
POLITECNICO DI TORINO

Department of Mechanical and Aerospace Engineering

Master’s Degree in Mechanical Engineering
ERASMUS+ / PROGRAMME COUNTRIES with UPC-ESEIAAT

Master Thesis

STUDY AND CONSTRUCTION OF AN
RCRCR SPATIAL MECHANISM

Home Supervisor:
Prof. Stefano Pastorelli

I.R.I. Supervisor:
Prof. Enric Celaya

U.P.C. - E.S.E.I.A.A.T Supervisor:
Prof. Rita Maria Planas

Candidate:
Giuseppe Notaristefano

April 2019

Working Environment

This thesis has been carried out in the research center “Institut de Robotica i Informat-
ica Industrial (I.R.I.)” in cooperation with the “Escola Superior d’Enginyeries Industrial,
Aeroespacial i Audiovisual de Terrassa (U.P.C.-E.S.E.I.A.A.T.)”, during the mobility pe-
riod of Erasmus between U.P.C. and Politecnico di Torino.

The Institute has three main objectives: to promote fundamental research in robotics and
applied Informatics, to cooperate with the community in industrial technological projects,
and to offer scientific education through graduate courses. The institute was divided into
four lines: automatic control, kinematics and robot design, mobile robotics and perception
and manipulation.
I have took part in the kinematics and robot design group that, carries out fundamental
research on design, construction, and motion analysis of complex mechanisms and structures
as parallel manipulators, multi-fingered hands, reconfigurable mechanisms, or cooperating
robots.

The thesis has been carried out during the Erasmus mobility, for a period of six months
entirely spent for the project activities. I have cooperated, for most of the activities, with
my host supervisor Prof. Enric Celaya. Taking advantages of the research center specialised
staff, I have cooperated, for some important analysis with Prof. Federico Thomas and the
research engineer P.Grosch in the Kinematic and Robot Design Laboratory. It has been
also important the cooperation with Prof. R.M. Planas (E.S.E.I.A.A.T. supervisor) for the
project defence which took place in the host institution.

3

Contents

Contents

List of Figures 1

List of Tables 5

Abstract 7

Introduction 9

1 Study of the RCRCR Mechanism 11

1.1 State of the art . 11

1.2 Description of the mechanism . 13

1.3 Computation of the I-O equations . 14

1.3.1 Input-Output functions . 15

1.3.1.1 Input(θ5)-Output(θ1) function 15

1.3.1.2 Input(θ5)-Output (θ3) function 15

1.3.1.3 Input(θ3)-Output (θ5) function 15

1.4 Fixed parameters to the particular example of study 15

1.5 Analysis with Maple®software . 16

1.6 Implementation choiches: assembly mode and driving pair 17

1.6.1 Choice of the assembly mode . 17

1.6.2 Choice of the driving pair . 18

1.7 Extreme configurations: using an alternative driving pair 18

1.8 Discriminating the two assembly modes . 21

1.8.1 Alternative resolution of the fourth-degree equations 22

2 Designing the Links Shape 25

2.1 Positioning the joints . 25

2.1.1 First design: straight links . 32

2.1.2 Notation . 34

2.2 Collisions detection . 34

2.2.1 First step: test for coplanarity of segments 35

2.2.2 Second step: test for interference between coplanar segments 36

2.3 Algorithm implementation . 38

2.4 Test results: detected collisions . 39

2.4.1 Second design: avoiding collisions . 41

2.4.1.1 Avoiding collisions between l5−1 and d4−4F 41

2.4.1.2 Avoiding collisions between l1−2 and l2V−3 43

Table of Contents

2.5 Implementation of the joint envelope . 43

3 Construction of the Mechanism 45
3.1 Selection of the scaling factor . 45
3.2 Used equipment . 46

3.2.1 Printing guidelines . 46
3.3 Generic rotational joint model . 48
3.4 Generic cylindrical joint model . 49
3.5 Generic link model . 51
3.6 RCRCR mechanism CAD model . 53
3.7 Physical implementation . 56

3.7.1 Assembling of the joints . 56
3.7.2 Assembling of the links . 56
3.7.3 Bonding of the reference surfaces . 56
3.7.4 Installation on the base . 57
3.7.5 Installation of the motors . 58

3.8 Mechanism problems diagnosis . 63
3.9 Design improvements . 63
3.10 Final mechanism problems diagnosis . 65
3.11 Prototype real component . 66

4 Implementation of the Motors 75
4.1 Learning the use of the Dynamixel Motors . 75

4.1.1 Brief description of the motors environment 76
4.1.2 Motor model: Dynamixel AX-12A . 77
4.1.3 Control Table and functioning type of the motor Dyamixel AX-12A . 78
4.1.4 Feed-Forward position control:point-to-point motion in the joint space 79
4.1.5 Further considerations . 83

4.2 Installed Motor: Robotis Dynamixel MX-64T 87
4.2.1 Control Table and functioning type of the motor Dyamixel MX-64T . 88
4.2.2 Operating mode chosen: position control mode 90
4.2.3 Considerations on the motor behaviour 93
4.2.4 Feed-forward position control implemented: linear condition 97
4.2.5 Feed-forward position control implemented: test on the mechanism . . 100

5 Cost Analysis 103

Conclusion 105

Attachment 107
Appendix A . 107
Appendix B . 109
Appendix C . 121
Appendix D . 130
Appendix E . 148

Acknowledgement 155

Bibliography 157

List of Figures

1.1 Example of a CAD model of the RCRCR mechanism with the chosen fixed
parameters [1]. 12

1.2 RCRCR mechanism with general proportions (adapted from [15]). 13
1.3 I-O functions involving the three rotational pair variables θ1, θ3, θ5. 16
1.4 Relationship θ5 with the displacement s2 and s4. 17
1.5 Plot θ5 − θ5. 19
1.6 Plot θ3 − θ5. 20
1.7 Plot θ1 − θ5. 20
1.8 Plotting the solutions with different colours. 22
1.9 Relationship between θ5 and θ1 obtained with the alternative method. 23

2.1 Reference frame origins. 26
2.2 θ5 − θ1 plot. 26
2.3 Trajectory of O2 wrt the O1. 29
2.4 Trajectory of O2V wrt the O1. 29
2.5 Trajectory of O3 wrt the O1. 30
2.6 Trajectory of O4 wrt the O1. 30
2.7 Trajectory of O4V wrt the O1. 31
2.8 Trajectory of O5 wrt the O1. 31
2.9 All the trajectories of the reference frames wrt O1. 32
2.10 Link O5 to O1. 33
2.11 RCRCR mechanism, wire frame representation, in a generic instant. 33
2.12 Two generic segments in the space. 35
2.13 Crossing segments. 36
2.14 No crossing segments. 36
2.15 Crossing segments in a plane. 37
2.16 The four different area for crossing segments in a plane. 37
2.17 No Crossing segments in a plane. 38
2.18 The four different area for no-crossing segments in a plane. 38
2.19 Collisions 1,between the links l5−1 ↔ d4−4F . 40
2.20 Collisions 2, between the links l1−2 ↔ l2V−3. 41
2.21 Changes to the link l5−1. 42
2.22 Changes to the Link 12. 43
2.23 Simulation with the joint envelopes. 44

3.1 CAD part, in a non optimized printing orientation. 47
3.2 Layer by layer model, in a non optimize printing orientation. 47
3.3 Model in a optimized printing orientation. 48
3.4 Rotational pair, section view. 48

1

List of Figures LIST OF FIGURES

3.5 Rotational pair, isometric views. 49

3.6 Cylindrical pair, Igus-DryLin ®Linear Plain Bearings-RJUM-01-12 and Igus-
DryLin ®shaft-AWMP-12 [11]. 50

3.7 Cylindrical pair, section view. 50

3.8 Cylindrical pair, isometric view. 51

3.9 Cylindrical pair,the two half part of the cover. 51

3.10 Generic link between two joints. 52

3.11 Generic link between two joints, chunks mate. 52

3.12 CAD reference frame. 53

3.13 RCRCR CAD assembly. 54

3.14 RCRCR CAD assembly,particular l4−5. 55

3.15 Links assembly, reference surfaces. 56

3.16 Bounding reference surfaces. 57

3.17 Base of the mechanism. 57

3.18 Installation on the base, joint J5. 58

3.19 Deny rotation pin, joint J1 (right) and J5 (left). 59

3.20 Motor support for the joint J1. 60

3.21 Motor support for the joint J1, real model (left) and CAD model(right). . . . 60

3.22 Motor support for the joint J5. 61

3.23 RCRCR CAD model. 62

3.24 Generic revolute joint, new design. 64

3.25 Pin to deny the rotations of the bar. 64

3.26 RCRCR CAD model, top view. 66

3.27 RCRCR real prototype, top view. 66

3.28 RCRCR CAD model, main view (configuration: θ5 = 148.96 deg, θ1 = 37, 30
deg). 67

3.29 RCRCR real prototype, main view (configuration: θ5 = 148.96 deg, θ1 = 37, 30
deg). 68

3.30 RCRCR CAD model, joint J1 and motor placed. 69

3.31 RCRCR real prototype, joint J1 and motor placed. 69

3.32 RCRCR CAD model, joint J3. 70

3.33 RCRCR real prototype, joint J3. 70

3.34 RCRCR CAD model, joint J2 and J3. 71

3.35 RCRCR real prototype, joint J2 and J3. 71

3.36 RCRCR CAD model, joint J5 and motor placed. 72

3.37 RCRCR real prototype, joint J5 and motor placed. 72

3.38 RCRCR real prototype, main view (configuration: θ5 = 303.66 deg, θ1 =
296, 66 deg). 73

3.39 RCRCR real prototype, main view (configuration: θ5 = 263.56 deg, θ1 =
281.93 deg). 74

4.1 (1)Robot 3R and (2) USB2Dynamixel hardware. 76

4.2 Robotis Dynamixel, motors environment [10]. 76

4.3 Dynamixel AX-12A Robot Actuator [10]. 77

4.4 Trapezoidal velocity law. 80

4.5 Feed Forward Position control. 81

4.6 Comparison of real and theoretical position and velocity obtained. 83

4.7 Feed-forward position control, influence of Kp. 84

2

List of Figures

4.8 Feed-forward position control, influence of tf 85
4.9 Dynamixel AX-12A, coordinate control of three motor. 86
4.10 Robotis Dynamixel MX-64T actuator. 87
4.11 Dynamixel Motor MX-64T, Position Control Mode block diagram [10]. 91
4.12 Set of the Velocity profile, Dynamixel Motor MX-64T [10]. 93
4.13 Feed Forward Position control, trapezoidal sahpe of velocity. 94
4.14 Feed Forward Position control, influence of the final time. 95
4.15 Feed Forward Position control, influence of KI 96
4.16 Plot relationship θ5-θ1 . 97
4.17 Feed Forward Position control J5 motor (θ5), from the configuration 1 to 2. . 98
4.18 Feed Forward Position control J1 motor (θ1), from the configuration 2 to 3. . 99
4.19 Feed Forward Position control, test on the mechanism, motor in J5. 101

5.1 Plot, θ1 − θ3. 121
5.2 Plot, θ1 − θ5. 121
5.3 Plot, θ1 − θ2. 122
5.4 Plot, θ1 − θ4. 122
5.5 Plot, θ1 − s2. 123
5.6 Plot, θ1 − s4. 123
5.7 Plot, θ3 − θ1. 124
5.8 Plot, θ3 − θ5. 124
5.9 Plot, θ3 − θ2. 125
5.10 Plot, θ3 − θ4. 125
5.11 Plot, θ3 − s2. 126
5.12 Plot, θ3 − s4. 126
5.13 Plot, θ5 − θ3. 127
5.14 Plot, θ5 − θ1. 127
5.15 Plot, θ5 − θ2. 128
5.16 Plot, θ5 − θ4. 128
5.17 Plot, θ5 − s2. 129
5.18 Plot, θ5 − s4. 129

3

List of Figures

4

List of Tables

1.1 Fixed parameters for our case of study. 16
1.2 Lengths of the cylindrical pairs in assembly mode 1 and 2. 18
1.3 Range of motion of rotational variables θ1, θ3, and θ5 for assembly mode 2 [1]. 18

2.1 Configuration corresponding to the point 1. 27
2.2 Configuration corresponding to the point 2. 27
2.3 Configuration corresponding to the point 3. 27
2.4 Configuration corresponding to the point 4. 27
2.5 Determinant changes of sign detected. 39
2.6 Collisions detected. 39

3.1 Fixed parametres scaled. 45
3.2 3D printers used. 46
3.3 Initial configuration of the physical model. 59

4.1 Dynamixel AX-12A, motor specifications [10]. 77
4.2 Dynamixel AX-12A, Control Table [10]. 78
4.3 Dynamixel MX-64T, motor specification [10]. 87
4.4 Dynamixel MX-64T, Control Table [10]. 89
4.5 Dynamixel MX-64T, table of conversion [10]. 90

5

Abstract

The purpose of this work is the study of the kinematics of an RCRCR spatial mechanism
and the design of a 3D prototype able to perform the full range of mobility allowed in theory.

To achieve this, the solution of the input-output equations of the mechanism has been
implemented in a commercial mathematical software (Maple) that allowed the analysis of all
the aspects relevant to our task. It has been realized that driving the mechanism along the
full cycle of configurations requires the alternative actuation on two different rotational pairs,
which have been chosen to optimize the controllability of the mechanism.

To design the shape of each link, so that the interference between different parts of the
mechanism is avoided along the whole range of movement, a process of collision detection
between links has been developed.

Given the final link shapes, a complete design of all mechanism parts, including the fixa-
tion of the joints bearings and the connections between joints and links, has been carried out
in order to build them using a 3D printing process called FDM (fusion deposition modelling).
A simulation of the motion of the complete design has been performed, showing that, using
the two motors, the mechanism can perform a complete motion cycle with no collisions.

7

Introduction

The goal of this project is the kinematic analysis of the general RCRCR spatial mech-
anism and the study of one particular instance of it in order to design and implement a
physical prototype able to perform the full range of movement theoretically allowed.

The RCRCR is a particular case of the family of 3R-2C spatial mechanisms, consisting
in a set of five links connected by three rotational and two cylindrical pairs forming a kine-
matic loop. Since each R pair provides one rotational d.o.f. and each C pair provides one
translational and one rotational d.o.f., all mechanisms in the family of 3R-2C have a total of
seven d.o.f. or variable joint parameters. The fact that the mechanism forms a loop means
that the last link can not move freely in space, but must remain attached to the first, and
this removes 6 d.o.f. from the global mobility of the mechanism. This means that, in general,
3R-2C mechanisms have mobility 1, so that the motion of the mechanism can be produced
by driving a single input pair variable.
The set of values taken by all the pair variables in a feasible combination is called a config-
uration of the mechanism. A central task in Kinematics is the determination of all possible
configurations of a mechanism for each possible value of the variable taken as input. This
is usually done by obtaining input-output functions relating the value of the input variable
with the value of each other variable considered as the output. Solving a mechanism consists
in providing its input-output functions, and the process to do that may be very complex. For
some mechanisms, it is possible to decouple the equations involving the rotational variables
from those involving the translational ones, so that the rotational part can be solved first in-
dependently of the translations, and their solution is relatively simple. Among all the spatial
mechanisms having a single global d.o.f. and for which its solution can not be decoupled,
the 3R-2C family is the simplest one, and in this family, the RCRCR mechanism is the less
complex to solve. This fact is what gives a special interest to this mechanism and motivates
its choice as the subject of this work.

The kinematic analysis of a mechanism is commonly performed without taking into con-
sideration the physical material of which each link is made of, nor its exact shape or its volume,
i.e., each link is described simply by the fixed parameters defining the spatial transformation
imposed on the relative position between the reference frames attached to consecutive pairs.
Thus, a configuration of a mechanism can be theoretically feasible but impossible to reach
in a real implementation of it, due to physical interferences between different links. Our
goal, then, is to find appropriate shapes for all links of our particular mechanism, so that
all theoretically feasible configurations can be physically realizable, and which at the same
time are capable to keep their rigidity and resist the forces applied to them when driving the
input pair to follow a trajectory along a full cycle of configurations.

The final goal of this work will be the physical construction and assembly of the links

9

Introduction

with the adequate motorization and control of one or more input pairs, so as to achieve the
movement of the mechanism through its whole range of mobility by the actuation of one
servo at a time.

Thus, the following report is divided into six chapters. In the first (Chapter 1), the
theoretical background of the project is developed. Next, Chapter 2 discusses the design
of the links shape and Chapter 3 presents the solutions adopted for the construction of the
mechanism. At the end, in Chapter 4 is shown the implementation of the motors planned
and Chapter 5 presents a brief overview on the cost analysis.

10

Chapter 1

Study of the RCRCR Mechanism

The RCRCR mechanism and its inversions RCRRC and RRCRC (where the notation
indicates which rotational pair is taken as input by placing it in the first position from left),
have been thoroughly analyzed in the literature [15, 3, 4, 16]. To perform the complex
algebraic manipulations required to obtain the input-output equations, dual number 3 ×
3 matrices have been most often used instead of the more common 4 × 4 homogeneous
transformation matrices. Next, we review the solution of the mechanism in general and,
using an implementation of the equations in a commercial mathematical software (Maple), we
obtain the numerical solutions corresponding to the particular parameters of the mechanism
under study.

1.1 State of the art

The Kinematics of the RCRCR mechanism, has been deeply analysed in literature. The
most relevant studies [3, 15, 16] are concentrated on the process of obtaining of the input
output (I-O) equations and solving them. Starting from the first results [15], we count re-
markable improvements in the obtaintion of the I-O relationships among the variables of the
mechanism [3, 4, 8, 5].
Since the main interest of the 3R2C mechanisms is of a theoretical nature, their physical
construction has received much less attention. One of the few attempts we can find in the
literature to build a real model is [7]. Interestingly, the author mentions that some of the
theoretically possible configurations of the mechanism could not be reached in the real model
due to link interferences. This tells us that if links are not designed with the explicit purpose
to avoid collisions between them, they are likely to occur. This problem is further illustrated
in figure 1.1, where a CAD model of the mechanism under study has been implemented with-
out taking into consideration the possible collisions of links when performing the full cycle
of configurations. It is easy to foresee that the provided shape of links will cause multiple
collisions during the relative motion.

Thus, the purpose of this work is to develop a method for link design that takes into
account link interferences when the mechanism moves along its whole rage of mobility.

11

1.1. State of the art 1. STUDY OF THE RCRCR MECHANISM

Figure 1.1: Example of a CAD model of the RCRCR mechanism with the chosen fixed parameters [1].

12

1. STUDY OF THE RCRCR MECHANISM 1.2. Description of the mechanism

1.2 Description of the mechanism

The mechanism of study is an RCRCR mechanism as shown in figure 1.2. It is composed
of three revolute pairs and two cylindrical pairs. Referring to the figure 1.2, joints 1,3
and 5 correspond to revolute pairs and 2 and 4 correspond to cylindrical pairs. The pairing
axes of 1,2, 3, 4 and 5 are specified, respectively, by unit line vectors x1, x2, x3, x4, and
x5. The unit line vector z1 lies along the common perpendicular between x1 and x2, directed
from x1 to x2. Then, z2, z3, z4, and z5 are similarly defined.
The generic third axis is defined by yi = zi × xi.

Figure 1.2: RCRCR mechanism with general proportions (adapted from [15]).

With reference to the figure 1.2, a general configuration of the RCRCR mechanism is
completely defined by two sets of five dual angles, as follows:

� Between adjacent pairing axes:

α̂ij = αij + εaij

where α̂ij is the dual angle between xi and xj , having positive sense with respect to zi.

� Between adjacent common perpendiculars:

θ̂i = θi + εsi

where θ̂i is the dual angle between zi−1 and zi, having positive sense with respect to
the revolute axis xi. By convention when i = 1, i− 1 = 5.

13

1.3. Computation of the I-O equations 1. STUDY OF THE RCRCR MECHANISM

The angles θ1, θ2, θ3, θ4, θ5 and the two sliding components along the cylindric axes s2 and s4
constitute the seven linkage variables. Instead, the five dual angles α̂12, α̂23, α̂34, α̂45, α̂51

and the three constant offsets along the revolute axis s1, s3 and s5 constitute the thirteen
real parameters necessary to specify a RCRCR mechanism. Therefore, the mechanism
presents only one dof, what means that, to move our mechanism, we need to manage only
one of the seven linkage variables.
A brief digression on the dual numbers can be found on the Appendix A.

1.3 Computation of the I-O equations

The RCRCR mechanism can be defined by the loop equation[1]:

I = R̂x(θ̂1)R̂z(α̂12)R̂x(θ̂2)R̂z(α̂23)R̂x(θ̂3)R̂z(α̂34)R̂x(θ̂4)R̂z(α̂45)R̂x(θ̂5)R̂z(α̂51), (1.1)

where θ̂1, θ̂3 and θ̂5 are the revolute pairs and θ̂2 and θ̂4 are the cylindric pairs.
We rearrange (1.1) so as to have a C pair at both ends of the right hand side:

R̂z(−α̂34)R̂x(−θ̂3)R̂z(−α̂23) = R̂x(θ̂4)R̂z(α̂45)R̂x(θ̂5)R̂z(α̂51)R̂x(θ̂1)R̂z(α̂12)R̂x(θ̂2). (1.2)

Applying the dual Euler’s decomposition (see Appendix A) to both sides, excluding the
cylindric pairs:

R̂z(−α̂34)R̂x(−θ̂3)R̂z(−α̂23) = R̂x(ϕ̂1)R̂z(φ̂1)R̂x(ψ̂1) (1.3)

R̂z(α̂45)R̂x(θ̂5)R̂z(α̂51)R̂x(θ̂1)R̂z(α̂12) = R̂x(ϕ̂2)R̂z(φ̂2)R̂x(ψ̂2), (1.4)

and substituting in 1.2:

R̂x(ϕ̂1)R̂z(φ̂1)R̂x(ψ̂1) = R̂x(θ̂4 + ϕ̂2)R̂z(φ̂2)R̂x(ψ̂2 + θ̂2) (1.5)

The necessary condition for (1.5) to be fulfilled is φ̂1 = ±φ̂2, which can be expressed
equivalently as cosφ̂1 = cosφ̂2. This condition is also sufficient since θ̂4 and θ̂2 correspond to
the cylindrical pairs, so their real and dual parts can be chosen to satisfy θ̂4 + ϕ̂2 = θ̂1 and
ψ̂2 + θ̂2 = ψ̂1.
The value of cosφ̂1 depends on the rotational variable θ3, and is given by the matrix element
[1, 1] of the left hand side of equation(1.3).
Writing φ̂1 = φ1 + εd1 the real and the dual parts of cosφ̂1 as functions of θ3 are given by:{

cosφ1 = A+Bcosθ3
d1sinφ1 = C +Dcosθ3 + Esinθ3

(1.6)

where A,B,C,D and E depend on α̂23, α̂34 and s3.

The value of cosφ̂2 depends on the rotational variables θ1 and θ5, and is given by the [1, 1]
of the matrix element of the left hand side of equation (1.4).
Writing φ̂2 = φ2 + εd2 the real and the dual parts of cosφ̂2 as functions of θ1 and θ5 are given
by: {

cosφ2 = F +Gcosθ1 +Hsinθ1
d2sinφ2 = J +Kcosθ1 + Lsinθ1

(1.7)

14

1. STUDY OF THE RCRCR MECHANISM 1.4. Fixed parameters to the particular example of study

where F,G,H, J,K,L are functions of α̂12, α̂45, α̂51, θ̂5 and s1. So we can collect the equations
1.6 and 1.7: {

A+Bcosθ3 = F +Gcosθ1 +Hsinθ1
C +Dcosθ3 + Esinθ3 = J +Kcosθ1 + Lsinθ1

(1.8)

Summarizing, equations (1.8) are the necessary and sufficient condition for the RCRCR
mechanism to close, and only involve the real variables of the rotational pairs θ1, θ3 and θ5.
It should be noted that the choice of the variables of the three revolute pairs is not casual.
In fact, in real mechanism, it is simpler to drive a revolute pair than a cylindrical one.
Therefore, in what follows, we will obtain the input output functions using each one of these
three variables as input.

1.3.1 Input-Output functions

To obtain the input-output function between an input and an output variable, we only
need to eliminate the third variable from the equations (1.8) [1, 3].

1.3.1.1 Input(θ5)-Output(θ1) function

We can isolate cos(θ3) from the first equation and sin(θ3) from the equation obtained
with the appropriate combination of the two equations to eliminate cos(θ3) [1].
Using the identity sin2(θ3) + cos2(θ3) = 1, we have an 2nd degree polynomial in sin(θ1) and
cos(θ1), whose coefficients are 2nd degree polynomials of sin(θ5) and cos(θ5).
Applying the tangent half-angle substitution T1 = tan(θ1/2), we obtain a 4th degree polyno-
mial for T1 in which the coefficients depend on θ5. For each given value of the input angle
θ5, the corresponding value of θ1 can be obtained computing the roots of the resulting 4th
degree polynomial [1].

1.3.1.2 Input(θ5)-Output (θ3) function

Could be obtained by eliminating θ1 istead θ3 from the equation 1.8 and using the same
procedure shown in the section 1.3.1.1.

1.3.1.3 Input(θ3)-Output (θ5) function

We need to eliminate θ1 from the equation 1.8, but in this case, the elimination process
gives rise to expressions for sin(θ1) and cosθ1 that are quadratic in sin(θ5) and cos(θ5), then
the identity sin2(θ3) + cos2(θ3) = 1 involves a 4th degree polynomial in sin(θ5) and cos(θ5),
so we need to find the roots of an 8th degree polynomial in T5 = tan(θ5/2) for each input
value of θ3, what can be done numerically.

1.4 Fixed parameters to the particular example of study

For this study, we have chosen to use the same parameters that have been used in many
previous works [15, 3], shown in the table 1.1 :

15

1.5. Analysis with Maple®software 1. STUDY OF THE RCRCR MECHANISM

i = 1 2 3 4 5

αij (deg) 60 45 35 30 10

aij 25 30 40 10 32

si 30 / 25 / 0

Table 1.1: Fixed parameters for our case of study.

Where j = i + 1 and by convention, when i = 5 → j = 1. Referring to table (1.1),
unit of measurement are not been inserted, because the mechanism analysis is independent
of the scale. It should be noted that in the table 1.1 there are only the fixed parameters, in
fact the parameters s2 and s4, that are unknown, constitute the two cylindrical displacements.

1.5 Analysis with Maple®software

In order to compute the I-O functions 1.3.1 for each couple of input-otput variables, the
Maple ®software has been used.
The created procedures, shown in the Appendix B, compute the I-O equations choosing an
input variable and an output one (section 1.3.1). Given a value of the input variable,
the procedure returns the four possible solutions that correspond to the four possible
mechanism configurations with this input value, when they exist.
In fact, giving a value of revolute input variable, we can obtain the value of the remaining two
revolute pair angles from the equations as explained in the Section 1.3.1. The other 4 linkage
variables can be obtained in sequence, from appropiate members of the matrix (equation
(1.2)) [3, 1].
In order to obtain the configurations for a 360° range of an input variable, an algorithm has
been created that, samples the input variable, solves 360/step times the I-O equation and
obtains the plots as shown in figure 1.3.

Figure 1.3: I-O functions involving the three rotational pair variables θ1, θ3, θ5.

The obtained plots, as shown in figure 1.3, show us that there are two different modes
of assembly of the mechanism. This means that we can have a mechanism that, with the
given fixed parameters, can move continuously along each assembly mode, but can’t pass
from one assembly mode to the other without breaking.
The other plots regarding the relationship between each possible input variable and the other
six linkage variables are shown in the Appendix C.

16

1. STUDY OF THE RCRCR MECHANISM 1.6. Implementation choiches: assembly mode and driving pair

1.6 Implementation choiches: assembly mode and driving pair

Once the plots have been obtained, our goal is the construction of a mechanism performing
the provided range of motion using one driving pair.

1.6.1 Choice of the assembly mode

As we have seen, our mechanism has two possible modes of assembly. In a real imple-
mentation of the mechanism, the shape of each link has to be designed in such a way that
no interference occurs between the different parts of the mechanism during its whole cycle of
motion.
Clearly, each assembly mode will impose different restrictions on the shape of the links in
order to achieve this. For this reason, in this work, we will restrict our study to a single
assembly mode and will try to design the link shapes appropriate for it.
Our choice about which assembly mode to implement will take into account the maximum
length of the links that will be required, since longer links imply increased structural prob-
lems, stronger rigidity requirements, and more powerful motors to move the heavier links.
A first analysis reveals that the longest parts of the mechanism correspond, by far, to the
guides of the two cylindrical pairs.

Thus, we need to compare the lengths of the cylindrical pairs for the two assembly modes.
We can obtain the range of displacement of each cylindrical pair in each assembly mode from
the figures obtained for the input-output functions involving s2 and s4 (figure 1.4). The
corresponding lengths are collected in table 1.2.

Figure 1.4: Relationship θ5 with the displacement s2 and s4.

17

1.7. Extreme configurations: using an alternative driving pair 1. STUDY OF THE RCRCR MECHANISM

Displacement Min Max Total length

Assembly mode 1 s2 -68,12 53,51 121,63

s4 -91,75 -18,42 73,33

Assembly mode 2 s2 -0,48 93,36 93,84

s4 -90,57 -5,97 84,60

Table 1.2: Lengths of the cylindrical pairs in assembly mode 1 and 2.

We can see that the longest length corresponds to s2 in assembly mode 1. Therefore, to
reduce the maximum length of the mechanism, we decided to use the assembly mode 2 for
the physical implementation.

1.6.2 Choice of the driving pair

We already know that the mechanism has mobility one, what means that the mechanism
can be driven by actuating a single input pair. In order to properly design the mechanism,
it is necessary to determine which pair has to be actuated, so that the motor housing can be
conveniently accommodated.

Since a rotational pair is much simpler to actuate than a cylindrical one, our choice will
be made between the three R pairs of the mechanism, corresponding to the variables θ1,
θ3, and θ5. From them, we will prefer the pair showing the widest range of motion since
it will require a lower torque to drive the joint, what implies a better controllability of the
motion and, at the same time, provides a better accuracy to reach specific configurations of
the mechanism. The ranges of the rotational variables can be obtained from the appropriate
graphs of the I-O functions, but we can also take them from [1], where they are computed
accurately as given in table 1.3.

Driving pair Range Extremes (°) Range length (°)

θ1 268,49 43,97+360 135,48

θ3 230,73 293,99 63,26

θ5 148,78 307,29 158,51

Table 1.3: Range of motion of rotational variables θ1, θ3, and θ5 for assembly mode 2 [1].

In this case, the widest range of motion corresponds to θ5, therefore, this will be our
choice for the driving pair.

1.7 Extreme configurations: using an alternative driving pair

Even if the mechanism has mobility one, driving it along its full cycle of motion by
actuating a single input pair is not possible because of the existence of singular configurations
that appear at the extreme values of the input variable.

18

1. STUDY OF THE RCRCR MECHANISM 1.7. Extreme configurations: using an alternative driving pair

Figure 1.5: Plot θ5 − θ5.

Thus, we see that near an extreme position of θ5 (point 2-3 and 4-1 figure 4.16), the veloc-
ity rate from θ5 to θ1 (or to any other variable) rises to infinity, what means that a very small
variation in θ5 corresponds to a very large variation of θ1, which in the limit would imply
to use an infinite torque to drive the mechanism in this configuration. A further problem of
the extreme configurations is that, when θ5 reaches an extreme value it can only move in one
direction, but there are two possible paths that the mechanism can follow, and there is no
way to make it to take the path we want by simply driving θ5.

According to this, the actuation on a second pair is required to govern the motion of
the mechanism in those situations in which θ5 is not able to perform the required control.
To select the second driving pair, as discussed above, we have to choose between one of the
remaining R pairs: θ1 and θ3. In the case of θ3, it looks like a good candidate to drive the
mechanism around the extreme value of θ5 = 307.30 (point 2-3 in figure 1.6), since the I-O
function there is rather flat.

19

1.7. Extreme configurations: using an alternative driving pair 1. STUDY OF THE RCRCR MECHANISM

Figure 1.6: Plot θ3 − θ5.

However, if we look at the other extreme of θ5 = 148.79° (point 1-4 in figure 1.6)the
value of θ3 changes rapidly and the I-O graph becomes vertical very soon. This makes θ3
inappropriate to be used in this situation.

In the case of θ1, instead, we can appreciate in fig 1.7 that it has a sufficiently wide range
of values near both extrema of θ5 in which the curve is approximately horizontal, what will
allow a correct control of the mechanism in these situations.

Figure 1.7: Plot θ1 − θ5.

20

1. STUDY OF THE RCRCR MECHANISM 1.8. Discriminating the two assembly modes

Summarizing, for the physical implementation we will use the assembly mode 2 of the
mechanism, and it will be alternatively driven by two motors, a first one actuating on θ5
and a second one actuating on θ1 only when the value of θ5 approaches one of its extreme
positions.

1.8 Discriminating the two assembly modes

Having two assembly modes means that, having two possible mechanisms which, despite
being defined by the same parameters, are actually different.

In practice, when solving the mechanism, it would be useful to be able to distinguish the
solutions corresponding to each one of the assembly modes. Even more, noting that each
assembly mode has multiple solutions for each input value, we can classify each configuration
as belonging to a different branch of solutions, in which the configurations of the mechanism
change smoothly. If we want to describe a smooth trajectory along a continuous path, we
need to differentiate between solution branches. This will be particularly useful in the next
Chapter, where the collision detection between links will require monitored given property
along consecutive nearby configurations of the mechanism. Next we perform this analysis
taking θ5 as input variable.

The implemented Maple algorithm returns from 0 to 4 solutions for each input value, de-
pending on how many different configurations are possible for this specific input. Our problem
consists in determining to what assembly mode and branch of solutions corresponds each of
the 4 possible solutions. The order in which Maple returns the solutions depends on how it
manages to solve the fourth degree equation, but this is not directly related with the assembly
mode nor the branch of solutions. In order to investigate this we follow an empirical approach.

In order to perform this, a colour assignment has been implemented. Each solution
root has been plotted with a different colour in order to understand how maple manages the
order of the four solution for each step. In particular:

� first solution → black;

� second solution → red;

� third solution → green;

� fourth solution → blue;

The results obtained are shown in the figure 1.8.

21

1.8. Discriminating the two assembly modes 1. STUDY OF THE RCRCR MECHANISM

Figure 1.8: Plotting the solutions with different colours.

As we can see, for the assembly mode 2 the results are clean: the upper branch has
green colour, instead we have a red colour for the lower one, that means that we can rely on
the ordering of the maple solutions to identify the two branches of assembly mode 2. For the
assembly mode 1 instead, we have a total of three colour (red,black,blue), i.e., there is no
consistent assignment of the ordering solution to identify the solution branch.

1.8.1 Alternative resolution of the fourth-degree equations

In an attempt to describe each branch with one root, we adopted another approach. In-
stead of using the maple resolution, an explicit form resolution of the fourth-degree equation
has been adopted.

Given the fourth-degree equation:

ax4 + bx3 + cx2 + dx+ e = 0

We can obtain the four different solutions as:

x1,2 = − b

4a
−Q± 1

2

√
−Q2 − 2p+

S

Q
(1.9)

x3,4 = − b

4a
+Q± 1

2

√
−Q2 − 2p− S

Q
(1.10)

Where the intermediate variables are defined as:

p =
−3b2 + 8ac

8a2

S =
8a2d− 4abcd+ b3

8a3

22

1. STUDY OF THE RCRCR MECHANISM 1.8. Discriminating the two assembly modes

s = 27b2e+ 2c3 + 27ad2 − 72ace− 9bcd

q = 12ae− 3bd+ c2

Q =
1

2

√
−2

3
p+

1

3a
(∆0 +

q

∆0
)

∆0 =
3

√
s+

√
s2 − 4q3

2

A done for the Maple solutions, we can assign one different colour for each of the
four roots. In particular:

� x1 → black;

� x2 → red;

� x3 → green;

� x4 → blue;

The results are shown in figure 1.9:

Figure 1.9: Relationship between θ5 and θ1 obtained with the alternative method.

The plot, shown in figure 1.9, is in a radians scale but is coherent with the previous one
(figure 1.8). We can observe that, the assembly mode 2 has been described by using only
two colours (roots), one for the upper branch and one for the lower one, finding the same
results given by the Maple resolution. For the assembly mode 1 we find several colour
alternations that do not allow us to use only one root per branch.
This method discriminates the branches even worst than the Maple resolution. For the
purpose of this work we do not need to make a deeper analysis of this question and we leave
it for further investigation.

23

Chapter 2

Designing the Links Shape

Given the relationship between the chosen input variable θ5 and the other linkage vari-
ables, the next step, developed in this chapter, is the design of the links.
In fact, the link parameters used in the description of a mechanism are just a convenient way
to specify the relative positions of the reference frames attached to the pairs connected by
each link. But link parameters do not determine their precise shape, nor even the location
of the joints. For example, the definition of an R pair only fixes its axis of rotation, but not
the position along this axis. Thus, we are free to place each rotational joint at the position
we like along its axis. Similarly, in the case of a C pair, we have also the freedom to translate
its full range of displacement along the C axis.Thus, when designing the shape of each link
we have to choose first the position of the joints along their axes and, then, the appropriate
outline of the link to achieve this relative position.

Our main goal is to design the shape of each link in order to realize a full cycle of
configurations for the mechanism, avoiding the collisions between them. As mentioned above
we have focused on the input-output function with θ5 as input variable. In addition we have
chosen the assembly mode 2 that allows us to describe a full range of mobility using only
one solution per branch. For the following analysis, the results given by the Maple resolution,
has been used.

As secondary goal, we have obtain link design which are simple as possible, keeping
structural rigidity of the mechanism.
Since during the motion it could happen that the mechanism has intersecting trajectories,
we have designed the links shape, following the next steps:

� Choose a placement of the joints, checking if they keep a minimum distance between
them along the chosen assembly mode;

� Make a first design by defining each link as a straight line between the centres of
consecutive joints. Then, check if there are collision between them;

� Analyse the problematic configurations and modify the shape of the links involved, in
order to avoid collisions.

2.1 Positioning the joints

As a first step, we will try to determine the placement of each joint along its axis. Our
first choice will be to place each joint at the origin of the reference frame attached to

25

2.1. Positioning the joints 2. DESIGNING THE LINKS SHAPE

this pair in the theoretical model.
Therefore, we will call as Oi the origin of reference frame i belonging to the pair i.

We have placed the joint , following the sequence of matrices:

Oi → Rx(θi) · Tx(si) · Tz(ai,i+1) ·Rz(αi,i+1)→ Oi+1

The other joints are similarly placed, obtaining the results shown in figure 2.1:

Figure 2.1: Reference frame origins.

The first analysis implies to check if two reference frame collide among the feasible con-
figurations, if we have this several collision, we need to change the general dimensions (fixed
parameters) of the mechanism.

Figure 2.2: θ5 − θ1 plot.

26

2. DESIGNING THE LINKS SHAPE 2.1. Positioning the joints

As explained in the chapter 1.6, we can discern the four solutions given by the Maple
procedures assigning different colours. The internal cycle of solutions correspond to the
green solutions (upper solutions branch) and to the red ones (lower solutions branch),
both for the range 148, 78° < θ5 < 307, 29°.
Referring to the figure 2.2, starting from the point 1 on the green branch (table 2.1) ,
it’s possible to save (in a matrix) all the values of the variables until the point 2 (table 2.2)
choosing always the same root (green solution).

θ1 (deg) θ2 (deg) θ3 (deg) θ4 (deg) θ5 (deg) s1 s2
35,11 227,74 239,60 77,72 148,78 25,51 -63,15

Table 2.1: Configuration corresponding to the point 1.

θ1 (deg) θ2 (deg) θ3 (deg) θ4 (deg) θ5 (deg) s1 s2
279,96 272,54 256,76 356,58 307,29 55,98 -39,88

Table 2.2: Configuration corresponding to the point 2.

Once get the point 2 we can change the solution chosen, passing to the red solutions
branch, giving the point 3, with the same value of θ5,(table 2.3).

θ1 (deg) θ2 (deg) θ3 (deg) θ4 (deg) θ5 (deg) s1 s2
279,63 272,62 256,39 357,09 307,29 56,35 -40,34

Table 2.3: Configuration corresponding to the point 3.

Now can we save the values coming back on the red branch, until the point 4 choosing
the red solution.It should be noted that the point 4 have the same θ5 value of the point 1
(table 2.4).

θ1 (deg) θ2 (deg) θ3 (deg) θ4 (deg) θ5 (deg) s1 s2
35,08 227,72 239,61 77,81 148,78 25,53 -63,17

Table 2.4: Configuration corresponding to the point 4.

In this way we can obtain a matrix that has in each line the linkage variables values
defining a unique configuration of our mechanism, and through the columns cover the
internal cycle of configurations in a clockwise sense.
Obtained this matrix, knowing the linkage variable values, for of each line we can calculate the
homogeneous matrices that describe the poses of each reference frame. These homogeneous
matrices are expressed, in the following lines, with the notation of mOn that describe the
homogeneous matrix that describe the pose of the reference frame n with reference to the m
one.

1O2 = Rx(θ1) · Tx(s1) · Tz(a12) ·Rz(α12)
1O3 =1 O2 ·Rx(θ2) · Tx(s2) · Tz(a23) ·Rz(α23)
1O4 =1 O3 ·Rx(θ3) · Tx(s3) · Tz(a34) ·Rz(α34)
1O5 =1 O4 ·Rx(θ4) · Tx(s4) · Tz(a45) ·Rz(α45)

27

2.1. Positioning the joints 2. DESIGNING THE LINKS SHAPE

Only for the cylindrical pairs, we need to place a joints that, as a sliding components,
can perform displacements (s2 and s4), in order to have a fixed length value of the link that
collect the cylindrical pair to the next one.
As example, for the reference frames O2 and O3 we can define a displacement until a point
O2V . Therefore, starting from the point O2V , we have a fixed length link between O2V and
O3. The same goes for O4. Analytically, the pose of the new two points O2V and O4V can
be defined with the coordinates that came from the first three element of the fourth column
of the matrices:

1O2V =1 O2 ·Rx(θ2) · Tx(s2)
1O4V =1 O4 ·Rx(θ4) · Tx(s4)

Taking the first three elements of the fourth column of each matrix, we can define the
positions of each reference frame , given the set variable with which the homogeneous matrices
have been calculated.
If we compute the homogeneous matrices for all the set values corresponding the internal
cycle of configurations, we obtain the trajectories of each reference frame. The results are
shown in the following images.

28

2. DESIGNING THE LINKS SHAPE 2.1. Positioning the joints

Figure 2.3: Trajectory of O2 wrt the O1.

Figure 2.4: Trajectory of O2V wrt the O1.

29

2.1. Positioning the joints 2. DESIGNING THE LINKS SHAPE

Figure 2.5: Trajectory of O3 wrt the O1.

Figure 2.6: Trajectory of O4 wrt the O1.

30

2. DESIGNING THE LINKS SHAPE 2.1. Positioning the joints

Figure 2.7: Trajectory of O4V wrt the O1.

Figure 2.8: Trajectory of O5 wrt the O1.

31

2.1. Positioning the joints 2. DESIGNING THE LINKS SHAPE

In general, is very difficult to predict these trajectories shape but, we can see that the O2

(figure 2.4) describes an arc because, it has moved by the rotational pair (Rx(θ1)) instead,
the other parameter are fixed. In the same way O5 (figure 2.8) is described with a single
point because, if we fix O1, the reference frame O5 can change the orientation in the space,
but has always the same position in space wrt O1. The other reference frame (O3 and O4, in
figure 2.5 and 2.6) are combination of the other parameters.
With an easy check we can say that there aren’t collisions between the reference frame and
the first one, as shown in figure 2.9:

Figure 2.9: All the trajectories of the reference frames wrt O1.

In the figure 2.9 the trajectories black (O2) and grey (O2V) collide in one point, moreover,
is not a collision, but when the displacement s2 acquire value of zero.

It should be clear that the analysis of collisions detection between reference frames with
each other is not enough because, can not guarantee the absence of collision among the links.

2.1.1 First design: straight links

The first attempt to design the other links is a straight line between the reference
frames center. As mentioned above, O1 has been chosen as global reference frame, there-
fore also the reference frame O5 is fixed in the space, because its position does not change,
therefore, we can draw the link between as shown in figure 2.10:

32

2. DESIGNING THE LINKS SHAPE 2.1. Positioning the joints

Figure 2.10: Link O5 to O1.

Following the same process, we can draw the other links, collecting the reference frames
with a straight line.
For this analysis we need to considerer two additional “segments” because, we need to simulate
the cylindrical pairs with a part that can slides respect of the zero of the displacement.
Therefore, we need to add two straight lines that simulate the straight guidelines for the
cylindrical pairs, each one with the length of the respective maximum displacement.

𝑶𝟏

𝑶𝟓

𝑶𝟐𝑽

𝑶𝟑

𝑶𝟒𝑽

𝑶𝟒

𝑶𝟐𝑭

𝑶𝟒𝑭

𝑶𝟐𝑰

𝑦
𝑥

𝑧

𝑶𝟐

Figure 2.11: RCRCR mechanism, wire frame representation, in a generic instant.

33

2.2. Collisions detection 2. DESIGNING THE LINKS SHAPE

As shown in figure 2.11, for the reference frames O2 and O3 we can define a red dis-
placement until a point O2V that simulate the active displacement (in that mechanism con-
figuration) and the pink part that simulate a straight guide line that allows the maximum
displacement for the cylindrical pairs.

The points that allow us to define the necessary length for straight guidelines for each
cylindrical pair, can be obtained analysing the minimum and the maximum values of each
cylindrical displacement:

s2MIN = −0.48 s4MIN = −90.57

s2MAX = 93.36 s4MAX = −5.97

Therefore the other new points, used to define the straight guidelines, are given by the
first three component of the fourth column of the following matrices:

1O2F =1 O2 · Tx(Max(s2))
1O4F =1 O4 · Tx(Min(s4))

1O2I =1 O2 · Tx(Min(s2))
1O4I =1 O4 · Tx(Max(s4))

It’s been decided to start the straight guide line for s4 from the point O4, instead from
O4I (drop between O4 and O4F), extending the straight guide line.
It’s must be clear that in the figure 2.11 all the points are indicated as O∗, including the
reference frame centres and the other points (like O2F ,O4F) that are not reference frame but
are only remarkable points. Referring to the figure 2.11, to summarize:

� O1, O2, O3, O4, O5 reference frame centres;

� O2V , O4V position of the sliding component of the cylindrical pair;

� O2F , O2I , O4F defining point for the straight lines, simulating the guidelines for the
cylindrical displacements.

2.1.2 Notation

As explained above, we need to check the collision between the five links and the two
straight cylindrical guide line.
In the following chapters will be used the notation:

� ln−m to indicate the link between the reference frame centres n and m;

� dp−q to indicate the straight line defined by the extreme points p and q.

2.2 Collisions detection

Verified that there are no collisions between the reference frames and once designed
the shape for each link, the next step consist in the collisions detection.
In order to see if the proposed design will allow the mechanism to reach the full cycle of
configurations of the second assembly mode moving continuously without interferences
between links, we will perform a collision detection process.

34

2. DESIGNING THE LINKS SHAPE 2.2. Collisions detection

This process involves sampling the input variable with a sufficiently fine discretization and
computing the whole configuration of the mechanism for each sampling value. Knowing the
values of all variables in a given configuration, allows us to determine the position of each
rectilinear segment associated to each link and check if there is any collision between them.
The collision tests must be carried out for each pair of non-consecutive links, since the inter-
ference between consecutive links will be dealt with at the phase of design of the mechanical
construction of each joint. However, each cylindrical pair includes also a sliding guide to
allow the displacement of the joint along it and must be also included for checking collisions
with the links (d2I−2F and d4−4F).

Given all the links and the two displacements, the algorithm to detect the collision provide
to treats them as segments in a 3D space.
For each point of the assembly mode 2, the algorithm computes instantaneous configurations
of the mechanism, i.e. the positions of each reference frame through the matrices in the
chapter 2.1.
Given two links the algorithm, proceeds through two steps to detect a collision:

� First step: check if they are in the same plane;

� Second step: check if these two link in the same plane, are crossing or not.

2.2.1 First step: test for coplanarity of segments

Given two segments in the space, as shown in figure 2.12:

Figure 2.12: Two generic segments in the space.

We consider the tetrahedron defined by the four points ABCD. The volume of this
tetrahedron is proportional to the absolute value of the determinant of the matrix M.
When the segments are coplanar,det(M) = 0. When the segments are not coplanar, the sign
of det(M) depends on the sign of the triple product of the 3 vectors going from A to B, C,
and D, respectively. This can be also visualized as depending on whether one of the vertexes
lies on one side or another of the plane determined by the other three vertexes [14].

M =


Ax Ay Az 1
Bx By Bz 1
Dx Dy Dz 1
Cx Cy Cz 1


Monitoring this determinant we can observe that, if this changes in sign means that the

segments have passed through the condition in which the determinant is equal to zero and
the segments are on the same plane.

35

2.2. Collisions detection 2. DESIGNING THE LINKS SHAPE

Figure 2.13: Crossing segments. Figure 2.14: No crossing segments.

This algorithm in not enough to detect a collision between two segments because we can
have the following conditions:

� two segment that are crossing, as shown in figure 2.13;

� two segment that are not crossing, as shown in figure 2.14, even if, they are on the same
plane.

Therefore, we need to an additional step.

2.2.2 Second step: test for interference between coplanar segments

The situation in which two segments are coplanar does not imply that the two segments
interfere (figures 2.13 and 2.14). We need to differentiate those situations in which the
segments are separated even being coplanar.
If the first step detects a changing in sign of the determinant and if we analyse the two
segments in the frame in which a change of the determinant sign has been detected, with an
approximation, we can analyse them in a 2D space.
In fact, if we were in a plane we could have:

� Crossing segments in a plane;

� No-Crossing segments in a plane;

36

2. DESIGNING THE LINKS SHAPE 2.2. Collisions detection

Crossing segments in a plane

Figure 2.15: Crossing segments in a plane.

As shown in figure 2.15 for two crossing segments we can consider four different triangles
areas, shown in figure 2.16:

Figure 2.16: The four different area for crossing segments in a plane.

We can observe that, the areas, follow the relationship:

4
AEC +

4
BEC=

4
AEB +

4
ACB (2.1)

37

2.3. Algorithm implementation 2. DESIGNING THE LINKS SHAPE

No-Crossing segments in a plane

Figure 2.17: No Crossing segments in a plane.

As shown in figure 2.17 for two no-crossing segments we can consider four different trian-
gles areas, shown in figure 2.18

Figure 2.18: The four different area for no-crossing segments in a plane.

We can observe that, the areas follow the relationship :

4
AEC +

4
BEC 6=

4
AEB +

4
ACB

2.3 Algorithm implementation

Using a step of 0, 1 rad,our algorithm to detect a collision between two links is based in
monitoring the sign of the determinant formed with the corresponding segments along
a continuous path along all the cycle of the assembly mode. If a change of sign is detected, it
is the indication that a zero crossing has occurred and therefore the two links passed through
a coplanar configuration that may give rise to a collision.

Is this case we check with the second test if the collision has actually taken place. A
certain tolerance in the condition of this test is required, since we can only reach a config-
uration where the segments are approximately coplanar, so that condition (2.1) will not be
exactly fulfilled. So we can set a tolerance ε (ε = 0.5) , small enough, to detect that the
difference of the areas produce a collision.:

(
4

AEC +
4

BEC)− (
4

AEB +
4

ACB) = ε

The Maple files of the algorithm implemented are shown in Appendix D.

38

2. DESIGNING THE LINKS SHAPE 2.4. Test results: detected collisions

2.4 Test results: detected collisions

For the assembly mode 2, with the algorithm implemented in Maple (Appendix D),
it has been obtained the following interesting results. The first step of the algorithm has
detected the determinant changes of sign, shown in table 2.5:

Branch Couple of segments θ5 (deg)

Green l5−1 ↔ d4−4F 183,34

Green l2V−3 ↔ l4V−5 189,07

Green l1−2 ↔ l2V−3 194,80

Green l1−2 ↔ l2V−3 217,72

Green l1−2 ↔ d4−4F 234,91

Green l1−2 ↔ l4V−5 252,10

Green d2I−2F ↔ l5−1 303,66

Red l2V−3 ↔ l4V−5 303,66

Red d2I−2F ↔ l5−1 240,64

Red l1−2 ↔ l2V−3 183,34

Red l1−2 ↔ d4−4F 183,34

Red l3−4 ↔ l4V−5 183,34

Red l5−1 ↔ d4−4F 177,61

Red l1−2 ↔ l4V−5 166,15

Red l1−2 ↔ l2V−3 148,96

Red l3−4 ↔ l4V−5 148,96

Table 2.5: Determinant changes of sign detected.

In the table 2.5, the column “Branch” indicates, referring to the figure 2.2, which branch
the detection belongs to. Therefore, with the angle θ5, on the last column, we can complete
define the point in which the collision has been detected.
As we can notice, the algorithm detect a lot change of sign of the determinant, these are
due to the change of the relative position of the segments among the motion. As mentioned
above, the first step does not guarantee the collision detection, but only that the two segment
analysed are (with an approximation) in the same plane.
Therefore, the algorithm provide, for each of the frame detected in table 2.5, to check if this
two segment are crossing (chapter 2.2.2). The results obtained are shown in table 2.6

Branch Collision number Collision detected θ5 (deg)

Green 1 l5−1 ↔ d4−4F 183,34

Green 2 l1−2 ↔ l2V−3 194,80

Green 3 l1−2 ↔ l2V−3 217,72

Red 4 l5−1 ↔ d4−4F 177,61

Table 2.6: Collisions detected.

39

2.4. Test results: detected collisions 2. DESIGNING THE LINKS SHAPE

As shown, only four of the determinant changes of sign produce a collision. In particular,
in table 2.6, are show the branch belongs to and the angle θ5, that define the point on the
internal cycle of configurations (figure 2.2).

The first collision, is shown in the figure 2.19:

𝑶𝟏

𝑶𝟓

𝑶𝟐

𝑶𝟐𝑽

𝑶𝟑

𝑶𝟒𝑽

𝑶𝟒

𝑦 𝑥

𝑧

𝑶𝟒𝑭

𝑶𝟏

𝑶𝟓

𝑶𝟐

𝑶𝟐𝑽𝑶𝟑

𝑶𝟒𝑽

𝑶𝟒

𝑦 𝑥

𝑧

𝑶𝟒𝑭

𝑶𝟏

𝑶𝟓

𝑶𝟐

𝑶𝟐𝑽
𝑶𝟑

𝑶𝟒𝑽 𝑶𝟒

𝑦 𝑥

𝑧

𝑶𝟏

𝑶𝟓

𝑶𝟐

𝑶𝟐𝑽

𝑶𝟑

𝑶𝟒𝑽 𝑶𝟒

𝑦 𝑥

𝑧

𝑶𝟒𝑭

𝑶𝟏

𝑶𝟓

𝑶𝟐

𝑶𝟐𝑽

𝑶𝟑

𝑶𝟒𝑽

𝑶𝟒

𝑦 𝑥

𝑧

𝑶𝟒𝑭

(𝑎)

(𝑐)

(𝑏)

(𝑑)

𝑶𝟐𝑰 𝑶𝟐𝑰

𝑶𝟐𝑰

𝑶𝟐𝑰

𝜗5 = 166,15° 𝜗5 = 171,88°

𝜗5 = 177,61° 𝜗5 = 183,34°

Figure 2.19: Collisions 1,between the links l5−1 ↔ d4−4F .

It has been noticed that, the collisions 1 and 4, regard the same kind of mechanism
configurations, i.e., when the link l5−1 , during the motion, it is crosses with the d4−4F . For
the sake of brevity, is shown in figure 2.19, only the four frame around the first collision,
given that, the collision 4 present the same relative positions between the links involved. In
order to avoid the collision, it’s been chosen to re-design the link l51.
The collisions 2, is shown in the figure 2.20:

40

2. DESIGNING THE LINKS SHAPE 2.4. Test results: detected collisions

𝑶𝟏

𝑶𝟓

𝑶𝟐

𝑶𝟐𝑽

𝑶𝟑

𝑶𝟒𝑽
𝑶𝟒

𝑦 𝑥

𝑧

𝑶𝟒𝑭

𝑶𝟏

𝑶𝟓

𝑶𝟐

𝑶𝟐𝑽𝑶𝟑

𝑶𝟒𝑽 𝑶𝟒

𝑦 𝑥

𝑧

𝑶𝟒𝑭

𝑶𝟏

𝑶𝟓

𝑶𝟐
𝑶𝟐𝑽

𝑶𝟑

𝑶𝟒𝑽 𝑶𝟒

𝑦 𝑥

𝑧

𝑶𝟒𝑭

(𝑎)

(𝑐)

(𝑏)

𝑶𝟐

𝑶𝟐𝑽

(𝑐)

𝑶𝟐𝑰

𝑶𝟐𝑰

𝑶𝟐𝑰

𝑶𝟐𝑰

𝜗5 = 183,34° 𝜗5 = 189,07°

𝜗5 = 194,80° 𝜗5 = 194,80°

Figure 2.20: Collisions 2, between the links l1−2 ↔ l2V −3.

The collision 2 regard the link l2V−3 and link l1−2, are detected because of the values of
the displacement s2, that pass to a positive value to a negative one. In this condition the two
links have a point in common (the origin of the reference frame O2), therefore coplanar. The
collision number 3 regards the same kind of collision, but in this case when s2 pass from a
negative value to a positive one. Also in this case, for the sake of brevity, are shown in figure
2.20, only the four frame around the collision number 2.

How we will see the easier way to avoid this collision is re-design the link l1−2.

2.4.1 Second design: avoiding collisions

In order to avoid the collisions, changes have been made to the link l1−2 and link l5−1.
Until now, to make each link we have used straight lines, connecting the origins of the
reference frames but we can also connect the link reaching a point on the x -axis of the joint
as shown in the following chapters.

2.4.1.1 Avoiding collisions between l5−1 and d4−4F

In order to avoid the collisions linked to the link l5−1, shown in the chapter 2.4, we can
“move” the the origin O1 along his axis without affecting the mechanism overall functioning.
In fact O2 it’s still defined with reference to the oldest O1 and a rotation about the new
origin do not change the effects on the reference frames positions. As shown in figure 2.21
the origin O1 along the O1 x−axis has been moved as much as necessary to avoid collisions.

41

2.4. Test results: detected collisions 2. DESIGNING THE LINKS SHAPE

𝑶𝟏

𝑶𝟐

𝑦

𝑥

𝑧

𝑶𝟓

𝑶𝟏
∗ 𝑶𝟒𝑽

𝑶𝟒

𝑶𝟒𝑭

𝑶𝟏

𝑶𝟐

𝑦𝑥

𝑧

𝑶𝟓

𝑶𝟏
∗ 𝑶𝟒𝑽

𝑶𝟒

𝑶𝟒𝑭

Figure 2.21: Changes to the link l5−1.

In particular, to chose the value of displacement on the x-axis (green line, figure 2.21) that
guarantee the minimum length of the link l5−1 and at the same time, avoids the collisions.
All the position of the s4 straight guideline has been plotted, shown with the pink lines, in
the figure 2.21, in order to define a point on the green line, so that, connecting that to O5,
does not produce collisions. The joint center (point O∗1) has been placed 80 units far, positive
values on x axis, from the oldest one, so that, the segment between O5 and O∗1 does not
collide in any frame with d4−4F . Change the point O1 implies to change also the link l1−2,
since O1 has been displayed, we can connect O∗1 with O2.
For the chosen values the new link l5−1 does not detect collisions.

42

2. DESIGNING THE LINKS SHAPE 2.5. Implementation of the joint envelope

2.4.1.2 Avoiding collisions between l1−2 and l2V−3

As done for the center O1 instead to connect the link l1−2 from the point O1 to O2, we
connect the link to a point on the x-axis of the reference frame O2 displaced to 5 unit on the
negative values. To chose this value, we need to analyse the extremes of the s2 displacement.
This displacement s2 goes from a value of −0, 49 to a value 93, 36, that means, we can make
more longer the straight guidelines to collect the link l1−2 to a point outside the displacement
(point O∗2), reaching a point 5 units far from the centre O2, in the negative values on the
x-axis. It’s should be clear that we need to displace also the point O2I (that define an extreme
of a cylindrical guideline), making it coincident with the new point O∗2.

𝑶𝟏
∗

𝑶𝟓

𝑶𝟏

𝑶𝟐𝑽𝑶𝟑

𝑶𝟒𝑽

𝑶𝟒

𝑶𝟐𝑭

𝑶𝟒𝑭

𝑶𝟐
∗𝑦

𝑥

𝑧
𝑶𝟐

Figure 2.22: Changes to the Link 12.

In this way when the link l2V−3, that have a point on the straight s2 guidelines pass from
the positive value to a negative one, does not crosses the link l1−2, as shown in figure 2.22.
As mentioned before this displacement of the reference frame O2 does not changes the effects
on the other link and avoid the collisions..
For the chosen values the new link l1−2 does not detect collisions.

2.5 Implementation of the joint envelope

Until now we have considered the joint as a points in the space but, before to design
the CAD model, it’s necessary a preliminary analysis on the joint envelope. In order to
simulate each pair as a cylinder, in the following analysis, each pair will be simulate as a

43

2.5. Implementation of the joint envelope 2. DESIGNING THE LINKS SHAPE

straight line, in the direction of the respective x-axis, of 5 unit (coherent with the general
proportions of the mechanism).

𝑶𝟏
∗

𝑶𝟓

𝑶𝟐𝑽

𝑶𝟑
𝑶𝟒𝑽

𝑶𝟐𝑭

𝑶𝟒𝑭

𝑦

𝑥

𝑧𝑶𝟐
∗

𝑶𝟐

𝑶𝟒

𝑶𝟏

Figure 2.23: Simulation with the joint envelopes.

As shown in figure 2.23, the straight blue lines simulating the pairs will be treated as
segments in the algorithm shown in the section 2.2.For the collision detection involving the
pair we need to consider a tolerance ε bigger (setted to a value of 20), because of the bigger
envelope of the pair with reference to a link.

At the end with the algorithm 2.2, has been checked, the possible collision between each
pair with each other and with the other links, with the final result of no collisions de-
tected.

44

Chapter 3

Construction of the Mechanism

Once we have determined the basic shape of links that allow the collision-free motion of
the mechanism, the last step involves the precise definition of the different parts needed to
assemble it.
Except for the commercial components (bearings, motors, aluminium bars, screws, bolts, ...),
all the necessary parts will be made of ABS-P430 plastic using the 3D printers available in
the lab of the research center.

Starting from the Maple model of the RCRCR mechanism it has been created a CAD
model of the mechanism ,through the use of Solidworks®, in order to realize each part with
a 3D printer.
First, it is necessary to determine the scaling factor of the real mechanism the scale of the
mechanism, which must be chosen taking into account the size of the commercially available
joint components, as bearings and motors, as well as the precision and maximum dimension
limitations of the 3D printers available at the lab. Thus, each link and joint has to be precisely
reshaped to include all the elements necessary to fix the different parts of the joints with the
links.

3.1 Selection of the scaling factor

The theoretical analysis of our mechanism has been done for arbitrary length dimensions,
describing it with undefined unit lengths. For our physical implementation, we have chosen
to take the unit length to have the value of 6 mm, resulting in the dimensions for the
link parameters shown in table 3.1.

i = 1 2 3 4 5

αij (deg) 60 45 35 30 10

aij (mm) 150 180 240 60 192

si (mm) 180 / 150 / 0

Table 3.1: Fixed parametres scaled.

Where j = i+ 1 and by convention, when i = 5→ j = 1. This choice has been motivated
by the following conditioning factors:

� Joint size: Each joint must include a couple of commercially available bearings pro-
viding the necessary robustness to the rotational coupling;

45

3.2. Used equipment 3. CONSTRUCTION OF THE MECHANISM

� Material strength/rigidity: the characteristics of the plastic material used imposes
restrictions about the length and thickness of the links.

� 3D printer precision: the accuracy in the construction of each part must be com-
patible with the maximum precision available to the printers;

� 3D printer maximum printable length: There is a limitation in the size of the
parts that can be printer in each printer;

� Maximum displacement allowed by the cylindrical pairs: The cylindrical pairs
involve the longest parts of the mechanism. They will be implemented with commer-
cially available linear bearings whose possible dimensions are restricted by the supplier
[7] ;

� Motor power: the mechanism masses must be low enough to allow it to be driven by
reasonably powerful motors.

Taking into account all these factors, a length unit of 6 mm has been chosen, that complies
with all the requirements, as will be explained in detail in the next sections.

3.2 Used equipment

In order to print the CAD parts the following 3D printers have been used [13]:

Company 3D printer Build size Model material Layer Thickness

Proto3000 1200es Series 254 x 254 x 305 mm ABSplus-P430 0,330 mm

Stratasys uPrint SE 203 x 152 x 152 mm ABSplus-P430 0,254 mm

Table 3.2: 3D printers used.

Therefore all the parts printed will be respect the maximum printable dimensions.
For the mechanical features of the ABS-P430 reference is made to the company website [13].

3.2.1 Printing guidelines

Both printers use the FDMTM Technology (fused deposition modelling), therefore, they
build the 3D model and its support material, layer by layer, from the bottom to the top on
a removable modelling base.
The accuracy on the horizontal plane is 0.1 mm and the mechanical strength in this plane
is bigger than in the other planes. Since we need to print components that require accurate
features, we need to take into account the printing capabilities in the design of each model,
making compromises among the optimization of the design, the limit and capability of 3D
printer and the functioning of the mechanism.
The quality of a part can change by only adapting the design. Considering the printing of
the part shown in figure 3.1, we can see a non optimized printing orientation.

46

3. CONSTRUCTION OF THE MECHANISM 3.2. Used equipment

Figure 3.1: CAD part, in a non optimized printing orientation.

A software (CatalystEx®) provides to transform the CAD model (part.sdlprt), in a model
built layer by layer as shown in figure 3.2:

Figure 3.2: Layer by layer model, in a non optimize printing orientation.

If we print with the orientation shown in figure 3.2, we will obtain a bad quality of the
surface of each cylinder and of the hole, in fact, we have more accuracy on the plane xy than
on the planes zx and zy and the circle of the cylinder will be approximated with the lower
precision of the layer thickness. Moreover, this design produces a support material wast.
An optimized printing orientation is showed in figure 3.3.

47

3.3. Generic rotational joint model 3. CONSTRUCTION OF THE MECHANISM

Figure 3.3: Model in a optimized printing orientation.

With this orientation, we can obtain a good shape of the cylinder because we are printing
it this perpendicularly to the horizontal plane xy. As shown in figure 3.3 the layers guarantee
a good accuracy of the cylindrical shape. Thus, the previous guideline should be taken into
account if we are printing functional surfaces, such as the bearing housing.
Another guideline is related to the material mechanical strength. In particular it has been
impossible to used printed links with cylindrical shape, because, using ABS the link will flex
losing the position accuracy required by the mechanism.

3.3 Generic rotational joint model

The general idea for a rotational pair is to design a joint that allows a relative rotation in
this reference frame. This feature can be obtained with the bearings that perform a relative
rotation between two parts. The design made is shown in figure 3.4.

Figure 3.4: Rotational pair, section view.

48

3. CONSTRUCTION OF THE MECHANISM 3.4. Generic cylindrical joint model

Referring to the figure 3.4, we have a local Fixed Part (1) that includes the bearings
shaft. As we noticed, two bearings have been used in order to make the system more rigid and
to avoid the relative misalignement between the parts. Two bearing (2-3), SKF-radial ball
bearing-61802 [12], connect (1) to the Mobile Part (4) that includes the housing seats
for the bearings, allowing the relative rotation with (1). We have chosen, considering our
purpose, to block the bearing (2) on 3 points and the bearing (3) on 4 points. The contact
points are obtained thanks to a shaft abutment shoulder, housing shoulders, the Spacer
(5), the End Plate (6) and the Top (7). The end plate (6) forces the contact between the
shoulders and the bearings using an M3-countersunk flat head cross recess screw (8).

Figure 3.5: Rotational pair, isometric views.

It should be specified that the driver for the choice of each component size, was the
minimum printable shaft diameter. In fact, given that, it should be possible to choose the
bearings and design the other parts.

Assembly Procedure To assemble each rotational pair the following steps had been fol-
lowed:

� assemble the bearing (2) on its the respective housing, inside the mobile part (4) and
place them on the shaft on the fixed part (1) until the shaft shoulder;

� insert the spacer (5) until the shoulder of the shaft and insert the bearing (3);

� insert the screw (8) with the end plate (6) and force the contact with the use of a nut;

� insert the top (7) that makes the four contact points and fix them with the use of nuts
and screws, as shown in figure 3.5.

3.4 Generic cylindrical joint model

The cylindrical joints should perform a rotation and a displacement with the minimum
possible friction. In order to perform the features required we have used a Igus-DryLin
®Linear Plain Bearings-RJUM-01-12 and Igus-DryLin ®shaft-AWMP-12 (shown
in figure 3.6) [7].

49

3.4. Generic cylindrical joint model 3. CONSTRUCTION OF THE MECHANISM

Figure 3.6: Cylindrical pair, Igus-DryLin ®Linear Plain Bearings-RJUM-01-12 and Igus-DryLin
®shaft-AWMP-12 [11].

The length of the Igus-DryLin ®shaft (600 mm) allows to perform the displacements
provided by the theoretical analysis. In particular the longer displacement is given by the
joint J2, that need to display 93, 85 units, that with the scale chosen is 563, 07 mm.
The elements chosen guarantee low frictions and low weight. In order to use these linear
bearings in the mechanism, we need also to connect this to the neighbouring joint. Therefore
a cover jointed with the cylindrical linear bearing has been designed.

Figure 3.7: Cylindrical pair, section view.

50

3. CONSTRUCTION OF THE MECHANISM 3.5. Generic link model

As shown in figure 3.7, the cylindrical joint consisted in a precision aluminium shaft
(1), linear plain bearings (2)(made from solid polymer) mechanically fit into an anodized
aluminium adapter (3) and the cover (4).

Figure 3.8: Cylindrical pair, isometric view.

The cover (4) is composed by two parts that force the mate with the aluminium adapter
(3) through the use of M3 nuts and M3× 6 screws, as shown in figure 3.8

Assembly Procedure The Igus-DryLin ®Linear Plain Bearings-RJUM-01-12 is sold as
shown in figure 3.6, therefore, to build the joint, it is sufficient to place a half part of the
cover with the cylindrical stud present on internal cylindrical surface (shown in figure 3.9),
coincident with the hole on the aluminium adapter (3). We can joint the second part of the
cover, with the rectangular stud (shown in figure 3.9) forcing the mate through nuts and
screws .

Figure 3.9: Cylindrical pair,the two half part of the cover.

3.5 Generic link model

In order to connect one joint with another we can not use the ABS plastic because the
distance between joints does not allow us to realize links in that material with sufficient
strength. Therefore we have chosen to use bars made of carbon fiber of 10 mm of diameter

51

3.5. Generic link model 3. CONSTRUCTION OF THE MECHANISM

Figure 3.10: Generic link between two joints.

and using chunks in ABS (as shown in figure 3.10) to orientate this bars in the space to
connect two joints. As shown in figure 3.10 each chunk denies the relative rotation with the
bar through a force mate. The bar is blocked by the two parts of the chunk through the
use of screws and nuts. Next, each chunk will be connect to the joint or to another chunk
and the orientation between them is given by rectangular stud on the chunks surfaces, as
shown in figure 3.11. The fixation between chunks is made through the use of acetone that
dissolves the firsts surface layers of each part and makes a bond between the plastic parts
that is stronger than the bond between layers.

Figure 3.11: Generic link between two joints, chunks mate.

52

3. CONSTRUCTION OF THE MECHANISM 3.6. RCRCR mechanism CAD model

3.6 RCRCR mechanism CAD model

All the mechanism is built using the joint models shown above. For the connections
between joints, the generic link model has been used.
It was necessary to define a CAD reference frame for each joint to place the CAD model in
the space in order to respect the parameters given by the analytical results.

𝑥

𝑧 𝑦

𝑂

𝑥

𝑧
𝑦

𝑂

Figure 3.12: CAD reference frame.

As shown in figure 3.12,the reference frame has been placed in the geometric center of
each joint, with the x-axis coincident with the rotational axis. This choice avoids the use of
additional transformation matrices. In this way the reference frames shown in figure follow
the trajectories found in the analytical study.
A complete assembly of the RCRCR CAD model is shown in figure 3.13.

53

3.6. RCRCR mechanism CAD model 3. CONSTRUCTION OF THE MECHANISM

𝑥 1

𝑱 𝟐

𝑱 𝟑

𝑱 𝟏

𝑱 𝟒

𝑱 𝟓

𝒍 𝟓
−
𝟏

𝒍 𝟏
−
𝟐

𝒍 𝟐
−
𝟑

𝒍 𝟑
−
𝟒

𝒍 𝟒
−
𝟓

𝒙
𝟐

𝒙
𝟑

𝒙
𝟒

𝒙
𝟓

𝒙
𝟏

Figure 3.13: RCRCR CAD assembly.

The configuration shown corresponds to the point (1) of the figure 2.2, i.e the initial point
of the green branch. Referring to figure 3.13, are indicated as:

54

3. CONSTRUCTION OF THE MECHANISM 3.6. RCRCR mechanism CAD model

� J1, J3, J5 rotational joints;

� J2, J4 cylindrical joints;

� xi the rotational axes of each joint;

� li−j the link that connect the joints i and j.

The link l4−5 has been designed without any bar. This is because the distance between the
center of joints (10 units → scaled → 60 mm) allows us to connect the two joints with only
one chunk. It should be noted that, for each joint, the generic models shown in figures 3.4

𝐽5

𝐽4

𝒍𝟒−𝟓

Figure 3.14: RCRCR CAD assembly,particular l4−5.

and 3.8 have been modified in order to create a surface for the mate with the chunk.

As shown in figure 3.14, the link l4−5 is composed of a chunk that is included in a half
part of the cylindrical cover belonging to the cylindrical joint J4 and by another orientated
part that includes the fixed part of the rotational joint J5.
Given the necessity to connect the two joints, the short distance does not allows us to place
an aluminium bar with the two chunks.

Note that the final design differs slightly from the schematic model used to check colli-
sions in the maple implementation. A new test with the final shapes of all joints and links
would be very complex to do in Maple. Instead, provided that the final model has been
implemented in Solidworks, we can take advantage of the collision detection tools provided
by this software.

Through the use of Solidworks tools (“Solidworks Motion” and “Interferences detec-
tions”), it has been possible to drive the mechanism through each feasible configuration along
the assembly mode checking the collision (between each solid body) during the motion. The
simulations take into account what provided by the Section 1.7, i.e. moving the mechanism
driving only one joint (at time), switching the driving joint in the extreme configurations.

55

3.7. Physical implementation 3. CONSTRUCTION OF THE MECHANISM

3.7 Physical implementation

Taking advantage of the laboratory tools, it has been possible to realize each provided
part of the mechanism. Follows the procedure for the mechanism assembling. Once obtained
all the parts it is possible to assembly the mechanism following the steps:

� assembling, separately, each joint;

� assembling of the carbon fiber bars with the extreme chunks;

� bonding of the reference surfaces;

� installation of the mechanism on the base;

� installation of the motors.

3.7.1 Assembling of the joints

In order to install each joint it has been followed the assembly procedures shown in the
Sections 3.3 and 3.4 for both of the joint types.

3.7.2 Assembling of the links

As shown above in the Section 3.5, to connect the joints it has been chosen to use a carbon
fiber bars with ABS chunks.

Figure 3.15: Links assembly, reference surfaces.

It is necessary to obtain the correct orientation between chunks because they keep the
correct orientation between each joint, therefore the fixed parameters. For each couple of
chunks, two reference surfaces have been created (for instance, the red surfaces shown
in figure 3.15). Taking advantage of a plain surface it is possible to place the bar with the
chunks, in a parallel condition. Then, through the use of screws, is possible to force the mate
and deny the translation and the rotation of the bars.

3.7.3 Bonding of the reference surfaces

The next step in the assembly procedure consist in bounding the chunks through the use
of acetone, as shown previously in figure 3.11. It is specified that in order to match the
chunks with the joint, it has been necessary to create reference surface on the joints with
additional extrusions.

56

3. CONSTRUCTION OF THE MECHANISM 3.7. Physical implementation

Figure 3.16: Bounding reference surfaces.

As shown in figure 3.16, it is possible to obtain the correct orientation between the chunks
and the joint through the use of the rectangular stud on the chunk and the corresponding
mated part on the joint. Next, it is possible to fix the relative positions putting acetone
between the chunk surface and the (red) surface on the joint.

3.7.4 Installation on the base

Following the previous steps is possible to obtain the mechanism chain, as shown in the
figure 3.13. Through the use of the tool “Solidworks Motion”, it is possible to design a base
that allows the whole range of the mechanism motion (allowing the whole working space for
each joint and physical component) and keep the necessary rigidity and stability.

Figure 3.17: Base of the mechanism.

57

3.7. Physical implementation 3. CONSTRUCTION OF THE MECHANISM

Two pillars have been designed, allowing the motion without collision with the ground,
as shown in figure 3.17. The base, realized in ABS, gives stability and provides two planar
surface where base the mechanism.
The choice to place the mechanism on J1 and J5 is not casual, in fact, the base provides
dedicated space where place the two motors.

Figure 3.18: Installation on the base, joint J5.

As shown in figure 3.18, it has been possible through the use of passing screws and bolts,
to fix the mechanism to the base. The chunks, that contain the housing for the carbon fiber
bars that acts the link l5−1, are firstly refer to the base through four perimeter rectangular
studs and then, screwed on the base pillars.

3.7.5 Installation of the motors

Fixed the mechanism on the base, the next step was the installation of the motors.
Firstly, it has been necessary to chose the initial position of the mechanism and of
the motors. In fact, as explained in the Section 4.2.4, the used motors are not used in a
multi-turn mode, that means that, is important to set the initial position of the motors in
order to perform the required rotations without cross the zero of the motor. Cross the zero
of the motor would leads to a sudden inversion of the rotation direction risking to brake the
mechanism, or worse, the motors.

Moreover, is necessary to set the initial configuration of the mechanism from which start
the motion, since the mechanism is designed to perform the cycle of configuration provided by
the assembly mode two, but theoretically, it can acquire the assembly mode one configurations
too. In fact, in according with the kinematics study, given only one d.o.f., for one value of
θ5 the mechanism presents four possible configurations, but setting another of the remaining
six variable it is possible to define an unique configurations for the mechanism.
In order to set the mechanism variables on the correct values corresponding to the assembly

58

3. CONSTRUCTION OF THE MECHANISM 3.7. Physical implementation

mode two, it has been decided to “fix” the variable θ5 and θ1 denying the rotations of the
joints J5 and J1.

Figure 3.19: Deny rotation pin, joint J1 (right) and J5 (left).

It has been decided to set as initial configuration the configuration corresponding to the
point one in figure 4.16, sufficiently far away from the extremes configurations.Therefore the
initial configuration presents the set of variables shown in table 3.3:

θ1 (deg) θ2 (deg) θ3 (deg) θ4 (deg) θ5 (deg) s1 (mm) s2 (mm)

37,30 229,23 239,35 74,57 148,96 142,35 -367,54

Table 3.3: Initial configuration of the physical model.

As shown in figure 3.19, a pins made of steel have been inserted through the fixed
part and mobile part, denying the relative rotations and defining an unique instantaneous
configurations.

Once get the mechanism in the initial position it is possible to install the motors. As
explained in the following Section 4.2.4 for the first installation is possible to set the motor
in a correct position and then install the motors on the joints.
The unusual position and orientations of the joints lead to necessity of supports where place
the motors. Two different solutions have been adopted.

59

3.7. Physical implementation 3. CONSTRUCTION OF THE MECHANISM

Figure 3.20: Motor support for the joint J1.

As shown in figure 3.20, a support made of ABS has been designed for the joint J1.
In particular, the support presents a reference surface where match and fix through the use
of bolts and screws the motor. Then, the sub-assembly motor and support can slide on a
guide specifically designed embedded on the base. Once obtained the correct position of the
motor on the sliding guide, it is possible to fix the support to the base through the use of
bolts and screws.

Figure 3.21: Motor support for the joint J1, real model (left) and CAD model(right).

60

3. CONSTRUCTION OF THE MECHANISM 3.7. Physical implementation

Figure 3.22: Motor support for the joint J5.

For what concern the joint J5, the orientation combined with the height of the pillar not
allows to realize a support linked to the base. As shown in figure 3.22, it has been necessary
to realise a support directly linked to the fixed part of the joint. The support can be bound
through the use of acetone to the blue part in figure 3.22, because can not be realised em-
bedded with that for question of problem of printing orientation (Section 3.2.1).
Match the support with the rest of the mechanism is possible to install the motor on a ref-
erence surface.

In this way is possible to complete the physical construction of the mechanism,
shown in figure 3.23.

61

3.7. Physical implementation 3. CONSTRUCTION OF THE MECHANISM

Figure 3.23: RCRCR CAD model.

62

3. CONSTRUCTION OF THE MECHANISM 3.8. Mechanism problems diagnosis

3.8 Mechanism problems diagnosis

The built mechanism is able to satisfy each instantaneous position provided by the
theoretical study but is not able to perform continuously the range of motion actuated by
motors.
In fact the mechanism motion require an high accuracy of the mates and high rigidity that can
not be reach with the used technology and process. Follows a list of the diagnosed problems.

� inner tensions: the mechanism, by nature, is affected by high inner tensions (reac-
tions) being a loop mechanism. In fact, since the last link is not freely to move in the
space but is linked to first joint leads to have inner tensions and frictions due to small
errors of assembly mate that can not eliminate with the tools available;

� component flexibility: realise each component through the F.D.M. process (in ABS
plastic) simplify the the design of the prototype allowing to realize shapes not possible
with other manufacturing process. However, this implies problems linked to the use of
plastic component like the high flexibility. In particular, it was noted that the weight
of the mechanism leads to have a unacceptable bending of the bearings shafts of the
revolute joints. This lead, unavoidably, to increase the inner tension and friction of the
mechanism affecting the smooth motion planned.

� elevate weight: the prototype is affected by floating loads hard to foresee. In partic-
ular it was noted that the calibrated aluminium bars (Igus-DryLin ®shaft-AWMP-12)
are not optimized for our propose. In fact the elevate weight cause bending of the
plastics component increasing inner tensions and friction. As future improvement is
suggest to use bar made of carbon fiber, losing accuracy in the cylindrical mate but
reducing the weight and the overall mechanism accuracy.

� creep phenomena: the force mate used to deny the rotations and translations of the
carbon fiber bars implies to clamp the chunks with screws and bolts. The small contact
surface between screw heads and the chunks leads to a local deformation of the plastic.
As time goes by, the plastics lead to have a permanent deformations affecting the force
mate. This phenomena leads to lose the contact force and unwanted rotations of the
bars mated with the chunks.

3.9 Design improvements

The used technology and the tools available do not allow us to solve all the problems
diagnosed. However, is possible make changes in the design to improve the mechanism overall
functioning.

Increase the bearing shafts rigidity

In order to avoid the bending of the bearing shafts it has been decided to improve the
design of each revolute pair.

63

3.9. Design improvements 3. CONSTRUCTION OF THE MECHANISM

8

3 24

5

1

6

7

9

Figure 3.24: Generic revolute joint, new design.

It has been decided to insert a steel core shaft in the fixed part (1), therefore inside the
bearing shaft. Referring to the figure 3.24, the components numbering is the same of the fist
design (shown in figure 3.4) by adding the shaft-core (9).

Avoid the rotation of the carbon fiber bars

Since is not possible to avoid the creep because is linked to the used technology, in order
to avoid the rotation of the bars inside the chunks, we can deny the rotation with a passing
pin in case of lose mate force.

Figure 3.25: Pin to deny the rotations of the bar.

64

3. CONSTRUCTION OF THE MECHANISM 3.10. Final mechanism problems diagnosis

As shown in figure 3.25, the pin, made of steel, pass through the chunks and the carbon
fiber bars but, it should to clarify that is a safety tool, because the force mate is mainly given
by the clamping with screws.

3.10 Final mechanism problems diagnosis

The improvements in the design shown in the previous sections, lead to increase the
overall rigidity of the system. In fact, it has been noticed that, with the new design of the
rotational joint the bending of the bearing shaft explained in the Section 3.8 is almost in ex-
istent. In addition the pins used to avoid the bar rotations have obtained the expected effects.

Even if the simulations in Solidworks environment shown that the kinematics motion
of the mechanism respect what provided by the theoretical study, as final diagnosis, the
mechanism is unable to perform what provided by the theoretical study due to the following
problems.

The inner tensions and reactions in the passive joints, lead to the deformations of the
plastic components. In particular, has been observed deformations in the chunks for the bar
clutches. This phenomena leads to increase frictions and inner tensions, making impossible
the whole movement of the mechanism by producing mechanical jamming during the motion.

Therefore, as future work, in necessary a study of the joints reactions to provide a correct
design of that mechanism.

Finally, driving only one motor, the mechanism is able to perform only an initial part of
the motion as shown in figure 4.19 (Section 4.2.5).

65

3.11. Prototype real component 3. CONSTRUCTION OF THE MECHANISM

3.11 Prototype real component

Figure 3.26: RCRCR CAD model, top view.

Figure 3.27: RCRCR real prototype, top view.

66

3. CONSTRUCTION OF THE MECHANISM 3.11. Prototype real component

Figure 3.28: RCRCR CAD model, main view (configuration: θ5 = 148.96 deg, θ1 = 37, 30 deg).

67

3.11. Prototype real component 3. CONSTRUCTION OF THE MECHANISM

Figure 3.29: RCRCR real prototype, main view (configuration: θ5 = 148.96 deg, θ1 = 37, 30 deg).

68

3. CONSTRUCTION OF THE MECHANISM 3.11. Prototype real component

Figure 3.30: RCRCR CAD model, joint J1 and motor placed.

Figure 3.31: RCRCR real prototype, joint J1 and motor placed.

69

3.11. Prototype real component 3. CONSTRUCTION OF THE MECHANISM

Figure 3.32: RCRCR CAD model, joint J3.

Figure 3.33: RCRCR real prototype, joint J3.

70

3. CONSTRUCTION OF THE MECHANISM 3.11. Prototype real component

Figure 3.34: RCRCR CAD model, joint J2 and J3.

Figure 3.35: RCRCR real prototype, joint J2 and J3.

71

3.11. Prototype real component 3. CONSTRUCTION OF THE MECHANISM

Figure 3.36: RCRCR CAD model, joint J5 and motor placed.

Figure 3.37: RCRCR real prototype, joint J5 and motor placed.

72

3. CONSTRUCTION OF THE MECHANISM 3.11. Prototype real component

Figure 3.38: RCRCR real prototype, main view (configuration: θ5 = 303.66 deg, θ1 = 296, 66 deg).

73

3.11. Prototype real component 3. CONSTRUCTION OF THE MECHANISM

Figure 3.39: RCRCR real prototype, main view (configuration: θ5 = 263.56 deg, θ1 = 281.93 deg).

74

Chapter 4

Implementation of the Motors

The implementation of the motors has been initially developed in parallel with the theo-
retical study and the design of the mechanism. Therefore, in the following Chapter, follows
firstly a report on a learning activity. The goal of this intermediate activity was to familiarize
with the motor control taking into advantage of the available models in the research center.
Than, it has been chosen the motor to install once built the mechanism.

In particular for the learning activity, the model “Dynamixel AX-12A” motor has been
used. It has been possible to implement a feed-forward position control. Moreover, this mo-
tor has been used for the motorization of a 3R serial robot, that allows us to implement an
algorithm to drive three coordinate motors.

Once defined the scale and build the mechanism, it has been chosen to use two “Dy-
namixel MX-64T” motors as driving system for the RCRCR mechanism. This new model of
motor presents higher performances coherently with the size and weight of the mechanism.

Then, an algorithm in Matlab environment has been implemented, in order to drive the
motors according to the theoretical study. Formally, the sequence of analysis developed is
not correct. In fact, it should be necessary a dynamic analysis to choose the optimized size of
the motors. Moreover, it has been chosen the mentioned above sequence of analysis for the
brief time available and the availability of the research center, in order to achieve a correct
mechanism motion.

4.1 Learning the use of the Dynamixel Motors

In order to execute the motion of the mechanism as foreseen Section 1.7, the “Dynamixel
Motors” have been used, coherently with the laboratory availability. The use of these mo-
tors have required a first learning activity related to the velocity control of these motors,
checking, in real time, its position. It is noted that, in this activity, the general goal is
not the realization of a specific shape of velocity with the required dynamic features, but the
general comprehension and the familiarization with the control of the motors.
Only for this task, a 3R-robot (figure 4.1) has been used, i.e. a robot with 3 links connected
by 3 revolute joints with three “Dynamixel Motors AX-12” connected.

A kinematic study of this robot was not necessary, because we focused on the general
control of a single motion of one motor at time and attention has been paid only on the range

75

4.1. Learning the use of the Dynamixel Motors 4. IMPLEMENTATION OF THE MOTORS

Figure 4.1: (1)Robot 3R and (2) USB2Dynamixel hardware.

limits linked to the cables that connected the motors to electric supply.

4.1.1 Brief description of the motors environment

In the following section we review the motor’s working environment.
As shown in figure 4.2, the motor receives an input in Volt and presents a Micro-processor
(µP) that manages the informations received from the users. These servomotors are used to
work receiving and sending information through the appropriate addersses of the RAM inside
the motor. In fact, the motor receives the information by an USB2Dynamixel hardware
(shown in 4.2).

Figure 4.2: Robotis Dynamixel, motors environment [10].

This hardware makes a bridge between the language outgoing from the PC and that in-
coming the motors. The protocol that comes from the PC is managed by an USB2Dynamixel

76

4. IMPLEMENTATION OF THE MOTORS 4.1. Learning the use of the Dynamixel Motors

software inside the PC. Thanks to this, we can use the software Matlab to control the
motors. Obviously we can also read information from the motors, such as position,velocity,
range limits and other important parameters, which are useful to understand, in real time, if
the motors are doing what we expected.

4.1.2 Motor model: Dynamixel AX-12A

The model of motor that has been used is the Dynamixel AX-12A Robot Actuator
[10], shown in figure 4.3:

Figure 4.3: Dynamixel AX-12A Robot Actuator [10].

This model of motor allows to track its speed, temperature, shaft position, voltage, and
load. All of the sensor management and position control is handled by the servo’s built-in
microcontroller. The software used is Roboplus ®, that allows to see some motor parameters
in real time, to know their allocation in the library and to do small simulations of a robot
motion. The motor specifications follow to the table 4.1.

Dynamixel AX-12A Specification

Operating Voltage 12V

Stall Torque 1.5 Nm

No-load Speed 59 RPM

Weight 55 g

Size 32 x 50 x 40 mm

Resolution 0.29 deg

Reduction Ratio 1/254

Operating Angle 300 deg or Continuous Turn

Max Current 900 mA

Standby Current 50 mA

Operating Temp -5 ° C - 70°C

Material Plastic Gears and Body

Motor Cored Motor

Table 4.1: Dynamixel AX-12A, motor specifications [10].

77

4.1. Learning the use of the Dynamixel Motors 4. IMPLEMENTATION OF THE MOTORS

4.1.3 Control Table and functioning type of the motor Dyamixel AX-12A

The Control Table consists of data regarding the current status and operation, which
exists inside of Dynamixel. The user can control Dynamixel by changing data of Control
Table via Instruction Packet. Users can read a specific data to get status of the Dynamixel
with read instruction packets, and modify data as well to control Dynamixel with write
instruction packets. In particular in the Control Table is possible to found:

� EEPROM and RAM: data in RAM area is reset to the initial value whenever the
power is turned on while data in EEPROM area is kept once the value is set even if
the power is turned off.

� Address: It represents the location of data. To read from or write data to Control
Table, the user should assign the correct address in the Instruction Packet.

� Access: Dynamixel has two kinds of data: Read-only data, which is mainly used for
sensing, and Read-and-Write data, which is used for driving.

� Initial Value: In case of data in the EEPROM Area, the initial values on the right
side of the below Control Table are the factory default settings. In case of data in the
RAM Area, the initial values on the right side of the above Control Tables are the ones
when the power is turned on.

� Highest/Lowest Byte: In the Control table, some data share the same name, but
they are attached with (L) or (H) at the end of each name to distinguish the address.
This data requires 16 bit, but it is divided into 8 bit each for the addresses (low) and
(high). These two addresses should be written with one Instruction Packet at the same
time.

As it is explained above, the control and the managing of the motor through the PC, pass
from the reading and the writing of the addresses of the RAM, in either the volatile part and
the non-volatile one.
In order to understand which address it was used, it is represented in a table, the most
important part of the whole Control Table of the Motor.

Control Table

EEPRON Area

Address Size [byte] Data Name Access Initial Value Min Max

3 1 ID RW 1 0 252
4 1 Baud Rate RW 3 0 3

RAM Area

Address Size [byte] Data Name Access Initial Value Min Max

24 1 Torque Enable W 0 0 1
30 2 Goal Position W - 0 1023
32 2 Moving Speed W - 0 2047
37 2 Present Position R - 0 1023
39 2 Present Speed R - 0 1023

Table 4.2: Dynamixel AX-12A, Control Table [10].

The functioning of the motor depends on the type of control, but it used to work with a
Modulation of the Power-PWM, writing a percentage of Voltage in bits, in the address

78

4. IMPLEMENTATION OF THE MOTORS 4.1. Learning the use of the Dynamixel Motors

of the Moving Speed. Modulating means to write an amount of the maximum power, given
that the current is fixed.

The motors “Dynamixel Motors AX-12” can work in two different control mode:

� Wheel Mode: in this mode, it is possible to control the velocity by modulating the
power from zero to the maximum value. The value in this address move from 0 to 2048,
where:

– 0−1023 (CCW), modulates the power (and the velocity) from 0 to the maximum;
writing 512 means to use the 50% of the power, in counter-clockwise direction;

– 1024− 2048 (CW), modulates the power in the clockwise direction;

� Joint Mode: in this type of control, it is possible to write and read the angular position
of the motor in order to control it. It is not possible to control the velocity, but it is
only possible to set the maximum value that the motor can use to arrive at the required
position.

We can switch from one mode to another by software. The following control has been
realized in “Wheel Mode”.

Several important considerations have to be done about the value that can be read in
both control modes of the motor:

� Write and read position: it is allowed to write and read from 0° to 300°. Even if
the motor does not have any kind of physical constraint, the range between 300°− 360°
is an invalid angle, so the value read has no sense;

� Read velocity: working in joint mode is possible to read a value directly convertible
to a rpm value trough a conversion factor. In wheel mode, it is not possible to read the
velocity, because of the address read Present Speed reports a value that corresponds to
the volt percentage. It must be calculated through the derivation of the position. In
our case, the law between the percentage of voltage written and the respective desired
velocity, in no-load condition, is directly proportional.

4.1.4 Feed-Forward position control:point-to-point motion in the joint space

It has been chosen to perform a point to point motion in joint space, controlled with a
trapezoidal velocity shape, shown in figure 4.4.
In fact, our interest in this activity is not the dynamic requirements, therefore in the following
discussion we will not treat the parameters of the motion laws (they can be easily read from
the Matlab file, Appendix E), but there is a focus on the behaviour of our motors in reference
to the theoretical motion law.

79

4.1. Learning the use of the Dynamixel Motors 4. IMPLEMENTATION OF THE MOTORS

Figure 4.4: Trapezoidal velocity law.

Referring to the figure 4.4 the initial joint position and velocity, final joint position,
time of execution and maximum velocity have been chosen, with assumption of symmetrical
profile. That means that the other parameters can be automatically calculated in Matlab
code starting from the known data.
The motor presents an inner PID, that is not sufficient to follow the timing position law.
Moreover, the tuning of the PID parameters is not possible. During the several tests, it has
been possible to notice that the motor presents other practical problems as response delay,
dead band.
Therefore, in the following analysis the motor has been treated as a black-box. In order to
perform the desired shape of position, an Feed-Forward Position Control it has been
realized, as shown in figure 4.5:

80

4. IMPLEMENTATION OF THE MOTORS 4.1. Learning the use of the Dynamixel Motors

Figure 4.5: Feed Forward Position control.

The goal of this control is to follow the theoretical curve of the position for a given timing
trajectory.

81

4.1. Learning the use of the Dynamixel Motors 4. IMPLEMENTATION OF THE MOTORS

Therefore, the algorithm evaluate in real time:

� reads the real position of the joint (θFB);

� compares θRead with the theoretical position (θSET)that came from the motion law
(θErr = θSET − θRead);

� proportional control, in order to obtain a compensated velocity;

� compensate the desired velocity (θ̇ = ˙θSET + ˙θErr), the gain Kv from a value in rpm
to a volt signal ;

� before to communicate the volt value to the motor, it is necessary a saturation provide
to send the correct value, since the value given to the motor can be:

– 0− 1023 counter-clockwise rotation;

– 1024− 2048 clockwise rotation;

� Write the value of moving speed in the address value;

� the “Dynamixel AX-12A” block, carries out the instruction of Input percentage of
voltage (input velocity) and moves the motor. This last block is not inside the Matlab
code, but is located inside the motor.

Basically, with this control, we try to follow the theoretical position driving the velocity,
as shown in figure (4.6). That means that the shape of obtained position is smooth and close
to the theoretical one, instead, the velocity fluctuates around the theoretical one.

82

4. IMPLEMENTATION OF THE MOTORS 4.1. Learning the use of the Dynamixel Motors

Figure 4.6: Comparison of real and theoretical position and velocity obtained.

It should be noted that, the implemented proportional control is enough to follow the
desired position trajectory, even if by changing the requested application, it is necessary in
the external closed loop to implement a PID controller, coherently with the motor one, in
order to obtain the desire behaviour.

All the Matlab files produced are included in the Appendix E.

As learning activity on the control, several experiments have been done, using a trape-
zoidal velocity shape of timing law:

� finding the best proportional gain Kg in linear condition, without any kind of load;

� evaluating the motor behaviour for different values of final time tf ;

� evaluating in a coordinate control of three motors, the different behaviour under variable
load.

4.1.5 Further considerations

By analysing the behaviour of the motor in this first learning activity, it is possible to
underline some considerations linked to the control used.

83

4.1. Learning the use of the Dynamixel Motors 4. IMPLEMENTATION OF THE MOTORS

� by analysing the plots, it should be noticed a starting delay due to the dead band of
the motor. For low speeds (that correspond to a low percentage of voltage to modulate
the power) the motor is not ready to follow the initial values of timing law.

� by analysing the linear response without any load in the figure 4.7, it is possible to
notice, the reduction of the position error for growing values of the proportional gain
Kp. It has been noticed that, for values higher than Kp = 8, a quite small variation
of the position error. The behaviour of the motor does not change, due to the linear
condition.

� by analysing the dependence to the parameter of the final time tf (in linear condition,
without any load), in figure 4.8, it is possible to notice that, the behaviour of the motor
doesn’t change, but the position error increase for lower final time.

Figure 4.7: Feed-forward position control, influence of Kp.

84

4. IMPLEMENTATION OF THE MOTORS 4.1. Learning the use of the Dynamixel Motors

Figure 4.8: Feed-forward position control, influence of tf .

The serial robot 3R allows us to make other important considerations. In fact it has
been possible to plan a coordinate control motion with the three motors and make some
considerations.
In figure 4.9, is shown the coordinate control of the three motor, in which it has been chosen
the trapezoidal shape of velocity for the three motor, using the same time law parameters
and gains. In figure 4.9, is possible to observe the behaviour of the three motors, called ID1,
ID2 and ID3, enumerating the motor form the bottom to the top (referring to the figure 4.1).
It has been planned a motion that, for each motor, provides to start from the zero position
(that corresponds to the zero configurations of the robot) and displays a rotation of 100 deg
following the sametime law.
This experiment has been useful to learn the coordinate control of the three motor but is
useful to make other considerations. In fact, the same model of motor has been used in each
joint of the 3R robot, this fact allows us to analyse the behaviour of the motor under a no
linear load.

� it’s possible to notice that, the motor ID3, presents the lowest position error, being
affected only by the weight of the last link.

� by analysing the other two motor, it is possible to notice that the position error increase;

� The motor ID1 and ID2 have approximately the same value of the position error due
to the structure of the mechanism.

85

4.1. Learning the use of the Dynamixel Motors 4. IMPLEMENTATION OF THE MOTORS

Figure 4.9: Dynamixel AX-12A, coordinate control of three motor.

86

4. IMPLEMENTATION OF THE MOTORS 4.2. Installed Motor: Robotis Dynamixel MX-64T

4.2 Installed Motor: Robotis Dynamixel MX-64T

In the learning activity (Section 4.1), it has been possible to familiarize with the control
of the “Robotis Dynamixel” servomotors. The implementation and installation of the motors
has been developed after the assembly of the RCRCR mechanism.
Therefore, given the physical dimensions of the mechanism, with a qualitative evaluation
of the necessary torque, the model “Robotis Dynamixel MX-64T” has been chosen. The
specification are shown in table 4.3:

Figure 4.10: Robotis Dynamixel MX-64T actuator.

Dynamixel MX-64T Specification

Operating Voltage 12V

Stall Torque 6.0 Nm

No-load Speed 63 rpm

Max Current 4.1 A at 12 V

Weight 126 g

Size 40.2 × 61.1 × 41.0 mm

Resolution 0.088 deg

Reduction Ratio 1/200

Operating Angle 360 deg or Continuous Turn

Standby Current 100 mA

Operating Temperature -5°C - 80°C

Material Metal Gears and Engineering Plastic Body

Motor Maxon RE-MAX

Table 4.3: Dynamixel MX-64T, motor specification [10].

The motor working environment was the same of the motor used for the learning activity
(being part of the same “Robotis Dynamixel X” servomotors family), shown in the Section
4.1.1. The advantage respect to the previous model was the possibility to control the motor
with an inner implemented PID control algorithm that allows to control the motor response
with different operating mode.

87

4.2. Installed Motor: Robotis Dynamixel MX-64T 4. IMPLEMENTATION OF THE MOTORS

4.2.1 Control Table and functioning type of the motor Dyamixel MX-64T

As explained above, the Control Table is a structure of data implemented in the Dy-
namixel. Users can read a specific Data to get status of the Dynamixel with Read Instruction
Packets, and modify Data as well to control Dynamixels with Write Instruction Packets.
In particular, for the motor Dynamixel MX-64T:

� Control Table, Data, Address: the Control Table is a structure that consists of
multiple Data fields to store status of the Dynamixel or to control the Dynamixel.
Users can check current status of the Dynamixel by reading a specific Data from the
Control Table with Read Instruction Packets. Write Instruction Packets enable users
to control the Dynamixel by changing specific Data in the Control Table. The Address
is a unique value when accessing a specific Data in the Control Table with Instruction
Packets. In order to read or write data, users must designate a specific Address in the
Instruction Packet. Please refer to the Protocol section of e-Manual for more details
about Packets.

� Area (EEPROM, RAM): the Control Table is divided into 2 Areas. Data in the
RAM Area is reset to initial values when the Dynamixel is turned on (Volatile). On
the other hand, modified data in the EEPROM Area keeps their values even when
the Dynamixel is turned off (Non-Volatile). Data in the EEPROM Area can only be
changed when the value of Torque Enable(64) is cleared to 0.

� Access: the Control Table has two different access properties. RW property stands for
read and write access permission while R stands for read only access permission. Data
with the read only property cannot be changed by the write Instruction. Read only
property(R) is generally used for measuring and monitoring purpose, and read write
property(RW) is used for controlling Dynamixels.

� Initial Value: each data in the Control Table is restored to initial values when the
Dynamixel is turned on. Default values in the EEPROM area are initial values of the
Dynamixel (factory default settings). If any values in the EEPROM area are modified
by a user, modified values will be restored as initial values when the Dynamixels is
turned on. Initial Values in the RAM area are restored when the Dynamixels is turned
on.

� Size: the Size of data varies from 1 to 4 bytes depend on their usage. Please check the
size of data when updating the data with an Instruction Packet.

The most important items of the MX-64T Control Table are shown in table: 4.4 :

88

4. IMPLEMENTATION OF THE MOTORS 4.2. Installed Motor: Robotis Dynamixel MX-64T

Control Table

EEPRON Area

Address Size [byte] Data Name Access Initial Value Min Max

7 1 ID RW 1 0 252
8 1 Baud Rate RW 1 0 7
11 1 Operating Mode RW 3 0 16
13 1 Protocol Version RW 2 1 2
24 4 Moving Threshold RW 10 0 1023

RAM Area

Address Size [byte] Data Name Access Initial Value Min Max

64 1 Torque Enable RW 0 0 1
76 2 Velocity I Gain RW 1920 0 16383
78 2 Velocity P Gain RW 100 0 16383
80 2 Position D Gain RW 0 0 16383
82 2 Position I Gain RW 0 0 16383
84 2 Position P Gain RW 850 0 16383
88 2 FF 2nd Gain RW 0 0 16383
90 2 FF 1st Gain RW 0 0 16383
104 4 Goal Velocity RW - 0 1023
108 4 Profile Acceleration RW 0 0 32767
112 4 Profile Velocity RW 0 0 1023
116 4 Goal Position RW 850 0 4095
124 2 Present PWM R 850 0 850
126 2 Present Current R - 0 1941
128 4 Present Velocity R - 0 1023
132 4 Present Position R - 0 4095
136 4 Velocity Trajectory R - 0 1023
128 4 Position Trajectory R 0 0 1023

Table 4.4: Dynamixel MX-64T, Control Table [10].

The functioning of the motor can be selected by changing the value, in address of the
EEPRON area, of the Operating Mode. The motor can work in different control mode:

� Current control mode: this mode controls current(torque) regardless of speed and
position. This mode is ideal for a gripper or a system that only uses current(torque)
control or a system that has additional velocity/position controllers;

� Velocity control mode:this mode controls velocity;

� Position control mode: this mode controls position. Operating position range is
limited by maximum position limit and minimum position limit. This mode is ideal for
articulated robots that each joint rotates less than 360 degrees;

� Extended Position Control Mode(Multi-turn): this mode controls position. This
mode is ideal for multi-turn wrists or conveyer systems or a system that requires an
additional reduction gear;

� Current-based Position Control Mode: this mode controls both position and
current(torque). This mode is ideal for a system that requires both position and current
control such as articulated robots or grippers;

89

4.2. Installed Motor: Robotis Dynamixel MX-64T 4. IMPLEMENTATION OF THE MOTORS

UNITS TABLE CONVERSION

Physical Quantities Physical Range Address Range Units

Voltage 9.5-16.0 V 95-160 0.1 V
PWM 0-100% 0-850 0.118 %

Current 0-6.5A 0-1941 3.36 mmA
Acceleration - 0-32736 214.577 rpm2

Velocity 0-234 rpm 0-1023 0.229 rpm
Position 0-360 deg 0-4095 0.088 deg

Velocity I Gain 0-0.25 0-16383 65536
Velocity P Gain 0-128 0-16383 128
Position D Gain 0-1023 0-16383 16
Position I Gain 0-0.25 0-16383 65536
Position P Gain 0-128 0-16383 128

FF 2nd Gain 0-4095 0-16383 4
FF 1st Gain 0-4095 0-16383 4

Table 4.5: Dynamixel MX-64T, table of conversion [10].

� PWM control mode: this mode directly controls PWM output. (Voltage Control
Mode)

4.2.2 Operating mode chosen: position control mode

In order to realize the desired motion, the Position control mode has been used. In
fact, the requirement of the motion in the prototype was to display a certain rotation of the
joints in which is placed a motor with an high accuracy on the final position.

With the chosen control mode we can realize the feed-forward position control, taking
advantage of the implemented controller inside the motor, shown in figure 4.11:

90

4. IMPLEMENTATION OF THE MOTORS 4.2. Installed Motor: Robotis Dynamixel MX-64T

Figure 4.11: Dynamixel Motor MX-64T, Position Control Mode block diagram [10].

91

4.2. Installed Motor: Robotis Dynamixel MX-64T 4. IMPLEMENTATION OF THE MOTORS

Where the gains used are:

� kP proportional gain;

� kD derivative gain;

� kI integrative gain;

� kFF1 feedforward velocity gain;

� kFF2 feedforward acceleration gain.

The operating mode “Position Control Mode” corresponds to a properly feed-forward position
control as shown in figure 4.11. When the instruction from the user is received, the algorithm
takes the following steps until driving the horn:

� An Instruction from the user is transmitted via Dynamixel bus, then registered to Goal
Position;

� Goal Position is converted to target position trajectory and target velocity trajectory
by Profile Velocity and Profile Acceleration;

� The target position trajectory and target velocity trajectory is stored at Position Tra-
jectory and Velocity Trajectory respectively;

� Feedforward and PID controller calculate PWM output for the motor based on target
trajectories;

� Goal PWM sets a limit on the calculated PWM output and decides the final PWM
value;

� The final PWM value is applied to the motor through an Inverter, and the horn of
Dynamixel is driven;

� Results are stored at Present Position, Present Velocity, Present PWM and Present
Current.

The Profile is an acceleration/deceleration control method to reduce vibration, noise and
load of the motor by controlling dramatically changing velocity and acceleration. It is also
called Velocity Profile as it controls acceleration and deceleration based on velocity. The
motor provides 4 different types of Profile. Profiles are usually selected by a combination of
Profile Velocity and Profile Acceleration. Triangular and Trapezoidal Profiles exceptionally
consider total travel distance (∆Pos, the distance difference between target position and
current position) as an additional factor. For convenience, Profile Velocity is abbreviated to
VPRFL and Profile Acceleration is abbreviated to APRFL.

When given Goal Position, Dynamixel’s profile creates target velocity trajectory based
on current velocity(initial velocity of the Profile). When Dynamixel receives updated target
position from a new Goal Position while it is moving toward the previous Goal Position,
velocity smoothly varies for the new target velocity trajectory. The following explains how
Profile processes Goal Position instruction in Position Control mode adopted.

� An Instruction from the user is transmitted via Dynamixel bus, then registered to Goal
Position.

92

4. IMPLEMENTATION OF THE MOTORS 4.2. Installed Motor: Robotis Dynamixel MX-64T

� Acceleration time(t1) is calculated from Profile Velocity and Profile Acceleration.

� Types of Profile is decided based on Profile Velocity, Profile Acceleration and total travel
distance(∆Pos, the distance difference between target position and current position)

� Selected Profile type is stored at Moving Status.

� Dynamixel is driven by the calculated target trajectory from Profile.

� Target velocity trajectory and target position trajectory from Profile are stored at
Velocity Trajectory and Position Trajectory respectively.

� VPRFL−TRI and Travel time (t3) to reach Goal Position is calculated as in figure 4.12.

Figure 4.12: Set of the Velocity profile, Dynamixel Motor MX-64T [10].

4.2.3 Considerations on the motor behaviour

Using the Position Control implemented it has been possible to investigate on the be-
haviour of the motor. By setting the shape parameters in Matlab environment is possible
to make several consideration on the motor behaviour.In the following graphs, it has been
setted a trapezoidal shape of velocity as time law

93

4.2. Installed Motor: Robotis Dynamixel MX-64T 4. IMPLEMENTATION OF THE MOTORS

In figure 4.13 is shown the response in a linear condition, without any load, trapezoidal
shape of velocity has been setted as time law. The goal of the control is to achieve the
final position with the higher possible accuracy. In fact, the mechanism does not require
a low error during the motion but, in order to follow the cycle of configuration provided by
the theoretical study, is important to reduce the final position error, i.e. obtain a certain
configuration of the mechanism.

Figure 4.13: Feed Forward Position control, trapezoidal sahpe of velocity.

94

4. IMPLEMENTATION OF THE MOTORS 4.2. Installed Motor: Robotis Dynamixel MX-64T

By using an external script in Matlab environment, it is possible to set the time law
parameters managing the general parameters as t3 (referring to the figure 4.12) or ∆Pos and
calculating the parameters of VPFRL and APFRL. In particular in figure 4.14 is possible to
notice that, for decreasing value of the t3 it is possible to observe the growth of the position
error. Even if the test shown in figure 4.14 has been carry out in linear condition, it should
be noticed that, in order to have an acceptable final error in this condition, is necessary to
plan a motion at least of 5 s.

Figure 4.14: Feed Forward Position control, influence of the final time.

95

4.2. Installed Motor: Robotis Dynamixel MX-64T 4. IMPLEMENTATION OF THE MOTORS

In figure 4.15 is possible to notice the behaviour of the motor with increasing value of the
KI . Even if the test has been carry out in linear condition without any load is possible to
see the reduction of the position error for growing value of the integrative gain, starting from
a no-integrative control (KI = 0).

Figure 4.15: Feed Forward Position control, influence of KI .

96

4. IMPLEMENTATION OF THE MOTORS 4.2. Installed Motor: Robotis Dynamixel MX-64T

4.2.4 Feed-forward position control implemented: linear condition

Using the feed-forward position control described above is possible to implement, in Mat-
lab environment, a coordinated control that allows to perform the complete cycle of config-
uration. In the following section will be reported the results obtained with the motor tested
on the bench in a no-load condition. In fact, for the reasons shown in the Section 3.10 it has
been impossible to test the whole motion of the mechanism with the motors installed. There-
fore, as follows, are shown approximated results without any consideration on the PID and
feed-forward parameters that, require an appropriate tuning once get a correct functioning
of the mechanism motion.
As explained in the Section 1.7, the mechanism can be driven using only one motor but, to
perform a complete (closed) cycle of configurations needs an additional motor, that allows to
overtake the singularity configurations given by the principal driving pair.

Figure 4.16: Plot relationship θ5-θ1

Referring to the figure 4.16, the initial position of the mechanism corresponds to the
point 1 (θ5=148.96 deg,θ1=37.30 deg). Next, it has been implemented a motion to compute
the complete cycle of configuration, as follows:

� drive the motor placed in J5, displaying a rotation of +154,7 deg, until the point 2
(θ5=303.66 deg,θ1=296.66 deg);

� drive the motor placed in J1, displaying a rotation of -26,4 deg, until the point 3
(θ5=303.66 deg,θ1=270.24 deg);

� drive the motor placed in J5, displaying a rotation of -154,7 deg, until the point 4
(θ5=148.96 deg,θ1=32.52 deg);

� drive the motor placed in J1, displaying a rotation of +4.72 deg, until the point 1
(θ5=148.96 deg,θ1=37.30 deg);

97

4.2. Installed Motor: Robotis Dynamixel MX-64T 4. IMPLEMENTATION OF THE MOTORS

This control allows to control the motor checking the position in real time, that is appro-
priate for our proposes. However, the use of Position Control Mode that, it not implies the
multi-turn possibility adds an additional constrain for the algorithm. In fact, for both joints,
is necessary to provide an initial position of the motor and then install the motor to the
mechanism, making sure to not overtake the value of 360 deg or 0 deg during the motion.A
crossing of the zero of the motor leads to a sudden inversion of the rotation direction. The
same kind of control has been used for the motor placed in the joint J5 and J1.

Figure 4.17: Feed Forward Position control J5 motor (θ5), from the configuration 1 to 2.

Referring to the figure 4.17, the initial position of the motor has been setted to 270 deg.
The implemented algorithm in Matlab environment allows to install the motor once get the
position of 270 deg. In fact, J5 must display a rotation of about 154.7 deg in counter-clockwise
direction (coherently with the rotation sense of the motor). A trapezoidal shape of velocity
has been chosen as motion law. In our case, are not required particular dynamic feature but

98

4. IMPLEMENTATION OF THE MOTORS 4.2. Installed Motor: Robotis Dynamixel MX-64T

an accuracy on the final position of the motion. Therefore, any kind of consideration on the
tuning of the parameters are leaved as future works, once get the correct functioning of the
mechanism. At the end of the motion shown in figure 4.17, the mechanism achieve the point
2.

Figure 4.18: Feed Forward Position control J1 motor (θ1), from the configuration 2 to 3.

99

4.2. Installed Motor: Robotis Dynamixel MX-64T 4. IMPLEMENTATION OF THE MOTORS

Referring to the figure 4.18, changing driving motor, is possible to overtake the singularity
condition (for θ5). Therefore, using the motor placed in J1 is possible to display a rotation
of 26.4 deg achieving the point 3.
It must be noted that,it has been chosen a trapezoidal shape of velocity as time law, and
also in this case, the requirement consists in the accuracy of the final position. In particular,
in both cases, the final error is comparable with the resolution of the encoder.

The other two path of the motion are not report for sake of brevity but the path of
trajectories will be the same for both joints,with the only of the reverse direction of rotation
of the motors.

4.2.5 Feed-forward position control implemented: test on the mechanism

As explained above, the mechanism is not able to perform the complete range of motion
driven by motors. In this section is shown the experimental data collected that confirm what
provided by the final diagnosis (Section 3.10). In fact, aside from the experimental obser-
vations, it has been possible to test the mechanism with the motors installed, observing the
behaviour as following explained.

In figure 4.19 is shown the behaviour of the motor installed on the joint J5, in the first
part of motion (graphs in no load condition in figure 4.17). It was possible to notice that,
the correct motion of the mechanism has been obtained until the instant t = 2.1 s.
In that instant the position of the motor placed in J5 presents a value of 246.1 deg that,
equivalent to the value of the linkage variable θ5 = 172, 86 deg.

Approximately, after that configuration the phenomena of jamming, linked to the friction
and inner tensions, deny the correct motion. In fact, after that instant the value of Present
Position read, does not change, increasing the error. In that instant, the torque given by the
motor, achieve the maximum value and try to move the mechanism providing the maximum
value for the following seconds.

Between the instant 2.1 s and 4.4 s, it can be observed that, the position error increase
until unacceptable values, and the present toque remains approximately constant. Due to the
high value of requested torque (current), starting from the instant of 4.6 s, the motor enter
in a safe mode to preserve the components. This leads to a turn-off of the driving system
making not valid the data collected after that instant and confirming what provided by the
experimental observation.

100

4. IMPLEMENTATION OF THE MOTORS 4.2. Installed Motor: Robotis Dynamixel MX-64T

Figure 4.19: Feed Forward Position control, test on the mechanism, motor in J5.

101

Chapter 5

Cost Analysis

The thesis has been carried out in “Institut de Robotica i Informatica Industrial (I.R.I.)”
taking advantage of the laboratory tools.
As explained in the previous Chapters, all the mechanism components have been printed
with 3D printers using the FDMTM Technology (fused deposition modelling) in ABS-P430.
Therefore, for the printed components a general assessment has been estimate, involving cost
of material, energy supply and labour cost. For the commercial component, reference was
made to the [11], except for the Motors, bought from the seller website.

Cost of Materials

Component Unit Cost Quantity Cost (e)

SKF-radial ball bearing-61802 10,07 e 6 60,42

Igus-DryLin ®Linear Plain Bearings-RJUM-01-12 14,22 e 2 28,44

Igus-DryLin ®shaft-AWMP-12 30,29 e 2 60,58

Dynamixel MX-64T 299,9 e 2 599,8

Carbon fiber bar (1000 mm) 29,9 e 2 59,8

ABS-P430 Components 82 e/kg Estimate 200

Total Costs 1010

Moreover, we need to take into account the additional cost, i.e., the manpower required
to carry out the project and the amortization of the used tools.

Additional Costs

Cost items e/h Hours (h) Cost e
Engineering Manpower 12 750 9000

3D printer amortization 5 70 350

Laboratory tools amortization 0,6 750 450

Total Costs 9800

Therefore, the final cost that the project has required is shown in the following table:

Budget of the project

Material Cost 1010 e
Additional Cost 9800e

Total cost 10810 e

103

Conclusions

In this final chapter we summarize the goals achieved and propose some directions of
future works.

Thesis Contributions

This work has had as principal goal the design of the appropriate shape of links in order
to satisfy the motion along the full cycle of configurations of a RCRCR mechanism. Thus,
the final goal has been the physical construction of the mechanism assembly able to perform
the whole mobility range by actuating one servo-motor at a time.

In order to design the shape of each link, firstly, through the use of Maple, the numer-
ical solutions have been obtained, defining all the possible configurations of the RCRCR
mechanism, as known in literature [3, 1, 15].

The results obtained have showed that, in the real construction of the mechanism, it is
possible to move across the extreme positions only through the use of two motors, due the
singularities found in these configurations.

Then, without taking into account the physical envelope, the links shapes have been
designed, using an implemented algorithm to checks the possible collisions between links, al-
lowing the mechanism to move along all cycle of configurations of the selected assembly mode.

Since the previous study is valid in general, independently of a value assigned of the length
unit, a convenient scale has been chosen that allows its construction with a 3D printer (in
ABS-plastics) keeping the costs low of the commercial functional elements.

Subsequently, the rotational and the cylindrical pairs have been designed following the 3D
printing guidelines. Thus, links have been designed according to the theoretical study pro-
viding rigidity and robustness to support the forces applied to them by the driving input pairs.

Finally, a motor control has been planned. Even if, the control implemented provide the
position control for the whole range of mobility, it was not possible to implement the real
motion o the mechanism due to the practical problems explained in the report.

105

Conclusion

Future Works

Even though the results achieved have been satisfactory, further work can be done. Some
proposals for future works are:

� improving the design of the mechanism: the design implemented allows to achieve each
possible configuration of the assembly mode 2, by positioning manually the linkage vari-
able but not to actuate the mechanism with the motors. A re-design of the components
(in particular the chunks) can improve the overall rigidity of the mechanism and allows
the correct motion;

� performing the dynamic analysis of the mechanism: once we get the RCRCR model,
a dynamic analysis would be necessary in order to optimize torques and velocities
required;

� implementing the control of two motors to drive the mechanism along the whole cycle of
configurations: perform the whole cycle of configurations driving the mechanism with
two motor. Driving two linkage variables with a coordinate control, will increase the
overall accuracy;

� perform an equivalent study for the mode of assembly 1 and try to find a design for the
links that allows their use in both modes of assembly.

106

Attachments

Appendix A

Dual Numbers

A dual number x̂ is defined as the sum of a real and a dual component:

x̂ = x+ εx0

The dual component is a multiple of the dual unit ε, which by definition has the property of
ε2 = 0. The sum and product of two dual numbers are given by:

x̂+ ŷ = (x+ εx0) + (y + εy0) = (x+ y) + ε(x0 + y0)

x̂ŷ = xy + ε(xy0 + yx0)

The trigonometric function sin and cos of a dual variable are:

sinx̂ = sin x+ εx0cos x

cosx̂ = cos x− εx0sin x

A spatial transformation involving a translation of a vector v = [vx, vy, vz]
T and a rotation

R can be represented by a dual-number rotation matrix R̂ = R+εD, where the real component
R is an orthogonal matrix corresponding to the rotation part, and the dual component is
D = PvR, where Pv is a skew-symmetric matrix obtained form the coordinates of v as:

Pv =


0 −vz vy

vz 0 −vx

−vy vx 0


In particular, dual rotation about the x and z axes describing a pair of dual angle θ̂i and

a link of dual angle α̂ij respectively are:

R̂x(θ̂i) =

1 0 0

0 cosθ̂i −sinθ̂i
0 sinθ̂i cosθ̂i



R̂z(α̂ij) =

cosα̂ij −sinα̂ij 0
sinα̂ij cosα̂ij 0

0 0 1


This matrix allow us to describe the pose of a reference frame wrt another using a 3× 3

matrix insted the classics 4× 4 ones.

107

Attachments

Dual Euler’s decomposition of a spatial transformation

The Euler decomposition allow espressing any 3D rotation as the product of the three
rotations about x− z − x axes[1] :

R = Rx(ϕ)Rz(φ)Rx(ψ)

Similarly, we can also express any spatial transformation, as a product of three dual angle
rotations along the x − z − x axes. Thus, a spatial transformation involving a translation
v = [vx, vy, vz]

T and a rotation R can be represented by:

R̂ = R̂x(ϕ̂)R̂z(φ̂)R̂x(ψ̂) = R+ εD

Where:

ϕ̂ = ϕ+ εp φ̂ = φ+ εq ψ̂ = ψ + εr

With p, q and r may be obtained from the relation:

Pv = DR−1

108

Attachments

Appendix B

1 # Dual Number.txt
2

3 # rutines per numeros duals.
4

5 dtx := proc(a) #### (a) es un numero dual de la forma: dual(r,d).
6 array(1..3,1..3,[[1, 0, 0],[0, dcos(a),-dsin(a)],[0, dsin(a), dcos(a)]])
7 end:
8

9 dty := proc(a)
10 array(1..3,1..3,[[dcos(a), 0, dsin(a)],[0, 1, 0],[-dsin(a), 0, dcos(a)]])
11 end:
12

13 dtz := proc(a)
14 array(1..3,1..3,[[dcos(a),-dsin(a), 0],[dsin(a), dcos(a), 0],[0, 0, 1]])
15 end:
16

17 # Suposo que un numero dual ve en forma de funcio: dual(r,d)
18 partreal:=proc(ex)
19 if type(ex,function) and op(0,ex)='dual' then
20 op(1,ex);
21 elif type(ex,function) and op(0,ex)='dsin' then
22 sin(partreal(op(1,ex)))
23 elif type(ex,function) and op(0,ex)='dcos' then
24 cos(partreal(op(1,ex)))
25 elif type(ex,equation) then
26 partreal(op(1,ex))=partreal(op(2,ex))
27 ### elif (type(ex,list) and nops(ex)=2) or type(ex,Vector) then
28 # (no) Elimino els vectors.
29 ### ex[1];
30 elif type(ex, array) or type(ex,list) then
31 map(partreal,ex)
32 elif type(ex,`+`) then
33 partreal(op(1,ex))+partreal(ex-op(1,ex))
34 elif denom(ex) <> 1 then
35 partreal(numer(ex))/partreal(denom(ex))
36 elif type(ex,`*`) then
37 partreal(op(1,ex))*partreal(ex/op(1,ex))
38 elif type(ex,`**`) then
39 partreal(op(1,ex))**op(2,ex)
40 elif type(ex,numeric) or type(ex,constant) then
41 ex
42 else 'partreal(ex)'
43 fi;
44 end:
45

46 partdual:=proc(ex)
47 if type(ex,function) and op(0,ex)='dual' then
48 op(2,ex);
49 elif type(ex,function) and op(0,ex)='dsin' then
50 partdual(op(ex))*cos(partreal(op(ex)))
51 elif type(ex,function) and op(0,ex)='dcos' then
52 -partdual(op(ex))*sin(partreal(op(ex)))
53 elif type(ex,equation) then
54 partdual(op(1,ex))=partdual(op(2,ex))
55 # elif type(ex,list) and nops(ex)=2 then # or type(ex,vector)

109

Attachments

56 # Elimino els vectors.
57 # ex[2]
58 elif type(ex, array) or type(ex,list) then
59 map(partdual,ex)
60 elif denom(ex) <> 1 then
61 (partreal(numer(ex))*partdual(denom(ex)) -
62 partdual(numer(ex))*partreal(denom(ex)))
63 /partreal(denom(ex))**2
64 elif type(ex,`*`) or type(ex,`**`) then
65 partreal(op(1,ex))*partdual(ex/op(1,ex))+
66 partdual(op(1,ex))*partreal(ex/op(1,ex))
67 elif type(ex,`+`) then
68 partdual(op(1,ex))+partdual(ex-op(1,ex))
69 elif type(ex,numeric) or type(ex,constant) then
70 0
71 else 'partdual(ex)'
72 fi;
73 end:
74

75 raddeg :=proc(x)
76 if x < 0 then evalf(360+x*180/Pi); else evalf(x*180/Pi); fi;
77 end:
78

79

80

81 # Definicio de rotacions 3D (reals):
82 tx:= proc(a) array(1..3,1..3,[[1, 0, 0],[0, cos(a), -sin(a)],[0, sin(a), ...
83 cos(a)]]) end:
84 ty:= proc(a) array(1..3,1..3,[[cos(a), 0, sin(a)],[0, 1, 0],[-sin(a), 0,...
85 cos(a)]]) end:
86 tz:= proc(a) array(1..3,1..3,[[cos(a), -sin(a), 0],[sin(a), ...
87 cos(a), 0],[0, 0, 1]]) end:
88

89

90 # Definicio de rotacions+traslacio (cilindric) 3D (homogeneas):
91 Tx:= proc(a,s) array(1..4,1..4,[[1, 0, 0, s],[0, cos(a), -sin(a), 0]...
92 ,[0, sin(a), cos(a), 0],[0, 0, 0, 1]]) end:
93 Ty:= proc(a,s) array(1..4,1..4,[[cos(a), 0, sin(a), 0],[0, 1, 0, s],...
94 [-sin(a), 0, cos(a), 0],[0, 0, 0, 1]]) end:
95 Tz:= proc(a,s) array(1..4,1..4,[[cos(a), -sin(a), 0, 0],[sin(a),...
96 cos(a), 0, 0],[0, 0, 1, s],[0, 0, 0, 1]]) end:
97

98 # Definicio de la matriu P corresponent a la traslacio d'una rot
99 ##dual (Pennock-Yang 1984):

100 # matriu dual A: si la part real es R, la part dual = PR, de manera que A=R+ePR
101 P:=proc(x,y,z) array(1..3,1..3,[[0, -z, y],[z, 0, -x],[-y, x, 0]]) end:
102

103 # funcio per transposar (invertir) una rotacio 3x3.
104 Array3x3Transpose:= proc(A)
105 array(1..3,1..3,[[A[1,1], A[2,1], A[3,1]],
106 [A[1,2], A[2,2], A[3,2]],
107 [A[1,3], A[2,3], A[3,3]]])
108 end:

1 ### Essential func.txt#########################
2

3 # R3C2 IO :: Compuation of valid configurations for a given input value of the
4 RCRCR mechanism.

110

Attachments

5

6 # WARNING! the names of the coefficients appearing in the equations may differ
7 from those in the
8 # paper: "Solution Intervals for Variables in Spatial RCRCR linkages"
9 #by Enric Celaya.

10

11 # You can use this line to call the program from an interactive Maple session.
12

13 # Please provide the path that is appropriate for you system (windows paths
14 are separated by \)
15 # path:=`C:\???`: read cat(path, `R3C2 IO.map`); # your system
16 # path:=`/home/celaya/Dropbox/PatatoidesDual/`: read cat(path,
17 `R3C2 IO.map`); # Linux Celaya
18 # path:=`/Users/celaya/Dropbox/PatatoidesDual/`: read cat(path,
19 `R3C2 IO.map`); # MAC Celaya
20

21 # Read the utilities for dual numbers, defined as dual(a,b). Variable path
22 must be set before.
23 read cat(path,`DualDefs.map`);
24

25 Digits:=8; #16;
26 with(plots);
27

28

29 # NOTE:
30 # Due to numerical approximations, sometimes one or more solutions are lost.
31 Often, lost solutions are found by simply re-issuing the call.
32

33 # It is frequent to get different results in successive identical calls.
34

35

36 ###############################
37 # Computes the value of all variables for a given value of the input variable
38 vi. 've' is the variable to be eliminated from the system of equations.
39 # Writes the result in a CSV file solutions.txt
40 ####################################
41 RCRCR IO:=proc(alfas,as,ss,ve,vi, valorvi) # valorvi is the input vi value
42 # in radians
43 local vr, T, teta, equs, e4,eqf, eqt2, eqs2, eqt4, eqs4,s3,c3,x,y,j,sol,
44 solT,solr,sole, solt2, sols2, solt4, sols4,puntsir, punts, i,Alfa,Teta, fd,
45 config, confdeg;
46

47 vr:=op({1,3,5} minus {ve,vi});# vr is the variable appearing in the
48 quartic e4(T)
49

50 # Write the main equations
51 equs:=eqT(alfas,as,ss,teta,T,x,y,ve,vi);
52 e4:=equs[1]; # eq of 4 or 8 degree to solve to get the output
53 variable
54 s3:=equs[2]; c3:=equs[3]; # sin and cos of teta[3]
55

56 # Definition of dual variables.
57 for i from 1 to 5 do
58 Alfa[i]:=dual(alfas[i]*Pi/180, as[i]):
59 Teta[i]:=dual(teta[i], ss[i]):
60 od;
61

62 # Loop equation (used to successively get the values of remaining
63

111

Attachments

64 variables)
65 eqf:=evalm(&*(dtz(Alfa[5]),dtx(Teta[5]),dtz(Alfa[1]),dtx(Teta[1]),dtz
66

67 (Alfa[2]),dtx(Teta[2]),dtz(Alfa[3]),dtx(Teta[3]),dtz(Alfa[4]),dtx(Teta[4]))):
68

69 puntsir:=NULL:
70 punts:=NULL:
71

72 # Write the caption in the CSV file
73 #fd := fopen(cat(path, `solutions b.txt`), WRITE);
74 #fprintf(fd, "theta1,theta2,theta3,theta4,theta5,s2,s4 \n");
75 #fclose(fd);
76

77 sol:= fsolve(evalf(subs(teta[vi]=valorvi,e4)),T); # returns solution
78

79 values for vr
80 for j from 1 to nops([sol]) do # if no solutions found, returns [].
81 solT:= op(j,[sol]): # solution for T=tan(vr/2)
82 solr:= evalf(arctan((2*solT),(1-solT**2)));
83 sole:= evalf(subs([teta[vr]=solr,teta[vi]=valorvi], eval(arctan(s3,c3))));
84

85 eqt2:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta
86 [vi]=valorvi], evalf(partreal(eqf[1,1])=1)));
87 solt2:=map(Re,op(1,[solve(eqt2,teta[2])]));
88

89 eqs2:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta
90 [vi]=valorvi,teta[2]=solt2], evalf(partdual(eqf[1,1])=0)));
91 sols2:=map(Re,op(1,[solve(eqs2,ss[2])]));
92

93 eqt4:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta
94 [vi]=valorvi,teta[2]=solt2], evalf(partreal(eqf[3,3])=1)));
95 solt4:=map(Re,op(1,[solve(eqt4,teta[4])]));
96

97 eqs4:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta
98 [vi]=valorvi,teta[2]=solt2,teta[4]=solt4, ss[2]=sols2], evalf(partdual(eqf
99 [2,3])=0)));

100 sols4:=map(Re,op(1,[solve(eqs4,ss[4])]));
101

102 config:=[0,solt2, 0, solt4, 0, sols2, sols4];
103 config[vi]:=valorvi;
104 config[ve]:=sole;
105 config[vr]:=solr;
106

107 confdeg:=[raddeg(config[1]), raddeg(config[2]), raddeg(config
108 [3]), raddeg(config[4]), raddeg(config[5]), sols2, sols4];
109

110 # Make a list with variable names to print on screen
111 puntsir:=[theta(1)=confdeg[1], theta(2)=confdeg[2],theta
112 (3)=confdeg[3],theta(4)=confdeg[4], theta(5)=confdeg[5],
113 s(2)=confdeg[6],s(4)=confdeg[7]], " \n",
114 puntsir;
115

116 # Check if solution is correct and append the configuration to
117 the list of solution points for the given input.
118 checksol(eqf,teta,ss,config); # Nothing special is done if the
119 solution is incorrect. Only warning messages will be displayed.
120 punts:=punts,config;
121

122 # Write configuration in the CSV file

112

Attachments

123 #fd := fopen(cat(path, `solutions b.txt`), APPEND);
124 #fprintf(fd,cat("",confdeg[1],",",confdeg[2],",",confdeg
125 [3],",",confdeg[4],",",confdeg[5],",",confdeg[6],",",confdeg[7],"\n"));
126 #fclose(fd);
127 od;
128

129 print(cat("solutions for theta",vi, "=", raddeg(valorvi)));
130 print(puntsir);
131 #return(punts): # uncomment this if required.
132 end:
133

134

135 ##
136 # Equation of degree 4 or 8 for variable T=tan(vr/2) with coeficients as
137 funtions of vi.
138 ##
139 eqT:=proc(alfas,as,ss,teta,T,x,y,ve,vi)
140 local vr,vx,fe, n,m, Alfa,Teta, Cf1,Cf2,dS1,dS2, Cf12,dS12, s3,c3,s3c3,eq,ex,
141 x1,y1,x3,y3, i,j, A,B,C,E,F,G, e4;
142 vr:=op({1,3,5} minus {ve,vi});# vr es la variable de l'eq quartica
143

144 if ve=3 then
145 vx:=vr; # vx is either 1 or 5
146 fe:=2; # sin(ve), cos(ve) will be eliminated with the
147 coefficients of the second ellipse.
148 else
149 vx:=ve;
150 fe:=1; # sin(ve) i cos(ve) will be eliminated with the
151 coefficients of the first ellipse.
152 fi;
153

154 # Preliminary step: elimination of ve form equations Cf1-Cf2=0 and
155 #dS1-dS2=0 to get an equation on vr, vi.
156 Cf12:=A[1]+ B[1]*cos(teta[vx])+ C[1]*sin(teta[vx]) - (A[2]+ B[2]*cos(teta
157 [3]));
158 dS12:=E[1]+ F[1]*cos(teta[vx])+ G[1]*sin(teta[vx]) - (E[2]+ F[2]*cos(teta
159 [3])+ G[2]*sin(teta[3]));
160 C[2]:=0; # the coefficient C of the fixed ellipse is 0.
161

162 s3:=solve(Cf12*F[fe]-dS12*B[fe], sin(teta[ve])); # eliminate cos(teta[ve])
163 and isolate sin(teta[ve])
164 c3:=solve(Cf12*G[fe]-dS12*C[fe], cos(teta[ve])); # eliminate sin(teta[ve])
165 and isolate cos(teta[ve])
166 s3c3:=(s3**2+c3**2-1)*(B[fe]*G[fe]-C[fe]*F[fe])**2; #(sinˆ2+cosˆ2=1)=>eq.
167 in teta[vr] with coefs in teta[vi]
168

169 # Definition of dual variables.
170 for i from 1 to 5 do
171 Alfa[i]:=dual(alfas[i]*Pi/180, as[i]):
172 Teta[i]:=dual(teta[i], ss[i]):
173 od;
174

175 # Definition of the two subchains:
176 n:=evalm(&*(dtz(Alfa[5]), dtx(Teta[5]), dtz(Alfa[1]), dtx(Teta[1]),
177 dtz(Alfa[2]))):
178 m:=evalm(&*(dtz(-Alfa[4]),dtx(-Teta[3]),dtz(-Alfa[3]))):
179

180 #print(n[1,1]);
181 #print(m[1,1]);

113

Attachments

182

183 Cf1:= evalf(partreal(n[1,1]));
184 dS1:=-evalf(partdual(n[1,1]));
185

186 Cf2:= evalf(partreal(m[1,1]));
187 dS2:=-evalf(partdual(m[1,1]));
188

189 ###### Instanciating coeficients of vx, dependent on vi
190 x1:=collect(Cf1,[cos(teta[vx]),sin(teta[vx])]): # expression of the
191 form A + B cos1 + C sin1:
192 A[1]:=evalf(coeff(coeff(x1,cos(teta[vx]),0),sin(teta[vx]),0)):
193 B[1]:=evalf(coeff(x1,cos(teta[vx]),1)):
194 C[1]:=evalf(coeff(x1,sin(teta[vx]),1)):
195

196 y1:=collect(dS1,[cos(teta[vx]),sin(teta[vx])]): # expression of the
197 form E + F cos1 + G sin1:
198 E[1]:=evalf(coeff(coeff(y1,cos(teta[vx]),0),sin(teta[vx]),0)):
199 F[1]:=evalf(coeff(y1,cos(teta[vx]),1)):
200 G[1]:=evalf(coeff(y1,sin(teta[vx]),1)):
201

202 ###### coefficients of teta[3]
203 x3:=collect(Cf2,cos(teta[3])): # expression of the form A + B cos3:
204 A[2]:=evalf(coeff(x3,cos(teta[3]),0)):
205 B[2]:=evalf(coeff(x3,cos(teta[3]),1)):
206

207 y3:=collect(dS2,[cos(teta[3]),sin(teta[3])]):# expression of the form
208 L + M cos3 + N sin3:
209 E[2]:=evalf(coeff(coeff(y3,cos(teta[3]),0),sin(teta[3]),0));
210 F[2]:=evalf(coeff(y3,cos(teta[3]),1)):
211 G[2]:=evalf(coeff(y3,sin(teta[3]),1)):
212

213 s3c3:=eval(s3c3); # Put the values A B C D E F G in s3c3.
214

215 eq:=subs([cos(teta[vr])=(1-T**2)/(1+T**2),sin(teta[vr])=(2*T)/
216 (1+T**2)],s3c3); #Change of variable T=tg(vr/2)
217

218 if vi=3 then ex:=4; else ex:=2; fi;
219 e4:=normal(eval(eq*(1+T**2)**ex)); # equation of 4º or 8º degree in
220 T(vr) (coefficients are functions of vi)
221

222 return([e4,s3,c3]);
223 end:
224

225 ####################################
226 # Check if a configuration (list of 7 variable values) satisfies the loop
227 equation.
228 ##################################
229 checksol:=proc(eqf,teta,ss,conf)
230 local preal, pdual, ok, i,j, v;
231 ok:=1;
232 # Chek rotation part
233 preal:=evalf(subs([teta[1]=conf[1],teta[2]=conf[2],teta[3]=conf[3],teta
234 [4]=conf[4],teta[5]=conf[5],ss[2]=conf[6],ss[4]=conf[7]], partreal(eqf)));
235

236 for i from 1 to 3 do
237 for j from 1 to 3 do
238 if i=j then v:=1; else v:=0; fi;
239 if abs(preal[i,j]-v) > 0.01 then
240 print(cat("wrong value (rotation)", i,j,":", preal[i,j]));

114

Attachments

241 ok:= 0;
242 fi;
243 od;
244 od;
245

246 # check translation
247 pdual:=evalf(subs([teta[1]=conf[1],teta[2]=conf[2],teta[3]=conf[3],teta
248 [4]=conf[4],teta[5]=conf[5],ss[2]=conf[6],ss[4]=conf[7]], partdual(eqf)));
249 for i from 1 to 3 do
250 for j from 1 to 3 do
251 if abs(pdual[i,j]) > 0.05 then
252 print(cat("wrong value (translation)", i,j,":", pdual[i,j]));
253 ok:= 0;
254 fi;
255 od;
256 od;
257

258 return(ok);
259 end:
260

261

262 ########## Parameters Duffy pag 232.
263 alfas:=[10,60,45,35,30];
264 as:= [32,25,30,40,10];
265 ss:=[30,s2,25,s4,0];
266

267

268 ##
269 # Calls for the extreme values of the input variables:
270

271 ### input teta3:
272 RCRCR IO(alfas,as,ss,5,3,11.7635*evalf(Pi)/180);
273 RCRCR IO(alfas,as,ss,5,3,82.74850*evalf(Pi)/180);
274 RCRCR IO(alfas,as,ss,5,3,142.32367*evalf(Pi)/180);
275 RCRCR IO(alfas,as,ss,5,3,150.31600*evalf(Pi)/180);
276 RCRCR IO(alfas,as,ss,5,3,230.73737*evalf(Pi)/180);
277 RCRCR IO(alfas,as,ss,5,3,239.25965*evalf(Pi)/180);
278 RCRCR IO(alfas,as,ss,5,3,244.75766*evalf(Pi)/180);
279 RCRCR IO(alfas,as,ss,5,3,293.99364*evalf(Pi)/180);
280 #
281 RCRCR IO(alfas,as,ss,5,3,92.79834*evalf(Pi)/180);
282 RCRCR IO(alfas,as,ss,5,3,244.49660*evalf(Pi)/180);
283

284 ### input teta1:
285 RCRCR IO(alfas,as,ss,3,1,126.86436*evalf(Pi)/180);
286 RCRCR IO(alfas,as,ss,3,1,168.41779*evalf(Pi)/180);
287 RCRCR IO(alfas,as,ss,3,1,43.97516*evalf(Pi)/180);
288 RCRCR IO(alfas,as,ss,3,1,268.49319*evalf(Pi)/180);
289

290 ### input teta5:
291 RCRCR IO(alfas,as,ss,3,5,50.47197*evalf(Pi)/180);
292 RCRCR IO(alfas,as,ss,3,5,69.35086*evalf(Pi)/180);
293 RCRCR IO(alfas,as,ss,3,5,148.78673*evalf(Pi)/180);
294 RCRCR IO(alfas,as,ss,3,5,307.29955*evalf(Pi)/180);

Referring to the RCRCR IO procedure, the following notation has been adopted:

� alfas, are the five linkage angles αij between pairing axes;

� as, are the five displacement aij along the x axes;

115

Attachments

� ss, are the five displacement si along the z axes;

� ve, is the number of the eliminating variable;

� vi, is the number of the input variable;

� valorvi, is the value of input variable in radiant.

1 ### Plot embedded.txt #####
2

3 ############################### Duoble plot output variable file with an
4 embedded procecess
5

6 ####################################
7

8 RCRRC:=proc(alfas,as,ss,ve,vi,step)
9

10 local vr, T, teta, equs, e4, s3,c3,Cf1,Cf2,dS1,dS2, r1,r3,x,y, i,j,
11 lcolor,sol, solT,solr,sole, puntsir,puntsie,lints, puntsi,Alfa,Teta,eqf,
12 puntsiT2, puntsiT4,puntsiS2,puntsiS4,
13 eqt2,solt2, eqs2,sols2, eqt4,solt4, eqs4,sols4;
14

15

16

17 vr:=op({1,3,5} minus{ve,vi}); # vr es la variable de l'eq de grau 8 e4(T).
18

19

20

21 equs:=eqT(alfas,as,ss,teta,T,x,y,ve,vi); # vi es 3.
22

23

24

25 e4:= equs[1]; # eq de vi=3 i vr=1|5 (<> ve)
26

27 # print('e4'= e4);
28

29 s3:= equs[2]; c3:= equs[3];
30

31 #Cf1:=equs[4]; dS1:=equs[5];
32

33 #Cf2:=equs[6]; dS2:=equs[7];
34

35

36

37 lints:=[]: puntsi:=[]:
38

39 ########################### Part to add the process to evaluate theta2
40 theta4 s2 e s4 ###
41

42 # Definition of dual variables.
43 for i from 1 to 5 do
44 Alfa[i]:=dual(alfas[i]*Pi/180, as[i]):
45 Teta[i]:=dual(teta[i], ss[i]):
46 od;
47

48 # Loop equation (used to successively get the values of remaining
49 variables)
50 eqf:=evalm(&*(dtz(Alfa[5]),dtx(Teta[5]),dtz(Alfa[1]),dtx(Teta

116

Attachments

51 [1]),dtz(Alfa[2]),dtx(Teta[2]),dtz(Alfa[3]),dtx(Teta[3]),dtz(Alfa[4]),dtx
52 (Teta[4]))):
53

54

55

56

57

58

59 ##########Inizialization lists of points to plot#####
60 puntsir:=NULL: puntsie:=NULL: lcolor:=NULL: puntsiT2:=NULL:
61 puntsiT4:=NULL: puntsiS2:=NULL: puntsiS4:=NULL:
62

63 ### Grafics de les solucions del mecanisme per diferents valors de vi.
64

65 for i from 0 by step to evalf(2*Pi) do
66

67 if i=100 then print(ok100) fi;
68 if i=200 then print(ok200) fi;
69

70 sol:= fsolve(evalf(subs(teta[vi]=i,e4)),T); #torna valors per vr
71

72

73

74 for j from 1 to nops([sol]) do
75

76 # si no troba solucions torna una llista buida.
77

78 solT:= op(j,[sol]): # solution per T=tan(vr/2)
79

80 solr:= evalf(arctan((2*solT),(1-solT**2)));
81

82 sole:= evalf(subs([teta[vr]=solr,teta[vi]=i], eval(arctan(s3,c3))));
83

84 puntsir:=[raddeg(i),raddeg(solr)],puntsir;
85

86 puntsie:=[raddeg(i),raddeg(sole)],puntsie;
87

88 lcolor:= black,lcolor;
89

90

91

92 eqt2:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta[vi]=i],
93 evalf(partreal(eqf[1,1])=1)));
94 solt2:=map(Re,op(1,[solve(eqt2,teta[2])]));
95

96 eqs2:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta
97 [vi]=i,teta[2]=solt2], evalf(partdual(eqf[1,1])=0)));
98 sols2:=map(Re,op(1,[solve(eqs2,ss[2])]));
99

100 eqt4:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta
101 [vi]=i,teta[2]=solt2], evalf(partreal(eqf[3,3])=1)));
102 solt4:=map(Re,op(1,[solve(eqt4,teta[4])]));
103

104 eqs4:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta
105 [vi]=i,teta[2]=solt2,teta[4]=solt4, ss[2]=sols2], evalf(partdual(eqf
106 [2,3])=0)));
107 sols4:=map(Re,op(1,[solve(eqs4,ss[4])]));
108

109

117

Attachments

110 puntsiT2:=[raddeg(i),raddeg(solt2)],puntsiT2;
111 puntsiS2:=[raddeg(i),sols2],puntsiS2;
112 puntsiT4:=[raddeg(i),raddeg(solt4)],puntsiT4;
113 puntsiS4:=[raddeg(i),sols4],puntsiS4;
114

115

116

117 od;
118

119 od;
120

121 print(plotRCRCR(vi,vr,ve, [puntsir], [puntsie], [lcolor], lints,
122 puntsi, [puntsiT2], [puntsiT4], [puntsiS2], [puntsiS4])); # dibuix dels
123 resultats.
124

125 #plotRCRCR(3,vr,ve, [puntsir], [puntsie] , [lcolor], lints, puntsi);
126

127 return(lints);
128

129 end:
130

131

132

133 ####################################
134

135 ########## Grafics de les relacions entre angles (1,3,5) del RCRCR.
136

137 ####################################
138

139 plotRCRCR:=proc(vi,vr,ve, puntsi1, puntsi2, col, lint, puntsi,
140 puntsi3, puntsi4, puntsi5,
141 puntsi6)
142

143 local tit, rg, rgs, plotint, plot1, plot2, plot3, plot4, plot5, plot6,
144 plotl, i, ylow, xp;
145

146 ylow:=0;
147

148 plotint:=NULL;
149

150 for i from 1 to nops(lint) do
151

152 plotint:=plotint,plot(ylow,x=lint[i][1]..lint[i][2], thickness=3,
153 color=black);
154

155 od;
156

157

158

159 plotl:=NULL;
160

161 for i from 1 to nops(puntsi) do
162

163 xp:=raddeg(puntsi[i]);
164

165 plotl:=plotl,plot([[xp,0],[xp,360]], color=gray, thickness=0);
166

167 od;
168

118

Attachments

169

170

171 rg:=[0..360,ylow..360];
172

173 rgs:=[0..360,-360..400];
174

175

176

177

178

179 if nops(puntsi1)>0 then
180

181 tit:=cat(`theta`, vr,`(theta`, vi,`) in degrees`):
182

183 plot1:=pointplot(puntsi1, color=col, symbol=point);
184

185 #print(display(pointplot([puntsi1])));
186

187 # print(display({plotint,plot1,plotl}, view=rg, title=tit,
188 scaling=constrained, labels=[vi,vr]));
189

190 print(display({plot1},view=rg,scaling=constrained,labels=[cat
191 (`theta`,vi),cat(`theta`,vr)],axes=boxed));
192

193 #display(plot1,view=rg,scaling=constrained,labels=[cat
194 (`theta`,vi),cat(`theta`,vr)],axes=boxed);
195

196

197

198 fi;
199

200

201 if nops(puntsi2)>0 then
202

203 tit:=cat(`theta`, ve,`(theta`, vi,`) in degrees`):
204

205 plot2:=pointplot(puntsi2, color=col, symbol=point);
206

207 ## print(display({plotl, plotint, plot2}, view=rg, title=tit,
208 scaling=constrained, labels=[vi,ve]));
209

210 print(display({plotl,plotint,plot2},view=rg,scaling=constrained,labels=
211 [cat(`theta`,vi),cat(`theta`,ve)],axes=boxed)):
212

213 fi;
214

215

216 if nops(puntsi3)>0 then
217

218 tit:=cat(`theta`, 2,`(theta`, vi,`) in degrees`):
219

220 plot3:=pointplot(puntsi3, color=col, symbol=point);
221

222

223 print(display({plotl,plotint,plot3},view=rg,scaling=constrained,labels=
224 [cat(`theta`,vi),cat(`theta`,2)],axes=boxed)):
225

226 fi;
227

119

Attachments

228

229 if nops(puntsi4)>0 then
230

231 tit:=cat(`theta`, 4,`(theta`, vi,`) in degrees`):
232

233 plot4:=pointplot(puntsi4, color=col, symbol=point);
234

235

236 print(display({plotl,plotint,plot4},view=rg,scaling=constrained,labels=
237 [cat(`theta`,vi),cat(`theta`,4)],axes=boxed)):
238

239 fi;
240

241

242

243

244 if nops(puntsi5)>0 then
245

246 tit:=cat(`s`, 2,`(theta`, vi,`) in degrees`):
247

248 plot5:=pointplot(puntsi5, color=col, symbol=point);
249

250

251

252 print(display({plot5},view=rgs,scaling=constrained,labels=[cat
253 (`theta`,vi),cat(`s`,2)],axes=boxed)):
254

255 fi;
256

257

258 if nops(puntsi6)>0 then
259

260 tit:=cat(`s`, 4,`(theta`, vi,`) in degrees`):
261

262 plot6:=pointplot(puntsi6, color=col, symbol=point);
263

264

265 print(display({plot6},view=rgs,scaling=constrained,labels=[cat
266 (`theta`,vi),cat(`s`,4)],axes=boxed)):
267

268 fi;
269

270 end:
271

272 RCRRC(alfas,as,ss,5,3,0.001);

120

Attachments

Appendix C

Using the function shown in the appendix B, have been obtained the plots for each d
input variables.

θ1 as input variable

Figure 5.1: Plot, θ1 − θ3.

Figure 5.2: Plot, θ1 − θ5.

121

Attachments

Figure 5.3: Plot, θ1 − θ2.

Figure 5.4: Plot, θ1 − θ4.

122

Attachments

Figure 5.5: Plot, θ1 − s2.

Figure 5.6: Plot, θ1 − s4.

123

Attachments

θ3 as input variable

Figure 5.7: Plot, θ3 − θ1.

Figure 5.8: Plot, θ3 − θ5.

124

Attachments

Figure 5.9: Plot, θ3 − θ2.

Figure 5.10: Plot, θ3 − θ4.

125

Attachments

Figure 5.11: Plot, θ3 − s2.

Figure 5.12: Plot, θ3 − s4.

126

Attachments

θ5 as input variable

Figure 5.13: Plot, θ5 − θ3.

Figure 5.14: Plot, θ5 − θ1.

127

Attachments

Figure 5.15: Plot, θ5 − θ2.

Figure 5.16: Plot, θ5 − θ4.

128

Attachments

Figure 5.17: Plot, θ5 − s2.

Figure 5.18: Plot, θ5 − s4.

129

Attachments

Appendix D

1 ####### Tarea.txt
2 #########Create a procedure to calculate the area of a trangle
3 ###############gives three point
4 AreaT:=proc(A,B,C)
5 local AB,AC,mAB,mAC,cphi,sphi,phi,Area;
6

7

8 AB:=[B[1]-A[1],B[2]-A[2],B[3]-A[3]]; mAB:=sqrt(AB[1]ˆ2+AB[2]ˆ2+AB[3]ˆ2);
9 AC:=[C[1]-A[1],C[2]-A[2],C[3]-A[3]]; mAC:=sqrt(AC[1]ˆ2+AC[2]ˆ2+AC[3]ˆ2);

10

11 cphi:=evalf((evalm(&*(AB,AC)))/(mAB*mAC)); #cosin of phi
12 phi:=acos(cphi);
13 sphi:= sqrt(1-cphiˆ2); #sin of phi
14 Area:=(mAB*mAC*sphi)/2; #Area of the triangle
15

16

17

18 return(Area);
19

20 end:

1 ####### Angle min.txt
2 #########Create a procedure to calculate the angle between two vectors #####
3

4

5 AngleMin:=proc(A,B,C,E)
6 ######### Given 4 points that constitute the two vector AB e CD #######
7 ######### In case of consecutive links A and C are the same point #####
8

9 local phi,Cphi,AB,CE,mAB,mCE;
10

11

12 AB:=[B[1]-A[1],B[2]-A[2],B[3]-A[3]]; mAB:=sqrt(AB[1]ˆ2+AB[2]ˆ2+AB[3]ˆ2);
13 CE:=[E[1]-C[1],E[2]-C[2],E[3]-C[3]]; mCE:=sqrt(CE[1]ˆ2+CE[2]ˆ2+CE[3]ˆ2);
14 #print(AB,CE);
15 #print(cat("The cross product has a value of:",evalm(&*(AB,CE))));
16

17 Cphi:=evalf((evalm(&*(AB,CE)))/(mAB*mCE));
18 phi:=arccos(Cphi);
19 #print(raddeg(phi));
20

21

22 return(raddeg(phi)): #The angle is return in degree
23 end:

1 ##
2

3 EXTRACT:=proc(alfas,as,ss,ve,vi,step)
4

5 global puntT5,confdeg;
6

7

130

Attachments

8 local vr, T, teta, equs, e4, s3,c3,Cf1,Cf2,dS1,dS2, r1,r3,x,y, i,j, lcolor,sol,
9 solT,solr,sole, puntsir,puntsie,lints, puntsi,Alfa,Teta,eqf,puntsiT2,

10 puntsiT4,puntsiS2,puntsiS4,eqt2,solt2, eqs2,sols2, eqt4,solt4, eqs4,sols4,
11 config,k,confdeg1,conf,conf1;
12

13 k:=1:
14

15 vr:=op({1,3,5} minus{ve,vi}); # vr es la variable de l'eq de grau 8 e4(T).
16

17

18

19 equs:=eqT(alfas,as,ss,teta,T,x,y,ve,vi); # vi es 3.
20

21

22

23 e4:= equs[1]; # eq de vi=3 i vr=1|5 (<> ve)
24

25

26 s3:= equs[2]; c3:= equs[3];
27

28

29

30

31

32 lints:=[]: puntsi:=[]:
33

34 ########################### Part to add the process to evaluate theta2
35 ########################### theta4 s2 e s4.
36 # Definition of dual variables.
37 for i from 1 to 5 do
38 Alfa[i]:=dual(alfas[i]*Pi/180, as[i]):
39 Teta[i]:=dual(teta[i], ss[i]):
40 od;
41

42 # Loop equation (used to successively get the values of ...
43 remaining variables)
44 eqf:=evalm(&*(dtz(Alfa[5]),dtx(Teta[5]),dtz(Alfa[1]),dtx(Teta[1])...
45 ,dtz(Alfa[2]),dtx(Teta[2]),dtz(Alfa[3]),dtx(Teta[3]),dtz(Alfa[4])...
46 ,dtx(Teta[4]))):
47

48

49 ##########Inizialization lists of points to plot############################
50 puntsir:=NULL: puntsie:=NULL: lcolor:=NULL: puntsiT2:=NULL:
51 puntsiT4:=NULL: puntsiS2:=NULL: puntsiS4:=NULL: puntT5:=NULL:
52

53 confdeg:=Matrix(300,7):
54 conf:=Matrix(300,7):
55 ############################### First Branch #################################
56

57 for i from 2.6 by step to 5.4 do
58

59

60 sol:= fsolve(evalf(subs(teta[vi]=i,e4)),T); #torna valors per vr
61

62

63

64 for j from 1 to nops([sol]) do
65

66 solT:= op(j,[sol]): # solucio per T=tan(vr/2)

131

Attachments

67

68 solr:= evalf(arctan((2*solT),(1-solT**2)));
69

70 sole:= evalf(subs([teta[vr]=solr,teta[vi]=i], eval(arctan(s3,c3))));
71

72 puntsir:=[raddeg(i),raddeg(solr)],puntsir;
73

74 puntsie:=[raddeg(i),raddeg(sole)],puntsie;
75 if j=1 then
76 lcolor:= black,lcolor
77 elif j=2 then
78 lcolor:= red,lcolor
79 elif j=3 then
80 lcolor:= green,lcolor
81 else
82 lcolor:= blue,lcolor
83 fi;
84

85

86

87 eqt2:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta[vi]=i],...
88 evalf(partreal(eqf[1,1])=1)));
89 solt2:=map(Re,op(1,[solve(eqt2,teta[2])]));
90

91 eqs2:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta[vi]=i,...
92 teta[2]=solt2], evalf(partdual(eqf[1,1])=0)));
93 sols2:=map(Re,op(1,[solve(eqs2,ss[2])]));
94

95 eqt4:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta[vi]=i,...
96 teta[2]=solt2], evalf(partreal(eqf[3,3])=1)));
97 solt4:=map(Re,op(1,[solve(eqt4,teta[4])]));
98

99 eqs4:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta[vi]=i,...
100 teta[2]=solt2,teta[4]=solt4, ss[2]=sols2],..
101 evalf(partdual(eqf[2,3])=0)));
102 sols4:=map(Re,op(1,[solve(eqs4,ss[4])]));
103

104

105 puntsiT2:=[raddeg(i),raddeg(solt2)],puntsiT2;
106 puntsiS2:=[raddeg(i),sols2],puntsiS2;
107 puntsiT4:=[raddeg(i),raddeg(solt4)],puntsiT4;
108 puntsiS4:=[raddeg(i),sols4],puntsiS4;
109

110

111 if j=3 then
112 config:=[0,solt2, 0, solt4, 0, sols2, sols4];
113 config[vi]:=i;
114 config[ve]:=sole;
115 config[vr]:=solr;
116 confdeg[k,1..7]:=<raddeg(config[1]), raddeg(config[2]), ...
117 raddeg(config[3]), raddeg(config[4]), raddeg(config[5]),...
118 sols2, sols4>;
119 conf[k,1..7]:=<config[1], config[2], config[3],...
120 config[4], config[5], sols2, sols4>;
121 k:=k+1;
122 fi
123

124

125 od;

132

Attachments

126

127

128 od;
129

130 ################################ Second Branch ######################
131 for i from 5.3 by -step to 2.6 do
132

133

134 sol:= fsolve(evalf(subs(teta[vi]=i,e4)),T); #torna valors per vr
135

136

137

138 for j from 1 to nops([sol]) do
139

140

141 # si no troba solucions torna una llista buida.
142

143 solT:= op(j,[sol]): # solucio per T=tan(vr/2)
144

145 solr:= evalf(arctan((2*solT),(1-solT**2)));
146

147 sole:= evalf(subs([teta[vr]=solr,teta[vi]=i], eval(arctan(s3,c3))));
148

149 puntsir:=[raddeg(i),raddeg(solr)],puntsir;
150

151 puntsie:=[raddeg(i),raddeg(sole)],puntsie;
152

153 if j=1 then
154 lcolor:= black,lcolor
155 elif j=2 then
156 lcolor:= red,lcolor
157 elif j=3 then
158 lcolor:= green,lcolor
159 else
160 lcolor:= blue,lcolor
161 fi;
162

163

164

165 eqt2:=evalf(subs([teta[vr]=solr,teta[ve]=sole,...
166 teta[vi]=i], evalf(partreal(eqf[1,1])=1)));
167 solt2:=map(Re,op(1,[solve(eqt2,teta[2])]));
168

169 eqs2:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta[vi]=i,...
170 teta[2]=solt2], evalf(partdual(eqf[1,1])=0)));
171 sols2:=map(Re,op(1,[solve(eqs2,ss[2])]));
172

173 eqt4:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta[vi]=i,...
174 teta[2]=solt2], evalf(partreal(eqf[3,3])=1)));
175 solt4:=map(Re,op(1,[solve(eqt4,teta[4])]));
176

177 eqs4:=evalf(subs([teta[vr]=solr,teta[ve]=sole,teta[vi]=i,....
178 teta[2]=solt2,teta[4]=solt4, ss[2]=sols2], ...
179 evalf(partdual(eqf[2,3])=0)));
180 sols4:=map(Re,op(1,[solve(eqs4,ss[4])]));
181

182

183 puntsiT2:=[raddeg(i),raddeg(solt2)],puntsiT2;
184 puntsiS2:=[raddeg(i),sols2],puntsiS2;

133

Attachments

185 puntsiT4:=[raddeg(i),raddeg(solt4)],puntsiT4;
186 puntsiS4:=[raddeg(i),sols4],puntsiS4;
187

188

189 if j=2 then
190 config:=[0,solt2, 0, solt4, 0, sols2, sols4];
191 config[vi]:=i;
192 config[ve]:=sole;
193 config[vr]:=solr;
194 confdeg[k,1..7]:=<raddeg(config[1]), raddeg(config[2]),...
195 raddeg(config[3]), raddeg(config[4]), raddeg(config[5])...
196 , sols2, sols4>; #Degrees
197 conf[k,1..7]:=<config[1], config[2], config[3], ...
198 config[4], config[5], sols2, sols4>; #Radiants
199 k:=k+1;
200 fi
201

202

203 od;
204

205

206 od;
207

208 ###
209

210 conf1:= Matrix(k-1,7):
211 conf1[1..k-1,1..7]:= conf[1..k-1,1..7]:
212

213 ###################################
214 confdeg1:= Matrix(k-1,7):
215 confdeg1[1..k-1,1..7]:= confdeg[1..k-1,1..7]:
216

217 return(conf1,k,confdeg1):
218

219 end:
220

221

222 #EXTRACT(alfas,as,ss,3,5,0.1);

1

2 ###### Shape study.txt
3 ###### Simulation Links with maple tools ###################
4

5 ############# Read useful procdures ###
6 read cat(path, `Tarea.txt`);
7 read cat(path, `Detect collision.txt`);
8 read cat(path, `Check Instant v02.txt`);
9 read cat(path, `Angle min.txt`);

10 read cat(path, `Distance.txt`);
11 read cat(path, `Extract point.txt`);
12

13

14 ############# Adding Library ###################################
15 with(plots): with(Typesetting): with(plottools): with(LinearAlgebra):
16

17

18 ############################ Start Script #########################
19 config:=EXTRACT(alfas,as,ss,3,5,0.1);

134

Attachments

20

21

22 # Conversion of the alphas in radiants
23 alfasd:=[degrad(alfas[1]),degrad(alfas[2]),degrad(alfas[3]),degrad(alfas[4])...
24 ,degrad(alfas[5])]:
25

26 Mconfig:=config[1]: #Matrix with angles in radiant
27 k:=config[2]: #Dimension of the matrix
28 Mconfigdeg:=config[3]: #Matrix with angles in degree
29

30 puntO1:=NULL: puntO1i:=NULL: puntO1f:=NULL: puntO1a:=NULL: puntO1b:=NULL:
31 puntO2:=NULL: puntO2V:=NULL: puntO2F:=NULL: puntO2I:=NULL: puntO2N:=NULL:
32 puntO3:=NULL:
33 puntO4:=NULL: puntO4V:=NULL: puntO4F:=NULL:
34 puntO5:=NULL: puntO1A:=NULL: puntO5A:=NULL:
35 puntO2a:=NULL: puntO2b:=NULL:
36 puntO2Va:=NULL: puntO2Vb:=NULL:
37 puntO3a:=NULL: puntO3b:=NULL:
38 puntO4a:=NULL: puntO4b:=NULL:
39 puntO4Va:=NULL: puntO4Vb:=NULL:
40 puntO5a:=NULL: puntO5b:=NULL:
41

42

43

44 psdM51i44F:=0:
45 psdM1i2N2V3:=0:
46 psdM2I2F44F:=0:
47 psdM1i2N34:=0:
48 psdM2I2F34:=0:
49 psdM1i2N44F:=0:
50 psdM1i2N4V5:=0:
51 psdM2V344F:=0:
52 psdM2I2F4V5:=0:
53 psdM2I2F51i:=0:
54 psdM2V34V5:=0:
55 psdM2V351i:=0:
56 psdM344V5:=0:
57 psdM3451i:=0:
58

59 # mf is the multiplication factor
60

61 psdMJ1J2V:=0: psdMJ1J3:=0: psdMJ1J4V:=0: psdMJ1J5:=0:
62 psdMJ2VJ3:=0: psdMJ2VJ4V:=0: psdMJ2VJ5:=0:
63 psdMJ3J5:=1:
64 psdMJ4J5:=0:
65

66

67 MaxS2:=max(Mconfig[..,6]):
68 MinS2:=min(Mconfig[..,6]):
69

70 MaxS4:=min(Mconfig[..,7]):
71

72 er:=5: #Is the error in degrees between two consecutive couple
73 hl:=5*mf: : #joint lenght
74 think:=20: #thickness of the lines in the plot
75 radiu:=22.5: #radius of the spheres that simulates the joint envelope
76 epsi:=0.5: # Error for the link
77 epsj:=20 : #Error for the joint
78

135

Attachments

79 LINK:=NULL:
80 NLINK:=NULL:
81

82 ##
83

84 origin:=[[1,1,1],[-1,1,1],[-1,-1,1],[1,-1,1],[1,-1,-1],[-1,-1,-1],[-1,1,-1]...
85 ,[1,1,-1],[1,1,1],[1,-1,1]]:
86 ori:=spacecurve(origin,title=" center",color=blue,labels=[x, y, z],...
87 titlefont= ["ROMAN", 15],scaling=constrained):
88

89

90 ###
91

92

93 for i from 1 by 1 to k-1 do
94

95 O1P:=[0,0,0];
96

97 O1i:=evalf(evalm(&*(Tx(80*mf)))):
98 O1iP:=[O1i[1,4],O1i[2,4],O1i[3,4]]:
99 puntO1i:=puntO1i,O1iP:

100

101 O1f:=evalf(evalm(&*(Tx(-60*mf)))):
102 O1fP:=[O1f[1,4],O1f[2,4],O1f[3,4]]:
103 puntO1f:=puntO1f,O1fP:
104

105

106 ##
107

108 O2:=evalf(evalm(&*(Rx(Mconfig[i,1]),Tx(ss[1]),Tz(as[2]),Rz(alfasd[2])))):
109 O2P:=[O2[1,4],O2[2,4],O2[3,4]]:
110 puntO2:=puntO2,O2P:
111

112 # # # # # # # # #
113

114 O2V:=evalf(evalm(&*(O2,Rx(Mconfig[i,2]),Tx(Mconfig[i,6])))):
115 O2PV:=[O2V[1,4],O2V[2,4],O2V[3,4]]:
116 puntO2V:=puntO2V,O2PV:
117

118

119

120 # # # # #
121

122 O2F:=evalf(evalm(&*(O2,Tx(MaxS2)))):
123 O2PF:=[O2F[1,4],O2F[2,4],O2F[3,4]]:
124 puntO2F:=puntO2F,O2PF:
125

126 # # # # #
127 (* ##Is the old O2I
128 O2I:=evalf(evalm(&*(O2,Tx(MinS2)))):
129 O2PI:=[O2I[1,4],O2I[2,4],O2I[3,4]]:
130 puntO2I:=puntO2I,O2PI:
131 *)
132

133 # # # New Part that we link at O1
134 O2N:=evalf(evalm(&*(O2,Tx(evalf(MinS2-5*mf))))):
135 O2PN:=[O2N[1,4],O2N[2,4],O2N[3,4]]:
136 puntO2N:=puntO2N,O2PN:
137

136

Attachments

138 # # # # #
139 O2I:= O2N:
140 O2PI:= O2PN:
141 puntO2I:= puntO2N:
142

143

144 ##
145

146 O3:=evalf(evalm(&*(O2,Rx(Mconfig[i,2]),Tx(Mconfig[i,6]),Tz(as[3]),...
147 Rz(alfasd[3])))):
148 O3P:=[O3[1,4],O3[2,4],O3[3,4]]:
149 puntO3:=puntO3,O3P:
150

151 #####
152

153 O4:=evalf(evalm(&*(O3,Rx(Mconfig[i,3]),Tx(ss[3]),Tz(as[4]),...
154 Rz(alfasd[4])))):
155 O4P:=[O4[1,4],O4[2,4],O4[3,4]]:
156 puntO4:=puntO4,O4P:
157

158 # # # # # # # #
159

160 O4V:=evalf(evalm(&*(O4,Rx(Mconfig[i,4]),Tx(Mconfig[i,7])))):
161 O4PV:=[O4V[1,4],O4V[2,4],O4V[3,4]]:
162 puntO4V:=puntO4V,O4PV:
163

164

165 # # # #
166

167 O4F:=evalf(evalm(&*(O4,Tx(MaxS4)))):
168 O4PF:=[O4F[1,4],O4F[2,4],O4F[3,4]]:
169 puntO4F:=puntO4F,O4PF:
170

171

172 ##
173

174 O5:=evalf(evalm(&*(O4,Rx(Mconfig[i,4]),Tx(Mconfig[i,7]),Tz(as[5]),...
175 Rz(alfasd[5])))):
176 O5P:=[O5[1,4],O5[2,4],O5[3,4]]:
177 puntO5:=puntO5,O5P:
178

179

180

181

182 ######################### Build the joints with the lines ##########
183 O1a:=evalf(evalm(&*(O1i,Tx(hl)))):
184 O1aP:=[O1a[1,4],O1a[2,4],O1a[3,4]]:
185 puntO1a:=puntO1a,O1aP:
186

187 O1b:=evalf(evalm(&*(O1i,Tx(-hl)))):
188 O1bP:=[O1b[1,4],O1b[2,4],O1b[3,4]]:
189 puntO1b:=puntO1b,O1bP:
190

191 # # # # #
192 O2a:=evalf(evalm(&*(O2,Tx(hl)))):
193 O2aP:=[O2a[1,4],O2a[2,4],O2a[3,4]]:
194 puntO2a:=puntO2a,O2aP:
195

196 O2b:=evalf(evalm(&*(O2,Tx(-hl)))):

137

Attachments

197 O2bP:=[O2b[1,4],O2b[2,4],O2b[3,4]]:
198 puntO2b:=puntO2b,O2bP:
199

200

201 # # # # #
202 O2Va:=evalf(evalm(&*(O2V,Tx(hl)))):
203 O2VaP:=[O2Va[1,4],O2Va[2,4],O2Va[3,4]]:
204 puntO2Va:=puntO2Va,O2VaP:
205

206 O2Vb:=evalf(evalm(&*(O2V,Tx(-hl)))):
207 O2VbP:=[O2Vb[1,4],O2Vb[2,4],O2Vb[3,4]]:
208 puntO2Vb:=puntO2Vb,O2VbP:
209

210

211 # # # #
212 O3a:=evalf(evalm(&*(O3,Tx(hl)))):
213 O3aP:=[O3a[1,4],O3a[2,4],O3a[3,4]]:
214 puntO3a:=puntO3a,O3aP:
215

216 O3b:=evalf(evalm(&*(O3,Tx(-hl)))):
217 O3bP:=[O3b[1,4],O3b[2,4],O3b[3,4]]:
218 puntO3b:=puntO3b,O3bP:
219

220

221 # # # # #
222 O4a:=evalf(evalm(&*(O4,Tx(hl)))):
223 O4aP:=[O4a[1,4],O4a[2,4],O4a[3,4]]:
224 puntO4a:=puntO4a,O4aP:
225

226 O4b:=evalf(evalm(&*(O4,Tx(-hl)))):
227 O4bP:=[O4b[1,4],O4b[2,4],O4b[3,4]]:
228 puntO4b:=puntO4b,O4bP:
229

230

231 # # # # #
232 O4Va:=evalf(evalm(&*(O4V,Tx(hl)))):
233 O4VaP:=[O4Va[1,4],O4Va[2,4],O4Va[3,4]]:
234 puntO4Va:=puntO4Va,O4VaP:
235

236 O4Vb:=evalf(evalm(&*(O4V,Tx(-hl)))):
237 O4VbP:=[O4Vb[1,4],O4Vb[2,4],O4Vb[3,4]]:
238 puntO4Vb:=puntO4Vb,O4VbP:
239

240 # # # # #
241 O5a:=evalf(evalm(&*(O5,Tx(hl)))):
242 O5aP:=[O5a[1,4],O5a[2,4],O5a[3,4]]:
243 puntO5a:=puntO5a,O5aP:
244

245 O5b:=evalf(evalm(&*(O5,Tx(-hl)))):
246 O5bP:=[O5b[1,4],O5b[2,4],O5b[3,4]]:
247 puntO5b:=puntO5b,O5bP:
248

249

250 if i=1 then
251 ##### Link O1 to O2N ##
252

253 LINK1i2N:=[[O1iP[1],O1iP[2],O1iP[3]],[O2PN[1],O2PN[2],O2PN[3]]]:
254 link1i2N:=spacecurve(LINK1i2N,color=purple):
255 S1:=sqrt((O2PN[1]-O1iP[1])ˆ2+(O2PN[2]-O1iP[2])ˆ2+(O2PN[3]-O1iP[3])ˆ2):

138

Attachments

256

257 ###
258 LINK22I:=[[O2P[1],O2P[2],O2P[3]],[O2PI[1],O2PI[2],O2PI[3]]]:
259 link22I:=spacecurve(LINK22I,color=pink):
260

261

262 ###
263 LINK22F:=[[O2P[1],O2P[2],O2P[3]],[O2PF[1],O2PF[2],O2PF[3]]]:
264 link22F:=spacecurve(LINK22F,color=pink):
265

266 ###
267 LINK44F:=[[O4P[1],O4P[2],O4P[3]],[O4PF[1],O4PF[2],O4PF[3]]]:
268 link44F:=spacecurve(LINK44F,color=pink):
269

270

271 ###
272

273 ##### Link O2V to O3 ##
274

275 LINK2V3:=[[O2PV[1],O2PV[2],O2PV[3]],[O3P[1],O3P[2],O3P[3]]]:
276 link2V3:=spacecurve(LINK2V3,color=purple):
277 S2:=sqrt((O3P[1]-O2PV[1])ˆ2+(O3P[2]-O2PV[2])ˆ2+(O3P[3]-O2PV[3])ˆ2):
278

279 ##### Link O3 to O4 ###
280

281 LINK34:=[[O3P[1],O3P[2],O3P[3]],[O4P[1],O4P[2],O4P[3]]]:
282 link34:=spacecurve(LINK34,color=purple):
283 S3:=sqrt((O4P[1]-O3P[1])ˆ2+(O4P[2]-O3P[2])ˆ2+(O4P[3]-O3P[3])ˆ2):
284

285 ##### Link O4V to O5 ##
286

287 LINK4V5:=[[O4PV[1],O4PV[2],O4PV[3]],[O5P[1],O5P[2],O5P[3]]]:
288 link4V5:=spacecurve(LINK4V5,color=purple):
289 S4:=sqrt((O5P[1]-O4PV[1])ˆ2+(O5P[2]-O4PV[2])ˆ2+(O5P[3]-O4PV[3])ˆ2):
290

291 ##### Link O1i changhed to O5 ##### BUT US FIXED ####################
292

293 LINK1i5:=[[O1iP[1],O1iP[2],O1iP[3]],[O5P[1],O5P[2],O5P[3]]]:
294 link1i5:=spacecurve(LINK1i5,color=purple):
295 S5:=sqrt((O5P[1]-O1iP[1])ˆ2+(O5P[2]-O1iP[2])ˆ2+(O5P[3]-O1iP[3])ˆ2):
296

297 ##### Displacement s2 ###
298

299 DISP2:=[[O2P[1],O2P[2],O2P[3]],[O2PV[1],O2PV[2],O2PV[3]]]:
300 disp2:=spacecurve(DISP2,color=orange):
301 D2:=sqrt((O2P[1]-O2PV[1])ˆ2+(O2P[2]-O2PV[2])ˆ2+(O2P[3]-O2PV[3])ˆ2):
302

303

304 ##### Displacement s4 ##
305

306 DISP4:=[[O4P[1],O4P[2],O4P[3]],[O4PV[1],O4PV[2],O4PV[3]]]:
307 disp4:=spacecurve(DISP4,color=orange):
308 D4:=sqrt((O4P[1]-O4PV[1])ˆ2+(O4P[2]-O4PV[2])ˆ2+(O4P[3]-O4PV[3])ˆ2):
309

310 fi;
311

312

313

314

139

Attachments

315 ##################### Crossing analysis Link 51i with 44F ##############
316 nam:="NCC------For 51i44F":
317 psdM51i44F:=col dec Is(O1iP,O5P,O4P,O4PF,nam,psdM51i44F,i,epsi):
318

319

320 ##################### Crossing analysis Link 1i2N with 2V3 ############
321 nam:="NCC------For 1i2N2V3":
322 psdM1i2N2V3:=col dec Is(O1iP,O2PN,O2PV,O3P,nam,psdM1i2N2V3,i,epsi):
323

324

325 ##################### Crossing analysis Link 2I2F with 44F ###########
326 nam:="NCC------For 2I2F44F":
327 psdM2I2F44F:=col dec Is(O2PI,O2PF,O4P,O4PF,nam,psdM2I2F44F,i,epsi):
328

329

330 ##################### Crossing analysis Link 1i2N with 34 ############
331 nam:="NCC------For 1i2N34":
332 psdM1i2N34:=col dec Is(O1iP,O2PN,O3P,O4P,nam,psdM1i2N34,i,epsi):
333

334

335 #NB The 2I is automatically changed and pose equal to the 2N
336 ##################### Crossing analysis Link 2I2F with 34 ###########
337 nam:="NCC------For 2I2F34":
338 psdM2I2F34:=col dec Is(O2PI,O2PF,O3P,O4P,nam,psdM2I2F34,i,epsi):
339

340

341

342 ##################### Crossing analysis Link 1i2N with 44F #############
343 nam:="NCC------For 1i2N44F":
344 psdM1i2N44F:=col dec Is(O1iP,O2PN,O4P,O4PF,nam,psdM1i2N44F,i,epsi):
345

346

347

348 ##################### Crossing analysis Link 1i2N with 4V5 #############
349 nam:="NCC------For 1i2N4V5":
350 psdM1i2N4V5:=col dec Is(O1iP,O2PN,O4PV,O5P,nam,psdM1i2N4V5,i,epsi):
351

352

353

354 ##################### Crossing analysis Link 2V3 with 44F ###############
355 nam:="NCC------For 2V344F":
356 psdM2V344F:=col dec Is(O2PV,O3P,O4P,O4PF,nam,psdM2V344F,i,epsi):
357

358

359

360 ##################### Crossing analysis Link 2I2F with 4V5 #############
361 nam:="NCC------For 2I2F4V5":
362 psdM2I2F4V5:=col dec Is(O2PI,O2PF,O4PV,O5P,nam,psdM2I2F4V5,i,epsi):
363

364

365

366 ##################### Crossing analysis Link 2I2F with 51i #############
367 nam:="NCC------For 2I2F51i":
368 psdM2I2F51i:=col dec Is(O2PI,O2PF,O1iP,O5P,nam,psdM2I2F51i,i,epsi):
369

370

371

372 ##################### Crossing analysis Link 2V3 with 4V5 #############
373 nam:="NCC------For 2V34V5":

140

Attachments

374 psdM2V34V5:=col dec Is(O2PV,O3P,O4PV,O5P,nam,psdM2V34V5,i,epsi):
375

376

377

378 ##################### Crossing analysis Link 2V3 with 51i #############
379 nam:="NCC------For 2V351i":
380 psdM2V351i:=col dec Is(O2PV,O3P,O5P,O1iP,nam,psdM2V351i,i,epsi):
381

382

383 ##################### Crossing analysis Link 34 with 4V5 ##################
384 nam:="NCC------For 344V5":
385 psdM344V5:=col dec Is(O3P,O4P,O4PV,O5P,nam,psdM344V5,i,epsi):
386

387

388 ##################### Crossing analysis Link 34 with 51i ####################
389 nam:="NCC------For 3451i":
390 psdM3451i:=col dec Is(O3P,O4P,O5P,O1iP,nam,psdM3451i,i,epsi):
391

392

393

394 ############################ Checking the joint envelope################
395 ################ Joint collision detetection ############################
396 nam:="JOINTS------For J1 and J2V":
397 psdMJ1J2V:=col dec Is(O1aP,O1bP,O2VaP,O2VbP,nam,psdMJ1J2V,i,epsj):
398

399 nam:="JOINTS------For J1 and J3":
400 psdMJ1J3:=col dec Is(O1aP,O1bP,O3aP,O3bP,nam,psdMJ1J3,i,epsj):
401

402 nam:="JOINTS------For J1 and J4V":
403 psdMJ1J4V:=col dec Is(O1aP,O1bP,O4VaP,O4VbP,nam,psdMJ1J4V,i,epsj):
404

405 nam:="JOINTS------For J1 and J5":
406 psdMJ1J5:=col dec Is(O1aP,O1bP,O5aP,O5bP,nam,psdMJ1J5,i,epsj):
407

408 nam:="JOINTS------For J2V and J4V":
409 psdMJ2VJ4V:=col dec Is(O2VaP,O2VbP,O4VaP,O4VbP,nam,psdMJ2VJ4V,i,epsj):
410

411 nam:="JOINTS------For J2V and J5":
412 psdMJ2VJ5:=col dec Is(O2VaP,O2VbP,O5aP,O5bP,nam,psdMJ2VJ5,i,epsj):
413

414 nam:="JOINTS------For J3 and J4V":
415 psdMJ3J4V:=col dec Is(O3aP,O3bP,O4VaP,O4VbP,nam,psdMJ3J4V,i,epsj):
416 nam:="JOINTS------For J3 and J5":
417 psdMJ3J5:=col dec Is(O3aP,O3bP,O5aP,O5bP,nam,psdMJ3J5,i,epsj):
418

419

420

421

422 ################### Checking the joint envelope with sphere ##############
423 # # # # #
424 D1i2V:=Dist(O1iP,O2PV);
425 if D1i2V<2*radiu then
426 print(cat("The joint 1i and 2V are to close, the distance is:"...
427 ,D1i2V,"At the frame",i));
428 flag det:=1;
429 fi;
430 # # # #
431

432

141

Attachments

433 # # # #
434 D1i3:=Dist(O1iP,O3P);
435 if D1i3<2*radiu then
436 print(cat("The joint 1i and 3 are to close, the distance is:"...
437 ,D1i3,"At the frame",i));
438 flag det:=1;
439 fi;
440 # # # #
441

442

443 # # # #
444 D1i4:=Dist(O1iP,O4P);
445 if D1i4<2*radiu then
446 print(cat("The joint 1i and 4 are to close, the distance is:"...
447 ,D1i4,"At the frame",i));
448 flag det:=1;
449 fi;
450 # # # #
451

452

453 # # # #
454 D1i4V:=Dist(O1iP,O4PV);
455 if D1i4V<2*radiu then
456 print(cat("The joint 1i and 4V are to close, the distance is:"...
457 ,D1i4V,"At the frame",i));
458 flag det:=1;
459 fi;
460 # # # #
461

462

463

464 # # # #
465 D1i5:=Dist(O1iP,O5P);
466 if D1i5<2*radiu then
467 print(cat("The joint 1i and 5 are to close, the distance is:"...
468 ,D1i5,"At the frame",i));
469 flag det:=1;
470 fi;
471 # # # #
472

473

474

475 D23:=Dist(O2PV,O3P);
476 if D23<2*radiu then
477 print(cat("The joint 2V and 3 are to close, the distance is:"...
478 ,D23,"At the frame",i));
479 flag det:=1;
480 fi;
481 # # # #
482

483 # # # #
484 D24:=Dist(O2PV,O4P);
485 if D24<2*radiu then
486 print(cat("The joint 2V and 4 are to close, the distance is:"...
487 ,D24,"At the frame",i));
488 flag det:=1;
489 fi;
490 # # # #
491

142

Attachments

492

493 # # # #
494 D24V:=Dist(O2PV,O4PV);
495 if D24V<2*radiu then
496 print(cat("The joint 2V and 4V are to close, the distance is:"...
497 ,D24V,"At the frame",i));
498 flag det:=1;
499 fi;
500 # # # #
501

502

503

504 # # # #
505 D25:=Dist(O2PV,O5P);
506 if D25<2*radiu then
507 print(cat("The joint 2V and 5 are to close, the distance is:"...
508 ,D25,"At the frame",i));
509 flag det:=1;
510 fi;
511 # # # #
512

513

514 # # # #
515 D2V4:=Dist(O2PV,O4P);
516 if D2V4<2*radiu then
517 print(cat("The joint 2V and 4 are to close, the distance is:"...
518 ,D2V4,"At the frame",i));
519 flag det:=1;
520 fi;
521 # # # #
522

523

524 D2V4V:=Dist(O2PV,O4PV);
525 if D2V4V<2*radiu then
526 print(cat("The joint 2V and 4V are to close, the distance is:"...
527 ,D2V4V,"At the frame",i));
528 flag det:=1;
529 fi;
530 # # # #
531

532

533

534 # # # #
535 D2V5:=Dist(O2PV,O5P);
536 if D2V5<2*radiu then
537 print(cat("The joint 2V and 5 are to close, the distance is:"...
538 ,D2V5,"At the frame",i));
539 flag det:=1;
540 fi;
541 # # # #
542

543

544 # # # #
545 D34V:=Dist(O3P,O4PV);
546 if D34V<2*radiu then
547 print(cat("The joint 3 and 4V are to close, the distance is:"...
548 ,D34V,"At the frame",i));
549 flag det:=1;
550 fi;

143

Attachments

551 # # # #
552

553

554

555 # # # #
556 D35:=Dist(O3P,O5P);
557 if D25<2*radiu then
558 print(cat("The joint 3 and 5 are to close, the distance is:"...
559 ,D35,"At the frame",i));
560 flag det:=1;
561 fi;
562 # # # #
563

564 D45:=Dist(O4PV,O5P);
565 if D45<2*radiu then
566 print(cat("The joint 4V and 5 are to close, the distance is:"...
567 ,D45,"At the frame",i));
568 flag det:=1;
569 fi;
570 # # # #
571

572

573

574 ####################### Finishing the cicle for ####################
575 od:
576

577

578

579

580 ############### Is the link 5 to 1 ##################################
581 LINK:=[[O1iP[1],O1iP[2],O1iP[2]],[O5P[1],O5P[2],O5P[3]]]:
582 link:=spacecurve(LINK,title=" LINK between O5 and O1",color=violet,...
583 labels=[x, y, z],titlefont = ["ROMAN", 15],scaling=constrained):
584

585

586

587

588 ori2:=spacecurve([puntO2],title="O2 joint center",color=black,...
589 labels=[x, y, z],titlefont = ["ROMAN", 15],scaling=constrained):
590 display({ori2},{ori},thickness=8);
591

592 ori3:=spacecurve([puntO3],title="O3 joint center",color=green,...
593 labels=[x, y, z],
594 titlefont = ["ROMAN", 15],scaling=constrained):
595 display({ori3},{ori},thickness=8);
596

597 ori4:=spacecurve([puntO4],title="O4 joint center",color=yellow,...
598 labels=[x, y, z],
599 titlefont = ["ROMAN", 15],scaling=constrained):
600 display({ori4},{ori},thickness=8);
601

602 ori5:=spacecurve([puntO5],title="O5 joint center",color=coral,...
603 labels=[x, y, z],
604 titlefont = ["ROMAN", 15],scaling=constrained):
605 display({ori5},{ori},thickness=8);
606

607 display({ori5},{ori},{link},thickness=8,title="O5 and O1 ...
608 with link 5 to 1");
609

144

Attachments

610 display({ori},{ori5},{ori2},{ori3},{ori4},thickness=8,...
611 title="All shapes of the reference frames");
612 Allshapes:=display({ori},{ori5},{ori2},{ori3},{ori4},...
613 thickness=8,title="All shapes of the reference frames"):
614

615 lg := mrow(mn("\n ",mathbackground=red),
616 mn(" "), Typesetting:-Typeset(O1),
617

618 mn("\ \ ",mathbackground=black),
619 mn(" "), Typesetting:-Typeset(O2),
620

621 mn("\n ",mathbackground=green),
622 mn(" "), Typesetting:-Typeset(O3),
623

624 mn(" ",mathbackground=yellow),
625 mn(" "), Typesetting:-Typeset(O4),
626

627 mn("\n ",mathbackground=coral),
628 mn(" "), Typesetting:-Typeset(O5),
629

630 mn("\n ",mathbackground=purple),
631 mn("\ \ "), Typesetting:-Typeset(Link51)):
632

633 display({ori},{ori5},{ori2},{ori3},{ori4},{link},thickness=8,...
634 title="All shapes with link 51",caption=lg);
635

636 print("Identity matrix");
637 i:=33:
638 evalf(evalm(&*(Rx(Mconfig[i,1]),Tx(ss[1]),Tz(as[2]),Rz(alfasd[2]),...
639 Rx(Mconfig[i,2]),Tx(Mconfig[i,6]),Tz(as[3]),Rz(alfasd[3]),...
640 Rx(Mconfig[i,3]),Tx(ss[3]),Tz(as[4]),Rz(alfasd[4]),...
641 Rx(Mconfig[i,4]),Tx(Mconfig[i,7]),Tz(as[5]),Rz(alfasd[5]),...
642 Rx(Mconfig[i,5]),Tx(ss[5]),Tz(as[1]),Rz(alfasd[1]))));
643

644 display({ori},{ori5},{ori2},{ori3},{ori4},{link},{link1i2N},...
645 {link2V3},{link34},{link4V5},{link22F},{link22I},{link44F},{disp2},...
646 {disp4},thickness=8,title="All shapes with ALL THE LINKS...
647 in a generic instant");
648

649

650

651 display({ori},{ori5},{link},{link1i2N},{link2V3},{link34},...
652 {link4V5},{link22F},{link22I},{link44F},{disp2},{disp4},...
653 thickness=8,title="All shapes with,Only, ALL THE LINKS ...
654 in a generic instant");
655

656 ########### Costruction Video with animate ######################
657

658 ### Build the single animations of the
659 ##links (starting from the link 1 to 2) ###########
660

661 # # # # # # # # # # # Link O1 to O2 # # #
662 l1i1f := [seq([puntO1f[t],puntO1i[t]], t = 1 .. k-1)]:
663 L1i1f:=animate(spacecurve, [l1i1f [trunc(j)]],j=1..k-1,frames=k-1,...
664 thickness=2,color=green):
665

666

667 # # # # # # # # # # # Link O1 to O2N # # #
668 l1i2N := [seq([puntO1i[t],puntO2N[t]], t = 1 .. k-1)]:

145

Attachments

669 L1i2N:=animate(spacecurve, [l1i2N[trunc(j)]],j=1..k-1,frames=k-1,...
670 thickness=5,color=purple):
671

672

673 # # # # # # # # # # # Link O2 to O2V # # #
674 l22V := [seq([puntO2[t],puntO2V[t]], t = 1 .. k-1)]:
675 L22V:=animate(spacecurve, [l22V[trunc(j)]],j=1..k-1,frames=k-1,thickness=5,...
676 color=red):
677

678 # # # # # # # # # # # Link O2I to O2F # # #
679 l2I2F := [seq([puntO2I[t],puntO2F[t]], t = 1 .. k-1)]:
680 L2I2F:=animate(spacecurve, [l2I2F[trunc(j)]],j=1..k-1,frames=k-1,thickness=5,...
681 color=pink):
682

683 # # # # # # # # # # # Link O2V to O3 # # #
684 l2V3 := [seq([puntO2V[t],puntO3[t]], t = 1 .. k-1)]:
685 L2V3:=animate(spacecurve, [l2V3[trunc(j)]],j=1..k-1,frames=k-1,thickness=5,...
686 color=purple):
687

688 # # # # # # # # # # # Link O3 to O4 # # #
689 l34 := [seq([puntO3[t],puntO4[t]], t = 1 .. k-1)]:
690 L34:=animate(spacecurve, [l34[trunc(j)]],j=1..k-1,frames=k-1,thickness=5,...
691 color=purple):
692

693 # # # # # # # # # # # Link O4 to O4F # # #
694 l44F := [seq([puntO4[t],puntO4F[t]], t = 1 .. k-1)]:
695 L44F:=animate(spacecurve, [l44F[trunc(j)]],j=1..k-1,frames=k-1,thickness=5,...
696 color=pink):
697

698 # # # # # # # # # # # Link O4 to O4V # # #
699 l44V := [seq([puntO4[t],puntO4V[t]], t = 1 .. k-1)]:
700 L44V:=animate(spacecurve, [l44V[trunc(j)]],j=1..k-1,frames=k-1,thickness=5,...
701 color=red):
702

703 # # # # # # # # # # # Link O4V to O5 # # #
704 l4V5 := [seq([puntO4V[t],puntO5[t]], t = 1 .. k-1)]:
705 L4V5:=animate(spacecurve, [l4V5[trunc(j)]],j=1..k-1,frames=k-1,thickness=5,...
706 color=purple):
707

708

709 # # # # # # # # # # # Link O5 to O1 # # #
710 l51i := [seq([puntO5[t],puntO1i[t]], t = 1 .. k-1)]:
711 L51i:=animate(spacecurve, [l51i[trunc(j)]],j=1..k-1,frames=k-1,thickness=5,...
712 color=violet):
713

714 ### JOINT ########################
715 # # # # # # # # # # # Joint O1 # # # #
716 j1 := [seq([puntO1a[t],puntO1b[t]], t = 1 .. k-1)]:
717 J1:=animate(spacecurve, [j1[trunc(j)]],j=1..k-1,frames=k-1,thickness=think,...
718 color=blue):
719

720 # # # # # # # # # # # Joint O2 # # # #
721 j2 := [seq([puntO2a[t],puntO2b[t]], t = 1 .. k-1)]:
722 J2:=animate(spacecurve, [j2[trunc(j)]],j=1..k-1,frames=k-1,thickness=think,...
723 color=blue):
724

725 # # # # # # # # # # # Joint O2V # # # #
726 j2V := [seq([puntO2Va[t],puntO2Vb[t]], t = 1 .. k-1)]:
727 J2V:=animate(spacecurve, [j2V[trunc(j)]],j=1..k-1,frames=k-1,thickness=think,...

146

Attachments

728 color=blue):
729

730 # # # # # # # # # # # Joint O3 # # # #
731 j3:= [seq([puntO3a[t],puntO3b[t]], t = 1 .. k-1)]:
732 J3:=animate(spacecurve, [j3[trunc(j)]],j=1..k-1,frames=k-1,thickness=think,...
733 color=blue):
734

735 # # # # # # # # # # # Joint O4 # # # #
736 j4:= [seq([puntO4a[t],puntO4b[t]], t = 1 .. k-1)]:
737 J4:=animate(spacecurve, [j4[trunc(j)]],j=1..k-1,frames=k-1,thickness=think,...
738 color=blue):
739

740 # # # # # # # # # # # Joint O4V # # # #
741 j4V:= [seq([puntO4Va[t],puntO4Vb[t]], t = 1 .. k-1)]:
742 J4V:=animate(spacecurve, [j4V[trunc(j)]],j=1..k-1,frames=k-1,thickness=think,...
743 color=blue):
744

745 # # # # # # # # # # # Joint O5 # # # #
746 j5:= [seq([puntO5a[t],puntO5b[t]], t = 1 .. k-1)]:
747 J5:=animate(spacecurve, [j5[trunc(j)]],j=1..k-1,frames=k-1,thickness=think,...
748 color=blue):
749

750 display(L1i2N,L2I2F,L22V,L2V3,L34,L44F,L44V,L4V5,L51i,ori,...
751 Allshapes,title="Animation of the links with all motion ...
752 shapes of the reference frames",orientation=[75,25,0]);
753

754

755 display(L1i2N,L2I2F,L22V,L2V3,L34,L44F,L44V,L4V5,L51i,...
756 ori,title="Animation of the links",orientation=[75,25,0]);
757

758 AllLinks:=display(L1i2N,L2I2F,L22V,L2V3,L34,L44F,L44V,...
759 L4V5,L51i,ori,title="Animation of the links",...
760 orientation=[75,25,0]):
761

762 display(J1,AllLinks,J2V,J3,J4V,J5,title="With joint"...
763 ,orientation=[75,25,0]);
764

765

766

767 if flag det<>1 then
768 print("NO COLLISION has been detected");
769 else
770 print("COLLISION has been detected, look up");
771 fi;
772

773

774

775 vecto:=seq(i, i = 1..k-1):
776

777

778

779

780

781 # # # # # # # # # # Link O4 to O4F # # #
782 l44F := [seq([puntO4[t],puntO4F[t]], t = 1 .. k-1)]:
783 L44F:=animate(spacecurve, [l44F[trunc(j)]],j=1..k-1,frames=k-1,...
784 trace=[vecto],thickness=20,color=pink):
785

786 display(L44F, L1i2N,L44V,L4V5,L51i,ori,L1i1f,title="x-axis of ..

147

Attachments

787 the first reference frame",orientation=[75,25,0]);
788

789 print(cat("With a multiplication factor of:",mf));
790 print(cat("the length of the link 1 to 2:",S1));
791 print(cat("the length of the link 2 to 3:",S2));
792 print(cat("the length of the link 3 to 4:",S3));
793 print(cat("the length of the link 4 to 5:",S4));
794 print(cat("the length of the link 5 to 1:",S5));
795 print(cat("the displacement s4 is:",MaxS4));
796 print(cat("the displacement s2 is:",MaxS2));

Appendix E

1 %% tPosition Velocity v02.m Control Position and velocity
2 %% Reset Section
3 close all
4 clear all
5 clc
6 %% Chose the motor that you want to move
7 ID=3;
8 %% Gain and scale factor
9 Kp=1/0.2933; %degrees-->volt signal

10 Kv=8.9737; %rpm------>volt signal
11 Kg=10; %gain
12 K=Kg*Kp; %global gain
13

14 %% Reset position of robot
15 run treset position ID.m %reset to 0 position
16 pause(2)
17 %% Create handles structure
18 fDynamixelGolbalVariables();
19 % Registers
20 handles=fDynamixelInstructionsMemoryStruct();
21

22 %% set USB2Dynamixel comunication parameters
23 handles.DEFAULT PORTNUM = 5; % Com Port of
24 % handles.DEFAULT BAUDNUM = 1; % 1Mbps Baud rate
25 handles.DEFAULT BAUDNUM = 34; % 57142bps Baud rate (0x22)
26

27 %% set win64 or win32 to be used
28 % handles=fDynamixel OS USED(handles,'win32'); % Uncomment to chose 32-bit
29 % system
30 handles=fDynamixel OS USED(handles,'win64');
31

32 %% start usb comunication
33 loadlibrary(handles.AliasLib,handles.AliasLib h) % open library
34

35 libfunctions(handles.AliasLib) % Display Library Functions
36

37 response=fDynamixel OpenDevice(handles); % if response=1 device opened and ok
38

39

40 %% Settimg Mode
41 run tSetting Wheel Mode v01
42 %% Closed Loop
43 vel=0; %Initializing velocity value

148

Attachments

44 i=1;
45 TIME=0; %Initializing time value
46 run Accelerazione costante a tratti control qf v02
47 format shortg
48 c = clock;
49

50 while TIME<tf-1e-3
51 format shortg
52 d = clock;
53 %pause(0.0001)
54

55 TIME=d(6)-c(6)
56

57 run tCheck position v01 %Check the real position and velocity of the mechanism
58 %in rad and rad/s
59

60 %Read the real position of the robot
61 WORD POS PRESENT POSITION=36;
62 [PRESENT POSITION VALUE, StatusError, RXError]=fDynamixelReadWord(handles,ID...
63 ,WORD POS PRESENT POSITION);
64 real position=PRESENT POSITION VALUE*1/Kp; %real position form volt-->degrees
65 real position vec(i)=real position; %save in a row vector the real position
66

67 err=qq*(360/2/pi)-real position; %Error is in degrees
68 vel volt=qqp*30/pi*Kv; %from rad/s -->rpm--> volt signal (0-->2047)
69

70 %Speed Control
71 disp('Move to value motor ID ')
72 vel=vel volt+K*err;% in rpm
73

74

75 %% Saturation section
76 if vel>1023
77 vel=1023;
78 end
79

80

81 if vel<0
82 if vel<-1023
83 vel=2047;
84 else
85 vel=1023-vel;
86 end
87 end
88

89 %% Write the velovity
90

91 val vel=vel;
92 WORD VALUE VEL=ceil(val vel);
93 WORD POS VEL=handles.Table.Moving Speed L; % Position Number in RAM
94 disp(strcat('Move motor ID:',num2str(ID),' to DECvalue:',...
95 num2str(WORD VALUE VEL),' HEXvalue:',...
96 num2str(dec2hex(WORD VALUE VEL,4)),' position'));
97

98 if response == 1 % if port opens okay
99 disp('USB2Dynamixel Opened');

100 [StatusError, RXError]=fDynamixelWriteWord(handles,ID,WORD POS VEL,...
101 WORD VALUE VEL);
102 fDynamixelDispInstructionWordResult('Write',ID,handles,WORD POS VEL,...

149

Attachments

103 WORD VALUE VEL, StatusError);
104 else
105 disp('Failed to open USB2Dynamixel!');
106 end
107

108

109

110

111

112

113 % Sampling Data
114 %Read the real speed of the robot
115 WORD POS PRESENT SPEED=38;
116 [PRESENT SPEED VALUE, StatusError, RXError]=fDynamixelReadWord(handles,ID,...
117 WORD POS PRESENT SPEED);
118 real speed vec(i)=PRESENT SPEED VALUE/Kv; %convert volt ----> rpm
119

120 err vec(i)=PRESENT SPEED VALUE/Kv-qqp*30/pi;
121 %Check the value of the velocity error
122 i=i+1;
123

124 end
125

126

127

128 %set ZERO Velocita
129 disp('Move to value motor ID ')
130 vel=0; %0 value as final value of the velocity
131 val vel=vel*Kv; %rpm--> volt
132 WORD VALUE VEL=ceil(val vel);
133 WORD POS VEL=handles.Table.Moving Speed L; % Position Number in RAM
134 disp(strcat('Move motor ID:',num2str(ID),' to DECvalue:',...
135 num2str(WORD VALUE VEL),' HEXvalue:',...
136 num2str(dec2hex(WORD VALUE VEL,4)),' position'));
137

138 if response == 1 % if port opens okay
139 disp('USB2Dynamixel Opened');
140 [StatusError, RXError]=fDynamixelWriteWord(handles,ID,WORD POS VEL,...
141 WORD VALUE VEL);
142 fDynamixelDispInstructionWordResult('Write',ID,handles,WORD POS VEL,...
143 WORD VALUE VEL, StatusError);
144 else
145 disp('Failed to open USB2Dynamixel!');
146 end
147

148 %% Close all Tool
149 calllib(handles.AliasLib,'dxl terminate');
150 unloadlibrary(handles.AliasLib);
151 disp('Closed USB2Dynamixel!');
152

153 %% Plot Section
154 figure(1)
155 subplot(211)
156 plot(TTT,qqq*180/pi,TTT,real position vec,'LineWidth',1);grid on
157 xlabel('t(s)');ylabel('º degrees');legend('Theoretical ','Real')
158 subplot(212)
159 plot(TTT,qqqp*30/pi,TTT,real speed vec,'LineWidth',1);grid on
160 xlabel('t(s)');ylabel('rpm')
161

150

Attachments

162 figure(2)
163 plot(TTT,abs(err vec));grid on

1 %
2 clc
3 fDynamixelGolbalVariables();
4

5 %% create handles structure
6

7 % registers
8 handles=fDynamixelInstructionsMemoryStruct();
9

10 % ini values of motors
11 % handles.IniMotors=fDynamixelIniMotorsValues();
12 %handles.MemStruc.IniMotors=fDynamixelIniMotorsValuesViejos();
13

14 % set USB2Dynamixel comunication parameters
15 %(Check the port number from the advanced settig of computer)
16 handles.DEFAULT PORTNUM = 5; % Com Port
17 % handles.DEFAULT BAUDNUM = 1; % 1Mbps Baud rate
18 % handles.DEFAULT BAUDNUM = 34; % 57142bps Baud rate (0x22)
19 handles.DEFAULT BAUDNUM = 34; %
20

21

22 % set win64 or win32 to be used
23 % handles=fDynamixel OS USED(handles,'win32');
24 handles=fDynamixel OS USED(handles,'win64');
25

26 %% start usb comunication
27 loadlibrary(handles.AliasLib,handles.AliasLib h) % open library
28

29 libfunctions(handles.AliasLib) % Display Library Functions
30

31 response=fDynamixel OpenDevice(handles);% if response = 1 device opened and ok
32

33

34

35

36 run tSetting Joint Mode v01
37 %% ping ID motor for n iterations
38

39 disp('Move to value motor ID ')
40

41 % ID=1;
42 %ID=5;
43 b=0; % insert the position in degrees
44 aa=b/0.2933; %scale with the factor
45 WORD VALUE=ceil(aa);
46 WORD POS=handles.Table.Goal Position L;% position number in the RAM
47 disp(strcat('Move motor ID:',num2str(ID),' to DECvalue:',num2str(WORD VALUE)...
48 ,' HEXvalue:',num2str(dec2hex(WORD VALUE,4)),' position'));
49

50 if response == 1 % if port opens okay
51 disp('USB2Dynamixel Opened');
52 [StatusError, RXError]=fDynamixelWriteWord(handles,ID,WORD POS,...
53 WORD VALUE);
54 fDynamixelDispInstructionWordResult('Write',ID,handles,WORD POS,...
55 WORD VALUE, StatusError);

151

Attachments

56 else
57 disp('Failed to open USB2Dynamixel!');
58 end
59

60

61 calllib(handles.AliasLib,'dxl terminate');
62 unloadlibrary(handles.AliasLib);
63 disp('Closed USB2Dynamixel!');

1 %% Settimg Joint Mode
2 WORD VALUE CW=0;
3 WORD POS CW=handles.Table.CW Angle Limit L; %RAM position number
4 disp(strcat('Move motor ID:',num2str(ID),' to DECvalue:',...
5 num2str(WORD VALUE CW),' HEXvalue:',...
6 num2str(dec2hex(WORD VALUE CW,4)),' position'));
7

8 if response == 1 % if port opens okay
9 disp('USB2Dynamixel Opened');

10 [StatusError, RXError]=fDynamixelWriteWord(handles,ID,WORD POS CW,...
11 WORD VALUE CW); %%Motion Execution
12 fDynamixelDispInstructionWordResult('Write',ID,handles,WORD POS CW,...
13 WORD VALUE CW, StatusError);
14 else
15 disp('Failed to open USB2Dynamixel!');
16 end
17

18

19

20 WORD VALUE CCW=1023;
21 WORD POS CCW=handles.Table.CCW Angle Limit L;%RAM position number
22 disp(strcat('Move motor ID:',num2str(ID),' to DECvalue:',...
23 num2str(WORD VALUE CCW),' HEXvalue:',...
24 num2str(dec2hex(WORD VALUE CCW,4)),' position'));
25

26 if response == 1 % if port opens okay
27 disp('USB2Dynamixel Opened');
28 [StatusError, RXError]=fDynamixelWriteWord(handles,ID,WORD POS CCW,...
29 WORD VALUE CCW); %%Motion Execution
30 fDynamixelDispInstructionWordResult('Write',ID,handles,WORD POS CCW,...
31 WORD VALUE CCW, StatusError);
32 else
33 disp('Failed to open USB2Dynamixel!');
34 end

1 %% Settimg Wheel Mode
2 WORD VALUE CW=0;
3 WORD POS CW=handles.Table.CW Angle Limit L;%RAM position number
4 disp(strcat('Move motor ID:',num2str(ID),' to DECvalue:',...
5 num2str(WORD VALUE CW),' HEXvalue:',...
6 num2str(dec2hex(WORD VALUE CW,4)),' position'));
7

8 if response == 1 % if port opens okay
9 disp('USB2Dynamixel Opened');

10 [StatusError, RXError]=fDynamixelWriteWord(handles,ID,WORD POS CW,...
11 WORD VALUE CW); %%Qui viene eseguito il movimento
12 fDynamixelDispInstructionWordResult('Write',ID,handles,WORD POS CW,...

152

Attachments

13 WORD VALUE CW, StatusError);
14 else
15 disp('Failed to open USB2Dynamixel!');
16 end
17

18

19

20 WORD VALUE CCW=0;
21 WORD POS CCW=handles.Table.CCW Angle Limit L;%RAM position number
22 disp(strcat('Move motor ID:',num2str(ID),' to DECvalue:',...
23 num2str(WORD VALUE CCW),' HEXvalue:',...
24 num2str(dec2hex(WORD VALUE CCW,4)),' position'));
25

26 if response == 1 % if port opens okay
27 disp('USB2Dynamixel Opened');
28 [StatusError, RXError]=fDynamixelWriteWord(handles,ID,WORD POS CCW,...
29 WORD VALUE CCW); %%Qui viene eseguito il movimento
30 fDynamixelDispInstructionWordResult('Write',ID,handles,WORD POS CCW,...
31 WORD VALUE CCW, StatusError);
32 else
33 disp('Failed to open USB2Dynamixel!');
34 end

1 %% Trapezoidal theoretical shape.m
2 %% Set input Parameters
3 %qi=0; %initial position Set in treset position ID.m
4 qf=deg2rad(200) ; %final position %Max 300 degrees
5 tf=6; %sec
6 Vel Max=8; %in rpm
7 qpmax=Vel Max*pi/30; %max 11.93 rad/s
8 % Maximum velovity is 114 rpm ---->11.93 rad/s
9 tauv=tf-(qf-qi)/qpmax;

10 tauw=tf-tauv;
11

12 % Definition of the times vectors
13 tau1=linspace(0,tauv,100);
14 tau2=linspace(tauv,tauw,10);
15 tau3=linspace(tauw,tf,100);
16 tau=[tau1 tau2 tau3];
17

18

19

20

21 qppmax=qpmax/tauv; %acceleration in rad/secˆ2
22 % qppmax=30;
23 % qpmax=qppmax*tauv;
24

25 %% Leggi a tratti
26

27 % I Branch
28 qI=qi+1/2*qppmax*tau1.ˆ2;
29 qpI=qppmax*tau1;
30 qppI=qppmax*ones(1,length(tau1));
31

32 % II Branch
33 qII=qI(end)+qpmax*(tau2-tauv);
34 qpII=qpmax*ones(1,length(tau2));
35 qppII=0*ones(1,length(tau2));

153

36

37 % % III Branch
38 qIII=qII(end)-1/2*qppmax*(tau3-tauw).ˆ2+qpmax*(tau3-tauw);
39 qpIII= qpmax-qppmax*(tau3-tauw);
40 qppIII=-qppmax*ones(1,length(tau1));
41

42 %% Assemblaggi
43 %Posizione
44 q=[qI qII qIII]; %rad
45 qp=[qpI qpII qpIII]; %rad/s
46 qpp=[qppI qppII qppIII]; %rad/secˆ2
47

48 %% Grafici di controllo
49 figure(44)
50

51 plot(tau,q,tau,qp,tau,qpp,'LineWidth',1); grid on
52 legend('Position [rad]','Velocity [rad/s]','Acceleration[rad/sˆ2]');
53 xlabel('t(s)')

Acknowledgement

This thesis was carried out in the research center “Institut de Robotica i Informatica Indus-
trial (I.R.I.)” in cooperation with the “Escola Superior d’Enginyeries Industrial, Aeroespacial
i Audiovisual de Terrassa (U.P.C.-E.S.E.I.A.A.T.)”, during the mobility period of Erasmus
between U.P.C. and Politecnico di Torino.

I would like to express my deep gratitude to Prof. E. Celaya and Prof. F. Thomas,
my thesis host supervisors, for their patient guidance, enthusiastic encouragement and useful
critiques of this work. I would like to offer my special thanks to Prof. P. Grosch, for his
advice and assistance in keeping my progress on experimental activity. I would also like to
acknowledge Prof. R.M. Planas of the ESEIAAT University as second host supervisor of this
thesis. I would also like to extend my thanks to the technicians of the laboratory of the IRI
research center for their help in offering me the resources in running the schedule. I would
like to express my appreciation to Prof. S. Pastorelli for his availability and kindness as home
supervisor of this work.

Finally, I wish to thank my parents for their support and encouragement throughout my
study.

155

Bibliography

[1] E. Celaya. Solution intervals for variables in spatial RCRCR linkages. Mechanism and
Machine Theory, vol. 133, pages 481-492, 2019.

[2] H.C. Cheng and S. Thompson. Computer-aided displacement analysis of spatial mecha-
nisms using the CH programming language, volume 23. Advanced in Engeneering Soft-
ware, pages 163-172, 1995.

[3] J. Duffy. Analysis of mechanisms and robot manipulators. John Wiley & Sons, Incorpo-
rated, 1980.

[4] J. Duffy and H. Habibolahi. A displacement analysis of spatial five-link 3R-2C mech-
anisms part 2: Analysis of the RRCRC Mechanism, volume 6. Journal of Mecha-
nisms,pages 463-473, 1971.

[5] I. S. Fischer. A geometric method for determining joint rotations in the inverse kine-
matics of robotic manipulators. 2000.

[6] grabcad.com. https://grabcad.com/.

[7] igus.com. https://www.igus.com/.

[8] I.J. Lee. The RCRRC Five-Link Space Mechanism-Displacement Analysis, Force and
Torque Analysis and Its Transmission Criteria. Journal of Mechanisms, pages 581-594,
1975.

[9] maplesoft.com. https://www.maplesoft.com/products/Maple/.

[10] robotis.com. http://www.robotis.us/ax-12a/.

[11] rs online.com. https://es.rs-online.com/web.

[12] skf.com. https://www.skf.com/group/splash/index.html.

[13] stratasys.com. https://www.stratasys.com/.

[14] F. Thomas and C. Torras. A projectively invariant intersection test for polyhedra. The
Visual Computer, pages 1-9, 2002.

[15] T. A. Yang. Displacement Analysis of Spatial Five-Link Mechanisms Using (3x3) Matri-
ces With Dual-Number Elements, volume 91. Journal of Engineering for Industry, pages
152-156, 1969.

[16] M. S.C. Yuan. Displacement Analysis of the RRCCR Five-Link Spatial Mechanism,
volume 6. Journal of Mechanisms, pages 119-133, 1971.

157

	Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Study of the RCRCR Mechanism
	State of the art
	Description of the mechanism
	Computation of the I-O equations
	Input-Output functions
	 Input(5)-Output(1) function
	 Input(5)-Output (3) function
	 Input(3)-Output (5) function

	Fixed parameters to the particular example of study
	Analysis with Maple®software
	Implementation choiches: assembly mode and driving pair
	Choice of the assembly mode
	Choice of the driving pair

	Extreme configurations: using an alternative driving pair
	Discriminating the two assembly modes
	Alternative resolution of the fourth-degree equations

	Designing the Links Shape
	Positioning the joints
	First design: straight links
	Notation

	Collisions detection
	First step: test for coplanarity of segments
	Second step: test for interference between coplanar segments

	Algorithm implementation
	Test results: detected collisions
	Second design: avoiding collisions
	Avoiding collisions between l5-1 and d4-4F
	Avoiding collisions between l1-2 and l2V-3

	Implementation of the joint envelope

	Construction of the Mechanism
	Selection of the scaling factor
	Used equipment
	Printing guidelines

	Generic rotational joint model
	Generic cylindrical joint model
	Generic link model
	RCRCR mechanism CAD model
	Physical implementation
	Assembling of the joints
	Assembling of the links
	Bonding of the reference surfaces
	Installation on the base
	Installation of the motors

	Mechanism problems diagnosis
	Design improvements
	Final mechanism problems diagnosis
	Prototype real component

	Implementation of the Motors
	Learning the use of the Dynamixel Motors
	Brief description of the motors environment
	Motor model: Dynamixel AX-12A
	Control Table and functioning type of the motor Dyamixel AX-12A
	Feed-Forward position control:point-to-point motion in the joint space
	Further considerations

	Installed Motor: Robotis Dynamixel MX-64T
	Control Table and functioning type of the motor Dyamixel MX-64T
	Operating mode chosen: position control mode
	Considerations on the motor behaviour
	Feed-forward position control implemented: linear condition
	Feed-forward position control implemented: test on the mechanism

	Cost Analysis
	Conclusion
	Attachment
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

	Acknowledgement
	Bibliography

