064	-54,29 IONE IND 2] 10 50 TRASFOI 10517/61 43	OTTA	RE 2arico [%] 100 75 50 C.d.t.a Co C.d.t.a Co C.d.t.a Co V/2V/2V 43,2000 W/2V/2N	NDIMEN Costi = 1 98,40 98,70 98,70 (199,8,90 (199,10) (19	ITO [%] 0.8 Cosfi = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38 Err.% max USEN
Suracione PROV/ PROV/ Efficace [1 AT verse 1 AT verse 1 SURACIONARY 10 Reg -4 -4 V.1/V.3 +2 V.1/V.2 +1 V.1/V.2	2.839 -5,37 A TENSIO kV] Com o bt a terra o bt a terra o At a terra Tensione 2 2 2	23,791 3,16 NE APPLICA 1 50 10 10 MAT [V] Tensione 100 0.240 0711 2.880 2.440	2,25 A adine (m) 1000 o (s) 60 ISURA DEL I BT [V] Pos.Co 470 470	PROVA TENSI V2 (V) Frequenze(H) Tempo [s] VAPPORTO D1 mm. Calcolato 43,064 84,318	-54,29 IONE IND 2] 10 60 TRASFOI IUEIV/2] 43 IUEIV/2] 84	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico (%) 100 75 50 C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co V. 200 V 200 84,4800 84,4800	NDIMEN Cosfi = 1 98,40 98,90 (sfi = 0.8 (%) cosfi = 1(%) 105-107/22 43 4195107-1 84	ITO [%] 0.8 Cosfi = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38 Err.% max USIN 3,2000 0,316 VISIN 4,4800 0,192
Suracione [%] PROV/ PROV/ Efficace [i AT verse 0 bt verse 0 2 10 3 0 PROV/ Efficace [i 4 V.1/V.3 +2 V.1/V.2 +1 V.1/V.2 0 V.1/V.2	2.839 -5,37 A TENSIO kV] Com o bt a terra o bt a terra o At a terra Tensione 2 2 2 2 2 2	23,797 3,16 NE APPLICA 1 50 10 10 MAT [V] Tensione 100 0.240 DV11 2.880 2.440 2.000	2,25 A rdine [m] 1000 o (s) 60 ISURA DEL H BT [V] Pos.Co 470 470 470 470 470	PROVA TENSI V2 (V) Frequenza(H Tempo [s] VAPPORTO D1 mm. Calcolato 43,064 84,318 82,696 81,075	-54,29 IONE IND 2] 10 60 TRASFOI IUSIV/2] 43 IUSIV/2] 84 82 81	OTTA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico (%) 100 75 50 C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co V/2V/2N 43,2000 V/2V/2N 84,4800 82,9600 81,2200	NDIMEN Costi = 1 98,41 98,71 98,91 98,91 551 = 0.8 (%) 551 = 1(%) 10-11/2 43 100-11/2 4 100-11/2 4 100-11/2 4 100-11/2 4 100-11/2 4 100-11/2 4 100-10/2 4 100-10/2 4 100-10/2 4 100-10/2 100-100-100-100-100-100-100-100-100-100	ITO [%] 0.8 Cosfi = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38 Err.% max US-VI 3,2000 0,316 VJSIN 4,4800 0,192 2,9600 0,319
Suracione [%] PROV/ PROV/ Efficace [1 AT verse Dt verse 1 50 bt verse Dt verse 2 10 3 - Reg - +2 V.1/V.3 +2 V.1/V.2 +1 V.1/V.2 0 V.1/V.2 -1 V.1/V.2 2 2	2.839 -5,37 A TENSIO kV] Corro o bt a terra o bt a terra o At a terra Tensione 2 2 2 2 2 2 2 2 2 2 2	23,797 3,16 NE APPLICA 1 50 10 10 Temp 10 Temp 10 0,240 0,240 0,240 0,240 0,240 0,240 0,240	2,25 A pdine [m] 1000 o (s) 60 ISURA DEL F BT [V] Pos.Co 470 470 470 470 470 470	PROVA TENSI V2 [V] Frequenze[H Tempo [s] XAPPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453	-54,29 IONE IND 2] 10 60 TRASFOI 50517/41 43 50517/41 84 81 81 79	00TTA 000 000 000 000 000 000 000 000 00	RE Carico (%) 100 75 50 C.d.t. a Co C.d.t.	NDIMEN Costi = 1 98,4(98,7(98,9(98,9(98,9(10,1)) costi = 1(%) 10510//2 43 10510//1 84 84 82 81 79	UTO [%] 0.8 Cosfi = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38 Err.% max UEX 3,2000 0,316 X/85 3,4800 0,192 2,9600 0,315 3,200 0,175 9,7100 0,323
Suriazione [%] PROV/ PROV/ Efficace [i AT verse AT verse 1 50 bt verse 10 3 10 4 V.1/V.3 +2 V.1/V.2 +1 V.1/V.2 0 V.1/V.2 -1 V.1/V.2 -2 V.1/V.2 -3 V.1/V.2	Z.839 -5,37 A TENSIO kV] Corro o bt a terra o At a terra Tensione 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25/97 3,16 NE APPLICA 10 10 Temp 10 Temp 10 0/11 2.880 2.440 2.000 1.120 0.680	2,25 A poine (m) 1000 o (s) 60 ISURA DEL F BT [V] Pos.Co 470 470 470 470 470 470 470 470	PROVA TEN53 V2 [V] Frequenza[H: Tempo [s] XAPPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453 76,310	-54,29 IONE IND 2] 10 60 TRASFOI 10517/41 43 10517/41 84 82 81 79 78 79 78	DOTTA 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico (%) 100 75 50 C.d.t. a Co C.d.t.	NDIMEN Costi = 1 98,4(98,7(98,9(sti = 0.8 (%) costi = 1(%) 40510//1 84 82 81 84 82 81 79 78	ITO [%] 0.8 Cosfr = 1 0 98,72 0 98,96 99,16 17,12 1 17,12 4,38 Err.% max US-VM 0,316 2,9600 0,316 2,9600 0,316 1,2200 0,179 2,7100 0,323 3,0700 0,306
Surial PROV/ PROV/ Efficace [1 AT verse 1 S0 bt verse 1 50 bt verse 10 3 10 4 V.1/V.3 +2 V.1/V.2 +1 V.1/V.2 -4 V.1/V.2 -1 V.1/V.2 -2 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2	2.839 -5,37 A TENSIO kV] Corro o bt a terro o bt a terro Tensione 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23,797 3,16 NE APPLICA 1 50 10 10 10 10 10 10 10 10 10 10 10 10 10	2,25 A rdime (m) 1000 o (s) 60 ISURA DEL F BT [V] Pos.Co 470 470 470 470 470 470 470 470	PROVA TENS3 V2 [V] Frequenze[H: Tempo [s] XAPPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453 79,453 77,832 76,210 74,589	-54,29 IONE IND 944 2] 100 60 TRASFOR FUELV/2] 43 FUELV/2] 43 FUELV/2] 43 FUELV/2] 43 FUELV/2] 43 FUELV/2] 43 FUELV/2] 43 FUELV/2] 43 FUELV/2] 43 FUELV/2] 43 FUELV/2] 44 FUELV/2] 44 FUELV/2] 44 FUELV/2] 44 FUELV/2] 44 FUELV/2] 45 FUELV/2] 75 FUEL	00TTA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico (%) 100 75 50 C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co 84,4800 81,2200 79,7100 76,4800 74,8800 74,8800	NDIMEN Costi = 1 98,44 98,97 98,97 98,97 98,97 98,97 40 40 40 40 40 40 40 40 40 40 40 40 40	ITO [%] 0.8 Cosff = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38 Err.% max USVI 3,2000 0,316 VISINI 4,4800 0,192 2,9600 0,315 3,2200 0,315 3,2200 0,179 3,2100 0,323 3,0700 0,306 3,036 3,4800 0,354 3,4800 0,350 3,4800 0,350 3,4800 0,350
Suriadone (%) PROV/ PROV/ Efficace () AT verse 0 1 50 bt verse 1 2 10 3 1 4 V.1/V.3 +2 V.1/V.2 +1 V.1/V.2 -1 V.1/V.2 -2 V.1/V.2 -3 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2	2.839 -5,37 A TENSIO kV] Corr o bt a terra o At a terra Tensione 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23,74 3,16 NE APPLICAT etto [kV] 50 10 Temp 10 M. AT [V] Tensione Dd0 0,240 DV11 2.880 2.440 2.000 1.560 1.120 0.680 0.240 MISI	2,25 A dine (m) 1000 o (s) 60 15URA DEL F 67 67 470 470 470 470 470 470 470 47	PROVA TENS3 V2 (V) Frequenza(H. Tempo [s] XAPPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453 77,832 76,210 74,589 RESISTENZA (-54,29 IONE IND 944 2] 100 500 500 500 500 500 500 500 500 500	DOTTA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico [%] 100 75 50 C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co 20 20 20 20 20 20 20 20 20 20	NDIMEN Costi = 1 98,94 98,97 98,97 98,97 98,97 98,97 43 10517/2 10517/2 1000000000000000000000000000000000000	ITO [%] 0.8 Cosf = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38 Err.% max UEVM 3,2000 0,316 W/SNI 4,4800 0,192 2,9600 0,319 1,2200 0,179 9,7100 0,323 3,0700 0,306 5,4800 0,354 3,8800 0,390
Suracione [%] PROV/ Efficace [] AT verse .1 50 bt verse 50 2 10 3	2.839 -5,37 A TENSIO kV] Corro o bt a terra o At a terra 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23,16 NE APPLICA1 etto [kV] 50 10 Altru Temp 10 M At [V] Tensione 100 0,240 0,240 0,240 0,240 MISI TENSIONE	2,25 (A idine (m) 1000 o (s) 60 ISURA DEL F BT (V) Pos.Co 470 470 470 470 470 470 470 470	PROVA TENS3 V2 (V) Frequenza[H. Tempo [s] EAPPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453 77,832 76,210 74,589 EESISTENZA (C Temp. [°C]	-54,29 IONE IND 944 2] 100 60 TRASFOI FUELV/F1 43 FUELV/F1 84 84 81 79 78 76 74 20 81 84 81 84 84 81 79 78 76 74	DOTTA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico [%] 100 75 50 C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co 20 20 20 20 20 20 20 20 20 20	NDIMEN Costi = 1 98,94 98,97 98,97 98,97 98,97 98,97 10,97 40 40 40 40 40 40 40 40 40 40 40 40 40	ITO [%] 0.8 Cosf = 1 0 98,72 0 98,96 99,16 99,16 1 17,12 4,38 4,38 Err.% max 10,200 0,316 12,200 0,316 1,2200 0,315 3,0700 0,306 5,4800 0,354 3,8800 0,390
Suracione [%] PROV/ efficace [i AT verse .1 50 bt verse 50 2 10 3	2.839 -5,37 A TENSIO kV] Com o bt a terra o bt a terra o At a terra 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23,797 3,16 NE APPLICA SO Temp 10 M AT [V] Tensione DV1 2.440 2.440 2.440 2.440 2.440 2.440 2.440 2.440 2.440 2.440 MISI TENSIONE Shunk Ka = 0000000000000000000000000000000000	2,25 (A dine (m) 1000 o (s) 60 ISURA DEL F BT (V) Pos.Co 470 470 470 470 470 470 470 470	PROVA TENSI V2 (V) Frequenza[H. Tempo [s] APPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453 77,832 76,210 74,589 EESISTENZA (C Temp. (°C) 24,9	-54,29 IONE IND 944 2] 100 60 TRASFOI FUELV/FI 43 FUELV/FI 84 84 81 79 78 76 74 9 EGLI AV	OTTA 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico [%] 100 75 50 C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co 200 201 201 201 201 201 201 201	NDIMEN Cost = (98,97 98,97 98,97 98,97 98,97 98,97 (98,97 4 10010/1 84 82 81 84 82 81 79 78 87 6 74 510NE Ka = (74	ITO [%] 0.8 Cosfi = 1 0 98,72 0 98,96 99,16 99,16 1 17,12 4,38 4,38 Err.% max 0,2000 0,316 1,2200 0,316 1,2200 0,316 3,4800 0,192 2,9600 0,316 5,7100 0,323 3,0700 0,306 5,4800 0,354 3,8800 0,390
Suracione [%] PROV/ efficace [%] AT verse AT verse 1 50 bt verse 2 10 3 3 -4 V.1/V.3 +2 V.1/V.2 -1 V.1/V.2 -2 V.1/V.2 -3 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2 V.1/V.2 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2 -5 V.1/V.2 -6 V.1/V.2 -7 V.1/V.2 -8 V.1/V.2 -9 V.1/V.2	2.839 -5,37 A TENSIO kV] Com o bt a terra o At a terra 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23,791 3,16 NE APPLICA Alteru 50 10 10 MAT [V] Tensione 10 MAT [V] Tensione 10 0,240 0,240 0,240 0,240 1,500 1,120 0,680 0,240 MISI TENSIONE Shunt Ka ± (0,15V=40,00 Curr.[V]	2,25 (A dine (m) 1000 o (s) 60 ISURA DEL F BT [V] Pos.Co 470 470 470 470 470 470 470 470	PROVA TENS3 V2 (V) Frequenza[H: Tempo [s] CAPPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453 77,832 76,210 74,589 ESISTENZA (Temp. [*C] 24,9	-54,29 IONE IND 944 2] 100 60 TRASFOI 10517/A1 43 10517/A1 84 84 82 81 79 78 76 74 9 28 76 74 9 9 78 76 74	OTTA 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico [%] 100 75 50 C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co 200 200 200 200 200 200 200 20	NDIMEN Cost = 98,4(98,97 98,97 98,97 98,97 98,97 10,97 43 10,07 43 10,07 43 10,07 43 10,07 43 10,07 43 10,07 43 10,07 43 10,07 43 10,07 74 510NE Ka = 74 510NE Ka = 74 10,07 74	ITO [%] 0.8 Cosfi = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38 Err.% max
Suriazione [%] PROV/ PROV/ Efficace [1 AT verse bt verse 1 50 bt verse 10 3 3 Reg	2.839 -5,37 A TENSIO kV] Com o bt a terra o At a terra o At a terra 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23,797 3,16 NE APPLICA Altru 50 10 Temp 10 0,10 0,10 0,10 10 0,240 0,11 0,00 1,20 0,240 0,240 0,120 MISI TENSIONE Shunt Ka = 0,0742	2,25 A rdine [m] 1000 o (s) 60 ISURA DEL F BT [V] Pos.Co 470 470 470 470 470 470 470 470	PROVA TENS: V2 (V) Frequenza[H: Tempo [s] CAPPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453 77,832 76,210 74,589 RESISTENZA (Temp. [*C] 24,9	-54,29 IONE IND 944 2] 10 60 TRASFOI 10517/61 43 10517/61 84 82 81 79 76 76 76 74 PEGLI AV V2 2U-2V	OTTA 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico [%] 100 75 50 C.d.t. a Co C.d.t.	NDIMEN Cost = 98,4(98,97 98,97 98,94 98,97 98,97 10,9	ITO [%] 0.8 Cosfi = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38 Err.% max IDEW 3,2000 0,316 1,2200 0,316 1,2200 0,315 1,2200 0,179 3,7100 0,325 5,7700 0,306 5,4800 0,350 K[Ohm] = Kv/Ka = 0,010 R[Ohm] 0,001033
Suriazione [%] PROV/ PROV/ Efficace [1 AT verse bt verse 1 50 bt verse 10 3 3 Reg	2.839 -5,37 A TENSIO kV] Com o bt a terra o bt a terra o At a terra 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25/97 3,16 NE APPLICA Altru 50 10 Temp 10 10 10 10 10 10 10 10 10 10	2,25 A dine [m] 1000 o (s) 60 ISURA DEL 5 BT [V] Pos.Co 470 470 470 470 470 470 470 470	PROVA TENS3 V2 (V) Frequenza[H: Tempo [s] CAPPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453 77,832 76,210 74,589 RESISTENZA (Tempo (°C) 24,9 25	-54,29 IONE IND 944 2] 10 60 TRASFOI FUELVAI 43 FUELVAI 84 82 81 79 78 76 74 PEGLI AV V2 2U-2V 2V-2V 2V-2V 2V-2V 2V-2V 2V-2V 2V-2V	OTTA 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico [%] 100 75 50 C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co Corsetti W/2V/51W 43,2000 W/2V/51W 43,2000 S1,2200 81,2200 79,7100 78,0700 76,4800 74,8800 74,8800 TT ISA/0,15 Curr.	NDIMEN Cost = 98,4(98,7) 98,9) (ft =0.8 (%) 3001 = 1(%) 10510/2 43 100510/2 84 82 81 84 82 81 84 82 81 84 82 81 84 82 81 79 9 78 76 74 85 510NE Ka = 90,0462 0,0462 0,0513 0,0462	ITO [%] 0.8 Cosfi = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38 Err.% max UEX 4,4800 0,192 2,9600 0,316 1,2200 0,316 1,2200 0,315 3,7100 0,323 3,0700 0,306 5,4800 0,354 5,4800 0,390 5,4800 0,000 5,4800 0,000 5,48
Reg Reg Reg -4 V.1/V.2 +1 V.1/V.2 +2 V.1/V.2 +1 V.1/V.2 +2 V.1/V.2 -1 V.1/V.2 -1 V.1/V.2 V.	2.839 -5,37 A TENSIO kV] Como o bt a terra o bt a terra o At a terra 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23/91 3,16 NE APPLICA AT [V] Altru 50 10 10 10 10 10 10 10 10 10 1	2,25 A dime (m) 1000 o (sl 60 ISURA DEL F BT [V] Pos.Co 470 470 470 470 470 470 470 470	PROVA TENSI V2 (V) Frequenza[H: Tempo [s] APPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453 77,832 76,210 74,589 RESISTENZA (Temp. (*C) 24,9	-54,29 ONE IND 944 2] 10 60 TRASFOI 10517/61 43 10517/61 10577/61 105777/61 105777/61 10577/61 105777/61 10577/61 10577/61 10577/61 105	OTTA 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico [%] 100 75 50 C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co C.d.t. a Co Corsetti W/2V/51W 43,2000 W/2V/51W 43,2000 W/2V/51W 43,2000 V/2V/51W 54,4800 79,7100 76,4800 74,8800 75,010,000 75,0000000000000000000000000000000	NDIMEN Cost = 98,4(98,7(98,9) (dr = 0.8 (%) 30dr = 1(%) 43 40/310/4 84 82 81 84 84 82 81 79 9 78 76 74 510NE Ka = V = 100 (V) 0,0462 0,0513 0,0516	ITO [%] 0.8 Cosfi = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38 Err.% max US-VI 3,2000 0,316 1,2200 0,192 2,9600 0,319 2,9600 0,319 3,2000 0,319 3,2700 0,323 3,0700 0,306 5,4800 0,354 4,8800 0,390 K[Ohm] = Kv/Ka = 0,010 R[Ohm] 0,001033 0,001026 0,001060
Suriazione (%) PROV/ PROV/ Efficace () AT verse bt verse 2 10 3 10 Reg	2.839 -5,37 A TENSIO kV] Corro o bt a terra o bt a terra o bt a terra 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23/91 3,16 NE APPLICA attraction [kv] 50 10 Temp 10 Temp 10 M AT [V] Tensione 10 0.240 0.240 0.240 MISI TENSIONE Shunt Ka = (0,15V=40,00 Curr. [V] 0,0742 0,0690 0,0682	2,25 A dime (m) 1000 o (s) 60 ISURA DEL F BT [V] Pos.Co 470 470 470 470 470 470 470 470	PROVA TENSI V2 (V) Frequenza[H: Tempo [s] APPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453 77,832 76,210 74,589 RESISTENZA (Temp. (°C) 24,9	-54,29 ONE IND 944 2] 10 60 TRASFOI 10517/2] 43 10517/2] 43 10517/2] 84 82 81 79 78 76 74 0EGLI AV V2 20-2V 2V-2V	OTTA 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico [%] 100 75 50 C.d.t. a Co C.d.t.	NDIMEN Cosf = 98,4(98,9(str-0.8(%)) cosf = (%) 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10537/22 43 10557/22 10557/22 1	ITO [%] 0.8 Cosfi = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38 Err.% max US-VI 3,2000 0,316 V/SEN 4,4800 0,192 2,9600 0,316 1,2200 0,192 3,0700 0,323 3,0700 0,306 5,4800 0,354 3,8800 0,390 K[Ohm] = Kv/Ka = 0,010 R[Ohm] 0,001033 0,001026 0,001060 R[Ohm]
Surado PROV/ evisatione [%] PROV/ AT verse AT verse 1 50 bt verse 2 10 3 Reg -4 V.1/V.3 +2 V.1/V.2 -1 +2 V.1/V.2 -1 -3 V.1/V.2 -2 -3 V.1/V.2 -4 V.1/V.2 -4 V.1/V.2 -4 V.1/V.2 -4 V.1/V.2 -4 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2 -4 V.1/V.2 -4 V.1/V.2 -4 V1.1 Voi -4 1U-1V 2 -4 1W-1U -4 -4 RI* [W] 8. -4	2.839 -5,37 A TENSIO o bt a terra o bt a terra o bt a terra Tensione 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25/91 3,16 NE APPLICA1 etto [kv] 50 10 10 10 AT [V] Tensione D40 0.240 D911 2.880 2.440 2.000 1.120 0.680 0.240 MISI TENSIONE Shunt Ka ± /0,15V=40,00 Curr.[V] 0,0690 0,0682	2,25 A dine (m) 1000 o (s) 60 ISURA DEL F BT [V] Pos.Co 470 470 470 470 470 470 470 470	PROVA TENSI V2 (V) Frequenze(H, Tempo [s] XAPPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453 77,832 76,210 74,589 XESISTENZA (24,9 (Temp, (°C) 24,9	-54,29 ONE IND 944 2] 10 60 TRASFOI 10517/2] 43 10517/2] 43 10517/2] 84 82 81 79 78 76 76 76 74 PEGLI AV V2 20-2V 2V-2V	OTTA 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico [%] 100 75 50 C.d.t. a Co C.d.t.	NDIMEN Costi = 1 98,94 98,97 98,97 98,97 98,97 98,97 43 1001/2 1001/2 1000/2 10000000000	K[Ohm] 0,0000700 R[Ohm] 0,0000700
SURAC eviazione [%] PROV/ Ffficace [] AT verse AT verse 2 10 3 Reg -4 V.1/V.2 -4 V.1/V.2 -1 V.1/V.2 -1 V.1/V.2 -1 V.1/V.2 -1 V.1/V.2 -2 V.1/V.2 -3 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2 -1 V.1 -1 V.1	2.839 -5,37 A TENSIO kV] Corro o bt a terra o bt a terra Tensione 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3,16 NE APPLICA NE APPLICA NE APPLICA AT [V] Altru SO AT [V] Tensione D/0 0.240 2.880 2.440 2.000 1.120 0.240 MISI TENSIONE Shunt Ka ± (0,15V=40,00 Curr.[V] 0,0690 0,0682	2,25 A dine (m) 1000 o (s) 60 ISURA DEL F BT [V] Pos.Co 470 470 470 470 470 470 470 470	PROVA TENS3 V2 (V) Frequenze(H, Tempo [s] KAPPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453 77,832 76,210 74,589 KESISTENZA ([Temp. (*C)] 24,9 [Temp. (*C)] 25 26 30 48	-54,29 ONE IND 944 2] 10 60 TRASFOI 10517/2] 43 10517/2] 43 10517/2] 84 82 81 79 78 76 76 76 74 PEGLI AV V2 20-2V 2V-2W 2V-2W 2V-2W 2V-2W 2V-2W 2V-2W 2V-2W 2V-2W 2V-2W 2V-2W 2V-2W 2V-2W 2V-2W 2V-2W 2V-3W 3V-3W 3W-3W	OTTA 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico [%] 100 75 50 C.d.t. a Co C.d.t.	NDIMEN Costi = 1 98,44 98,97 98,97 98,97 98,97 98,97 43 1001/2 43 1001/2 43 1001/2 43 1001/2 43 1001/2 43 1001/2 43 1001/2 84 84 82 81 84 82 81 84 82 81 84 82 81 84 82 81 84 82 81 84 82 81 84 82 81 84 82 81 84 82 81 84 84 82 81 84 84 82 81 84 84 82 81 84 84 84 82 81 84 84 84 84 84 84 84 84 84 84 84 84 84	K[Ohm] 0,000970 0 98,72 0 98,72 0 98,72 0 98,72 0 98,72 0 98,72 0 98,72 0 98,72 0 98,72 0 98,72 0 98,72 0 98,72 1 17,12 4,38 4.38
SURAC eviazione [%] PROV/ Efficace [] AT verse 1 50 bt verse 2 10 3 Reg -4 V.1/V.3 +2 V.1/V.2 +1 V.1/V.2 -1 V.1/V.2 -1 V.1/V.2 -1 V.1/V.2 -2 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2 -1 V.1/V	2.839 -5,37 A TENSIO kV] Corro o bt a terra o bt a terra Tensione 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25/91 3,16 NE APPLICA1 so 10 SO 10 Temp 10 AT [V] Tensione D40 0.240 D911 2.880 2.440 2.000 1.120 0.680 0.240 MISI TENSIONE Shunt Ka ± 0,0590 0,0682	2,25 A dine (m) 1000 o (s) 60 ISURA DEL F 67 67 470 470 470 470 470 470 470 47	PROVA TENS1 V2 (V) Frequenza(H. Tempo [s] XAPPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 77,832 76,210 74,589 KESISTENZA (C) Tempo (°C) 25 26 30 48	-54,29 ONE IND 944 2] 10 60 TRASFOI 10517/61 43 10517/61 43 10517/61 84 82 81 79 78 76 76 76 76 76 76 76 76 76 76	DOTTA 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico [%] 100 75 50 C.d.t. a Co C.d.t.	NDIMEN Cost = (98,94 98,97 98,97 98,97 98,97 98,97 43 1001/2 43 1001/2 43 1001/2 43 1001/2 43 1001/2 43 1001/2 43 1001/2 84 84 82 81 79 78 78 76 74 70 78 74 70 70 74 70 70 70 70 70 70 70 70 70 70 70 70 70	K[Ohm]
SURAC eviazione [%] PROV/ Efficace [1 AT verse 1 50 bt verse 2 10 3 Reg -4 V.1/V.3 +2 V.1/V.2 +1 V.1/V.2 -1 V.1/V.2 -1 V.1/V.2 -3 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2 -3 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2 -3 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2 -4 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2 -3 V.1/V.2 -4 V.1/V.2 -4 V.1/V.2 -4 V.1/V.2 -3 V.1/V.2 -4 V.1/V	2.839 -5,37 A TENSIO kV] Corro o bt a terra Tensione 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23,74 3,16 NE APPLICA SO 10 Temp 10 M AT [V] Tensione D/0 0.240 D/11 2.880 2.440 2.000 1.560 1.120 0.680 0.240 MISI TENSIONE Shunt Ka = '0,15V=40,00 Curr.[V] 0,0742 0,0682	2,25 (A rdine (m) 1000 o (s) 60 1SURA DEL F 67 67 470 470 470 470 470 470 470 47	PROVA TENS1 V2 (V) Frequenza[H. Tempo [s] XAPPORTO DI mm. Calcolato 43,064 84,318 82,696 81,075 79,453 77,832 76,210 74,589 KESISTENZA [Tempo [*C] 25 26 30 48	-54,29 IONE IND 944 2] 100 60 TRASFOI FUEIV/P2 43 FUEIV/P2 76 76 74 76 74 76 74 76 74 76 74 76 76 74 76 76 74 76 76 74 76 74 76 76 74 76 76 76 74 76 76 76 74 76 76 74 76 76 74 76 76 74 76 76 76 74 76 76 76 76 74 76 76 76 76 76 76 74 76 76 76 76 76 76 76 76 76 76	DOTTA 0 0 0 0 0 0 0 0 0 0 0 0 0	RE Carico [%] 100 75 50 C.d.t. a Co C.d.t.	NDIMEN Cost = (98,94 98,97 98,97 98,97 98,97 98,97 40 43 40 40 40 40 40 40 40 40 40 40 40 40 40	ITO [%] 0.8 Cosf = 1 0 98,72 0 98,96 6 99,16 1 17,12 4,38 Err.% max USV 3,2000 0,316 V/ESN 3,2000 0,316 4,4800 0,192 2,9600 0,315 3,2200 0,192 2,9600 0,316 5,4800 0,323 5,0700 0,306 5,4800 0,323 5,0700 0,306 5,4800 0,354 5,8800 0,390 K[Ohm] = Kv/Ka = 0,010 R[Ohm] 0,001033 0,001060 R[Ohm] 0,000970 0,000953 0,001005

1 E .

Cap.Soc. 2.090,000,00 € i. P.Iva 00341269511 - C.C. 52030 Chiasan Superiore I Tel. +39 0575 317.1 Fax + E-Mnil: tesarcom@trafo.	9. (A.A. (AR) 7 (Ar) Judy 39 0575 317.) ir http://www	Sair 17 73343 101 .trafo.it	CERTI	SPETT.LE	Gruppo Corso T Torino 10128 Telefono D DI CO 15/01/0	Torinese Tra urati, 19/6 011 57641 LLAUDO	Fax Riferimento	011 5 Norme 18	764330 c 60726 c 60076-1 c 60076-3
			Garanzia:	1.1/2			Tent of the other bills		
		MISURA	DELLE PERD	TTE E DEL	LA CORRE	NTE A VUOT	0	1254	
100	0 / 100	= ^K 10	TA =	к 5	Kt Fre 50	quenza [Hz] 50	Tensione [V] 470		
L Vm1-2 (V) Vm 1 470,51	2-3 [V] V 473,26	m3-1 [V] Vm.n 471,52 47	1,76 Ve.m [V 1,76 471,	/] I1 [A] 28 5,02	12 [A] I3 3,38 !	[A] Im [A] W 5,01 4,47	/mis [W] Wcor 2.836	(W) Io (2.839 0	%] Kcor ,32 1,001
	and a loss		MISURA D	ELLE PERD	ITE A CAR	ICO		an Artain	ल्हमुरः १२६२
TV	K	TA	K I	(t Freque	inza (Hz)	Tensione (V)	Potenza	RVAJ	
1000 / 100 =	10	50 / 5	= 10	100	50 I3 (A)	Im (A) V	(mis fW) Wr	ip (W)	/cc a In [V]
L Ve1-2[V] Ve 1 1324,10	1322,50	1318,82 1	.m (v) 11 321,81 1	4,23 14	,05 13,	91 14,06	1.460	24.607	5.426,8
									and the state of the
Peraite in c.to Cto Rj ² totali AT/bt (W Peraite addizionali Tensione di c.to c. Comp. Resistiva Ri Comp. Induttiva X	(W) (W) to [%] t (%) I (%)	14.402 10.205 24,67 1,12 24,64	17.291 8.500 24,68 1,34	ARICHE PA	RZIALI		Tel Misu	a (aC)	
Rapporto di Prova (k 22 / 0,47 Rumore di Fondo (p0	1 V]	Frequenza [] 100	[2] Te	nsione di preso I nsione di Prova	0,846 (kV) 0,611	Temp 34 Temp 18	2 [5] 0	10 1V 1W	<10 <10 <10
3,00	a manual a	COLUMN THE	Caranzia	. 1 1/2	(5)	Contraction of the second second	And Constants in Frank	THE OWNER	CONTRACTOR NOT
	Po [W]	Pcc [W]	Po+Pcc [W]	Vcc [%]	Io [%]	S.par.{pC}	Gi		
Garantito Tolleranza (%) Misurato Deviazione (%)				10 10 10,76 7,60			and d		
			MISURA D	ELLE PER	DITE A CA	RICO		6 11 25	
TV 100	- K 10	TA 25 / 5	= K	Kt Frequ	senza (Hz)	Tensione [V] 22000	Potenza	[kVA]	
L Ve1-2 (V) V	/e2-3 [V]	Ve3-1 [V] V	e.m [V] 11	[A] I2	[A] I3 [/] Im [A]]	Wmis (W) W	rip [W]	Vcc a In [V]
Perdite in c.to c.tr RI ² totali AT/bt [V Perdite addizional Tensione di C.to c	•ERDITE • [W] • [W] • [W] • [W] • [W]	A CARICO E Temper Amblente 24,9 7,954 5,330 2,624 10,76 0,36	TENSIONE I atura [*C] Riferimen 25 8.585 6.399 2.185 10,76 0.43	DI CORTO	CIRCUITO Conduttore	ALLA TEMPI	K Materia 1,20	RIFERIN Ie 06	ENTO
Perdite addizional Tensione di C.to c Comp: Resistiva f Comp. Induttiva 2	ii [W] to (%) RI (%) XI (%)	2.624 10,76 0,36 10,75	2.185 10,76 0,43						

Colleudo ufficiale

TESAR s.r.l. Arezzo Italy (Tel. +39 0575 3171.1 Fax +39 317201)

Cap.Sec. 2.080.000,0 P.Iva 00341260511 52030 Chinesea Super Tel. +39 0575 317.11 E-Mail: tesercom@t	CCLA.A. (AR) ore (Ar) Italy fax +39 0575 31 rafo.it http://www.	Sali) Nº 73343 7.201 sw.trufo.R	CER		CATO	Corso 1 Torino 10128 Telefono DI CO 5/01/0	TO 011 57641 011 57641	F Ruferin	ax 011 Tento Norme	5764330 IEC 60726 IEC 60076-1 IEC 60076-3
and the second		Contraction of the local diversion of	Garanz	ia: 1.	1/2(T)	CONSIGNATION OF DECISION			press of the second second
	Po [W]	Pcc [W]	Po+Pcc [W]	Vcc	[96]	Io [%]	S.par.[pC]	G1		
Garantito	and a second and a second second	an property and the	Contraction of the second	1	0		and the second part	a destroyed of		
Tolleranza (%)	gentrintight	and the second	Real Providence	10	.66	A CONTRACTOR OF STREET	-	and the second	3	
Deviazione [%]	And the second s	Contraction of the		6,	56					
second states to		STATISTICS STAT	MISURA	DELLE	PERDI	TE A CAP	RICO	HERE	Broute Big	and the second
TV	K	TA	K	Kt	Frequen	za (Hz)	Tensione [V]	Pot	enza (kVA)	
1000 / 100	= 10	25 / 5	= 5	50		50	22000	_	1140	1
L Ve1-2 [V]	Ve2-3 [V]	Ve3-1 [V]	Ve.m (V)	11 [A]	12 [A]	13 [A] [m [A] W	imis [W]	Wrip [W]	Vcc a In [V]
1 873,43	877,47	874,38	875,09	11,26	11,	17 11,	09 11,17	1.108	7.947	2.343,
CALCOLO	PERDITE	A CARICO Temp Ambiente 24,9	E TENSIONS eratura [°C] Riferim 75	DI CO	RTO CI	RCUITO	ALLA TEMPER	K Mat	DI RIFERI	MENTO
Perdite in c.to	c.to [W]	7.947	8.51	4		Y AL	Cu Cu	Line to	2000	
R1 ² totall AT/b	t [W]	5.154	6.18	8						
Perdite addizio	nall [W]	2.793	2.32	6						
Tensione di c.t	o c.to [%]	10,65	10,6	6						
Comp. Resistiv	a RI [%]	0,36	0,4	3						
Comp. Induttiv	a XI [%]	10,65			1000			allow and the second		

			Garana	zia: 2/	2	0.00000				
	Po [W]	Pcc [W]	Po+Pcc [W]	Vcc	[%] 10 [%] <u>S</u> .	.par.[pC]	G1	-	
arantito	CHOSE GIRZE			all and a second	1 DEVISION	a alter	国际公司 日	mer de la		
olleranza [%]	- Martin		La report		PUT HAR PET TAUS	法国		and a starting the	3	
lișurato	上 在1993月	and the second second	I Charles	O O	98	12.2				
eviazione [%]	開始時間時	AND DESCRIPTION OF	a management of the	HOLEN AND	ASSESSMENT CONTRACTOR OF CONTRACT	123122				
·法之律规划中国国	的影響地消	a an	MISUR	A DELLE	PERDITE A	CARIC	0	面面中学家	加速都到空	和自己的意义。
TV	ĸ	TA	ĸ	Kt	Frequenza [Hz]	7 5	Tensione [V]	Po	tenza [kVA]	
1/1	= 1	200 / 5	= 40	40	50	11	470	warmed her	1140	1
1 Ve1-2 [V]	Ve2-3 (V	Ve3-1 [V]	Ve.m [V]	I1 [A]	12 (A) 13	[A]	Im [A]	Wmis [W]	Wrip [W]	Vcc a In [V]
1 0.4	7 01	E 0.40	0 57	101.00	470 73 4	70 44	176.99	113	7.051	4,5
1		10 ,09	0,37	181,60	1/6//3			EDATUDA		MENTO
CALCOL	O PERDIT	E A CARICO Temp Amblente	E TENSION Seratura [4C] Riferir	181,50 E DI CO mento	RYO CIRCUI	TO AL	LA TEMP	ERATURA	DI RIFERI	MENTO
CALCOL	O PERDIT	E A CARICO Temp Amblente 24,9	E TENSION Seratura (°C) Riferir 71	181,50 E DI CO nento 5	RTO CIRCUI	FO AL	LA TEMP	ERATURA	DI RIFERI	MENTO
CALCOL	0 PERDI1	E A CARICO Temp Amblente 24,9 7.051	E TENSION peretura [°C] Riferir 7/ 8.0	181,80 E DI CO nento 5 57	RTO CIRCUI	TO AL	LA TEMP	ERATURA	DI RIFERI ateriaie 1,2006	MENTO
Perdite in c.tc RI ³ totali AT/	O PERDIT	E A CARICO Tamp Ambiente 24,9 7.051 5.940	E TENSION Seretura [°C] Riferin 7/ 8.0 7.1	181,80 E DI CO nento 5 57 31	RTO CIRCUI	TO AL	Cu	ERATURA	DI RIFERI ateriale 1,2006	MENTO
Perdite in c.to RI ² totali AT/ Perdite addizi	O PERDIT o c.to (W) bt (W) onali (W)	E A CARICO Tamp Ambiente 24,9 7.051 5.940 1.111	E TENSION Seratura [4C] Riferin 7/ 8.0 7.1 92	181,80 E DI CO nento 5 57 31 26		TO AL	Cu	ERATURA	DI RIFERI ateriaie 1,2006	MENTO
Perdite in c.tc RI ² totali AT// Perdite addizi Tensione di c	O PERDIT	E A CARICO Temp Ambiente 24,9 7.051 5.940 1.111 0,96	6,57 E TENSION Seretura [*C] 8.0 7.1 92 0,5	181,80 E DI CO nento 5 57 31 26 98		TO AL	Cu	ERATURA K M	DI RIFERI ateriaie	MENTO
Perdite in c.to RI ³ totali AT// Perdite addzi Tensione di c Comp. Resisti	O PERDIT o c.to (W) bt (W) onali (W) to c.to (%) va RI (%)	E A CARICO Temp Ambiente 24,9 7.051 5.940 1.111 0,96 0,32	0,37 E TENSION Seretura [*C] Riferir 7, 8.0 7,1 92 0,5 0,5	181,80 E DI CO nento 5 57 31 26 98 38		TO AL	Cu	ERATURA K M	DI RIFERI ateriaie 1,2006	MENTO

Cellando ulficial

TESAR s.r.l. Arezzo Italy (Tel. +39 0575 3171.1 Fax +39 317201)

.

Allegato B

Schemi delle motrici serie 2800

Allegato C

Schemi delle motrici 5000

	Clala		*	and the second se	Section of the sectio		
008	achemo	Denominazione	H.C.	2 7 8 1 1	RIF	1 Ibioor	•
-	141	Convertitore di potenza a chopper casen A	ρ.d.	Identificazi	ine fogli	velcolo	Note
N	ō	Condensatori di filtro di linea	200	ST70.0329	02	IMA	
m	5-	Convertitore cc/cc di comando GTO			-		
*	-62	Convertitore cc/ca di comando GTO			_		
5	3	Convertitore cc/cc dl comando GTO					
0	5	Induttanza di protezione					
2	-R1	Resistenzo serie trasduttore -U2					
60	-R2	Resistenza serie trasduttore -U4					
0)	-R3	Resistenza di scarico condens di filtro					
2	F 1	Trasformatore di corrente condene di filtro					
=	5-	Trasduttore corrente armatura motore					
3	-02	Trasduttore tensione armatura motore			_	_	
2	-03	Traeduttore corrente cambo motore	~				
*	\$0-	Trasduttore tensione condens, di fitto	1		_		
10	-US	Trasduttore corrente di linea			_		
9	N-	Tirlstore di configurazione marcia 'AV					
2	-12	Diodo di frenatura marcia 'AV				11	TC4
-	57-	Tristore di configurazione marcia 'IN'					
0	- 14	Diodo di frenatura marcia 'IN'			-	U.	TC3
0	-75	Tirlatore di configurazione marcia 'AV					
-	=\\8	Tiriatore di configurazione marcia 'IN'				11	rc 1
N	11-	G.T.O. di shuntaggio campo motore				1 1	·c 2
n	87-	Diodo di ricircolo campo motore			-		
+	- 6A-	G.T.O di frenatura			-		
10	011-	G.T.O. principale			-	_	
-	-MI	Diodo di ricircolo					
-	-112	Tiristore di cortocircuito linea				_	
-	-M3	Diodo di ricircolo res. di frenctura					
10	Bene P	o di manovra CCHAm Cassone comando Ch	A SCA - Soffaceren A				(4)
24	Vano	a al guida CCHB= Cassons comando Ch. app. pnsumat. A PSB = Pannello sez. bott.	LB SCB = Sottocome B	IMB - Imperials A	¥4	A = Telalo T = Platta	app. aueit. forma post.
题		MORYAK NEW RATA HART - LEUGEDRE NOW	MA APEA . SOM GALASI IROLAT	ANCALDOL MOUT		-	
						144	

Ĩ	Sinto							•
10	schema	Denominazione	Tpo		Identificazione	Rif. (Ubicaz.	Note
5	- 40	G.T.O. principale				n		
80	-MI	Diodo di ricircolo				Γ		
0	-112	Tiristore di cortocircuito linea		T		T		
8	-43	Diodo di ricircolo res. di frenatura		I		T		
17	-X1	Connettore						
N	-X2	Connettore						
m	-X3	Connettore		T				
+								
10	E	Fusibile precarica fittro rete az. B	FERRAZ - CC1000CPRB 20.127/ 10A - 10	00Vcc	211VF00021B07	10	COHB	Bom units, portof, KB/Heit S.M.
0	1F2	Scaricatore	SOULE' 8022-10 - 750 Vc.c.		211VF00030B	10	MA	THE REAL PROPERTY AND INCOME.
N	153	Fusibile precorica filtro rete az. A	FERRAZ - CC1000CPRB 20.127/ 10A - 10	00Vcc	211VF00021B07	5	CCHA	Bare units portes Ke7161 S.M. 211/s100023601
80								IA075AAAAA
0						T		
0	1K1	Contattore di filtro azionamento cassa B	ANSALDO-CMM53-In=375A, Vn=750Vcc, bob=	24Vcc	211VK00027B	5	COHB	
-	1K2	Contattore di filtro azionamento casac A	ANSALDO-CMM53-In=375A, Vn=750Vcc, bob=	=24Vcc	211VK00027B	5	COHA	
N	1K3	Contattore di ramo motorico azionam. A	ANSALDO-CMM53-In=375A, Vn=750Vcc, bob=	=24Vcc	211VK00027B	02	COHA	
10	1K4	Contattore di esclus. resist. tampone A	ANSALDO-CMM53-In=375A, Vn=750Vcc, bob=	=24Vcc	211VK00027B	02	CCHA	
-	1K5	Contattore di marcia azionamento casso A	ANSALDO-CMM53-In=375A, Vn=750Vcc, bob=	=24Vcc	211VK00027B	02	COHA	
10	1K6	Contattore di ramo motorico az. cassa B	ANSALDO-CMM53-In=375A, Vn=750Vcc, bob=	=24Vcc	211VK00027B	3	CCHB	
10	1K7	Contattore di esclusione res. tampone B	ANSALDO-CMM53-In=375A, Vn=750Vcc, bob=	=24Vcc	211VK00027B	50	CCHB	
-	1K8	Contattore di marcia azionamento cassa B	ANSALDO-CMM53-In=375A, Vn=750Vcc, bob=	=24Vcc	211VK00027B	03	COHB	
-				T		t		
-				T		T	T	
0						1	T	
-	1Cl	Induttanza di filtro azionomento cassa B	TRASFOR 2,4mH-600Vcc-220A-Clos. Isolan			5	IMB	wtowert, ed aveila h afo
N	ä	Induttanza di filtro azionamento cassa A	TRASFOR 2,4mH-600Vcc-220A-Clas. isolarr	7. F		5	MA	utowert, ed onalia h año
-	12	Induttanza di spianamento azion. cassa A	TRASFOR 2mH-600Vcc-300A-Classe isolam	5.1		60	MA	urtowert, ed evvolte in arts
-	1	Induttanza di spianamento azion. cassa B	TRASFOR 2mH-600Vcc-300A-Classe Isolam	1: F		3	WB V	urtowert, ed avvoite in arte
KOK	= Banc Cabit Cabit	o di manovra CCHA= Cassone comando a di guida CCHB= Cassone comando app. pneumat. A. PSB = Pannello sez. batt.	Ch.A SCA = Sottocasad A IMA Ch.B SCB = Sottocasad B IMB	= imper = imper	iale A iale B	128		elaio app. ausil. A iattaforma post.
		VCCPTOR WERP MAN ABOR VCCPTOR V	AREA DE CAVISTA ALEA ANS	ALDO	CIRCUITO	Di POTI	8 ENZA	2377620002C-61 0
				- Prod	LENCO C	OMPONENT		201 1 10 1 100

	Ciala			6 7	-		
8	schema	Denominazione	odL	identificazione	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Ubicaz.	Note
85							
86							
87					1		
8	LML	Motore di trazione	TIBB -4EL02245-,540V, 150KW	ST95.0331	8	SCA	Campedarus 188
8	1M2	Motore di trazione	TIBB -4EL02245-,540V, 150Kw	ST95.0331	10	80	Competenza 1960
8							
5							
92							
56	101	Dispositivo ritorno corr. carrello mot. B	FERRAZ		δ	8	Competence meconico
5	102	Dispositivo ritorno corr. carrello mot. B	FERRAZ		δ	55	Competense mecenico
95	103	Interruttore rapido di linea azion. B	B.B.C.(TBB)-UR 6 E d e 24T,bob=24Vcc		δ	CCHA	Competence 128
98	-K1	Bobina di comando interruttore					
87	-SI	Contatto ausiliario di scambio interruttore					
88	-52	Contatto ausiliario di scambio interruttore					
86	-Si	Contatto ausiliario di scamblo interruttore					
8	-S4	Contatto ausiliario di scambio interruttore		-			
5	-55	Contatto ausiliario di scambio interruttore					
8	-S6	Contatto ausiliario di scambio interruttore					
12							
1							
2	104	Pantografo	SOCIMI PTA 08.2390	ST15.0326	Б	MA	
8	105	Interruttore rapido di linea azion. A	B.B.C.(TIBB)-UR 6 E d e 24T,bob=24Vcc		б	COHA A	Cempetense 166
2	-Ki	Bobina di comando interruttore					
8	-S-	Contatti ausiliari di scambio interruttore					
2	-52	Contatti ausilari di scambio interruttore					
0	-Si	Contatti ausiliari di scambio interruttore					
=	1St	Contatti ausiliari di acambio interruttore					Service and and a service of the ser
N	-SS-	Contatti ausiliari di scambio interruttore					
100-		o di manovra CCHAm Cassone comando na di guida CCHBE Cassone comando o app. pneumot. A PSB = Pannello sez. batt	Ch.A SCA = Sottocosed A IMA Ch.B SCB = Sottocosed B IMB 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4	= Imperiale A = Imperiale B	<u> </u> -	11	felaio app. ausil. Plattaforma poet.
	ÌШ	MORONE and A	APPENDER AND APPENDER TRADED AND AND AND AND AND AND AND AND AND AN	ALDO CIRCUITO	DI PO	TENZA	T277AED00020C-01
							10 × 00

Contatti ausiliori di scambio inter Contatti ausiliori di scambio inter Dispositivo ritorno corr. carrello n Dispositivo ritorno corr. carrello n Resistenza di terra casa B Resistenza di precarica cond.di fi Resistenza di precarica cond.di fi Resistenza di terra casa A Resistenza di terra casa a di linea d Resistenza di cortocire. di linea d Resistenza di cortocire. di linea d Resistenza di shuntaggio campo Resistenza di frendura azionarento Resistenza di frendura azionarento	rruttore FER mot. A FER mot. A FER mot. A FER litro B SEC litro A ANS cassa A MIC cassa A MIC cassa A MIC	RAZ RAZ				
Dispositivo ritorno corr. carrello m Dispositivo ritorno corr. carrello m Dispositivo ritorno corr. carrello m Resistenza di terra cossa B Resistenza di terra cossa B Resistenza di terra cossa A Resistenza di shuntaggio campo Resistenza di terra cossa A Resistenza di shuntaggio campo Resistenza di shuntaggio campo Resistenza di terra cossa A Resistenza di shuntaggio campo Resistenza di frendura azionamento Resistenza di cortocirc. di linea (Resistenza di shuntaggio campo Resistenza di frendura azionamento Resistenza di frendura azionamento Resistenza di frendura azionamento Resistenza di frendura azionamento	mot. A FER mot. A FER mot. A FER litro B SEC litro B SEC litro A ANS cassa A MIC cassa A MIC cassa A MIC	RAZ RAZ				
Dispositivo ritorno corr. carrello n Dispositivo ritorno corr. carrello n Dispositivo ritorno corr. carrello n Resistenza di terra cossa B Resistenza di precarica cond.di fil Resistenza di precarica cond.di fil Resistenza di precarica cond.di fil Resistenza di terra cossa A Resistenza di precarica cond.di fil Resistenza di terra cossa A Resistenza di terra cossa A Resistenza di terra cossa A Resistenza di shuntaggio campo Resistenza di shuntaggio camento Resistenza di shuntaggio camento Resistenza di shuntaggio camento Resistenza di frenatura azionamento Resistenza di shuntaggio camento Resistenza di frenatura azionamento Resistenza di frenatura azionamento Resistenza di shuntaggio camento Resistenza di shuntaggio camento	mot. A FER mot. A FER litro B SEC litro A ANIC cassa A MIC cassa A MIC cassa A MIC	RAZ RAZ		-		
Dispositivo ritorno corr. corrello n Dispositivo ritorno corr. corrello n Resistenza di terra cassa B Resistenza di precarica cond.di fil Resistenza di terra cassa A Resistenza di terra cassa A Resistenza di terra cassa A Resistenza di shuntaggio campo Resistenza di cortocirc. di linea Resistenza di contocirc. di linea Resistenza di shuntaggio campo Resistenza di frendura azionamento Resistenza di shuntaggio campon Resistenza di frendura azionamento Resistenza di frendura azionamento Resistenza di frendura azionamento Resistenza di frendura azionamento	mot. A FER mot. A FER Iltro B ANS Iltro A ANS motore A MIC cosso A MIC cosso A MIC	RAZ RAZ · · · · · · · · · · · · · · · · · · ·		-		· · · · · ·
Dispositivo ritorno corr. corrello ri Resistenza di terra cassa B Resistenza di precarica cond.di fil Resistenza di precarica cond.di fil Resistenza di terra cassa A Resistenza di fuendura azionamento Resistenza di cortocirc. di linea Resistenza di shuntaggio campo Resistenza di frendura azionamento Resistenza di shuntaggio campo Resistenza di frendura azionamento Resistenza di shuntaggio campo Resistenza di frendura azionamento Resistenza di frendura azionamento Resistenza di shuntaggio campo Resistenza di frendura azionamento	mot. A FER Iltro B SEC Iltro A ANS motore A MIC cosso A MIC cosso A MIC	RAZ ·		6	SCA.	Competenza mecconica
Resistenza di terra cassa B Resistenza di precarica cond.di fi Resistenza di precarica cond.di fi Resistenza di terra cassa A Resistenza di shuntaggio campo Resistenza di shuntaggio campo Resistenza di cortoche azionamento Resistenza di cortoche. di linea (Resistenza di cortoche. di linea (Resistenza di cortoche. di linea (Resistenza di shuntaggio campo Resistenza di shuntaggio campo Resistenza di frenatura azionamento	Iltro B SEC Iltro A ANS Iltro A ANS motore A MIC cosso A MIC cosso A MIC			5	SCA	Competenzo meccanico
Resistenza di terra cassa B Resistenza di precarica cond.di fil Resistenza di precarica cond.di fil Resistenza di terra cassa A. Resistenza di shuntaggio campo Resistenza di shuntaggio campo Resistenza di frendura azionamento Resistenza di cortocirc. di linea d Resistenza di shuntaggio campo Resistenza di shuntaggio campo Resistenza di shuntaggio campo Resistenza di frendura azionamento Resistenza di frendura azionamento	litro B SEC Iltro A SEC Iltro A SEC motore A MIC cassa A MIC cassa A MIC			-		
Resistenza di terra cassa B Resistenza di precarica cond.di fi Resistenza di precarica cond.di fi Resistenza di shuntaggio campo Resistenza di shuntaggio campo Resistenza di frenatura azionamento Resistenza di frenatura azionamento Resistenza di shuntaggio campo Resistenza di frenatura azionamento Resistenza di shuntaggio campo	litro B SEC Iltro A SEC motore A MIC cosso A MIC cosso A MIC			-		
Resistenza di terra cassa B Resistenza di precarica cond.di fil Resistenza di precarica cond.di fil Resistenza di terra cassa A Resistenza di shuntaggio campo i Resistenza di terra cassa A Resistenza di terra cassa A Resistenza di shuntaggio campo i Resistenza di terra azionamento Resistenza di contocirc. di linea c Resistenza di contocirc. di linea c Resistenza di shuntaggio campon Resistenza di contocirc. di linea c Resistenza di shuntaggio campon Resistenza di contocirc. di linea c Resistenza di contocirc. di linea c Resistenza di contocirc. di linea c Resistenza di shuntaggio campon	Iltro B SEC Iltro A SEC motore A MIC cossa A MIC cossa A MIC cossa A MIC			-		-
Resistenza di precarica cond.di fil Resistenza di precarica cond.di fil Resistenza di terra casa A Resistenza di shuntaggio campo i Resistenza di frendura azionamento Resistenza di frendura azionamento Resistenza di cortociro. di linea d Resistenza di contociro. di linea d Resistenza di frendura azionamento	Iltro B SEC Iltro A SEC motore A MIC o cosso A MIC cosso A MIC cosso A MIC	SALD0-4100CSP42B-0,42ohm+-10% - 440W	211VR00024B(10 11	SCB	000 0 410 1 1 1
Resistenza di precarica cond.di fil Resistenza di terra cassa A Resistenza di shuntaggio campo Resistenza di shuntaggio campo Resistenza di trenatura azionamu Resistenza di cortocira. di linea d Resistenza di cortocira. di linea d Resistenza di contocira azionamento Resistenza di shuntaggio campo	Itto A SEC motore A MIC cosso A MIC cosso A MIC cosso A MIC	i RSS 260.100ohm+−5% – TA	211VR00025B0	12 01	CCHB	Mont. au aupp. 356. 5A1/1.200 Spec. mot. 211/AJ00026801
Resistenza di terra cassa A. Resistenza di shuntaggio campo i Resistenza tampone azionameto Resistenza di cortocirc. di linea d Resistenza di cortocirc. di linea d Resistenza di cortocirc o di linea d Resistenza di cortocirc o conno Resistenza di cortocirc o conno Resistenza di cortura azionamento Resistenza di frenatura azion. co	motore A MIC cassa A MIC cassa A MIC cassa A MIC az. A AN	i RSS 260.100ohm+−5% – TA	211VR00025B0	12 01	CCHA	Mont. zu supp. (365. 3A1/7).290 Spec. met. 211VUC0026801
Resistenza di shuntagglo campo Resistenza tampone azionamento Resistenza di frenatura azionam. Resistenza di cortocirc. di linea Resistenza tampone azionamento Resistenza di shuntaggio campo Resistenza di frenatura azion. co	motore A MIC casso A MIC casso A MIC as: A ANS	\$ALD0-4100CSP42B-0,42ohm+-10% - 440W	Z11VR00024B0	5	SCA	
 Resistenza tampone azlonamento Resistenza di frenatura azionam. Resistenza di cortocirc. di linea o Resistenza tampone azionamento Resistenza di shuntoggio campo Resistenza di frenatura azion. co 	cosso A MIC cosso A MIC oz. A ANS	ROELETTRICA SCIENTIFICA - 0.320hm/40A	ST30.0322	02	IMA	
Resistenza di frenatura azionam. Resistenza di cortociro. di linea o Resistenza tampone azionamento O Resistenza di shuntaggio campo I Resistenza di frenatura azion. co	casso A MIC oz. A ANS	ROELETTRICA SCIENTIFICA - 0,9120hm	ST30,0330	8	IMB	Fissats su uniso telala con 1R7,1R8,1R11, Competenza T88
Resistenza di cortociro. di linea o Resistenza tampone azionamento O Resistenzo di shuntoggio campo I Resistenza di frenatura azion. co	02, A ANS	ROELETTRICA SCIENTIFICA -1,577ohm	ST30.0330	8	IMB	Plasoto su unico telalo con 1RS,1R9,1R11, Competenza 108
Resistenza tampone azionamento D Resistenza di shuntoggio campo 1 Resistenza di frenatura azion. ca	0.1	SALDO-4100C5SP15C0102-1,51ehm-1220W	211ER20723B0	11 02	IMA	Le due sectori di resultance doveno espere collegale in //
 Resistenza di shuntaggio campo Resistenza di frenatura azion, ca 	C0350 0 00500 0	ROELETTRICA SCIENTIFICA - 0,9120hm	ST30.0330	63	IMB	FISSOR BU UNDER LEDIE CON 1855.1877,1811, Competenzo TEB
1 Resistenza di frenatura azion, co	motore B MIC	ROELETTRICA SCIENTIFICA - 0,32ohm/40A	ST30.0332	3	BMI	
	DISSO B MIC	ROELETTRICA SCIENTIFICA - 1,577ohm	ST30.0330	63	IMB	Flosate su unica telara con 1RS,1R7,1R9, Competinize 788
2 Resistenza di cortocirci di linea o	az; B ANS	SALDO-4100C5SP15C0102-1,51ohm-1220W	211VR0D024BI	22 03	IMB	Le due sezioni di restatenza devere sosere collegate in //
						200
				-		
				-		
				-		
Control (Thereas) and a second se				+		-
				-		19
				-		*
				_		
Sance di manovra A CCHA= Cossi Sabine di guide Mano app. preumati A PSB = Panni	one comanda Ch.A one comanda Ch.B iello sez. batt.	SCA = Sottocassa A MA = Ir SCB = Sottocassa B MB = Ir I • I 5 1 5	nperiale A nperiale B I 7		TAA = PPT = a	Telaio app. ausil. A Piattaforma post.
V MODPHER VST 201 VST	WODFICHE WITTO D	AREA MUNICIPASSI 18.03.87 AND ALL	00 CIRCUI	TO DI P	OTENZA	237VE00002C-51

Allegato D

Parametri della cavo in Media Tensione

Tipo di co	ndutiore	1	Z, =	= Z ₂		Zo	
- Tipo or or	nigano	Tensione	and a start of the		0	X ₀ (\$	1/km)
Materiale	Sezione (mm²)	di esercizio (kV)	R (Ω/km)	X (Ω/km)	(Ω/km)	con fune di guardia	senza fune d guardia
Cu Cu Al-Ac Al-Ac Al-Ac Al-Ac Al-Ac Al-Ac Al-Ac Al-Ac	109 134 308 428 585 403 428 585 2×585 3×585 3×585	132 132 132 132 132 132 132 220 220 220 380 380 380	0,164 0,133 0,107 0,081 0,055 0,077 0,081 0,055 0,027 0,018	0,439 0,432 0,401 0,389 0,381 0,396 0,411 0,403 0,304 0,268	0,312 0,281 0,255 0,229 0,203 0,225 0,229 0,203 0,175 0,166	1,270 1,263 1,232 1,221 1,212 1,228 1,188 1,180 0,943 0,907	1,410 1,403 1,372 1,360 1,352 1,367 1,317 1,308 1,182 1,146

Tabella 5.9 - Parametri elettrici delle linee aeree AT

Tabella 5.10 - Parametri elettrici delle linee aeree MT

Tipo di ca	onduttore		Impeden	za serie		រោ	pedenza	trasversa	le
	Sezione	Z, :	× Z ₂	Z	°C	C,	C _o	$Z_1 = Z_2$	Z ₀
Materiale	(mm ^a)	R (Ω/km)	X (Ω/km)	R ₀ (Ω/km)	Χ ₀ (Ω/km)	(nF/km)	(nF/km)	(MΩ/km)	(MQ/km)
Cu Aldrey Al-Ac	25 70 150	0,705 0,453 0,221	0,437 0,406 0,376	0,853 0,601 0,369	1,550 1,519 1,489	8,34 9,02 9,63	4,24 4,41 4,55	0,381 0,353 0,330	0,750 0,721 0,699

Tabella 5.11 - Parametri elettrici delle linee MT in cavo

_	Tipo di	cavo		Imped	lenza ser	10	In	преоента	110340190	
		Numero	Z1=	Z ₂	Z	0	C.	Co	$Z_1 = Z_2$	Z ₀
	Materiale	conduttori per sezione (nº x mm²)	R (9/km)	X (Q/km)	R ₀ (Ω/km)	Х ₀ (0/кт)	(nF/km)	(nF/km)	(kΩ/km)	(kΩ/km)
Unip.	Cu Gu Gu	1 × 25 1 × 95 1 × 400	0,719 0,202 0,065	0,165 0,129 0,096	0,995 0,420 0,175	0,146 0,099 0,058	150,38 234,04 392,69	149,26 231,66 385,90	21,14 13,58 8,09	21,30 13,73 8,24
Trip.	Al Al Al	3× 95 3×150 3×240	0,298 0,189 0,119	0,170 0,163 0,152	0,803 0,804 0,819	1,838 1,729 1,613	249,09 289,70 350,33	248,85 289,40 350,00	12,76 10,97 9,08	12,78 10,99 9,08

Allegato E

Parametri degli scaricatori di tensione

Ť.

Scaricatori di sovratensione per impianti MT in CC

nominale	tensione di servizio cont.vo			tens agli im	sione re pulsi di	sidua corrente			altez.	linea di fuga	pesc	lisola d	imento Iello	tipo	Cod
		10 kA 1/2 us	5 kA 8/20 us	10 kA 8/20 us	20 kA	250 A	500 A	1000 A			-	rigidība deletītica	tensione di tenuta	122.422	1
Ur	Uc	Unss	Urs	lle	11-	line	i surro ps	13070 JLS	3	2		umido	a impulso umido		
kV	kV	kV	kV	kV	kV	kV	kV	Urcsh kV	mm	тт	Kg	Unst kV	Unsch kV	SBKB	
1,2	1	2,9	2,5	2,6	2,9	2,1	2,2	2.3	173	230	3	> 40	~ 50	1/10/0	
2,4	2	5,5	4,8	5	5,5	4	4,1	4,2	180	237	3	> 40	> 50	2/10/0	110 001
3,6	-3	8,3	7,3	7,6	8,3	6,1	6,2	6,4	187	244	3	> 40	> 50	2/10/G	110 002
4,8	4	10,9	9,5	10	10,9	7,9	8,1	8,3	193	250	3	≥ 40	≥ 50	4/10/G	110 003
1,0	1	4													
1.6											1		111	1	1111
14	- F									IF-		11	Th	1	LETT
			1112									pre s di forte	offectiate correct	o da un im	pulso
14 13	11	110	111	1.	1.101							and the second se	44114194	0 100 00 4	¥/10 µs
Ue 1,3											-	-		100 104 -	¥/10 µs
Ue 1.3		The second second									+				Ψ10 μs
Ue 1.3						 A state of the sta									1/10 µs
Ue 1.3						10									470 µs
/Uc 1.3 12 1,1 1,0 0,1								t[s]		100			1	000 000	4710 µs
/Ue 1.3 12 1,1 1,0 0,1		And Andrew Andre						t[s]		100 Defi SBK 14 10 G	inizio	ne dei tij - Scar - Tens - Corre	pi icatore o ione cont	on isolator tinuativa d inna.	10,00 10

y

1