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Abstract

This thesis is focused on the study of the crankshaft balancing. The aim of the work is to
analyze different engine configurations in terms of cylinders number and layout and, there-
fore, different crankshaft arrangement. Both In-Line engines and V engines are treated.

All of the above is done by developing a Matlab script that allows to quickly define and
set up a first approximation crankshaft design in terms of engine type (In-line or V-engine),
number of cylinders, crank throws disposition, geometrical properties and some other key
factors in order to scan rapidly between several possibilities of crankshaft layouts to check
which forces and moments are "naturally" balanced and which are not. The Matlab script
also allows to implement a balancing strategy to balance the first order rotating forces and
moments.

Once the crankshaft arrangement and the balancing strategy are defined, the reactions
on the main journals are derived.

All the results are shown through representative plots, depending on the crank angle.
This script can be useful to have, as already said to a first approximation, the orders of

magnitude of the forces acting on the system in order to have a first talk with the bearing
supplier.
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Chapter 1

Introduction

The engine balance is a subject that covers many areas in the design, production and
tuning. An engine as a whole can be considered balanced when it produces an acceptable
level of vibrations and stress on the engine supports and on the main bearings.

The reasons why an engine needs to be balanced are fundamentally two:

• To have as much as possible constant reactions on the engine supports.

• To reduce the main bearings loads.

The first one can be considered as an "external reason" because is referred to the rela-
tionship between the engine and the external environment, the second one instead is an
"internal reason" because it concerns on what happen inside the crankcase and in particular
on the crankshaft, and this thesis work is focused on it.

The engine vibrations can be broadly divided into two categories [1]:

1. Vibrations of the engine and its rigid component as a whole, in which no elastic
yielding of the various components is considered. These vibrations are caused by the
imbalance of rotating and reciprocating components.

2. Vibrations of engine parts due to the elastic deformation of the materials under the
influence of periodic combustion impulses that causes torsional and lateral oscillations
of the crankshaft and camshaft.

In this thesis work, only the first category of vibrations listed is treated. These vibra-
tions, due to the forces and moments of the rotating and reciprocating masses, are elim-
inated doing the crankshaft equilibrium, where the latter is considered as a rigid straight
shaft with these masses opportunely located along the crankshaft length at a distance equal
to the crank radius from the axis of rotation.

In order that the crankshaft is completely balanced, both the statical and the dynamical
balance must be achieved.
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1 – Introduction

A crankshaft is statically balanced when the resultant of the centrifugal forces is equal
to zero, that is when its centre of gravity is on the axis of rotation.

A crankshaft is dynamically balanced when the resultant of the moments due to the
centrifugal forces is equal to zero for any reference point considered.

The aim of this thesis work is to create a Matlab script that allows to study and analyze
different engines, and therefore crankshaft, configurations in terms of engine type (In-line
engine of V-engine), number of cylinders, crank throws arrangement and so on, in order to
examine the engine state-of-balance, apply a balancing strategy and finally calculate the
reactions on the main bearings.

Based on the assumptions made the crankshaft is considered ad a monodimensional
hyperstatic beam, therefore to find the reactions on the main bearing it was necessary to
use the Three-moment equation of Clapeyron which allows to solve hyperstatic beams.

In order to give the reader a better view of the logic with which the work was developed,
the contents of each chapter are reported briefly below.

In the Chapter 2 the slider-crank mechanism is analyzed. The latter is the simplest
system and all the following reasonings are based on that. In particular, in the chapter 2 are
shown all the mathematical relations that regulate this system both in the configurations
with or without pin offset. In the final part the analysis of the forces that acting on this
system is shown.

In the Chapter 3 the fundamental theory of the engine balancing is treated. The involved
forces and the method of analisys is shown. Moreover, the parameter Balancing Factor is
introduced and the relationship between the BF and the crankshaft weight is shown.

Chapter 4 is dedicated to the analysis of the Inline engines and for each of them at least
one configuration is shown. For each layout the first and second order states-of-balance of
the crankshaft are examined and the bearings loads calculus procedure is reported.

The Chapter 5 is similar to the chapter 4, but it concerns about V-engines.
The Chapter 6 shows how the Matlab code works. The figures produced by Matlab are

also reported and analyzed giving the conclusions.
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Chapter 2

The Slider-Crank Mechanisms

The slider-crank mechanism is widely applied in gasoline and diesel engines, where the gas
force acts on the slider and the motion is transmitted through the connecting rod, then
this type of mechamism converts the reciprocating motion of the piston in rotating motion
of the crankshaft. The system can be In-line type or Offset type.

2.1 The In-line Slider-Crank Mechanisms
The In-line slider-crank mechanism has its slider (or piston) positioned so that the slider
axis crosses the crankshaft axis of rotation (Figure 2.1) [2].

Figure 2.1: In-line slider-crank mechanism.

In the Figure 2.1 it can be seen:
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2 – The Slider-Crank Mechanisms

• L = Conrod lenght.

• r = Crank radius.

• h = Stroke.

• θ = Crank rotation respect the TDC.

• β = Angle between conrod and piston axis.

• x = Piston motion, referred to the TDC.

In order to find the velocity and the acceleration of the piston, the kinematics relation
between the terms θ and x is needed [3].

Considering the Figure 2.1, it can be written:

r sin θ = L sinβ → sinβ = r
L

sin θ = λ sin θ (2.1)

⇒ cosβ =
√

1 − λ2 sin2 θ; (2.2)

with λ = r
L
ratio.

The stroke h can be expressed as:

h = rcosθ +Lcosβ = r [cos θ + 1
λ

cosβ] ; (2.3)

and the piston motion x is:

x = r(1 − cosθ) +L(1 − cosβ) = r(1 − cosθ) +L(1 −
√

1 − λ2 sin2 θ); (2.4)

Differentiating the term x and assuming
√

1 − λ2sin2θ ≅ 1, the piston velocity expression
is:

v = ẋ = dx
dθ

dθ

dt
= ... = ωr (sin θ + 1

λ

2λ sin θ cos θ
2
√

1 − λ2 sin2 θ
) ≅ ωr (sin θ + λ

2
sin 2θ) ; (2.5)

and the piston acceleration expression is:

a = ẍ = d
2x

dθ2
d2θ

dt2
= ω2 d

2x

dθ2 = ... ≅ ω
2r(cos θ + λ cos 2θ); (2.6)

Typical trends of motion, velocity and acceleration of an In-line Slider-Crank mecha-
nism are shown in the figures below (2.2, 2.3, 2.4):
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2 – The Slider-Crank Mechanisms

Figure 2.2: Piston displacement of an inline mechanism.

Figure 2.3: Piston velocity of an inline mechanism.
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2 – The Slider-Crank Mechanisms

Figure 2.4: Piston acceleration of an inline mechanism.

2.2 The Offset Slider-Crank Mechanisms

As can be seen in the Figure 2.5, in this case the cylinder axis does not cross the axis
of rotation of the crankshaft, but there is an offset concordant to the crankshaft rotation
verse when the piston is at the TDC.

Figure 2.5: Offset slider-crank mechanism.
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2 – The Slider-Crank Mechanisms

The term e in the Figure 2.5 represents the offset, typical offset values are 0.8 ÷ 1 mm.
In this way the conrod has a lower inclitation angle during the Intake and Combustion

phases and an higher inclination angle during the Compression and Exhaust phases. This
is useful, in particular in Diesel engines, because allows to reduce the lateral thrust between
the piston and the cylinder chamber during the expansion phase. Because of the offset,
the piston dead centres do not coincide with the crank dead centres and the Intake and
Combustion have an angle slightly higher than 180°, while the Compression and Exhaust
phases have an angle slightly lower than 180°.

Analyzing the system in Figure 2.5, the piston motion x can be written as:

x = A′E −AF − FE = (L + r) cosφ −L cosβ − r cos θ; (2.7)
The conrod tilt angle can be derived considering that:

DB = r sin θ = L sinβ + φ→ sinβ = r
L

sin θ − e
L

; (2.8)

and assuming λ = r
l
and δ = e

L
:

⇒ sinβ = λ sin θ − δ; (2.9)
This relation allows to obtain, for each value of the crank angle θ, the conrod angle β.
Considering that:

cosβ =
√

1 − sin2β =
√

1 − (λ sin θ − δ)2; (2.10)

cosφ =
√

1 − sin2φ =
√

1 − (δ/(1 + λ))2; (2.11)
by replacing in the expression of the piston motion x:

x = r
⎡⎢⎢⎢⎢⎢⎣
(1 + 1

λ
)

¿
ÁÁÀ1 − ( δ

1 + λ)
2
− cos θ − 1

λ

√
1 − (λ sin θ − δ)2

⎤⎥⎥⎥⎥⎥⎦
; (2.12)

Differentiating the term x the expression of the velocity of the piston can be obtained:

v = ẋ = dx
dt
= dx
dθ

dθ

dt
= ωr

⎡⎢⎢⎢⎣
sin θ + cos θ(λ sin θ − δ)√

1 − (λ sin θ − δ)2
⎤⎥⎥⎥⎦

; (2.13)

and the piston acceleration epression is:

a = ẍ = d
2x

dθ2
d2θ

dt2
= ω2r

⎡⎢⎢⎢⎣
cos θ + λ cos2 θ − sin θ(λ sin θ − δ)√

1 − (λ sin θ − δ)2
+ λ cos2 θ(λ sin θ − δ)2
(1 − (λ sin θ − δ)2)3/2

⎤⎥⎥⎥⎦
; (2.14)

The parameter δ is generally in the range 0 ÷ 0.045.
The Figures 2.6, 2.7 and 2.8 below show a comparison between trends of an Inline

Slider-Crank and an Offset Slider-Crank with the same values of r, λ, omega and with
δ = 0.03.
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Figure 2.6: Inline vs. Offset displacement comparison.

Figure 2.7: Inline vs. Offset velocity comparison.
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Figure 2.8: Inline vs. Offset acceleration comparison.

2.3 Slider-Crank System Force Analysis.
It can be considered the Figure 2.9 below, under the assumption of no friction.

Considering an In-Line Slider-Crank Mechanism, the fundamental parameters that
must be known are:

• The bore (D)

• The piston stroke (TDC, BDC, h)

• The crank length (r)

• The ratio (λ = r/L)

• The crankshaft angular velocity (ω)

• The alternating (or reciprocating) masses (mALT )

• The rotating masses (mROT )

• The p(θ) law

The forces acting on the system can be divided in forces due to the gas pressure in the
cylinder chamber, and inertia forces acting on the moving parts [4].

The Gas Force can be written as:
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Figure 2.9: Forces acting on the crank (non considering counterweight)

Fg = (p(θ) − p0) ⋅
πD2

4
; (2.15)

where the term pθ represents the gas pressure in the cylinder chamber, function of the
crank angle θ, and the termo p0 is the ambient pressure (with ambient considered as the
interior part of the crankcase).

The inertia forces acting on the moving parts of the system can be divided in inertia
forces of the reciprocating parts of the system, and inertia forces of the rotating parts of
the system, that is the centrifugal forces.

It is possible to obtain, once the masses and the laws of motion of the system are known,
the forces acting on the system.

2.3.1 Alternating Inertia Forces and Centrifugal Forces.
In each engine there are masses that move reciprocating motion and masses that move
rotating motion, and it is useful to clarify what type of motion have the different parts of
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the system.

Figure 2.10: Piston-conrod system.

In the Figure 2.10 is represented a Piston-conrod system. The piston and the parts
directly applied to it (i.e. piston rings) moves with reciprocating motion. However, as
regards the conrod it is necessary to divide its mass in a rotating component and in an
alternating component.

Since the small end of the conrod moves with reciprocating motion and the big end
instead moves with rotating motion, for the conrod body it can be assumed that 1/3 of its
mass moves as alternating, and the remaining 2/3 moves rotating.

Therefore, the masses considered concentrated on the piston pin (or on the conrod small
end) that move with alternating motion are:

• The piston, the piston pin and the piston rings.

• The 1/3 of the conrod mass (including small end bearing).
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The masses that moves with rotating motion and that are considered concentrated on the
crank pin are:

• The crank pin mass.

• The 2/3 of the conrod mass.

• The big end bearing.

Moreover, the crank and the possible counterweights are to be considered as rotating
masses that generate centrifugal forces, concentrated, for hypothesis, on the crank pin.

The alternating and the centrifugal forces are very important for the engine balancing,
the first one is directed only along the cilynder axis, therefore they act on the system
similarly to the gas pressure and they modifying the engine torque. The second one instead
do not affect the engine torque value, because their direction is constantly passing through
the center of rotation.

Considering the general expression of the inertial forces:

ÐÐÐ→
FALT = −mALT

Ð→̈
a ; (2.16)

replacing the term Ð→̈a with the acceleration of the piston, the expression of the Alter-
nating Inertia Force can be obtained:

FALT = −mALTω
2r(cos θ + λ cos 2θ); (2.17)

this formula (2.17) is made by two components:

F ′ALT = −mALTω
2r cos θ; (2.18)

that represents the First Order Alternating Force, and:

F ′′ALT = −mALTω
2rλ cos 2θ; (2.19)

that expresses the Second Order Alternating Force.

In the Figure 2.11 below there is represented a typical trend of first and second order
alternating forces. The second one has twice frequency than the other.

The inertia forces are one of the most important causes of vibrations of engines, and
they can be balanced completely or only partially, depending on the system configuration.

The rotating parts of the engine are subjected to the Rotating (or Centrifugal) Forces,
that can be expressed as:

FROT =mROTω
2r; (2.20)

that represents a rotating vector, with constant magnitude, passing through the axis
on rotation of the crank.
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Figure 2.11: Example of first and second order alternating inertia forces.

2.3.2 Crankcase internal forces.
The gases inside the combustion chamber of the cylinders and the moving parts such as
pistons and rods exerts forces on the engine, that can be easily calculated considering a
single cylinder engine case, as shown in the Figure 2.12.

The gases pressure gives rise to the force Fg that is transmitted directly to the engine
head and, equal and opposite, to the piston head.

Moreover, the piston exerts on the cylinder a force with direction perpendicular to its
axis. The thrust on the cylinder chamber is equal to:

FL = Fb ⋅ sinβ = F ⋅ tanβ; (2.21)

Furthermore, there is a force exerted on the conrod with direction coincident with the
conrod axis and directed towards the crank pin:

Fb ⋅ cosβ = F → Fb =
F

cosβ
; (2.22)

The force F , that can be called Piston effort, is the composition of the Gas Force Fg
and of the Alternating Inertia Force FALT , which will be explained later on.

F = Fg + FALT ; (2.23)

The component of Fb along the crank (in radial direction) produces a thrust on the
crankshaft bearings.
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Figure 2.12: Crankcase internal forces.

Fr = Fb ⋅ cos(θ + β) = F

cosβ
⋅ cos(θ + β); (2.24)

The Crank Effort Ft is the net force applied to the crank pin, perpendicular to the
crank, which gives the required turning moment on the crankshaft.

Ft = Fb ⋅ sin(θ + β) =
F

cosβ
⋅ sin(θ + β); (2.25)

Finally, also the Centrifugal Force FROT , applied on the crank pin, in transferred to the
bearings.

This Centrifugal Force exerts on the crankcase a vertical force equal to:

FROT ⋅ cos θ (2.26)

and an horizontal force equal to:
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FROT ⋅ sin θ (2.27)

Looking at the Figure 2.12, the resultant forces in vertical and horizontal directions
acting on the crankcase can be calculated as:

Fg − F + FROT cos θ = FALT + FROT cos θ; (2.28)

− FL + FL + FROT sinα = FROT sinα; (2.29)

As can be seen in these formulas, the vertical resultant (along the cylinder axis) of all
the forces acting inside the crankcase does not depend on the Gas Force Fg, as it might
appear to be at first sight, but is only dependant on the Alternating Inertia Forces FALT
and on the Rotating Forces FROT . This is because the Gas Force Fg is thrusting both on
the piston head and on the engine head, and these two forces balance each other.

The horizontal resultant (perpendicular to che cylinder axis) force instead is only a
function of the Rotating Forces FROT .

The expressions of the Engine torque M and of the Reaction torque MR can be written
as:

M = Ft ⋅ r = Fb ⋅ b = F ⋅OD =

= Fr

cosβ
sin(θ + β) = Fr

cosβ
(sin θ cosβ + cos θ sinβ) =

= Fr (sin θ + cos θ sinβ
cosβ

) = Fr (sin θ + cos θ sin θ 1
λ

2λ2

2
√

1 − λ2 sin2 θ
) ≅

≅ Fr (sin θ + λ
2

sin 2θ) ; (2.30)

MR = FL ⋅ h = [(Fg + FiALT
) tanβ]r (cos θ + 1

λ
cosβ) ≅

≅ (Fg + FiALT
)r (sin θ + λ

2
sin 2θ) = Fr (sin θ + λ

2
sin 2θ) ; (2.31)

with the aproximation
√

1 − λ2 sin2 θ ≅ 1.
As it can be seen, the Reaction Torque is equal to the Engine Torque, but it has opposite

verse.

In the light of the above, the actions transmitted by the engine to the engine supports
changes periodically in modulus and direction; therefore, the engine supports must react
with variable reactions. On account of this, the engine and the engine frame can take a
vibratory motion.

31



2 – The Slider-Crank Mechanisms

In order to cancel the vibrations, the actions transmitted by the engine to the environ-
ment must be as much as possible constant. In other words, the engine must be balanced.

All the considerations done for a single-cylinder system can be extended to engines with
more cylinders.

2.3.3 Few considerations about the parameter λ
The importance of the λ = r

L
= h

2L have only a mechanical character, because it do not
affect the thermodynamic properties of the system.

The lower the λ the lower the lateral thrust on the cylinder chamber FL. This could be
an advantage because, with a lower thrust, the piston skirt can be made shorter and then
the piston mass is reduced. This is an advantage in terms of alternating inertia forces.
But the lower the λ the higher the L (conrod length) and the higher the conrod mass. If
the conrod mass is higher, it will be also raise the part of conrod mass which moves of
alternating motion and then the alternating inertia force increases.

Typical values of λ are in the range 0.2÷0.3, to which they correspond values of conrod
length L equal to (2.5 ÷ 1.7) ⋅ h (where h = stroke).
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Chapter 3

Engine Balancing

As mentioned in the Paragraph 2.3.2, the main causes of imbalance in engine are due to the
vertical and horizontal resultat forces, that are generated by the rotating and alternaring
inertia forces and by the reaction torque. These forces have a periodical variation, that is
fuction of the crank angle θ, which is the cause of the system vibrations.

In order to have a complete balancing, the crankshaft must be balanced both statically
and dynamically. The dynamic balance can only be achieved if the crankshaft is statically
balanced [5][2].

A crankshaft is statically balanced if the resultant of the centrifugal forces is equal to
zero, that is when its COG is located on the axis of rotation. For engines with more than
one cylinder is usually to choose the proper arrangement of cylinders, and therefore of the
crank throws, in order to have a configuration that is as much as possible self-balanced.
Generally, the crank throws are arranged to obtain a uniform phase displecement of the
duty cycles and achieve an engine torque as constant as possible.

In many cases the arrangement is such that the static balance is automatically satisfied
because there is a plane of symmetry passing through the axis of rotation, in other cases
it is necessary to add the counterweights on the crankshaft [4] [2].

A crankshaft is dynamically balanced when the resuntant of the moments of the centrifu-
gal forces, calculated from a reference point assumed arbitrarily, is zero. In this condition,
when the crankshaft rotates the reactions generated on the supports are only due to its own
mass. In other words, the crankshafts with more than two crank throws are dynamically
balanced when they are statically balanced, and when there is a symmetry plane perpedic-
ular to the axis of rotation of the shaft against which the crank throws are symmetrical
in number, form and arrangement. All crankshafts that do not have this feature are not
naturally balanced, but the balancing can be achieved adding the counterweights. It is
easy to deduce that for all the crankshafts with odd cylinders number and for Two-Strokes
Engines the complete balance is reachable only adding the counterweights [4] [2].
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It is important to stress that, while the static balance concerns only the whole crankshaft,
the dynamic balance can be considered even on each crankshaft bay.

Often the dynamic balance is achieved when the resultant of various moments is zero:
it means that bending moments can exist in each bay, and the inflection is prevented by
the reactions of the bearings. For this reason, bearings are subjected even to centrifugal
stresses. To cancel these stresses, especially in high speed engines, is usually to balance
the single bays with counterweights.

Now, let us see how the forces that acting on the system can be balanced, considering
a case with only one cylinder. All the concepts obtained can be applied to multi-cylinder
engines.

3.1 Balancing of Centrifugal Forces
In the Single-Cylinder Engines the only way to balance the centrifugal forces is the addition
of counterweights on the crankstaft. In the Figure 3.1 a simple example can be observed
of one of the possible configurations, obtained adding two counterweights opposite to the
rotating mass.

Figure 3.1: a)Single-cylinder crankshaft. b)Single-cylinder crankshaft with
counterweights.

3.2 Balancing of Alternating Inertia Forces
In terms of Alternating Inertia Forces, these are characterised by the fact that their direc-
tion is constantly along the cylinder axis, and they have variable towards and magnitude.
The expression of these forces is:

FALT = F ′ALT + F ′′ALT =mALTω
2r(cos θ + λ cos 2θ); (3.1)

The two components are now analyzed separately.
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3.2.1 Balancing of First Order Alternating Forces
The firts order alternating force can be written as:

F ′ALT =mALTω
2r cos θ; (3.2)

Considering the Figure 3.2 below:

Figure 3.2: First order alternating force.

The first order alternating force (F ′ALT ) can be considered as the projection on the y
axis of a fictious centrifugal force, equal to mALTω

2r. This force is generated considering
the alternating mass mALT concentrated on the crank pin. Therefore even this alternating
force can be balanced as done for the rotating force.

Observing the Figure 3.3:
FALT can be balanced by the vertical component of the centrifugal force −mALTω

2r

that is produced by another mass (counterweight). The counterweight is in opposition to
the crank pin and gives a static torque equal to mALT r.

Moreover, as shown in the Figure 3.3, there is a "new" force F0 = −mALTω
2rsinθ that

has x direction and the same amplitude and pulsation of the alternating force. Therefore,
in this case, the result is just the rotation by π/2 of the alternating force.
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Figure 3.3: Balancing of first order alternating force.

However, if the added mass is equal to half of mALT , as can be seen in Figure 3.4, the
result is the balance of an half of the alternating force, and there is a force perpendicular to
the cylinder axis equal to F0/2. Composing these two perpendicular forces, the resultant
is a rotating force characterized by −ω angular velocity and 1

2mALTω
2 intensity that can

not be balanced.
This is the maximum grade of balance for first order alternating forces that can be

reached up for single-cylinder engines.
To obtain a system completely balanced it is necessary to add some auxiliary shafts, in

order to balance both the rotating component and the counter-rotating component of the
first order alternating force. In the Figure 3.5 below it is shown an example:

3.2.2 Balancing of Second Order Alternating Forces
This force is equal to:

F ′′iALT
=mALTω

2rλ cos 2θ; (3.3)

The second order alternating force can be seen as the projection on the cylinder axis
of a centrifugal force equal to mALTω

2rλ, whose frequency is twice that of the first order
force. The angle between the force and the cylinder axis is twice the crank angle.
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Figure 3.4: Transformation of a first order alternating force in a rotating
force.

It is important to stress that the second order torques and forces can not be balanced
(not even partially) with the addition of counterweights on the crankshaft, because any
added mass should rotate with twice as fast as the crankshaft.

Therefore, there is no relationship between crankshaft balancing and balancing of the
second order forces and torques, differently to what occurs for the first order alternating
forces. Anyway, second order alternating forces are less important in term of vibrations
than first order forces because the values are in λ relationship (with λ = 0.2÷0.3 generally).

A first order alternating force mALTω
2r cos θ can be considered as the resultant of two

forces F1 and F2 equal to 1/2mALTω
2r rotating with the crank, one with ω speed and one

with −ω speed (counter-rotating) as shown in the Figure 3.5. The same observation applies
to second order alternating forces, but in this case the rotating forces must have a modulus
equal to 1/2mALTω

2rλ and an angular velocity equal to 2ω and −2ω.
Finally, it is possible to balance the first order alternating force using two auxiliary

shafts, each one having half the mass of mALT , and the second order alternating force
adding another two auxiliary shafts whose mass should be equal to 1/8mALTλ, rotating at
2ω and −2ω angular speed, as shown in the Figure 3.6:
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Figure 3.5: Balancing of a first order alternating force with two rotating
forces.

This solution is anyway never used in practical applications because the system would
be excessively complex and expensive to produce. Usually in single-cylinder engines only
the centrifugal forces and the rotating part of first order alternating forces are balanced,
even if not completely.
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Figure 3.6: Complete balancing of a single-cylinder engine.
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3.3 The Balancing Factor
The Balancing Factor (BF) can be described as a ratio between forces, in particular between
centrifugal forces acting on the engine and forces whose balance them.

For engine with more than one cylider, a different balance factor can be defined for every
single crankshaft bay, in order to find a system configuration with the lightest possible
crankshaft and the lowest possible bearings loads, without compromising the structural
shaft integrity.

Once the balancing factor in chosen, bearing loads and shaft weight can be determined.

3.3.1 Rotating masses
Let us consider the conrod: every conrod has a part of its mass that can be considered as
rotating. Observing a generic conrod, as shown in Figure 3.7:

Figure 3.7: Conrod scheme.

the main parameters that needs to be taken in consideration are: the conrod length
LROD, the conrod mass mROD and the distance between conrod COG and the centre on
the big end bearing xG. With these parameters, the rotating part of the conrod mass che
be calculated, as shown in the equation (3.4).

mROTROD
=mROD

LROD − xG
LROD

; (3.4)

this mass is assumed concentrated in the crank pin, at the crank radius r = stroke
2 .

Considering the crank, the rotating masses, as shown in the Figure 3.8, are pin mass
mPIN , the masses of the two webs mWEBA

and mWEBB
and the masses of the counter-

weights, if they are (in the case of the Figure 3.8 mCWA
and mCWB

).
The balancing factor can be written as:
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Figure 3.8: Crank scheme with rotating masses.

BFROT =
mCWA

rCWA
ω2 +mCWB

rCWB
ω2

mPINrPINω2 +mROTROD

s
2ω

2 +mWEBA
rAω2 +mWEBB

rBω2 =

= mCWA
rCWA

+mCWB
rCWB

mPINrPIN +mROTROD

s
2 +mWEBA

rA +mWEBB
rB

; (3.5)

3.3.2 Reciprocating masses
The same reasoning done for the rotating masses applies considering the alternating inertia
forces.

In the Figure 3.9 are represented both the rotating and alternating masses. As can be
seen, instead of considering the alternating mass concentrated on the piston pin, it can
be assumed concentrated on the crank pin. Moreover this mass is conceptually "divided"
in rotating and counter-rotating part: for the first one the definition of the BF is exactly
the same that for the rotating masses, and it can be balanced at least for 50% adding
coutnerweights.

The counter-rotating part instead can be "naturally" balanced by the geometrical ar-
rangement of the pistons (for engines with number of cylinder higher than one) or by a
balancer shaft.

The general expression of the Balancing Factor BF for a single bay with two counter-
weights is:

BF = mCWA
rCWA

+mCWB
rCWB

mPINrPIN +mROTROD

s
2 +mWEBA

rA +mWEBB
rB + 1

2mALT
s
2

; (3.6)
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Figure 3.9: Alternating masses.

Often, some assumptions can be maked:

• rCWA
= rCWB

→ Counterweights are placed at the same radius.

• rPIN = stroke
2 → This assumption is valid only if the oil drillings are neglected.

• rA = rB → The crank throws have the concentrated mass at the same radius. It is
not exactly true all the time, for example for webs with thrust washer, but it can still
assumed as a valid aproximation.

The Balancing Factor may assume different values:

• BF > 1: is never uses, because it would be an overbalancing of the system.

• BF = 1: the rotating forces are completely balanced, which means 100% of pure
rotating and 50% of alternatig considering as rotating.

• BF < 1: the rotating forces are not completely balanced.

The Balancing Factor choice is a complex topic, and it would require to study in deep
the problem and analyze the bearings loads, the shaft natural frequencies, the shaft bending
behaviour and other important phenomenon.

A low BF gives a crankshaft with higher natural frequencies, but higher shaft bending
as speed increase. An high BF gives an heavier crankshaft, but lower loads on the bearing
ad high speeds.

The equation 3.6 applies for In-Line Engines that have only one conrod on each throw.
For V-Engines the definition it is similar, but it must pay attention to the fact that, in
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this case, there are two conrods on each throw. Therefore in the BF formula appears the
mass of a second cordod (that usually is equal to the other, and hence a factor 2 on the
conrod mass) and a second alternating mass of the second piston (again the same to the
other piston, hence a factor 2 here too).

BF = mCWA
rCWA

+mCWB
rCWB

mPINrPIN + 2mROTROD

s
2 +mWEBA

rA +mWEBB
rB +mALT

s
2

; (3.7)

The Figure 3.10 explains what is already written.

Figure 3.10: Masses on Inline engines and V-engines.

In conclusion, there are engines with different Balancing Factors on the same crankshaft
in order to reduce the loads on the main bearings, expecially at high speeds. Therefore,
the BF can assume a different value bay-by-bay. Common BF values used are in the range
0.65 ÷ 0.7, but for very high speed engines it may be equal to 1, or approximately 1.

It is clear that, for a rigid shaft (as in this thesis work is considered when balancing it),
the bearings loads are a function of the BF chosen for each bay. In particular, considering
the approximation of give all the load of a throw only to the adjacent bearings, it is
understandable that the local reactions depends only on local BF.

In the following paragraphs, a series of different engines with different configurations
will be analyzed in detail, starting with the simplest one: the Single-Cylinder Engine. All
the key concepts obtained in the single-cylinder engine case can be applied to engines with
higher number of cylinders.

3.3.3 Influence of the Balancing Factor on the crankshaft weight
One of the parameters that must be kept under control during the design is the crankshaft
weight.

A lighter crankshaft allows to reach higher engine revs without compromising its in-
tegrity.
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The Balancing Factor has an influence on the weight and, to have a better view of the
relation between this two parameters, let us consider a simple crankshaft case.

Figure 3.11: Two-cylinder crankshaft

In the Figure 3.11 is reported a two-cylinder crankshaft supported by three main bear-
ings. It is assumed that all the masses are concentrated ad the crank throw radius, indicated
with m and since there are no counterweights, the BF is equal to zero. Therefore, in this
layout the total crankshaft mass is equal to 2m and the reactions on the main bearings
RA, RB and RC are the highest possible.

Considering now to set the BF=1 and assuming to consider, just to simplify, that the
counterweights radius is exactly the same as the crank throw radius. Looing at the Figure
3.12, the BF formula 3.6 becomes:

Figure 3.12: Two-cylinder crankshaft with counterweights

BF = mCW r +mCW r

mr
= 1 ⇒ 2mCW =m ⇒ mCW =

m

2
; (3.8)

This formula 3.8 is referred to only one of the two bays, but is the same for the two
bays.
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Therefore, in this way the crankshaft is fully balanced to first order rotating forces and
moment and the bearing reactions RA, RB and RC are zero. This is also the heaviest
configuration because the total mass is equal to 4m. Actually, if BF>1 the system would
be heavier than 4m, but this solution would not make sense because the crankshaft would
be over-balanced and heavier.

Considering the Figure 3.12, if the BF is equal, for example, to 0.7:

BF = mCW r +mCW r

mr
= 0.7 ⇒ 2mCW = 0.7m ⇒ mCW = 0.35m; (3.9)

This is an "intermediate configuration", where the crankshaft weight is equal to 2m +
4 ⋅ 0.35m = 3.4m and it is lower than the case with BF=1, but the reactions on the main
journals are higher because the moment is not completely balanced.

Anyway, the configuration shown in the Figure 3.12 is not the only possible way to place
the counterweights on the shaft. For example, assuming to add only one counterweight for
each bay, there are two main configurations that the system can assume that are shown in
the Figures 3.13 and 3.14.

Figure 3.13: Two-cylinder crankshaft with internal balancing

Figure 3.14: Two-cylinder crankshaft with external balancing
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Considering the case "Internal Balancing", in order to have a system completely bal-
anced (BF=1 ) to the first order moment, an equilibrium moment equation can be written
respect to the central point (reaction B):

4a(mω2r) = 2a(mCWω
2r) ⇒ mCW = 2m; (3.10)

Therefore, the total mass of the crankshaft is in this case equal to 6m.
Considering instead the case "External Balancing", to have a full-balanced system the

balancing mass must be equal to:

4a(mω2r) = 6a(mCWω
2r) ⇒ mCW =

2
3
m; (3.11)

And therefore the whole crankshaft mass is equal to 10
3 m that is less than 6m of the internal

balancing case.
Obviously, this method can be applied in a similar way to other crankshaft configura-

tions even with higher number of cylinders.
It is possible to understand how, depending on the system layout, there are several

possibilities to balance the system and each of them leads to different results in terms of
balancing, weight and geometry.

There is no correct or wrong configuration, but there are better and worse configurations
and in each single case the designer must find the layout that fits best with the goal to
have the lightest system with the lowest bearing reactions.
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3.4 Single-Cylinder Engine
In order to have a clearer view of the problem, in term of which forces are acting on the sys-
tem, these forces can be represented through the vectors star. This type of representation
allows to easily see which forces are balanced and which not.

Considering a generic configuration of the system, as shown in Figure 3.15, the vectors
star can be derived.

Figure 3.15: Single crank.

In the following Figures 3.16 and 3.17 are reported the First order vectors star and the
Second order vectors star.

Figure 3.16: First order vectors star

As can be seen in the Figure 3.16:
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Figure 3.17: Second order vectors star

• Pure centrifugal forces (mROTω
2r) ⇒ Not balanced.

• Rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Not balanced.

• Counter-rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Not balanced.

and in the Figure 3.17:

• Rotating part of second order alternating forces (1
2mALTω

2rλ) ⇒ Not balanced.

• Counter-rotating part of second order alternating forces (1
2mALTω

2rλ) ⇒ Not bal-
anced.

In this type of engine there are not unbalanced moments both of first and second order.
The equilibrium of forces can be written also in an analytical form.
The fudamental equations are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) ∑
i
mi /ω2 xi = ∑

i
mixi =m1r sin θ = 0;⇒Not balanced

y) ∑
i
mi /ω2 yi = ∑

i
miyi =m1r cos θ = 0;⇒Not balanced

x Á ∑
i
(mi /ω2 xi)zi = ∑

i
mixizi =m1r sin θ ⋅ 0 = 0;⇒Balanced

y Á ∑
i
(mi /ω2 yi)zi = ∑

i
miyizi =m1r cos θ ⋅ 0 = 0;⇒Balanced

(3.12)

with m1 =mROT + 1
2mALT .

Therefore, as already explained, in order to have a balanced engine it is necessary to
add counterweights on the crankshaft.

48



3 – Engine Balancing

3.4.1 Balancing strategy
In order to balance centrifugal forces and the rotating part of the first order alternat-
ing forces, it is necessary to add counterweights on the crankshaft. The system can be
represented as in Figure 3.18, having taken the assumption to add two counterweights.

Figure 3.18: Single cylinder crankshaft with two counterweights

m1 ⇒
⎛
⎜⎜
⎝

r sin θ
r cos θ

0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

x

y

z

⎞
⎟⎟
⎠

; mc1 ⇒
⎛
⎜⎜
⎝

x1
y1
z1

⎞
⎟⎟
⎠

; mc2 ⇒
⎛
⎜⎜
⎝

x2
y2
z2

⎞
⎟⎟
⎠

;

The system of equilibrium equation can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1ω
2x1 +mc2ω

2x2 +m1ω
2x = 0

y) mc1ω
2y1 +mc2ω

2y2 +m1ω
2y = 0

Ox Á (mc1ω
2x1)z1 + (mc2ω

2x2)z2 = 0
Oy Á (mc1ω

2y1)z1 + (mc2ω
2y2)z2 = 0

(3.13)

There are four equations and four unknowns, so we have the freedom of choise on where
to place the masses and which mass should be placed in those positions (mc1x1,mc2x2,mc1y1,mc2y2).

The solution is:

x1mc1 =
xz2

z1 − z2
m1; (3.14)

x2mc2 =
xz1

z2 − z1
m1; (3.15)
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y1mc1 =
yz2

z1 − z2
m1; (3.16)

y2mc2 =
yz1

z2 − z1
m1; (3.17)

where x, y and m1 are kwown, and z1, z2 chosen.

The different parameters can be assumed as shown:

1. mc1 ,mc2 → I get x1, y1, x2, y2 (masses positions).

2. x1, x2 (or y1, y2) → I get mc1 ,mc2 , y1, y2 (or x1, x2).

If z1 = −z2: (symmetrical planes)

x1mc1 = x2mc2 = −
x

2
m1; (3.18)

y1mc1 = y2mc2 = −
y

2
m1; (3.19)

If:

x1 = x2 ⇒mc1 =mc2 and y1 = y2; (3.20)

y1 = y2 ⇒mc1 =mc2 and x1 = x2; (3.21)

The parameters assumpitons are maked based on different projectual restrictions, ad
for example the encumbrances and the available empty spaces.

By way of example, in the Figure 3.19 is reported a possible configuration of a Single-
Cylinder Engine in which all the first order forces are balanced. It can be seen the balancer
shaft that rotates with the same ω speed than the crankshaft, but with opposite verse. This
balancer shaft has a specific mass that allows to the system to be fully first order forces
balanced.
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Figure 3.19: Single cylinder engine with a balancer shaft
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Chapter 4

Inline Engines

4.1 Two-Cylinder Inline Engines
There are three possible configurations of Two-Cylinder Inline Engine:

• β = 180°

• β = 360°

• β = 270° (or 90°)

The term β is the angle bewteen crank throws.

Figure 4.1: Generic configuration of a two-cylinder inline engine

Considering the configuration shown in the Figure 4.1 with a generic β angle the fuda-
mental equations system, that shows which forces are balanced or not, can be written as:
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Cylinder 1 ⇒
⎛
⎜⎜
⎝

r sin θ
r cos θ
a

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

x

y

z

⎞
⎟⎟
⎠

; Cylinder 2 ⇒
⎛
⎜⎜
⎝

r sin(θ + β)
r cos(θ + β)
−a

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

x

y

z

⎞
⎟⎟
⎠

;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) ∑
i
mi /ω2 xi = ∑

i
mixi =m1r sin θ +m2r sin(θ + β) = 0;

y) ∑
i
mi /ω2 yi = ∑

i
miyi =m1r cos θ +m2r cos(θ + β) = 0;

x Á ∑
i
(mi /ω2 xi)zi = ∑

i
mixizi =m1r sin θ(a) +m2r sin(θ + β)(−a) = 0;

y Á ∑
i
(mi /ω2 yi)zi = ∑

i
miyizi =m1r cos θ(a) +m2r cos(θ + β)(−a) = 0;

(4.1)

Let us consider now each single case separately and, as already done for the single
cylinder case, derive the equations and relationships that regulate the systems.

4.1.1 Two-Cylinder Inline Engines with β=180°
In the 4-strokes two-cylinder engines with β=180° the gap between the duty cycles is not
uniform, because of the useful phases succeed each other with different intervals (of 180°
and 540°).

Therefore, in terms of torque variations, this configuration is worse than the configura-
tion with β=360°.

The system can be represented as shown in the Figure 4.2:

Figure 4.2: Two-cylinder inline engine with β=180°

The forces acting on the system can be divided in first and second order, and they can
be represented in the first order and in the second order vectors stars.

First order vectors star

As can be seen in the Figure 4.3:
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Figure 4.3: Firts order vectors star with β=180°

• Pure centrifugal forces (mROTω
2r) ⇒ Balanced.

• Rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

Second order vectors star

As can be seen in the Figure 4.4:

• Rotating part of second order alternating forces (1
2mALTω

2rλ) ⇒ Not balanced.

• Counter-rotating part of second order alternating forces (1
2mALTω

2rλ) ⇒ Not bal-
anced.

As shown in the Figure 4.4, the second order forces, that rotate with 2ω speed, due
to the cylinder #1 and the cylinder #2 are overlapped, as can be derived in this quick
demonstration:

• Cyl. #1→ θ⇒ 2θ⇒ cos(2θ);

• Cyl. #2→ (θ + 180°) ⇒ 2(θ + 180°) ⇒ cos(2θ + 360°) = cos(2θ);
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Figure 4.4: Second order vectors star with β=180°

In this configuration of the system the first order moments are not balanced, instead
the second order moments are balanced.

Analytical form and fundamental equations

The considered system is shown in the Figure 4.5:

Figure 4.5: Two-cylinder inline engine with β=180°
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Cylinder #1⇒
⎛
⎜⎜
⎝

x1
y1

z1 = a

⎞
⎟⎟
⎠

Cylinder #2⇒
⎛
⎜⎜
⎝

x2
y2

z2 = −a

⎞
⎟⎟
⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) ∑
i
mi /ω2 xi = ∑

i
mixi =m1x1 +m2x2 = 0;⇒Balanced

y) ∑
i
mi /ω2 yi = ∑

i
miyi =m1y1 +m2y2 = 0;⇒Balanced

x Á ∑
i
(mi /ω2 xi)zi = ∑

i
mixizi =m1x1a +m2x2(−a) = 0;⇒Must be balanced

y Á ∑
i
(mi /ω2 yi)zi = ∑

i
miyizi =m1y1a +m2y2(−a) = 0;⇒Must be balanced

(4.2)

The resultant force in x direction is balanced in each system position because x1 = −x2
for any θ angle considered. For the resultant in y direction it can be followed the same
reasoning considering that y1 = −y2 for any θ angle considered.

Balancing Strategy

It has to be chosen to consider a configuration with the addition of tho counterweights to
the crankshaft, one for each cylinder. It is important to stress that this is only one of the
many possible layouts. Let us consider the Figure 4.6, where the system are schematically
reported:

Figure 4.6: Two-cylinder inline engine with β=180° with counterweights

m1 ⇒
⎛
⎜⎜
⎝

x1 = −r sin θ
y1 = r cos θ
z1 = a

⎞
⎟⎟
⎠

; m2 ⇒
⎛
⎜⎜
⎝

x2 = r sin θ
y2 = −r cos θ
z2 = −a

⎞
⎟⎟
⎠

;
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mc1 ⇒
⎛
⎜⎜
⎝

xc1

yc1

zc1 = 2a

⎞
⎟⎟
⎠

; mc2 ⇒
⎛
⎜⎜
⎝

xc2

yc2

zc2 = −2a;

⎞
⎟⎟
⎠

;

(considering m1 =mROT1 + 1
2mALT1 and m1 =m2).

The system can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1 /ω2 xc1 +mc2 /ω2 xc2 +m1 /ω2 (−r sin θ) +m2 /ω2 r sin θ = 0
y) mc1 /ω2 yc1 +mc2 /ω2 yc2 +m1 /ω2 r cos θ +m2 /ω2 (−r cos θ) = 0
x Á (mc1 /ω2 xc1)zc1 + (mc2 /ω2 xc2)zc2 + (m1 /ω2 (−r sin θ))z1 + (m2 /ω2 r sin θ)z2 = 0
y Á (mc1 /ω2 yc1)zc1 + (mc2 /ω2 yc2)zc2 + (m1 /ω2 r cos θ)z1 + (m2 /ω2 (−r cos θ))z2 = 0

(4.3)
with zc1 = 2a, zc2 = −2a, z1 = a and z2 = −a taken as assumption.

If m1 =m2 =m:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1xc1 +mc2xc2 = 0
y) mc1yc1 +mc2yc2 = 0
x Á mc1xc1 −mc2xc2 −mr sin θ = 0
y Á mc1yc1 −mc2yc2 +mr cos θ = 0

(4.4)

The solutions are:

mc1xc1 =
mr sin θ

2
; (4.5)

mc2xc2 = −
mr sin θ

2
; (4.6)

mc1yc1 = −
mr cos θ

2
; (4.7)

mc2yc2 =
mr cos θ

2
; (4.8)

If xc1 = −xc2 = x and yc1 = −yc2 = y the equations system can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) (mc1 −mc2)x = 0
y) (mc1 −mc2)y = 0
x Á (mc1 +mc2)x =mr sin θ
y Á (mc1 +mc2)y = −mr cos θ

(4.9)

and the solutions are:

mc1 =mc1 =mc; (4.10)
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mcx =
mr sin θ

2
; (4.11)

mcy = −
mr cos θ

2
; (4.12)

Fixing the masses mc1 and mc2 the parameters xc1 , xc2 , yc2 , yc2 can be obtained ; fixing
xc2 and xc2 (or yc2 and yc2) it is possible to derive mc1 ,mc2 , yc1 , yc2 (or xc1 , xc2).

To balance the first order counter-rotating moment it is necessary to place a balancer
shaft that rotates at −ω speed. In the Figure 4.7 it can be seen a possible system configu-
ration, with a balancer shaft equipped with two eccentric masses that provide to balance
the first order counter-rotating forces. The second order moments are balanced instead.

Figure 4.7: Two-cylinder inline engine with β=180° with balancer shaft
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4.1.2 Two-Cylinder Inline Engines with β=360°
In this configuration, with β=360°, the gap duty cycles is uniform, therefore the useful
phases succeed each other always with the same interval. Then, this is the best layout in
terms of torque variations for a two-cylinder engine. The system can be represented as
shown in the Figure 4.8:

Figure 4.8: Two-cylinder inline engine with β=360°

The forces acting on the system can be divided in first and second order, and they can
be represented in the first order and in the second order vectors stars.

First order vectors star

As can be seen in the Figure 4.9:

Figure 4.9: Firts order vectors star with β=360°
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• Pure centrifugal forces (mROTω
2r) ⇒ Not balanced.

• Rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Not balanced.

• Counter-rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Not balanced.

Second order vectors star

As can be seen in the Figure 4.10:

Figure 4.10: Second order vectors star with β=360°

• Rotating part of second order alternating forces (1
2mALTω

2rλ) ⇒ Not balanced.

• Counter-rotating part of second order alternating forces (1
2mALTω

2rλ) ⇒ Not bal-
anced.

In this system configuration, first order and second order moments due to rotating and
counter-rotating first order and second order forces are balanced.

Analytical form and fundamental equations

The considered system in shown in the Figure 4.11:

Cylinder #1⇒
⎛
⎜⎜
⎝

x1
y1

z1 = a

⎞
⎟⎟
⎠

Cylinder #2⇒
⎛
⎜⎜
⎝

x2
y2

z2 = −a

⎞
⎟⎟
⎠
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Figure 4.11: Two-cylinder inline engine with β=360°

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) ∑
i
mi /ω2 xi = ∑

i
mixi =m1x1 +m2x2 = 0;⇒Must be balanced

y) ∑
i
mi /ω2 yi = ∑

i
miyi =m1y1 +m2y2 = 0;⇒Must be balanced

x Á ∑
i
(mi /ω2 xi)zi = ∑

i
mixizi =m1x1a +m2x2(−a) = 0;⇒Balanced

y Á ∑
i
(mi /ω2 yi)zi = ∑

i
miyizi =m1y1a +m2y2(−a) = 0;⇒Balanced

(4.13)

The resultant force in x direction is not balanced because x1 = x2 for each θ angle con-
sidered. For the resultant in y direction it can be followed the same reasoning considering
that y1 = y2 for any θ angle considered.

Both the moments x and y are instead balanced for all the θ angles.

Balancing Strategy

To balance this engine configuration, it is necessary to add counterweights on the crankshaft.
Considering a configuration with the addition of 4 balancing masses, two for each cylinder,
as shown in Figure 4.12:

m1 ⇒
⎛
⎜⎜
⎝

x1 = −r sin θ
y1 = r cos θ
z1 = 2a

⎞
⎟⎟
⎠

; m2 ⇒
⎛
⎜⎜
⎝

x2 = −r sin θ
y2 = r cos θ
z2 = −2a

⎞
⎟⎟
⎠

;
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Figure 4.12: Two-cylinder inline engine with β=360° with counterweights

mc1 ⇒
⎛
⎜⎜
⎝

xc1

yc1

zc1 = 3a

⎞
⎟⎟
⎠

; mc2 ⇒
⎛
⎜⎜
⎝

xc2

yc2

zc2 = a;

⎞
⎟⎟
⎠

;

mc3 ⇒
⎛
⎜⎜
⎝

xc3

yc3

zc3 = −a

⎞
⎟⎟
⎠

; mc4 ⇒
⎛
⎜⎜
⎝

xc4

yc4

zc4 = −3a;

⎞
⎟⎟
⎠

;

This type of balancing is commonly called Bay-by-bay.

The system can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1 /ω2 xc1 +mc2 /ω2 xc2 +mc3 /ω2 xc3 +mc4 /ω2 xc4 +m1 /ω2 (−r sin θ) +m2 /ω2 (−r sin θ) = 0
y) mc1 /ω2 yc1 +mc2 /ω2 yc2 +mc3 /ω2 yc3 +mc4 /ω2 yc4 +m1 /ω2 r cos θ +m2 /ω2 r cos θ = 0
x Á (mc1 /ω2 xc1)zc1 + (mc2 /ω2 xc2)zc2 + (mc3 /ω2 xc3)zc3 + (mc4 /ω2 xc4)zc4+

+(m1 /ω2 (−r sin θ))z1 + (m2 /ω2 (−r sin θ))z2 = 0
y Á (mc1 /ω2 yc1)zc1 + (mc2 /ω2 yc2)zc2 + (mc3 /ω2 yc3)zc3 + (mc4 /ω2 yc4)zc4+

+(m1 /ω2 r cos θ)z1 + (m2 /ω2 r cos θ)z2 = 0
(4.14)

If m1 =m2 =m and x1 = x2 = x and y1 = y2 = y:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1xc1 +mc2xc2 +mc3xc4 +mc4xc4 + 2mx = 0
y) mc1yc1 +mc2yc2 +mc3yc4 +mc4yc4 + 2my = 0
x Á 3mc1xc1 +mc2xc2 −mc3xc3 − 3mc4xc4 = 0
y Á 3mc1yc1 +mc2yc2 −mc3yc3 − 3mc4yc4 = 0

(4.15)

In order to make ad example, assuming that the counterweights are placed in opposition
to the cylinders (therefore with an angle of 180° respect of the cylinders) and that the four
counterweights masses are the same (mc1 =mc2 =mc3 =mc4 =mc):

The solution is:

mcxc = −
mx

2
; (4.16)

mcyc = −
my

2
; (4.17)

The values counterweights masses and positions are a function of many parameters, as
the balancing factos chosen for each bay, the empty spaces in the crankcase, the maximum
acceptable loads on the bearing, the maximum acceptable shaft weight, etc.

In the Figure 4.13 is shown a possible balancing configuration of the first order counter-
rotatiung forces, using a balancer shaft that rotates with the same and opposite speed of
the crankshaft.

It this way the system is fully balanced to the first order forces.

4.1.3 Two-Cylinder Inline Engines with β=270°
In the Figure 4.14 it is represented the system considered:

As already done for the cases with β=180° and β=360°, the forces are divided in firts
order and second order and representer in the vectors stars.

First order vectors star

As can be seen in the Figure 4.15:

• Pure centrifugal forces (mROTω
2r) ⇒ Not balanced.

• Rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Not balanced.

• Counter-rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Not balanced.

Second order vectors star

As can be seen in the Figure 4.16:

• Rotating part of second order alternating forces (1
2mALTω

2rλ) ⇒ Balanced.

• Counter-rotating part of second order alternating forces (1
2mALTω

2rλ) ⇒ Balanced.
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Figure 4.13: Two-cylinder inline engine with β=360° with balancer shaft

As shown in the Figure 4.16, the second order forces, that rotate with 2ω speed, due
to the cylinder #1 and the cylinder #2 are overlapped, as can be derived in this quick
demonstration:

• Cyl. #1→ θ⇒ 2θ⇒ cos(2θ);

• Cyl. #2→ (θ + 270°) ⇒ 2(θ + 270°) ⇒ cos(2θ + 540°);

In this configuration the first order moments are not balanced, instead the second order
moments are balanced.

Analytical form and fundamental equations

The considered system in shown in the Figure 4.17:
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Figure 4.14: Two-cylinder inline engine with β=270°

Figure 4.15: Firts order vectors star with β=270°

Cylinder #1⇒
⎛
⎜⎜
⎝

x1
y1

z1 = a

⎞
⎟⎟
⎠

Cylinder #2⇒
⎛
⎜⎜
⎝

x2
y2

z2 = −a

⎞
⎟⎟
⎠
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Figure 4.16: Second order vectors star with β=270°

Figure 4.17: Two-cylinder inline engine with β=270°

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) ∑
i
mi /ω2 xi = ∑

i
mixi =m1x1 +m2x2 = 0;⇒Must be balanced

y) ∑
i
mi /ω2 yi = ∑

i
miyi =m1y1 +m2y2 = 0;⇒Must be balanced

x Á ∑
i
(mi /ω2 xi)zi = ∑

i
mixizi =m1x1a +m2x2(−a) = 0;⇒Must be balanced

y Á ∑
i
(mi /ω2 yi)zi = ∑

i
miyizi =m1y1a +m2y2(−a) = 0;⇒Must be balanced

(4.18)
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In this engine configuration, first order forces and moments are not balanced for every
θ angle considered.

The expressions of the moments around x and y axis can be derived as showh below in
4.19 and 4.20:

Mx = aF cos θ − aF sin θ = aF (cos θ − sin θ); (4.19)

My = aF sin θ + aF cos θ = aF (sin θ + cos θ); (4.20)

considering the trigonometric relations sin θ = − cos(3π
2 −θ) and cos θ = − sin(3π

2 −θ) and
using the prosthaphaeresis formulas, the moments expressions will be:

Mx = −
√

2aF cos(θ − 3π
4
) ; (4.21)

My = −
√

2aF sin(θ − 3π
4
) ; (4.22)

The moments Mx and My are on a plane that follows by 3π/4 = 135° the plane of the
crank of the cylinder #1, in each position considered.

Balancing Strategy

Because of the relations 4.21 and 4.22, in this engine layout it is necessary to add two
(or more) counterweights on the plane where the moments are located in order to balance
them.

Considering a configuration with θ = 45° as shown in the Figure 4.18:

Figure 4.18: Two-cylinder inline engine with β=270° and θ=45°

With θ = 45° the moment Mx is self-balanced. Doing a moment balancing, the forces
due to the counterweights masses can be derived as shown below:

4aF sin 45 = 2
√

2aF = 6aFBAL (4.23)
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FBAL =mBALω
2rBAL =

√
2

3
F =
√

2
3
ω2r(mROT +

1
2
mALT ); (4.24)

In this way it can be balanced both the pure rotating forces and the part of the firts
order alternating forces that can be reconduced to rotating and, moreover, the first order
rotating moment due to these forces.

In order to balance the counter-rotating forces it is necessary to have a balancer shaft,
as shown in the Figure 4.19:

Figure 4.19: Two-cylinder inline engine with β=270° and balancer shaft

The plane where the forces due to the eccentric masses of the balancer shaft are placed
preceed by 135° the plane of the cyl. #1 in each position considered.

This way of balancing produces a system that is globally balanced to the first order
forces and moments, but it is not locally balanced. In order to have a system that is also
locally balanced it is possible to apply the Bay-by-bay balancing strategy.

Considering to add two counterweights for each cylinder, the system can be represented
as shown in the Figure 4.20:

m1 ⇒
⎛
⎜⎜
⎝

x1 = −r sin θ
y1 = r cos θ
z1 = 2a

⎞
⎟⎟
⎠

; m2 ⇒
⎛
⎜⎜
⎝

x2 = r cos θ
y2 = r sin θ
z2 = −2a

⎞
⎟⎟
⎠

;
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Figure 4.20: Two-cylinder inline engine with β=270° with bay-by-bay bal-
ancing

mc1 ⇒
⎛
⎜⎜
⎝

xc1

yc1

zc1 = 3a

⎞
⎟⎟
⎠

mc2 ⇒
⎛
⎜⎜
⎝

xc2

yc2

zc2 = a

⎞
⎟⎟
⎠

mc3 ⇒
⎛
⎜⎜
⎝

xc3

yc3

zc3 = −a

⎞
⎟⎟
⎠

mc4 ⇒
⎛
⎜⎜
⎝

xc4

yc4

zc4 = −3a

⎞
⎟⎟
⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1 /ω2 xc1 +mc2 /ω2 xc2 +mc3 /ω2 xc3 +mc4 /ω2 xc4+
+m1 /ω2 (−r sin θ) +m2 /ω2 (r cos θ) = 0

y) mc1 /ω2 yc1 +mc2 /ω2 yc2 +mc3 /ω2 yc3 +mc4 /ω2 yc4+
+m1 /ω2 r cos θ +m2 /ω2 r sin θ = 0

x Á (mc1 /ω2 xc1)zc1 + (mc2 /ω2 xc2)zc2 + (mc3 /ω2 xc3)zc3 + (mc4 /ω2 xc4)zc4+
+(m1 /ω2 (−r sin θ))z1 + (m2 /ω2 r cos θ)z2 = 0

y Á (mc1 /ω2 yc1)zc1 + (mc2 /ω2 yc2)zc2 + (mc3 /ω2 yc3)zc3 + (mc4 /ω2 yc4)zc4+
+(m1 /ω2 r cos θ)z1 + (m2 /ω2 r sin θ)z2 = 0

(4.25)

that can be rewritten as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1xc1 +mc2xc2 +mc3xc3 +mc4xc4 +m1(−r sin θ) +m2(r cos θ) = 0
y) mc1yc1 +mc2yc2 +mc3yc3 +mc4yc4 +m1r cos θ +m2r sin θ = 0
x Á (mc1xc1)3a + (mc2xc2)a + (mc3xc3)(−a) + (mc4xc4)(−3a)+

+(m1(−r sin θ))2a + (m2r cos θ)(−2a) = 0
y Á (mc1yc1)3a + (mc2yc2)a + (mc3yc3)(−a) + (mc4yc4)(−3a)+

+(m1r cos θ)2a + (m2r sin θ)(−2a) = 0

(4.26)

Assuming that:
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• m1 =m2 =m;

• xc1 = xc2 = xc12 and xc3 = xc4 = xc34

• yc1 = yc2 = yc12 and yc3 = yc4 = yc34

• mc1 =mc2 =mc12 and mc3 =mc4 =mc34

the system becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mr(cos θ − sin θ) + 2mc12xc12 + 2mc34xc34 = 0
y) mr(cos θ + sin θ) + 2mc12yc12 + 2mc34yc34 = 0
x Á 2amr(− cos θ − sin θ) + 4amc12xc12 − 4amc34xc34 = 0
y Á 2amr(cos θ − sin θ) + 4amc12yc12 − 4amc34yc34 = 0

(4.27)

Solving this system it is possible to find a solution with all the parameters that balance
the engine. Obviously, this solution is a function of the assumptions maked.

4.1.4 Bearings loads
The way used to find the bearing loads is based on the Three Moment Equation of Clapeyron
[6] [7]. The crankshaft is hyperstatically constrained and can be considered as a beam, in
this case with two span.

The three moment equation method require to use ad additional equation for each
excess constrain. In the equations shown below it is assumed that the Young’s modulus E
and the moment of inertia of the crankshaft section J are constant along the crankshaft,
therefore they cancel each other in all the terms.

The procedure is the same for all the I2 crankshaft configurations analyzed.
The three moment equation is derived considering the system in the Figure 4.21.
the three moment equation is equal to:

MAl1 + 2MB(l1 + l2) +MC l2 = −
Fc1
l1
a(l21 − a2) − Fc2

l2
d(l22 − d2); (4.28)

The moments MA and MC are zero and the unknown moment MB is equal to:

MB =
1

2(l1 + l2)
[−Fc1

l1
a(l21 − a2) − Fc2

l2
d(l22 − d2)] ; (4.29)

Considering now the each single span, the shear forces and the reaction on the supports
can be derived as shown below:

• System "AB" (Figure 4.22):
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Figure 4.21: I2 crankshaft seen as a two-span beam

Figure 4.22: System AB

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B Á MB −MA + Fc1b − TA+ l1 = 0
TA+ = 1

l1
(MB + Fc1b);

↑) TA+ − Fc1 − TB− = 0
TB− = TA+ − Fc1;

(4.30)

• System "BC" (Figure 4.23):
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Figure 4.23: System BC

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C Á MC −MB + Fc2d − TB+ l2 = 0
TB+ = 1

l2
(−MB + Fc2d;

↑) TB+ − Fc2 − TC− = 0
TC− = TB+ − Fc2;

(4.31)

The reactions can be obtaiden considering the convention shown in Figure 4.24.

Figure 4.24: Shear forces convention
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

RA = TA+ ;
RB = TB+ − TB− ;
RC = −TC− ;

(4.32)

All the procedure shown above is valid for the case of a non-balanced crankshaft as no
forces due do the counterweights are were considered. Anyway, the same method can be
used for a balanced crankshaft just adding the forces due to the counterweights, as shown
in the Figure 4.25.

Figure 4.25: Model of forces in a I2 balanced crankshaft

73



4 – Inline Engines

4.2 Three-Cylinder Inline Engines
In this paragraph equations and relationships that regulate three cylinders inline engines
will be obtained.

For these engines the angle between each crank is equal to 720°
3 = 240° and there are

two possibilities of crank throws layout:

• β2 = 120°, β3 = 240° (F.O. 1-3-2)

• β2 = 240°, β3 = 120° (F.O. 1-2-3)

In the Figure 4.26 is shown what β2 and β3 mean.

Figure 4.26: Three-cylinder Firing Orders

Only one of the two cases listed is analyzed, because, with the same reasoning, it is
easy to come to similar results.

4.2.1 Three-cylinder Inline engine with β2 = 120° and β3 = 240°
This case corresponding to a F.O. equal to 1-3-2, as shown in the Figure 4.27

The first and the second order vectors stars are now reported, in order to show the
forces acting on the system.

First order vectors star

As can be seen in the Figure 4.28:
As can be seen:

• Pure centrifugal forces (mROTω
2r) ⇒ Balanced.

• Rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.
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Figure 4.27: Three-cylinder inline engine with F.O. 1-3-2.

Figure 4.28: Firts order vectors star

Second order vectors star

In Figure 4.29 the second order forces, that rotate with 2ω speed, due to the cylinder #2
and #3 exchange their position, as quickly derived below:

• Cyl. #1→ θ⇒ 2θ⇒ cos(2θ);

• Cyl. #2→ (θ + 120°) ⇒ 2(θ + 120°) ⇒ cos(2θ + 240°);

• Cyl. #3→ (θ + 240°) ⇒ 2(θ + 240°) ⇒ cos(2θ + 480°) = cos(2θ + 120°);
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Figure 4.29: Second order vectors star

As can be seen in the Figure 4.29:

• Rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Balanced.

In these engines, all first and second order forces are balanced, but the moments are
not balanced (this phenomenon is typical of systems with odd cylinders number, because
there is no symmetry plane).

Analytical form and fundamental equations

Cyl. #1 ⇒
⎛
⎜⎜
⎝

x1
y1

z1 = 2a

⎞
⎟⎟
⎠

; Cyl. #2 ⇒
⎛
⎜⎜
⎝

x2
y2

z2 = 0

⎞
⎟⎟
⎠

Cyl. #3 ⇒
⎛
⎜⎜
⎝

x3
y3

z3 = −2a

⎞
⎟⎟
⎠

The system of equations can be written as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) ∑
i
mi /ω2 xi = ∑

i
mixi =m1x1 +m2x2 +m3x3 = 0;⇒Balanced

y) ∑
i
mi /ω2 yi = ∑

i
miyi =m1y1 +m2y2 +m3y3 = 0;⇒Balanced

x Á ∑
i
(mi /ω2 xi)zi = ∑

i
mixizi =m1x12a +m2x2 ⋅ 0 +m3x3(−2a) = 0;⇒Must be balanced

y Á ∑
i
(mi /ω2 yi)zi = ∑

i
miyizi =m1y12a +m2y2 ⋅ 0 +m3y3(−2a) = 0;⇒Must be balanced

(4.33)
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Figure 4.30: Three-cylinder inline crankshaft

Considering a case with θ = 0° and the assuptions that m1 =m2 =m3 =m and r1 = r2 =
r3, the system becomes:

Cyl. #1 ⇒
⎛
⎜⎜
⎝

x1 = 0
y1 = r
z1 = 2a

⎞
⎟⎟
⎠

; Cyl. #2 ⇒
⎛
⎜⎜
⎝

x2 = −r cos 30° = −
√

3
2 r

y2 = −r sin 30° = −1
2r

z2 = 0

⎞
⎟⎟
⎠

Cyl. #3 ⇒
⎛
⎜⎜
⎝

x3 = r cos 30° =
√

3
2 r

y3 = −r sin 30° = −1
2r

z3 = −2a

⎞
⎟⎟
⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) ∑
i
mi /ω2 xi = ∑

i
mixi =m ⋅ 0 +m(−

√

3
2 ) +m

√

3
2 = 0;⇒Balanced

y) ∑
i
mi /ω2 yi = ∑

i
miyi =mr +m(− r2) +m(−

r
2) = 0;⇒Balanced

x Á ∑
i
(mi /ω2 xi)zi = ∑

i
mixizi =m ⋅ 0 ⋅ 2a +m(−

√

3
2 r ⋅ 0) +m(

√

3
2 r ⋅ (−2a)) =

= −
√

3arm = 0;⇒Must be balanced
y Á ∑

i
(mi /ω2 yi)zi = ∑

i
miyizi =mr2a +m(− r2 ⋅ 0) +m(−

r
2(−2a)) =

= 3arm = 0;⇒Must be balanced

(4.34)

That system confirms what as already written, in terms of which forces are balanced
and which not.

Considering the Figure 4.31, the expressions of the moments around x and y axis can
be derived as showh below in 4.35 and 4.36:
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Figure 4.31: Three-cylinder inline crankshaft

Mx = F cos θ2a + F sin(θ − π
6
)2a = 2aF [cos θ + sin(θ − π

6
)] = 2aF [cos θ − cos(4π

3
+ θ)] ;
(4.35)

considering the trigonometric relation: sin (θ − π
6 ) = − cos (4π

3 + θ).

My = F sin θ2a + F cos(π
6
− θ)2a = 2aF [sin θ + cos(π

6
− θ)] = 2aF [sin θ − sin(4π

3
+ θ)] ;
(4.36)

considering the trigonometric relation: cos (π6 − θ) = − sin (4π
3 + θ).

Continuing to develop the moments expressions through trigonometric relations and
prosthaphaeresis formulas, the results will be:

Mx = 2
√

3aF cos(π
6
+ θ) ; (4.37)

My = 2
√

3aF sin(π
6
+ θ) ; (4.38)

The term Mx is the Pitching Moment, My is the Yawing Moment.
These moments Mx and My, considering as θ the angle of the mass 1, preceed 30°

(= π/6) the position of this cylinder, in each reference position considered (as shown in the
Figure 4.32).

Balancing Strategy

In order to study the engine balancing, to have a better view of the physical meaning it
is useful to put the cylinder number 2 at TDC (on shafts with odd cylinders number it is
usual to put the "central" cylinder at the TDC), as shown in the Figure 4.33:

In this configuration:
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Figure 4.32: Plane where the moments are located on.

Figure 4.33: Configuration with the cyl.#2 at TDC

Mx = 0; (4.39)

My = F
√

3
2

4a = 2
√

3aF ; (4.40)

with F = ω2r(mROT + 1
2mALT ).

Because of the relations 4.37 and 4.38, in this engine layout it is necessary to add two
(or more) counterweights on the plane where the moments are located in order to balance
them, as it can be seen in the Figure 4.34.
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Figure 4.34: Balanced configuration of the system

Doing a moment balancing, the forces due to the counterweights masses can be derived
as shown below:

√
3

2
F4a = FBAL5a (4.41)

then:

FBAL =mBALω
2rBAL =

4
5

√
3

2
F = 2

√
3

5
F = 2

√
3

5
ω2r (mROT +

1
2
mALT) ; (4.42)

where mBAL is equal to the counterweight mass and rBAL is equal to the radius where the
counterweight mass is placed.

In this way it can be balanced both the pure rotating and the part of first order alter-
nating force that can be recoduced to rotating.

In order to balance the counter-rotating moment it is necessary to use balancer shafts.
In the Figure 4.35 is shown an example with a counter-shaft that balances the firts order
counter-rotating moments.

The direction of the balancing moment is in a plane trailing by 30° the cylinder #1. It
is possible to demonstrate this statement as shown below.

Assuming to consider the cylinder #1 at the TDC, as shown in the Figure 4.36:
The first order counter-rotating moments can be written as:

MxCR
= F cos θ2a + F sin(π

6
+ θ)2a = 2aF [cos θ − cos(4π

3
− θ)] ; (4.43)

MyCR
= F sin θ2a + F cos(π

6
+ θ)2a = 2aF [sin θ − sin(4π

3
− θ)] ; (4.44)

Using the same trigonometric and prosthaphaeresis formulas used to find the plane of
the first order rotating moment, the expressions become:
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Figure 4.35: Configuration with a balancer shaft

MxCR
= 2
√

3aF cos(π
6
− θ) ; (4.45)

MyCR
= 2
√

3aF sin(π
6
− θ) ; (4.46)

The term F is, in this case, only due to the counter-rotating part of the first order
alternating forces equal to 1

2mALTω
2r.

The same reasoning can be applied to balance the second order moments adding other
two balancer shafts that rotate with double speed than the crankshaft, one of them ro-
tating with the same verse than the crankshaft that balance the second order rotating
moments, and the other rotating with opposite verse that balance the counter-rotating
moments. Usually these second order moments are not balanced in these engines, because
their balance introduces complexity and weight to the system and, moreover, costs.

This way of balancing produces a system that is globally balanced to the first order
forces and moments, but it is not locally balanced. In order to have a system that is
also locally balanced it is possible to apply many strategies, one of the most common
methods is the Bay-by-bay balancing strategy. Considering to add two counterweights for

81



4 – Inline Engines

Figure 4.36: Counter-rotating forces that produce moments.

each cylinder, the system can be represented as shown in Figure 4.37:

m1 ⇒
⎛
⎜⎜
⎝

x1 = −r sin θ
y1 = r cos θ
z1 = 3a

⎞
⎟⎟
⎠

; m2 ⇒
⎛
⎜⎜
⎝

x2 = −r sin(θ + 120)
y2 = r cos(θ + 120)

z2 = 0

⎞
⎟⎟
⎠

; m3 ⇒
⎛
⎜⎜
⎝

x3 = −r sin(θ + 240)
y3 = r cos(θ + 240)

z3 = −3a

⎞
⎟⎟
⎠

;

mc1 ⇒
⎛
⎜⎜
⎝

xc1

yc1

zc1 = 4a

⎞
⎟⎟
⎠

; mc2 ⇒
⎛
⎜⎜
⎝

xc2

yc2

zc2 = 2a;

⎞
⎟⎟
⎠

; mc3 ⇒
⎛
⎜⎜
⎝

xc3

yc3

zc3 = a

⎞
⎟⎟
⎠

;

mc4 ⇒
⎛
⎜⎜
⎝

xc4

yc4

zc4 = −a;

⎞
⎟⎟
⎠

; mc5 ⇒
⎛
⎜⎜
⎝

xc5

yc5

zc5 = −2a;

⎞
⎟⎟
⎠

; mc6 ⇒
⎛
⎜⎜
⎝

xc6

yc6

zc6 = −4a

⎞
⎟⎟
⎠

;
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Figure 4.37: Configuration globally balanced

The system of equations can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1 /ω2 xc1 +mc2 /ω2 xc2 +mc3 /ω2 xc3 +mc4 /ω2 xc4 +mc5 /ω2 xc5 +mc6 /ω2 xc6+
+m1 /ω2 x1 +m2 /ω2 x2 +m3 /ω2 x3 = 0

y) mc1 /ω2 yc1 +mc2 /ω2 yc2 +mc3 /ω2 yc3 +mc4 /ω2 yc4 +mc5 /ω2 yc5 +mc6 /ω2 yc6+
+m1 /ω2 y1 +m2 /ω2 y2 +m3 /ω2 y3 = 0

x Á (mc1 /ω2 xc1)zc1 + (mc2 /ω2 xc2)zc2 + (mc3 /ω2 xc3)zc3 + (mc4 /ω2 xc4)zc4 + (mc5 /ω2 xc5)zc5+
+(mc6 /ω2 xc6)zc6 + (m1 /ω2 x1)z1 + (m2 /ω2 x2)z2 + (m3 /ω2 x3)z3 = 0

y Á (mc1 /ω2 yc1)zc1 + (mc2 /ω2 yc2)zc2 + (mc3 /ω2 yc3)zc3 + (mc4 /ω2 yc4)zc4 + (mc5 /ω2 yc5)zc5+
+(mc6 /ω2 yc6)zc6 + (m1 /ω2 y1)z1 + (m2 /ω2 y2)z2 + (m3 /ω2 y3)z3 = 0

(4.47)

that can be rewritten as:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1xc1 +mc2xc2 +mc3xc3 +mc4xc4 +mc5xc5 +mc6xc6+
+m1(−r sin θ) +m2(−r sin(θ + 120)) +m3(−r sin(θ + 240)) = 0

y) mc1yc1 +mc2yc2 +mc3yc3 +mc4yc4 +mc5yc5 +mc6yc6+
+m1r cos θ +m2r cos(θ + 120) +m3r cos(θ + 240) = 0

x Á (mc1xc1)4a + (mc2xc2)2a + (mc3xc3)(a) + (mc4xc4)(−a) + (mc5xc5)(−2a) + (mc6xc6)(−4a)+
+(m1(−r sin θ))3a + (m2(−r sin(θ + 120))) ⋅ 0 + (m3(−r sin(θ + 240)))(−3a) = 0

y Á (mc1yc1)4a + (mc2yc2)2a + (mc3yc3)(a) + (mc4yc4)(−a) + (mc5yc5)(−2a) + (mc6yc6)(−4a)+
+(m1r cos θ)3a + (m2r cos(θ + 120)) ⋅ 0 + (m3r cos(θ + 230))(−3a) = 0

(4.48)
Assuming that:

• m1 =m2 =m3 =m;

• xc1 = xc2 = xc12 and xc3 = xc4 = xc34 and xc5 = xc6 = xc56

• yc1 = yc2 = yc12 and yc3 = yc4 = yc34 and yc5 = yc6 = yc56

• mc1 =mc2 =mc12 and mc3 =mc4 =mc34 and mc5 =mc5 =mc56

the system becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) 2mc12xc12 + 2mc34xc34 + 2mc56xc56 −mr(sin θ + sin(θ + 120) + sin(θ + 240)) = 0
y) 2mc12yc12 + 2mc34yc34 + 2mc56yc56 +mr(cos θ + cos(θ + 120) + cos(θ + 240)) = 0
x Á mc12xc126a −mc56xc566a + 3amr(sin(θ + 240) − sin θ) = 0
y Á mc12yc126a −mc56yc566a + 3amr(cos(θ + 120) + cos θ) = 0

(4.49)
Solving this system it is possible to find a solution with all the parameters that balance

the engine. Obviously, this solution is a function of the assumptions made.

4.2.2 Bearings loads
The way used to find the bearing loads is based on the Three Moment Equation of Clapey-
ron. The crankshaft is hyperstatically constrained and can be considered as a beam, in
this case with three span.

The three moment equation method requires use of an ad additional equation for each
excess constrain. In the equations shown below it is assumed that the Young’s modulus E
and the moment of inertia of the crankshaft section J are constant along the crankshaft,
therefore they cancel each other in all the terms.

In this case the system can be divided in two subsystems, the ABC and the BCD. For
each subsystem a three moment equation can be derived.
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Figure 4.38: I3 crankshaft seen as a three-span beam

Figure 4.39: System ABC

Figure 4.38 represents the whole system considered.
Considering now the system ABC shown in Figure :
the three moment equation is equal to:

MAl1 + 2MB(l1 + l2) +MC l2 = −
Fc1
l1
a(l21 − a2) − Fc2

l2
d(l22 − d2); (4.50)

for the system BCD shown in the Figure 4.40 the three moment equation is equal to:

MBl2 + 2MC(l2 + l3) +MDl3 = −
Fc2
l2
c(l22 − c2) − Fc3

l3
f(l23 − f2); (4.51)

The momentsMA andMD are zero, andMB andMC can be calculated considering the
system in matrix form like Ax = B with:

A = [2(l1 + l2) l2
l2 2(l2 + l3)

]

;
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Figure 4.40: System BCD

x = (MB

MC
)

and the vector B equal to the known term:

B = (−
Fc1
l1
a(l21 − a2) − Fc2

l2
d(l22 − d2)

−Fc2
l2
c(l22 − c2) − Fc3

l3
f(l23 − f2))

and then:

x = (MB

MC
) = A−1 ∗B

Considering now each single span, the shear forces and the reaction on the supports
can be derived as shown below:

• System "AB" (Figure 4.41):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B Á MB −MA + Fc1b − TA+ l1 = 0
TA+ = 1

l1
(MB + Fc1b);

↑) TA+ − Fc1 − TB− = 0
TB− = TA+ − Fc1;

(4.52)

• System "BC" (Figure 4.42):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C Á MC −MB + Fc2d − TB+ l2 = 0
TB+ = 1

l2
(MC −MB + Fc2d);

↑) TB+ − Fc2 − TC− = 0
TC− = TB+ − Fc2;

(4.53)
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Figure 4.41: System AB

Figure 4.42: System BC

• System "CD" (Figure 4.43):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D Á MD −MC + Fc3f − TC+ l3 = 0
TC+ = 1

l3
(−MC + Fc3f);

↑) TC+ − Fc3 − TD− = 0
TD− = TC+ − Fc3;

(4.54)

The reactions can be obtained considering the convention shown in Figure 4.44.
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Figure 4.43: System CD

Figure 4.44: Shear forces convention

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

RA = TA+ ;
RB = TB+ − TB− ;
RC = TC+ − TC− ;
RD = −TD− ;

(4.55)

All the procedure shown above is valid for the case of a non-balanced crankshaft as no
forces due do the counterweights are were considered. Anyway, the same method can be
used for a balanced crankshaft just adding the forces due to the counterweights, as shown
in the Figure 4.45.
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Figure 4.45: Model of forces in a I3 balanced crankshaft
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4.3 Four-Cylinder Inline Engines
In this paragraph the relationships that regulate the four cylinders inline engines will be
analyzed. The angle between each crank is in this case equal to 720

4 = 180° and this type
of engines are called Flat-Plane. Moreover, it is possible to have an angle equal to 90°
between the throws, and in these cases the engines are called Cross-Plane.

There are different possible firing orders, for example:

• 1-3-4-2 (probably the most common F.O. used)

• 1-2-4-3 (some British Ford and Riley engines)

• 1-3-2-4 (Subaru 4-cylinder engine, Yahama R1 crossplane)

• 1-4-3-2 (Volkswagen air-cooled engines)

Let us now analyze in details two of these configurations. In the following discussion
only the F.O. equal to 1-3-4-2 will be dealt, because the procedure is similar between the
different cases.

4.3.1 Four-cylinder Inline Engine Flat-Plane with F.O. 1-3-4-2
This is a Flat-Plane configuration and the crank throws are arranged as shown in the
Figure 4.46:

Figure 4.46: Four-cylinder flat-plane inline engine

The crank angles β compared to the crank #1, are equal to:

• β2 = 180°, β3 = 180°, β4 = 360° (F.O. 1-3-4-2)

The first and the second order vectors stars are now reported, in order to show the
forces acting on the system.
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First order vectors star

Figure 4.47: Firts order vectors star

As can be seen in the Figure 4.47:
As can be seen:

• Pure centrifugal forces (mROTω
2r) ⇒ Balanced.

• Rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

Second order vectors star

As can be seen in the Figure 4.48:

• Rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Not balanced.

• Counter-rotating part of second order alternating forces (1
2mALTω

2r)⇒Not balanced.

As shown in the Figure 4.48, the second order forces, that rotate with 2ω speed, due
to the cylinder #1,#2,#3 and #4 are overlapped, as can be derived in this quick demon-
stration:
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Figure 4.48: Second order vectors star

• Cyl. #1→ θ⇒ 2θ⇒ cos(2θ);

• Cyl. #2→ (θ + 180°) ⇒ 2(θ + 180°) ⇒ cos(2θ + 360°) = cos(2θ);

• Cyl. #3→ (θ + 180°) ⇒ 2(θ + 180°) ⇒ cos(2θ + 360°) = cos(2θ);

• Cyl. #4→ θ⇒ 2θ⇒ cos(2θ);

In this system layout, both the first and the second order moments are balanced.

Analytical form and fundamental equations

In the Figure 4.49 is shown the system considered:

Cyl. #1 ⇒
⎛
⎜⎜
⎝

x1
y1

z1 = 3a

⎞
⎟⎟
⎠

; Cyl. #2 ⇒
⎛
⎜⎜
⎝

x2
y2

z2 = a

⎞
⎟⎟
⎠

Cyl. #3 ⇒
⎛
⎜⎜
⎝

x1
y1

z1 = −a

⎞
⎟⎟
⎠

; Cyl. #4 ⇒
⎛
⎜⎜
⎝

x3
y3

z3 = −3a

⎞
⎟⎟
⎠
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Figure 4.49: Four-cylinder flat-plane inline engine

The system of equations can be written as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) ∑
i
mi /ω2 xi = ∑

i
mixi =m1x1 +m2x2 +m3x3 +m4x4 = 0;

y) ∑
i
mi /ω2 yi = ∑

i
miyi =m1y1 +m2y2 +m3y3 +m4y4 = 0;

x Á ∑
i
(mi /ω2 xi)zi = ∑

i
mixizi =m1x13a +m2x2a +m3x3(−a) +m4x4(−3a) = 0;

y Á ∑
i
(mi /ω2 yi)zi = ∑

i
miyizi =m1y13a +m2y2a +m3y3(−a) +m4y4(−3a) = 0;

(4.56)
considering a configuration with θ = 0° and assuming m1 = m2 = m3 = m4 the system

becomes:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) ∑
i
mi /ω2 xi = ∑

i
mixi =m1 ⋅ 0 +m2 ⋅ 0 +m3 ⋅ 0 +m4 ⋅ 0 = 0;⇒Balanced

y) ∑
i
mi /ω2 yi = ∑

i
miyi =m1r +m2(−r) +m3r +m4(−r) = 0;⇒Balanced

x Á ∑
i
(mi /ω2 xi)zi = ∑

i
mixizi =m1 ⋅ 0 ⋅ 3a +m2 ⋅ 0 ⋅ a +m3 ⋅ 0 ⋅ (−a)+

+m4 ⋅ 0 ⋅ (−3a) = 0;⇒Balanced
y Á ∑

i
(mi /ω2 yi)zi = ∑

i
miyizi =m1r3a +m2ra +m3r(−a)+

+m4r(−3a) = 0;⇒Balanced

(4.57)

Balancing Strategy

As show in the equations 4.56, 4.57 the system looks balanced, but it is important to stress
that this is only a global balance, not local.
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In order to have a system that is also locally balanced it is possible to apply the Bay-
by-bay balancing strategy. Assuming to add two counterweights for each crank throw, the
crankshaft can be schematically represented as shown in the Figure 4.50:

Figure 4.50: Four-cylinder inline flat-plane engine with bay-by-bay balanc-
ing

m1 ⇒
⎛
⎜⎜
⎝

x1 = −r sin θ
y1 = r cos θ
z1 = 6a

⎞
⎟⎟
⎠

; m2 ⇒
⎛
⎜⎜
⎝

x2 = −r sin(θ + 180)
y2 = r cos(θ + 180)

z2 = 2a

⎞
⎟⎟
⎠

;

m3 ⇒
⎛
⎜⎜
⎝

x3 = −r sin(θ + 180)
y3 = r cos(θ + 180)

z3 = −2a

⎞
⎟⎟
⎠

; m4 ⇒
⎛
⎜⎜
⎝

x4 = −r sin θ
y4 = r cos θ
z4 = −6a

⎞
⎟⎟
⎠

;

mc1 ⇒
⎛
⎜⎜
⎝

xc1

yc1

zc1 = 7a

⎞
⎟⎟
⎠

; mc2 ⇒
⎛
⎜⎜
⎝

xc2

yc2

zc2 = 5a;

⎞
⎟⎟
⎠

; mc3 ⇒
⎛
⎜⎜
⎝

xc3

yc3

zc3 = 3a

⎞
⎟⎟
⎠

; mc4 ⇒
⎛
⎜⎜
⎝

xc4

yc4

zc4 = a

⎞
⎟⎟
⎠

;

mc5 ⇒
⎛
⎜⎜
⎝

xc5

yc5

zc5 = −a

⎞
⎟⎟
⎠

; mc6 ⇒
⎛
⎜⎜
⎝

xc6

yc6

zc6 = −3a

⎞
⎟⎟
⎠

; mc7 ⇒
⎛
⎜⎜
⎝

xc7

yc7

zc7 = −5a

⎞
⎟⎟
⎠

; mc8 ⇒
⎛
⎜⎜
⎝

xc8

yc8

zc8 = −7a

⎞
⎟⎟
⎠

;
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The system of equations can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1 /ω2 xc1 +mc2 /ω2 xc2 +mc3 /ω2 xc3 +mc4 /ω2 xc4 +mc5 /ω2 xc5 +mc6 /ω2 xc6+
+mc7 /ω2 xc7 +mc8 /ω2 xc8 +m1 /ω2 x1 +m2 /ω2 x2 +m3 /ω2 x3 +m4 /ω2 x4 = 0

y) mc1 /ω2 yc1 +mc2 /ω2 yc2 +mc3 /ω2 yc3 +mc4 /ω2 yc4 +mc5 /ω2 yc5 +mc6 /ω2 yc6+
+mc7 /ω2 yc7 +mc8 /ω2 yc8 +m1 /ω2 y1 +m2 /ω2 y2 +m3 /ω2 y3 +m4 /ω2 y4 = 0

x Á (mc1 /ω2 xc1)zc1 + (mc2 /ω2 xc2)zc2 + (mc3 /ω2 xc3)zc3 + (mc4 /ω2 xc4)zc4+
+(mc5 /ω2 xc5)zc5 + (mc6 /ω2 xc6)zc6 + (mc7 /ω2 xc7)zc7 + (mc8 /ω2 xc8)zc8+
+(m1 /ω2 x1)z1 + (m2 /ω2 x2)z2 + (m3 /ω2 x3)z3 + (m4 /ω2 x4)z4 = 0

y Á (mc1 /ω2 yc1)zc1 + (mc2 /ω2 yc2)zc2 + (mc3 /ω2 yc3)zc3 + (mc4 /ω2 yc4)zc4 + (mc5 /ω2 yc5)zc5+
+(mc6 /ω2 yc6)zc6 + (mc7 /ω2 yc7)zc7 + (mc8 /ω2 yc8)zc8+
+(m1 /ω2 y1)z1 + (m2 /ω2 y2)z2 + (m3 /ω2 y3)z3 + (m4 /ω2 y4)z4 = 0

(4.58)
that can be rewritten as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1xc1 +mc2xc2 +mc3xc3 +mc4xc4 +mc5xc5 +mc6xc6 +mc7xc7 +mc8xc8+
−r sin θ(m1 +m4) − r sin(θ + 180)(m2 +m3) = 0

y) mc1yc1 +mc2yc2 +mc3yc3 +mc4yc4 +mc5yc5 +mc6yc6 +mc7yc7 +mc8yc8+
+r cos θ(m1 +m4) + r cos(θ + 180)(m2 +m3) = 0

x Á 7a(mc1xc1 −mc8xc8) + 5a(mc2xc2 −mc7xc7) + 3a(mc3xc3 −mc6xc6)+
+a(mc4xc4 −mc5xc5) + 2ar sin(θ + 180)(m3 −m2) + 6ar sin θ(m4 −m1) = 0

y Á 7a(mc1yc1 −mc8yc8) + 5a(mc2yc2 −mc7yc7) + 3a(mc3yc3 −mc6yc6)+
+a(mc4yc4 −mc5yc5) + 2ar cos(θ + 180)(m2 −m3) + 6ar cos θ(m1 −m4) = 0

(4.59)
Making the assumption that:

• m1 =m2 =m3 =m4 =m;

• xc1 = xc2 = xc7 = xc8 = xcD
and xc3 = xc4 = xc5 = xc6 = xcH

• xcD
= −xcH

• yc1 = yc2 = yc7 = yc8 = ycD
and yc3 = yc4 = yc5 = yc6 = ycH

• ycD
= −ycH

the system becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) xcD
(mc1 +mc2 +mc7 +mc8) + xcH

(mc3 +mc4 +mc5 +mc6) = 0
y) ycD

(mc1 +mc2 +mc7 +mc8) + ycH
(mc3 +mc4 +mc5 +mc6) = 0

x Á xcD
[7(mc1 −mc8) + 5(mc2 −mc7)] + xcH

[3(mc3 −mc6) + (mc4 −mc5)] = 0
y Á ycD

[7(mc1 −mc8) + 5(mc2 −mc7)] + ycH
[3(mc3 −mc6) + (mc4 −mc5)] = 0

(4.60)
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and then:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) (mc1 +mc2 +mc7 +mc8) = (mc3 +mc4 +mc5 +mc6)
y) (mc1 +mc2 +mc7 +mc8) = (mc3 +mc4 +mc5 +mc6)
x Á [7(mc1 −mc8) + 5(mc2 −mc7)] = [3(mc3 −mc6) + (mc4 −mc5)]
y Á [7(mc1 −mc8) + 5(mc2 −mc7)] = [3(mc3 −mc6) + (mc4 −mc5)]

(4.61)

In this way it is possible to find a configuration that balances the system locally, this
solution is a function of the assumptions made.

Another possible solution could be to add only one counterweight for each crank, ap-
propriately positioned.

In order to balance the second order rotating and counter-rotating forces, two balancer
shafts must be properly placed. In the Figure 4.51 is shown an example of possible config-
uration.

4.3.2 Four-cylinder Inline Engine Cross-Plane with F.O. 1-3-2-4
The Crossplane Design means that each of the crank throws are at an angle of 90° compared
to the next. Therefore, the crankpins are in two plane crossed at 90°, thus the name Cross-
Plane Crankshaft. The F.O. results in a new sequence of combustion equal to 1-3-2-4 with
the following intervals: 270°, 180°, 90°, 180°. Therefore this is an "irregular" firing engine
compared to the classic four-cylinder flat-plane wich constant firing intervals equal to 180°.

In the Figure 4.52 is reported the considered system configuration.
When the piston #1 is at TDC, the piston #4 is at BDC and vice versa and when the

piston #2 is at TDC, the piston #3 is at BDC and vice versa.
The first and the second order vectors stars are now reported, in order to show the

forces acting on the system.

First order vectors star

As can be seen in the Figure 4.53:
As can be seen:

• Pure centrifugal forces (mROTω
2r) ⇒ Balanced.

• Rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

Second order vectors star

As can be seen in the Figure 4.54:

• Rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Balanced.
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Figure 4.51: Four-cylinder inline flatplane completely balanced

• Counter-rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Balanced.

As shown in the Figure 4.54, the second order forces, that rotate with 2ω speed, due
to the cylinder #1,#2,#3 and #4 are overlapped, as can be derived in this quick demon-
stration:

• Cyl. #1→ θ⇒ 2θ⇒ cos(2θ);

• Cyl. #2→ (θ + 270°) ⇒ 2(θ + 270°) ⇒ cos(2θ + 540°);

• Cyl. #3→ (θ + 90°) ⇒ 2(θ + 90°) ⇒ cos(2θ + 180°);

• Cyl. #4→ (θ + 180°) ⇒ 2(θ + 180°) ⇒ cos(2θ + 360°) = cos(2θ);
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Figure 4.52: Four-cylinder inline crossplane configuration

Figure 4.53: Firts order vectors star

Obviously: cos(2θ + 540°) = cos(2θ + 180°).

In this engine layout the moments due to the first order forces are not balanced, the
moments due to the second order forces are balanced instead.
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Figure 4.54: Second order vectors star

Analytical form and fundamental equations

The system considered is shown in the Figure 4.55

Figure 4.55: Four-cylinder inline crossplane configuration
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Cyl. #1 ⇒
⎛
⎜⎜
⎝

x1
y1

z1 = 3a

⎞
⎟⎟
⎠

; Cyl. #2 ⇒
⎛
⎜⎜
⎝

x2
y2

z2 = a

⎞
⎟⎟
⎠

Cyl. #3 ⇒
⎛
⎜⎜
⎝

x1
y1

z1 = −a

⎞
⎟⎟
⎠

; Cyl. #4 ⇒
⎛
⎜⎜
⎝

x3
y3

z3 = −3a

⎞
⎟⎟
⎠

The system of equations can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) ∑
i
mi /ω2 xi = ∑

i
mixi =m1x1 +m2x2 +m3x3 +m4x4 = 0;

y) ∑
i
mi /ω2 yi = ∑

i
miyi =m1y1 +m2y2 +m3y3 +m4y4 = 0;

x Á ∑
i
(mi /ω2 xi)zi = ∑

i
mixizi =m1x16a +m2x22a +m3x3(−2a) +m4x4(−6a) = 0;

y Á ∑
i
(mi /ω2 yi)zi = ∑

i
miyizi =m1y16a +m2y22a +m3y3(−2a) +m4y4(−6a) = 0;

(4.62)
considering a configuration with θ = 0° and assuming m1 =m2 =m3 =m4 and r1 = r2 =

r3 = r4 = r, the system becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) ∑
i
mi /ω2 xi = ∑

i
mixi =m1 ⋅ 0 +m2r +m3(−r) +m4 ⋅ 0 = 0;⇒Balanced

y) ∑
i
mi /ω2 yi = ∑

i
miyi =m1r +m2 ⋅ 0 +m3 ⋅ 0 +m4(−r) = 0;⇒Balanced

x Á ∑
i
(mi /ω2 xi)zi = ∑

i
mixizi =m1 ⋅ 0 ⋅ 6a +m2r2a +m3(−r)(−2a)+

+m4 ⋅ 0 ⋅ (−6a) = 4mra = 0;⇒Must be balanced
y Á ∑

i
(mi /ω2 yi)zi = ∑

i
miyizi =m1r6a +m2 ⋅ 0 ⋅ 2a +m3 ⋅ 0(−2a)+

+m4(−r)(−6a) = 12mra = 0;⇒Must be balanced

(4.63)

Balancing Strategy

The cenfrifugal and the first order alternating forces generate two moments acting on two
planes mutually perpendicular. In order to balance these moments it is necessary to balance
the forces through counterweights, in other words adding a proportionate mass for each
crank throw that gives a force equal and opposite to the sum of the rotating and the first
order alternating. This strategy is the Bay-by-bay balancing.

Let us now consider a Bay-by-bay balancing with two counterweights for each crank, as
shown in the Figure 4.56:

m1 ⇒
⎛
⎜⎜
⎝

x1 = −r sin θ
y1 = r cos θ
z1 = 6a

⎞
⎟⎟
⎠

; m2 ⇒
⎛
⎜⎜
⎝

x2 = r cos θ
y2 = r sin θ
z2 = 2a

⎞
⎟⎟
⎠

;
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Figure 4.56: Four-cylinder inline cross-plane engine with bay-by-bay bal-
ancing

m3 ⇒
⎛
⎜⎜
⎝

x3 = −r cos θ
y3 = −r sin θ
z3 = −2a

⎞
⎟⎟
⎠

; m4 ⇒
⎛
⎜⎜
⎝

x4 = r sin θ
y4 = −r cos θ
z4 = −6a

⎞
⎟⎟
⎠

;

mc1 ⇒
⎛
⎜⎜
⎝

xc1

yc1

zc1 = 7a

⎞
⎟⎟
⎠

; mc2 ⇒
⎛
⎜⎜
⎝

xc2

yc2

zc2 = 5a;

⎞
⎟⎟
⎠

; mc3 ⇒
⎛
⎜⎜
⎝

xc3

yc3

zc3 = 3a

⎞
⎟⎟
⎠

; mc4 ⇒
⎛
⎜⎜
⎝

xc4

yc4

zc4 = a

⎞
⎟⎟
⎠

;

mc5 ⇒
⎛
⎜⎜
⎝

xc5

yc5

zc5 = −a;

⎞
⎟⎟
⎠

mc6 ⇒
⎛
⎜⎜
⎝

xc6

yc6

zc6 = −3a

⎞
⎟⎟
⎠

mc7 ⇒
⎛
⎜⎜
⎝

xc7

yc7

zc7 = −5a;

⎞
⎟⎟
⎠

mc8 ⇒
⎛
⎜⎜
⎝

xc8

yc8

zc8 = −7a

⎞
⎟⎟
⎠

;
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The system of equations can be written as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1 /ω2 xc1 +mc2 /ω2 xc2 +mc3 /ω2 xc3 +mc4 /ω2 xc4 +mc5 /ω2 xc5 +mc6 /ω2 xc6+
+mc7 /ω2 xc7 +mc8 /ω2 xc8 +m1 /ω2 x1 +m2 /ω2 x2 +m3 /ω2 x3 +m4 /ω2 x4 = 0

y) mc1 /ω2 yc1 +mc2 /ω2 yc2 +mc3 /ω2 yc3 +mc4 /ω2 yc4 +mc5 /ω2 yc5 +mc6 /ω2 yc6+
+mc7 /ω2 yc7 +mc8 /ω2 yc8 +m1 /ω2 y1 +m2 /ω2 y2 +m3 /ω2 y3 +m4 /ω2 y4 = 0

x Á (mc1 /ω2 xc1)zc1 + (mc2 /ω2 xc2)zc2 + (mc3 /ω2 xc3)zc3 + (mc4 /ω2 xc4)zc4+
+(mc5 /ω2 xc5)zc5 + (mc6 /ω2 xc6)zc6 + (mc7 /ω2 xc7)zc7 + (mc8 /ω2 xc8)zc8+
+(m1 /ω2 x1)z1 + (m2 /ω2 x2)z2 + (m3 /ω2 x3)z3 + (m4 /ω2 x4)z4 = 0

y Á (mc1 /ω2 yc1)zc1 + (mc2 /ω2 yc2)zc2 + (mc3 /ω2 yc3)zc3 + (mc4 /ω2 yc4)zc4 + (mc5 /ω2 yc5)zc5+
+(mc6 /ω2 yc6)zc6 + (mc7 /ω2 yc7)zc7 + (mc8 /ω2 yc8)zc8+
+(m1 /ω2 y1)z1 + (m2 /ω2 y2)z2 + (m3 /ω2 y3)z3 + (m4 /ω2 y4)z4 = 0

(4.64)
that can be rewritten as:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1xc1 +mc2xc2 +mc3xc3 +mc4xc4 +mc5xc5 +mc6xc6 +mc7xc7 +mc8xc8+
+r sin θ(m4 −m1) + r cos θ(m2 −m3) = 0

y) mc1yc1 +mc2yc2 +mc3yc3 +mc4yc4 +mc5yc5 +mc6yc6 +mc7yc7 +mc8yc8+
+r cos θ(m1 −m4) + r sin θ(m2 −m3) = 0

x Á 7a(mc1xc1 −mc8xc8) + 5a(mc2xc2 −mc7xc7) + 3a(mc3xc3 −mc6xc6)+
+a(mc4xc4 −mc5xc5) + 2ar cos θ(m2 +m3) − 6ar sin θ(m1 +m4) = 0

y Á 7a(mc1yc1 −mc8yc8) + 5a(mc2yc2 −mc7yc7) + 3a(mc3yc3 −mc6yc6)+
+a(mc4yc4 −mc5yc5) + 2ar sin θ(m2 +m3) + 6ar cos θ(m1 +m4) = 0

(4.65)

Making the assumpition that:

• m1 =m2 =m3 =m4 =m;

• xc1 = xc2 = xc12 , xc3 = xc4 = xc34 , xc5 = xc6 = xc56 ,and xc7 = xc8 = xc78

• xc12 = −xc78 and xc34 = −xc56

• yc1 = yc2 = yc12 , yc3 = yc4 = yc34 , yc5 = yc6 = yc56 ,and yc7 = yc8 = yc78

• yc12 = −yc78 and yc34 = −yc56

the system becomes:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) xc12(mc1 +mc2) + xc34(mc3 +mc4) + xc56(mc5 +mc6) + xc78(mc7 +mc8) = 0
y) yc12(mc1 +mc2) + yc34(mc3 +mc4) + yc56(mc5 +mc6) + yc78(mc7 +mc8) = 0
x Á 7axc12(mc1 +mc8) + 5axc12(mc2 +mc7) + 3axc34(mc3 +mc6)+

+axc34(mc4 +mc5) + 4mar cos θ − 12mar sin θ = 0
y Á 7ayc12(mc1 +mc8) + 5ayc12(mc2 +mc7) + 3ayc34(mc3 +mc6)+

+ayc34(mc4 +mc5) + 4mar sin θ + 12mar cos θ = 0

(4.66)
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and, then:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) xc12(mc1 +mc2 −mc7 −mc8) + xc34(mc3 +mc4 −mc5 −mc6) = 0
y) yc12(mc1 +mc2 −mc7 −mc8) + yc34(mc3 +mc4 −mc5 −mc6) = 0
x Á axc12(7(mc1 +mc8) + 5(mc2 +mc7)) + axc34(3(mc3 +mc6) + (mc4 +mc5))+

+mar(4 cos θ − 12 sin θ) = 0
y Á ayc12(7(mc1 +mc8) + 5(mc2 +mc7)) + ayc34(3(mc3 +mc6) + (mc4 +mc5))+

+mar(4 sin θ + 12 cos θ) = 0

(4.67)

and if mc1 =mc2 =mc3 =mc4 =mc5 =mc6 =mc7 =mc8 =mc:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) xc12 ⋅ 0 + xc34 ⋅ 0 = 0
y) yc12 ⋅ 0 + yc34 ⋅ 0 = 0
x Á xc12(24mc) + xc34(8mc) +mr(4 cos θ − 12 sin θ) = 0
y Á yc12(24mc) + yc34(8mc) +mr(4 sin θ + 12 cos θ) = 0

(4.68)

Solving the system 4.68, a balanced configuration of this engines layout can be reached.
Oblsiously the solution is a fuction of the assumptions made.

However it is also possible to balance the resultant moment directly, in this way the
crankshaft weight decreases because of the smaller addes mass. In order to find the resul-
tant moment value, the two components are projected on their action planes, as shown in
the Figure 4.57.

The component on the plane yy is equal to:

My = F ⋅ 12a = (FROT + F ′ALT )12a = ω2r(mROT +mALT )12a; (4.69)

The component on the plane xx is equal to:

Mx = F ⋅ 4a = (FROT + F ′ALT )4a = ω2r(mROT +mALT )4a; (4.70)

The value of the resultant moment can be obtained making a vector sum:

Mres =
√
(12aF )2 + (4aF )2 =

√
160a2F 2 ≅ 12,65aF ; (4.71)

The angle γ can be obtained as:

tan γ = Mx

My
= −1

3
⇒ γ = −18.43°; (4.72)

therefore, the plane where the resultant moment acts (indicated with the red line in
the Figure 4.57) is trailing by γ the cylinder #1. The minus signs is due to the fact that
the two moments Mx and My have different verse, one of them is clockwise and the other
counter-clockwise.

The balancing can be obtained through two or four counterweights properly positioned.
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Figure 4.57: Resultant moment

4.3.3 Bearings loads
The way used to find the bearing loads is based on the Three Moment Equation of Clapey-
ron. The crankshaft is hyperstatically constrained and can be considered as a beam, in
this case with four span.

The three moment equation method require to use ad additional equation for each
excess constrain. In the equations shown below it is assumed that the Young’s modulus E
and the moment of inertia of the crankshaft section J are constant along the crankshaft,
therefore they cancel each other in all the terms.

In this case the system can be divided in three subsystems, the ABC, the BCD and the
CDE. For each subsystem a three moment equation can be derived.

The equations are written in a general form, so the results are valid both for flat-plane
and cross-plane V8 crankshaft.

In the Figure 4.58 is represented the whole system considered.
Considering now the system ABC shown in Figure :
the three moment equation is equal to:

MAl1 + 2MB(l1 + l2) +MC l2 = −
Fc1
l1
a(l21 − a2) − Fc2

l2
d(l22 − d2); (4.73)

for the system BCD shown in the Figure 4.60 the three moment equation is equal to:
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Figure 4.58: I4 crankshaft seen as a four-span beam

Figure 4.59: System ABC

Figure 4.60: System BCD

MBl2 + 2MC(l2 + l3) +MDl3 = −
Fc2
l2
c(l22 − c2) − Fc3

l3
f(l23 − f2); (4.74)

for the system CDE shown in the Figure 4.61 the three moment equation is equal to:
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Figure 4.61: System BCD

MC l3 + 2MD(l3 + l4) +MEl4 = −
Fc3
l3
e(l23 − e2) − Fc4

l4
h(l23 − h2); (4.75)

The momentsMA andME are zero, andMB,MC andMD can be calculated considering
the system in matrix form like Ax = B with:

A =
⎡⎢⎢⎢⎢⎢⎣

2(l1 + l2) l2 0
l2 2(l2 + l3) l3
0 l3 2(l3 + l4)

⎤⎥⎥⎥⎥⎥⎦
;

x =
⎛
⎜⎜
⎝

MB

MC

MD

⎞
⎟⎟
⎠

and the vector B equal to the known term:

B =
⎛
⎜⎜
⎝

−Fc1
l1
a(l21 − a2) − Fc2

l2
d(l22 − d2)

−Fc2
l2
c(l22 − c2) − Fc3

l3
f(l23 − f2)

−Fc3
l3
e(l23 − e2) − Fc4

l4
h(l24 − h2)

⎞
⎟⎟
⎠

and then:

x =
⎛
⎜⎜
⎝

MB

MC

MD

⎞
⎟⎟
⎠
= A−1 ∗B

Considering now the each single span, the shear forces and the reaction on the supports
can be derived as shown below:

• System "AB" (Figure 4.62):
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Figure 4.62: System AB

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B Á MB −MA + Fc1b − TA+ l1 = 0
TA+ = 1

l1
(MB + Fc1b);

↑) TA+ − Fc1 − TB− = 0
TB− = TA+ − Fc1;

(4.76)

• System "BC" (Figure 4.63):

Figure 4.63: System BC
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C Á MC −MB + Fc2d − TB+ l2 = 0
TB+ = 1

l2
(MC −MB + Fc2d);

↑) TB+ − Fc2 − TC− = 0
TC− = TB+ − Fc2;

(4.77)

• System "CD" (Figure 4.64):

Figure 4.64: System CD

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D Á MD −MC + Fc3f − TC+ l3 = 0
TC+ = 1

l3
(MD −MC + Fc3f);

↑) TC+ − Fc3 − TD− = 0
TD− = TC+ − Fc3;

(4.78)

• System "DE" (Figure 4.65):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E Á ME −MD + Fc4h − TD+ l4 = 0
TD+ = 1

l4
(−MD + Fc4h);

↑) TD+ − Fc4 − TE− = 0
TE− = TD+ − Fc4;

(4.79)

The reactions can be obtaiden considering the convention shown in Figure 4.66.
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Figure 4.65: System DE

Figure 4.66: Shear forces convention

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RA = TA+ ;
RB = TB+ − TB− ;
RC = TC+ − TC− ;
RD = TD+ − TD− ;
RE = −TE− ;

(4.80)

All the procedure shown above is valid for the case of a non-balanced crankshaft as no
forces due do the counterweights were considered. Anyway, the same method can be used
for a balanced crankshaft just adding the forces due to the counterweights, as shown in
the Figure 4.67.
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Figure 4.67: Model of forces in a I4 balanced crankshaft
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4.4 Five-cylinder Inline Engines
In this paragraph the relationships that regulate the five cylinders inline engines will be
analyzed. The angle between crank throws is in this case equal to 720

5 = 144°. There many
firing orders used in practical applications, two of the most common are the F.O. 1-5-2-3-4
and the F.O. 1-2-4-5-3 ; the first one will be analyzed below.

4.4.1 Five-cylinder Inline Engine with F.O. 1-5-2-3-4
The crankshaft is arranged as shown in the Figure 4.68:

Figure 4.68: Five-cylinder inline crankshaft

The first and the second order vectors stars are now reported, in order to show the
forces acting on the system.

First order vectors star

As can be seen in the Figure 4.69:
As can be seen:

• Pure centrifugal forces (mROTω
2r) ⇒ Balanced.

• Rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

Second order vectors star

As can be seen in the Figure 4.70:

• Rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Not balanced.

• Counter-rotating part of second order alternating forces (1
2mALTω

2r)⇒Not balanced.

For the second order forces, in this case:
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Figure 4.69: Firts order vectors star

• Cyl. #1→ θ⇒ 2θ⇒ cos(2θ);

• Cyl. #2→ (θ + 288°) ⇒ 2(θ + 288°) ⇒ cos(2θ + 576°) = cos(2θ + 216°);

• Cyl. #3→ (θ + 72°) ⇒ 2(θ + 72°) ⇒ cos(2θ + 144°);

• Cyl. #4→ (θ + 216°) ⇒ 2(θ + 216°) ⇒ cos(2θ + 432°) = cos(2θ + 72°);

• Cyl. #5→ (θ + 144°) ⇒ 2(θ + 144°) ⇒ cos(2θ + 288°);

In this crankshaft layout, both the first and the second order moments are not balanced.

For this engine layout the study was not completed because the focus of this work is on
V-engines from 4 to 8 cylinders, therefore since the "basic configurations" of the latter have
already been discussed, for the I5 and the I6 cases is shown only the state-of-balancing.
This engine is however totally covered in the Matlab code.

Anyway, it can be summarized that for an Inline five-cylinder configuration al least the
first order moments must be balanced, therefore it is necessary to find the plane of the
resultant moment. Developing the calculations this plan is following by 18° the plane of
the crank throw #1 (this value is dependant on the firing order chosen, in fact if the firing
order is 1-2-4-5-3 the resultant moment plane follows the crank throw #1 by 54° degrees).
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Figure 4.70: Second order vectors star

In order to have a globally balanced system it is possible to place two counterweights
on the external crank arms opportunely skewed of the angle of the resultant moment. If
instead the goal is to reduce the bearings loads the crankshaft must be balanced both
globally and locally, so a bay-by-bay balancing strategy can be used with better results.
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4.5 Six-cylinder Inline Engines
In this paragraph the relationships that regulate the six cylinders inline engines will be
analyzed. The angle between crank throws is in this case equal to 720

6 = 120°. There many
firing orders used in practical applications, one of the most common is the F.O. 1-5-3-6-2-4
that will be analyzed below.

As already said for the I5 case even in this case only the system state-of-balancing is
shown, but it is fully developed on Matlab.

4.5.1 Six-cylinder Inline Engine with F.O. 1-5-3-6-2-4
The crankshaft is arranged as shown in the Figure 4.71:

Figure 4.71: Six-cylinder inline crankshaft

The first and the second order vectors stars are now reported, in order to show the
forces acting on the system.

First order vectors star

As can be seen in the Figure 4.72:
As can be seen:

• Pure centrifugal forces (mROTω
2r) ⇒ Balanced.

• Rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

Second order vectors star

As can be seen in the Figure 4.73:
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Figure 4.72: Firts order vectors star

• Rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Balanced.

For the second order forces, in this case:

• Cyl. #1→ θ⇒ 2θ⇒ cos(2θ);

• Cyl. #2→ (θ + 120°) ⇒ 2(θ + 120°) ⇒ cos(2θ + 240°);

• Cyl. #3→ (θ + 240°) ⇒ 2(θ + 240°) ⇒ cos(2θ + 480°) = cos(2θ + 120°);

• Cyl. #4→ (θ + 240°) ⇒ 2(θ + 240°) ⇒ cos(2θ + 480°) = cos(2θ + 120°);

• Cyl. #5→ (θ + 120°) ⇒ 2(θ + 120°) ⇒ cos(2θ + 240°);

• Cyl. #6→ θ⇒ 2θ⇒ cos(2θ);

In this crankshaft layout, both the first and the second order moments are balanced.
As can be seen, all the forces and moments are balanced in this configuration, in fact the
six cylinder inline engine is the most self-balanced engine existing.
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Figure 4.73: Second order vectors star

Anyway, if the system has a good global balance it is not the same in terms of local
balance and therefore if the designer wants to reduce the bearings reactions even this layout
must be locally balanced through the addition of counterweights opportunely placed.
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Chapter 5

V-Engines

This is a common layout for internal combustion engines. In a V-Engine (or Vee Engine)
cylinders and pistons are aligned but separated in two different planes, called banks. Ob-
serving the system along the crankshaft axis, these two planes form an angle between each
other and they appear to be in a V. Both the banks are considered as two inline engines
separated as V-angle.

The primary reason to use a V-engine is packaging. They generally allows to reduce
the overall engine length, heigth and weight compared to an inline configuration.

Usually, a common crankpin is shared between a pair of corresponding pistons from
each bank. There are several conrods which can be used to connect a pair of pistons:

• Two ordinary connecting rods placed side-by-side.

• Master and Slave connecting rod.

• Fork and Blade connecting rod.

The most common solution is to use a pair of ordinary connecting rods placed side-by-
side. However, with this configuration, the two axis of the couple of cylinders considered
are not on the same plane and there is an offset between them. It means that the left bank
and the right bank of the engine are staggered in order to accomodate the two conrods for
each pair of cylinders. With Master and Slave conrod or Fork and Blade conrod solutions
this offset is obviously canceled.

The V-angle can be chosen from 1° to 180° and depending upon the number of cylinders.
There may be some that work better than other in term of engine stability.

Also the firing order is relevant for the engine balancing.

5.1 Generic configuration of a V-Twin Engine
Figure 5.1 illustrates a generic system formed by two pistons connected through two conrods
at a common crank throw.
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Figure 5.1: Generical configuration of a V-Twin Engine

The rotating and counter-rotating first and second order forces of the considered con-
figuration are shown in the Figure 5.2

Observing the Figure 5.2 it can be noticed that, depending on the V-angle φ, some
forces can be self-balanced. It can be seen that:

• Centrifugal forces and the rotating part of the first order reciprocating forces always
add up.

• The second order reciprocating rotating forces form an angle equal to φ between them.

• The first order reciprocating counter-rotating forces form ad angle equal to 2φ between
them.

• The second order reciprocating counter-rotating forces form ad angle equal to 3φ
between them.

These statements are valid in any case.
Therefore, as already said depending on the φ angle some forces can balance each

other. For example, if φ = 90° the first order reciprocating counter-rotating forces are self
balanced, because the angle between them is equal to 180°, so they are equal and opposite
(if the masses considered for cylinders 1 and 2 are equal).

The magnitude of the forces along the main directions can be calculated considering
using trigonometric relations through the angles θ and φ. The terms main directions mean
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Figure 5.2: Generical configuration of a V-Twin Engine with main angles
and directions

the x-axis direction, y-axis direction and the lines of stroke of the two cylinders considered.
It is important to stress that the V-angle φ also influences the moment values. Consid-

ering the Figure 5.3 it can be observed that:

Figure 5.3: V-Twin Engine with a single crank throw

• The moment due to the first order forces (pure centrifugal and reciprocating) is zero
if the forces due to the two piston have the same magnitude.
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• The moment due to the first order counter-rotating forces depend on the value of the
φ angle.

• Also the moments due to second order rotating and counter-rotating forces are de-
pendant by the φ angle value.

For example, if φ = 180° the angle between second order rotating forces is equal to
2φ = 360°. It means that the forces are on the same plane, with the same verse. If the
masses are equal the forces magnitude are equal and the moment is zero.

Considering now a system with more than one crank throw as in the Figure 5.4, some
important relations can be derived.

Figure 5.4: V-Engine with five crank throws

where:

• r = crank radius = 1
2stroke;

• l = conrod length;

• λ = r
l
;

The piston displacement can be written like:

s = r(1 − cosθ1) + l(1 −
√

1 − λ2 sin2 θ1); (5.1)
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and considering the series expansion of the term
√

1 − λ2 sin2 θ1:

√
1 − λ2sin2θ1 = 1 − 1

2
λ2 sin2 θ1 −

1
8
λ4 sin4 θ1 −

1
16
λ6 sin6 θ1 − ... (5.2)

the 5.1 can be written as:

s = r(1 − cosθ1) +
r

4
λ(1 − cos 2θ1); (5.3)

The first and second order reciprocating forces can be written as:

F ′ALT =mALTω
2r cos θ1; (5.4)

F ′′ALT =mALTω
2rλ cos 2θ1; (5.5)

Considering the first bank, the summation of the forces is equal to:

• First order forces:

n

∑
i=1
F ′ALT1

=mALTω
2r

n

∑
i=1

cos(θ1 + βi) =

=mALTω
2r

n

∑
i=1
[cos θ1 cosβi − sin θ1 sinβi] =

=mALTω
2r[cos θ1

n

∑
i=1

cosβi − sin θ1
n

∑
i=1

sinβi]; (5.6)

• Second order forces:

n

∑
i=1
F ′′ALT1

=mALTω
2rλ[cos 2θ1

n

∑
i=1

cos 2βi − sin 2θ1
n

∑
i=1

sin 2βi]; (5.7)

where n is the number of crank throws considered, in this case equal to 5.
For the second bank:

• First order forces:

n

∑
i=1
F ′ALT2

=mALTω
2r

n

∑
i=1

cos(−φ + θ1 + βi) =

=mALTω
2r

n

∑
i=1
[cos(−φ + θ1) cosβi − sin(−φ + θ1) sinβi] =

=mALTω
2r[cos(−φ + θ1)

n

∑
i=1

cosβi − sin(−φ + θ1)
n

∑
i=1

sinβi]; (5.8)
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• Second order forces:

n

∑
i=1
F ′′ALT2

=mALTω
2rλ[cos 2(−φ + θ1)

n

∑
i=1

cos 2βi − sin 2(−φ + θ1)
n

∑
i=1

sin 2βi]; (5.9)

To calculate the shaking couples, let us consider the system in the Figure 5.5:

Figure 5.5: V-Engine with five crank throws

For the first bank:

• First order couples:

C ′1 =
5
∑
i=2
F ′ALTi

ai =mALTω
2r

5
∑
i=2
(ai cos(θ1 + βi)) =

=mALTω
2r[cos θ1

n

∑
i=1
(ai cosβi) − sin θ1

n

∑
i=1
(ai sinβi)]; (5.10)

• Second order couples:

C ′′1 =
5
∑
i=2
F ′′ALTi

ai =mALTω
2rλ

5
∑
i=2
(ai cos(2(θ1 + βi))) =

=mALTω
2rλ[cos 2θ1

5
∑
i=2
(ai cos 2βi) − sin 2θ1

5
∑
i=2
(ai sin 2βi)]; (5.11)

For the second bank:
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• First order couples:

C ′2 =
5
∑
i=2
F ′ALTi

ai =mALTω
2r

5
∑
i=2
(ai cos(−φ + θ1 + βi)) =

=mALTω
2r[cos(−φ + θ1)

n

∑
i=1
(ai cosβi) − sin(−φ + θ1)

n

∑
i=1
(ai sinβi)]; (5.12)

• Second order couples:

C ′′2 =
5
∑
i=2
F ′′ALTi

ai =mALTω
2rλ

5
∑
i=2
(ai cos(2(−φ + θ1 + βi))) =

=mALTω
2rλ[cos 2(−φ + θ1)

5
∑
i=2
(ai cos 2βi) − sin 2(−φ + θ1)

5
∑
i=2
(ai sin 2βi)]; (5.13)

It is possible to represent the forces like:

n

∑
i=1
F ′ALT =mALTω

2r[cos θ1
5
∑
i=1

cosβi − sin θ1
5
∑
i=1

sinβi] =mALTω
2r[C1 cos θ1 −C2 sin θ1];

(5.14)

n

∑
i=1
F ′′ALT =mALTω

2rλ[cos 2θ1
5
∑
i=1

cos 2βi−sin 2θ1
5
∑
i=1

sin 2βi] =mALTω
2r[C3 cos 2θ1−C4 sin 2θ1];

(5.15)
for a 5 cylinder engine, the terms C1, C2, C3 and C4 are equal to:

C1 =
5
∑
i=1

cosβi = cosβ1 + cosβ2 + cosβ3 + cosβ4 + cosβ5; (5.16)

C2 =
5
∑
i=1

sinβi = sinβ1 + sinβ2 + sinβ3 + sinβ4 + sinβ5; (5.17)

C3 =
5
∑
i=1

cos 2βi = cos 2β1 + cos 2β2 + cos 2β3 + cos 2β4 + cos 2β5; (5.18)

C4 =
5
∑
i=1

sin 2βi = sin 2β1 + sin 2β2 + sin 2β3 + sin 2β4 + sin 2β5; (5.19)

The shaking couples can be expressed as:

n

∑
i=1
C ′ =mALTω

2r[cos θ1
5
∑
i=1
(ai cosβi) − sin θ1

5
∑
i=1
(a1 sinβi)] =

=mALTω
2r[C5 cos θ1 −C6 sin θ1]; (5.20)
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n

∑
i=1
C ′′ =mALTω

2rλ[cos 2θ1
5
∑
i=1
(ai cos 2βi) − sin 2θ1

5
∑
i=1
(a1 sin 2βi)] =

=mALTω
2r[C7 cos 2θ1 −C8 sin 2θ1]; (5.21)

for a 5 cylinder engine, the terms C5, C6, C7 and C8 are equal to:

C5 =
5
∑
i=1
ai cosβi = a1 cosβ1 + a2 cosβ2 + a3 cosβ3 + a4 cosβ4 + a5 cosβ5; (5.22)

C6 =
5
∑
i=1
ai sinβi = a1 sinβ1 + a2 sinβ2 + a3 sinβ3 + a4 sinβ4 + a5 sinβ5; (5.23)

C7 =
5
∑
i=1
ai cos 2βi = a1 cos 2β1 + a2 cos 2β2 + a3 cos 2β3 + a4 cos 2β4 + a5 cos 2β5; (5.24)

C8 =
5
∑
i=1
ai sin 2βi = a1 sin 2β1 + a2 sin 2β2 + a3 sin 2β3 + a4 sin 2β4 + a5 sin 2β5; (5.25)

These equations are valid for only one bank.
For the second bank the crank angle is equal to (−φ + θ1), therefore it can be written:

n

∑
i=1
F ′ALT =mALTω

2r[C1 cos(θ1 − φ) −C2 sin(θ1 − φ)]; (5.26)

n

∑
i=1
F ′′ALT =mALTω

2rλ[C3 cos 2(θ1 − φ) −C4 sin 2(θ1 − φ)]; (5.27)

n

∑
i=1
C ′ =mALTω

2r[C5 cos(θ1 − φ) −C6 sin(θ1 − φ)]; (5.28)

n

∑
i=1
C ′′ =mALTω

2rλ[C7 cos 2(θ1 − φ) −C8 sin 2(θ1 − φ)]; (5.29)

Making a system of the equations above, it is possible fo find a solution that balance the
shaking forces and couples. In some cases it is possible to have a full balanced configuration,
in other cases instead it is possible to balance only some of the forces and couples that
stressing the system. If it is possible to make a choice, in generally is more important to
balance the first order shaking forces because their magnitude is bigger compared with the
second order forces, because of the factor λ = r

l
that will always be less than 1.

As already mentioned, in most cases conrods and pistons will be offset along the z-axis
(axis of the crankshaft). Therefore, the shaking forces of the two pistons connected to the
same crank throw will not be the same plane and there is a possibility of having a shaking
moment.

Generally, it is better to have a crankshaft carefully designed in order to have the
maximum possible internal balance. In the cases in which it is not possible to balance
completely the alternating forces, some additional counterweights can be placed, but with
a careful design the size of these counterweights can be smaller.

Let us consider now some important cases of engine configurations.
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5.2 V4 Engines
A V4 Engine is a four-cylinder engines with its cylinders arrangend in two banks V con-
figuration. V4 engines are used both in automobiles and motorcycles and industrial appli-
cations.

A V4 engine can be seen as a pair of V-Twin engines mounted end-to-end, or a pair
of Two-cylinder inline engines separated as a V-angle and sharing the same crankshaft.
Most part of V4 engines support the crankshaft with three main bearings, and have two
crankpinks. Each of these crankpins are shared by opposing cylinders from different banks.

Compared with a classic Four-cylinder inline engine, a V4 engine is more compact
because of the crankshaft length is smaller. A V4 produces less rocking couples than an
Inline-4, and since the crankshaft is shorter its stiffness is higher compared to an Inline-4
crankshaft. A disadvantage is that usually a V4 is more difficult and expensive to design
and produce than ad Inline-4.

5.2.1 90° V4 Engine with crank throws at 180°

Considering the system show in the Figure 5.6:

Figure 5.6: 90° V4 Engine with crank throws at 180°

On the right bank there are cylinders #1 and #2, on the left #3 and #4. β is the angle
between the two crank throws, in this case equal to 180°.

It is assumed that the position θ = 0° is coincident with the line of stroke of the cylinders
#1 and #2.

The V-angle φ is equal to 90°.
The forces acting on the system can be represented through the vectors stars.
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First order vectors star

Figure 5.7: 90° V4 Engine first order vectors star

The rotating forces are indicated in blue, in red the counter-rotating.
The forces reported in the Figure 5.7 are equal to:

A =mROT13ω
2r; B = (1

2mALT1ω
2r)R; C = (1

2mALT3ω
2r)R;

D =mROT24ω
2r; E = (1

2mALT2ω
2r)R; F = (1

2mALT4ω
2r)R;

G = (1
2mALT1ω

2r)CR; H = (1
2mALT2ω

2r)CR;

I = (1
2mALT3ω

2r)CR; L = (1
2mALT4ω

2r)CR;

with:

• mROT13 =mcrank13 +mROTrod1
+mROTrod3

;

• mROT24 =mcrank24 +mROTrod2
+mROTrod4

;

As can be seen in the Figure 5.7:
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• Pure centrifugal forces (mROTω
2r) ⇒ Balanced.

• Rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

Second order vectors star

The angle β is equal to 180°, therefore, in order to find the second order forces directions,
it can be written:

• Cyl. #1→ θ⇒ 2θ⇒ cos(2θ);

• Cyl. #2→ (θ + 180°) ⇒ 2(θ + 180°) ⇒ cos(2θ + 360°) = cos(2θ);

• Cyl. #3→ θ⇒ 2θ⇒ cos(2θ);

• Cyl. #4→ (θ + 180°) ⇒ 2(θ + 180°) ⇒ cos(2θ + 360°) = cos(2θ);

Figure 5.8: Second order vectors star

The rotating forces are indicated in blue, in red the counter-rotating.
The forces reported in the Figure 5.8 are equal to:

A = (1
2mALT1ω

2rλ)R; B = (1
2mALT2ω

2rλ)R;
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C = (1
2mALT3ω

2rλ)R; D = (1
2mALT4ω

2rλ)R;

E = (1
2mALT1ω

2rλ)CR; F = (1
2mALT2ω

2rλ)CR;

G = (1
2mALT3ω

2rλ)CR; H = (1
2mALT4ω

2rλ)CR;

As can be seen in the Figure 5.8:

• Rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Not balanced.

• Counter-rotating part of second order alternating forces (1
2mALTω

2r)⇒Not balanced.

Observing the 5.8, it is important to stress that in this particular configuration (φ =
90°, β = 180°) the resultant of the sum of second order rotating and counter-rotating forces
along the y-axis is equal to zero, for each theta angle considered. Therefore, since both
rotating and counter-rotating first order forces are balanced, this engine configuration is
globally balanced to all the forces in y direction.

In terms of couples, the second order moments are not balanced, the first order rotating
moment are not balanced too but the first order counter-rotating moment are balanced
instead. This is due to this particular configuration of the engine with the V-angle equal to
90° because, as already said in Paragraph 5.1, the first order counter-rotating forces form
an angle equal to 2φ between them, therefore, since the moment arms are equal to each
other, the moment is canceled.

The resultant of first order rotating moment is on the same plane of the two crank
throws. Considering the Figure 5.9 this fact can be demonstrated as shown below.

Figure 5.9: V4 engine with crank throws at 180°
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The moment around x-axis can be written as:

M ′

x = F ′#1 cos(−φ
2
+ θ)(a + b + c) + F ′#3 cos(−φ

2
+ θ)(a + c)+

− F ′#2 cos(−φ
2
+ θ + β)(a + c) − F ′#4 cos(−φ

2
+ θ + β)(a + b + c); (5.30)

considering that:

• F ′#1 = F ′#2 = F ′#3 = F ′#4 = F ′

• φ
2 = 45° and β = 180°

M ′

x = F ′[cos(−45° + θ)(2a + b + 2c) − cos(−45° + θ + 180°)(2a + b + 2c)] =
= F ′(2a + b + 2c)[cos(−45° + θ) − cos(−45° + θ + 180°)]; (5.31)

The moment around y-axis is equal to:

M ′

y = F ′#1 sin(−φ
2
+ θ)(a + b + c) + F ′#3 sin(−φ

2
+ θ)(a + c)+

− F ′#2 sin(−φ
2
+ θ + β)(a + c) − F ′#4 sin(−φ

2
+ θ + β)(a + b + c) =

= F ′[sin(−45° + θ)(2a + b + 2c) − sin(−45° + θ + 180°)(2a + b + 2c)] =
= F ′(2a + b + 2c)[sin(−45° + θ) − sin(−45° + θ + 180°)]; (5.32)

Considering now the Figure 5.10 the angle δ between the crank throws and the plane
where the resultant first order moment is placed can be obtained.

tanα =
M ′

y

M ′

x

= sin(−45° + θ) − sin(−45° + θ + 180°)
cos(−45° + θ) − cos(−45° + θ + 180°) ; (5.33)

therefore:
α = tan−1 = sin(−45° + θ) − sin(−45° + θ + 180°)

cos(−45° + θ) − cos(−45° + θ + 180°) ; (5.34)

and finally:
δ = α + φ

2
− θ; (5.35)

Considering for example:

• θ = 0°⇒ α = tan−1 (−
√

2
√

2 ) = −45°⇒ δ = 0°;

• θ = 60°⇒ α = tan−1 (
√

6−√2
2√

6+√2
2
) = tan−1(−

√
3 + 2) = 15°⇒ δ = 0°;

The plane of the resultant moment is therefore the same as for the crank throws, for
each θ angle.
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Figure 5.10: Angle between crank throws and resultant first order moment
plane

Balancing Strategy

In terms of global balance, the considered system is balanced only to the first order forces
and first order counter-rotating moments. All the rest of forces and couples is not balanced.

If the purpose is to balance first order actions, adding two counterweights in proper
positions it is possible to achieve to a system globally balanced. Considering the Figure
5.11:

these counterweights are placed in the same plane of the crank throws, opposite to
them.

Doing a moment balancing as shown in 5.36 and considering FBAL =mBALω
2rBAL it is

possible to find the required counterweights mass and the radius which they are positioned.

2(2a + b + c)FBAL = 2(a + b + c)F#1,#4 + 2(a + c)F#2,#3; (5.36)

considering:

• F#1,#4 = F#2,#3 = F ′

(4a + 2b + 2c)FBAL = (2a + 2b + 2c)F#1,#4 + (2a + 2c)F#2,#3 = (4a + 2b + 4c)F ′; (5.37)

and then:
FBAL =

(4a + 2b + 4c)
(4a + 2b + 2c)F

′; (5.38)

In this way the system results globally balanced to the first order rotating moments.
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Figure 5.11: V4 engine global balanced

Bay-By-Bay Balancing

It is useful to have a system both globally and locally balanced because the reactions on
the main journals are lower, and often there is a better mass distribution. In this case a
bay-by-bay balancing can be achieved adding two counterweights per crank throw.

The system considered is shown in the Figure 5.12:

Figure 5.12: Bay-by-bay balancing on a V4 crankshaft
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m1 ⇒
⎛
⎜⎜
⎝

x1
y1

z1 = (a + b + c)

⎞
⎟⎟
⎠

; m2 ⇒
⎛
⎜⎜
⎝

x2
y2

z2 = −(a + c)

⎞
⎟⎟
⎠

;

m3 ⇒
⎛
⎜⎜
⎝

x3
y3

z3 = (a + c)

⎞
⎟⎟
⎠

; m4 ⇒
⎛
⎜⎜
⎝

x4
y4

z4 = −(a + b + c)

⎞
⎟⎟
⎠

;

mc1 ⇒
⎛
⎜⎜
⎝

xc1

yc1

zc1 = (2a + b + 2c)

⎞
⎟⎟
⎠

; mc2 ⇒
⎛
⎜⎜
⎝

xc2

yc2

zc2 = c;

⎞
⎟⎟
⎠

;

mc3 ⇒
⎛
⎜⎜
⎝

xc3

yc3

zc3 = −c

⎞
⎟⎟
⎠

; mc4 ⇒
⎛
⎜⎜
⎝

xc4

yc4

zc4 = −(2a + b + 2c);

⎞
⎟⎟
⎠

;

In order to simplify the notation, the hypotesys that m1 = mROTROD1
+ 1

2mcrank13 was
made; the remaining part of mcrank13 is considered in the m3. Idem for the mcrank24 with
m2 and m4.

The system of equations can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1 /ω2 xc1 +mc2 /ω2 xc2 +mc3 /ω2 xc3 +mc4 /ω2 xc4+
+m1 /ω2 x1 +m2 /ω2 x2 +m3 /ω2 x3 +m4 /ω2 x4 = 0

y) mc1 /ω2 yc1 +mc2 /ω2 yc2 +mc3 /ω2 yc3 +mc4 /ω2 yc4+
+m1 /ω2 y1 +m2 /ω2 y2 +m3 /ω2 y3 +m4 /ω2 y4 = 0

x Á (mc1 /ω2 xc1)zc1 + (mc2 /ω2 xc2)zc2 + (mc3 /ω2 xc3)zc3 + (mc4 /ω2 xc4)zc4+
+(m1 /ω2 x1)z1 + (m2 /ω2 x2)z2 + (m3 /ω2 x3)z3 + (m4 /ω2 x4)z4 = 0

y Á (mc1 /ω2 yc1)zc1 + (mc2 /ω2 yc2)zc2 + (mc3 /ω2 yc3)zc3 + (mc4 /ω2 yc4)zc4+
+(m1 /ω2 y1)z1 + (m2 /ω2 y2)z2 + (m3 /ω2 y3)z3 + (m4 /ω2 y4)z4 = 0

(5.39)

Assuming:

• m1 =m2 =m3 =m4 =m;

• x1 = x3 = x13 and x2 = x4 = x24;

• x13 = −x24;

• y1 = y3 = y13 and y2 = y4 = y24;

• y13 = −y24;
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1xc1 +mc2xc2 +mc3xc3 +mc4xc4 + 2mx13 + 2mx24 = 0
y) mc1yc1 +mc2yc2 +mc3yc3 +mc4yc4 + 2my13 + 2my24 = 0
x Á mc1xc1zc1 +mc2xc2zc2 +mc3xc3zc3 +mc4xc4zc4+

+mx13(a + b + c) +mx24(−(a + c)) +mx13(a + c) +mx24(−(a + b + c)) = 0
y Á mc1yc1zc1 +mc2yc2zc2 +mc3yc3zc3 +mc4yc4zc4+

+my13(a + b + c) +my24(−(a + c)) +my13(a + c) +my24(−(a + b + c)) = 0
(5.40)

and then:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1xc1 +mc2xc2 +mc3xc3 +mc4xc4 = 0
y) mc1yc1 +mc2yc2 +mc3yc3 +mc4yc4 = 0
x Á mc1xc1zc1 +mc2xc2zc2 +mc3xc3zc3 +mc4xc4zc4 + 2mx13(2a + b + 2c) = 0
y Á mc1yc1zc1 +mc2yc2zc2 +mc3yc3zc3 +mc4yc4zc4 + 2my13(2a + b + 2c) = 0

(5.41)

Fixing the counterweights masses mc1 ,mc2 ,mc3 and mc4 the values xc and yc can be
obtained. On the contrary, the massed can be derived fixing the positions of the four
counterweights.

5.2.2 Bearing loads

The way used to find the bearing loads is based on the Three Moment Equation of Clapey-
ron. The crankshaft is hyperstatically constrained and can be considered as a beam, in
this case with two span.

The three moment equation method require to use ad additional equation for each
excess constraint. In the equations shown below it is assumed that the Young’s modulus E
and the moment of inertia of the crankshaft section J are constant along the crankshaft,
therefore they cancel each other in all the terms.

Considering the Figure 5.13, the three moment equation can be written as in the 5.42:

MAl1+2MB(l1+l2)+MC l2 = −
Fc1
l1
a(l21−a2)−Fcrank13

l1
(a+b)(l21−(a+b)2)−

Fc3
l1
(a+b+c)(l21−(a+b+c)2)+

− Fc2
l2
(f + g + h)(l22 − (f + g + h)2) −

Fcrank24

l2
(g + h)(l22 − (g + h)2) −

Fc4
l2
h(l21 − h2);

(5.42)
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Figure 5.13: V4 crankshaft seen as a two-span beam

Considering that MA = 0 and MC = 0, the unknown moment MB is equal to:

MB =
1

2(l1 + l2)
[−Fc1

l1
a(l21−a2)−Fcrank13

l1
(a+b)(l21−(a+b)2)−

Fc3
l1
(a+b+c)(l21−(a+b+c)2)+

− Fc2
l2
(f + g + h)(l22 − (f + g + h)2) −

Fcrank24

l2
(g + h)(l22 − (g + h)2) −

Fc4
l2
h(l21 − h2)];

(5.43)

The shear forces can be expressed considering each single bay of the beam.

• System "AB" (Figure 5.14):

Figure 5.14: System AB

134



5 – V-Engines

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B Á MB −MA + Fc1(b + c + d) + Fc3d + Fcrank13(c + d) − TA+ l1 = 0
TA+ = 1

l1
(MB −MA + Fc1(b + c + d) + Fc3d + Fcrank13(c + d));

↑) TA+ − Fc1 − Fc3 − Fcrank13 − TB− = 0
TB− = TA+ − Fc1 − Fc3 − Fcrank13 ;

(5.44)

• System "BC" (Figure 5.15):

Figure 5.15: System BC

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C Á MC −MB + Fc2(f + g + h) + Fc4h + Fcrank24(g + h) − TB+ l2 = 0
TB+ = 1

l2
(−MB + Fc2(f + g + h) + Fc4h + Fcrank24(g + h));

↑) TB+ − Fc2 − Fc4 − Fcrank24 − TC− = 0
TC− = TB+ − Fc2 − Fc4 − Fcrank24 ;

(5.45)

The reactions can be obtained considering the convention shown in Figure 5.16.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

RA = TA+ ;
RB = TB+ − TB− ;
RC = −TC− ;

(5.46)

All the procedure shown above is valid for the case of a non-balanced crankshaft as no
forces due do the counterweights are were considered. Anyway, the same method can be
used for a balanced crankshaft just adding the forces due to the counterweights, as shown
in the Figure 5.54.
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Figure 5.16: Shear forces convention

Figure 5.17: Forces in a V4 balanced crankshaft
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5.3 V6 Engines
A V6 Engine is a six-cylinder engines with the cylinders arrangend in two banks V config-
uration, usually the V-angle can be equal to 60, 90 or 120 degrees. V6 Engines are used
mainly in automobiles applications.

Similarly to as already said for the V4, a V6 engine can be seen as a pair of Three-
cylinder inline engines separated as a V-angle and sharing the same crankshaft. In most
part those engines the crankshaft is supported by four main bearings.

A V6 engine is more compact compared to an inline six-cylinders especially in terms of
lengthiness, because the crankshaft length in smaller. Often those engines are shorter than
an inline four-cylinders too. In terms of balancing and vibrations, this engine configuration
is not as well as balanced as the inline six-cylinders, in fact counterweights on the crankshaft
and counter-rotating balancer shafts are required to compensate the first order couples.

In this thesis work is considered that there are only three crank pins, and in each crank
pin are connected two conrods, one for each bank. However, it is important to stress that
with V-angles equal to 60 or 90 degrees, having two conrods of different banks attached
on the same crank pin produces an uneven firing order. For this reason, in modern V6
engines the designers usually split crank pins in order to connect each conrod to a single
crank pin. The crank pins are opportunely spaced to have an even firing order.

5.3.1 60° V6 Engine.

Considering the system show in the Figure 5.18:

Figure 5.18: 90° V4 Engine with crank throws at 180°

On the right bank there are cylinders #1, #2 and#3, on the left #4, #5 and #6. β is
the angle between the crank throws, in this case β25 = 120° and β25 = 240°.
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It is assumed that the position θ = 0° is coincident with the line of stroke of the cylinders
#1, #2 and #3.

The V-angle φ is equal to 60°.
The forces acting on the system can be represented through the vectors stars.

First order vectors star

Figure 5.19: 60° V6 Engine first order vectors star

In blue are indicated the rotating forces, in red the counter-rotating.
The forces reported in the Figure 5.19 are equal to:

A =mROT14ω
2r; B = (1

2mALT1ω
2r)R; C = (1

2mALT4ω
2r)R;

D =mROT25ω
2r; E = (1

2mALT2ω
2r)R; F = (1

2mALT5ω
2r)R;

G =mROT36ω
2r; H = (1

2mALT3ω
2r)R; I = (1

2mALT6ω
2r)R;

L = (1
2mALT1ω

2r)CR; M = (1
2mALT4ω

2r)CR; N = (1
2mALT2ω

2r)CR;

O = (1
2mALT5ω

2r)CR; P = (1
2mALT3ω

2r)CR; Q = (1
2mALT6ω

2r)CR;
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with:

• mROT14 =mcrank14 +mROTrod1
+mROTrod4

;

• mROT25 =mcrank25 +mROTrod2
+mROTrod5

;

• mROT36 =mcrank36 +mROTrod3
+mROTrod6

;

As can be seen in the Figure 5.19:

• Pure centrifugal forces (mROTω
2r) ⇒ Balanced.

• Rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

Second order vectors star

The angle β25 is equal to 120° and β36 to 240°, therefore, in order to find the second order
forces directions, it can be written:

• Cylinders #1 and #4→ θ⇒ 2θ⇒ cos(2θ);

• Cylinders #2 and #5→ (θ + 120°) ⇒ 2(θ + 120°) ⇒ cos(2θ + 240°);

• Cylinders #3 and #6→ (θ + 240°) ⇒ 2(θ + 240°) ⇒ cos(2θ + 480°) = cos(2θ + 120°);

In blue are indicated the rotating forces, in red the counter-rotating.
The forces reported in the Figure 5.20 are equal to:

A = (1
2mALT1ω

2rλ)R; B = (1
2mALT4ω

2rλ)R; C = (1
2mALT2ω

2rλ)R;

D = (1
2mALT5ω

2rλ)R; E = (1
2mALT3ω

2rλ)R; F = (1
2mALT5ω

2rλ)R;

G = (1
2mALT1ω

2rλ)CR; H = (1
2mALT4ω

2rλ)CR; I = (1
2mALT2ω

2rλ)CR;

L = (1
2mALT5ω

2rλ)CR; M = (1
2mALT3ω

2rλ)CR; N = (1
2mALT6ω

2rλ)CR;

As can be seen in the Figure 5.20:

• Rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Balanced.

The first and second order moments are, in this configuration, not balanced.
The plane where the first order resultant moment is placed can be derived as shown

below.
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Figure 5.20: 60° V6 Engine second order vectors star

Figure 5.21: V6 engine layout

Considering the Figure 5.21, the moment around x-axis can be written as:

M ′

x = F ′#1 cos(− φ
2
+θ)(d+ b

2
)+F ′#4 cos(− φ

2
+θ)(d− b

2
)−F ′#2 sin θ( b

2
)+F ′#5 sin θ( b

2
)+

+ F ′#3[− sin(−φ + θ)](d − b
2
) + F ′#5[− sin(φ + θ)](d + b

2
); (5.47)
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considering that:

• The components due to cylinders #2 and #5 cancel each other.

• F ′#1 = F ′#2 = F ′#3 = F ′#4 = F ′;

• φ
2 = 30°;

M ′

x = F ′[2d cos(−30° + θ) − 2d sin(−60° + θ)] = 2dF ′[cos(−30° + θ) − sin(−60° + θ)]; (5.48)

The moment around y-axis is equal to:

M ′

y = F ′#1 sin(− φ
2
+θ)(d+ b

2
)+F ′#4 sin(− φ

2
+θ)(d− b

2
)−F ′#2 cos θ( b

2
)+F ′#5 cos θ( b

2
)+

+ F ′#3 cos(−φ + θ)(d − b
2
) + F ′#6 cos(−φ + θ)(d + b

2
); (5.49)

and then, making simplifications:

M ′

y = 2dF ′[sin(−30° + θ) − cos(−60° + θ)]; (5.50)

Figure 5.22: Angle between crank throw of cylinders #1 and #4 and resul-
tant first order moment plane

Considering now the Figure 5.22 the angle δ between the crank throws and the plane
where the resultant first order moment is placed can be obtained.
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tanα =
M ′

y

M ′

x

= [sin(−30° + θ) − cos(−60° + θ)]
[cos(−30° + θ) − sin(−60° + θ)] ; (5.51)

therefore:
α = tan−1 (

M ′

y

M ′

x

) = sin(−30° + θ) − cos(−60° + θ)
cos(−30° + θ) − sin(−60° + θ) ; (5.52)

and finally:
δ = α + φ

2
− θ; (5.53)

Considering for example:

• θ = 0°⇒ α = tan−1 [ −
1
2+

1
2√

3
2 +

√
3

2
] = 0;⇒ δ = 30°;

• θ = 75°⇒ α = tan−1 [ sin(−30°+75°)−cos(−60°+75°)
cos(−30°+75°)−sin(−60°+75°)] = tan−1(

√
3 + 2) = 75°⇒ δ = 30°;

The plane of the resultant moment is therefore 30 degrees preceding the plane of the
crank throw of the cylinders #1 and #4 for each θ angle considered.

As already done in the Paragraph 4.2.1 for the Inline three-cylinder, in order to have
globally balanced system to first order moment it is possible to place two counterweights
on a plane skewed of 30° degrees than the plane of the crank throw of the cylinders #1
and #4 that balance that moment. Considering the Figure 5.23:

Figure 5.23: V6 engine global balanced

in the same way as the inline case, doing a moment balancing in the plane of the
resultant balancing moment it can be written:
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2F ′ cos(30°)(d + b
2
) + 2F ′ cos(30°)(d − b

2
) = 4dF ′ cos(30°) = FBALl; (5.54)

it means that:

FBAL =
4dF ′ cos 30°

l
; (5.55)

with FBAL =mBALω
2rBAL.

This solution, as already mentioned, gives only a global balanced system. In order
to have a system balanced both globally and locally one of the possible solutions is the
bay-by-bay balancing.

Bay-By-Bay Balancing

Considering the system shown in the Figure 5.24:

Figure 5.24: V6 engine with bay-by-bay balancing

m1 ⇒
⎛
⎜⎜
⎝

x1
y1

z1 = d + b
2

⎞
⎟⎟
⎠

; m2 ⇒
⎛
⎜⎜
⎝

x2
y2

z2 = b
2

⎞
⎟⎟
⎠

; m3 ⇒
⎛
⎜⎜
⎝

x3
y3

z3 = −d + ( b2)

⎞
⎟⎟
⎠

;
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m4 ⇒
⎛
⎜⎜
⎝

x4
y4

z4 = d − b
2

⎞
⎟⎟
⎠

; m5 ⇒
⎛
⎜⎜
⎝

x5
y5

z5 = − b2

⎞
⎟⎟
⎠

; m6 ⇒
⎛
⎜⎜
⎝

x6
y6

z6 = −(d + b
2)

⎞
⎟⎟
⎠

;

mc1 ⇒
⎛
⎜⎜
⎝

xc1

yc1

zc1 = (d + b
2 + a)

⎞
⎟⎟
⎠

; mc2 ⇒
⎛
⎜⎜
⎝

xc2

yc2

zc2 = (d − b
2 − a)

⎞
⎟⎟
⎠

; mc3 ⇒
⎛
⎜⎜
⎝

xc3

yc3

zc3 = ( b2 + a)

⎞
⎟⎟
⎠

;

mc4 ⇒
⎛
⎜⎜
⎝

xc4

yc4

zc4 = −( b2 + a)

⎞
⎟⎟
⎠

; mc5 ⇒
⎛
⎜⎜
⎝

xc5

yc5

zc5 = −(d − b
2 − a)

⎞
⎟⎟
⎠

; mc6 ⇒
⎛
⎜⎜
⎝

xc6

yc6

zc6 = −(d + b
2 + a)

⎞
⎟⎟
⎠

;

The system of equilibrium equations can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1 /ω2 xc1 +mc2 /ω2 xc2 +mc3 /ω2 xc3 +mc4 /ω2 xc4 +mc5 /ω2 xc5 +mc6 /ω2 xc6+
+m1 /ω2 x1 +m2 /ω2 x2 +m3 /ω2 x3 +m4 /ω2 x4 +m5 /ω2 x5 +m6 /ω2 x6 = 0

y) mc1 /ω2 yc1 +mc2 /ω2 yc2 +mc3 /ω2 yc3 +mc4 /ω2 yc4 +mc5 /ω2 yc5 +mc6 /ω2 yc6+
+m1 /ω2 y1 +m2 /ω2 y2 +m3 /ω2 y3 +m4 /ω2 y4 +m5 /ω2 y5 +m6 /ω2 y6 = 0

x Á (mc1 /ω2 xc1)zc1 + (mc2 /ω2 xc2)zc2 + (mc3 /ω2 xc3)zc3 + (mc4 /ω2 xc4)zc4+
+(mc5 /ω2 xc5)zc5 + (mc6 /ω2 xc6)zc6+
+(m1 /ω2 x1)z1 + (m2 /ω2 x2)z2 + (m3 /ω2 x3)z3 + (m4 /ω2 x4)z4+
+(m5 /ω2 x5)z5 + (m6 /ω2 x6)z6 = 0

y Á (mc1 /ω2 yc1)zc1 + (mc2 /ω2 yc2)zc2 + (mc3 /ω2 yc3)zc3 + (mc4 /ω2 yc4)zc4

+(mc5 /ω2 yc5)zc5 + (mc6 /ω2 yc6)zc6+
+(m1 /ω2 y1)z1 + (m2 /ω2 y2)z2 + (m3 /ω2 y3)z3 + (m4 /ω2 y4)z4+
+(m5 /ω2 y5)z5 + (m6 /ω2 y6)z6 = 0

(5.56)

Considering and assuming that:

• m1 =m2 =m3 =m4 =m5 =m6 =m;

• x1 = x4 = x14, x2 = x5 = x25 and x3 = x6 = x36;

• y1 = y4 = y14, y2 = y5 = y25 and y3 = y6 = y36;
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the system becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1xc1 +mc2xc2 +mc3xc3 +mc4xc4 +mc5xc5 +mc6xc6+
+2mx14 + 2mx25 + 2mx36 = 0

y) mc1yc1 +mc2yc2 +mc3yc3 +mc4yc4 +mc5yc5 +mc6yc6+
+2my13 + 2my25 + 2my36 = 0

x Á mc1xc1zc1 +mc2xc2zc2 +mc3xc3zc3 +mc4xc4zc4+
+mc5xc5zc5 +mc6xc6zc6 + 2dmx14 − 2dmx36 = 0

y Á mc1yc1zc1 +mc2yc2zc2 +mc3yc3zc3 +mc4yc4zc4+
+mc5yc5zc5 +mc6yc6zc6 + 2dmy14 − 2dmy36 = 0

(5.57)

Solving this system, the position and masses of the counterweights than balace the
crankshaft can be derived.

5.3.2 Bearing loads
The way used to find the bearing loads is based on the Three Moment Equation of Clapey-
ron. The crankshaft is hyperstatically constrained and can be considered as a beam, in
this case with three span.

The three moment equation method require to use ad additional equation for each
excess constraint. In the equations shown below it is assumed that the Young’s modulus E
and the moment of inertia of the crankshaft section J are constant along the crankshaft,
therefore they cancel each other in all the terms.

In this case the system can be divided in two subsystems, one the ABC and the other
BCD. For each subsystem a three moment equation can be derived. In the Figure 5.25 is
represented the whole system considered.

Figure 5.25: V6 crankshaft seen as a three-span beam

Considering now the system ABC shown in Figure :
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Figure 5.26: System ABC

the three moment equation is equal to:

MAl1+2MB(l1+l2)+MC l2 = −
Fc1
l1
a(l21−a2)−Fcrank14

l1
(a+b)(l21−(a+b)2)−

Fc4
l1
(a+b+c)(l21−(a+b+c)2)+

− Fc2
l2
(f + g + h)(l22 − (f + g + h)2) −

Fcrank25

l2
(g + h)(l22 − (g + h)2) −

Fc5
l2
h(l21 − h2);

(5.58)

for the system BCD shown in the Figure 5.27 the three moment equation is equal to:

Figure 5.27: System BCD

MBl2+2MC(l2+l3)+MDl3 = −
Fc2
l2
e(l22−e2)−Fcrank25

l2
(e+f)(l22−(e+f)2)−

Fc5
l2
(e+f+g)(l22−(e+f+g)2)+

− Fc3
l3
(n +m + l)(l23 − (n +m + l)2) −

Fcrank36

l3
(n +m)(l23 − (n +m)2) −

Fc6
l3
n(l21 − n2);

(5.59)
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The momentsMA andMD are zero, andMB andMC can be calculated considering the
system in matrix form like Ax = B with:

A = [2(l1 + l2) l2
l2 2(l2 + l3)

]

;

x = (MB

MC
)

and the vector B equal to the known term:

B = (−
Fc1
l1
a(l21 − a2) + ... − Fc5

l2
h(l21 − h2)

−Fc2
l2
e(l21 − e2) + ... − Fc6

l3
n(l21 − n2))

and then:

x = (MB

MC
) = A−1 ∗B

Considering now the each single span, the shear forces and the reaction on the supports
can be derived as shown below:

• System "AB" (Figure 5.28):

Figure 5.28: System AB

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B Á MB −MA + Fc1(b + c + d) + Fc4d + Fcrank14(c + d) − TA+ l1 = 0
TA+ = 1

l1
(MB + Fc1(b + c + d) + Fc4d + Fcrank14(c + d));

↑) TA+ − Fc1 − Fc4 − Fcrank14 − TB− = 0
TB− = TA+ − Fc1 − Fc4 − Fcrank14 ;

(5.60)
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• System "BC" (Figure 5.29):

Figure 5.29: System BC

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C Á MC −MB + Fc2(f + g + h) + Fc5h + Fcrank25(g + h) − TB+ l2 = 0
TB+ = 1

l2
(MC −MB + Fc2(f + g + h) + Fc5h + Fcrank25(g + h));

↑) TB+ − Fc2 − Fc5 − Fcrank25 − TC− = 0
TC− = TB+ − Fc2 − Fc5 − Fcrank25 ;

(5.61)

• System "CD" (Figure 5.30):

Figure 5.30: System CD
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E Á MD −MC + Fc3(l +m + n) + Fc6m + Fcrank36(m + n) − TC+ l3 = 0
TC+ = 1

l3
(−MC + Fc3(l +m + n) + Fc6m + Fcrank36(m + n));

↑) TC+ − Fc3 − Fc6 − Fcrank36 − TD− = 0
TD− = TC+ − Fc3 − Fc6 − Fcrank36 ;

(5.62)

The reactions can be obtained considering the convention shown in Figure 5.31.

Figure 5.31: Shear forces convention

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

RA = TA+ ;
RB = TB+ − TB− ;
RC = TC+ − TC− ;
RD = −TD− ;

(5.63)

All the procedure shown above is valid for the case of a non-balanced crankshaft as no
forces due do the counterweights are were considered. Anyway, the same method can be
used for a balanced crankshaft just adding the forces due to the counterweights, as shown
in the Figure 5.32.
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Figure 5.32: Model of forces in a V6 balanced crankshaft
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5.4 V8 Engines

5.4.1 90° V8 Flat-Plane Engine
In this V8 configuration, shown in the Figure 5.33, the angle between crank throws is equal
to 180°.

Figure 5.33: Flat-plane V8

On the right bank there are the cylinders #1, #2, #3 and #4, on the left #5, #6, #7,
#8. β is the angle between crank throws, in this case β26 = β37 = 180°. It is assumed that
the position θ = 0° is coincident with the line of stroke of the cylinders #1, #2, #3 and
#4 (right bank). The V-angle in equal to 90°.

This engine layout carries more vibrations and it is much louder that a cross-plane
configuration, therefore is no longer used in most mass production cars, but remains a
useful configurations for racing cars, where the level of allowed vibrations is higher.

The forces acting on the system can be represented through the vectors stars.

First order vectors star

The rotating forces are shown in blue, in red the counter-rotating.
The forces reported in the Figure 5.35 are equal to:

A =mROT15ω
2r; B = (1

2mALT1ω
2r)R; C = (1

2mALT5ω
2r)R;
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Figure 5.34: Flat-plane V8

Figure 5.35: 90° V8 flat-plane engine first order vectors star

D =mROT48ω
2r; E = (1

2mALT4ω
2r)R; F = (1

2mALT8ω
2r)R;
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G =mROT26ω
2r; H = (1

2mALT2ω
2r)R; I = (1

2mALT6ω
2r)R;

L =mROT37ω
2r; M = (1

2mALT3ω
2r)R; N = (1

2mALT7ω
2r)R;

O = (1
2mALT1ω

2r)CR; P = (1
2mALT5ω

2r)CR; Q = (1
2mALT2ω

2r)CR;

R = (1
2mALT6ω

2r)CR; S = (1
2mALT3ω

2r)CR; T = (1
2mALT7ω

2r)CR;

U = (1
2mALT4ω

2r)CR; V = (1
2mALT8ω

2r)CR;

with:

• mROT15 =mcrank15 +mROTrod1
+mROTrod5

;

• mROT26 =mcrank26 +mROTrod2
+mROTrod6

;

• mROT37 =mcrank37 +mROTrod3
+mROTrod7

;

• mROT48 =mcrank48 +mROTrod4
+mROTrod8

;

As can be seen in the Figure 5.35:

• Pure centrifugal forces (mROTω
2r) ⇒ Balanced.

• Rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

Second order vectors star

The angles β26 and β37 are equal to 180°,instead the angle β48 is equal to 0°. Therefore,
in order to find the second order forces directions, it can be written:

• Cylinders #1 and #5→ θ⇒ 2θ⇒ cos(2θ);

• Cylinders #2 and #6→ (θ + 180°) ⇒ 2(θ + 180°) ⇒ cos(2θ + 360°) = cos(2θ);

• Cylinders #3 and #7→ (θ + 180°) ⇒ 2(θ + 180°) ⇒ cos(2θ + 360°) = cos(2θ);

• Cylinders #4 and #8→ θ⇒ 2θ⇒ cos(2θ);

In blue are indicated the rotating forces, in red the counter-rotating.
The forces reported in the Figure 5.36 are equal to:

A = (1
2mALT1ω

2rλ)R; B = (1
2mALT5ω

2rλ)R; C = (1
2mALT4ω

2rλ)R;

D = (1
2mALT8ω

2rλ)R; E = (1
2mALT2ω

2rλ)R; F = (1
2mALT6ω

2rλ)R;

G = (1
2mALT3ω

2rλ)R; H = (1
2mALT7ω

2rλ)R;

I = (1
2mALT1ω

2rλ)CR; L = (1
2mALT5ω

2rλ)CR; M = (1
2mALT4ω

2rλ)CR;
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Figure 5.36: 90° V8 flat-plane engine second order vectors star

N = (1
2mALT8ω

2rλ)CR; O = (1
2mALT2ω

2rλ)CR; P = (1
2mALT6ω

2rλ)CR;

Q = (1
2mALT3ω

2rλ)CR; R = (1
2mALT7ω

2rλ)CR;

As can be seen in the Figure 5.20:

• Rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Not balanced.

• Counter-rotating part of second order alternating forces (1
2mALTω

2r)⇒Not balanced.

In this crankshaft configuration the first order moments are balanced, and the second
order moments are balanced too. To be precise, the second order moments are balanced
if the crankshaft is assumed symmetrical and the forces are considered applicated in a
"medium point" of each crank throw. If these assumpitions are not satisfied there are small
resultant moments.

Balancing Strategy

Since there are no unbalanced first order moments, in crankshafts with this layout the
counterweights are placed with the aim to reduce the local stress in each bay. Considering
the Figure 5.37 where is reported a classic bay-by-bay strategy:
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Figure 5.37: 90° V8 flat-plane crankshaft bay-bay-by balanced

it is assumed, for simplification purposes, that the bore spacing d is equal to d = 2a+b+2b,
where a is the distance between the crank arm and the conrod, b is the distance between
the two conrods equal to the offset between banks and c is the distance between the crank
arm and the adjacent main journal.

m1 ⇒
⎛
⎜⎜
⎝

x1
y1

z1 = (a + b + c + d)

⎞
⎟⎟
⎠

; m2 ⇒
⎛
⎜⎜
⎝

x2
y2

z2 = (a + b + c)

⎞
⎟⎟
⎠

; m3 ⇒
⎛
⎜⎜
⎝

x3
y3

z3 = −(a + c)

⎞
⎟⎟
⎠

;

m4 ⇒
⎛
⎜⎜
⎝

x4
y4

z4 = −(a + c + d)

⎞
⎟⎟
⎠

; m5 ⇒
⎛
⎜⎜
⎝

x5
y5

z5 = (a + c + d)

⎞
⎟⎟
⎠

; m6 ⇒
⎛
⎜⎜
⎝

x6
y6

z6 = (a + c)

⎞
⎟⎟
⎠

;

m7 ⇒
⎛
⎜⎜
⎝

x7
y7

z7 = −(a + b + c)

⎞
⎟⎟
⎠

; m8 ⇒
⎛
⎜⎜
⎝

x8
y8

z8 = −(a + b + c + d)

⎞
⎟⎟
⎠

;

mc1 ⇒
⎛
⎜⎜
⎝

xc1

yc1

zc1 = (2a + b + c + d)

⎞
⎟⎟
⎠

mc2 ⇒
⎛
⎜⎜
⎝

xc2

yc2

zc2 = (2a + b + 3c)

⎞
⎟⎟
⎠

mc3 ⇒
⎛
⎜⎜
⎝

xc3

yc3

zc3 = (2a + b + c)

⎞
⎟⎟
⎠
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mc4 ⇒
⎛
⎜⎜
⎝

xc4

yc4

zc4 = c

⎞
⎟⎟
⎠

; mc5 ⇒
⎛
⎜⎜
⎝

xc5

yc5

zc5 = −c;

⎞
⎟⎟
⎠

; mc6 ⇒
⎛
⎜⎜
⎝

xc6

yc6

zc6 = −(2a + b + c)

⎞
⎟⎟
⎠

;

mc7 ⇒
⎛
⎜⎜
⎝

xc7

yc7

zc7 = −(2a + b + 3c);

⎞
⎟⎟
⎠

; mc8 ⇒
⎛
⎜⎜
⎝

xc8

yc8

zc8 = −(2a + b + c + d);

⎞
⎟⎟
⎠

;

The system of equations can be written as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1 /ω2 xc1 +mc2 /ω2 xc2 +mc3 /ω2 xc3 +mc4 /ω2 xc4 +mc5 /ω2 xc5 +mc6 /ω2 xc6+
+mc7 /ω2 xc7 +mc8 /ω2 xc8 +m1 /ω2 x1 +m2 /ω2 x2 +m3 /ω2 x3 +m4 /ω2 x4+
+m5 /ω2 x5 +m6 /ω2 x6 +m7 /ω2 x7 +m8 /ω2 x8 = 0

y) mc1 /ω2 yc1 +mc2 /ω2 yc2 +mc3 /ω2 yc3 +mc4 /ω2 yc4 +mc5 /ω2 yc5 +mc6 /ω2 yc6+
+mc7 /ω2 yc7 +mc8 /ω2 yc8 +m1 /ω2 y1 +m2 /ω2 y2 +m3 /ω2 y3 +m4 /ω2 y4+
+m5 /ω2 y5 +m6 /ω2 y6 +m7 /ω2 y7 +m8 /ω2 y8 = 0

x Á (mc1 /ω2 xc1)zc1 + (mc2 /ω2 xc2)zc2 + (mc3 /ω2 xc3)zc3 + (mc4 /ω2 xc4)zc4+
+(mc5 /ω2 xc5)zc5 + (mc6 /ω2 xc6)zc6 + (mc7 /ω2 xc7)zc7 + (mc8 /ω2 xc8)zc8+
+(m1 /ω2 x1)z1 + (m2 /ω2 x2)z2 + (m3 /ω2 x3)z3 + (m4 /ω2 x4)z4+
+(m5 /ω2 x5)z5 + (m6 /ω2 x6)z6 + (m7 /ω2 x7)z7 + (m8 /ω2 x8)z8 = 0

y Á (mc1 /ω2 yc1)zc1 + (mc2 /ω2 yc2)zc2 + (mc3 /ω2 yc3)zc3 + (mc4 /ω2 yc4)zc4 + (mc5 /ω2 yc5)zc5+
+(mc6 /ω2 yc6)zc6 + (mc7 /ω2 yc7)zc7 + (mc8 /ω2 yc8)zc8+
+(m1 /ω2 y1)z1 + (m2 /ω2 y2)z2 + (m3 /ω2 y3)z3 + (m4 /ω2 y4)z4+
+(m5 /ω2 y5)z5 + (m6 /ω2 y6)z6 + (m7 /ω2 y7)z7 + (m8 /ω2 y8)z8 = 0

(5.64)
Considering and assuming that:

• m1 =m2 =m3 =m4 =m5 =m6 =m7 =m8 =m;

• x1 = x5 = x15, x2 = x6 = x26, x3 = x7 = x37,and x4 = x8 = x48

• x15 = x48 = x1548 and x26 = x37 = x2637

• x1548 = −x2637

• y1 = y5 = y15, y2 = y6 = y26, y3 = y7 = y37,and y4 = y8 = y48

• y15 = y48 = y1548 and y26 = y37 = y2637

• y1548 = −y2637
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the system of equation becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1xc1 +mc2xc2 +mc3xc3 +mc4xc4 +mc5xc5 +mc6xc6 +mc7xc7 +mc8xc8+
+4m(x1548) + 4m(x2637) = 0

y) mc1yc1 +mc2yc2 +mc3yc3 +mc4yc4 +mc5yc5 +mc6yc6 +mc7yc7 +mc8yc8+
+4m(y1548) + 4m(y2637) = 0

x Á (2a + b + c + d)(mc1xc1 −mc8xc8) + (2a + b + 3c)(mc2xc2 −mc7xc7)+
+(2a + b + c)(mc3xc3 −mc6xc6) + c(mc4xc4 −mc5xc5)+
+mx1548(2a + b + 2c + 2d − 2a − b − 2c − 2d) +mx2637(2a + b + 2c − 2a − b − 2c) = 0

y Á (2a + d + c + d)(mc1yc1 −mc8yc8) + (2a + b + 3c)(mc2yc2 −mc7yc7)+
+(2a + b + c)(mc3yc3 −mc6yc6) + c(mc4yc4 −mc5yc5)+
+my1548(2a + b + 2c + 2d − 2a − b − 2c − 2d) +my2637(2a + b + 2c − 2a − b − 2c) = 0

(5.65)
and:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1xc1 +mc2xc2 +mc3xc3 +mc4xc4 +mc5xc5 +mc6xc6 +mc7xc7 +mc8xc8 = 0
y) mc1yc1 +mc2yc2 +mc3yc3 +mc4yc4 +mc5yc5 +mc6yc6 +mc7yc7 +mc8yc8 = 0
x Á (2a + b + c + d)(mc1xc1 −mc8xc8) + (2a + b + 3c)(mc2xc2 −mc7xc7)+

+(2a + b + c)(mc3xc3 −mc6xc6) + c(mc4xc4 −mc5xc5) = 0
y Á (2a + b + c + d)(mc1yc1 −mc8yc8) + (2a + b + 3c)(mc2yc2 −mc7yc7)+

+(2a + b + c)(mc3yc3 −mc6yc6) + c(mc4yc4 −mc5yc5) = 0
(5.66)

Solving this system, a balanced configuration can be reached.

5.4.2 90° V8 Cross-Plane Engine
In this V8 configuration, shown in the Figure 5.38, the angle between crank throws is equal
to 90°.

On the right bank there are the cylinders #1, #2, #3 and #4, on the left #5, #6,
#7, #8. β is the angle between the crank throws, in this case β26 = 270°, β37 = 90°, and
β48 = 180° It is assumed that the position θ = 0° is coincident with the line of stroke of the
cylinders #1, #2, #3 and #4 (right bank). The V-angle is equal to 90°.

The cross-plane crankshaft is probably the most popular crankshaft layout used in V8
road cars.

The most common V8 cross-plane crankshaft for a 90° V8 engine has four crankpins
with two adjacent conrods for each crankpin. The crankpins are in two planes crossed ad
90°, hence the name cross-plane crankshaft. The number of main bearing is usually five,
but in can be reach nine if the crankshaft has eight crank throws.
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Figure 5.38: Cross-plane V8

Figure 5.39: Cross-plane V8

One of the reasons the cross plane crank was developed, is that the non-balanced sec-
ond order forces of a flat-plane V8 gives a conspicuous contribution, especially in large
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displacement engines. In a cross-plane crankshaft instead the particular geometry allows
to have, in each bank of the engine, four distinct piston phases that are able to cancel the
second order contribution entirely.

However, compared to a flat-plane crankshaft, in this case the crank throws layout
provide a resultant first order couple that can be anyway easily balanced by adding coun-
terweights opportunely on the crankshaft. Those counterweigths can be, depending on the
circumstances, very heavy; it means that, in general, a cross-plane crankshaft can reach
lower rotating speed compared to a flat-plane configuration.

The forces acting on the system can be represented through the vectors stars.

First order vectors star

Figure 5.40: 90° V8 cross-plane engine first order vectors star

In blue are indicated the rotating forces, in red the counter-rotating.
The forces reported in the Figure 5.40 are equal to:

A =mROT15ω
2r; B =mROT37ω

2r; C =mROT48ω
2r;;

D =mROT26ω
2r; E = (1

2mALT1ω
2r)R; F = (1

2mALT5ω
2r)R;

G = (1
2mALT3ω

2r)R; H = (1
2mALT7ω

2r)R; I = (1
2mALT4ω

2r)R;
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L = (1
2mALT8ω

2r)R; M = (1
2mALT2ω

2r)R; N = (1
2mALT6ω

2r)R;

O = (1
2mALT1ω

2r)CR; P = (1
2mALT5ω

2r)CR; Q = (1
2mALT3ω

2r)CR;

R = (1
2mALT7ω

2r)CR; S = (1
2mALT4ω

2r)CR; T = (1
2mALT8ω

2r)CR;

U = (1
2mALT2ω

2r)CR; V = (1
2mALT6ω

2r)CR;

with:

• mROT15 =mcrank15 +mROTrod1
+mROTrod5

;

• mROT26 =mcrank26 +mROTrod2
+mROTrod6

;

• mROT37 =mcrank37 +mROTrod3
+mROTrod7

;

• mROT48 =mcrank48 +mROTrod4
+mROTrod8

;

As can be seen in the Figure 5.40:

• Pure centrifugal forces (mROTω
2r) ⇒ Balanced.

• Rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of first order alternating forces (1
2mALTω

2r) ⇒ Balanced.

Second order vectors star

The angle β26 is equal to 270°, β37 = 90° and β48 is equal to 180°. Therefore, in order to
find the second order forces directions, it can be written:

• Cylinders #1 and #5→ θ⇒ 2θ⇒ cos(2θ);

• Cylinders #2 and #6→ (θ + 270°) ⇒ 2(θ + 540°) ⇒ cos(2θ + 540°) = cos(2θ + 180°)

• Cylinders #3 and #7→ (θ + 90°) ⇒ 2(θ + 90°) ⇒ cos(2θ + 180°);

• Cylinders #4 and #8→ (θ + 180°) ⇒ 2(θ + 180°) ⇒ cos(2θ + 360°) = cos(2θ);

In blue are indicated the rotating forces, in red the counter-rotating.
The forces reported in the Figure 5.41 are equal to:

A = (1
2mALT1ω

2rλ)R; B = (1
2mALT5ω

2rλ)R; C = (1
2mALT4ω

2rλ)R;

D = (1
2mALT8ω

2rλ)R; E = (1
2mALT3ω

2rλ)R; F = (1
2mALT7ω

2rλ)R;

G = (1
2mALT2ω

2rλ)R; H = (1
2mALT6ω

2rλ)R;

I = (1
2mALT1ω

2rλ)CR; L = (1
2mALT5ω

2rλ)CR; M = (1
2mALT4ω

2rλ)CR;

N = (1
2mALT8ω

2rλ)CR; O = (1
2mALT3ω

2rλ)CR; P = (1
2mALT7ω

2rλ)CR;
160



5 – V-Engines

Figure 5.41: 90° V8 cross-plane engine second order vectors star

Q = (1
2mALT2ω

2rλ)CR; R = (1
2mALT6ω

2rλ)CR;

As can be seen in the Figure 5.20:

• Rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Balanced.

• Counter-rotating part of second order alternating forces (1
2mALTω

2r) ⇒ Balanced.

In general, in this crankshaft configuration (V8 cross-plane) the first order moments are
not balanced and the second order moments are balanced instead.

But in this particular case, with the V angle equal to 90°, the first order counter-rotating
moment is balanced because, as already mentioned in the Paragraph 5.1, the angle between
the first order counter-rotating forces is equal to 2φ = 2 ⋅ 90° = 180° therefore there are four
pair of forces skewed at 180° between themselves and the resultant moment is balanced.

Balancing Strategy

It is possible to find the rotating first order moment resultant and the plane where this
moment is placed. Considering the Figure 5.42:

the moments around the directions x and y can be expressed as:

161



5 – V-Engines

Figure 5.42: 90° V8 cross-plane crankshaft

M ′

x = F ′#1 cos( − φ
2
+ θ)(3a + 2b + 3c) + F ′#5 cos( − φ

2
+ θ)(3a + b + 3c)+

+ F ′#2 cos( − φ
2
+ θ + β2)(a + b + c) − F ′#6 cos( − φ

2
+ θ + β2)(a + c)+

− F ′#3 cos( − φ
2
+ θ + β3)(a + c) − F ′#7 cos( − φ

2
+ θ + β3)(a + b + c)+

− F ′#4 cos( − φ
2
+ θ + β4)(3a + b + 3c) − F ′#8 cos( − φ

2
+ θ + β4)(3a + 2b + 3c); (5.67)

M ′

y = F ′#1 sin( − φ
2
+ θ)(3a + 2b + 3c) + F ′#5 sin( − φ

2
+ θ)(3a + b + 3c)+

+ F ′#2 sin( − φ
2
+ θ + β2)(a + b + c) − F ′#6 sin( − φ

2
+ θ + β2)(a + c)+

− F ′#3 sin( − φ
2
+ θ + β3)(a + c) − F ′#7 sin( − φ

2
+ θ + β3)(a + b + c)+

− F ′#4 sin( − φ
2
+ θ + β4)(3a + b + 3c) − F ′#8 sin( − φ

2
+ θ + β4)(3a + 2b + 3c); (5.68)

making the assumptions that:
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• F ′#1 = F ′#2 = F ′#3 = F ′#4 = F ′#5 = F ′#6 = F ′#7 = F ′#8 = F ′

• φ = 90°

the expressions become:

M ′

x = F ′ cos(−45 + θ)(6a + 3b + 6c) + F ′ cos(−45 + θ + β2)(2a + b + 2c)+
− F ′ cos(−45 + θ + β3)(2a + b + 2c) − F ′ cos(−45 + θ + β4)(6a + 3b + 6c) =

= F ′(6a + 3b + 6c)[cos(−45 + θ) − cos(−45 + θ + β4)]+
+ F ′(2a + b + 2c)[cos(−45 + θ + β2) − cos(−45 + θ + β3)]; (5.69)

M ′

y = F ′ sin(−45 + θ)(6a + 3b + 6c) + F ′ sin(−45 + θ + β2)(2a + b + 2c)+
− F ′ sin(−45 + θ + β3)(2a + b + 2c) − F ′ sin(−45 + θ + β4)(6a + 3b + 6c) =

= F ′(6a + 3b + 6c)[sin(−45 + θ) − sin(−45 + θ + β4)]+
+ F ′(2a + b + 2c)[sin(−45 + θ + β2) − sin(−45 + θ + β3)]; (5.70)

Therefore, the angle of the resultant moment plane can be derived as:

Figure 5.43: Angle between crank throw of cylinders #1 and #5 and resul-
tant first order moment plane

Considering now the Figure 5.43 the angle δ between the crank throws and the plane
where the resultant first order moment is placed can be obtained.
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tanα =
M ′

y

M ′

x

⇒ α = tan−1 (
M ′

y

M ′

x

) ; (5.71)

and finally:

δ = α + φ
2
− θ = −18.43°; (5.72)

It can be noticed that the angle in exactly the same that in the I4 cross-plane.
In order to have the first order rotating moment, it is possible to place two counter-

weights on the external crankshaft webs and skewed by the angle just derived. However,
in this way only a globally balance can be reached.

If the goal is to reduce forces and moments on each crankshaft bay, the bay-by-bay
balancing strategy can be used with better results. Considering the Figure 5.44:

Figure 5.44: 90° V8 cross-plane crankshaft with bay-by-bay balancing

m1 ⇒
⎛
⎜⎜
⎝

x1
y1

z1 = (a + b + c + d)

⎞
⎟⎟
⎠

; m2 ⇒
⎛
⎜⎜
⎝

x2
y2

z2 = (a + b + c)

⎞
⎟⎟
⎠

; m3 ⇒
⎛
⎜⎜
⎝

x3
y3

z3 = −(a + c)

⎞
⎟⎟
⎠

;

m4 ⇒
⎛
⎜⎜
⎝

x4
y4

z4 = −(a + c + d)

⎞
⎟⎟
⎠

; m5 ⇒
⎛
⎜⎜
⎝

x5
y5

z5 = (a + c + d)

⎞
⎟⎟
⎠

; m6 ⇒
⎛
⎜⎜
⎝

x6
y6

z6 = (a + c)

⎞
⎟⎟
⎠

;
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m7 ⇒
⎛
⎜⎜
⎝

x7
y7

z7 = −(a + b + c)

⎞
⎟⎟
⎠

; m8 ⇒
⎛
⎜⎜
⎝

x8
y8

z8 = −(a + b + c + d)

⎞
⎟⎟
⎠

;

mc1 ⇒
⎛
⎜⎜
⎝

xc1

yc1

zc1 = (2a + b + c + d)

⎞
⎟⎟
⎠

mc2 ⇒
⎛
⎜⎜
⎝

xc2

yc2

zc2 = (2a + b + 3c)

⎞
⎟⎟
⎠

mc3 ⇒
⎛
⎜⎜
⎝

xc3

yc3

zc3 = (2a + b + c)

⎞
⎟⎟
⎠

mc4 ⇒
⎛
⎜⎜
⎝

xc4

yc4

zc4 = c

⎞
⎟⎟
⎠

; mc5 ⇒
⎛
⎜⎜
⎝

xc5

yc5

zc5 = −c;

⎞
⎟⎟
⎠

; mc6 ⇒
⎛
⎜⎜
⎝

xc6

yc6

zc6 = −(2a + b + c)

⎞
⎟⎟
⎠

;

mc7 ⇒
⎛
⎜⎜
⎝

xc7

yc7

zc7 = −(2a + b + 3c);

⎞
⎟⎟
⎠

; mc8 ⇒
⎛
⎜⎜
⎝

xc8

yc8

zc8 = −(2a + b + c + d);

⎞
⎟⎟
⎠

;

The general system of equilibrium equations can be written in the same way that in
5.51.

Considering and assuming that, in this case:

• m1 =m2 =m3 =m4 =m5 =m6 =m7 =m8 =m;

• x1 = x5 = x15, x2 = x6 = x26, x3 = x7 = x37,and x4 = x8 = x48

• x15 = −x48 = and x26 = −x37

• y1 = y5 = y15, y2 = y6 = y26, y3 = y7 = y37,and y4 = y8 = y48

• y15 = −y48 and y26 = −y37

the system becomes:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1xc1 +mc2xc2 +mc3xc3 +mc4xc4 +mc5xc5 +mc6xc6 +mc7xc7 +mc8xc8+
+2m(x15) + 2m(x48) + 2m(x26) + 2m(x37) = 0

y) mc1yc1 +mc2yc2 +mc3yc3 +mc4yc4 +mc5yc5 +mc6yc6 +mc7yc7 +mc8yc8+
+2m(y15) + 2m(y48) + 2m(y26) + 2m(y37) = 0

x Á (2a + b + c + d)(mc1xc1 −mc8xc8) + (2a + b + 3c)(mc2xc2 −mc7xc7)+
+(2a + b + c)(mc3xc3 −mc6xc6) + c(mc4xc4 −mc5xc5)+
+mx15(2a + b + 2c + 2d) +mx48[−(2a + b + 2c + 2d)]+
+mx26(2a + b + 2c) +mx37[−(2a + b + 2c)] = 0

y Á (2a + d + c + d)(mc1yc1 −mc8yc8) + (2a + b + 3c)(mc2yc2 −mc7yc7)+
+(2a + b + c)(mc3yc3 −mc6yc6) + c(mc4yc4 −mc5yc5)+
+my15(2a + b + 2c + 2d) +my48[−(2a + b + 2c + 2d)]+
+my26(2a + b + 2c) +my37[−(2a + b + 2c)] = 0

(5.73)

and then:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x) mc1xc1 +mc2xc2 +mc3xc3 +mc4xc4 +mc5xc5 +mc6xc6 +mc7xc7 +mc8xc8 = 0
y) mc1yc1 +mc2yc2 +mc3yc3 +mc4yc4 +mc5yc5 +mc6yc6 +mc7yc7 +mc8yc8 = 0
x Á (2a + b + c + d)(mc1xc1 −mc8xc8) + (2a + b + 3c)(mc2xc2 −mc7xc7)+

+(2a + b + c)(mc3xc3 −mc6xc6) + c(mc4xc4 −mc5xc5)+
+mx15(4a + 2b + 4c + 4d) +mx26(4a + 2b + 4c) = 0

y Á (2a + d + c + d)(mc1yc1 −mc8yc8) + (2a + b + 3c)(mc2yc2 −mc7yc7)+
+(2a + b + c)(mc3yc3 −mc6yc6) + c(mc4yc4 −mc5yc5)+
+my15(4a + 2b + 4c + 4d) +my26(4a + 2b + 4c) = 0

(5.74)
Solving this system, a balanced configuration can be reached.

5.4.3 Bearing Loads
The way used to find the bearing loads is based on the Three Moment Equation of Clapey-
ron. The crankshaft is hyperstatically constrained and can be considered as a beam, in
this case with four span.

The three moment equation method require to use ad additional equation for each
excess constraint. In the equations shown below it is assumed that the Young’s modulus E
and the moment of inertia of the crankshaft section J are constant along the crankshaft,
therefore they cancel each other in all the terms.

In this case the system can be divided in three subsystems, the ABC, the BCD and the
CDE. For each subsystem a three moment equation can be derived. In the Figure 5.45 is
represented the whole system considered.
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The equations are written in a general form, so the results are valid both for flat-plane
and cross-plane V8 crankshaft.

Figure 5.45: V8 crankshaft seen as a four-span beam

Considering now the system ABC shown in Figure :

Figure 5.46: System ABC

the three moment equation is equal to:

MAl1+2MB(l1+l2)+MC l2 = −
Fc1
l1
a(l21−a2)−Fcrank15

l1
(a+b)(l21−(a+b)2)−

Fc5
l1
(a+b+c)(l21−(a+b+c)2)+

− Fc2
l2
(f + g + h)(l22 − (f + g + h)2) −

Fcrank26

l2
(g + h)(l22 − (g + h)2) −

Fc6
l2
h(l21 − h2);

(5.75)

for the system BCD shown in the Figure 5.47 the three moment equation is equal to:

MBl2+2MC(l2+l3)+MDl3 = −
Fc2
l2
e(l22−e2)−Fcrank26

l2
(e+f)(l22−(e+f)2)−

Fc6
l2
(e+f+g)(l22−(e+f+g)2)+

− Fc3
l3
(n +m + l)(l23 − (n +m + l)2) −

Fcrank37

l3
(n +m)(l23 − (n +m)2) −

Fc7
l3
n(l21 − n2);

(5.76)
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Figure 5.47: System BCD

Figure 5.48: System CDE

for the system CDE shown in the Figure 5.48 the three moment equation is equal to:

MC l3+2MD(l3+l4)+MEl4 = −
Fc3
l3
i(l23−i2)−

Fcrank37

l3
(i+l)(l23−(i+l)2)−

Fc7
l3
(i+l+m)(l23−(i+l+m)2)+

− Fc4
l4
(r + q + p)(l24 − (r + q + p)2) −

Fcrank48

l4
(r + q)(l24 − (r + q)2) −

Fc8
l4
r(l24 − r2); (5.77)

The momentsMA andME are zero, andMB,MC andMD can be calculated considering
the system in matrix form like Ax = B with:

A =
⎡⎢⎢⎢⎢⎢⎣

2(l1 + l2) l2 0
l2 2(l2 + l3) l3
0 l3 2(l3 + l4)

⎤⎥⎥⎥⎥⎥⎦
;

x =
⎛
⎜⎜
⎝

MB

MC

MD

⎞
⎟⎟
⎠

and the vector B equal to the known term:
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B =
⎛
⎜⎜
⎝

−Fc1
l1
a(l21 − a2) + ... − Fc6

l2
h(l22 − h2)

−Fc2
l2
e(l22 − e2) + ... − Fc7

l3
n(l23 − n2)

−Fc3
l3
i(l23 − i2) + ... − Fc8

l4
r(l24 − r2)

⎞
⎟⎟
⎠

and then:

x =
⎛
⎜⎜
⎝

MB

MC

MD

⎞
⎟⎟
⎠
= A−1 ∗B

Considering now the each single span, the shear forces and the reaction on the supports
can be derived as shown below:

• System "AB" (Figure 5.49):

Figure 5.49: System AB

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B Á MB −MA + Fc1(b + c + d) + Fc5d + Fcrank15(c + d) − TA+ l1 = 0
TA+ = 1

l1
(MB + Fc1(b + c + d) + Fc5d + Fcrank15(c + d));

↑) TA+ − Fc1 − Fc5 − Fcrank15 − TB− = 0
TB− = TA+ − Fc1 − Fc5 − Fcrank15 ;

(5.78)

• System "BC" (Figure 5.50):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C Á MC −MB + Fc2(f + g + h) + Fc6h + Fcrank26(g + h) − TB+ l2 = 0
TB+ = 1

l2
(MC −MB + Fc2(f + g + h) + Fc6h + Fcrank26(g + h));

↑) TB+ − Fc2 − Fc6 − Fcrank26 − TC− = 0
TC− = TB+ − Fc2 − Fc6 − Fcrank26 ;

(5.79)
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Figure 5.50: System BC

• System "CD" (Figure 5.51):

Figure 5.51: System CD

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D Á MD −MC + Fc3(l +m + n) + Fc7m + Fcrank37(m + n) − TC+ l3 = 0
TC+ = 1

l3
(MC −MB + Fc3(l +m + n) + Fc7m + Fcrank37(m + n));

↑) TC+ − Fc3 − Fc7 − Fcrank37 − TD− = 0
TD− = TC+ − Fc3 − Fc7 − Fcrank37 ;

(5.80)

• System "DE" (Figure 5.52):
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Figure 5.52: System DE

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E Á ME −MD + Fc4(l +m + n) + Fc8m + Fcrank48(m + n) − TD+ l4 = 0
TD+ = 1

l4
(−MD + Fc4(l +m + n) + Fc8m + Fcrank48(m + n));

↑) TD+ − Fc4 − Fc8 − Fcrank48 − TE− = 0
TE− = TD+ − Fc4 − Fc8 − Fcrank48 ;

(5.81)

The reactions can be obtained considering the convention shown in Figure 5.53.

Figure 5.53: Shear forces convention
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RA = TA+ ;
RB = TB+ − TB− ;
RC = TC+ − TC− ;
RD = TD+ − TD− ;
RE = −TE− ;

(5.82)

All the procedure shown above is valid for the case of a non-balanced crankshaft as no
forces due to the counterweights were considered. Anyway, the same method can be used
for a balanced crankshaft just adding the forces due to the counterweights, as shown in
the Figure 5.54.

Figure 5.54: Model of forces in a V8 balanced crankshaft
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Chapter 6

Matlab Scripts and Results

The aim of this thesis work is to create a Matlab script that allows the user to quickly set
up a crankshaft layout and find the crankshaft state of balancing and the reactions on the
main bearings derived with the methods shown in the previous paragraphs.

The crankshafts that can be analyzed in this Matlab code are from Inline engines from
2 to 6 cylinders, and V-engines with 4, 6 or 8 cylinders.

I chose to divide the whole code in two main parts and, therefore, in two main scripts.
The following figures show some screenshots of the required choices and parameters during
the running of the code.

6.1 Matlab script without balancing
The first part of the code governs the forces and moments analysis considering a non-
balanced crankshaft; this script is useful to let the user know about which forces and
moments are naturally balanced in the shaft configuration considered in order to think
about a possible balancing strategy that can be applied in that particular case.

First of all, the script requires to set if the user wants to consider an Inline or V
crankshaft layout as shown in the Figure 6.1:

Figure 6.1: Inline or V engine selection
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then the number of cylinders are required, as shown in the Figures 6.2 and 6.3.

Figure 6.2: Inline cylinders number selection

Figure 6.3: V-engine cylinders number selection

After that, the user have to insert some physical parameters of the system, as reported
in Figure 6.4:

Figure 6.4: Parameters setting

The parameter λ is the ratio between the crank throw radius and the conrod length.
Only in V-engine cases is now required to set up the V-angle (Figure 6.5).
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Figure 6.5: V-angle setting

The next step is to set the crank throws disposition in terms of angles between them-
selves. Considering for example a I3 engine, the values of the angle between the crank
throws #1 and #2 and between #1 and #3 as shown in the Figure 6.6.

Figure 6.6: Angles between crank throws

The last parameter to set is the bore spacing (Figure 6.7), that is useful in the moments
and bearing reactions calculation.

Figure 6.7: Bore spacing for Inline engines

In V-engine cases only, besides the bore spacing also some other parameters are required
(Figure 6.8), as the offset between banks, the distance from the crank arm to the adjacent
main bearing and the distance between the crank arm and the adjacent conrod (assuming
that the two conrods are placed symmetrically respect to the centreline plane of the crank
throw).

Figure 6.8: Required parameters for V-engines
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Once the necessary parameters have been set, the script recalls a function that manage
all the calculation required to find the first and second order forces and moments and
the reactions on the supports. A specific function was written for each case that can be
analyzed, therefore there are four funcions that manage Inline crankshafts from 2 to 6
cylinders, and three fuctions that manage V4, V6 and V8 crankshaft layouts.

Those functions give back to the user the values of forces, moments and reactions acting
on the system considering the crankshaft without any type of balancing and a parameter
that represents the shaft weight, obviously according to the assumptions and simplifications
made in this study. Moreover also the angle of the plane of the resultant moment (if it
exists) is returned to the user. There are also some plots in output that allow to graphically
observe the trends of the parameters returned by the functions.

6.2 Matlab script with balancing
The second main script does the crankshaft balancing.

In the initial part the user has to set up the same parameters set in the case without the
balancing, so the engine type, the number of cylinders, the masses, the crank throw length,
the ratio λ, the engine rotation speed ω, geometrical parameters how the angle between
crank throws, the bore spacing, the distance between crank throws and main bearings and
the offset between banks in case of a V-engine.

After that the script requires the key parameter for the crankshaft balance: the Bal-
ancing Factor.

Figure 6.9: BF setting for a V8 engine

As can be seen in the Figure 6.9 referred to a V8 engine (with four bays), each single
bay has its balancing factor.

Once the BF values are inserted, the script requires a definition of the masses and the
disposition of the counterweights. First of all the position along the crankshaft axis must
be set (Figure 6.10) and then the angle between each crank throw and the couterweights
placed in each of them, as shown in the Figure 6.11:

176



6 – Matlab Scripts and Results

Figure 6.10: Counterweight position along crankshaft axis for a V4 engine

Figure 6.11: Counterweight angle from the relative crank for a V4 engine

The angle that must be set in the Figure 6.11 is a relative angle referred to each crank
and it allows to skew the counterweights of the desired angle. This skew angle can be
very useful when there is a rocking couple to counteract. For example in the Figure 6.11
is reported the setting window for a V4 engine (with two bays) where a maximum of 4
counterweights can be placed, two for each crank throw.

After that the script gives to the user the possibility to choose (Figure 6.12) to follow
an "easy way" to do the balance, that is to have equal countwerweights in each bay in
terms of mass and radius, or a "more complex way" that is to set the properties for each
counterweight.
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Figure 6.12: Counterweight type selection

If the "easy way" is chosen the code asks which parameter the designer want to set
between the counterweights mass or the radius (Figure 6.13), in order to find the parameter
unknown. Usually the radius can be assumed (Figure 6.14), because there is the constraint
of the available space inside the crankcase and the maximum counterweights radius can be
set equal to the crank throw radius.

Figure 6.13: Input

Figure 6.14: Counterweights radius input

Instead, if the "more complex way" is chosen the designer have to set the radius and
the mass of each counterweight of each bay, according to the BF chosen initially (Figure
6.15).
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Figure 6.15: Counterweights settings for a single crankshaft bay

In the same way as done for the script without the balancing part, for each possible
engine configuration in terms of type (Inline or V) and nymber of cylinders, a specific
fuction was written.

Those functions give back the values of forces, moments and reactions acting on the
system considering the crankshaft balancing through counterweights and a parameter that
represents the shaft weight, obviously according to the assumptions and simplifications
made in this study. Moreover also the angle of the plane of the resultant moment (if it
exists) is returned to the user. There are also some plots in output that allow to graphically
observe the trends of the parameters returned by the functions.

6.3 Output plots

In this Paragraph are reported the output plots of the Matlab scripts created to analyze
the crankshaft state of balancing.

In particular, in the Pararagraph 6.3.1 are shown the Figures referred to the Matlab
script that carries out the analysis of the crankshaft without any type of balacing strategy,
in order to verify which forces and moments are balanced, to find the plane of the resul-
tant moment (if it is existing) and to calculate the whole crankshaft weight based on the
hypotheses made. The Paragraph 6.3.2 instead shows figures about balanced crankshaft
configurations in order to check graphically the results produced by the balancing strategy
applied in terms of main bearings reactions and shaft weight.

For the sake of brevity are reported just few of the possible cases that the Matlab script
is able to analyze, in particular are illustrated the figures referred to the Inline three-
cylinder engine (that can be easily extended to a V6 configuration), the 90° V8 flat-plane
engine and the 90° V8 cross-plane engine.
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6.3.1 Output plots of the Matlab script without balancing
Inline three-cylinder engine plots

The input data assumed for the analysys are:

mROT mALT r λ ω Bore spacing
[kg] [kg] [m] - [rpm] [m]
0.5 0.65 0.045 0.25 6000 0.1

Table 6.1: Input data I3 crankshaft

Where mROT is considered ad the sum of the pure rotating mass and the two-thirds of
the conrod mass. The mALT is the sum of the one-third of the conrod mass and the piston
mass.

The output figures are:

Figure 6.16: Pure rotating forces Figure 6.17: First order rotating forces

Figure 6.18: Total first order
rotating forces

Figure 6.19: First order
counter-rotating forces
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Figure 6.20: Second order rotating
forces

Figure 6.21: Second order
counter-rotating forces

Figure 6.22: Resultant forces Figure 6.23: Pure rotating moments

Figure 6.24: First order rotating
moments

Figure 6.25: Total first order
rotating moments
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Figure 6.26: First order
counter-rotating moments

Figure 6.27: Second order
rotating moments

Figure 6.28: Second order
counter-rotating moments

Figure 6.29: Resultant moments

Figure 6.30: Bearings reactions in y Figure 6.31: Bearings reactions in x
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Figure 6.32: Resultant bearings reactions

Figure 6.33: Output parameters

The figure shown above represent all the main stress to which the crankshaft is sub-
jected. The results obtained are consistent with the theory reported in the Paragraph 4.2
because:

• The first order forces, both rotating and counter-rotating, reported in the Figures
from 6.16 to 6.19 are balanced.

• The second order forces, both rotating and counter-rotating, shown in the Figures
6.20 and 6.21 are balanced.

• The first order moments, both rotating and counter-rotating, reported in the Figures
from 6.23 to 6.26 are not balanced.

• The second order moments, both rotating and counter-rotating, shown in the Figures
from 6.27 to 6.28 are not balanced.

The Figures from 6.30 to 6.32 shown the bearings reactions trends, and it can be
observed that without any type of balancing the most stressed are the central ones (B and
C). The last Figure 6.33 reports the values of the calculated shaft weight and of the angle
between the plane of the resultant first order moment and the plane of the crank throw
#1 that is, according to the theory, equal to 30°.
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90° V8 flat-plane engine plots

The input data assumed for the analysys are:

mROTpure mROTROD
mALT r λ ω V angle

[kg] [kg] [kg] [m] - [rpm] [deg]
0.2 0.3 0.65 0.045 0.25 6000 90

Bore spacing a b c
[m] [m] [m] [m]
0.12 0.022 0.016 0.03

Table 6.2: Input data V8 flat-plane crankshaft

Where mALT is the sum of the one-third of the conrod mass and of the piston mass.
For the distances a, b and c the reader can look at the Figure 5.42.

The output figures are:

Figure 6.34: Pure rotating forces Figure 6.35: First order rotating forces
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Figure 6.36: Total first order
rotating forces

Figure 6.37: First order
counter-rotating forces

Figure 6.38: Second order rotating
forces

Figure 6.39: Second order
counter-rotating forces

Figure 6.40: Resultant forces Figure 6.41: Pure rotating moments
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Figure 6.42: First order rotating
moments

Figure 6.43: Total first order
rotating moments

Figure 6.44: First order
counter-rotating moments

Figure 6.45: Second order
rotating moments
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Figure 6.46: Second order
counter-rotating moments

Figure 6.47: Resultant moments

Figure 6.48: Bearings reactions in y Figure 6.49: Bearings reactions in x

Figure 6.50: Resultant bearings reactions

Figure 6.51: Output parameters

The figures shown above represent all the main stress to which a 90° flat-plane V8
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crankshaft is subjected. The results obtained are consistent with the theory reported in
the Paragraph 5.4.1 because:

• All the first order forces, both rotating and counter-rotating, illustrated in the Figures
from 6.34 to 6.37 are balanced.

• The second order forces, both rotating and counter-rotating, shown in the Figures
6.38 and 6.39 are not balanced.

• The first order moments, both rotating and counter-rotating, illustrated in the Figures
from 6.41 to 6.44 are balanced.

• The second order moments, both rotating and counter-rotating, shown in the Figures
from 6.45 to 6.46 are not balanced.

It can be noticed that in the Figure 6.40 the resultant forces (sum of rotating and
counter-rotating contributions) are balanced in y direction, but are not balanced in x
direction. This fact can be easily understood looking at the Figure 5.36 in which it is clear
that the sum of rotating and counter-rotating second order forces is equal to zero in y
direction, but is different from zero along x direction.

The Figures from 6.48 to 6.50 shown the bearings reactions trends and it can be observed
that for this crankshaft layout the most stressed bearing is the central one. In the last
Figure 6.51 are reported the values of the calculated shaft weight and of the angle between
the plane of the resultant first order moment and the plane of the crank throw #1 that is
in this case equal to 0° because there are no first order moments.
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90° V8 cross-plane engine plots

The input data assumed for the analysys are the same reported on the Table 6.2. Obiously
in this is different than the flat-plane case because of the angles between the crank throws.

The output figures are:

Figure 6.52: Pure rotating forces Figure 6.53: First order rotating forces

Figure 6.54: Total first order
rotating forces

Figure 6.55: First order
counter-rotating forces

189



6 – Matlab Scripts and Results

Figure 6.56: Second order rotating
forces

Figure 6.57: Second order
counter-rotating forces

Figure 6.58: Resultant forces Figure 6.59: Pure rotating moments

Figure 6.60: First order rotating
moments

Figure 6.61: Total first order
rotating moments
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Figure 6.62: First order
counter-rotating moments

Figure 6.63: Second order
rotating moments

Figure 6.64: Second order
counter-rotating moments

Figure 6.65: Resultant moments

Figure 6.66: Bearings reactions in y Figure 6.67: Bearings reactions in x
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Figure 6.68: Resultant bearings reactions

Figure 6.69: Output parameters

The figures shown above represent all the main stress to which a 90° cross-plane V8
crankshaft is subjected. The results obtained are consistent with the theory reported in
the Paragraph 5.4.2 because:

• All the first order forces, both rotating and counter-rotating, reported in the Figures
from 6.52 to 6.55 are balanced.

• The second order forces, both rotating and counter-rotating, shown in the Figures
6.56 and 6.57 are balanced.

• The first order rotating moment reported in the Figure 6.59 is balanced.

• The second order moments, both rotating and counter-rotating, shown in the Figures
from 6.63 to 6.64 are not balanced.

In this case, the first order counter-rotating moment is balanced due to the fact to have
a V-angle equal to 90°. As already written in the Paragraph 5.1, since the angle between
the first order reciprocating counter-rotating forces is equal to 2φ (with φ = V angle), this
moment results balanced.

The Figures from 6.66 to 6.68 illustrate the bearings reactions trends and it can be
observed that for this crankshaft layout the most stressed bearings are the "internal" ones.
In the last Figure 6.69 are reported the values of the calculated shaft weight and of the
angle between the plane of the resultant first order moment and the plane of the crank
throw #1 that is in this case equal to −18.43°, according to the value reported in the
Paragraph 5.4.2 in the Equation 5.72.

In order to make a comparison between the flat-plane and cross-plane configurations,
looking at the figures reported it can be concluded that:

• With the same input parameters considered, the bearing reactions of the flat-plane
case are greater than the cross-plane.
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• The bearing reactions in the flat-plane case are greater because of the second order
forces make a conspicuous contribution on the whole crankshaft stress. In a cross-
plane configuration instead the second order forces are balanced, and this is one of
the main reasons why the latter was developed.

These two statements confirm what is reported in the Paragraphs 5.4.1 and 5.4.2.

6.3.2 Output plots of the Matlab script without balancing
In this paragraph a balancing strategy is applied to the same engine layouts illustrated
in the Paragraph 6.3.1. For each of them, several configurations with different input
parameters are reported in order to compare the output graphs.

Plots concenring the balanced Inline three-cylinder engine

For an Inline three-cylinder engine, in order to have a completely balanced crankshaft both
the first and second order moments should be counteracted, with particular attention to
the first order one because it gives the most powerful stress.

However, using the bay-by-bay balancing strategy only the rotating first order stress can
be balanced, and this thesis work is focused on it.

Let us now show some different balanced configurations of this crankshaft:

• BF1 = BF2 = BF3 = 0.65
The same input parameters reported in the Table 6.1 are used. However the code
requires to set up other parameters to locate the counterweights, reported in the
tables below.

a c
[m] [m]
0.02 0.03

Table 6.3: Input data I3 crankshaft balancing (1)

Where a is equal to the distance between the crank arm and the center line of the
conrod, and c is the distance bewteen the crank arm and the adjacent bearing (these
distances are assumed to be constant in all the crankshaft bays).

zc1 zc2 zc3 zc4 zc5 zc6
[m] [m] [m] [m] [m] [m]
0.12 0.08 0.02 -0.02 -0.08 -0.12

Table 6.4: Input data I3 crankshaft balancing (2)

Table 6.4 shows the counterweights positions along the crankshaft axis.
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βc1 βc2 βc3 βc4 βc5 βc6
[deg] [deg] [deg] [deg] [deg] [deg]
180° 180° 180° 180° 180° 180°

Table 6.5: Input data I3 crankshaft balancing (3)

Table 6.5 shows relative angles between each counterweight and the crank throw in
which is located.

For reasons of simplification, it is chosen to have equal conterweights on each bay and
to set their radius equal to the crank radius (Figures 6.12, 6.13, 6.14 and Table 6.6).

rc1 = rc2 rc3 = rc4 rc5 = rc6
[m] [m] [m]
0.045 0.045 0.045

Table 6.6: Input data I3 crankshaft balancing (4)

For the sake of brevity, only the figures that are modified by the balancing operations
are shown.

Figure 6.70: CW forces Figure 6.71: CW moments
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Figure 6.72: CW resultant moments Figure 6.73: Total first order moments

Figure 6.74: Resultant moments Figure 6.75: Bearings reactions in y

Figure 6.76: Bearings reactions in x Figure 6.77: Resultant bearings reactions
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Figure 6.78: Output parameters

It can be observed that:

– Comparing the Figures 6.73 and 6.25 there is a reduction of the total first order
rotating moment, due to the counteweights addition.

– The reduction of the first order rotating moment is obviously also reflected on
the resultant moments trend (Figure 6.74).

– The positive and negative maximums of the bearings reactions are lower, it
means that the local balancing in each bay is better than the case without coun-
terweights.

– The crankshaft is heavier and, since the BF values are equal to each other, the
resultant first order moment plane is still 30° ahead to the plane of the crank
throw #1.

• BF1 = BF2 = BF3 = 1

Setting all the BFs equal to 1, the configuration with the maximum possible balance
is reached.

All the assumptions and parameters set in the previous case (BF=0.65) are also used
in this case (Tables 6.3, 6.4, 6.5, 6.6).

The produced graphs are:

Figure 6.79: CW forces Figure 6.80: CW moments
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Figure 6.81: CW resultant moments Figure 6.82: Total first order moments

Figure 6.83: Resultant moments Figure 6.84: Bearings reactions in y

Figure 6.85: Bearings reactions in x Figure 6.86: Resultant bearings reactions
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Figure 6.87: Output parameters

It can be observed that:

– Figure 6.82 shows that the first order moment are, in this case, completely bal-
anced.

– The reduction of the first order rotating moment is obviously also reflected on
the resultant moments trend (Figure 6.83).

– The positive and negative maximums of the bearings reactions are the lowest, it
means that the local balancing in each bay is the best that can be achieved.

– On the contrary, this is the heaviest possible crankshaft configuration.

It is important to notice that the external counterweights (#1 and #6) can be skewed
of an angle equal to the resultant first order moment plane angle, in order to counteract
the first order rotating moment.

Considering to skewing the external counterweights as reported in the Table 6.7 and to
keep all the BFs equal to 1:

βc1 βc2 βc3 βc4 βc5 βc6
[deg] [deg] [deg] [deg] [deg] [deg]
210° 180° 180° 180° 180° 150°

Table 6.7: Input data I3 crankshaft balancing (3)

Figure 6.88: Total first order
moment

Figure 6.89: Total first
order moment with CW
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It can be observed that in this case the system is over-balanced, it means that skew-
ing the external counterweights it is possible to reduce their mass continuing to have a
completely balanced system to rotating first order moment.

This is an advantage because the reduction of the counterweights mass determines also
the reduction of the whole crankshaft mass, therefore the shaft can rotate at higher speed.

On the contrary, because of the external counterweights #1 and #6 skewing, the first
order forces are no longer balanced.

Finally, the above are just some of the possible balancing configurations that can be
realized and the best possible configuration must be founded based on the specific case
analized.

Plots concenring the balanced 90° V8 flat-plane engine

The main reason to add counterweights in a V8 flat-plane crankshaft is to reduce the local
stress on the bearings in each bay.

Let us now show a balanced configuration:

• Considering: BF1 = BF2 = BF3 = BF4 = 0.65

The same input parameters reported in the Table 6.2 are used. However the code
requires to set up other parameters to locate the counterweights, reported in the
tables below.

zc1 zc2 zc3 zc4 zc5 zc6 zc7 zc8
[m] [m] [m] [m] [m] [m] [m] [m]
0.21 0.15 0.09 0.03 -0.03 -0.09 -0.15 -0.21

Table 6.8: Input data V8 flat-plane crankshaft balancing (1)

Table 6.8 shows the counterweights positions along the crankshaft axis.

βc1 βc2 βc3 βc4 βc5 βc6 βc7 βc8
[deg] [deg] [deg] [deg] [deg] [deg] [deg] [deg]
180° 180° 180° 180° 180° 180° 180° 180°

Table 6.9: Input data V8 flat-plane crankshaft balancing (2)

Table 6.9 shows relative angles between each counterweight and the crank throw in
which is located.

For reasons of simplification, it is chosen to have equal conterweights on each bay and
to set their radius equal to the crank radius (Figures 6.12, 6.13, 6.14 and Table 6.10).
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rc1 = rc2 rc3 = rc4 rc5 = rc6 rc7 = rc8
[m] [m] [m] [m]
0.045 0.045 0.045 0.045

Table 6.10: Input data V8 flat-plane crankshaft balancing (3)

For the sake of brevity, only the figures that are modified by the balancing operations
are shown.

Figure 6.90: CW forces Figure 6.91: CW moments

Figure 6.92: Total first order moment Figure 6.93: Bearings reactions in y
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Figure 6.94: Bearings reactions in x Figure 6.95: Resultant bearings reactions

Figure 6.96: Output parameters

It can be said that:

• Balancing with the same BF in all the shaft bays with the counterweights placed
opposite to the relative crank (at 180°) does not cause any change in terms of global
balancing. In fact, the only unbalanced forces are the second order rotating and
counter-rotating ones.

• The addition of counterweights does not make any variations in terms of resultant
forces or moments.

• As can be seen in the Figures 6.93, 6.94 and 6.95 the bearings reactions are decreased;
this is ad advantage for the bearings duration. On the contrary, the shaft weight
(Figure 6.96) is increased.

• Increasing the BF the bearings reactions decrease and the weight increases.

The reactions trends in a case where all balancing factors values are set equal to 1 are
reported below (all the other parameters are considered the same as the case above).
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Figure 6.97: Bearings reactions in y Figure 6.98: Bearings reactions in x

Figure 6.99: Resultant bearings reactions

Figure 6.100: Output parameters

As can be observed this is the configuration with the lowest reactions but the heaviest
crankshaft.

Moreover, it can be understood that in this configuration it is not particularly useful
to skew the counterweight respect to their referred crank throw, unless exceptional cases.

Plots concenring the balanced 90° V8 cross-plane engine

The main reasons to add counterweights in a V8 cross-plane crankshaft are to counteract
the first order rotating moment and to decrease the bearings reactions.

Let us now illustrate a balanced configuration:

• Considering: BF1 = BF2 = BF3 = BF4 = 0.65
The same input parameters reported in the Tables 6.2, 6.8, 6.9 and 6.10 are used.
Even in this case for the sake of brevity, only the plots affected by the balancing are
reported.
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Figure 6.101: CW forces Figure 6.102: CW moments

Figure 6.103: Total first order moments Figure 6.104: Bearings reactions in y

Figure 6.105: Bearings reactions in x Figure 6.106: Resultant bearings reactions
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Figure 6.107: Output parameters

It can be observed that:

– Making a comparison between 6.103 and 6.61 it can be seen that the resultant
first order moment is decreased, because of the addition of counterweights.

– The most stressed bearings are the same as the non-balanced configuration (B
and D) but the positive and negative maximum are lower.

– The crankshaft is heavier than the non-balanced configuration and since the BF
values are equal to each other the moment plane is still −18.43° behind the plane
of the crank throw of the cylinders #1 and #5.

• Considering now BF1 = BF2 = BF3 = BF4 = 1:

Figure 6.108: CW forces Figure 6.109: CW moments

Figure 6.110: Total first order moments Figure 6.111: Resultant moments
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Figure 6.112: Bearings reactions in y Figure 6.113: Bearings reactions in x

Figure 6.114: Resultant bearings reactions

Figure 6.115: Output parameters

As can be seen:

– The first order rotating moment is, in this case, completely balanced (Figure
6.110). For the layout considered, this means that even the resultant moments
are completely balanced (Figure 6.111).

– The addition of counterweights does not make any variation in terms of global
first and second order forces balance.

– The BF values are the highest possible, it means that this is the configuration
with the lowest bearings reaction but also the heaviest.

As already said for the balancing of the I3-cylinder, it is important to notice that
skewing the external counterweights of an angle equal to the resultant first order
moment angle plane (of the non-balanced configuration), it is possible to reach a
system in which the first order rotating moment is completely balanced, but with a
lighter crankshaft.
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In order to summarize, the crankshaft balancing is a complex topic with a lot of variables
to consider during the study.

Starting from the basic theory of the slider-crank system, in this thesis work attempts
were made to give to the reader an overview to what does it mean to balance a crankshaft,
which are the forces at work and what role they play in the crankshaft state-of-balancing.
To do all this, several engines, and therefore crankshafts, configurations have been il-
lustrated, and for each of them mathematical relationships that governs the "balancing
process" have been written.

However, the main purpose of the thesis was to write a Matlab script capable of manage
and analyze in an "easy way" any layout that the user deems useful to simulate.

It is obvious that this script is only a first approximation, because a series of simplifying
hypotheses have been made in order to make the system easy to study via Matlab.

Nonetheless, looking at the figures illustrated in the Chapter 6 it can be concluded
that the Matlab code, according to the hypoteses made, provides a good approximation of
the stresses involved both in the case of a non-balanced system and in the case with the
balancing strategy applied.

The next step of this work could to be find a way to optimize the parameters at play.
To be clear: to design a strategy that takes into account all the key variables, with their
relative weight in the balancing procedure, that allows to find the best set of parameters
(masses, radii, balance factors) for the desired crankshaft configuration which grant to have
the most possible crankshaft balancing, to minimize the bearing reactions and to have the
lightest possible shaft.
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