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Abstract

This work, entitled “Design and Implementation of 3-RRR Spherical Parallel Robot with
Three Coaxial Actuators” has had the scope to analytically study the kinematics (both inverse
and forward one), the workspace and the singularities of a coaxial configuration of a spherical
parallel manipulator.

The complete 3D design of the robot has been realised, building it thanks to a 3D printing
process called FDM Technology (fused deposition modelling).

Moreover, it has been studied how to use the Dynamixel USB2 hardware and software,
which is the interface between the motors and the Pc, to move the motors in Matlab envi-
ronment. Therefore, it has been firstly used three servomotors on scale as a learning scope,
and, after the design of the prototype, it has been installed three servomotors with higher
performances, coherently with the scope, the dimensions and the weight of the robot at stake.
They have been controlled by an inner Feed Forward Position Control, in order to realise a
motion planning in the joint space, through a trapezoidal velocity timing law.

As for the state of the art, this thesis has distanced itself from the literature before
[10, 9, 12, 4], not using a Denavith-Hartenberg’s formulation or a loop equation process,
in order to describe the kinematics, but investigating on new method, that could be more
efficient in a computational terms, and exploiting its peculiar characteristics and functioning.

For these reasons, it has been developed and implemented a geometric method [30] to
realise the analytical model of the manipulator. This approach has involved only constant
and variable squared distances among the relative fundamental points, after defining the
parameters of the robot’s architecture. Moreover, this method has several features, such as
being Reference Frame free, not managing trigonometrical functions, not having recursive
elimination of unknowns and getting one equation in one unknown. It is also versatile,
because it could be apply to several mechanisms.

In the end, according to the results of the analytical implementation, it has been decided
to realise two configurations of the robot assembly, in order to show how the characteristic
parameters of the robot influence its behaviour.
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Chapter 1

Introduction

This thesis, called “Design and Implementation of 3-RRR Spherical Parallel Robot (S.P.R.)
with Three Coaxial Actuators”, has been carried out in the research center “Institut de Robot-
ica i Informatica Industrial” (I.R.I.) in cooperation with the “Universitat Politecnica de
Catalunya (U.P.C. - E.T.S.E.I.B.)”, during the mobility period of Erasmus between U.P.C.
and Politecnico di Torino.

It has had the goal to investigate on a coaxial configuration of the SPR, given that this
symmetric chosen architecture has several benefits with respect to other configurations [9],
such as the advantage to use a mechanical transmission with only one motor, the possibility
to have a more regular spherical workspace and a better stiffness than a serial wrists, with
the same task.

First, it has been defined the characteristic angles of the robot, in order to realise and
analytically implement the inverse and forward kinematics. Thanks to this particular con-
figuration, it has been possible to base on the Euler Angles theory the study of the inverse
kinematics, not following the classic literature [12]. In fact, as it can be found in several
papers, it used to treat each chain of the robot as a serial one, identifying each link through
the Denavit-Hartenber parameters. Therefore, by trigonometrical transformations and sub-
stitutions to make linear the equations, it is possible to achieve the actuator angles, knowing
the given orientation of the End Effector (EE). On the contrary, following the Euler Angles
ZYX convention, it is easier to obtain the active joint angles, because the needed inputs of
the process are only the referent frame (RF) of base and the actuator joints, the chosen zero
configuration of the motors and the orientation of the EE.

The following step has been to examine forward kinematics, by distancing itself from
the state of art [10, 9, 12, 4]. In literature, it is used to obtain the two independent loop
equations for the three legs of the robot, starting from the three matrices relationships that
characterise the inverse kinematics. However, this process is not the best strategy to solve
the forward one, because of different reasons such as the non linear trigonometric system
(obtained after manipulating the equations) and the high computational complexity of the
algorithm to solve. So, after comparing common resolute theories, it has been developed
and implemented a geometric approach based on the use of only unknown and known squared
distances [30, 27, 31, 13, 28] of characteristic lengths of the robot, leading to obtain a octic
linear polynomial without trigonometrical variables. In also this case, this decision has re-
sulted in many advantages, in terms of simplicity, generality, and optimality.
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1. INTRODUCTION

Then, starting from the kinematics analysis, it has been investigated on the influence of
the characteristics angles α1, α2 and γ1 of the robot on the both singularities and workspace
limits [11, 7, 14, 2]. It has been compared the mobility range of a general configuration
(α1 = π/3, α2 = π/2) to the coaxial prototype, underlining how the workspace increases
if α1 = α2 = π/2. On the contrary, studying the Jacobian matrix, it can be stated the
number and types of singularities grow up, using these angles. Therefore, it is possible to
argue that the optimisation of the mobility range and the singularities is a trade-off; a better
workspace carries on more singularities that have to be avoided, during a path motions in
the manipulations of the robot. According to these results, it has been taken into account
the possibility to realise both the two configurations in order to show how the characteristic
parameters of the robot influence its behaviour.

Moreover, it has been physically implemented the robot, by studying how to move the
three motors and by realising the final 3D concept of this prototype.

As for the design of the prototype, it is based on the use of three electrical motors to
actuate the respective degrees of freedom. The driving system is basic and is made of only
one gear-mate with 1:1 ratio between each coaxial shaft and the gear motor, in order to
realise the prototype very fast. In fact, most of the parts of the robot have been printed,
using a process called FDM Technology (fused deposition modelling) and only the support
parts and other threaded pivots has been made of in High-Speed Steel, being the backbone
of the model. Furthermore, for making the system reconfigurable and modular, it has been
separated the transmission system from the robot assembly. This choice has complicated the
design, but, at the same time, will allow to change the characteristic angle of the robot, if
required, and to reprint it in a cheapest and fastest way.

After getting the final 3D model, it has been defined the model of the motor for the
mechanical transmission. It has been firstly used three servomotors on a smaller scale (Robotis
Dynamixel XL-320 ), in order to learn how to use the Dynamixel USB2 interface to move the
motors in Matlab environment.

The goal has been to move the actuators, reading and writing to and from the addresses of
the RAM inside the motors. During several tests in different working conditions to evaluate
the motor response for achieving the final position of a cubic polynomial timing law, it has
been noticed some problems that do not make the motors to reach the desire position. The
solution has been to consider the motor as a black-box, with one input and one output and
to introduce an external Feed Forward Position Control.

However, starting from the results of these experiments, it has been installed a set of
three motors Robotis Dynamixel Mx-64 AT with higher performances, coherently with the
scope, the dimensions and the mass of the robot at stake.

Overall, the same experiments have been carried out both on bench and on the prototype
in order to choose a set of motor parameters to perform the motion of the platform.
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Chapter 2

Overview on Parallel Robots

Parallel robots are closed-loop mechanisms that have very good performances in terms of
accuracy, rigidity and ability to manipulate large loads.

They have many applications in different fields such as astronomy, medicine, camera
orienting device. This section want you to give a brief classification of the many categories of
the parallel robots, mainly focusing on the spherical 3-RRR family, that include the coaxial
configuration, core of this work.

2.1 Definition

General parallel manipulators can be defined as follows: [26]

“A generalized parallel manipulator is a closed-loop kinematic chain mechanism whose
end-effector is linked to the base by several independent kinematic chains.”

It is possible to define different features that identify the parallel manipulator:

• at least two chains support the end-effector. Each of those chains contains at least one
simple actuator. There is an appropriate sensor to measure the value of the variables
associated with the actuation (rotation angle or linear motion).

• The number of actuators is the same as the number of degrees of freedom of the end-
effector.

• The mobility of the manipulator is zero when the actuators are locked.

Therefore, parallel robots can be redefine as follows [26]:

“Parallel robot is made up of an end-effector with n degrees of freedom,and of a fixed base,
linked together by at least two independent kinematic chains. Actuation takes place through

n simple actuators.”

2.2 Features and Needs for Robotics

By explaining the needs for robotics, it is possible to understand the reason why parallel
robots are more efficient than the serial counterpart.

In fact, it is possible to summarise the main feature of the robot, depending on its own
application:

3
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• Accuracy: it may be most important for assembly tasks while the amplitude of motion
is less relevant.

• Dynamics is also important for tasks involving a contact between the robot and its
surrounding or for work where execution speed is determinant, like pick-and-place op-
erations, in which a robot have to be a very light moving part.

• Passive compliance: this concept is important when the end effector is under an
external load in terms of force and torque. In general, in these cases there will be
slight changes in the pose of the end-effector which are due to backlash in the drive,
flexure in the links. This behaviour cannot be observed by the internal sensor of the
robot, and cannot be also corrected using the robot control. In the serial robot this
concept is called passive compliance and becomes a strong limit in such of applications
(machine-tool industry) because it leads to very negative effects. On the other hand,
parallel manipulator has a stiffness which is in general much higher than an open-loop
structure, so the deformations due to passive compliance is reduced.

• Active compliance: for a certain application, for example in some phases of assembly
task, the elasticity is also required. By using the controlled actuators, it is possible to
adapt the compliance respect to the current application, obtaining a very good stiffness
along a certain direction, and soft in the two orthogonal directions.

According to the needs for robotics, mentioned above, this type of robot is interesting for
the following reasons:

• distribution of the load: a minimum of two chains is necessary to balance the
external load.

• number of sensors: it is required a minimal number of sensor the closed-loop control
of the mechanism.

• locked position: when the actuators are locked, the manipulator remains in its posi-
tion, being an important safety aspect for certain applications, such as medical robotics.

• better stiffness, obtained with a small mass of the manipulator allowing high precision
and high speed of movements;

• moment of inertia: the heavy actuators may often be centrally mounted on a single
base platform, the movement of the arm taking place through struts and joints alone.
This reduction in mass along the arms permits a lighter arm construction, thus lighter
actuators and faster movements. This centralisation of mass also reduces the robot’s
overall moment of inertia, which may be an advantage for a mobile or walking robot.

2.3 Classifications

It is possible to classify the closed-loop mechanisms into two main families: planar robots,
that have 3 degrees of freedom in the plane and the spatial one, that move in the Cartesian
space, with 3 or more degrees of freedom, depending on them own application. You can see
a complete classification, listed below:
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• Planar Robot;

• Spatial Robot:

– 3 DOF :

∗ Translation Manipulator;

∗ Orientation Manipulator;

∗ Mixed Degrees.

– 4 DOF ;

– 5 DOF ;

– 6 DOF ;

– Redundant DOF.

2.3.1 Planar Robot

A parallel planar manipulator has an end-effector with three degrees of freedom, two
translations (around x-axes and y-axes) and one rotation (with an angle ϑ around the z
axes).

Three chains support the end-effector and they are attached to the end-effector, generally
with triangular shape, at three points.

The mobility is zero when the actuators are locked, and that it becomes 3 when all of the
actuators are active.

Under these explained conditions, each of the chains is constituted of two rigid bodies
linked together by a joint, and that they have a total of three joints.

It is possible to characterise them by the sequence of these three joints, where R stands
for revolute joint, while P for the prismatic one. By combining this two types of joints, it
can be represented this following sequences (figure 2.3.1), able to realise the motion of the
triangular platform:

RRR, RPR, RRP , RPP , PRR, PPR, PRP

Figure 2.1: Possible Chains for Planar Robot [26].
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2.3.2 Spatial Robot

In the spatial robot group it falls within the translation manipulator and the orientation
manipulator. The typical used joints to realise the chain of these closed-loop mechanisms are
listed below, in increasing order of degrees of freedom:

• R: revolute;

• P: prismatic;

• Pa: it stands for parallelogram mechanism;

• U: universal;

• S: all-and-socket;

2.3.2.1 Translation Manipulator

Manipulators with 3 degrees of freedom in translation are extremely interesting for task
of pick-and-place and machining operations.

The most famous and successful robot, in industrial terms, is the Delta Robot, firstly
studied in the EPFL University and then industrialised by ABB Company.

All the kinematic chains of this robot are of the RRPaR type: a motor makes a revolute
joint rotate about an axis w. On this joint is a lever, at the end of which another joint of
the R type is set, with axis parallel to w. A parallelogram Pa is fixed to this joint, allowing
translation in the directions parallel to w. At the end of this parallelogram is a joint of the
R type, with axis parallel to w, and which is linked to the end effector.

It is possible to see both the schematic representation and the ABB robot in the figure
2.2.

Figure 2.2: Delta Robot [26].

Other robots of the same family have been developed, but they will not be treated in this
work.
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2.3.2.2 Orientation Manipulator

Manipulators allowing three rotations around one point are a very good alternative to the
serial wrist counterpart.

A first possible category of this group theory results in a passive constraint mechanism
that allows only rotation of the platform. Three additional kinematics chains will be used to
actuate the platform. In figure 2.3 it presents a wrist using the central mast principle a chain
of the RRPS types (left) and an application with the Vertical Motion Simulator (VMS) of
NASA (right).

Figure 2.3: Passive Costrain Mechanism [26].

The following subgroup of this orientation family, are the spherical robots. This ma-
nipulator uses three actuated spherical chains with rotary actuators RRR, in which all of the
axes converging to a point that is the center of rotation.

It is possible to identify three different configurations in which one of them includes the
coaxial configuration of the studied prototype:

• shoulder module;

• manipulator with coplanar architecture;

• manipulator with coaxial architecture.

Shoulder Module

The manipulators consist of three identical kinematic sub-chains connecting the
base to a common end effector (EE). On each chain, there is one fixed actuated revolute
joint whose rotation is associated with angle ϑi , and two free revolute joints connecting,
respectively, the proximal and distal links and the distal link with the end effector. The rota-
tion of the two free joints are represented by angles ϕi and σi respectively. The characteristic
feature is that the axes of rotation of all the joints intersect at a common point called the
geometric center of the manipulator - CM, the point around which every element of
the robot rotates.

The base and the EE can be thought of as two pyramidal modules having one vertex
in common; this vertex is the CM. The axes of the revolute joints of the base and EE are
located on the edges of the pyramids. For purposes of symmetry, the triangle at the base
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Figure 2.4: General Architecture of a SPM [9].

of each pyramid will be an equilateral triangle. Angle γ1 is the angle between two edges of
the base pyramid, and angle γ2 is the angle between two edges of the EE pyramid.

Figure 2.5: Shoulder Configuration.

Furthermore, βi is the angle between one edge and a line passing through the center
of the manipulator and perpendicular to the base of the pyramid. It is to be noted that
only one of these two angles - βi or γi - is necessary to uniquely define the base or the
platform of a manipulator. Angles α1 and α2 represent the angular lengths associated with
the intermediate links. By symmetry, these angles will be the same for each of the sub-chains
of the manipulator.

8
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Coplanar Configuration
The particular feature of this design is that the three revolute on the base and on the platform
have coplanar axes. This architecture is in fact a special case of the shoulder module in which
angles γ1 = γ2 = 2π/3. A manipulator of this type is shown in figure 2.6

Figure 2.6: Coplanar Configuration [9].

Coaxial Configuration

The kinematic architecture of Coaxial S.P.M., can be considered as a particular case of
the shoulder one, where the angle γ1 = 0 and γ2 = 2π/3.

Figure 2.7: Coaxial Configuration [9].
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2.4 Applications of Spherical Class

As mentioned in the previous section, this family of robot have many applications in
different fields such as astronomy, medicine, camera orienting device.

2.4.1 Laparoscopic Surgery

One important field regards medical surgery, where it has been studied by Temei Li and
Shahram Payandeh (2002) [24] a spherical parallel mechanisms for application to laparo-
scopic surgery.

In this application, spherical parallel manipulator has been selected because of the several
feature mentioned in the section 2.2. They have studied tho different designs for maximizing
their workspaces; a haptic device, as part of training system, and a laparoscope holding
mechanism. The laparoscope holding mechanism has to satisfy additional constraints by
minimizing the occupied space above the patient.

Figure 2.8: Laparoscope (left) and Haptic(right) device [24].

2.4.2 Agile Eye Device

Gosselin and Hamel [8] developed a three-degree-of-freedom camera orienting device,
called agile eye. In fact, as it is referred to, is capable of an orientation workspace larger than
that of the human eye. The miniature camera mounted on the end-effector can be pointed
within a cone of 140 degrees opening with plus or minus 30 degrees in torsion. The mechan-
ical architecture of the orienting device is based on a 3-RRR spherical parallel manipulator
which leads to high-performance dynamics.
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Figure 2.9: Agile Eye device [8].

2.4.3 Robotics For an AUV

E. Cavallo and R.C. Michelini [6] developed a cheap autonomous underwater vehicle
- AUV, SWAN, Submarine Wobble-free Autonomous Navigator, entrusted of extended ma-
noeuvrability for surveying and docking missions with accurate control, both, of trajectory
tracking and of attitude keeping.

The joint path and attitude control is obtained by driving the propeller assembly through
a three degrees of freedom parallel kinematics robotic wrist, with coaxial configuration.

The innovative setting is made possible by the availability of a robotic wrist. The mecha-
nism shall face heavy duty engagements, assuring high stiffness and accuracy. These require-
ments, quite clearly, lead to a parallel kinematics manipulator, namely, a compact wrist with
three driving motors solid to the SWAN hull, actuating a merely rotating effector, which
carries the combined propulsion and steering device.

Figure 2.10: AUV [6].
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The SWAN principal innovation lies in the combined fixture, used to shelter and to com-
mand the propeller. Basically, two parts shall distinguish: the duct, with outer compensation
vanes or fins and inner screw propeller and the wrist, with three co-axial shafts driven by
independent motors.

2.5 Coaxial Configuration and First Design of the Prototype

The idea of considering a spherical parallel manipulator with coaxial axes in the base
pyramid is due to the fact that the coaxial one has a more regular and higher mobility range.
It is very interesting its total symmetry too.

The first approximate design has these characteristic angles

• α1 = π/2;

• α2 = π/2;

• γ1 = 0;

The final design will change, at the end of the study as for the forward kinematic, inverse
kinematics and workspace. In fact, by doing an analytical implementation of the robot, it
will be possible to parametrize these characteristic angles and also to confirm or modify these
optimised values.

Starting from the shoulder module, it is possible to develop the scheme of the coaxial
configuration, as you can see in figure 2.11.

Figure 2.11: Coaxial Configuration.
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Chapter 3

Inverse Kinematics Analysis

3.1 Introduction

To describe the matrix transformations to move an auxiliary referent frame from the
base to the EE, it can be noticed that the orientation could be expressed through following
rotation matrices, instead of the classical D-H general formulation.

On each chain, there is one fixed actuated revolute joint whose rotation is associated with
angle ϑi, and two passive revolute joints connecting, respectively, the proximal ϕi and distal
links and the distal link σi with the end effector.

All the axes of these revolute joints, intersect in a geometric point, called center of the
mechanism (CM). The problem is only rotational; no translation is involved, because the
work space is spherical, centred on the CM.

Figure 3.1: Reference Frame EE and Base of the Robot.

The inverse kinematics uses the
known orientation of the End ef-
fector (EE), to solve joint an-
gles, giving two solutions for the
same transformation matrix per
leg. So, considering the whole
robot, it is obtained 8 analyti-
cal solutions even if not all of
them can be accepted because of
physical interference among the
parts.

In order to literally write the
orientation matrix of the EE, re-
ferred to each chain, we can use
an auxiliaryRFaux, coincident with
the RFBase.

Then, for each chain, it is ro-
tated from the base to the EE with
follow rotation around respectively
the z-axes, y-axes, x-axes, in order
to align RFaux to RFE.E . In the end, we obtain three matrices to explain the orientation of
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EE with respect to each chain of the robot.

3.2 Matrix Transformation for Each Leg

By writing the following rotation matrices to align the auxiliary referent frame with EE,
it is possible to notice that transformation matrix for each chain can be expressed through
the Euler Angles ZYX and an extra rotation around z-axes, as follows:

R = Rz (α) ·Ry (β) ·Rx (γ) α, β, γ euler angles (3.1)

(1) R = Rz (ϑ1) ·Ry (ϕ1) ·Rx (σ1) (3.2)

(2) R = Rz (ϑ2) ·Ry (ϕ2) ·Rx (σ2) ·Rz
(

2π

3

)
(3.3)

(3) R = Rz (ϑ3) ·Ry (ϕ3) ·Rx (σ3) ·Rz
(
−2π

3

)
(3.4)

(3.5)

In order to resolve the inverse kinematics of ROLL-PITCH-YAW ANGLES (RPY ), it
can be simplified in this way:

(1) R1 = R = Rz (ϑ1) ·Ry (ϕ1) ·Rx (σ1) (3.6)

(2) R2 = R ·RTz
(

2π

3

)
= Rz (ϑ2) ·Ry (ϕ2) ·Rx (σ2) (3.7)

(3) R3 = R ·RTz
(
−2π

3

)
= Rz (ϑ3) ·Ry (ϕ3) ·Rx (σ3) (3.8)

(3.9)

where de matrix respectively R1, R2, R3 are known.

3.2.1 Solving of Inverse Kinematics as the Computation of Euler Angles

The generic matrix can be written in the following way:

R = Rz (ϑ) ·Ry (ϕ) ·Rx (σ) (3.10)

(3.11)

R =

cϕ · cϑ cϑ · sϕ · sσ − cσ · sϑ sσ · sϑ + cσ · cϑ · sϕ
cϕ · cϑ sϑ · sϕ · sσ + cσ · cϑ −sσ · cϑ + cσ · sϑ · sϕ
−sϕ cϕ · sσ cϕ · cσ

 , i = 1, 2, 3 (3.12)

where c and s represent respectively the functions cosine and sine.
It can be seen how the the generic R matrix, depend on the value of sinφ:

• sinϕ 6= ±1: 2 unique solutions;

• sinϕ = ±1: 1 dependent solution;
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3.2.1.1 Solving the Two Unique Solutions.

Given R, it be calculated respectively the value of ϕ, σ and ϑ, obtaining the two sets of
angles for the two solutions.

• First Solution: 
ϑI = a tan 2

(
R21
cosϕ ,

R11
cosϕ

)
ϕI = a sin (−R31)

σI = a tan 2
(
R32
cosϕ ,

R33
cosϕ

) (3.13)

• Second Solution: 
ϑII = ϑI + π

ϕII = π − ϕI
σII = σI + π

(3.14)

3.2.1.2 Solving the Dependent Solution.

When sinϕ = ±1 the inverse kinematics turns 1 dependent solution. So the literal terms
of the generic matrix R change depending on the value of the sinϕ and cosϕ.

So, the generic matrix begins:

• sinϕ = 1 (ϕ = π/2):

R =

 0 cϑ · sσ − cσ · sϑ sσ · sϑ + cσ · cϑ
0 sϑ · sσ + cσ · cϑ −sσ · cϑ + cσ · sϑ
−1 0 0

 =

 0 −sϑ−σ cϑ−σ
0 −cϑ−σ sϑ−σ
−1 0 0

 =

=

 0 R12
′
R13

′

0 R22
′
R23

′

−1 0 0


• sinϕ = −1 (ϕ = 3π/2):

R =

0 −cϑ · sσ − cσ · sϑ sσ · sϑ − cσ · cϑ
0 −sϑ · sσ + cσ · csϑ −sσ · cϑ − cσ · sϑ
1 0 0

 =

0 −sϑ+σ −cϑ+σ

0 cϑ+σ −sϑ+σ

1 0 0

 =

=

0 R12
′′

R13
′′

0 R22
′′

R23
′′

1 0 0
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It is possible to solve the inverse kinematics in these cases using the function atan2,
obtaining:

• sinϕ = 1:

σ = a tan 2(R12
′
,−R22

′
) + ϑ ∀ϑ; (3.15)

• sinϕ = −1:

σ = a tan 2(−R12
′′
, R22

′′
)− ϑ ∀ϑ; (3.16)

3.3 Example and Implementation

Is it possible to show in the figure below, how the RF is coincident, for each chain, plotting
the different RF associated to the:

• Given orientation matrix of the EE;

• Orientation Matrix to the EE, calculated using the set angles of the first solution of
the ikine;

• Orientation Matrix to the EE, calculated using the set angles of the second solution
of the ikine.

In this example, the given matrix REE is obtained thanks to the follow rotation matrix.

REE = Rx (π/3) ·Ry (π/6) ·Rz (π/2)

In the table, the number 1 represents a possible solution, while the number 0 an impossible
one, because of the physical interference among the legs. So, given that the degrees of freedom
is defined starting from three fixed frames that are 120◦ between each other, it is possible to
accept the solution only if it is respected this boolean condition:

(120◦ − ϑ1 + ϑ2 > 30◦)(120◦ − ϑ2 + ϑ3 > 30◦)(120◦ − ϑ3 + ϑ1 > 30◦) (3.17)

where 30◦ is the limit angle, chosen to not have physical interference among the legs.

Possible configuration

Sol ϑ1 [◦] ϕ1 [◦] ψ1 [◦] ϑ2 [◦] ϕ2 [◦] ψ2 [◦] ϑ3 [◦] ϕ3 [◦] ψ3 [◦] Y/N

I 90 -60 30 9 41 55 -140 13 -64 1

II 270 240 210 9 41 55 -140 13 -64 0

III 90 -60 30 189 139 235 -140 13 -64 0

IV 270 240 210 189 139 235 -140 13 -64 0

V 90 -60 30 9 41 55 40 167 116 0

VI 270 240 210 9 41 55 40 167 116 0

VII 90 -60 30 189 139 235 40 167 116 0

VIII 90 -60 30 189 139 235 40 167 116 0

Table 3.1: Possible Configurations of the Ikine.
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Figure 3.2: The Eight Solutions of the Inverse Kinematics.
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Chapter 4

Forward Kinematics Analysis

4.1 Introduction

In this work, the forward kinematics of a 3-RRR coaxial spherical parallel robot has been
investigated and studied, obtained the best process to describe the direct kinematics itself.

First, it was analysed how to obtain the two independent loop equations for the three
legs of the robot. So, it was considered the three matrices equations, described in the inverse
kinematics and based on the Euler Angles ZYX Convention.

However, not being the good strategy to solve the forward, it has been compared and
explained different resolute methods, in order to choose the best one in analytical and physical
terms.

In the end, after identifying the best one, it has been elaborated an example in order to
show how the algorithm works.

As it has been mentioned above, it has been firstly identified the two independent loop
equations. It can be seen in figure 4.1, how the three legs lead to three respective loop
relationship, but one (3) is a linear combination of the other two (1, 2).

Starting from the base referent frame R0 −O0x0y0z0, for each leg, it is possible to reach
to the End Effector (EE) orientation REE−OEExEEyEEzEE , by using the rotation matrices
Rz(ϑi), Ry(ϕi), Rx(σi) of the Euler Angles ZYX convention.

(1) R = Rz (ϑ1) ·Ry (ϕ1) ·Rx (σ1) (4.1)

(2) R = Rz (ϑ2) ·Ry (ϕ2) ·Rx (σ2) ·Rz
(

2π

3

)
(4.2)

(3) R = Rz (ϑ3) ·Ry (ϕ3) ·Rx (σ3) ·Rz
(
−2π

3

)
(4.3)

(4.4)

Therefore, it can be generated three loop equations, matching the equations in this way:

• (1) = (2):

Rz (ϑ1) ·Ry (ϕ1) ·Rx (σ1) = Rz (ϑ2) ·Ry (ϕ2) ·Rx (σ2) ·Rz
(

2π

3

)
(4.5)
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Figure 4.1: Identification of the Two Independent Loop Equations.

.

• (1) = (3):

Rz (ϑ1) ·Ry (ϕ1) ·Rx (σ1) = Rz (ϑ3) ·Ry (ϕ3) ·Rx (σ3) ·Rz
(
−2π

3

)
(4.6)

• (2) = (3): linear dependent of the other two.

In this case, there are 2 matrices equations that lead to 6 scalar equations (2·(3x3)), while
the unknown (ϑ1, ϕ1, σ1, ..., σ3) are 9. In order to solve the forward kinematics, it should be
rearranged the two loop equations, obtaining two identity matrices (I1−2, I1−3) on the left
side of the relations and took 6 terms, from the right one. Then, it should be chosen 3 angles
as an input (eg. ϕ1, ϕ2, ϕ3) to have 6 equations in 6 unknowns.

Given that working with the trigonometric function has a high computational complexity,
and it is difficult to simplify the matrix equations, other analytical processes have been
investigated to solve the forward kinematics of a 3-RRR coaxial spherical parallel robot, such
as:

• Gosselin’s method [9, 12];

• Wampler’s method [4]: based on Spherical Four-Bar Linkage theory;

• Thomas’ method [30]: based on closure polynomial of tetrahedral strip and distance
geometry.

Both Gosselin’s and Wampler’s methods consider two loop equations, that are based on
trigonometrical function for describing the orientation of each link with respect to a fixed
referent frame. The last one uses unknown and known square distances of characteristic
lengths of the robot, leading to a polynomial without trigonometrical variables.
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Moreover, in each method, giving both a set of actuator angles (ϑ1, ϑ2, ϑ3) and/or the
characteristic parameters and angles as for the architecture of the robot, it is possible to
achieve an octic polynomial, in order to solve the roots them relative solutions of the forward
kinematics itself.

Therefore, even if these methods use a different starting point in order to define the same
solutions of Forward Displacement Analysis (FDA), the scopes and result are the same.

Last but not least, it has been chosen the last method, closure polynomial for strips
of tetrahedra, for the following reasons:

• simplicity: elimination of the trigonometric functions from the algorithm: it is based
on only square distances;

• generality: the possibility of extending this method to other mechanisms such as
3-RRR SPM; decoupled platform, 4-4 platform with planar base and platform, etc...;

• optimality: obtaining the polynomial of the minimal degree, by eliminating the sin-
gularity of the formulation in the polynomial expression;

• moreover, the use of a potentiometer extra-sensor reading the feedback, it should
be used as an input in the analytical process. In this way, considering the read distance
like an input, it will be possible to identify the exact solution of the forward kinematics,
among all the possible one.

Figure 4.2: Potentiometer Sensor.

.
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4.2 Gosselin’s Method

First of all, Gosselin’s method starts considering the geometry of a generic spherical
parallel manipulator and identifies two symmetric pyramids with an equilateral triangle
as a base, (one for the mobile platform and another one for the fixed base), joined in the
vertex, called center of the mechanism (CM). The axes of all the revolute parts intersect
in the CM point. The base and the platform are connected thanks to two links per leg:
the proximal one, linked to the base, and the distal one, linked on the platform (or End
Effector, E.E).

In the coaxial configuration, it is lost the base pyramid (it degenerates in only one axes),
because the three actuators axes are coincident with the z-axes of the whole referent frame.
So, the following considerations are valid for all the configurations, even if the characteristic
parameters of the robot change. In order to better illustrate the difference between the general
arrangement and the coaxial one, it can be see the comparison of the schematic shape and
angles in both the figure 4.3 and the table 4.1.

SPM – 3-RRR Generic Architecture
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Figure 4.3: Comparison Between Two Configurations of 3-RRR SPM

.

After defining the geometrics parameters for the robot, a fixed referent frame (RF) to the
base, a fixed one to the platform and the unit vectors of the axes it is possible to explain the
Gosselin’s algorithm.

• Defining of all the characteristic parameters of the robot, through geometric
relations:

sinβ =
2
√

3

3
sin
(γ

2

)
(4.7)
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Configurations

Angles 3-RRR SPM - Generic 3-RRR SPM - Coaxial

ϑ1, ϑ2 , ϑ3 d.o.f d.o.f

α1 chosen chosen

α2 chosen chosen

β1 chosen chosen

β2 chosen chosen

γ1 calculated, f(β1) calculated, f(β1)

γ2 calculated, f(β2) calculated, f(β2)

ψ1 calculated, f(β1, γ1) calculated, f(β1, γ1)

ψ2 calculated, f(β2, γ1) calculated, f(β2, γ1)

η1 0 0

η2 2π/3 0

η3 4π/3 0

Table 4.1: Configurationfs for a 3-RRR SPM.

ψ = β + a tan

 sin γ
2√

3− 4 sin2
(γ

2

)
 (4.8)

these geometric relations are valid for both the two pyramids.

• Identifying of the Denavit-Hartenberg parameters (α1, α2, ϑi, ϕi) and the
respective matrices:

Denavit - Hartenberg Parameters

Link αi ai di qi
1 0 0 α1 ϑi
2 0 0 α2 ϕi

Table 4.2: Denavit - Hartenberg Parameters

Qi1 = Rz(ϑi) ·Rx(α1) =

cos(ϑi) − cos(α1) sin(ϑi) sin(α1) sin(ϑi)
sin(ϑi) cos(α1) cos(ϑi) − sin(α1) cos(ϑi)

0 sin(α1) cos(α1)

 , i = 1, 2, 3

(4.9)

• Expressing of vectors v1, v2, v3 with respect to REE −OEExEEyEEzEE :

[v1]REE
=

0
0
1

 [v2]REE
=

sin γ2

0
cos γ2

 [v3]REE
=

cosψ2 sin γ2
2

sinψ2

cosψ2 cos γ22

 (4.10)

• Using the Euler Angles ZYZ Convention to express the orientation of the EE
with respect to the fixed referent frame R0 −O0x0y0z0:
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Q1 =

cosφ1 − sinφ1 0
sinφ1 cosφ1 0

0 0 1

 Q2 =

 cosφ2 0 sinφ2

0 1 0
− sinφ2 0 cosφ2

 Q3 =

cosφ3 − sinφ3 0
sinφ3 cosφ3 0

0 0 1


(4.11)

Q = Q1Q2Q3 =

q11 q12 q13

q21 q22 q23

q31 q32 q33

 (4.12)

these three angles φ1, φ2, φ3 are the unknowns of the analytical process and the whole
matrix transformation is used to pass from the RF12−O12x12y12z12 to the RFEE , chosen
for each leg, as a simplification.

• Referring the RF of the proximal link of each leg with respect to the fixed RF,
by using the β1 and ηi angles.

Ri =

cos(ηi) cos(β1) sin(ηi) sin(β1) sin(ηi)
sin(ηi) − cos(β1) cos(ηi) − sin(β1) cos(ηi)

0 sin(β1) − cos(β1)

 , i = 1, 2, 3 (4.13)

η1 = η2 = η3 = 0 (4.14)

• Writing the distal link unit vectors w1, w2, w3 with respect to the fixed RF:

[wi]R0 = RiQi1

0
0
1

 i = 1, 2, 3 (4.15)

• Writing the EE unit vectors v1, v2, v3 with respect to the fixed RF:

[vi]R0 = RiQ11Q[vi]REE
i = 1, 2, 3 (4.16)

• Specifying of the geometric constrain to obtain the two loop equations:

wi · vi = cos(α2) i = 1, 2, 3 w.r.t. RF0 (4.17)

As a consequence of the set of Euler Angles used in this Cartesian coordinates, the first
equation can be simplified as:

cosφ2 = cosα2 (4.18)

The last two equations can be expressed as a function of cosine and sine (cφ1, sφ1, cφ3, sφ3)
and a constant terms, depended on the characteristic angles of the robot, as follows:

I1 sinφ1 + I2 cosφ1 + I3 = 0 (4.19)

J1 sinφ1 + J2 cosφ1 + J3 = 0 (4.20)
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I1 = A sinφ3 +B cosφ3 + F (4.21)

I2 = G sinφ3 +H cosφ3 + J (4.22)

I3 = K cosφ3 + L (4.23)

J1 = M sinφ3 + P cosφ3 +Q (4.24)

J2 = R sinφ3 + S cosφ3 + T (4.25)

J3 = V sinφ3 +W cosφ3 + U (4.26)

• Solving the linear system in function of sφ1 and cφ1 :
sinφ1 = −I3J2+I2J3

−I2J1+I1J2

cosφ1 = −I3J1+I1J3
−I2J1+I1J2

(4.27)

• Using the trigonometric identity, for obtaining only one unknown (φ3):

sin2 φ1 + cos2 φ1 = 1 (4.28)

−I2
2J

2
1 + I2

3J
2
1 + 2I1I2J1J2 − I2

1J
2
2 + I2

3J
2
2 − 2I1I3J1J3 (4.29)

− 2I2I3J2J3 + I2
1J

2
3 + I2

2J
2
3 = 0 (4.30)

I1J2 6= I2J1 (4.31)

• Substituting the trigonometric function in sφ3 and cφ3 with an only parameter
t (tan-half), to obtain a linear polynomial of 8 degrees with only one unknown:

cosφ3 =
1− t2

1 + t2
sinφ3 =

2t

1 + t2
t = tan

φ3

2
(4.32)

• Rearranging and solving the polynomial to achieve the 8 roots:

8∑
i=0

Nit
i = 0 i = 1, 2, .., 8 (4.33)
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4.3 Wampler’s Method

As it has been said before, SPM does not allow the resolution of the FDA in a closure
form, due to the peculiar multi-loop architecture, and because of the non linear trigonometric
equations, the resolution of the algorithm has a high complexity. For these reasons, Wampler’s
approach has been used with the objective of extending the kinematics of a four-bar linkages
to the 3-RRR Coaxial SPM. The advantages are mainly two:

• managing the two loop equations with compact constant coefficients;

• solving the equations in a semi-graphically way.

The consideration as for the geometry of the robot in different configurations (eg. general,
coaxial) are exactly the same; for this reason, the dissertation should be done on the general
architecture of SPM and in literary shape.

(𝟐)

(𝟏)

Figure 4.4: Spherical Four-Bar Linkages Applied on 3-RRR SPM [4].

The characteristic parameters of the robot are the same as those already used in the
Gosselin’s method.

In fact, knowing the orientation of the ui an wi axes of the revolute joints, one of the
target of the FDA is to identify the orientation of the vi axes, expressing them with
respect to fixed RF:

• using the same three unit vectors of the mobile platform as unknowns:

vi · vj = cosα3 i, j = 1, 2, 3, i 6= j ||vi|| = 1 (4.34)

where cosα3 is the angle between two distal joints of two different legs of the robot.

• using the Euler angles of the mobile platform as unknowns:

[vi]R0 = Q[vi]REE
Q = Q(ϕ) ϕ = [ϕ1, ϕ2, ϕ3]T (4.35)
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• using the actuated joint angles as unknowns:

[vi]R0 = Ri[vi]REE
Ri = Ri(ϑi, ϕi, ψi) i = 1, 2, 3 (4.36)

in this case, the actuator angle ϑi are the input and the unknowns are the passive ones
of the remained joints.

Before entering in the core of the algorithm, it is possible to do an explanation, considering
a schematic spherical four-bar loop, in order to identify the loop equation. Then, this theory
will be extended to the SPM, involving two spherical four-bar linkages.

Figure 4.5: Spherical Four-Bar Linkages [4].

As it possible to see in figure 4.5, by moving from A-point to D-point, two kinds of
rotations are considered in this loop:

• joint rotation: it describes the relative orientation (it is constant) of each neighbouring
pair of joint axes of a link;

• side rotation: that is variable.

The loop equations can be expressed as follows:

I = Z4S4Z1S1Z2S2Z3S3 (4.37)

Z1 = Rz(φ) Z2 =Rz(π − ψ) Z3 = Rz(ϑ3) Z4 = Rz(ϑ4)

Si = Rx(αi) i = 1, 2, 3, 4

By manipulating the equation, let it write:
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zTST3 z = zTS4Z1S1Z2S2z z = [0, 0, 1]T (4.38)

Expliciting the relation below, it has been achieved the final expression, based on constant
terms (depending on the characteristic angles) and the unknowns φ and ψ angles.

k1 + k2 cosψ + k3 cosψ cosφ− k4 cosφ+ k5 sinψ sinφ = 0 (4.39)

k1 = cα1cα2cα4 − cα3

k2 = sα1sα2cα4

k3 = cα1sα2sα4

k4 = sα1cα2sα4

k5 = sα2sα4

Therefore, the resolute algorithm can be shown, considering two spherical four-bar
linkages for the 3-RRR SPM ( A1C1C2A2, A1C1C3A3), as you can see in figure 4.4.

• definition of the unit vectors of the joints:

ui =

− sin ηi sinβ1

cos ηi sinβ1

− cosβ1

 wi =

−sηisβ1cα1 + (cηisϑi − sηicβ1cϑi)sα1

−cηisβ1cα1 + (sηisϑi − cηicβ1cϑi)sα1

−cβ1cα1 + sβ1cϑisα1

 (4.40)

[v1]RFEE
=

0
0
1

 [v2]RFEE
=

sin γ2

0
cos γ2

 [v3]RFEE
=

cosψ2 sin γ2
2

sinψ2

cosψ2 cos γ22

 (4.41)

• identification and calculation of the angles on the sphere:

α4 = cos−1(w1 · w2) α4 ∈ (0, π] (4.42)

α3 = cos−1([v1]REE
· [v3]REE

) α3 ∈ (0, π] (4.43)

ᾱ3 = cos−1([v1]REE
· [v3]REE

) ᾱ3 ∈ (0, π] (4.44)

(4.45)

{
cosα5 = w1 · w3

sinα5 = ||w1 × w3||
(4.46)

{
cosα45 = w2 · w3

sinα45 = ||w2 × w3||
(4.47)

σ = 2π − cos−1[(cosα45 − cosα4 cosα5)/(sinα4 sinα5) (4.48)

µ = cos−1[(csc2α3)(cosα3 − cos2 α3)] µ ∈ (0, π]; (4.49)

φ̄ = 2π − φ− σ (4.50)

ψ̄ = 2π − ψ − µ (4.51)
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• selection of the two loop equations:

– Loop Equation (1):

k1 + k2 cosψ+k3 cosψ cosφ− k4 cosφ+ k5 sinψ sinφ = 0 (4.52)

A1(φ)cψ +B1(φ)sψ + C1(φ) = 0 (4.53)

where the constant terms are function of characteristics angles:

ki = F (α2, α3, α4) i = 1, 2, .., 5

– Loop Equation (2):

j1 + j2 cos ψ̄+j3 cos ψ̄ cos φ̄− j4 cos φ̄+ j5 sin ψ̄ sin φ̄ = 0 (4.54)

A2(φ̄)cψ̄ +B2(φ̄)sψ̄ + C2(φ̄) = 0 (4.55)

it is possible to express the second equation as a function of φ and ψ, in order to
solve the linear system in sinψ and cosψ. Moreover, the constants ji are function
of:

ji = F (α2, ᾱ3, α5, µ, σ) j = 1, 2, .., 5

• resolution of the linear system, in function of φ and ψ angles:
sinψ = −B2C1+B1C2

−A2B1+A1B2

cosψ = −A2C1+A1C2
−A2B1+A1B2

(4.56)

Figure 4.6: Semi-Graphical Resolution.
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• semi-graphical equation solving: assuming the denominator −A2B1 + A1J2 6= 0
and evaluating the trigonometric identity, it is possible to obtain:

sin2 ψ1 + cos2 ψ1 = 1 (4.57)

C2
2A

2
1 + C2

2B
2
1 + 2A2B2A1B1 −B2

2A
2
1 +A2

2C
2
1 − 2A2C2A1C1 (4.58)

− 2B2C2B1C1 −A2
2B

2
1 +B2

2C
2
1 = 0 (4.59)

Rearraging the new equation in function of cosφ and sinφ, it has been achieved the
eight solutions, coming from the intersection with these two curves, as shown in figure
4.6: {

x = cosφ

y = sinφ
⇒

{
f(x, y) = 0

x2 + y2 = 1
(4.60)

• solving the octic polynomial, using the tan-half identities:

8∑
i=0

Nit
i = 0 i = 1, 2, .., 8 (4.61)

substituting sφ and cφ with an only parameter t (tan-half)

cosφ =
1− t2

1 + t2
sinφ =

2t

1 + t2
t = tan

φ

2
(4.62)
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4.4 Thomas’ Method

As it has been mentioned in the previous section, this method has many advantages in
both analytical and physical terms and it is very interesting for these reasons:

• simplicity: elimination of the trigonometric functions from the algorithm: it is based
on only squared distances;

• generality: the possibility of extending this method to other mechanisms such as
3-RRR SPM; decoupled platform, 4-4 platform with planar base and platform, etc...;

• optimality: obtaining the polynomial of the minimal degree, by eliminating the sin-
gularity of the formulation in the polynomial expression;

• moreover, the use of a potentiometer extra-sensor: reading the feedback, it
should be used as an input in the analytical process. In this way, considering the read
distance like an input, it will be possible to identify the exact solution of the forward
kinematics, among all the possible one.

First, let it do a short explanation as for to identify constant and variable distances in a
generic strip of tetrahedra.

Theory of the Tetrahedral strip and Closure Polynomials

A tetrahedral strip is a tetrahedron-tetrahedron truss where any tetrahedron has two
neighbours except those in the extremes which have only one.

Figure 4.7: Generic Tetrahedral Strip [30].

It is possible to see that each strip has two endpoints Pa and Pb, as shown in figure 4.7
and, for this reason, any rod length cannot be freely chosen. Therefore, unless any of the
tetrahedra degenerate, such a truss is rigid.

The distance between the strip endpoints is first derived by iterating a basic operation
involving only two neighbouring tetrahedra over the whole strip, leading to a scalar equation
containing radical terms.

Given a set of points in the strip, the valid distances between them can be characterized
using the theory of Cayley-Menger determinants [27, 31, 13], defined for two sets of
points Pi1 , ..., Pin and Pj1 , ..., Pjn . In this case, the two sets of the points are the same and
the determinant of these sets of points became D(i1, ..., in) = D(i1, ..., in; i1, ..., in) and it is
proportional to the squared volume of the simplex spanned by Pi1 , ..., Pin in Rn−1.
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D(i1, ..., in; j1, ..., jn) = 2

(
−1

2

)n ∣∣∣∣∣∣∣∣∣
0 1 . . . 1
1 si1,j1 . . . si1,jn
...

...
. . .

...
1 sin,j1 . . . sin,jn

∣∣∣∣∣∣∣∣∣
where si,j stands for the squaredd distance between Pi and Pj .

Figure 4.8: Reduction of Tetrahedra.

Considering the two neighbouring tetrahedra, shown in figure 4.12. The squared distance
between Pl and Pm can be calculated as:

sl,m =
2

D(i, j, k)

(
D(i, j, k, l; i, j, k,m) |sl,m=0 ±

√
D(i, j, k, l)D(i, j, k,m)

)
(4.63)

The ± sign is due to the two possible solutions depending on the relative orientation
between two tetrahedra.

It has been introduced a notation to express these squared distances:

sl,m = Ψl,i,k,m (4.64)

If some distances, that are involved in Ψl,i,ik,m, are a unknown, it can be explicated as:

sl,m = Ψl,i,k,m(si,j) (4.65)

Moreover, if one of the points in the set Pi, Pj , Pk does not belong to any other tetrahedron
in the strip, it can be removed from it, connecting the point Pl and Pm with a road, with a
length in according to the formulation 4.63. This reduces the number of tetrahedra in the
strip into only two.

After repeating this operation until the strip contains only two tetrahedra, the distance
between the tetrahedral strip endpoints is finally obtained as a 2n−2 - valued function, where
n is the number of tetrahedra in the strip, before rearranging.

Once it has been treated the theory at the base of the tetrahedral strip, it is possible to
introduce the algorithm, used to solve the roots of the polynomial.

• defining the squared distances through the Cayley-Menger determinant;
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• clearing radicals to obtain a closure condition as a polynomial in terms of a given
rod length:

a0 + a1

√
r + a2(

√
r)2 + a3(

√
r)3 + ... = 0 (4.66)

the first step consists in taking the numerator of the rational form of the obtained
function and then clearing radicals. As radicals will appear nested, they are cleared
using an iterative process starting from the outer one. At each step of this process, the
expressions involving a radical will have the general form as in eq. 4.66, that can be
rearranged , considering both of the sign, as follows in the equation 4.70:

(a0 + a2r + a4r
2...) +

√
r(a1r + a3r + a5r

2 + ...) = 0 (4.67)

(a0 + a2r + a4r
2...)−

√
r(a1r + a3r + a5r

2 + ...) = 0 (4.68)

(4.69)

Given that the process is interested in the roots of both equations, it has been considered
the product of them, achieving:

(a0 + a2r + a4r
2...)2 − r(a1r + a3r + a5r

2 + ...)2 = 0 (4.70)

• eliminating of the singularity of the formulation, in order to obtain a polynomial
of a minimal degree: if a rod with variable length belongs to a shared face, this face
degenerates for some values of si,j . When this happens, the three points defining the
face get aligned and the tetrahedral strip can be decomposed into two parts so that one
can freely rotate with respect the other about the axis defined by these three aligned
points. These terms corresponding to these degenerate configurations will appear in
the closure polynomial and they can be easily removed by iteratively dividing the clo-
sure polynomial by the function that describes the area of this shared face, until the
remainder is not null.
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4.4.1 Example and Implementation

4.4.1.1 Example

In order to apply the technique explained above to solve the kinematics of a 3-RRR
Coaxial SPM, in the figure 4.9 it has been shown a schematic representation with arches and
tetrahedra of the kinematics of the robot itself.

Figure 4.9: Schematic Example of the Robot.

As it can be possible, the workspace it has been identified as a sphere, neglecting the
limitations due to both the physical constrains and singularities. The arches represent the
proximal and distal link of each chain of the robot (1◦ leg-black, 2◦ leg-blue, 3◦ leg-red), while
the violet lines symbolize the squared distances, used in the whole process. The center of
the mechanism (CM) is the point P3, while the points of the platform are P1, P2 and
P4. However the points P5, P6 and P7 represent the connection between the proximal and
the distal link. As it is possible to see, the two tetrahedra that describe the platform (red
one) and the fixed base (blue one) orientations degenerate into two triangles, centred in the
CM.

In this representation all of the constant squared distances depend on the radius of the
sphere, that it has been chosen unitary. It follows the S7x7 matrix of the squared distances
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that are involved into the seven points (P1, P2, ..., P7), representative of the mechanism.

S =



0 s12 s13 s14 s15 s16 s17

s21 0 s23 s24 s25 s26 s27

s31 s32 0 s34 s35 s36 s37

s41 s42 s43 0 s45 s46 s47

s51 s52 s53 s54 0 s56 s57

s61 s62 s63 s64 s65 0 s67

s71 s72 s73 s74 s75 s76 0


=



0 3 1 3 2 ? ?
3 0 1 3 ? ? 2
1 1 0 1 1 1 1
3 3 1 0 ? ? ?
2 ? 1 ? 0 2.6840 2.5176
? ? 1 ? 2.6840 0 3.6383
? 2 1 ? 2.5176 3.6383 0


(4.71)

where the constant squared distances have been calculated as follows:

p̂50 = [rsphere, 0, 0, 1]T p̂60 = R̂z

(
2π

3

)
p̂50 p̂70 = R̂z

(
4π

3

)
p̂50 (4.72)

R̂1 = R̂z(ϑ1), ϑ1 = 15◦ R̂2 = R̂z(ϑ2) ϑ2 = 5◦ R̂3 = R̂z(ϑ3) ϑ2 = 30◦ (4.73)

p̂5 = R̂1p̂50 p̂6 = R̂2p̂60 p̂7 = R̂3p̂70 (4.74)

s56 = ||p5 − p6||2 = 2.6840 s57 = ||p5 − p7||2 = 2.5176 s67 = ||p6 − p7||2 = 3.6383
(4.75)

s35 = s36 = s37 = s13 = s23 = s34 = r2
sphere = 1 (4.76)

s12 = s14 = s24 = (
√

3rsphere)
2 = 3 (4.77)

s51 = s46 = s72 = (
√

2rsphere)
2 = 2 (4.78)

while the unknowns depend on the squared distance s25

s25 = s17 = s16 = s45 = s46 = s47 =? (4.79)

s54 = Ψ5,3,2,1,4(s52) s74 = Ψ7,5,3,2,4(s52; s54) s64 = Ψ6,7,5,3,4(s654; s74) (4.80)

This dependence can be seen in the figure 4.10, where it is shown the reduction of tetra-
hedra in number of two, as the theory says.

In the end, it has been attached the solution for the case that has been studied in figure
4.11 and a table 4.4.1.1 with the 7 Cartesian coordinates for the set of points.
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𝑷𝟔 𝑷𝟓 𝑷𝟐 𝑷𝟒

𝑷𝟏𝑷𝟑𝑷𝟕

𝑷𝟔 𝑷𝟓 𝑷𝟐 𝑷𝟒

𝑷𝟑𝑷𝟕

𝑷𝟔 𝑷𝟓 𝑷𝟒

𝑷𝟑𝑷𝟕

𝒔𝟓,𝟐 = 𝜳𝟓,𝟑,𝟐,𝟏,𝟒

𝒔𝟓,𝟒 = 𝜳𝟓,𝟑,𝟐,𝟏,𝟒(𝒔𝟓,𝟐)

𝒔𝟕,𝟒 = 𝜳𝟕,𝟓,𝟑,𝟐,𝟒(𝒔𝟓,𝟐 , 𝒔𝟓,𝟒)

𝒔𝟔,𝟒 = 𝜳𝟔,𝟕,𝟓,𝟑,𝟒(𝒔𝟕,𝟒 , 𝒔𝟓,𝟒)

𝒔𝟓,𝟒 = 𝜳𝟓,𝟑,𝟐,𝟏,𝟒(𝒔𝟓,𝟐)

Figure 4.10: Elimination of Tetrahedra.

Solution of Forward Kinematic (ϑ1 = 15◦, ϑ2 = 5◦, ϑ3 = 30◦)

P1 P2 P3 P4 P5 P6 P7

-0,3134 0,8411 0 -0,5277 -0,8192 0,8192 -0,3420

0,4476 0,3061 0 -0,7537 -0,5736 -0,5736 0,9397

0,8375 -0,4459 0 -0,3917 0 0 0

-0,3134 0,8411 0 -0,5277 -0,8192 0,8192 -0,3420

0,4476 0,3061 0 -0,7537 -0,5736 -0,5736 0,9397

-0,8375 0,4459 0 0,3917 0 0 0

0,3134 -0,8411 0 0,5277 -0,8192 0,8192 -0,3420

-0,4476 -0,3061 0 0,7537 -0,5736 -0,5736 0,9397

0,8375 -0,4459 0 -0,3917 0 0 0

0,3134 -0,8411 0 0,5277 -0,8192 0,8192 -0,3420

-0,4476 -0,3061 0 0,7537 -0,5736 -0,5736 0,9397

-0,8375 0,4459 0 0,3917 0 0 0

Table 4.3: 4 Solutions of Forward Kinematics.
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Figure 4.11: Solutions for the Forward Kinematics.

37



4.4. Thomas’ Method 4. FORWARD KINEMATICS ANALYSIS

4.4.1.2 Explanation of Matlab Code

As it has been mentioned above, Thomas’ method is based on the squared distances and
a recursive trilateration, in order to get coordinates after solving the polynomial equations.
Moreover, it needs to be better explained the analytical algorithm used to perform the for-
ward kinematics, that you can find in the main FDA.m, being in the attachments chapter.

The inputs of the method are three actuator angles M.t1, M.t2, M.t3 and the unit
radius of the sphere M.r sphere. Starting from these values and using the trigonometrical
relationships on the sphere, it possible to define the known squared distances, computed by
the function square distances.

After initialising the matrix S as a symbolic one, it has been filled the same matrix with the
calculated squared distances, and it has been made symmetric, by the function Symmetrize.
In this way, S with known and unknown squared distances becomes the input for the following
step.

Then, it has been defined the possible strips of tetrahedra among the 7 points that
represent the robot in the spherical workspace. In the line below

ST= { [3 5 7 2 6] [2 3 5 1 6] [1 2 3 4 6] }

the cell ST collects 3 possible strips defined as ST = [Pi, Pj , Pk, Pl, Pm], in which the 2
terminal points Pl, Pm do not belong to any other neighbouring tetrahedra, according to
the figure 4.12. This indexation to find the unknowns, will be useful to solve the polynomial
roots in the next steps.

Figure 4.12: Reduction of Tetrahedra.

Another indexation regards trilateration method to define the order of the points to
get the respective coordinates.

T= { [5 6 7 3] [5 3 7 2] [5 2 3 1] [1 2 3 4] }

SG= { [0 0 0 1] }

Starting from the three fixed points of the base P5, P6, P7, it is possible to find the following
points in the strip as you can see in the tree diagram 4.13. Per each four numbers, it is
possible to choose the fourth, up or down the base, identified by the previous three numbers,
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in the sequence. After computing the tree diagram, it will get 16 branches, corresponding to
16 solutions, in which 8 out of 16 are exactly the symmetrical one of the others. The value

Figure 4.13: Trilateration Process.

SG=0 or SG=1 regards the possibility to freely choose or not the detected point. If it is SG=0,
the point can be both directions, if it SG=1 the orientation in the Cartesian space is fixed. In
this case, only the point P4 is fixed, because is coplanar to P1, P2, being the extremities of
the mobile platform.

After the trilateration indexation, it has been calculated the variable squared dis-
tances, as mentioned in the formulation 4.63 with the sub-function FillDistance. Then,
by clearing radicals with the sub-function EliminateSquareRoot it is possible to achieve
the univariate closure polynomial with the function UCPolynomial.

The function SolveSystem finds the roots of the polynomial and returns the roots as
a cell array R and the respective variables V as a row/column of the matrix S.

The last step has been to get the coordinates for the set of 7 points per each solu-
tion, that correspond to the several values of the matrix S. The function GetCoordinates

realises the recursive trilateration process, mentioned before, recalling the sub-functions
FixVariable, RTrilaterate and Trilaterate.

In the end, it has been plotted the 16 solutions with the function DrawRobot, using
the set of coordinates, calculated in the previous steps.
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4.4.2 Assembly Mode and Non Trivial Solutions

Considering Thomas’ approach, it is clear how the direct kinematic solutions are obtained
by solving a univariate polynomial of degree 16, which means that there is no way to designate
each solution to a particular assembly mode [5].

A natural sorting criterion is that the direct kinematic solution should be reachable
through continuous motion from the initial assembly mode without crossing a singularity.

However, in our case, although we obtained 4 non trivial solutions, it possible to get only
2 solutions out of 4, after choosing an assembly mode.

In fact, by mounting the distal links on the proximal one, it is possible to choose 2 types
of assembly mode (figure 4.14):

• counter clockwise;

• clockwise.

Depending on these assembly modes, realising the all of the four solutions is possible only
by crossing the singularities among the legs (it means breaking the robot) or by disassembling
the robot and rearranging the distal links in the opposite configuration.

This relationship between the solutions of the forward kinematics and the assembly mode
is possible to see in the figure below 4.15, 4.16.

Figure 4.14: Assembly Mode 1 (left) and Assembly Mode 2 (right).
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Figure 4.15: Assembly Mode 1 and Solutions 1 and 2.

41



4.4. Thomas’ Method 4. FORWARD KINEMATICS ANALYSIS

Figure 4.16: Assembly Mode 2 ans Solutions 3 and 4.
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4.4.3 Considerations

First, the used algorithm gets 16 solutions, because the code has been thought to
be the most general possible. In fact, after defining the base through the 3 respective points,
the positioning of the point P3 (CM) can be choose both upper or under this base.

In our case, given that the two tetrahedra collapse into two triangle with the same barycen-
tre, the point P3 will be always the same positioning. Therefore, 8 solutions out of 16 are
exactly the same.

Moreover, the shown solutions are 4 in this example, because there are complex con-
jugate solutions for the input parameters ϑ1, ϑ2, ϑ3 [?].

However, it is possible to increase the number of the real solution, playing with the
values of the characteristic parameters of the robot, as it can be seen in figure 4.17.

Through this optimisation, one pair of complex conjugate solutions first becomes a double
root and finally, by separations, two different real roots.

At the same time, you have to make sure that two of already existing real solutions get
too close, becoming before a double solution and after a complex conjugate one.

Figure 4.17: Getting Two Real Solution from a Couple of Complex Conjugate One.
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Chapter 5

Workspace and Singularities Analysis

5.1 Introduction

In this chapter it has been treated the relationship between the characteristics parameters
of the robot and the both singularities and workspace limits. As you can see in the figure
5.1, the angles α1 and α2 are the two that influence either the motion mobility range and
the number and types of singularity of the robot.

Figure 5.1: Characteristics Parameters of the Robot.

In this case, choosing the angles α1 = α2 = π/2 and γ1 = 0 has led to do different
considerations, that will be better analysed in the following sections:

• workspace: in this way, the coaxial configuration (γ1 = 0) led to have the whole range
of mobility for each proximal link on the sphere. In theory, they can rotate between
0 − 360 deg. Moreover, the angles α1 = α2 = π/2 increase the mobility range of the
workspace in all of the sphere.

• number and types of singularities: if the mobility range increases, the number of
singularities grows up too, when the characteristics angles α1 = α2 = π/2.
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In the end, it is possible to argue that the optimisation of the mobility range and the
singularities is a trade-off; a better workspace carries on more singularities that have to be
avoided, during a path motions in the manipulations of the robot.

5.2 Workspace Analysis

The mobility region for each leg is given by the set of possible orientations that the end
effector can achieve, given the link dimensions of this leg. This region is bounded by the
singularity surface, which can be found for each leg as the closed surface separating the
region where the leg has mobility from that in which it does not. The global mobility
range is, at the end, the intersection of all these regions [2].

The singularity surface can be firstly obtained, considering the equation of the inverse
kinematics of the manipulator, in a geometrical approach.

It is possible to remind the formulation of the inverse kinematics in order to show what
kind of condition reduce the workspace mobility.

As we have treated in the chapters before, it possible to express all of the unit vector of
all the joint of the robot with respect to a fixed referent frame, attached to the base. Let it
to write the expression of the unit vector, related to the characteristic angles of the robot:

ui =

− sin ηi sin γ1

cos ηi sin γ1

− cos γ1

 wi =

−sηisγ1cα1 + (cηisϑi − sηicγ1cϑi)sα1

−cηisγ1cα1 + (sηisϑi − cηicγ1cϑi)sα1

−cγ1cα1 + sγ1cϑisα1

 (5.1)

v∗i =

− sin ηi sin γ2

cos ηi sin γ2

cos γ2

 γ2 = π/3 (5.2)

Q = EulZY X = Rz(α)Ry(ϕ)Rx(ψ) (5.3)

vi = Qvi
∗ = [xi, yi, zi]

T i = 1, 2, 3 (5.4)

Using the geometrical constrain equation of the robot, it is possible to achieve the equations
of the inverse Kinematics for each leg:

wi · vi = cos(α2) i = 1, 2, 3 (5.5)

By substituting the half tangent it is possible to make the equation algebraical, as follows:

AiT
2
i +BiTi + Ci = 0 Ti = tan(ϑi/2) i = 1, 2, 3 (5.6)

Rearranging the equation it possible to express the coefficients A, B, C, as a function of the
characteristic angles and the component of the unit vector vi:

Ai = yi(sin(γ1) cos(α1)− cos(γ1) sin(α1))− cos(α2) (5.7)
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−zi(cos(γ1) cos(α1) + sin(γ1) sin(α1))

Bi = xi sin(α1) (5.8)

Ci = yi(sin(γ1) cos(α1) + cos(γ1) sin(α1))− cos(α2) (5.9)

−zi(cos(γ1) cos(α1) + sin(γ1) sin(α1))

By considering the discriminant 4i = 0 and simplifying the equation it is possible to
obtain the following equations:

4i = B2
i −AiCi = 0 (5.10)

[x2
i + (yi cos(γ1) + zi sin(γ1))2](sin(α1))2 − [(yi sin(γ1)− zi cos(γ1)) cos(α1)− cos(α2)]2

(5.11)

xi sin(ηi) sin(γ1)− yi cos(ηi) sin(γ1) + zi cos(γ1) +D = 0 i = 1, 2, 3 (5.12)

D = − cos(α1 ± α2) (5.13)

Depending on the value of the constant D, the equation 5.12 represents the function
of two planes in a 3D cartesian space. The possible orientations of the gripper are in the
region between the two planes and the intersections of the sphere. The equations equation
5.12 separates the unit sphere into three regions: the region between the two planes is the
attainable workspace and the other two are the immobility regions. The two intersections
of planes and the sphere are singularity curves in the Cartesian space. The conic surface
generated by equation 5.11, intersects with the unit sphere revealing the coincidence of two
equations.

For each leg, you can see in figure 5.2 the representation of the mobility range in the two
case, where in green it has been plotted the sphere, in red the cone and in blue the two plane:

• generic configuration: α1 = π/3, α2 = π/2 and γ1 = π/3;

• coaxial configuration: α1 = α2 = π/2 and γ1 = 0.

If we considerer the equation 5.13, it is possible to define the condition under which the
manipulator is capable of producing all possible rotations, maximising this function:

||D||max = 1 ⇔

{
α1 + α2 = π

α1 − α2 = 0
⇒ α1 = α2 = π/2 (5.14)
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Figure 5.2: Workspace for Each Leg.
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Figure 5.3: Whole Workspace General Configuration.

Figure 5.4: Whole Workspace Coaxial Configuration.
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The equation 5.12 is independent from joint variables and relates the orientation to link
dimensions only. It means it is possible to describe the capability of rotation in terms of the
architecture parameters of a leg α1, α2, γ1.

The parameter D is very important because it determine the distance from the origin to
the boundary plane, evaluating three cases of mobility regions of a single leg, as follows:

• α1 6= α2: D has two distinct values, neither equal to the unit radius. The two planes
thus intersect with the unit sphere, yielding three regions. The attainable workspace is
the region bounded between two planes, while the immobility regions are outside the
two planes. There are two singularity curves that are the intersections of the planes
and the sphere.

• α1 = α2 6= π/2: D has two distinct values and one being equal to the unit radius. There
is only one plane that intersects the sphere, since the other is tangential to the unit
sphere. The spherical surface is divided into two regions by the intersecting plane: one
region is the attainable workspace, and the other is the immobility region. Only one
singularity curve exists in this case, in addition to a singularity point at the tangential
position.

• α1 = α2 = π/2: this last case is exactly the same of this prototype. D takes two
identical values equal to the unit radius, which implies two planes are tangential to the
unit sphere. The attainable workspace consists of the whole sphere, except the two
tangential points. There is no singularity curve, but only two singularity points.

From this analysis, these three cases of singularity curves corresponds to three different kinds
of mobility regions, where the last case maximises the workspace.
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5.3 Singularities Analysis

5.3.1 Type of Singularities in a Parallel Robot

In this section, it has been analysed the singularities of this parallel robot, which has
inputs and output, where the latter represents a set of actuated joints θ = [ϑ1, ϑ2, ϑ3]T

and the former is set of angle of the orientation of the End Effector in the Cartesian space
φ = [α, ϕ, ψ].

Firstly, it is possible to generally describe the different types of singularity in a parallel
robot, considering the Jacobian Matrices that appear in the formulations. Jacobian ma-
trix can be seen as the transformation matrix of differential kinematics from joint space to
operation space [11, 7].

Let it starts explaining the implicit relationship between inputs and outputs of the robot
kinematics and obtaining the equation that describe the input-output speed, by differentiating
with respect to the time:

F (θ, φ) = 0 (5.15)

Aφ̇+Bθ̇ = 0 (5.16)

A =
∂F

∂φ
B =

∂F

∂θ
(5.17)

where A and B are the Jacobian matrices 3 × 3, depending on both the characteristic
parameters of the robot and the configuration, determined by inputs and outputs.

The singularities appear in configurations where either A or B becomes singular. There-
fore, it is possible to classify three kinds of singularity that have different physical interpre-
tations:

• First Singularity:

det(B) = 0

The corresponding configuration is one in which the chains stand on the boundary
limits of the workspace. It means this kind of singularity is related to an inverse
kinematics problems. It is possible to see this singularity in this way: even if the
det(B) = 0, there is some non-null values of the actuators rate that correspond a null
value of the Cartesian Velocity of the End Effector.

Generally, these velocity would be orthogonal to the boundary and directed towards
the outside of the workspace. In such a configuration, the output link loses one or more
degrees of freedom, implying that it can resist one or more forces or moments without
any torque-or force-at the powered joints.

• Second Singularity:

det(A) = 0
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The singular configuration leads the gripper to be locally movable even if all the actuated
joints are locked.

In this case, this singularity comes from the forward kinematics problem. In the
direct kinematic problem, the values of the output variables from given values of the
input variables should be obtained. So, it is possible to have a non-null Cartesian
rates of the End Effector, even if the the input angle are a null-vector. In such a
configuration, the output link gains one or more degrees of freedom, implying that the
output link cannot resist one or more forces or moments even when all actuators are
locked.

• Third Singularity:

det(B) = det(A) = 0

The third kind of singularity occurs when, for certain configurations, both , when some
specific conditions on the linkage parameters are satisfied. This corresponds
to configurations in which the chain can undergo finite motions when its actuators are
locked or in which a finite motion of the inputs produces no motion of the outputs,
such as a linkage having a constant branch.

5.3.2 Jacobian Matrices for 3-RRR Coaxial SPR

Before describing the process to obtain the Jacobian matrices, let it define the unit vectors
of all the joints with respect to a fixed frame, attached to the base, as it has been mentioned
above in the workspace analysis and in the chapters above.

ui, wi, vi i = 1, 2, 3.

So for a certain configuration, after solving the inverse kinematics of a given orientation
REE of the End Effector, it is possible to know the input φ and output θ of the process,
reminding that the Euler Angles convention ZYX it has been used.

In this case, the equation 5.15 is the geometrical constrain [14] of the robot and by deriving
both sides of time, it is possible to achieve this expression:

wi · vi = cos(α2) i = 1, 2, 3 (5.18)

ẇi · vi + wi · v̇i = 0 (5.19)

Explicating the equation below, for i = 1, 2, 3, it is possible to achieve the system of three
equations as follows:

∂wi
∂ϑ1

viϑ̇1 +
∂wi
∂ϑ2

viϑ̇2 +
∂wi
∂ϑ3

viϑ̇3 +
∂vi
∂α

wiα̇+
∂vi
∂ϕ

wiϕ̇+
∂vi
∂ψ

wiψ̇ = 0 (5.20)


a1ϑ̇1 + b1ϑ̇2 + c1ϑ̇3 + e1α̇+ f1ϕ̇+ g1ψ̇ = 0

a2ϑ̇1 + b2ϑ̇2 + c2ϑ̇3 + e2α̇+ f2ϕ̇+ g2ψ̇ = 0

a3ϑ̇1 + b3ϑ̇2 + c3ϑ̇3 + e3α̇+ f3ϕ̇+ g3ψ̇ = 0

(5.21)

52



5. WORKSPACE AND SINGULARITIES ANALYSIS 5.3. Singularities Analysis

where the constant terms ai, bi, ci, ei, fi, gi are:

ai =
∂wi
∂ϑ1

vi bi =
∂wi
∂ϑ2

vi ci =
∂wi
∂ϑ3

vi ei =
∂vi
∂α

wi fi =
∂vi
∂ϕ

wi gi =
∂vi
∂ψ

wi

Given that the unit vector wi concerns with only the degree of freedom ϑi and it is independent
of ϑj and ϑk, the matrices B is a diagonal one. On the contrary, the unit vector vi concerns
with all the three value α1, ϕi, ψi.

In general, the constant terms are as a function of the characteristic angles of the robot,
the inputs and the output, that have not been written here, to simplify the description.

This system can be translated into a matrix one, as mentioned below:

Bθ̇ +Aφ̇ = 0 (5.22)

where A and B are respectively:

B =

a1 0 0
0 b2 0
0 0 c3

 A =

e1 f1 g1

e2 f2 g2

e3 f3 g3

 (5.23)

If the matrix A is not singular it is possible to achieve the transformation matrix of differential
kinematics from joint space to operation space:

φ̇ = A−1(−B)θ̇ = Jθ̇ (5.24)

The choice to use the Euler Angle ZYX convention leads it to considerer the Euler angles
rate φ̇ as the angular velocity ω of the End Effector in the Operation space. In fact, the
Jacobian Matrix transformation between these two quantities is the Identity matrix, when
angular velocity of the body is resolved in fixed frame R0−O0x0y0z0. Moreover, you can see
how this convention does not introduce a singularity in a formulation, considering only the
singularity of the robot.

0ω =

0ωx
0ωy
0ωz

 =

1 0 0
0 1 0
0 0 1

 φ̇ (5.25)

The equation 5.24 above can be re-written in this way:

ω = Jθ̇ (5.26)

After this result, it is possible to express the Jacobian matrices in another way, directly
considering the Cartesian angular velocity of the End Effector [2]:

ẇi · vi + wi · v̇i = 0 (5.27)

v̇i = ω × vi (5.28)

ẇi =(ui × wi)ϑ̇i (5.29)
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Substituting this expressions in the differential equation, the matrices A and B are:

A =

(w1 × v1)T

(w2 × v2)T

(w3 × v3)T

 B =

(w1 × u1) · v1 0 0
0 (w2 × u2) · v2 0
0 0 (w3 × u3) · v3

 (5.30)

This other way to express the Jacobian matrices leads to explain in a physical way what
the different kinds of singularity mean for a spherical parallel manipulator, as listed below:

• First Singularity:

det(B) = 0 (wi × ui) · vi = 0

It stands on the boundary of the workspace and it is related to the inverse kinematics.
When this condition are verified, vector ui, wi, vi are coplanar, as you can see in the
figure 5.5. When such a configuration is attained, a certain set of velocities of the
gripper cannot be produced. At the end, It means the robot loses a dof of mobility, as
represented in figure 5.5 for each leg.

• Second Singularity:

det(A) = 0 (wi × vi) = 0

This singularity appears when non zero angular velocities of the gripper are possible
even if the three motors are locked. As you can see in figure 5.10, is it impossible to
control the platform when it is an horizontal configuration, due to the value of the
actuator angles ϑ1 = ϑ2 = ϑ3.

This condition is when the three unit vectors wi and vi with i = 1, 2, 3 are coplanar and
depend on the forward kinematics. In each case, a velocity of the gripper that leaves
the actuators at rest is possible, and there exists a torque, which when applied to the
gripper, could not be balanced and controlled by the actuators.

• Third Singularity:

det(A) = det(B) = 0 α1 = α2 = π/2

This singularity appears when the inverse and forward kinematics singularities meet.
For this prototype it is means that all the proximal links collide into only one, as shown
in figure 5.7, even if it is impossible to physically achieve because of the interference
among the parts.
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Figure 5.5: Singularities of the Inverse Kinematics.
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Figure 5.6: Singularities of the Forward Kinematics.

Figure 5.7: Singularities of the Third Type.
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5.4 Design Considerations

In the sections above It has been analysed and compared the difference between this two
configurations in terms of singularities and workspace:

• First Configuration: α1 = 90 deg, α2 = 90 deg.

• Second Configuration: α1 = 60 deg, α2 = 90 deg.

Moreover, it is also important to show how the physical implementation of the prototype
leads to different considerations in mechanical way.

By keeping the same dimension of the End Effector, you can see how in the
configuration 2 the whole workspace increases. This aspect comes to, as a consequence, an
higher dimension of the distal and proximal links, making more flexure problem under load.

Figure 5.8: Configuration 1 - Top View.

Figure 5.9: Configuration 2 - Top View.
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Figure 5.10: Configuration 2 (left) and Configuration 1 (left) - Front View.
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Chapter 6

On the Design of Coaxial 3-RRR SPM

6.1 Introduction

The first design of the 3-RRR Coaxial Spherical Parallel Motor is based on the use of
three servomotors to actuate the respective degrees of freedom and a very simple driving
system made of only one gear mates with 1:1 ratio, in order to realise the prototype very
fast. In fact, most of the parts of the robot will be printed using ABS plastics (P430-Nat,
1.04 g/cm3) and only the support parts and other threaded pivots will be in High Speed Steel.

Figure 6.1: 3-RRR Coaxial SPM.
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For these reasons, it has been preferred to not complicate the transmission mechanism
in order to focused to both the functioning and the optimization of the robot. Moreover,
this concept is reconfigurable and modular, allowing to rearrange the robot configuration,
changing the characteristic angles and printing only the legs of the robot in a easy and cheap
way, so far as this does not change the transmission mechanism of the power.

At the same time, it will be postponed, as a future work, a new prototype with a complex
transmission, using only one motor, three electro-brakes and a system with pulley and belt
to move the robot, in order to reduce the operative costs of the robot itself.

6.2 Used Equipment and Printing Process

In order to print the CAD parts two different 3D Printers have been used, namely in the
following table 6.1 and shown in figures 6.2

Company 3D Printer Building Size Model Material Layer Thinness

Proto3000 1200es Series 254 x 254 x 305 mm ABSplus-P430 0,330 mm

Stratasys uPrint SE 203 x 152 x 152 mm ABSplus-P430 0,254 mm

Table 6.1: 3D Printes Used.

Figure 6.2: uPrint SE (left) - 1200es Series (right).

Even if the tolerance of the two printers are more or less the same, it has been preferred
to print several parts (eg. shafts, gears, etc...) for which the precision and the mechanical
properties are highly important with the uPrint SE model, because the result of printing
has been better than the other, after several attempts. The base, the cover and the upper-base
have been printed with the 1200es Series model, because of the needed dimensions of these
parts.

The 3D-printer process uses the FDMTM Technology (fused deposition modelling), build-
ing the 3D model and its support material, layer by layer, from the bottom to the top on a
removable modelling base.
The accuracy on the flat plane is 0.01 mm and the mechanical strength in this plane is bigger
than in the other planes.

It was necessary to take into account of this printing features in the design of each model,
making compromises among the optimization of the design, the limit and capability of the
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3D printer and the functioning of the mechanism. This aspect leads it to complicate the
drawing of the parts, splitting them into different ones, making the 3D printer to do its best.

It is possible to see in the figure 6.3 and 6.4 below, different orientations for the same
part, in order to show how the quality of a part can change, by only adapting the design.

Figure 6.3: Example as for a Limit Orientation.

A software, namely, CatalystEx provides to transform the CAD model (part.sdlprt),
converted before in a part.stl, into a printed one, layer by layer as shown in figure 6.3 and
6.4. In the first orientation of both the two parts (End Effector on the left side, Housing
bBearing on the right one) it has been obtained a bad surface and mechanical quality of
either the cylinder and of the hole.

Moreover, there is more accuracy on the plane xy than on the planes zx and zy and the
circle of the cylinder will be approximated with the precision of the layer thickness.

For these reason, it has been preferred to realise the End Effector and the respective
housing for the bearing into two separated parts, saving quality and mechanical characteristics
of the parts themselves, but also materials and waste of time.
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Figure 6.4: Example as for a Limit Orientation.
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6.3 Design Using Three Motors

As it can be seen in the figure 6.3, the three motors are fixed to the base using the
screw-nut mate (M2.5) and they are arranged in a symmetrical pattern. In the middle of the
base, it has been allocated, through the support, the mechanism composed of the three
coaxial shafts with the respective couple of radial ball bearing. In the bottom, each shaft
has an in-built gear that has been mated with the respective motor one.

Therefore, the gears are connected with the motor thanks to the relative servo-horn
through a scree mate M2.5 (figure 6.8). To prevent the longitudinal bend due to the radial
force generated during the engaging of the gear teeth, a pivot connects each gear to the
upper platform. It is fixed with respect to the gear, while it has been mated with a bearing
to the upper platform, in order to allow the rotation of the gear with the pivot itself. A
bearings it has been inserted on the upper-base, to prevent the same longitudinal bend for
the shaft mechanism.

The cover with the upper platform close the transmission mechanism thanks to three
threaded pivots (M5) and the respective mate screw-nut.

For making the system reconfigurable, it has been separated the transmission sys-
tem from the robot assembly (figure 6.5). This choice has complicated the design, but, at
the same time, allows to change the characteristic angle of the robot and to reprint it in a
cheapest and fastest way.

Moreover, the legs of the robot have been used to do the bearing arrangement of the
shaft mechanism (figure 6.8). In fact, through the building of the respective shaft abutment
shoulder, the using of spacers and the particular realization of the terminal part of the leg it
has been possible to complete the shaft bearing housing system of the shaft-mechanism.

As for the legs, the distal links and the End Effector (E.E.), these bodies have been
divided into different parts, because them shape is very complex to realize in a single part
and there are several driven orientation in contrast with each other, during the creation of the
layer by the 3D printer (figure 6.5, 6.7). For these reasons, it has been preferred to separate
that bodies to save the mechanical quality and characteristics such as stiffness, bend, torsion
and density even though the design appear tricky. In particular, the head, the leg and the
top have been fixed together in the mounting by using acetone, that is able to dissolve the
ABS, jointing these parts and making only one body.

In the end, the realisation of the three independent degrees of freedom and the respective
relative rotation among the legs, arms and the E.E. it has been possible thank to a couple of
ball bearing, inserted in each head of these bodies and a pivot that realises this connection
8 figure 6.11, 6.12). The choice to use a couple of bearing has been made in order to reduced
sensitivity the misalignment of the pivots during the mounting of the robot.

It follows in the table below, the bill of materials of the assembly.
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BOM - Bill Of Materials

ITEM NO. PART NUMBER MATERIAL QTY.

1 Base ABS - Printed 1

2 Motor Dynamixel 64T Engineering Plastic 3

3 Dynamixel-64T-Servohorn High-Speed Steel 3

4 ISO 7045 - M2.5 x 10 - Z - 10S Commercial Screw 16

5 ISO - 4035 - M2.5 - S Commercial Nut 24

6 ISO - 4034 - M5 - N Commercial Nut 10

7 Pivot-Base M5 High-Speed Steel 3

8 Support ABS - Printed 1

9 ISO 7045 - M2,5 x 16 - Z - 16S Commercial Screw 8

10 ISO 4762 M3 x 8 - 8N Commercial Screw 3

11 Washer ISO 7090 - 5 Commercial Washer 7

12 ISO 7045 - M5 x 20 - Z - 20S Commercial Screw 4

13 Spacer-Shaft1 ABS - Printed 1

14 Shaft1 ABS - Printed (m3, z26) 1

15 Spacer-Shaft2 ABS - Printed 1

16 Shaft2 ABS - Printed (m3, z26) 1

17 Spacer-Shaft3 ABS - Printed 1

18 Shaft3 ABS - Printed (m3, z26) 1

19 SKF - 61800 - 14,DE,NC,14-68 Commercial Bearing 1

20 SKF - 61805 - 22,DE,NC,22-68 Commercial Bearing 2

21 SKF - 61908 - 20,DE,NC,20-68 Commercial Bearing 2

22 Flange-Pin High-Speed Steel 1

23 Pin High-Speed Steel 1

24 ISO - 4161 - M5 - N Commercial Nut 1

25 Washer ISO 7089 - 4 Commercial Washer 16

26 ISO 7045 - M4 x 16 - Z - 16S Commercial Screw 4

27 Upper-Base ABS - Printed 1

28 Bearings RS Pro 618 - 9979 Commercial Bearing 3

29 Top ABS - Printed 3

30 Cover ABS - Printed 1

31 Semileg1-2 ABS - Printed 1

32 Semileg1-1 ABS - Printed 1

33 Semileg1-3 ABS - Printed 1

34 Housing-Bearing-Leg ABS - Printed 9

35 Bearings RS Pro 618 - 9890 Commercial Bearing 24

36 Spacer-head ABS - Printed 12

37 ISO - 4036 - M4 - N Commercial Nut 16

38 ISO - 4032 - M3 - W - N Commercial Nut 6

39 ISO 8738 - 3 Commercial Washer 6

40 ISO 7045 - M3 x 16 - Z - 16S Commercial Screw 6

41 Pivot Head M4 High-speed steel 3

42 Spacer-Pivot-Bearing ABS - Printed 6

43 Semileg2-2 ABS - Printed 1

44 Semileg2-1 ABS - Printed 1

45 Semileg2-3 ABS - Printed 1

46 Semileg3-2 ABS - Printed 1

47 Semileg3-1 ABS - Printed 1

48 Semileg3-3 ABS - Printed 1

49 Gear-Motor ABS - Printed (m3, z26) 3

50 ISO 7045 - M2.5 x 12 - Z - 12S Commercial Screw 12

51 Pivot-R1 High-Speed Steel 1

52 Spacer-Pivot-R1 ABS - Printed 1

53 Pivot-R2 High-Speed Steel 1

54 Spacer-Pivot-R2 ABS - Printed 1

55 Pivot-R3 High-Speed Steel 1

56 EE ABS - Printed 1

57 Housing-Bearing-EE ABS - Printed 3

58 Pivot-EE M4 High-speed steel 3

59 Arm ABS - Printed 3

60 SKF - 6014 - 18,DE,NC,18-68 Commercial Bearing 1

61 Top-Bearing ABS - Printed 3

62 Tap ABS - Printed 2

63 Washer ISO 7093-5 Commercial Washer 1

64 SKF - 6300 - 6,DE,NC,6-68 Commercial Bearing 1
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Figure 6.5: Section View.
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Figure 6.6: Bottom View.

Figure 6.7: Top View.
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Figure 6.8: Driving System Section View.

Figure 6.9: Driving System View.
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Figure 6.10: Robot Assembly View.
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Figure 6.11: Detail - End Effector Joint Section.

Figure 6.12: Detail - Distal Link Joint Section.
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6.4 Mounting

In order to establish the mounting process, it has been described the different phases of
it, dividing the assembly in two macro-phases:

• assembly of the transmission system;

• assembly of the robot.

The several phases are written in the following itemize.

• TRANSMISSION MECHANISM:

– Sub-assembly Motor-base:

∗ insert the hexagonal nuts M5 (6) in the respective housing of the base (1);

∗ put the base (1) on the table;

∗ take the pivot-base (7) and screw them on the base;

∗ put the three motors Dynamixel MX-64T (2) with the respective servo-horns
(3) on the base, securing them with 8 screws (4) and hexagonal nuts (5);

∗ fix the support (8) on the base with screw (12 ), hexagonal nuts (6) and
washers (11), after referring it with two tap (65);

∗ make the pin assembly, by screwing the flange-pin (22) and the pin (23);

∗ mate the pin assembly (22-23) with the support (8) through screw (26), hexag-
onal nuts (37) and washers (25);

– Sub-assembly Shaft Mechanism:

∗ insert the Bearing (64) on the pin assembly (22-23-24);

∗ mate shaft1 (14) with the bore diameter of bearing (64);

∗ insert the spacer-shaft1 (13) in the pin (22);

∗ put the Bearing (19) in the housing bore diameter of the shaft1 (14);

∗ put the conic washer (25) and screw the Nut (26) on the thread of the pin (22);

∗ insert the Bearing (20) on the shaft1 diameter (14);

∗ insert the spacer-shaft2 (15) in the shaft1 (14);

∗ mate shaft2 (16) with the bore diameter of bearing (20);

∗ put the Bearing (20) in the housing bore diameter of the shaft2 (16);

∗ insert the Bearing (21) on the shaft2 diameter (16);

∗ mate shaft3 (18) with the bore diameter of bearing (21);

∗ insert the spacer-shaft3 (17) in the shaft2 (16);

∗ put the Bearing (21) in the housing bore diameter of the shaft3 (18);

– Sub-assembly Motor Gear:

∗ force the pivot-R1 (51), pivot-R2 (53) and pivot-R3 (55) on the respective
gear motor (49);

∗ insert the spacer (52, 54, 56) in the respective gear pivot (51, 53, 55);

∗ mate the gears (49) on the servo-horn (3) of the motor fixed with screws (4);

∗ realisation of the mechanical mate between shaft and gear (ratio 1:1);
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6. ON THE DESIGN OF COAXIAL 3-RRR SPM 6.4. Mounting

– Sub-assembly Upper Base:

∗ put the cover (30) on the base (1);

∗ put the Bearings (28) in the housing bore diameter of the holes of the upper
base (27);

∗ mate the upper-base (27) with cover (30) and base (1), centring the pivots of
the gears (51, 53, 55) with the respective inner diameter of the bearings (28);

∗ insert the bearings (60), in order to allow thee relative rotation between the
upper-base and the shaft mechanism;

– insert the nut (6) in the housing of the upper base (27);

– put the top bearings (61) on the upper base (27);

– close the mechanism system, by assembling through the screw-nut mate (6,11 ,7),
(conic washer are included);

– cover the holes of the upper base (31) with the three top (29) the housing of the
previous nuts.

• 3-RRR COAXIAL SPM:

– Sub-assembly Leg Robot (X3):

∗ fix the semileg#-2 (31) with semileg#-3 (33), through acetone;

∗ fix the head-leg (34) with semileg#-2 (31), through acetone;

∗ insert the two Bearing (35) in the head (34), by putting the relative spacers
(36);

∗ inset the respective threaded pivot (43) and screw the pivot with nut (39) and
washer (40);

∗ mate the semileg#-2 (32) and the semileg#-1 (33) with screws (42), washers
(41) and nuts (40) on the top of the respective shaft, locking the respective
bearings too;

– Sub-assembly Arm Robot (X3):

∗ fix the two head-arm (32) with the arm (60), through acetone;

∗ insert the two Bearing (35) in the head (34), by putting the relative spacers
(36);

∗ mate the arm assembly with the respective leg one through the head and
realise the mate pivot - bearings, by putting the spacer pivot bearing (43)
screwing the nut (37) and washer (25) in the head of the arm;

– Sub-assembly E.E.:

∗ insert the two Bearing (35) in the head-EE (57) by putting the relative spacers
(36);

∗ fix with acetone the head-EE (57) with the EE (56) face (X3);

∗ insert the threaded pivot (58) for the EE and screw both the nuts (37) an
washer (25) of the head-EE (57) and head-arm (33), after putting the spacer
pivot bearing (42).
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6. ON THE DESIGN OF COAXIAL 3-RRR SPM 6.5. Prototype Realisation

6.5 Prototype Realisation

After achieving the 3D model, the next step has been to print the whole robot; in the
figures 6.5,6.5,6.5, 6.5 it is possible to see different views of the prototype, in order to give
you an idea of the final result.

Figure 6.13: An Overview on the Final Printed Prototype - View 1.

In the end, it is possible to do some considerations as for the realisation of the prototype.
The choice to use ABS, as the main material, leads to rebuild several parts, according to a
functional design, during the realisations.

Considering the robot assembly, the prototype has been achieved an enough stiffness and
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Figure 6.14: An Overview on the Final Printed Prototype - View 2.

the friction is negligible for this application. There are, of course, misalignment errors due to
the limits of the 3d printer, in term of tolerance, and a imperfect mounting process, because
some parts have been stuck together, losing the exact reference surfaces.

The moving parts that perform the manipulation have a mass, negligible comparing with
the driving system, according to the choice to study the robot in an only static way.

Moreover, as for the mechanical transmission assembly, the three motors have the capa-
bility to control the platform with an acceptable accuracy, bearing the inner forces and the
several momentum. As well, the play between the tooth of the gear mate it can be considerer
not so relevant.

However, it is possible to suggest precautions to increase the stiffness of the robot assem-
bly, if it need to be reprinted. In the distal and proximal links, it would be optimal to insert
a liner made of a carbon fibre. This would be raise the stiffness of the links, leaving more or
less unchanged the mass of the moving parts.

Overall, the response of the system, subjected to different working conditions, is accept-
able according to the prototype could be improved, and it can be considered a good result in
the concise working time, spent in the research center.
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Figure 6.15: An Overview on the Final Printed Prototype - View 3.

Figure 6.16: An Overview on the Final Printed Prototype - View 4.

75



6.6. Future Works 6. ON THE DESIGN OF COAXIAL 3-RRR SPM

6.6 Future Works

Moreover, starting from the mentioned design, one goal of the future work could be to
define a final concept by using only only one motor, in order to reduce the operative costs
of the robot itself. As it can be seen, the transmission is composed of three electro-brakes
and a system with pulley and belt to move the robot, even if the last power system will be
determined at the end of the project itself. At the moment, the three electro-brakes have
the task to stop the rotation of the relative shafts when each leg achieve the needed angle
of rotation. This mechanism uses the encoder of the motor, which allows to send on-line the
On-Off information to the electro-brakes, depending on the status of the control. It follows
the figure 6.17 as for the concept of the next prototype.

Figure 6.17: Concept of the Future Prototype.
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Chapter 7

On the Motors and Control System

7.1 Goals of the Motor Implementation

In this chapter, after physically implementing the robot, it has been studied the way how
to move the three motors. As for the driving system it has been firstly used servomotor
(Robotis Dynamixel XL-320) on a smaller scale, in order to study how to use the USB2 Dy-
namixel hardware and software, to achieve the final position of a cubic polynomial timing law.

The scope of this section has been to move the actuators, following a cubic position
timing law, in a Matlab environment. These servomotors are used to work, receiving and
sending information through the appropriate addresses of the RAM inside the motors. More-
over, it is possible to control them in joint mode (position control) or in wheel mode (velocity
control). The bridge between of the computer language and the motors one is given by the
USB2 Dynamixel hardware and software, allowing the exchange of instructions in the both
directions.

During several tests in different working conditions to evaluate the motor response, it
have been noticed some problems that do not allow the motor to achieve the desire position.
The inner PID has not been enough to follow the timing position law step by step and it has
been identified a dead band for a low PWM percentage , responsible of a starting delay and,
as a consequence, of a steady state error.

The solution has been to consider the motor as a black-box, with one input (Moving
Speed address) and one output (Present Position address), and to introduce an external
Feed Forward Position Control. This way has been only a tool to find the fastest reso-
lution to these problems, in order to perform the kinematics.

Moreover, starting from the results of these experiments, it has been decided to
realise a prototype with three motors Robotis Dynamixel Mx-64 AT, having a bigger
size and higher performances, coherently with the scope, the dimensions and the weight of
the robot at stake, getting experiments on the bench and on the robot too. This leads to
choose a set of motor parameters to perform the motion of the platform.

Overall, it has been considered the system only in a static working condition, given
that the revolute mass is negligible, comparing on the stator parts; motors, that have been
used, are able to balance the torque and the inner forces. The dynamic study of the system
has been postponed as a future work.
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7.2 Motor XL-320

7.2.1 The Dynamixel System Interface among Drivers, Robot, PC and
Programmes

In order to move and to control the motor Robotis Dynamixel Xl-320 through the com-
puter, it is important to do a brief explanation as for both the hardware and software that
work together. It is possible to describe the Robot System as in the figure below:

Figure 7.1: Blocks Diagram of the Part of the System.

First, you can see that the informations and the instructions, travel in the both two
directions:

• from the pc to the robot: by using Matlab, as a program to control and move
the motor, the Dynamixel Control Driver, intalled in the PC, allows to translate the
instructions from the Matlab language to a .ddl one, in order to elaborate them inside
the USB2 Dynamixel Hardware. This one, through the .dll function is able to read
and write into the addresses of the RAM of the motor. In the end, the Motor with
its sensor, its µP and its drivers can elaborate the instructions and can move the axes,
according to these information themselves.

• from the robot to the pc: in the same way, the informations start from the sensors
and the addresses of the RAM, and with an inverse process arrive on the PC, ready to
be elaborated in the Matlab code.
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7.2.2 Model and Features of the Motor

The Model Robotis XL-320 has the following specifications, collected in this table.

Features Of the Motor

Item Specification

Baud rate 7343 bps - 1Mbps

Resolution 0.29 ◦

Running Degree 0 ◦-300 ◦

Weight 16.7 g

Dimensions (WxHxD) 24mm x 36mm x 27mm

Gear Ratio 238:1

Stall Torque 0.39 Nm @ 7.4V, 1.1A

No Load Speed 114 rpm @ 7.4V, 1.1A

Opering Temperature -5◦C - +70◦C

Input Voltage 6V - 8.4V (Recommended 7.4)

Protocol Type 2.0

Physical Connection TTL

ID 0 -252

Feedback Position, Temperature, Load, Input Voltage, etc...

Material Engineering Plastic

Figure 7.2: Robotis Motor XL-320 [21].

The Control Table is a structure of data implemented in the DYNAMIXEL. Users can
read a specific data to get status of the DYNAMIXEL with READ instruction packets, and
modify data as well to control DYNAMIXEL with WRITE instruction packets. The address
is a unique value when accessing a specific data in the control table with instruction packets.
In order to read or write data, users must designate a specific address in the instruction
packet.

It is possible to explain how the control table works:

• Area (EEPROM, RAM): the control table is divided into 2 Areas. Data in the RAM
area is reset to initial values when the power is reset (Volatile). On the other hand,
data in the EEPROM Area is maintained even when the DYNAMIXEL is powered off
(non-volatile). Data in the EEPROM Area can only be written to if Torque Enable is
cleared to 0 (Off).

• Size of the data: it varies from 1 to 4 bytes, depends on their usage.
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• Type of Access: the control table has two different access properties. RW property
stands for read and write access permission while R stands for read only access permis-
sion. Read only property (R) is generally used for measuring and monitoring purpose,
and read write property (RW ) is used for controlling DYNAMIXEL.

• Initial Value: is restored to initial values when the DYNAMIXEL is turned on. De-
fault values in the EEPROM area are initial values of the DYNAMIXEL (factory default
settings).

As it is explained above, the control and the managing of the motor through the PC, pass
from the reading and the writing of the addresses of the RAM, in either the volatile part and
the non-volatile one.

In order to understand which address it was used, it is represented in a table, the main
used addresses of the whole Control Table of the Motor.

CONTROL TABLE of EEPRON AREA

Address Size [byte] Data Name Access Initial Value Min Max

3 1 ID RW 1 0 252
4 1 Baud Rate RW 3 0 3
11 1 Control Mode RW 2 1 2

CONTROL TABLE of RAM AREA

Address Size [byte] Data Name Access Initial Value Min Max

24 1 Torque Enable W 0 0 1
30 2 Goal Position W - 0 1023
32 2 Moving Speed W - 0 2047
37 2 Present Pos. R - 0 1023
39 2 Present Speed R - 0 1023

For each address it is also possible to read or write value in range that is connected to
the physical range of the respective physical quantities, as reported in the table 7.1.

UNITS TABLE CONVERSION

Physical Quantities Physical Range Address Range Name Unit Units

Voltage 1-10 V 10-100 u1 0.1 V
PWM 0-100% 0-1023 u2 0.1 %

Velocity 0-114 rpm 0-1023 u3 0.111 rpm
Position 0-300 deg 0-1023 u4 0.29 deg

Table 7.1: Unit Table Conversion for Motor XL-320.

7.2.3 Functioning, Types of Control and Consideration as For the Motor

The functioning of the motor depends on the type of control, but it used to work with
a Modulation of the Power - PWM, writing in the address of the Moving Speed (32),
when the control mode is in wheel mode. Modulating this percentage means to write an
amount of the maximum power, given that the current is fixed.

The Robotis XL-320 Motor has two types of control: Joint Mode (2) and Wheel Mode
(1). Depending on the value that it is written in the Control Mode address (11), it is possible
to write and read different quantities in the respective addresses of the RAM:
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• Joint Mode: with this type of control, it is possible to write the read the angular
position of the motor, in order to control it. It is not possible to control the velocity,
but to only set the limit of the maximum of the velocity, which the motor uses to arrive
to the goal position, writing this value in the Moving Speed address.

• Wheel Mode: in this status, it is possible to control the velocity, by modulating the
Power from zero to the maximum. The value in this address move from 0 u2 to 2047 u2,
where:

– From 0 to 1023 (CCW), it is possible to modulate the power from 0 to the maxi-
mum; for example writing 512 means to used 50% of the power;

– From 1024 to 2047 (CW), it is possible to modulate the power in the clock wise
direction.

It is important to do several consideration about the value that can be read in both two
controls of the motor:

• Write Goal Position and Read Present Position: it is allowed to write and read
from 0◦ (0 u4) to 300◦ (1023 u4) even if the motor does not have any kind of physical
constrain. The range between 300◦ − 360◦ is an invalid angle, so the value read from
the present position address (37) has no physical sense in this range;

• Write in Moving Speed and read in Present Speed address: the consideration
done before is worth only in a NO LOAD CONDITION. The direct proportionality
between the power and velocity is only true without any external loads, because, on
the contrary, the power is used both to compensate this disturb and to move the axis
of the motor at this desire velocity.

• Read Present Speed: it is not possible to read the velocity in wheel mode, it must
be calculated as a derivation of the position; for these reason it was necessary to do
an experiment in order to find the law between the PWM written in the Moving
Speed and the respective desire velocity for this amount of the power.

7.2.4 On the Wheel Control Mode

7.2.4.1 Experiment as for the Law Velocity-PWM

As stated in the previous chapter, it is impossible to read the present speed in the wheel
mode control. For this reason, starting from the present position, the velocity has been
calculated as the incremental ratio of two following readings of the position. So, for each
value included in the range of PWM = [−200 : 200] u2, 5 experiments have been carried out
where the process has involved in these steps:

• Reading and storing the present position during the time of the experiment, step by
step.

• Calculating the velocity.

• Plotting the velocity.

• Calculating the mean, corresponded to the respective value of the Voltage, using
only the data after the transient state (figure 7.3, 7.4).
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After these several experiments, done for all of the chosen PWM values, the collected
data has been elaborated and plotted in order to find the law between the Velocity and the
% of PWM. It is possible to show different graphs about the experiments.

By analysing both the data and graph of V el-PWM (figure 7.5), it is clear that the law
it is more or less proportional, even if the function in not continuous but a piecewise one.

In fact it is possible to determine the different value of the gain K:

Kv =


0.81 if PWM = [0 : 200] u2

0.71 if PWM = [−100 : 0) u2

0.78 if PWM = [−200 : −100) u2

(7.1)

Moreover, watching the enlargement graph for the lowest value of the PWM (figure 7.7),
it can be seen the existence of a dead band, where for these value, the motor is not able to
move its axis.

Therefore, in order to finding the final relationship between the desire velocity and the
respective PWM that comes more nearer to the real behaviour of the motor, it has been
considered a safety zone from PWM = [−20 : 20] u2, in which the motor does not move.

Finally, the inverse function as for the graphs, shown in the figure 7.6 and 7.8, becames:

PWM = f(V el) =



1.24 · V el if V el = (20 : 200] ◦/s

16 if V el = [0 : 20] ◦/s

−14 if V el = [−20 : 0] ◦/s

1.41 · V el if V el = [−100 : −20) ◦/s

1.28 · V el if V el = [−200 : −100) ◦/s

(7.2)
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Figure 7.3: PWM = 50 u2

Figure 7.4: PWM = −50 u2
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Gain Experiment

PWM (u2) Exp1 Exp2 Exp3 Exp4 Exp5 Mean Gain

-200 -158,36 -158,32 -161,23 -157,84 -158,67 -158,88 0,79

-190 -151,48 -152,57 -148,09 -149,53 -151,40 -150,61 0,80

-180 -143,80 -141,39 -142,39 -143,45 -141,87 -142,58 0,80

-170 -134,07 -133,02 -132,35 -133,31 -130,65 -132,68 0,79

-160 -125,76 -124,55 -126,17 -125,90 -125,88 -125,65 0,79

-150 -114,34 -116,78 -116,68 -116,82 -116,15 -116,15 0,76

-140 -107,26 -107,04 -106,11 -109,57 -109,56 -107,91 0,77

-130 -102,30 -99,68 -100,47 -101,80 -100,37 -100,92 0,79

-120 -92,41 -92,45 -96,16 -88,88 -92,07 -92,40 0,77

-110 -82,01 -86,85 -83,93 -80,27 -81,57 -82,93 0,75

-100 -77,57 -74,22 -74,62 -72,45 -77,24 -75,22 0,78

-90 -66,65 -69,24 -67,43 -70,62 -69,01 -68,59 0,74

-80 -58,64 -58,02 -59,46 -56,69 -58,84 -58,33 0,73

-70 -48,84 -51,98 -53,75 -48,60 -52,40 -51,11 0,70

-60 -42,06 -42,92 -44,91 -40,11 -44,35 -42,87 0,70

-50 -36,16 -36,33 -36,36 -36,18 -36,21 -36,25 0,72

-40 -28,52 -25,07 -29,93 -25,60 -28,11 -27,44 0,71

-30 -20,64 -18,37 -18,70 -22,34 -19,93 -20,00 0,69

-20 -10,42 -11,02 -11,84 -10,66 -11,03 -11,00 0,52

-15 -6,00 -5,69 -5,90 -5,90 -5,90 -5,88 0,74

-10 0,00 0,00 0,00 0,00 0,00 0,00 0,74

10 8,73 8,81 9,45 9,46 9,05 9,10 0,87

15 11,71 11,44 11,48 11,64 13,43 11,94 0,78

20 15,32 16,66 15,62 15,15 17,75 16,10 0,77

30 24,33 24,28 25,45 25,20 24,51 24,76 0,81

40 33,40 33,50 33,32 33,47 32,32 33,20 0,83

50 41,99 41,36 40,74 41,07 40,31 41,09 0,84

60 48,98 48,77 48,73 48,94 48,38 48,76 0,82

70 57,01 56,07 57,04 56,58 56,94 56,73 0,81

80 64,54 64,01 66,04 64,84 64,77 64,84 0,81

90 72,05 72,68 72,99 72,64 73,13 72,70 0,80

100 80,83 81,14 81,33 80,15 80,63 80,82 0,81

110 87,94 89,40 87,09 90,39 88,56 88,68 0,80

120 96,51 94,17 98,57 96,71 95,54 96,30 0,80

130 105,03 104,48 104,72 104,94 104,76 104,79 0,81

140 112,31 110,86 110,75 111,11 111,41 111,29 0,80

150 120,33 119,65 121,51 120,01 121,39 120,58 0,80

160 129,20 128,14 127,37 127,67 128,71 128,22 0,81

170 137,82 135,67 136,69 136,56 134,48 136,24 0,81

180 146,25 145,76 144,41 145,75 144,03 145,24 0,81

190 150,62 151,38 150,99 151,97 151,54 151,30 0,79

200 161,73 158,45 161,04 159,19 157,97 159,68 0,81

Positive 0,81

Negative -100/0 0,71

Negative -200/-100 0,78

Continuous Function 0,77
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Figure 7.5: Velocity with respect to PWM.

Figure 7.6: PWM with respect to Velocity.
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Figure 7.7: Enlargement: Velocity with respect to PWM.

Figure 7.8: Enlargement: PWM with respect to Velocity.
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7.2.4.2 External Feed-Forward Position Control

The goal of this type of control is to follow the theoretical curve of the position, for a given
timing trajectory, evaluating in real time the error of position between the desire position
and the real one, as shown in figure 7.11. The algorithm works in this way, for each step:

• Reading the position ϑFB;

• Calculating the error: Err = ϑSET − ϑFB;

• Proportional Control: in order to obtain a compensated velocity;

• Compensating the desire velocity: ϑ̇ = ˙ϑSET + ˙ϑErr;

• Converting this value in a PWM one, with the respective gain.

• Writing in the moving speed address this value.

In each step, if the error is positive, the written PWM in the motor is more than the
desire one, to get readier the motor itself and to follow better the position curve.

It can be noted that the proportional control of the position is enough for this application,
while if the application requests more accuracy an implementation of PID controller, is better
in order to have the desire behaviour.

For understanding how the motor works with this control, several experiments have been
done, using a Cubic Polynomial Timing Law, shown in the figure 7.10:

• Finding the best proportional gain K, in different conditions:

– no load: linear, without any kind of load;

– under a constant load: linear, increasing the value of the weight;

– under a variable load: non linear because of the changing in magnitude and
direction of the Momentum, increasing the value of the weight.

• Evaluating the motor behaviour for different value of maximum velocity,
depended on:

– the final time tf ;

– the final position qf .
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Figure 7.9: Feed Forward Position Control.
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Figure 7.10: Cubic Polynomial Timing Law.

7.2.4.3 Consideration and Future Work

First, analysing all of the graphs, it can be seen how there is a start delay in all of the
graphs, due to a low speeds, that correspond to a low percentage of voltage to modulate
the power. For this range, there is a dead band, analysed before, that makes the motor
not ready to follow the cubic timing law. In this first approach, this phenomenon has been
neglected.

By analysing the linear response without any load in the figure 7.12, it is clear that
it is not necessary an higher proportional gain to follow the theoretical curve, but the KP = 4
is enough to obtain a good approximation.

On the contrary, the linear response with a growing constant load (shown in figure
7.13,7.14 needs an higher gain in order to reflect the actual behaviour. However, increasing
the constant load, the behaviour is more or less the same, due to the linear situation in which
the motor works.

Moreover, seeing the graphs in figure 7.15 and 7.16, under a non linear condition, the
motor response changes due to both the variations of the gains and the weight. Only with
the maximum gain K = 10, it is possible to have got a good compromise, while for low gain
the behaviour cannot be accepted. It is easy to understand how the error grows up when the
gain goes down and, on equal gain, the error is bigger when the non-linear load increases.

In the end, it is possible to analyse the dependence to the parameters final time tf
and ∆q = qf − qi on the shape of the cubic timing law. For high value of ∆q and low tf , the
velocity of the law increases, making the motor readier (figure 7.19,7.18,7.20). On the other
hand, for low value of ∆q and high tf , the motor response is not so good and acceptable,
either for the delay in the first steps and for the real shape of the position that is far from
the theoretical one.
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Figure 7.11: Diagram of Mechatronics Quantities with G10 - tf = 2s - qi = 10◦ - qi = 100◦ .
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7.2.5 Graphs of the Experiments

7.2.5.1 FFPC-No Load - Linear Condition

Figure 7.12: FFPC-No Load.
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7.2.5.2 FFPC-Under a Constant Load - Linear Condition

Figure 7.13: FFPC-Under a Constant Load: weight 1.

Figure 7.14: FFPC-Under a Constant Load: weight 2.
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7.2.5.3 FFPC-Under a Variable Load - Non Linear Condition

Figure 7.15: FFPC-Under a Variable Load: weight 1 (100g).

Figure 7.16: FFPC-Under a Variable Load: weight 2 (200g).
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7.2.5.4 FFPC-Influence of the Final Time tf

Figure 7.17: FFPC-Influence of the tf = 1s

Figure 7.18: FFPC-Influence of the tf = 3s

94



7. ON THE MOTORS AND CONTROL SYSTEM 7.2. Motor XL-320

7.2.5.5 FFPC-Influence of the Final Angle qf

Figure 7.19: FFPC-Influence of the tf = 3s

Figure 7.20: FFPC-Influence of the qf = 30s
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7.3 Motor MX64-AT

After learning how to use the dynamixel interface in order to move the motors in Matlab
environment, as detailed in the section 7.2, it has been worked with the dynamixel motors
MX64-AT (mounted in the final prototype), leading several experiments both on the bench
and on the robot.

7.3.1 Specification of the Motor MX64-AT

In the physical implementation of the prototype it has been used the same hardware and
software to move and control the motors with the computer, already treated in section 7.2.
In this mechatronic system only the motors have been changed, because this application has
required more powerful features.

7.3.2 Model and Feature of the Motor

The model Robotis MX64-AT has the following specifications, collected in the table 7.2.

The informations and instructions, that travel in both two directions, are managed by
the same Control Table System.

It is a structure of data implemented in the DYNAMIXEL. Users can read a specific data
to get status of the DYNAMIXEL with READ instruction packets, and modify data as well
to control DYNAMIXEL with WRITE instruction packets. The address is a unique value
when accessing a specific data in the control table with instruction packets. In order to read
or write data, users must designate a specific address in the instruction packet. The used
addresses of the EEPROM AREA and RAM AREA have been collected in the table 7.3.

Features Of the Motor

Item Specification

Baud rate 9600 bps - 4.5Mbps

Control Algorithm PID CONTROL

Degree of Precision 0.088 ◦

Running Degree 0 ◦-360 ◦

Weight 135 g

Dimensions (WxHxD) 40.2mm x 61.1mm x 41mm

Gear Ratio 200:1

Stall Torque 6.0 Nm @ 12V, 4.1A

No Load Speed 63 rpm @ 12V,

Opering Temperature -5◦C - +80◦C

Input Voltage 10V - 14.8V (Recommended 7.4)

Protocol Type 2.0

Physical Connection TTL

ID 0 -252

Feedback Position, Temperature, Load, Input Voltage, etc...

Material Engineering Plastic

Table 7.2: Features of the Motor MX64-AT.

For each address it is possible to read or write value in range that is connected to the
physical range of the respective physical quantities, as reported in the table 7.4.
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Figure 7.21: Robotis Motor MX-64AT [21].

CONTROL TABLE of EEPRON AREA

Address Size [byte] Data Name Access Initial Value Min Max

7 1 ID RW 1 0 252
8 1 Baud Rate RW 1 0 7
11 1 Operating Mode RW 3 0 16
13 1 Protocol Version RW 2 1 2
24 4 Moving Threshold RW 10 0 1023

CONTROL TABLE of RAM AREA

Address Size [byte] Data Name Access Initial Value Min Max

64 1 Torque Enable RW 0 0 1
76 2 Velocity I Gain RW 1920 0 16383
78 2 Velocity P Gain RW 100 0 16383
80 2 Position D Gain RW 0 0 16383
82 2 Position I Gain RW 0 0 16383
84 2 Position P Gain RW 850 0 16383
88 2 FF 2nd Gain RW 0 0 16383
90 2 FF 1st Gain RW 0 0 16383
104 4 Goal Velocity RW - 0 1023
108 4 Profile Acceleration RW 0 0 32767
112 4 Profile Velocity RW 0 0 1023
116 4 Goal Position RW 850 0 4095
124 2 Present PWM R 850 0 850
126 2 Present Current R - 0 1941
128 4 Present Velocity R - 0 1023
132 4 Present Position R - 0 4095
136 4 Velocity Trajectory R - 0 1023
140 4 Position Trajectory R - 0 1023

Table 7.3: Control Table of MX64-AT Motors.
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UNITS TABLE CONVERSION

Physical Quantities Physical Range Address Range Units

Voltage 9.5-16.0 V 95-160 0.1 V
PWM 0-100% 0-850 0.118 %

Current 0-6.5A 0-1941 3.36 mmA
Acceleration - 0-32736 214.577 rpm2

Velocity 0-234 rpm 0-1023 0.229 rpm
Position 0-360 deg 0-4095 0.088 deg

Velocity I Gain 0-0.25 0-16383 65536
Velocity P Gain 0-128 0-16383 128
Position D Gain 0-1023 0-16383 16
Position I Gain 0-0.25 0-16383 65536
Position P Gain 0-128 0-16383 128

FF 2nd Gain 0-4095 0-16383 4
FF 1st Gain 0-4095 0-16383 4

Table 7.4: Unit Table Conversion - Motor MX64-AT.

Figure 7.22: Robotis Motor MX-64AT Performance Graph [21].

7.3.3 Functioning and Types of Control

This motor has the possibility to be controlled in several control modes (current , velocity,
position, pwm, etc...) However, it has been chosen to base the control system on the position
control mode.

Differently than the previous motor (for which has been necessary to implement an ex-
ternal FFPC), this model has an inner feed forward position control.

In fact, it is possible to adapt and optimise the position control, writing in the address of
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the Feed Forward Gain, depending on the current application.

Figure 7.23: Robotis Motor MX-64AT Position Control [21].

The first step is to set the the profile of acceleration/deceleration control method to re-
duce vibration, noise and load of the motor by controlling dramatically changing velocity and
acceleration. It is also called Velocity Profile as it controls acceleration and deceleration
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based on velocity. Dynamixel provides 4 different types of Profile, as it possible to see in
figure 7.23. Profiles are usually selected by a combination of Profile Velocity (112) and Profile
Acceleration (108). Triangular and Trapezoidal Profiles exceptionally consider total travel
distance(∆Pos, the distance difference between target position and current position) as an
additional factor. For convenience, Profile Velocity (112) is abbreviated to VPRFL and Profile
Acceleration(108) is abbreviated to VPRFL.

After setting the profile of velocity, the instruction from the user is received by Dynamixel,
it takes following steps until driving the horn:

1. An Instruction from the user is transmitted via Dynamixel bus, then registered to Goal
Position (116).

2. Goal Position (116) is converted to target position trajectory and target velocity tra-
jectory by Profile Velocity (112) and Profile Acceleration (108).

3. The target position trajectory and target velocity trajectory is stored at Position Tra-
jectory (140) and Velocity Trajectory (136) respectively.

4. Feedforward and PID controller calculate PWM output for the motor based on target
trajectories.

5. Goal PWM (100) sets a limit on the calculated PWM output and decides the final
PWM value.

6. The final PWM value is applied to the motor through an Inverter, and the horn of
Dynamixel is driven.

7. Results are stored at Present Position (132), Present Velocity (128), Present PWM
(124) and Present Current (126).

7.3.4 Experiments

In order to understand the motor response in several working situations it has been led
different experiment on both the bench and the robot assembly, as follows:

• on the bench with no load;

• on the robot with no load;

• on the robot with a calibrated 500g load on the middle of the platform;

• on the robot passing through the forward singularities;

• evaluating the influence of the parameters of the timing law:

– final time tf ;

– total travel distance ∆pos.
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7.3.4.1 Considerations on the Experiments

First, analysing all of the graphs, it can be seen how it is always possible to achieve the
goal position, with an error of 0.088deg, compatible to the resolution of the encoder. It may
mean the motors are overestimated for the applications, because they are not affected by the
non linearities of the system, working more or less as a linear one, although it is not the same.

By comparing the response on bench (figure 7.24) with the response on the robot
(figure7.25), without any load, it can be seen how the behaviour of the motors are more or
less the same. It is possible to affirm that the revolute masses on the robot assembly do not
affect the motors response, in terms of disturbs, as it has been assumed, by neglecting the
dynamic of the revolute masses themselves.

Moreover, by putting a calibrated mass on the middle of the End Effector (figure
7.26), the motor behaviour does not change so much, because the weight force is always on
the center of the mechanism CM.

However, it is different if we pass from the forward singularity, in which it is impos-
sible to control the platform. In fact, depending on how the platform orients itself, because of
imbalance of the masses, we can observe a peak in the trend of the velocity, that is arbitrary
and out of control. In figure 7.27 the peak is down, meaning that arbitrary orientation of the
platform brakes the actuator, introducing a disturb, while in the figure 7.28 the peak is up,
and in this case this uncontrolled rotation helps the motors.

Moreover, due to this uncontrolled motions of the platform, it fluctuates between the
final position, achieved by the actuators, influencing the final time in which all the system
is stable. This problem affects the entire motion, making a delay in the following step of the
motion planning and the delay also depends on the flection of the distal and the proximal
links, due to the external load.

Furthermore, it is important to investigate on the limits of the characteristic parameters
of the trapezoidal timing law. In fact, if we fix the final position and decrease the time
of the motion (figure 7.29, 7.30), as a consequence the velocity increases, putting the system
into oscillation between the final position, because of the brusque stop. This case is similar
to the fluctuation of the platform around the singularity, mentioned before.

By fixing the time and increase the final position (figure 7.31, 7.32) is comparable
to the previous case, beacuse of the instability of the system.

In the end, to reduce vibration, noise and load of the motor, it is recommended
to plan the motion, in order to be as fluid is possible and to choose a set of parameters,
respecting this mechanical limits, due to a building process mainly made of ABS plastic.
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7.3.4.2 On the Bench With No Load

Figure 7.24: Experiment on Bench Without Load

7.3.4.3 On the Robot with No Load

Figure 7.25: Experiment on the Robot Without Load.
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7.3.4.4 On the Robot with Calibrated 500g Load

Figure 7.26: Experiment on the Robot with Calibrated 500g Load.
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7.3.4.5 On the Robot Passing Through Forward Singularity

Figure 7.27: Experiment on the Robot Passing Through Forward Singularity - 1.

Figure 7.28: Experiment on the Robot Passing Through Forward Singularity - 2.
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7.3.4.6 Influence of the Final Time tf

Figure 7.29: Influence of the parameters of the timing law tf = 1s.

Figure 7.30: Influence of the parameters of the timing law tf = 3s.
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7.3.4.7 Influence of the Total Travel Distance ∆q

Figure 7.31: Influence of the parameter of the timing law ∆q = 50deg.

Figure 7.32: Influence of the parameters of the timing law ∆q = 180deg.
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Chapter 8

Costs Analysis

This chapter details the budget associated with all the components that are involved
in the building the 3-RRR Coaxial SPM. Due to the fact that the project is based on the
implementation of a new prototype, the associated costs do not take into account for a possible
commercialization. For this reason, a viability economic analysis has not been carried out.

8.1 Project Budget

As explained in the previous chapters, all the mechanism components have been printed
by using the FDMTM Technology (fused deposition modelling) in ABS-P430. Therefore, for
the printed components a general assessment has been estimate, involving cost of material,
energy supply and labour cost.
For the commercial component, reference was made to the “https://es.rs-online.com/web/”,
except for the Motors, bought from the seller website.

Material Cost

ComponentS Unit Cost Quantity Cost (e)

Bearings (SKF, RS Components) - - 174

High-Speed Steel Bars 30 e 2 60

Dynamixel MX-64AT 353 e 3 1059

ABS-P430 Components 82 e/Kg Estimate 350

Total Costs 1643

Additional Costs

Cost Items e/h Hours (h) Cost (e)

Engineering Manpower 12 750 9000

3D printer amortization 5 125 625

Laboratory tools amortization 0,6 750 450

Total Costs 10075

Costs Analysis

Material Cost 1643 e
Additional Cost 10075e

Total cost 11718 e
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Chapter 9

Conclusions

In this concluding chapter it has been summarized the contributions of this thesis and
discussed the important directions of future work.

9.1 Summary of Thesis Contributions

This work firstly has had the scope to investigate on the coaxial configuration of a spher-
ical parallel manipulator, by studying its kinematics (inverse and forward one), the relative
singularities and the mobility range of the spherical workspace and by developing the 3D
model design and the modelling the control of the servomotors. Both the two cores of the
work, the analytical study and the physical implementation, have been carried out in parallel,
leading to change and to rearrange the final proposal of the thesis itself.

One of the goal of this research has been to analytically implement the kinematics of
this robot, in a new way, distancing itself from the common literature [10, 9, 12, 4], as it
has been debated in the relative chapter above. The implementation of Thomas’ method
[30, 27, 31, 13, 28] for this particular architecture has led to obtain the expected results with
a process, which turned out to be the best one for simplicity, generality, and optimality. In
fact, it has been possible to solve the forward kinematics with a linear polynomial equation
that has the minimal degree, for all the set of actuator angles, chosen as the input of the
process.

Then, starting from the kinematics analysis, it has been investigated the influence of the
characteristics angles α1, α2 and γ1 of the robot on the both singularities and workspace
limits [11, 7, 14, 2]. It has been compared the mobility range of a general configuration
(γ1 = π/3, α1 = π/3, α2 = π/2) to the coaxial prototype, underlining how the workspace
increases if γ1 = 0, α1 = α2 = π/2. On the contrary, studying the Jacobian matrix, it can
be stated the number and types of singularities grow up, using these angles. Therefore, it is
possible to argue that the optimisation of the mobility range and the singularities is a trade-
off; a better workspace carries on more singularities that have to be avoided, during a path
motion in the manipulations of the robot. This result could be taken a possible optimisation
of the design into account, listed as a future work. According to these results, it has been
taken into account the possibility to realise both the two configurations in order to show
how the characteristic parameters of the robot influence its behaviour. In fact, the optimal
characteristic angles could be α1 = 60 deg, α2 = 90 deg and γ1 = 0 deg, allowing to achieve
reasonable orientations, that cannot be reach with the existing prototype.

As for the 3D model of the robot, the first concept has been developed as a design with
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only one motor, the use three electro-brakes and a system of pulley-belt to move the robot.
Nevertheless, in order to actually build it during the working period on the research center, it
has been preferred to not complicate the driving system and to only focus on the functioning,
leaving out a complex prototype as a future task. Therefore the final prototype is based
on the use of three servomotors to actuate the respective degrees of freedom with a basic
transmission system made of only one gear mates with 1:1 ratio between each coaxial shaft
and the gear motor.

Moreover, during the development of the concept there were some issues not only in terms
of optimisation of the design, but also as for the printing process. The 3D drawing has been
continuously updated, taking into account the limits of the 3D printer and the supplies of
materials and mechanical components, in the research center. This aspect has led to sacri-
fice, sometimes, the best drawing solution for respecting these constrains, justifying several
choices and decisions that could be unusual for a traditional best practice in a design terms.

In the end, it is possible to do some considerations as for the realisation of the prototype.
The choice to use ABS, as the main material, leads to rebuild several parts, according to a
functional design, during the realisations.

Considering the robot assembly, the prototype has been achieved a good stiffness and the
friction is negligible for this application. There are, of course, misalignment errors due to
the limits of the 3d printer, in term of tolerance, and a imperfect mounting process, because
some parts have been stuck together, losing the exact reference surfaces.

The moving parts that perform the manipulation have a mass, negligible comparing with
the driving system, according to the choice to study the robot in an only static way.

Moreover, as for the mechanical transmission assembly, the three motors have the capa-
bility to control the platform with an acceptable accuracy, bearing the inner forces and the
several momentum. As well, the play between the tooth of the gear mate it can be considerer
not so relevant.

However, it is possible to suggest precautions to increase the stiffness of the robot assembly,
if it need to be reprinted. In the distal and proximal links, it would be optimal to insert a
liner made of a carbon fibre. This would be raise the stiffness of the links, leaving more or
less unchanged the mass of the moving parts.

Overall, the response of the system, subjected to different working conditions, is accept-
able according to the prototype could be improved, and it can be considered a good result in
the concise working time, spent in the research center.

9.2 Direction for Future Work.

As mentioned in the previous section, in order to manage the time available, different
points and initial proposals have been listed for future works, as follows:

• studying the new configuration of the robot assembly, in analytical way : after the
workspace and singularity studies, it has been noticed that it may be better to re-
built the robot assembly, changing the characteristic angles, with the following value
α1 = 60 deg, α2 = 90 deg and γ1 = 0 deg. This will be reduce the mobility range, but,
at the same time, it will increase the number of the possible orientations of the end
effector.

• doing a dynamic analysis of the system: even if the static approximation of the system
works in an acceptable way for a prototype, it should be better to study the dynamic
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in order to validate the dimensions of the revolute mass and to linearly identify the
system.

• introducing a non linear control : given that the system is non linear and the inner
PID has been enough to control the motors, it should be appropriate to model a non
linear-control. However, it should be necessary to control the motors at the same time,
with a Multiple-Input Multiple-Output (MIMO) Processes.

• optimising the design transmission with only one motor : a first concept has been drown,
favouring, later, a concept with three motor, for the reasons already explained. How-
ever, it should be interesting to optimise this other prototype, because it could be
reduced the operative cost of the robot, from industrial standpoint.

• putting a camera on the End Effector platform, for realising a path motion: it could be
relevant to investigate on the behaviour of the robot when the camera follows a ball in
a track. It could be possible, in this case, to extract the following orientation of the
robot, to rebuilt the path motion realised by the robot, for analysing it.
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Chapter 10

Attachments

10.1 Appendix A

Inverse Kinematics

1 %% Initialization code
2 clear;
3 close all;
4 clc;
5 %% Given matrix
6 Ree = rotx(pi/3)*roty(pi/6)*rotz(pi/2);
7

8 %% Calculation and drawing the eight solution
9 figure()

10 % 1º
11 subplot(241)
12 [eul1(1,:), eul2(1,:), eul3(1,:)] = DrawRobot(Ree, 1, 1, 1);
13 title('Sol 1');
14 % 2º
15 subplot(242)
16 [eul1(2,:), eul2(2,:), eul3(2,:)] = DrawRobot(Ree, 2, 1, 1);
17 title('Sol 2');
18 % 3º
19 subplot(243)
20 [eul1(3,:), eul2(3,:), eul3(3,:)] = DrawRobot(Ree, 1, 2, 1);
21 title('Sol 3');
22 % 4º
23 subplot(244)
24 [eul1(4,:), eul2(4,:), eul3(4,:)] = DrawRobot(Ree, 2, 2, 1);
25 title('Sol 4');
26 % 5º
27 subplot(245)
28 [eul1(5,:), eul2(5,:), eul3(5,:)] = DrawRobot(Ree, 1, 1, 2);
29 title('Sol 5');
30 % 6º
31 subplot(246)
32 [eul1(6,:), eul2(6,:), eul3(6,:)] = DrawRobot(Ree, 2, 1, 2);
33 title('Sol 6');
34 % 7º
35 subplot(247)
36 [eul1(7,:), eul2(7,:), eul3(7,:)] = DrawRobot(Ree, 1, 2, 2);
37 title('Sol 7');
38 % 8º

113



10.1. Appendix A 10. ATTACHMENTS

39 subplot(248)
40 [eul1(8,:), eul2(8,:), eul3(8,:)] = DrawRobot(Ree, 1, 2, 2);
41 title('Sol 8');
42 Sol=rad2deg([eul1 eul2 eul3 zeros(8,1)]);
43 Dof=[Sol(:,1) Sol(:,4) Sol(:,7) Sol(:,10)];
44 %% Extraxt the degrees of freedom from the eigth solutions.
45 for i=1:8
46 if (sign(Sol(i,1))==sign(Sol(i,4)))&&(sign(Sol(i,4))==sign(Sol(i,7)))
47 if (Sol(i,1)<Sol(i,4)-15)&&(Sol(i,4)<Sol(i,7)-15)
48 % Configuration without interference
49 Sol(i,end)=1;
50 subplot(2,4,i)
51 [x,y,z] = sphere;
52 surf(x,y,z, 'EdgeColor', 'none', 'Facecolor', 'g','FaceAlpha', 0.1);
53 else
54 subplot(2,4,i)
55 [x,y,z] = sphere;
56 surf(x,y,z, 'EdgeColor', 'none', 'Facecolor', 'r','FaceAlpha', 0.1);
57 end
58 elseif (sign(Sol(i,1))==sign(Sol(i,4)))&&(sign(Sol(i,4))~=sign(Sol(i,7)))
59 if Sol(i,1)<Sol(i,4)-15
60 % Configuration without interference
61 Sol(i,end)=1;
62 subplot(2,4,i)
63 [x,y,z] = sphere;
64 surf(x,y,z, 'EdgeColor', 'none', 'Facecolor', 'g','FaceAlpha', 0.1);
65 else
66 subplot(2,4,i)
67 [x,y,z] = sphere;
68 surf(x,y,z, 'EdgeColor', 'none', 'Facecolor', 'r','FaceAlpha', 0.1);
69 end
70 elseif (sign(Sol(i,1))~=sign(Sol(i,4)))&&(sign(Sol(i,4))==sign(Sol(i,7)))
71 if Sol(i,4)<Sol(i,7)-15
72 % Configuration without interference
73 Sol(i,end)=1;
74 subplot(2,4,i)
75 [x,y,z] = sphere;
76 surf(x,y,z, 'EdgeColor', 'none', 'Facecolor', 'g','FaceAlpha', 0.1);
77 else
78 subplot(2,4,i)
79 [x,y,z] = sphere;
80 surf(x,y,z, 'EdgeColor', 'none', 'Facecolor', 'r','FaceAlpha', 0.1);
81 end
82 else
83 Sol(i,end)=0;
84 end
85 i
86 Sol(i,end)
87 Dof(i,1:end-1)
88 end
89 Sol
90 Dof=[Sol(:,1) Sol(:,4) Sol(:,7) Sol(:,10)]
91 Dof physical=[Dof(:,1), -120+Dof(:,2), 120+Dof(:,3)]

1 function [eul1, eul2, eul3] = DrawRobot(T, cf1, cf2, cf3)
2 %UNTITLED4 Summary of this function goes here
3 % Detailed explanation goes here
4
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5 % cf=1 flag, first solution
6 % cf=2 flag, second solution [eulII(1) eulII(2) eulII(3)]=...
7 % [eulI(1)+pi, pi-eulI(2), eulI(3)+pi]
8

9 eul1 = rot2eulZYX(T);
10 eul2 = rot2eulZYX(T*rotz(-2*pi/3));
11 eul3 = rot2eulZYX(T*rotz(2*pi/3));
12

13 trplot(eye(3), 'color', 'r', 'arrow', 'text opts', ...
14 {'FontSize', 12, 'FontWeight', 'bold'});
15 hold on;
16

17 trplot(T, 'color', 'g', 'arrow', 'text opts', ...
18 {'FontSize', 12, 'FontWeight', 'bold'});
19 hold on;
20

21 % [x,y,z] = sphere;
22 % surf(x,y,z, 'EdgeColor', 'none', 'Facecolor', 'interp','FaceAlpha', 0.4);
23

24 %%% First leg
25

26 if cf1 == 1
27 R1 = rotz(eul1(1));
28 DrawSphericalArc([0 0 -1], R1(:,2)', 'k');
29 R2 = R1*roty(eul1(2));
30 DrawSphericalArc(R1(:,2)', R2(:,1)', 'k');
31 R3 = R2*rotx(eul1(3));
32 DrawSphericalArc(R2(:,1)', R3(:,3)', 'g');
33 end
34 if cf1 == 2
35 R1 = rotz(eul1(1)+pi);
36 DrawSphericalArc([0 0 -1], R1(:,2)', 'k');
37 R2 = R1*roty(pi-eul1(2));
38 DrawSphericalArc(R1(:,2)', R2(:,1)', 'k');
39 R3 = R2*rotx(eul1(3)+pi);
40 DrawSphericalArc(R2(:,1)', R3(:,3)', 'g')
41 eul1=[eul1(1)+pi, pi-eul1(2), eul1(3)+pi];
42 end
43

44 %%% Second leg
45

46 if cf2 == 1
47 R1 = rotz(eul2(1));
48 DrawSphericalArc([0 0 -1], R1(:,2)', 'b');
49 R2 = R1*roty(eul2(2));
50 DrawSphericalArc(R1(:,2)', R2(:,1)', 'b');
51 R3 = R2*rotx(eul2(3));
52 DrawSphericalArc(R2(:,1)', R3(:,3)', 'g');
53 end
54

55 if cf2 == 2
56 R1 = rotz(eul2(1)+pi);
57 DrawSphericalArc([0 0 -1], R1(:,2)', 'b');
58 R2 = R1*roty(pi-eul2(2));
59 DrawSphericalArc(R1(:,2)', R2(:,1)', 'b');
60 R3 = R2*rotx(eul2(3)+pi);
61 DrawSphericalArc(R2(:,1)', R3(:,3)', 'g');
62 eul2=[eul2(1)+pi, pi-eul2(2), eul2(3)+pi];
63 end

115



10.1. Appendix A 10. ATTACHMENTS

64

65 %%% Third leg
66

67 if cf3 == 1
68 R1 = rotz(eul3(1));
69 DrawSphericalArc([0 0 -1], R1(:,2)', 'r');
70 R2 = R1*roty(eul3(2));
71 DrawSphericalArc(R1(:,2)', R2(:,1)', 'r');
72 R3 = R2*rotx(eul3(3));
73 DrawSphericalArc(R2(:,1)', R3(:,3)', 'g');
74 end
75

76 if cf3 == 2
77 R1 = rotz(eul3(1)+pi);
78 DrawSphericalArc([0 0 -1], R1(:,2)', 'r');
79 R2 = R1*roty(pi-eul3(2));
80 DrawSphericalArc(R1(:,2)', R2(:,1)', 'r');
81 R3 = R2*rotx(eul3(3)+pi);
82 DrawSphericalArc(R2(:,1)', R3(:,3)', 'g');
83 eul3=[eul3(1)+pi, pi-eul3(2), eul3(3)+pi];
84 end
85 end

1 function eul = ikine(rotm)
2 if rotm(3,1) < 1
3 if rotm(3,1) > -1
4 % case 1: if r31 ~= +-1
5 % Solution with positive sign. It limits the range of the values
6 % of theta y to (-pi/2, pi/2):
7 eul(1) = atan2(rotm(2,1), rotm(1,1)); % theta z
8 eul(2) = asin(-rotm(3,1)); % theta y
9 eul(3) = atan2(rotm(3,2), rotm(3,3)); % theta x

10 else
11 % case 2: if r31 = -1
12 % theta x and theta z are linked --> Gimbal lock:
13 % There are infinity number of solutions for
14 % theta x - theta z = atan2(-r23, r22).
15 % To find a solution, set theta x = 0 by convention.
16 eul(1) = -atan2(-rotm(2,3), rotm(2,2));
17 eul(2) = pi/2;
18 eul(3) = 0;
19 end
20 else
21 % case 3: if r31 = 1
22 % Gimbal lock: There is not a unique solution for
23 % theta x + theta z = atan2(-r23, r22),
24 % by convention, set theta x = 0.
25 eul(1) = atan2(-rotm(2,3), rotm(2,2));
26 eul(2) = -pi/2;
27 eul(3) = 0;
28 end
29 end
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10.2 Appendix B

Forward Kinematics

1 %% Cleaning Code
2 clear
3 close all
4 clc
5 %% Calculation of the Square Distances Matrix S
6 % Initialization of the matrix of squared distances according
7 % to Nico's data: Section V of
8 % http://www.iri.upc.edu/people/thomas/papers/ICRA2013.pdf
9

10 S=sym('S',[7,7]); % using 7 points (3+4)
11

12 % Platform has 4 points 1,2,3,4
13 % Base has 3 points 5 6 7
14 % The translated point is '3'
15

16 M = struct();
17

18 M.t1 = deg2rad(15);
19 M.t2 = deg2rad(5);
20 M.t3 = deg2rad(30);
21

22 M.r sphere = 1;
23

24 [M] = square distances(M);
25

26 % Square distances of platform
27 S(1,2)= M.s12;
28 S(1,4)= M.s14;
29 S(2,4)= M.s24;
30

31 % Square distances between platform and CM
32 S(1,3)= M.s13;
33 S(2,3)= M.s23;
34 S(3,4)= M.s34;
35

36 % Square distances among the legs and the arms
37 S(1,5)= M.s15; % leg
38 S(2,7)= M.s27; % leg
39 S(4,6)= M.s46; % leg
40

41 % Square distances among the arms and the CM
42 S(3,5)= M.s35; % leg
43 S(3,6)= M.s36; % leg
44 S(3,7)= M.s37; % leg
45

46

47 % Square distances among the head of the legs
48 S(5,6)= M.s56;
49 S(5,7)= M.s57;
50 S(6,7)= M.s67;
51

52 %% Ensure that the input matrix is symmetric
53 S=Symmetrize(S);
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54

55 %% Define the strip of tetrahedra
56 ST={[3 5 7 2 6] [2 3 5 1 6] [1 2 3 4 6]};
57

58 % The trilateration sequence to generate coordinates
59 T={[5 6 7 3] [5 3 7 2] [5 2 3 1] [1 2 3 4]};
60

61 % Sign of the tetrahedra in the trilateration sequence
62 SG=[0 0 0 1];
63

64 %% Determine the univariate closure polynomial and its roots
65 P=UCPolynomial(S,ST);
66

67 %% Find the roots of the polynomial
68 [R,V]=SolveSystem(S,P);
69

70 %% Obtain coordinates from the roots
71 C = GetCoordinates(S,T,SG,R,V,1e-4);
72 %% Plot the results
73 % DrawRobot(C,M);
74

75 %% Rearranging Solution
76 Sol1 = C{1};
77 Sol1 = Sol1 - Sol1(:,3);
78

79 Sol2 = C{2};
80 Sol2 = Sol2 - Sol2(:,3);
81

82 Sol3 = C{9};
83 Sol3 = Sol3 - Sol3(:,3);
84

85 Sol4 = C{10};
86 Sol4 = Sol4 - Sol4(:,3);
87

88 M.Sol = [Sol1
89 Sol2
90 Sol3
91 Sol4];
92 filename = 'Solution.xlsx';
93 xlswrite(filename,M.Sol)
94 %% Remove intermediate variables
95 clear V;

1 function [M] = square distances(M)
2

3 R1 = trotz(M.t1);
4 R2 = trotz(M.t2);
5 R3 = trotz(M.t3);
6 p50 = transl(M.r sphere,0,0);
7 p50 = p50(:,4);
8 p60 = trotz(2*pi/3)*p50;
9 p70 = trotz(4*pi/3)*p50;

10

11 p5 = R1*p50;
12 p5 = p5(1:3);
13

14 p6 = R2*p60;
15 p6 = p6(1:3);
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16

17 p7 = R3*p70;
18 p7 = p7(1:3);
19

20 % Square distances among the head of the leg
21 M.s56 = (norm(p5 - p6))ˆ2;
22 M.s57 = (norm(p5 - p7))ˆ2;
23 M.s67 = (norm(p6 - p7))ˆ2;
24

25 % Square distances from the center of the mechanism CM
26 M.s35 = M.r sphereˆ2;
27 M.s36 = M.r sphereˆ2;
28 M.s37 = M.r sphereˆ2;
29

30 M.s13 = M.r sphereˆ2;
31 M.s23 = M.r sphereˆ2;
32 M.s34 = M.r sphereˆ2;
33

34 % Square distances among the edges of the mobile platform
35 M.s12 = (sqrt(3)*M.r sphere)ˆ2;
36 M.s14 = (sqrt(3)*M.r sphere)ˆ2;
37 M.s24 = (sqrt(3)*M.r sphere)ˆ2;
38

39 % Square distances among the links
40 M.s46 = (M.r sphere*sqrt(2))ˆ2;
41 M.s15 = (M.r sphere*sqrt(2))ˆ2;
42 M.s27 = (M.r sphere*sqrt(2))ˆ2;
43

44 end

1 % Ensures that a matrix is symmetric
2 %
3 % Inputs:
4 % S: The matrix with only the upper triangular part filled.
5 %
6 % Outputs:
7 % S: The compleated matrix.
8 %
9 function S=Symmetrize(S)

10 [np,np1]=size(S);
11 if np~=np1
12 error('Non squared input distance matrix');
13 end
14 for i=1:np
15 S(i,i)=0;
16 for j=1:i-1
17 S(i,j)=S(j,i);
18 end
19 end

1 % Computes the univariate closure polynomial for a problem
2 % defined by
3 % S: The matrix of squared distances.
4 % T: The strip of tetrahedra.
5 %
6 % The outputs are:
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7 % P: The univariate closure polynomial.
8 % R: The roots of the univariate closure polynomial.
9 %

10 function P=UCPolynomial(S,ST)
11

12 % closure squared distance (save it before computing it analytically)
13 cs=S(ST{end}(4),ST{end}(5));
14

15 % Number of steps in the trilateration sequence
16 nt=size(ST,2);
17

18 % Auxiliar variables
19 DS = sym('DS', [1, nt]); % Symbol used to represent the square root
20 DD = sym('DD', [1, nt]); % The contents of the square root
21 A = sym('DS', [1, nt]); % The expression of the refence area (if variable)
22

23 fprintf('Chaining over the strip : ');
24 tic;
25

26 for i=1:nt
27 st=ST{i};
28 n=nt-i+1;
29 [S,DD(n),A(n)]=FillDistance(S,st(1),st(2),st(3),st(4),st(5),DS(n));
30 end
31

32 % closure condition
33 c=S(ST{end}(4),ST{end}(5))-cs;
34 [P,~] = numden(c);
35

36 fprintf('%u seconds\n',toc);
37

38 fprintf('Removing square roots : ');
39 tic;
40

41 % Eliminate the square roots
42 for i=1:nt
43 if DD(i)~=0 % If the square root is not null
44 P=EliminateSquareRoot(P,DS(i),DD(i));
45 end
46 end
47

48 fprintf('%u seconds\n',toc);
49

50 fprintf('Removing non-null factors: ');
51 tic;
52

53 % Remove the non-null factors (variable areas)
54 for i=1:nt
55 if ~isempty(symvar(A(i))) % if the area is variable
56 P=RemoveFactor(P,A(i));
57 end
58 end
59 fprintf('%u seconds\n',toc);
60

61 % simplify
62

63 fprintf('Normalizing : ');
64 tic;
65 lcof=feval(symengine,'lcoeff',P);
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66 P=P/lcof;
67 fprintf('%u seconds\n',toc);

1 % Solves a system of equations
2 %
3 % Inputs:
4 % S: The matrix of squared distances. Used to get the row/column of
5 % the variables in the system.
6 % P: The system of equations (a cell array).
7 % Outputs:
8 % R: The roots. A cell array. R{i}.v is the i-th valid value for the
9 % first variable and R{i}.VS is a root structure with the valid

10 % values for the remaining variables, assuming the first is
11 % already assigned. Essentially R is recursive structure.
12 % V: The variables (row/column in S for each variable)
13 %
14 function [R,V]=SolveSystem(S,P)
15

16 n=size(P,2); % number of equations
17 fprintf('Solving the system : ');
18 tic;
19 switch n
20 case 1
21 if iscell(P)
22 E=P{1};
23 else
24 E=P;
25 end
26

27 v=symvar(E);
28 if length(v)~=1
29 error('A single equation with more than one variable');
30 end
31 [r,c]=find(S==v,1);
32 % sol=vpa(roots(sym2poly(E)),15);
33 sol=feval(symengine,'numeric::polyroots',expand(E));
34 ns=length(sol);
35 R=cell(1,ns);
36 for i=1:ns
37 R{i}.v=sol(i);
38 R{i}.VS={};
39 end
40

41 V={[r c]};
42

43 case 2
44 v1=symvar(P{1});
45 v2=symvar(P{2});
46 v=union(v1,v2);
47

48 if length(v)~=2
49 error('Two equation with less/more than two variables');
50 end
51

52 if length(v1)==1 | | length(v2)==1
53

54 if length(v1)==1
55 P1=P{1};
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56 P2=P{2};
57 else
58 P1=P{2};
59 P2=P{1};
60 end
61

62 % Solve P{1}, replace in P{2}, and solve
63 %sol1=vpa(roots(sym2poly(P1)),15);
64 sol1=feval(symengine,'numeric::polyroots',expand(P1));
65 ns1=length(sol1);
66

67 R=cell(1,ns1);
68

69 for i=1:ns1
70 R{i}.v=sol1(i);
71 if isreal(sol1(i)) && sol1(i)>=0
72 P2s=subs(P2,v1,sol1(i));
73 %sol2=vpa(roots(sym2poly(P2s)),15);
74 sol2=feval(symengine,'numeric::polyroots',expand(P2s));
75 ns2=length(sol2);
76 R{i}.VS=cell(1,ns2);
77 for j=1:ns2
78 R{i}.VS{j}.v=sol2(j);
79 R{i}.VS{j}.VS={};
80 end
81 else
82 R{i}.VS={};
83 end
84 end
85

86 else
87

88 % Compute the resultant in one variable and solve
89 R1=feval(symengine,'polylib::resultant',P{1},P{2},v1(1));
90 % sol1=vpa(roots(sym2poly(R1)),15);
91 sol1=feval(symengine,'numeric::polyroots',expand(R1));
92

93 % Now the resultant in the other variable and solve
94 R2=feval(symengine,'polylib::resultant',P{1},P{2},v1(2));
95 % sol2=vpa(roots(sym2poly(R2)),15);
96 sol2=feval(symengine,'numeric::polyroots',expand(R2));
97

98 % Patch the results
99 ns1=length(sol1);

100 ns2=length(sol2);
101 R=cell(1,ns1);
102 for i=1:ns1
103 R{i}.v=sol1(i);
104 if isreal(sol1(i)) && sol1(i)>=0
105 R{i}.VS=cell(1,ns2);
106 for j=1:ns2
107 R{i}.VS{j}.v=sol2(j);
108 R{i}.VS{j}.VS={};
109 end
110 else
111 R{i}.VS={};
112 end
113 end
114
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115 end
116

117 [r1,c1]=find(S==v(1),1);
118 [r2,c2]=find(S==v(2),1);
119 V={[r1 c1] [r2 c2]};
120

121 otherwise
122 error('Can not solve systems with more than 2 equations');
123 end
124 fprintf('%u seconds\n',toc);

1 function DrawSol(M)
2 ns=length(M.Sol(:,1))/3;
3 k=1;
4 for i=1:ns
5 % pp=C{i};
6 % pp=pp-pp(:,3);
7 pp = M.Sol(k:k+2,:);
8 CreateFigure(pp);
9

10 % The legs
11 line([pp(1,3);pp(1,5)],[pp(2,3);pp(2,5)],[pp(3,3);pp(3,5)], ...
12 'LineWidth', 2, 'Color', [1 0 1]);
13 line([pp(1,3);pp(1,6)],[pp(2,3);pp(2,6)],[pp(3,3);pp(3,6)], ...
14 'LineWidth', 2, 'Color', [1 0 1]);
15 line([pp(1,3);pp(1,7)],[pp(2,3);pp(2,7)],[pp(3,3);pp(3,7)], ...
16 'LineWidth', 2, 'Color', [1 0 1]);
17 line([pp(1,1);pp(1,5)],[pp(2,1);pp(2,5)],[pp(3,1);pp(3,5)], ...
18 'LineWidth', 2, 'Color', [1 0 1]);
19 line([pp(1,2);pp(1,7)],[pp(2,2);pp(2,7)],[pp(3,2);pp(3,7)], ...
20 'LineWidth', 2, 'Color', [1 0 1]);
21 line([pp(1,4);pp(1,6)],[pp(2,4);pp(2,6)],[pp(3,4);pp(3,6)], ...
22 'LineWidth', 2, 'Color', [1 0 1]);
23

24

25 % The plagform
26 h1=fill3(pp(1,[1 2 4])', pp(2,[1 2 4])', pp(3,[1 2 4])', ...
27 [0.9 0.3 0.3]); set(h1,'facealpha',1)
28 h1=fill3(pp(1,[1 3 4])', pp(2,[1 3 4])', pp(3,[1 3 4])', ...
29 [0.9 0.3 0.3]); set(h1,'facealpha',1)
30 h1=fill3(pp(1,[1 2 3])', pp(2,[1 2 3])', pp(3,[1 2 3])', ...
31 [0.9 0.3 0.3]); set(h1,'facealpha',1)
32 h1=fill3(pp(1,[2 3 4])', pp(2,[2 3 4])', pp(3,[2 3 4])', ...
33 [0.9 0.3 0.3]); set(h1,'facealpha',1)
34

35 % The base
36 h2=fill3(pp(1,5:7)', pp(2,5:7)', pp(3,5:7)', [0.3 0.3 0.9]); ...
37 set(h2,'facealpha',1)
38

39

40 Sol=pp;
41 p0=[0, 0, -M.r sphere];
42 p1=Sol(:,1);
43 p2=Sol(:,2);
44 p3=Sol(:,3);
45 p4=Sol(:,4);
46 p5=Sol(:,5);
47 p6=Sol(:,6);
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48 p7=Sol(:,7);
49

50

51 % Leg1
52 [x,y,z] = sphere;
53 % surf(x,y,z, 'EdgeColor', 'none', 'Facecolor', 'g','FaceAlpha', 0.1);
54 surf(x,y,z, 'EdgeColor', 'none','FaceAlpha', 0.25);
55 DrawSphericalArc(p0, p5', 'k');
56 DrawSphericalArc(p5', p1', 'k');
57

58 % Leg2
59 DrawSphericalArc(p0, p6', 'b');
60 DrawSphericalArc(p6', p4', 'b');
61

62

63 % Leg2
64 DrawSphericalArc(p0, p7', 'r');
65 DrawSphericalArc(p7', p2', 'r');
66 xlim([-1.1 1.1]);
67 xlabel('x');
68 ylim([-1.1 1.1]);
69 ylabel('y');
70 zlim([-1.1 1.1]);
71 zlabel('z');
72 view([-45,-60,30])
73 title(['3-RRR Coaxial SPM - SOL = ',num2str(i)]);
74 k=k+3;
75 end
76 end

1 % Creates a nes figure to draw a robot.
2 %
3 % Inputs
4 % pp: The points on the robot. Represented by a circle and a
5 % label.
6 % f: [optionla] Handler of the figure. Only used when
7 % redrawing.
8 % H: [optional] Handler of the figure elements. If provided the
9 % figure is just re-drawn. Otherwise a new figure is

10 % created.
11 %
12 % Outputs:
13 % f: Handler of the figure.
14 % H: Handler of the figure elements.
15

16 function [f,H]=CreateFigure(pp,varargin)
17

18 if isempty(varargin)
19 redraw=false;
20 H=[];
21 else
22 redraw=true;
23 f=varargin{1};
24 H=varargin{2};
25 end
26

27 if redraw
28 figure(f);
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29 nh=length(H);
30 set(H(1),'Xdata',pp(1,:),'Ydata',pp(2,:),'Zdata',pp(3,:));
31 for i=2:nh
32 set(H(i),'Position',pp(:,i-1));
33 end
34 else
35 f=figure;
36 hold on;
37 %grid minor;
38 grid on;
39 axis equal;
40 set(gcf, 'Renderer', 'opengl');
41

42 % The points
43 H=scatter3(pp(1,:)',pp(2,:)', pp(3,:)', 'MarkerEdgeColor','k', ...
44 'MarkerFaceColor',[0 .75 .75]);
45

46 % Labels for the points
47 np=size(pp,2);
48 for i=1:np
49 h=text(pp(1,i), pp(2,i), pp(3,i),[' ' sprintf('P%u',i)], ...
50 'HorizontalAlignment','left','FontSize',9);
51 H=[H h];
52 end
53

54 % Point of view
55 view([1 1 1]);
56 end
57

58 % Axis dimensions
59 up=max(pp,[],2);
60 lo=min(pp,[],2);
61 sz=(up-lo)*0.1;
62 axis([lo(1)-sz(1) up(1)+sz(1) lo(2)-sz(2) up(2)+sz(2) lo(3)-sz(3) ...
63 up(3)+sz(3)]);

1 function DrawSphericalArc(pt1, pt2, color)
2 %UNTITLED2 Summary of this function goes here
3 % Detailed explanation goes here
4

5

6 pt1 = pt1/norm(pt1);
7 pt2 = pt2/norm(pt2);
8

9 if abs(dot(pt1,pt2)) == 1
10 return;
11 end
12

13 pt3 = cross(pt1, pt2);
14 pt4 = cross(pt3, pt1);
15

16 R = [pt1; pt4/norm(pt4); pt3/norm(pt3)]';
17

18 ang = atan2(norm(pt3),dot(pt1,pt2));
19

20 samples =100;
21

22 oldpt = R(:,1);
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23

24 for i = 0:1:samples
25 RT = R*rotz((i/samples)*ang);
26 newpt = RT(:,1);
27 plot3([oldpt(1) newpt(1)], [oldpt(2) newpt(2)], [oldpt(3) newpt(3)], ...
28 color,'LineWidth',3);
29 oldpt=newpt;
30 end
31

32

33 end

1 % Eliminates a square root from an expression
2 %
3 % Inputs:
4 % P: The expression with the square root
5 % DS: The sympol representing the square root in P.
6 % DD: The expression in the square root (DSˆ2=DD)
7 %
8 % Outputs:
9 % P: The expression without the square root.

10 %
11 function P=EliminateSquareRoot(P,DS,DD)
12 [co,te]=coeffs(P,DS);
13 nc=size(co,2);
14 if nc>1
15 O=0;
16 E=0;
17 for j=1:nc
18 d=feval(symengine,'degree',te(j));
19 %d=nc-j;
20 if mod(d,2)==0
21 % even
22 E=E+co(j)*DDˆ(d/2);
23 else
24 % odd
25 O=O+co(j)*DDˆ((d-1)/2);
26 end
27 end
28 P=DD*Oˆ2-Eˆ2;
29 end

1 % Determines the coordinates of the points given
2 %
3 % S: The initial squared distance matrix.
4 % T: The trilateration sequence.
5 % SG: Sign of each tetrahedron, if any.
6 % R: The roots. This is a recursive structure defined in SolveSystem.
7 % V: The variables (fiven as row/columns of S). Also defined in
8 % SolveSystem.
9 % error: Tolerance to accept a solution.

10 % pt: [optional] If true we print timing information. If not provided it
11 % is set to true.
12

13 % Outputs
14 % C: Set of valid coordinates for the points (one valid set per row).
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15 % vs: Valid solutiosn. Solutions that lead to a valid coordenalization.
16 %
17 function [C,vs]=GetCoordinates(S,T,SG,R,V,error,varargin)
18

19 if isempty(varargin)
20 pt=true;
21 else
22 pt=varargin{1};
23 end
24

25 % Ensure that the input matrix is symmetric
26 S=Symmetrize(S);
27

28 % The set of valid coordinates (so far empty)
29 C={};
30 vs={};
31

32 if pt
33 fprintf('Generating coordinates : ');
34 tic;
35 end
36

37 % Fix the variables and generate coordinates
38 [C,vs]=FixVariable(S,T,SG,R,V,1,vs,C,[],error);
39

40 if pt
41 fprintf('%u seconds\n',toc);
42 end
43

44 end
45

46 % Recursive routine to fix the values of the different variables and then
47 % trilaterate.
48 %
49 % Input
50 % S: The input matrix with know squared distances.
51 % T: The trilateraion sequence.
52 % SG: The sign of each trilatertion step, if any.
53 % R: The root structure. Recursive structure with values for the
54 % different variables in the problem.
55 % V: The variables in the problem (given as row/columns of S).
56 % cv: The variable being assigned at the current recursion level.
57 % C: The current set of solutions.
58 % vs: Valid solutions. Solutions that lead to a valid coordenalization.
59 % cs: Current assigment of variables. Initially empty.
60 % error: The tolerance.
61 %
62 % Outputs:
63 % C: The new set of solutions.
64 % vs: Valid solutiosn. Solutions that lead to a valid coordenalization.
65 %
66 function [C,vs]=FixVariable(S,T,SG,R,V,cv,C,vs,ca,error)
67

68 nv=size(V,2);
69 if cv<=nv
70 % We still have variables to be assigned
71

72 r=V{cv}(1);
73 c=V{cv}(2);

127



10.2. Appendix B 10. ATTACHMENTS

74 n=size(R,2);
75 for i=1:n
76 v=R{i}.v;
77 if (~isempty(R{i}.VS) | | cv==nv) && v>=0 && isreal(v)
78 S(r,c)=v;
79 S(c,r)=v;
80 [C,vs]=FixVariable(S,T,SG,R{i}.VS,V,cv+1,C,vs,[ca v],error);
81 end
82 end
83

84 else
85 % Once all variables are assigned, trilaterate
86

87 % number of points to trilatrate
88 np=size(T,2)+3;
89

90 % coordinates of the points
91 pp=zeros(3,np);
92

93 % The first three points are always the same
94 i=T{1}(1);
95 j=T{1}(2);
96 k=T{1}(3);
97

98 pp(:,i) = [0;0;0];
99 pp(:,j) = [sqrt(S(i,j));0;0];

100 phi = acos((S(i,j)+S(i,k)-S(j,k))/(2*sqrt(S(i,j)*S(i,k))));
101 pp(:,k) = double([sqrt(S(i,k))*cos(phi);sqrt(S(i,k))*sin(phi);0]);
102

103 % fixed poitns so far
104 fixed=false(1,np);
105 fixed([i j k])=true;
106

107 [C,vs]=RTrilaterate(S,fixed,pp,1,T,SG,C,vs,ca,error);
108 end
109

110 end
111

112 % Recursive trilateration. Used when all variables are fixed.
113 %
114 % Input
115 % S: The input matrix with know squared distances.
116 % fixed: Points already fixed.
117 % pp: Coordinates determined so far (for the fixed points).
118 % level: Current trilateration level
119 % T: The trilateraion sequence
120 % SG: The sign of each trilatertion step, if any.
121 % C: The current set of solutions.
122 % vs: Valid solutions so far.
123 % ca: Current assigment of variables.
124 % error: The tolerance.
125 %
126 % Outputs:
127 % C: The new set of coordinates.
128 % vs: The new set of solutions.
129 %
130 function [C,vs]=RTrilaterate(S,fixed,pp,level,T,SG,C,vs,ca,error)
131

132 np=size(S,1);
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133 i=T{level}(1);
134 j=T{level}(2);
135 k=T{level}(3);
136 l=T{level}(4);
137

138 if SG(level)==0
139 ndx=[-1 1];
140 else
141 ndx=SG(level);
142 end
143

144 for sg=ndx
145 coord=Trilaterate(pp(:,i),pp(:,j),pp(:,k),S(l,i),S(l,j),S(l,k),sg);
146

147 %ok=(norm(imag(coord))<error);
148 ok=(norm(imag(coord))<1e-6);
149 coord=real(coord);
150 u=1;
151 while ok && u<=np
152 if fixed(u) && (u~=i) && (u~=j) && (u~=k) && (u~=l) && ...
153 isempty(symvar(S(l,u))) && (S(l,u)>0)
154 ok=(abs(double(norm(coord-pp(:,u))-sqrt(S(l,u))))<error);
155 end
156 u=u+1;
157 end
158 if ok
159 fixed(l)=true;
160 pp(:,l)=real(coord);
161 if level==size(T,2)
162 C=[C pp];
163 vs=[vs ca];
164 else
165 [C,vs]=RTrilaterate(S,fixed,pp,level+1,T,SG,C,vs,ca,error);
166 end
167 %else
168 % fprintf('Error (level->%u d->%u e->%f)\n', ...
169 % level,u-1,abs(double(norm(coord-pp(:,u-1))-sqrt(S(l,u-1)))));
170 end
171 end
172 end

1 % Removes a factor from an expression
2 %
3 % Inputs
4 % P: The expression to simplify
5 % A: The factor to remove
6 %
7 % Outputs:
8 % P: The simplified expression without the factor.
9 %

10

11 function P=RemoveFactor(P,A)
12

13 %A2=Aˆ2; % Assuming that they always appear in pairs
14 P=expand(P);
15 ok=~isempty(symvar(A)) && ~isempty(symvar(P));
16 while ok
17 Q=feval(symengine,'divide',P,A);
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18 if Q(2)==0
19 P=Q(1);
20 else
21 ok=false;
22 end
23 end

1 % Determines the position of a point given the distance to 3 fixed points.
2 % This is a trilateratin in Cartesian space.
3 % Note that two solutions are possible.
4 %
5 % Inputst
6 % p1: The coordinates of the first reference point.
7 % p2: The coordinates of the second reference point.
8 % p3: The coordinates of the third reference point.
9 % d1: Squared distance from p1 to the point to locate.

10 % d2: Squared distance from p2 to the point to locate.
11 % d3: Squared distance from p3 to the point to locate.
12 % sg: Sign of the trilateration (+1/-1)
13 %
14 % Outputs:
15 % p: The coordinates of the trilaterated point.
16 %
17 function p=Trilaterate(p1,p2,p3,d1,d2,d3,sg)
18 % http://en.wikipedia.org/wiki/Trilateration
19

20 r1=double(d1);
21 r2=double(d2);
22 r3=double(d3);
23

24 vx=p2-p1;
25 d=norm(vx);
26 vx=vx/d;
27

28 v=p3-p1;
29 i=(vx'*v);
30 vy=v-i*vx;
31 vy=vy/norm(vy);
32 j=vy'*v;
33

34 vz=cross(vx,vy);
35

36 x=(r1-r2+dˆ2)/(2*d);
37 y=(r1-r3+iˆ2+jˆ2)/(2*j)-i*x/j;
38 d=r1-xˆ2-yˆ2;
39

40 z=sqrt(d); % This may be imaginary
41

42 R=[vx vy vz];
43

44 p=R*[x;y;sg*z]+p1;

1 % Determines the distance l-m in function of the distance between
2 % {i,j,k,l,m}.
3 %
4 % Inputs:
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5 % S: The matrix of squared distances. Some entries are constants
6 % and others are symbolic expressions.
7 % i: Index of the first point.
8 % j: Index of the second point.
9 % k: Index of the third point.

10 % l: Index of the fourth point.
11 % m: Index of the fifth point.
12 % DS: Symbol to represent the square root that may appear in
13 % the s lm expression.
14 %
15 % Output:
16 % S: The updated matrix, with the computed s lm entry.
17 % DD: The expression inside the square root (may be 0).
18 % A: Area of the {i,j,k} triangle.
19 %
20 function [S,DD,A]=FillDistance(S,i,j,k,l,m,DS)
21

22 T=[ 0 1 1 1
23 1 0 S(i,j) S(i,k)
24 1 S(i,j) 0 S(j,k)
25 1 S(i,k) S(j,k) 0 ];
26 A=det(T);
27

28 x=sym('x');
29 B=[ 0 1 1 1 1 1;
30 1 0 S(i,j) S(i,k) S(i,l) S(i,m)
31 1 S(i,j) 0 S(j,k) S(j,l) S(j,m)
32 1 S(i,k) S(j,k) 0 S(k,l) S(k,m)
33 1 S(i,l) S(j,l) S(k,l) 0 x
34 1 S(i,m) S(j,m) S(k,m) x 0];
35 sol = solve(det(B));
36

37 [N1,D1]=numden(sol(1));
38 [N2,~]=numden(sol(2));
39

40 DD=((N1-N2)/2)ˆ2; % The discriminant
41

42 if DD==0
43 S(l,m)=sol(1); % Both solutions are equal
44 else
45 S(l,m)=((N1+N2)/2+ DS)/D1; % Substitute the square root by a symbol
46 end
47 S(m,l)=S(l,m);

1 write1ByteTxRx(dxl.port num, dxl.PROTOCOL VERSION, ...
2 dxl.DXL ID, dxl.ADDR PRO TORQUE ENABLE, dxl.TORQUE DISABLE);
3 dxl.comm result = getLastTxRxResult(dxl.port num, dxl.PROTOCOL VERSION);
4 dxl.error = getLastRxPacketError(dxl.port num, dxl.PROTOCOL VERSION);
5 if dxl.comm result ~= dxl.COMM SUCCESS
6 fprintf('%s\n', getTxRxResult(dxl.PROTOCOL VERSION, dxl.comm result));
7 elseif dxl.error ~= 0
8 fprintf('%s\n', getRxPacketError(dxl.PROTOCOL VERSION, dxl.error));
9 else

10 fprintf('Dynamixel TORQUE DISABLE has been successfully disconnected \n');
11 end
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1 write1ByteTxRx(dxl.port num, dxl.PROTOCOL VERSION,...
2 dxl.DXL ID, dxl.ADDR PRO TORQUE ENABLE, dxl.TORQUE ENABLE);
3 dxl.comm result = getLastTxRxResult(dxl.port num, dxl.PROTOCOL VERSION);
4 dxl.error = getLastRxPacketError(dxl.port num, dxl.PROTOCOL VERSION);
5 if dxl.comm result ~= dxl.COMM SUCCESS
6 fprintf('%s\n', getTxRxResult(dxl.PROTOCOL VERSION, dxl.comm result));
7 elseif dxl.error ~= 0
8 fprintf('%s\n', getRxPacketError(dxl.PROTOCOL VERSION, dxl.error));
9 else

10 fprintf('Dynamixel TORQUE ENABLE has been successfully connected \n');
11 end

10.3 Appendix C

Workspace and Singularity Analysis

1 %% implicit plot
2 clear
3 close all
4 clc
5

6 w = struct();
7

8 figure
9

10 subplot(231)
11 w.n1 = 0;
12 w.a1 = pi/3;
13 w.a2 = pi/2;
14 w.g = pi/3;
15 w.int = [-1.1 1.1 -1.1 1.1 -1.1 1.1];
16 [w] = plot workspace(w);
17 title('LEG 1: \gamma = \pi/3 \alpha 1 = \pi/3 \alpha 2 = \pi/2')
18 hold off
19

20 subplot(232)
21 w.n1 = 0;
22 w.a1 = pi/3;
23 w.a2 = pi/2;
24 w.g = -pi/3;
25 w.int = [-1.1 1.1 -1.1 1.1 -1.1 1.1];
26 [w] = plot workspace(w);
27 title('LEG 2: \gamma = \pi/3 \alpha 1 = \pi/3 \alpha 2 = \pi/2')
28 hold off
29

30 subplot(233)
31 w.n1 = 2*pi/3;
32 w.a1 = pi/3;
33 w.a2 = pi/2;
34 w.g = 0;
35 w.int = [-1.1 1.1 -1.1 1.1 -1.1 1.1];
36 [w] = plot workspace(w);
37 title('LEG 3: \gamma = \pi/3 \alpha 1 = \pi/3 \alpha 2 = \pi/2')
38 hold off
39

40 subplot(234)
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41 w.n1 = 0;
42 w.a1 = pi/2;
43 w.a2 = pi/2;
44 w.g = pi/3;
45 w.int = [-1.1 1.1 -1.1 1.1 -1.1 1.1];
46 [w] = plot workspace(w);
47 title('LEG 1: \gamma = 0 \alpha 1 = \pi/2 \alpha 2 = \pi/2')
48 hold off
49 subplot(235)
50 w.n1 = 0;
51 w.a1 = pi/2;
52 w.a2 = pi/2;
53 w.g = -pi/3;
54 w.int = [-1.1 1.1 -1.1 1.1 -1.1 1.1];
55 [w] = plot workspace(w);
56 title('LEG 2: \gamma = 0 \alpha 1 = \pi/2 \alpha 2 = \pi/2')
57 hold off
58

59 subplot(236)
60 w.n1 = 2*pi/3;
61 w.a1 = pi/2;
62 w.a2 = pi/2;
63 w.g = 0;
64 w.int = [-1.1 1.1 -1.1 1.1 -1.1 1.1];
65 [w] = plot workspace(w);
66 title('LEG 3: \gamma = 0 \alpha 1 = \pi/2 \alpha 2 = \pi/2')
67 hold off
68

69

70 %% Plot the Whole Mobility Range Generic Configuration
71 clear
72 figure(2);
73 trplot(eye(3), 'color', 'r', 'arrow', 'text opts', ...
74 {'FontSize', 12, 'FontWeight', 'bold'});
75 hold on;
76

77 N = 1000;
78 radius = 0.5;
79

80 [x,y,z] = sphere(N);
81

82 w.n1 = 0;
83 w.a1 = pi/3;
84 w.a2 = pi/2;
85 w.g = pi/3;
86 D1 = -cos(w.a1+w.a2);
87 D2 = -cos(w.a1-w.a2);
88

89 for i=1:N+1
90 for j=1:N+1
91

92 if x(i,j)*sin(w.n1)*sin(w.g) - y(i,j)*cos(w.n1)*sin(w.g)...
93 + z(i,j)*cos(w.g) + D1 <0
94 x(i,j) = NaN;
95 y(i,j) = NaN;
96 z(i,j) = NaN;
97 end
98 if x(i,j)*sin(w.n1)*sin(w.g) - y(i,j)*cos(w.n1)*sin(w.g)...
99 + z(i,j)*cos(w.g) + D2 >0
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100 x(i,j) = NaN;
101 y(i,j) = NaN;
102 z(i,j) = NaN;
103 end
104 end
105 end
106

107 w.n1 = +pi/3;
108 w.a1 = pi/3;
109 w.a2 = pi/2;
110 w.g = -pi/3;
111

112 for i=1:N+1
113 for j=1:N+1
114

115 if x(i,j)*sin(w.n1)*sin(w.g) - y(i,j)*cos(w.n1)*sin(w.g)...
116 + z(i,j)*cos(w.g) + D1 <0
117 x(i,j) = NaN;
118 y(i,j) = NaN;
119 z(i,j) = NaN;
120 end
121 if x(i,j)*sin(w.n1)*sin(w.g) - y(i,j)*cos(w.n1)*sin(w.g)...
122 + z(i,j)*cos(w.g) + D2 >0
123 x(i,j) = NaN;
124 y(i,j) = NaN;
125 z(i,j) = NaN;
126 end
127 end
128 end
129 w.n1 = 2*pi/3;
130 w.a1 = pi/3;
131 w.a2 = pi/2;
132 w.g = 0;
133

134 for i=1:N+1
135 for j=1:N+1
136

137 if x(i,j)*sin(w.n1)*sin(w.g) - y(i,j)*cos(w.n1)*sin(w.g)...
138 + z(i,j)*cos(w.g) + D1 <0
139 x(i,j) = NaN;
140 y(i,j) = NaN;
141 z(i,j) = NaN;
142 end
143 if x(i,j)*sin(w.n1)*sin(w.g) - y(i,j)*cos(w.n1)*sin(w.g)...
144 + z(i,j)*cos(w.g) + D2 >0
145 x(i,j) = NaN;
146 y(i,j) = NaN;
147 z(i,j) = NaN;
148 end
149 end
150 end
151 surf(x,y,z, 'EdgeColor', 'none',...
152 'Facecolor', 'interp','FaceAlpha', 0.6);
153 axis square
154 title('Whole Mobility Range \alpha 1 = \alpha 2 \neq \pi/2');
155

156 %% Plot the Whole Mobility Range Coaxial Configuration
157 clear
158 figure(3);
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159 trplot(eye(3), 'color', 'r', 'arrow', 'text opts', ...
160 {'FontSize', 12, 'FontWeight', 'bold'});
161 hold on;
162

163 N = 1000;
164 radius = 0.5;
165

166 [x,y,z] = sphere(N);
167

168 w.n1 = 0;
169 w.a1 = deg2rad(87);
170 w.a2 = pi/2;
171 w.g = pi/3;
172 D1 = -cos(w.a1+w.a2);
173 D2 = -cos(w.a1-w.a2);
174

175 for i=1:N+1
176 for j=1:N+1
177

178 if x(i,j)*sin(w.n1)*sin(w.g) - y(i,j)*cos(w.n1)*sin(w.g)...
179 + z(i,j)*cos(w.g) + D1 <0
180 x(i,j) = NaN;
181 y(i,j) = NaN;
182 z(i,j) = NaN;
183 end
184 if x(i,j)*sin(w.n1)*sin(w.g) - y(i,j)*cos(w.n1)*sin(w.g)...
185 + z(i,j)*cos(w.g) + D2 >0
186 x(i,j) = NaN;
187 y(i,j) = NaN;
188 z(i,j) = NaN;
189 end
190 end
191 end
192

193 w.n1 = +pi/3;
194 w.a1 = deg2rad(87);
195 w.a2 = pi/2;
196 w.g = -pi/3;
197

198 for i=1:N+1
199 for j=1:N+1
200

201 if x(i,j)*sin(w.n1)*sin(w.g) - y(i,j)*cos(w.n1)*sin(w.g)...
202 + z(i,j)*cos(w.g) + D1 <0
203 x(i,j) = NaN;
204 y(i,j) = NaN;
205 z(i,j) = NaN;
206 end
207 if x(i,j)*sin(w.n1)*sin(w.g) - y(i,j)*cos(w.n1)*sin(w.g)...
208 + z(i,j)*cos(w.g) + D2 >0
209 x(i,j) = NaN;
210 y(i,j) = NaN;
211 z(i,j) = NaN;
212 end
213 end
214 end
215 w.n1 = 2*pi/3;
216 w.a1 = deg2rad(87);
217 w.a2 = pi/2;
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218 w.g = 0;
219

220 for i=1:N+1
221 for j=1:N+1
222

223 if x(i,j)*sin(w.n1)*sin(w.g) - y(i,j)*cos(w.n1)*sin(w.g)...
224 + z(i,j)*cos(w.g) + D1 <0
225 x(i,j) = NaN;
226 y(i,j) = NaN;
227 z(i,j) = NaN;
228 end
229 if x(i,j)*sin(w.n1)*sin(w.g) - y(i,j)*cos(w.n1)*sin(w.g)...
230 + z(i,j)*cos(w.g) + D2 >0
231 x(i,j) = NaN;
232 y(i,j) = NaN;
233 z(i,j) = NaN;
234 end
235 end
236 end
237 surf(x,y,z, 'EdgeColor', 'none',...
238 'Facecolor', 'interp','FaceAlpha', 0.6);
239 axis square
240 title('Whole Mobility Range \alpha 1 = \alpha 2 = \pi/2');

1 function [w] = plot workspace(w)
2 cone = @(x,y,z) (x.ˆ2 +(y*cos(w.g) + z*sin(w.g)).ˆ2)*(sin(w.a1))ˆ2 ...
3 - ((y*sin(w.g) - z*cos(w.g))*cos(w.a1)-cos(w.a2)).ˆ2;
4 % Planes
5 D1 = -cos(w.a1+w.a2);
6 D2 = -cos(w.a1-w.a2);
7 plane1 = @(x1,y1,z1) x1*sin(w.n1)*sin(w.g)...
8 - y1*cos(w.n1)*sin(w.g) + z1*cos(w.g) + D1 ;
9 plane2 = @(x2,y2,z2) x2*sin(w.n1)*sin(w.g)...

10 - y2*cos(w.n1)*sin(w.g) + z2*cos(w.g) + D2 ;
11 % Sphere
12 [X,Y,Z] = sphere;
13 c = fimplicit3(cone, w.int, 'EdgeColor', 'none',...
14 'Facecolor', 'r','FaceAlpha', 0.5);
15 hold on
16 surf(X,Y,Z,'EdgeColor', 'none','Facecolor',...
17 'g','FaceAlpha', 0.5);
18 hold on
19 fun1 = fimplicit3(plane1, w.int, 'Facecolor',...
20 'b','FaceAlpha', 0.5);
21 hold on
22 fun2 = fimplicit3(plane2, w.int, 'Facecolor',...
23 'b','FaceAlpha', 0.5);
24 hold on
25 axis square
26 xlim([-1.2 1.2])
27 xlabel('x')
28 ylim([-1.2 1.2])
29 ylabel('y')
30 zlim([-1.2 1.2])
31 zlabel('z')
32 end
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