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Summary

The thesis project was carried out entirely at the University of Liverpool having
access to the wind tunnel to perform the experimental tests. The need of a new
experimental model led to design a new one as first activity. Specifically, it has
been re-designed a two-DOFs wing model with pitch and plunge motion and two
active control surfaces: trailing- and leading-edge flap, respectively. The design has
taken into account the need to adapt the wing model to the support structure and it
has considered both the functional aspects of the wing and the static and dynamic
technical specifications necessary for the correct functioning of the model. An ana-
lytical model with an unsteady definition of the aerodynamic loads was developed to
obtain the prediction of the flutter velocity and to understand the internal dynamic
behaviour of the model. In addition, a series of experimental tests were carried out
to identify experimentally the aeroelastic system, such as: the study of the different
flutter-speeds based on the configuration of the springs and masses of the support
structure, the study of frequency response functions through the actuation of the
shaker with and without wind and with the actuation of active control surfaces with
wind. The updating of the analytical model was performed in order to validate the
model both for the computation of the flutter-speed and for the identification of the
system dynamics. The active controller was studied analytically and experimen-
tally in a separate way. It consists of a proportional derivative integrative low-level
controller and a proportional derivative high-level controller. From the analytical
point of view, it has been developed a control with the quasi-steady definition of
the aerodynamic loads while, from the experimental point of view the gains of the
PID controller were chosen and the efficiency of the experimental control system
was tested. Finally, pole placement was carried out through the numerical and
experimental implementation of the receptance method.
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Sommario

Il progetto di tesi è stato svolto interamente presso l’ Università di Liverpool avendo
accesso alla galleria del vento per eseguire i test sperimentali. La necessità di un
nuovo modello sperimentale ha condotto alla progettazione dello stesso come prima
attività. Nello specifico, è stato ri-progettato un modello di ala a due gradi di libertà
con movimento torsionale e flessionale (pitch e plunge), dotato di due superfici di
controllo attivo, rispettivamente, il flap anteriore e quello posteriore (trailing- e
leading-edge flap). La progettazione ha tenuto conto della necessità di adattamento
dell’ala alla struttura di supporto della galleria del vento e sono stati considerati sia
gli aspetti funzionali dell’ala che le specifiche tecniche statiche e dinamiche necessarie
al corretto funzionamento del modello. E’ stato sviluppato un modello analitico con
definizione instazionaria dei carichi aerodinamici per ottenere la predizione della
velocità di flutter e per conoscere la dinamica interna del modello. Inoltre, sono
stati eseguiti una serie di prove sperimentali volte ad individuare sperimentalmente
la natura dinamica del modello quali: studio delle diverse velocità di flutter in base
alla configurazione del sistema di molle e masse che sorregge il modello, studio delle
risposte in frequenza con attuazione del sistema tramite shaker, con e senza vento, e
tramite superfici di controllo attivo, con vento. E’ stato eseguito l’aggiornamento del
modello analitico al fine di validare tale modello sia dal punto di vista della predizione
della velocità di flutter che dal punto di vista della dinamica interna. Infine, è
stato studiato analiticamente e sperimentalmente il controllo attivo della struttura
costituito da un controllore proporzionale derivativo integrale di basso livello ed un
controllore proporzionale derivativo di alto livello. In particolare, dal punto di vista
numerico, è stato sviluppato il controllo tramite una definizione quasi stazionaria
dei carichi aerodinamici mentre, dal punto di vista sperimentale, sono stati scelti
i guadagni del controllore di basso livello ed è stata testata l’efficacia del sistema
di controllo. Infine, si è eseguito il piazzamento dei poli tramite l’implementazione
numerica e sperimentale del receptance method.
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Chapter 1

Introduction

1.1 Content
Since the first half of the twentieth century, aeroelasticity has had a central role in
the design of new aircraft and in general in the aerospace engineering. Aeroelasticity
links the inertial and elastic forces with the aerodynamic forces which are developed
by a lifting surface dipped in a fluid flow. The aeroelastic problem are linked mainly
to:

• static problems: these phenomena are time invariant and therefore they appear
suddenly, such as the aeroelastic divergence or the reversal control surface;

• dynamic problems: these phenomena are strictly linked to the time and to
inertial forces, such as the flutter.

For the first airplanes, the problems were related to the divergence, which leads
the wings to deflect until the failure point. In fact a lot of first world war’s airplanes
crashed for torsional divergence. When the divergence appears, the lifting surface
starts to deflect and this deflection causes an increase of the aerodynamic loads which
worsens the situation; this phenomenon ends with the failure of the aerodynamic
surface. The static divergence can be easily controlled by making the wing stiffer to
avoid the initial deflection.

The divergence appears at higher wind speed respect to flutter. The flutter is
one of the most dangerous and important aeroelastic phenomenon which can be
defined as: a dynamic instability of a flight vehicle associated with the interaction
of aerodynamic, elastic, and inertial forces [1]. The instability creates a self-excited
aeroelastic vibration caused by the coupling of the natural system’s modes. In
this particular conditions, the fluid flow excites the structure and the amplitude
of the oscillations increases. The flutter in linear systems appears as uncontrolled
and unbounded oscillation which leads to the structural failure while in non-linear
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1 – Introduction

system, it appears as a limit cycle oscillations (LCO) in which the structure oscillates
with large constant amplitude. In a linear model, the global effect is a decrease of
net structure’s damping which reaches to the zero net damping point at the flutter-
speed. In fact the flutter-speed corresponds to the aerodynamic condition for which
the negative aerodynamic damping is equal to the positive structural one; therefore a
little increase of the flow speed would lead to the dynamic instability of the structure.

Numerous linear and non-linear models have been developed in order to study the
main phenomena that occur in the structures subjected to action of wind. Basically,
these phenomena can not be completely eliminated but just controlled or avoided,
therefore the necessity of active and passive controls on the aerodynamic structures
is became mandatory for the new designs of aircraft.

1.2 Literature review
Extensive studies have been conducted in the past years to find a way to control the
onset of the flutter both in linear and non-linear structures.

Theodore Theodorsen [5] in 1935 validated the definition of the aeroelastic un-
steady forcing functions for a three-DOFs rigid aerodynamic system in which the
structure can be controlled by a trailing-edge flap that represents the third degree
of freedom; the Theodorsen’s model is still used today in the simplest analytical
models to compute the flutter-speed or the system dynamics.

Mottershead et al. [10] described the theory of the MIMO version of the re-
ceptance method through which it is possible to perform the pole placement. This
method can be applied on different types of structure and also on aerodynamic
structure in order to control the flutter onset.

In the recent years the research focused on the control and suppression of flutter
in linear and non-linear system.

Strganac et al. [7] investigated a non-linear control technique for the suppression
of LCO in a two-DOFs aeroelastic system by using an analytical model based on
the definition of the aerodynamic quasi-steady forcing function. An experimental
model with two controlled surfaces, respectively leading-edge flap and trailing-edge
flap, was used to validated the analytical model and the control law which applies
the feedback linearisation technique.

Bhoir and Singh [6] studied a non-linear two-DOFs system by developing an an-
alytical model with full unsteady forcing function. The model with just the trailing-
edge control surface, has been used to compute the flutter-speed and to obtain the
limit cycle oscillations of the system and the Theodorsen’s function was treated as
a second order transfer function to solve the equation of motion. The feedback
linearisation technique was used to apply a control law on the non-linear system.

Jiffri, Fichera et al. [8] presented an experimental implementation of a non-linear

2
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pitch-plunge aeroelastic system. An analytical model was developed to describe the
behaviour of the system and by using an experimental rig it was validated. A
tuned embedded numerical model was used to control the structure and to apply
the feedback linearisation technique through which the pole-placement of the system
is applied .

Isnardi, Paoletti et al. [9] investigated numerically a feedback linearisation con-
trol technique for suppression of limit cycles oscillations in a non-linear two-DOFs
aeroelastic model. The model was also experimentally validated by using an exper-
imental rig in the wind tunnel and the mathematical model has been updated by
using the frequency response function at zero wind speed. The gains for the LCO
suppression have been tested below and above the flutter-speed in order to validate
the control efficiency.

Mokrani, Palazzo et al. [11] developed a control system based on the receptance
method for a flexible wing equipped with leading- and trailing-edge flaps. It has
been demonstrated the efficiency of the receptance method in the pole placement of
the system by using a FEM numerical model to compute the mode shapes of the
wing and so it has been validated the ability of the control to suppress the flutter
onset.

Mokrani et al. [14] developed a theory to minimize the control effort of system
when the receptance method is applied. This technique can be applied on different
structure, such as the aerodynamic structures, and it is possible to have the best
control efficiency.

The researches of the last ten years are, therefore, focused on the control sys-
tem for flutter suppression in different fields of the aerodynamics and so it is very
important to have a better, simpler and more efficient way to control the system.

1.3 Aims and objects
The main aim of this project is to validate experimentally an analytical model of a
linear pitch-plunge aeroelastic system by using an experimental rig. The mathemat-
ical model has to be able to predict the onset of the flutter and to deal with active
controls, in particular it has to deal with two controlled surfaces: the leading-edge
flap and the trailing-edge flap. These surfaces can suppress the occurring of the
flutter by controlling the system. Through the implementation of the receptance
method, the model has to be able to control the system’s poles by making the clas-
sic pole placement. A new physical wing model has to be re-designed to simulate a
two-DOFs system with pitch and plunge motions. The design is performed by using
the CAD software CATIA through which all the parts of the wing can be modelled
and adapted to the support structure. The new model is manufactured entirely in
the University of Liverpool by using the workshop and the 3D printers.
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Chapter 2

Analytical Model

An analytical model developed in MATLAB is used to describe the dynamic be-
haviour of the system. It is possible to resort to a simple mathematical description
because the aeroelastic model can be idealised as a two-DOFs system. There are
many advantages in the use of an analytical model: first of all, it is very simple and
therefore computationally inexpensive and second, it can be built without using any
other programs or subroutines. The analytical model has to be able to compute the
dynamic behaviour of the system and to predict the flutter onset for a two-DOFs
system. A schematic representation of the system is shown in Figure 2.1

TE

LE

Figure 2.1: General scheme of the physical model, top view.

The dotted line represents the main spars used to support all the parts of the
wing model. The model presents two control surfaces: the leading- and trailing-
edge. They are able to control the system near to the flutter-speed by acting on the
damping or the frequency of the controlled structure.

LE TE

Figure 2.2: General scheme of the physical model, lateral section view.
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2 – Analytical Model

2.1 Structural model
The analytical model starts from the simplest operative condition, i.e. when there
is no air-flow and when the control surfaces are fixed and aligned with the wing
profile. In this case only the structural behaviour of the wing is taken into account.
The mid-chord is chosen as origin of the reference system in order to be aligned
with the models described on the literature. Figure 2.3 shows the scheme of the
analytical model. Generally, in aerodynamics, the reference system used to describe
the dimensions of the wing is assumed to be positive upward and backward; therefore
the dimensionless quantity a is negative. The plunge displacement h is assumed to
be positive downward while the pitch angle α is assumed to be positive clock-wise.
For the sake of simplicity, all the symbols are listed in Acronyms and Abbreviations.

L

M

Ac

C

c

4

M

a
b

xa

α
i1

i2

Cm
Ea

c

Figure 2.3: Mathematical model.

As shown in Figure 2.3, the lift L and the aerodynamic moment M are placed
at the quarter of the chord from the leading-edge tip. A typical assumption in
aerodynamic provides for placing the aerodynamic forces at that point: theoretically
in an aerodynamic profile, the best point in which applying the lift is the center of
pressure. This point is moving along the chord on the base of the change of lift, so
it is better to apply the aerodynamic forces on the aerodynamic centre. The latter
is the place in which the aerodynamic moment is not dependent on the lift and it is
positioned near the quarter of chord for any subsonic aerofoil.
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The equation of motion can be obtained by applying the Lagrange’s method on
the previously described model.

d

dt

A
∂T

∂q̇i

B
− d

dt

A
∂U

∂q̇i

B
+ ∂U

∂qi
− ∂T

∂qi
+ ∂F
∂q̇i

= Qi (2.1)

In the case in point, the generalized coordinates qi are represented by the two DOF
of the system: h and α. Now, it is possible to obtain the kinetic and potential energy
of the system by applying their definitions. The kinetic energy can be written as:

T = 1
2mwV

2
c + 1

2Icα̇
2 (2.2)

By considering the reference system and the sign convention of the pitch angle and
plunge displacement, it is possible to write the position of the centre of mass with
the approximation of small pitch angle (α«1).

Xc = −h+ xabα (2.3)

By deriving in time the equation 2.3 of the centre of mass is possible to get the
velocity of the centre of mass.

Vc = −ḣ+ xabα̇ (2.4)

By replacing the Equation 2.4 in the Equation 2.2, is possible to obtain a simpler
definition of the kinetic energy in terms of pitch angle and plunge displacement.

T = 1
2mwḣ

2 + 1
2Iαα̇

2 + Sαḣα̇ (2.5)

Where:

• mw =
s
ρdx represents the mass of the wing.

• Sα is the static moment of the structure.

• Iα is the moment of inertia about the elastic axis.

It is possible to compute the static moment and the moment of inertia as follows:

Iα = Ic +mw(xab)2 (2.6)

Sα =
Ú
ρxdx = mwxab (2.7)
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The potential energy and the Rayleigh’s dissipation function can be expressed
with the same formulation, by only applying the definition. In this case, it is adopted
a dissipative function with the same form of the potential energy.

U = 1
2khh

2 + 1
2kαα

2 (2.8)

F = 1
2chḣ

2 + 1
2cαα̇

2 (2.9)

Now, by replacing the Equations 2.5, 2.8 and 2.9 in the Lagrage’s equation 2.1
it is possible to obtain the equation of motion of the system. In a reordered form,
the equation of motion is:C

mT Sα
Sα Iα

DI
ḧ
α̈

J
+
C
ch 0
0 cα

DI
ḣ
α̇

J
+
C
kh 0
0 kα

DI
h
α

J
=
I
−L
M

J
(2.10)

In this work, the wing is connected to an experimental rig that allows the pitch
and plunge motion of structure, as explained in Chapter 3. The mass mw represents
only a portion of the total mass of the system. The mass of the structure is taken
into account only in the first equation because it affects only the plunge motion of
the model and it is the sum of the two masses: mT = mw + ms . The equation
of motion of the linear system is described by the Equation 2.10 and it is possible
to notice that the stiffness matrix and the damping matrix are diagonal whereas
the mass matrix is just symmetric because it contains the out of diagonal terms
Sα. These terms couple the two DOF of the system from the inertia point of view.
Mass, damping and stiffness matrices are generally renamed with the short notation
shown in 2.11.

Aq̈ + Dq̇ + Eq = F (2.11)

It is necessary to use this notation because the aerodynamic loads will give a
contribution in terms of aerodynamic inertia, damping and stiffness.
By focusing on the unforced, system the equation of motion becomes:

Aq̈ + Dq̇ + Eq = 0 (2.12)

The Equation 2.12 represents the dynamic of the system when there is no wind.
It is possible to get the poles of the system by solving the eigenvalues problem
with the mass and stiffness matrices, but it is also possible to compute the natural
frequency of each mode in a approximate way by using the Equation 4.1.

ωh =
ó
kh
mT

ωα =
ó
kα
Iα

(2.13)
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These frequencies represent the natural frequencies of the system when the two
DOFs are completely uncoupled and when the damping of the system is null. It
is possible to compute the frequencies and decay rates of the system in a general
case by using the state space approach and making a complex modal analysis. The
system has to be re-written with the state space vector which is represented by the
Equation 2.14.

z =
I

q
q̇

J
(2.14)

By rearranging the homogeneous equation of motion, it is possible to get the
state space form of the system as shown in 2.15

ż = Assz (2.15)

Since there is no control applied on the structure, just the dynamic matrix is enough
to describe the system . The dynamic matrix is represented by the Equation 2.16
and, on the base of the system DOFs, it belongs to R4×4 .

è
Ass

é
=
C

02×2 I2×2
−A−1E −A−1D

D
(2.16)

Where 02×2 is the null matrix and I2×2 is the identical matrix. It is important
to remember that the dynamic matrix belong to control representation of system
expressed by the quadruple of the matrices: Ass, Bss, Css, and Dss as shown in the
Equation 2.17. I

ż = Assz + Bssu
y = Cssz + Dssu

(2.18)

2.2 Aerodynamic model
The aerodynamic loads affect the inertia, damping and stiffness structural matrices
of the system. Their effect increases as a function of the wind-speed, therefore the
aerodynamic matrices have a direct proportional link with the wind-speed. There
are different approximations to describe the influence of the aerodynamic on the
system; generally it is possible to distinguish the following cases:

• Steady aerodynamic loads assumption;

• Quasi-steady aerodynamic loads assumption;

• Unsteady aerodynamic loads assumption.

The aerodynamic contributions change on the base of the adopted approxima-
tion. All the models provide for having the following basic hypotheses:
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• Two dimensional flow;

• Inviscid flow;

• Incompressible flow (Ma < 0.3);

• Thin rigid section aerofoil;

• Small amplitudes.

The steady aerodynamic loads assumption is the simplest condition that is pos-
sible to assume. In this case the aerodynamic forcing function is dependent only on
the pitch angle and plunge displacement:

F = F (h, α) (2.19)
This loads definition is not very accurate in the simplest aerodynamic models

such as a two-DOFs model. In fact, it does not take into account the unsteady
effect of the lift. Therefore, the use of more sophisticated definitions is necessary.
The quasi-steady and unsteady aerodynamic loads assumptions allow to describe
the phenomenon in a better way and therefore they give better results in terms of
flutter prediction when the unsteadiness of the loads is large. In the first case the
aerodynamic forcing can be written as:

F = F (h, α, ḣ, α̇) (2.20)

In the second case the aerodynamic loads are dependent also on the plunge
acceleration and on the angular pitch acceleration , therefore is possible to write:

F = F (h, α, ḣ, α̇, ḧ, α̈) (2.21)

The quasi-steady loads assumption takes into account partially the unsteadiness
of the aerodynamic loads while the total unsteady assumption considers all the
unsteady phenomenon. With the complete unsteady approach, the flutter prediction
is much more accurate but the model is more complex from the mathematical point
of view. The unsteadiness of the aerodynamic loads is mainly due by two factors:

• the presence of wake with vortexes;

• the transitory effect;

The air vortexes in the wake is the main cause of aerodynamic loads unsteadiness:
the wake arises when the air-flow passes along the aerofoil and initially it is smooth
and straight but after few moments some vortexes occur behind the tail of the
aerofoil. The vortexes make the aerodynamic loads unsteady and so the dependence
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of the loads is not only linked to the air-speed and to the pitch angle but also to
the past motion history of the aerofoil; in other words, the wake affects the lift.
The unsteady loads effect are proportional to the amplitude and the frequency of
the wake oscillations, i.e. the unsteadiness is small if the system does not oscillates
while it is large if the system oscillates. Also the transitory effect in the lift, when
there is a changing in pitch angle, creates an effect of unsteady condition because the
lift does not change suddenly but gradually. The unsteadiness is strictly related to
the frequency content of the forcing function which is represented by a dimensionless
variable k: the reduced frequency.

k = ωb

U
(2.22)

The physical relationship between the reduced frequency and its parameters is
expressed by the following states :

• as much the semi-chord b is small as the unsteadiness of the aerodynamic
forces is reduced, i.e. a wing with a short chord is not long enough to develop
a large vorticity in the wake;

• if the frequency ω is small the unsteadiness of the aerodynamic forces is small
as well, i.e. low frequency oscillations do not create too much vorticity in the
wake behind the tail;

• as much the wind-speed U is large as the effect of unsteadiness in the aero-
dynamic forces is small, in fact, the vorticity of the wake steps away quickly
from the airfoil.

It is possible to imagine the effect of a large reduced frequency by making the
inverse reasoning. Therefore the k is an indicator of the unsteadiness of the aerody-
namic loads. It is possible to distinguish which approach is better for the studied
system:

• Steady approach if k=0;

• Quasi-steady approach if k ≤ 0.1;

• Unsteady approach if k > 0.1.

2.2.1 Steady aerodynamic loads assumption
The steady aerodynamic loads assumption is very simple and is a good representa-
tion of the dynamic behaviour of an aeroelastic system when the reduced frequency
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is very small. In this case, it is possible to write the equation of lift and pitching
moment in the following way:

L = 1
2CLρU

2spc = 1
2(cL0 + cL1α)ρU2spc (2.23)

M = 1
2CMρU

2spc
2 (2.24)

Where cL1 represents the coefficient per pitch angle for the lift and while cL0

represents the value of lift coefficient for α = 0. In a general representation the
coefficient CM depends on the lift position along the chord, but by using the aero-
dynamic centre as application point for the aerodynamic forces there is not this
dependence anymore. It is possible to state the following correspondence:

CM = cM0 (2.25)

In the case in point, cM0 represents the coefficient of aerodynamic moment due
by the chambered shape of the airfoil. The NACA 0018 is a symmetric profile and
so both the coefficient cM0 and cL0 are equal to zero while cL1 is equal to 2π .

Now it is possible to re-write the forcing function vector as appears in the Equa-
tions 2.26 : I

−L
M

J
= ρU2

C
0 −1

2cL1csp
0 1

2cM0csp

DI
h
α

J
= ρU2

è
C
é î
q
ï

(2.26)

It is possible to get the complete equation of motion with the aerodynamic effect
by bringing on the other side the aerodynamic stiffness matrix C of equation 2.26.

Aq̈ + Dq̇ + (E− ρU2C)q = 0 (2.27)

For the sake of simplicity, it is convenient to pass to the compact notation ex-
pressed in the 2.28 in order to obtain the state space representation again.

Mmq̈ + Cmq̇ + Kmq = 0 (2.28)

è
Ass

é
=
C

02×2 I2×2
−Mm

−1Km −Mm
−1Cm

D
(2.29)

By computing the state space matrix of Equation 2.29 at each wind-speed and
by solving the correlated eigenvalues problem (EVP) with the MATLAB function
eig, it is possible to get the poles of the system for every value of the wind-speed
U . From this results is possible to calculate when the damping becomes null and so
it is possible to predict the flutter-speed. In fact the poles are composed by a real
part and an imaginary part as described in Equation 2.30.
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s = σ ± iω (2.30)
The real part and the imaginary part of the poles can be expressed as follows:

σ = −ωnζ

ω = ωn
ñ

1− ζ2
(2.31)

As explained before, this approach is not suitable for the flutter-speed compu-
tation of a two-DOFs system because the reduced frequency k is too high. Anyway,
it is useful to understand the trends of the decay rates and of the frequencies in an
aeroelastic model and to know the nature of the aerodynamic stiffness, damping and
inertia matrices. From the mathematical point of view, we get only an aerodynamic
stiffness matrix C from the definitions of the aerodynamic loads.

2.2.2 Theodorsen’s unsteady model
The Theodorsen’s model is commonly used for the flutter speed prediction and it
adopts a complete unsteady approach to describe the aerodynamic forcing functions.
Theodorsen has determined [5] the relationships which describe the aerodynamic
forces of an oscillating three DOFs airfoil. The theory is based on potential flow
and on the Kutta aerodynamic condition and it uses the Bessel function of the
first and second kind to reach the solution. The problem has been investigated
with the assumptions of small oscillation and with the approximation of infinite
wing span. The Theodorsen’s model provides for having the distinction between
circulatory terms and non-circulatory terms of the aerodynamic loads. The first
ones are related to the reduced frequency and so to the complete unsteadiness effect,
whereas the second ones are apparent inertia forces that arise from the application
of the aerodynamic loads. In order to apply the Thedorsen’s aerodynamic loads on
the two DOFs model, the influence of the flap is neglected. It is possible to get the
representation of the forces in the following way:

L = ρπb2sp[ ḧ+ Uα̇− baα̈] + 2πρUbspC(k){ḣ+ Uα + b(1
2 − a)α̇} (2.32)

M =ρπb2sp[ baḧ− Ub(1
2 − a)α̇− b2(1

8 + a2)α̈] + 2πρUb2(a+ 1
2)spC(k)

{ḣ+ Uα + b(1
2 − a)α̇}

(2.33)

The Equations 2.32 and 2.33 represent the unsteady lift force and the unsteady
aerodynamic moment for an aerofoil with two DOFs. The circulatory term is iden-
tified by the presence of the Theodorsen’s function C(k) while the remaining part
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of the equation represents the non-circulatory term. In order to obtain a solution
similar to previous case, it is necessary to find a representation of the equation of
motion of the kind:

(A− ρAa)q̈ + (D− ρUB)q̇ + (E− ρU2C)q = 0 (2.34)

The function C(k) is a frequency dependent term and it does not allow to get
the solution of the flutter-speed prediction in straightforward way as in the previous
steady case, therefore the Equation 2.34 can not be obtained by simply dividing
the forcing term into three matrices. The Theodorsen’s function C(k) expresses
the difference in term of lift between the different approaches for the definition of
the aerodynamic loads, in particular between the quasi-steady and the unsteady
definition of the loads. The function depends on the reduced frequency and it
behaves as a filter: it receives an input and it gives an output. Therefore, the
Theodorsen’s function is a complex function represented by Equation 2.35:

C(k) = F (k) + iG(k) = H
(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

= K1(ik)
K1(ik) +K0(ik) (2.35)

where:

• H
(2)
j (k) are the Hankel’s function of the second type;

• Kj(ik) are the Bessel’s function of the second type.

The C(k) function has to take into account both the real and the imaginary part.
Since the Bessel’s and Hankel’s function are very complex and difficult functions,
many approximation were developed in literature. One of the most used is the Jones’
approximation that is represented on Equation 2.36

C(k) = 1− 0.165

1− 0.0455
k

i
− 0.335

1− 0.3
k
i

(2.36)

In the steady aerodynamics case the frequency ω is equal to zero, therefore the
reduced frequency k = 0 and the real and imaginary part are respectively: F = 1
and G = 0. In this case the computation of the lift should be approximately the
same for the steady, quasi-steady and the unsteady aerodynamic definition of the
loads and so also the predicted flutter-speed should be the same.
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2.2.3 Mathematical application of the Theodorsen’s model
In order to have a simple mathematical solution, the Theodorsen’s function can be
treated as a filter and therefore it will be modelled as a transfer function. It is nec-
essary a change of domain because it is difficult to handle the Jones’ approximation
with the variable k. The new variable will be the Laplace variable s that allows
to find easily a simple representation of the transfer function. The Equation 2.37
represents the Jones’ approximation of Theodorsen’s function in Laplace domain.

C(k) = 0.5 + a1s+ a0

s2 + b1s+ b0
(2.37)

Where the coefficients of Equation 2.37 are:

• a1 = 0.1080075 U
b
;

• a0 = 0.006825 U2

b2 ;

• b1 = 0.3455 U

b
;

• b0 = 0.01365 U2

b2 .

The Equation 2.37 comes from the definition of reduced frequency:

k = sb

iU
(2.38)

The Theodorsen’s function is now represented in Laplace domain, C(s), as shown
in Equation 2.37. For the sake of simplicity, it can be treated as a second order
transfer function and Bhoir et al. in [6] explain how to write the correspondent
filter by considering the input vf (s) and the output yf (s) as shown in Figure 2.4.

C(s)v (s) y (s)f f

Figure 2.4: Filter description.

The representation in mathematical form is:

yf (s) = C(s)vf (s) (2.39)
The input of the filter is a linear combination of the pitch angle and plunge

displacement in time domain and it corresponds to the multiplying term of C(s) in
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the circulatory part of the Theodorsen’s loads. The input term in time domain is
represented by the Equation 2.40:

vf (t) = αU + ḣ+ b(0.5− a)α̇ (2.40)

The vector xp represents the state space variables used to solve the EVP in the
state space form; i.e. they are the states used in the previous solution with the
steady loads assumption. It is represented as follows:

xp = {h, α, ḣ, α̇}T (2.41)

The vector av has to be represented by Equation 2.42 in order to allow the
definition of vf with the vector multiplication.

av = {0, U, 1, b(0.5− a)}T (2.42)

Although the transfer function C(s) can be represented with a variety of filter
representations with different numbers of states, it is better to define the filter
with the minimal realization of states. Therefore the filter adds just two additional
aerodynamic states, η0 and η1, which correspond the minimal realization of states.I

η̇1 = η1

η̇2 = −b0η1 − b1η2 + vf (t)
(2.44)

Therefore it is possible to get the output yf (t) Equation 2.45 by applying the
filter.

yf (t) = 0.5av
Txp + a0η1 + a1η0 (2.45)

Now the output yf (t) is known and it is possible to replace the Equation 2.39
in the Equations 2.32 and 2.33 in order to get the solution. The system is now
composed by six states because the filter introduces two new variables: η1 and η2.
These new variable are the aerodynamic states. With this new configuration of the
aerodynamic loads, it is possible to obtain the aerodynamic inertia, damping and
stiffness matrix in similar way as in the case of loads steady approach. The result
is expressed by the Equation 2.46 with the matrices belonging to R2×2.

F = Aaq̈ + Bq̇ + Cq + Nη (2.46)

The matrices Aa, B, C and N can be found in the Appendix. By applying the
new forcing function on Equation 2.11 and by bringing on the other side all the
aerodynamic matrices it possible to get a representation similar to the Equations
2.34:
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(A− ρAa)q̈ + (D− ρUB)q̇ + (E− ρU2C)q = Nη (2.47)

As in the previous example, it is possible to get a more familiar expression of
the equation of motion:

(Mm)q̈ + (Cm)q̇ + (Km)q = Nη (2.48)

Finally, in order to get the state space representation the same passages as before
can be done. The final result will be a dynamic system with just the matrix Ass. In
important to remember that the number of states is increased as a consequence of
the application of the filter. The equation 2.49 represents the new state variables:

{x} = {h, α, ḣ, α̇, η1, η2}T (2.49)

By arranging all the equation with respect the new state variables, it is possible to
get the matrix Ass represented in Equation 2.50 with the state space representation.
This new matrix will belong to R6×6.

{ẋ} =


0 0 1 0 0 0
0 0 0 1 0 0

[ A1 ]
0 0 0 0 0 1

[ av ]T −b0 −b1

 {x} (2.50)

where the matrix A1 comes from the inversion of Equation 2.48 and it belongs
to R2×6.

A1 = [−Mm
−1Km,−Mm

−1Cm,Mm
−1N] (2.51)

As before, now it is possible to solve EVP by using the MATLAB function eig
from which is possible to compute the poles of the system.

2.3 Numerical results
Previous experiments were conducted by Isnardi et al. [9] on the same test rig
with a two DOFs wing, therefore some starting data are taken directly from [9] in
order to test the model. The inertia properties and the dimensions of the wing can
be evaluated with good approximation directly from the CAD model of the wing.
The acquired data are listed in the Table 2.1 while the inertia properties and the
dimensions are shown in Table 2.2 and 2.3.

The meaning of each symbol is described in the section List of Notation and
Acronyms. The dimensionless parameters a and xa can be evaluated from the CAD
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Data Acquired parameters

ζh[−] 0.0183

ζα[−] 0.0082

kh[N/m] 3514.8

kα[Nm/rad] 33.7

Table 2.1: Acquired parameters from [9].

Data CAD inertia data

mT [kg] 12.4518

mw[kg] 4.913

Ic[kgm2] 0.029

Table 2.2: Inertia data obtained from the CAD model.

wing model by using the reference system provided in the Figure 2.3 and the Equa-
tions 2.52 and 2.53.

a = Ea −M
b

(2.52)

Data CAD dimension data

c [m] 0.3

b [m] 0.15

sp[m] 1.2

a [-] −0.32

xa[−] 0.258

Table 2.3: Dimensions data acquired from the CAD model.
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xa =
----Cm − Eab

---- (2.53)

The parameter a is the dimensionless distance between the elastic axis and the
mid-chord while xa is the dimensionless distance between the elastic axis and the
centre of mass. Since the centre of mass is positioned at 140.7 mm from the leading-
edge tip and the elastic axis is positioned at 102 mm from the leading-edge tip,
it is possible to compute a and xa. It is possible to get the inertia moment and
the static moment about the elastic axis by using the Equation 2.6 and 2.7, which
are respectively: Iα=0.0364 Kgm2 and Sα=0.1901 Kgm. By using these data, it is
possible to get the natural frequencies of the plunge and the pitch motion at zero
air-speed:

ωplunge = 16.5rad/s ωpitch = 32.3rad/s (2.54)

By using the estimated data, the reduced frequency is equal about to 0.26 for
a wind-speed about 20m/s, therefore it is necessary to use a complete unsteady
approach to describe the aeroelastic dynamic behaviour of the system. Even if the
parameters used to compute k are not the updated ones, the reduced frequency can
not change a lot since only ω can change. Obviously, if the reduced frequency is
very close to the limit value, it is possible to image very similar results between the
quasi-steady and the unsteady approach. The unsteady approach is however the
better approximation for the flutter speed prediction.

Some numerical tests are now performed and analyzed by using the models pre-
viously described with the steady and unsteady definition of the aerodynamic loads.
The data of Tables 2.1, 2.2 and 2.3 are used to compute the numerical tests. The
Figure 2.5 shows the trend of the real parts of the poles for each velocity when the
steady model is adopted whereas the Figure 2.6 plots the trends of the imaginary
part of the same model.

The Figure 2.5 shows when the system becomes unstable: until the real part of
the poles is negative the system is stable because the total damping of the structure
is positive but when the real part becomes positive the system becomes unstable
because the total structure damping is negative. A system with a negative damping
is unstable because the amplitude of oscillations, caused by initial disturbance, tends
to diverge. The flutter speed is the velocity at which the system becomes unstable
and with this model the flutter is predicted at 19.1 m/s. This first definition of
aerodynamic loads tends to overestimate the flutter-speed. It is however possible to
see that the flutter occurs when the frequencies of the two modes coalesce.

The same date are used with the unsteady model to compute the flutter-speed.
Also in this case, by using the graph of Figure 2.7, it is possible to see when the
structure becomes unstable.
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Figure 2.5: Decay rate trend for pitch and plunge mode with the steady loads
assumption, the flutter appears when the real part of one poles becomes positive.
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Figure 2.6: Frequency trend with the steady loads assumption, the flutter appears
near to the cross of the two frequencies.

It is important to notice that with the unsteady model the flutter-speed is de-
creased a lot; in fact the new flutter-speed is 16.8 m/s. The reduction of flutter-
speed is due by the unsteadiness of the aerodynamic loads which lead the wing to
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Figure 2.7: Real part of the poles vs wind-speed with unsteady loads assumption.

be unstable a lower speed.
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Figure 2.8: Imaginary part of the poles vs wind-speed with unsteady loads assump-
tion.

The trend of the frequencies changes for the same reason. In a unsteady model
the flutter appears near to the coalescence of the two structural modes but not
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exactly at that intersection because the damping becomes negative before.
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Figure 2.9: Aerodynamic states vs wind-speed obtained from the filter.

Finally, the Figure 2.9 shows the trend of the aerodynamic states in relation with
the increase of wind-speed. These two additional variables come from the definition
of the filter used in the model. These states have to be negative always to guarantee
the stability of the structure.

2.4 Quasi-steady control system

The analytical model previously described represents just the internal dynamic of
the aerofoil without any control surfaces, therefore the flaps action has to be added
into the mathematical model in order to apply numerically and experimentally the
controls. Theodorsen [5] showed the mathematical definition of the aerodynamic
loads created by a trailing-edge flap with the loads unsteady definition but in the
model in point there are two different control surfaces. Since an unsteady definition
of the aerodynamic loads for both the control surfaces would make the model very
difficult and complex, the aerodynamic loads related to flaps action are described
through the quasi-steady definition. By using the definition of quasi-steady loads
for the control surfaces and the definition of unsteady loads for the general dynamic
of the wing, the final system is an hybrid system which takes into account both the
definitions.
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2.4.1 Numerical implementation and results
In order to apply numerically the method, it is necessary to create a control matrix
Bc which represents the action of the flaps. The positive verse of the flaps angle
and the control model are represented in Figure 2.10.

γ

β

Leading edge 

Trailing edge
Elastic axis

Mid-chord

Figure 2.10: Representation of the model for the control.

The unsteady definitions of lift and aerodynamic moment described previously
with the Equations 2.32 and 2.33 are now modified. In fact, the two flaps are able to
modify the aerodynamic loads of the aerofoil by changing their angles, therefore it
is necessary to add two additional terms on both the equations. Strganac et al. [7]
used this approach on a symmetric wing profile with the flaps along all the wing’s
span. The same definition is now used and the additional terms appears as:

Ladd = 0.25ρU2bsp(Clββ + Clγγ) (2.55)

Madd = 0.25ρU2b2sp(Cm,effββ + Cm,effγγ) (2.56)

The factor 0.25 takes into account the length of control surfaces which is 300
mm therefore the 25% of the total wing span of 1200 mm. The definition of the
coefficient Cm,effβ and Cm,effγ requires an additional step:

Cm,eff = (0.5 + a)Cl + 2Cm (2.57)

The Equation 2.57 is used for both the control surfaces. The aerodynamic coef-
ficients are listed in the Table 2.4. These coefficients comes from aerodynamic tests
and so they are considered to be very robust, therefore there is no need to update
the parameters for the new model.

The final lift and aerodynamic moment are respectively the sum of the Equations:
2.32 and 2.55, for the lift, and 2.33 and 2.56, for the aerodynamic moment. The
following Equations represent the final aerodynamic loads with all the contributions:
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Parameter Leading-edge Trailing-edge

Cl -0.1566 3.774

Cm -0.1005 -0.6719

Table 2.4: Aerodynamic parameters for quasi-steady definition of the loads for the
two control surfaces obtained from [7].

L =ρπb2sp[ ḧ+ Uα̇− baα̈] + 2πρUbspC(k){ḣ+ Uα + b(1
2 − a)α̇}

+ 0.25ρU2bsp(Clββ + Clγγ)
(2.58)

M =ρπb2sp[ baḧ− Ub(
1
2 − a)α̇− b2(1

8 + a2)α̈] + 2πρUb2(a+ 1
2)spC(k)

{ḣ+ Uα + b(1
2 − a)α̇}+ 0.25ρU2b2sp(Cm,effββ + Cm,effγγ)

(2.59)

By re-applying the filter and the same passages as before, it is possible to obtain
the matrix equation with an additional matrix Bc which represents control matrix.

(A− ρAa)q̈ + (D− ρUB)q̇ + (E− ρU2C)q = Nη + Bcu (2.60)
The Equation 2.60 represents the equation of motion and the vector u = [γ, β]T

is the input vector while the control matrix Bc can be obtained from the definition
of the added aerodynamic forces of 2.58 and 2.59 and it appears as:

Bc = ρU2bsp0.25
C
−Clγ −Clβ
bCmeff,γ bCmeff,β

D
(2.61)

Again, it is possible to write the system in a state space form by using the same
state vector x as before but now the presence of the control matrix Bc leads to have
the state space system with two matrices: the dynamic matrix Ass and the input
gain matrix Bss. By rearranging the all the equations as before, it is possible to
obtain the state space representation in this form:

ẋ = Assx + Bssu (2.62)
Where the input gain matrix is defined by:

Bss =

 02×2
Mm

−1Bc
02×2

 (2.63)
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Since Bc ∈R2×2 the matrix Bss ∈R6×2. At this stage it is possible to write the
complete state space system by adding the output gain matrix Css and direct link
matrix Dss which are represented by the following equations:

Css =
C
1 0 0 0 0 0
0 1 0 0 0 0

D
(2.64)

Dss =
C
0 0
0 0

D
(2.65)

The matrix Dss is set to zero because there are not feedback-through while Css
represents the connection between the outputs y and state space variable x. In this
case the pitch angle and plunge displacement are chosen as outputs; in fact the in
a numerical MIMO system it is possible to choose the required outputs by defining
the matrix Css. The uncontrolled system is completely described by the matrix
Ass while the controlled system requires an additional step to get the solution and
therefore to obtain the poles. The gains matrices allow to create a link between the
outputs and input that is described in the following equation:

u = FT ẏ + GTy (2.66)

In this case the FT and GT ∈R2×2, the first one represents the matrices of
the derivative gains whereas the second represents the matrices of the proportional
gains. In the numerical model the outputs coincide with the pitch angle and plunge
displacement, therefore there is no distinction between the outputs and the states
since y = q. By replacing the Equation 2.66 in the state space definition of 2.62
and by rearranging, it is possible to get a new dynamic matrix which describes the
closed-loop system:

ẋ = [Ass + Bss[G,F,O2×2]T ]x (2.67)

The new dynamic matrix with the control gains allows to get the poles of the
controlled system by solving the correspondent EVP. The presence of two additional
state leads to get an additional null matrix in the controlled system representation,
in fact the aerodynamic states have not to be controlled. There are many ways
to get the gains and to apply the pole placement but in this chapter the gains are
chosen arbitrarily just to show numerically the effect of the control. In Chapter 6
the receptance method will be used to find such gains and to place the pole. By
choosing properly the gains, it is possible to control the system making it more
stable or less stable. The same data as before are used to make some numerical
tests.

Figure 2.11 shows the increase of predicted flutter-speed when some stable ar-
bitrary gains are applied. The analytical model shows an increase of flutter-speed
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Figure 2.11: Numerical results, increase of flutter-speed by choosing the proper
gains.
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Figure 2.12: Numerical results, change of flutter mode.

from the natural one about 16.8 m/s to the controlled one of 18.6 m/s. In this case
the flutter appears always with the plunge motion but it is possible to control the
system so that the flutter instability appears in the pitch motion, as shown in Figure
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2.12 where the flutter appears at 17.9 m/s. Therefore it is possible to control the
system in the required way and it is also possible to choose the gains so that the
flutter does not appears in the analyzed range as shown in Figure 2.13.
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Figure 2.13: Numerical results, no flutter onset.
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Chapter 3

Wing Design

To validate the mathematical model, a new physical wing model has been re-designed
by starting from the design of similar structures [11]. The new model is used in the
wind tunnel of the University of Liverpool and it has to simulate a two-DOFs pitch
and plunge aeroelastic system. The new wing needs to fit exactly with the support
structure of the wind tunnel in order to perform the experimental tests. The design
has been performed by using the FEM program LUPOS and the CAD software
CATIA through which all the parts have been calculated and modelled.

3.1 Wing model description
The idea is to create the new wing model by using two main spars as internal metallic
structure and a modular design for all the additional plastic parts. The modular
design makes easier the assembling process. The wing has to be very stiff in order to
avoid elastic deformation and to allow just the pitch and the plunge motions when
it is assembled with the support structure. All the sectors and plastic parts are
printed with the Stratasys 3D printer which uses the FDM technique, a common
material extrusion process in additive manufacturing field, while the metallic parts
are manufactured in the University workshop. The material used by the 3D printer is
the ABS, a thermoplastic polymer, that is chosen for its good properties like impact
resistance and toughness. The standard NACA (National Advisory Committee for
Aeronautics) is adopted to define the aerodynamic shape of each sector. The NACA
aerofoils are often used to develop aerodynamic physical models because the profile
section can be obtain by knowing just the dimension of the chord. The model has to
be equipped with control surfaces in order to control the stability of the structure.
The best way to control similar structure is to apply two control surfaces: a trailing-
and a leading-edge flap as shown in the 3.1.

The application of two active surfaces is enough to have the complete control of
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Figure 3.1: Active sectors, view 1.

the structure; in particular, the position of the flaps, rather than the number, allows
to add damping and to change the natural frequencies as much as it is requested
from the controller. In the previous experiments some different types of actuators
were investigated , like the piezoelectric controls [9] or the electric motors [11], and
the application of brush-less electrical motors led to better results. Therefore, two
Maxon brush-less motors with a power of 60 W are chosen to control the leading-
and trailing-edge flap. The motors are equipped with a planetary gears and encoder
sensors: the first one allows to overtake the friction problems of the flaps by increas-
ing the applied torque while the second one allows to know the angular position of
the controlled surfaces. The support structure and the wing model are represented
in the Figures 3.2 and 3.3. The structure is mainly composed by:

• aerofoil vertical support (1)

• plunge linear spring (2)

• aerofoil (3)

• pitch linear spring (4)

• external masses (5)

The plunge springs connect the wing to one extremity of the support structure
and they consist into two steel plates placed in parallel. The pitch springs are
realized by using a stinger and a smaller steel plate. All the steel plates are made in
spring steel and they allow the regulations of the stiffness by changing the attaching
position on the structure. The external structure allows to control the moment of
inertia and the static moment of the wing by changing the position of two external
masses as shown in Figure 3.3. The support structure allows to control the position
of the centre of mass, the plunge stiffness and the pitch stiffness, therefore the onset
of the flutter can be completely controlled and placed at the desired wind-speed.
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Figure 3.2: Support structure, view 1.

Figure 3.3: Support structure, view 2.
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3.2 Design of the wing model
The design of the new wing is obtained through an iterative procedure that links the
dynamic and static conditions with the shape of the model, therefore the FEM and
the CAD models are use together to reach the final solution. The design constrains
come from:

1. stiffness and dynamic conditions of the wing;

2. manufacturing constrains;

3. internal desing, motors allocation and assembling problems.

The manufacturing constrains are mainly imposed by the support structure and
by the 3D-printer, in fact the new wing has to fit exactly with the external structure
and each sector has to be lower than the maxima dimensions supported by the
printer.

Constrain Value or type

maximum span 1200 mm

maximum chord 300 mm

NACA profile NACA 0018

Table 3.1: Design constraints imposed by machinery and support structure.

The stiffness and dynamic conditions of the model can be studied with the help
of the FEM model. The wing is clamped at both ends as shown in Figure 3.2 and
Figure 3.3 and so a modal analysis is necessary to understand the general dynamic
behaviour of the wing model. The wing is studied by considering it clamped at both
the extremities but actually, when it is assembled with the support structure, it
acquires the possibility to move in rotation (pitch) and vertical direction (plunge);
the support structure and the wing assembly represent the complete system that
was studied in Chapter 2. The most important dynamic and static limitations are:

1. First natural frequency larger than 30− 40 Hz.

2. Rotational deformation and deflection in the centre of the wing as lower as
possible, with a maximum angle value about 0.5°.
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These conditions are important to have a correct onset of the flutter phenomenon.
When the aerofoil flies at increasing speed, the frequencies of the natural modes of
the complete system coalesce to create one single mode at the flutter condition. This
is the flutter resonance. The first imposed condition avoids dynamic interferences
between the structural mode-shapes of the only wing model and the flutter resonance
of the complete system; in fact if the first natural frequency of the wing is very
closed to the frequency of pitch or plunge of the complete model, it could appear
an interference between the modes. This fact could prevent the correct onset of the
flutter. In Chapter 2 an approximate pitch frequency were computed and, to be
conservative, 30 Hz is chosen as minimum limit frequency. The second condition
guarantees a very high stiffness. In order to satisfy these conditions a FEM model of
the wing is developed in LUPOS, an open source FEM code that works in MATLAB
environment, and it is performed a static and a modal analysis of the wing model.
The assembling problems and internal allocation of the motor wires, and nevertheless
the possibility to find on the market the required components, are the most difficult
part of the design and they must be taken into account.

3.2.1 FEM model
Firstly, a very simple model is taken into account. After some preliminary tests, the
first FEM model is obtained from the iterative procedure and this model is basically
composed only by the internal metallic structure. To guarantee the correct stiffness
of the structure, two rectangular hollow section bars are used to create a support
structure for the wing and for all the sectors. The bars are made in aluminium
to guarantee a lightweight structure. The Figure 3.4 shows the preliminary model
developed in LUPOS.

In LUPOS the two main spars are modelled with beam elements, therefore they
are able to withstand to bending and axial loads and the inertia properties are
taken into account by applying the density of the material. As first approximation,
the polymeric sectors are modelled with lumped masses and beams: the masses
are distributed along the main spars and they represent the inertia properties of
the sectors whereas some beams are used to connect the two spars to simulate the
stiffness of the polymeric sectors.

The FEM model is composed by the element shown in Figure 3.4

• Front spar (1)

• Back spar (2)

• ABS element (3)

• Lumped mass (4)
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Figure 3.4: FEM model, the arrows indicate the used elements type.

Figure 3.5: FEM model, lateral view.

3.2.2 Modal analysis

The dimensions of the two aluminium profiles are chosen on the base of the previous
limit conditions. First of all, a modal analysis is carried out with the FEM program.
The first modes are represented in Figures 3.6 and 3.9. Different sections are tested
and the results of Table 3.2 are found. The ABS sectors are prudently modelled with
a simple round equivalent beam and therefore in Table 3.2 ABS indicates equivalent
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diameter.

Figure 3.6: Modeshape 1.

Figure 3.7: Top view, modeshape 1.

The results show that the moment of area changes on the base of the profile
dimensions and this affects the first natural frequency of the system. All the natural
frequencies of the wing model are larger than the frequencies of the pitch and of
plunge of the complete model, therefore no modes coupling problems are present.
In the first cases, the aluminium profiles have been chosen square and equal for the
sake of simplicity. After few tests, the iterative procedure has led to get two spars
different in size. This is important to allow the internal positioning of the two spars.
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Front spar Back spar ABS 1st fn 2nd fn

Case 1 20× 20× 1 mm 20× 20× 1 mm 10 mm 32.8 Hz 33.4 Hz

Case 2 30× 30× 1 mm 30× 30× 1 mm 10 mm 59.8 Hz 60.0 Hz

Case 3 30× 20× 1 mm 30× 20× 1 mm 10 mm 38.7 Hz 52.4 Hz

Case 4 30× 20× 2 mm 30× 20× 2 mm 10 mm 47.9 Hz 66.0 Hz

Case 5 40× 25× 2 mm 25× 15× 2 mm 10 mm 54.0 Hz 56.0 Hz

Case 6 40× 25× 2 mm 25× 15× 2 mm 20 mm 57.0 Hz 71.5 Hz

Table 3.2: First mode natural frequencies.

Figure 3.8: Front view, modeshape 1.

3.2.3 Static analysis
The static analysis and the modal analysis are performed simultaneously to get
more accurate results. The static analysis consists in the checking of the maximum
rotational angle in the centre of the wing when the lift and the aerodynamic moment
are applied. In the bi-dimensional case the result aerodynamic force can be divided
into two components: the lift and the drag.

L = 1
2CLρU

2csp (3.1)

D = 1
2CDρU

2csp (3.2)

The lift is the vertical component of the result force whereas the drag force is
the horizontal one with respect the flight direction. The result force is applied on
the centre of pressure of the aerofoil but this point is inconvenient to make a correct
analysis of the model because the centre of pressure changes continuously its position
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Figure 3.9: Modeshape 2.

Figure 3.10: Front view, modeshape 2.

along the chord. By applying the drag and the lift in a different point from the centre
of pressure, an aerodynamic moment arises and depends on the lift. Generally, is
convenient to resort to the aerodynamic centre because the aerodynamic moment
in this point does not change on the base of the lift. Therefore, the following forces
are taken into account in the bi-dimensional model:

1. Lift force (L)

2. Pitching moment (M)

3. Drag force (D)
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The formula of aerodynamic moment is represented by:

M = 1
2CMρU

2spc
2 (3.3)

In the case in point, the very low air speed allows to assume negligible the drag
force. In fact the drag force becomes important only for large air-speed. In this
static analysis only the pitching moment and the lift have been taken into account
and theirs values have been computed by considering the Tables 3.3

Data Value Units

α 15° [−]

CL 1.3 [−]

CM 0.05 [−]

ρ 1.225 [kg/m3]

U 30 [m/s]

c 300 [mm]

sp 1200 [mm]

Table 3.3: Values adopted to compute the lift and aerodynamic moment.

The coefficient of moment and the coefficient of lift can be obtained from ex-
perimental tables or graphs that are available on the websites. Generally to be
conservative, an angle of 15° is taken into account and the maximum velocity of the
air flow is considered about 30 m/s.

In aerodynamic it is possible to consider the following approximation: the air flow
is incompressible if the Mach number is lower than 0.3. In this case the maximum air
speed of the wind tunnel is about 20 m/s - 25 m/s and therefore this approximation
is suitable for the study case. In a theoretical condition, for a flat plate in inviscid,
subsonic and incompressible flow the aerodynamic centre is located at one quarter
of the chord behind the leading edge of the plate. Even if the case in point presents
a real airfoil with a certain thickness, the aerodynamic centre is considered at one
quarter of the chord and it is fixed at that point. By using the formulae 3.1 and 3.3
and the data of the Tables 3.3 it is possible to compute the aerodynamic moment
and the lift force.
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Data Value

L 258.0 [N ]

M 3.0 [Nm]

Table 3.4: Values adopted to compute the lift and aerodynamic moment.

The previous computation led to get a single value of force and moment but, to
have a quite good representation, the loads are divided along the wing span on the
various nodes. By computing the reaction forces, the distributed loads are applied
as shown in 3.11.

Figure 3.11: Static FEM model with applied loads.

Several tests are performed in order to find the correct dimensions of the two
spars.

The Table 3.5 shows the different torsion angles and deflections of the central
sector of the wing. The static analysis turned out to be the most restrictive part of
the design; in fact in the modal analysis there have been no limitations. The results
suggest to choose the sections of case 5 because the deflection and the torsion angle
are both lower than the design limitations. This model is very simple and it has
been used as very quick and rough design tool in order to find a suitable dimension
of the profile sections. Since in the first model it has been very difficult to assume a
correct value of the equivalent diameter of the ABS sector, a more accurate model
is developed to verify the previous results. This model provides for having the ABS
sector represented as a series of beams and it is shown in the Figures 3.12 and 3.13.
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Front spar Back spar ABS Angle Deflection

Case 1 20× 20× 1 mm 20× 20× 1 mm 10 mm 1.9° 3.1 mm

Case 2 30× 30× 1 mm 30× 30× 1 mm 10 mm 0.9° 1.2 mm

Case 3 30× 20× 1 mm 30× 20× 1 mm 10 mm 1.2° 1.5 mm

Case 4 30× 20× 2 mm 30× 20× 2 mm 10 mm 0.8° 1.0 mm

Case 5 40× 25× 2 mm 25× 15× 2 mm 10 mm 0.6° 0.5 mm

Case 6 40× 25× 2 mm 25× 15× 2 mm 20 mm 0.2° 0.3 mm

Table 3.5: Static torsion angles and deflections.

Figure 3.12: Accurate FEM model, lateral view.

The first mode and the second mode are represented by Figures 3.14(a) and
3.14(b). The modes are very similar to the modes of the simpler model but they are
not exactly the same because the presence of the ABS sectors changes the dynamic
behaviour of the system.

The previous static and dynamic results are checked now with the new FEM
model and the most important results are provided in Table 3.6.

The new FEM model shows that the ABS sectors create a very strong connection
between the two spars and the consequence is that the angle of torsion and the
deflection in the centre of the wing is very small. The case 5 is verified and the
wing can be considered stiff enough to avoid static deformation. Although a little
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Figure 3.13: Accurate FEM model.

(a) First mode. (b) Second mode.

Figure 3.14: Modeshapes of the accurate FEM model.

over-design is committed, there are many reasons that led to choose the dimension
of case 5: firstly, all the design limitations are satisfied, secondly a little over-design
helps to have the wing as stiff as possible, moreover the shape of the aerofoil forces
to have two different sections of the spars because in the back of the aerofoil there
is less space to allocate the motors and the wires, and finally the dimensions of case
5 are very common and easy to find in the web-market.
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(a) Front view mode 1. (b) Top view mode 2.

Figure 3.15: Particular view of the modeshapes.

1st fn 2nd fn Torsion angle Deflection

Case 3 63.5 Hz 98.3 Hz 0.22° 0.9 mm

Case 4 77.8 Hz 109.2 Hz 0.15° 0.5 mm

Case 5 91.5 Hz 114.0 Hz 0.10° 0.3 mm

Table 3.6: Static torsion angles and deflections of accurate FEM model

3.2.4 CAD model
The FEMmodel allows to get the right dimension of the spars but it is also important
an accurate CAD design in order to have the correct assembling and the correct
definition of all the details, especially from the internal design. The most critical
aspects from the practical point of view are:

• Frictions problems;

• Central sector assembling;

• Motors positioning;

• Wires passing;

• Extremities attaches.

First of all, the internal structure of each sector is re-designed with a particular
frame represented in Figure 3.16. This particular design allows to have a lightweight
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and stiff sector. Moreover, it is easy to print this particular shape with the 3D printer
because it is not requested a lot of support material.

Bars seating

Internal frame

Figure 3.16: Internal frame representation.

The trailing- and leading-edge flaps are assembled in the active sector. In order
to avoid the friction between the moving parts some material has been removed
from the trailing-edge and from the leading-edge flap; this allows a much more
simple assembling and post-treatment of the parts. The friction could cause the
locking of the motors or the wrong zeroing of the flaps. The accurate sizing of the
parts is required because the 3D printer tends to produces components with a large
tolerance, therefore the actual dimensions could be different respect the CAD ones.

(a) Leading edge flap. (b) Trailing edge flap.

Figure 3.17: Trailing- and leading- edge flaps.

Two electrical motors control the moving of trailing- and leading-edge and they
are fixed on the central sector by using the appropriate seating. Figure 3.19 rep-
resents how the motors are fixed on the sector and Figure 3.18 represents how the
motors are connected to the flaps. The seating of the motors are reinforced by
adding some material and modified to guarantee more space.
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LE MotorLE Motor

TE Motor

Central Sector

Threaded Bush

Figure 3.18: Description of the motors attaching.

Motor’s support

Motor’s wire 
    passing

Figure 3.19: Leading edge motor’s seating.

To guarantee a better assembling, the central sector is divided into two parts.
This allows to change the motors or the moving edges very easily without dismount-
ing all the wing from the support structure. This design aspect is very important
because malfunctioning or detachment of the motor’s wires happen very often during
the assembling and the working phase.

The internal sectors are equipped with an indentation that allows the passing
of the power wires from the external power source into the wing. Two connecting
plates are designed in order to guarantee the correct linkage between the external
structure and the wing. The plates provide for having a central hole for the passing
of the wires and different threaded holes to allows the connection with the axis of the
external structure. This axis represents the elastic axis of the aerofoil and therefore
it plays a very important role in the system’s aerodynamic. The plate has a lot of
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(a) Central sector. (b) Central sector exploded.

Figure 3.20: Central sector parts.

holes to have the possibility to change the position of elastic axis as shown in 3.21.

(a) External sector with indentation. (b) Plate for wing attaching.

Figure 3.21: Plate and internal passive sector.

All the sectors are assembled and linked by using the two main spars and they
are locked on the latter by using some screws. The cables of the encorders are
located in their seating internally on the wing and they are plugged in the external
computer in order to monitor the position of the flaps. The wing can be assembled
by starting from the external sectors and the central sector can be located as last
part. The final assembly of the wing is represented in the Figure 3.22. Two panels
in PMMA are added on the extremities of the wing, as shown in Figure 3.23, in
order to simulate an infinitely long wing; they reduce the boundary effects of the
wing and they satisfy the hypotheses of the analytical model.
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Figure 3.22: Total wing assembly.

Figure 3.23: Complete wing assembly.

3.2.5 Real model
In this section the real structure and the assembling process are described. All the
parts, described previously in the CAD model, are now assembled and the internal
metallic structure appears as depicted in Figure 3.24(a). The first step provides
for assembling the passive sectors with the internal structure as shown in Figure
3.24(b). It is not necessary to add before the central sector because the design
allows to mount it as last part but the wires have to be passed in the sectors before
the assembling of this part. It is possible to add the lower part of the central sector
with the flaps by inserting it from the bottom of the model as shown in Figure 3.25
and the top cover will be applied in a second time to close the active sector. To have
all the wires in the same position, the cables of the leading-edge flap have to pass
over the front bar as shown in Figure 3.26 and they will come out from the model
to be plugged in the external computer. Once the model is completely assembled,
it can be mounted on the support structure to complete the assembling process.
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(a) Internal aluminium structure. (b) Internal structure and passive sectors.

Figure 3.24: Model assembling.

Figure 3.25: Wing model: addition of the central sector from the bottom.
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Figure 3.26: Detail about the wires passing inside the model.

(a) Detail: the central sector can be added
from the bottom of the structure.

(b) Detail: the central sector is closed by
adding the top cover.

Figure 3.27: Central sector details.
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Chapter 4

Experimental Setup

A series of tests were performed on the experimental rig to find the correct model
setup. All the tests are performed in the wind tunnel of the University of Liverpool
which is able to generate a maximum wind-speed of 18 - 20 m/s, therefore a correct
setup of the experimental model is mandatory to see the onset of flutter before
the maximum wind-speed. The experimental test were performed by using two
important tools:

• LMS: an analog-to-digital converter;

• dSPACE: a real time controller.

The LMS was used to compute all the FRFs while the dSPACE is able to make
real time computing therefore it was used to apply the control law to the flaps and
to read the encoder positions.

4.1 Experimental data
The external structure allows to control the dynamic of the system by changing
the stiffness of the springs and the position of the external masses. In this way, it
is possible to obtain different flutter-speeds. The results are shown in the Tables
4.1, 4.2 and 4.3 where some different configurations are investigated. Although the
stiffnesses were not numerically measured it is possible to understand the trend of
the flutter onset by considering that:

• the stiffness of the spring is inversely proportional to the free length of the
correspondent plate;

• the moment of inertia of the wing is proportional to the distance between the
external masses and the elastic axis which is increased in the direction of the
wing tail.
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The support structure allows to change the stiffness of the pitch spring and the
plunge spring by changing the attaching position of the plates. The Figures 4.1 and
4.2 show the springs in details.

Figure 4.1: Pitch spring: the regulation of the stiffness can be done by changing the
position of the stinger.

Figure 4.2: Plunge spring, the stiffness can be regulated by changing the position
of the perforated plates.

The two natural frequencies of the pitch and plunge mode are described by the
following formulae:

ωh =
ó
kh
mT

ωα =
ó
kα
Iα

(4.1)
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From the Tables 4.1 and 4.2 is possible to notice that by increasing the plunge
frequency and by decreasing the pitch frequency the required amount of wind to
reach the flutter conditions is lowering. This fact comes from the physical definition
of flutter and it confirms experimentally the flutter condition as the coalescence of
the two structural modes. In the Tables 4.1, 4.2 and 4.3 just a parameter at time is
changed in order to see the effects on the structure and, for the sake of simplicity,
the three different stiffnesses are tested and they are named: soft, medium and stiff.

Parameter test 1 test 2 test 3

Mass position 10 mm 10 mm 10 mm

Plunge stiffness soft soft soft

Pitch stiffness soft medium stiff

Flutter − speed [m/s] 9.6 13.2 > 18

Table 4.1: Flutter-speed vs pitch stiffness, the position of the masses indicates the
distance between the external masses and the elastic axis in the direction of the tail.

Parameter test 1 test 2 test 3

Mass position 6 mm 6 mm 6 mm

Plunge stiffness soft medium stiff

Pitch stiffness medium medium medium

Flutter − speed [m/s] 14.5 12.4 9.3

Table 4.2: Flutter-speed vs plunge stiffness, the position of the masses indicates the
distance between the external masses and the elastic axis in the direction of the tail.

From the experimental tables is possible to understand that the hypotheses made
in theory are true, in fact:

1. By reducing the stiffness in pitch the flutter occurs before;

2. By increasing the stiffness in plunge the flutter takes place before;

3. By increasing the moment of inertia the flutter occurs before.
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Parameter test 1 test 2 test 3 test 4 test 5

Mass position no mass 6 mm 10 mm 15 mm 19.5 mm

Plunge stiffness soft soft soft soft soft

Pitch stiffness medium medium medium medium medium

Flutter − speed [m/s] 16.6 14.5 13.4 11.1 9.5

Table 4.3: Flutter-speed vs external mass position, the position of the masses indi-
cates the distance between the external masses and the elastic axis in the direction
of the tail.

The analytical model confirms the trends of the experimental results because by
increasing the pitch stiffness there is an increase of flutter-speed while by increasing
the plunge stiffness the flutter-speed appears before. With the final configuration,
the flutter appears at 15.6 m/s.

4.2 Gains setting for PID control
This section describes the experimental method to find the gains of the PID con-
troller. The PID controller and the control architecture will be discussed in detail in
Chapter 6. To find the correct gains of the PID controller, the empirical method of
Ziegler-Nichols is used. This theory is based on the oscillation period of the unstable
system which is possible to get by using only the proportional gain Kp. The propor-
tional gain is increased up to the value for which the system becomes unstable and
the oscillation period can be read by the motor’s encoder. The Kp gain is directly
obtained from the Equation 4.2.

Kp = 0.6Ku (4.2)

Where Ku represents the unstable proportional gain. The measured period of
unstable oscillation allows to get two periods related respectively to Kd and Ki as
shown in Equation 4.3.

Td = Tu
8

Ti = Tu
2

(4.3)
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Finally it is possible to get the integral and derivative gains by using the following
relations:

Kd = TdKp

Ki = Kp

Ti

(4.4)

The initial data used to compute the gains are listed in Table 4.4. The method
allows to get some preliminary gains, listed in Table 4.5, but actually they are
not perfect for the requested application therefore it is necessary to adjust them
manually. The gains are modified experimentally in order to find a very quick
system response.

Gain Trailing-edge Leading-edge

Tu 0.035 0.024

Ku 2.5 2

Ti 0.0175 0.012

Td 0.004375 0.003

Table 4.4: Experimental data obtained for Ziegler-Nichols method.

Gain Trailing-edge Leading-edge

Kp 1.5 1.2

Kd 0.0065625 0.0036

Ki 85.7 100

Table 4.5: Preliminary gains obtained from Ziegler-Nichols method.

The final gains are listed in Table 4.6. The values have been change but the
difference in terms of magnitude order has been kept the same, in fact the gains
must have different order of magnitude to allow the correct functioning of the PID
control.
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Gain Trailing-edge Leading-edge

Kp 3 3

Kd 0.02 0.035

Ki 60 45

Table 4.6: Modified experimental gains.

The manual correction of the gains is performed by taking into account the
transitory condition which is obtained by giving a step signal to the flap. In fact,
with a step signal is possible to understand how much the PID control is reactive
and how much quickly it reaches the final requested condition. The gains are chosen
in order to get a very quick response because it is necessary that the controlled
surfaces are able to follows a sine signal at high frequency. The requested range of
frequency corresponds to the exciting one which is between 1 Hz and 7 Hz. In fact,
the pitch and plunge peaks are positioned in that range of frequency. The Figures
4.4 and 4.3 show the experimental response given by the encoders of the flaps when
a step signal is applied.
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Figure 4.3: Leading-edge flap signal with step input.

It is possible to notice that the response is very quick because the gain Kp is
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Figure 4.4: Trailing-edge flap signal with step input.

high and there are no oscillations at the end of the step signal because the gain Kd

is large enough. The gain Ki intervenes at the end of the signal when the controlled
surface has to reach gradually the final value of 1◦. The Figures 4.5 and 4.6 show
the behaviour of the PID control in steady condition with a sine input signal.
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Figure 4.5: Leading-edge flap signal for a sine signal of 4.3 Hz.
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Figure 4.6: Trailing-edge flap signal for a sine signal of 4.3 Hz.
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Figure 4.7: Detail of leading-edge flap signal: inversion of signal at 4.3 Hz.

The control is able to follow in very good way the input signal also at large
frequencies, therefore the final gains are suitable for the requested application. The
Figure 4.7 shows the discrepancy between the input signal and the encoder signal
when there is an inversion of direction in the sine input but also in this case the
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difference between the two signals is very tiny. The gains Kp, Kd and Ki have to
work together with the same effort in order to avoid an excessive use of a single
gain.

4.3 Frequency response function
The frequency response of the complete system is studied by making a series of
experimental tests. The analog to digital converter LMS is used to acquire the
FRFs of the system. In particular, the following tests have been performed:

• frequency response function obtained through excitation with impact hammer;

• frequency response function obtained through excitation with shaker;

• frequency response function obtained through excitation with flaps.

The first test is used just to see the position of the first two natural frequencies of
the assembled structure, i.e. pitch and plunge modes. The FRFs obtained through
the shaker are necessary to properly identify the model’s parameter and then to
proceed with model updating. The third tests are used to apply the receptance
method from an experimental point of view. In latter case, it is necessary to identify
the state space matrices Ass, Bss, Css and Dss of the system in order to apply the
receptance method and to place the poles in the desired location.

4.3.1 Impact hammer test
An impact test is performed by placing different accelerometers on the wing. This
test is just a preliminary test to see where are placed all the peaks in the FRFs.
It is important to have a certain distance in terms of frequencies between the first
peak and the second peak in order to have a good fitting during the phase of model
updating. Therefore, the final system configuration must have a distance at least
of 1-2 Hz between the pitch and plunge resonance frequencies and it must show
the flutter onset within the maximum wind-speed of the tunnel. The two natural
frequencies are:

• ωplunge = 3.935 Hz

• ωpitch = 5.727 Hz

As the results show the final configuration is suitable for the study purposes
because the flutter-speed measured experimentally appears at 15.6 m/s - 15.7 m/s
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and the peaks are sufficiently separated in terms of frequency. In this final configu-
ration, the position of the elastic axis was changed by changing the position on the
attaching plate as described in the Chapter 3. The final elastic axis position is 132
mm from the leading edge tip by using the CAD dimensions.

4.3.2 Shaker test
The shaker test is performed by positioning the shaker under the wing as shown
in the Figure 4.9 and by exciting the wing only in the plunge direction. Since the
centre of mass is not positioned along the elastic axis, it is possible to excite the
structure also in pitch motion. The shaker tests are performed with and without
wind: the first tests are necessary to update the model while the second ones allow
to know the internal dynamic of the structure at different wind-speed. All the tests
are performed with a frequency increment of 0.05 Hz and with 20 cycles at each
frequency step.

LE

TE

1

2

Figure 4.8: Laser reading points on the structure.

Two high precision lasers are used to read the position of the wing in two different
point as illustrated by Figure 4.8, they are able to see the displacements of the wing
in the point 1 and 2 but not to measure directly the pitch and plunge displacements.
The point 1 is the measuring point of front laser while the point 2 is the measuring
point of the back laser. The Figure 4.10 shows the lasers and the reading point on
the structure.

The FRFs obtained are representative of the outputs given by the two lasers, i.e.
front laser and back laser. It is possible to get the pitch and plunge displacements
through a linear combination of the outputs given by the two lasers as described by
the Equations 4.5. In the same way, it is possible to get the pitch and plunge FRFs
from a linear combination of laser FRFs :

h = y2 + (y1 − y2)
d1

d1 + d2

α = arctan

A
y1 − y2
d1 + d2

B (4.5)
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Figure 4.9: Shaker position on the model, the excitation is given along the plunge
direction.

Figure 4.10: High precision lasers, the measuring points are placed on the external
structure.
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Where:

• y1 and y2 are the displacements respectively of laser front and laser back;

• d1 and d2 are the distances between the measuring points of the front laser
and of the laser back from the elastic axis.

The FRFs referred to pitch and plunge displacements will be used in the Chapter 5 to
perform the model updating. In order to be aligned with the analytical FRFs given
from the mathematical model, it is necessary to transform them into FRFs related
to pitch and plunge displacements. The new FRFs are represented in Figures 4.11
and 4.12. The shaker test is repeated again with the wind on in the same manner
and different FRFs are computed for different wind-speed, in particular for:

• 3 m/s;

• 6 m/s;

• 9 m/s;

• 12.2 m/s;

• 14 m/s.
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Figure 4.11: FRF with plunge displacement output without wind.
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Figure 4.12: FRF with pitch angle output without wind.

The FRFs with wind on of Figures 4.13 and 4.14 show that the peaks tend to
becomes as closer as the wind increases. At the end of this process, the two peaks
coalesces into a single very large peak that leads to the flutter instability. It is
possible to notice that as much the wind-speed increases as much the noise raises.
This phenomenon is normal because the aerodynamic conditions make more difficult
to have a smooth FRF and the electric motor of the wind tunnel is not perfectly
stable at every wind-speed, therefore the wind-speed oscillates around the required
speed. It is interesting to see the trend of FRFs on the same plane as a function of
wind-speed as shown in Figure 4.13 and 4.14.

The increase in damping for both the modes and the coalescence of modes is
evident. It is not possible to compute FRFs beyond 14 m/s because the damping
from that point on wards tends to zero very quickly, in fact at 15.6 m/s the flutter
occurs. The curves plotted in Figures 4.13 and 4.14 are defined as synthesized,
i.e. they are obtained from the post-processing of the data in the analog-to-digital
converter program. The poles are obtained from the application of the stabilization
diagram which implements the PolyMAX technique, a very common procedure to
identify the model parameters from FRFs. Since the poles are known, it is possible
to eliminate the noise from the FRFs by fitting the FRFs with a synthesized one. The
stabilization diagram used in the computation of poles is represented in the 4.15.
By using this technique, it is possible to extract all poles related to the different
computed FRFs that will be used in the model updating.
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Figure 4.13: Trend of the plunge FRFs, the growth of color towards dark indicates
FRF computed at larger wind-speed.
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Figure 4.14: Trend of the pitch FRFs, the growth of color towards dark indicates
FRF computed at larger wind-speed.
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Figure 4.15: Stabilization diagram of LMS program.

4.3.3 Flap excitation test

A series of FRFs are now computed by exciting the structure through the flaps. The
flaps are actuated one at time therefore the first FRFs are computed by using just
the leading-edge flap while the second ones are obtained by exciting the structure
with just the trailing-edge flap. This operation is necessary to obtain a set of four
different FRFs which are necessary to create a sort of transfer function matrix used
in the identification of a MIMO system. From the set of FRFs, it is possible to
identify the corresponding state space system by using a toolbox implemented in
MATLAB: SDtools. This software allows to identify the matrices Ass, Bss, Css and
Dss which describe the MIMO system for the chosen wind-speed. Since the system
is composed by two inputs and two outputs, respectively: the flap angles and the
laser displacements, the dynamic matrix Ass has to belong to R4×4 and the matrix
Dss has to belong to R2×2. The direct link matrix has to be a null rectangular
matrix because there are no feedback-through. As consequence the corresponding
transfer function from the flap angles to the laser displacements belongs to R2×2.
The state space matrices will be used in Chapter 6 to control the structure through
the application of the receptance method, therefore there is no need to transform
them into FRFs of pitch and plunge.
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All the FRFs are performed with a frequency increment of 0.02 Hz and with
20 cycles at each frequency step. The curves are obviously more noisy because the
structure is excited by the flaps whose effect is related to the wind-speed; in fact,
far away from the natural frequencies, the structure does not move a lot and the
FRFs become noisier. It is also necessary to avoid excessive wind-speed in order to
be not too close to the flutter-speed. The wind-speed adopted is 12.8 m/s because:

• the flaps have a good control authority;

• the wind-speed of the tunnel is particularly stable.

Once the Ass, Bss, Css and Dss are known, it is possible to recreate the transfer
function from these matrices and it is possible to see if there is a good fitting. The
transfer function is obtained from the state space matrices by using the following
equation:

R(s) = Css(Iss(s)−Ass)−1Bss + Dss (4.6)
The Figure 4.16 shows the fitting between the experimental FRFs and the FRFs

computed from the matrices :

4.4 Stiffness identification
The last experimental test consists into the stiffnesses identification. This test is
carried out in a very basic way by applying some weights on the structure and by
reading the pitch and plunge displacements. The test is made by using the laser
in high precision mode, therefore the results are quite accurate. By using different
measurements it is possible to perform a simple linear regression through which the
slope of the fitted line is obtained. The slope corresponds to the stiffness of the
spring in point. The Figure 4.17 shows the interpolated data. The application of
the loads is obtained by applying some weights directly on the structure in pitch
and plunge direction, as described in Figure 4.18.

The stiffnesses obtained from this computation are:

• plunge stiffness: Kh = 8650 N

m

• pitch stiffness: Kα = 70 Nm

m
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(a) TF between LE and front laser.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
Frequency [Hz]

10-3

10-2

10-1

100

Am
pl

itu
de

 [m
m

/d
eg

]

Fitted TF12

Experimental TF12

(b) TF between LE and back laser.
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(c) TF between TE and front laser.
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Figure 4.16: FRFs fitting at 12.8 m/s: the red and blue FRFs represent the computed
transfer functions respectively in front and back lasers output while the black ones
represent the fitted FRFs obtained from the four state space matrices. Since the
state space matrices were processed through a fitting procedure, there is no noise in
the black FRFs.
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(a) Plunge stiffness identification.
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(b) Pitch stiffness identification.

Figure 4.17: Stiffness identification: the figure shows the linear regression adopted
and the points represent the experimental results.

Figure 4.18: Application of the weights for the pitch stiffness computation.
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Chapter 5

Model Updating

In this chapter the model updating is taken into account and it is performed by
starting from the experimental data described in Chapter 4. In particular the FRFs
obtained with the shaker are now used to extract the model’s parameters. The
model updating consists into finding the correct parameters which are able to guar-
antee a good fitting between the experimental data and the analytical ones. In
particular, the experimental FRFs at zero wind-speed is used to perform this step.
Theoretically, it could be possible to update manually the structure by changing one
parameters at time, but since there are a lot of parameters and a lot of possible com-
binations, it is better to resort to an optimizer function implemented in MATLAB :
LSQNONLIN. This function is able to compare the analytical FRF with respect the
experimental one and it tries to minimize the difference between this two function.

5.1 Optimizer
The optimizer function LSQNONLIN is able to solve non-linear least square problem
and to apply the data fitting. Basically, the optimizer tries to minimize the provided
function which is named fun. In fact the MATLAB syntax of LQSNONLIN is:

x = lsqnonlin(fun, x0, lb, ub, options) (5.1)

Where:

• fun is the function which has to be minimized;

• x0 is the column vector with the function variables which can be modified from
the optimizer;

• lb and ub are the vectors which represent the upper and lower boundary values
for the optimized parameters;
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5 – Model Updating

• options represents the options used in the computation.

In the case in point, the function fun has to be the difference between the ana-
lytical FRFs and the experimental FRFs computed with pitch and plunge outputs.
This function has to be minimized to find a good fitting between the two set of
FRFs. Although this optimizer is very efficient, it is possible that the results are
not physically representative for the system because the function can find the solu-
tion when there is a local minimum, i.e. when the function fun reaches a minimum
point. This means that the fitting is probably very good but the found parameters
are just numbers and not real physical parameters. In order to avoid this problem
it is necessary to have the initial data as close as possible to the real ones and the
number of updated parameters has to be reduced as much as possible. It is possi-
ble to check if the final results are representative of a local minimum by changing
the initial data of a small percentage: if the final results are always the same, the
computation is robust and therefore the parameters are not representative of a local
minimum. Finally, in LSQNONLIN it is possible to use two different algorithms to
solve the problem: the Levenberg-Marquardt algorithm and the Trust-region algo-
rithm. They are very similar but the second one allows to add also the boundary
limits which are very important in the case in point because they allow to confine
the final results in the chosen limit values.

5.2 Model’s parameters
It is necessary to choose which parameters of the model have to be update on the
base of the analytical model and the influence that they have on the final results.
The most important parameters for the analytical model are just seven:

• Kh, plunge stiffness;

• Kα, pitch stiffness;

• mT , total mass of the system + mass of the wing;

• Sα, static moment of the system around the elastic axis;

• Iα, moment of inertia of the system around the elastic axis;

• ζh, plunge damping ratio;

• ζα, pitch damping ratio.

The masses and the inertia moments must be updated because they can not be
measured directly with an experimental measure. The confidence on mT , Sα and Iα
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5 – Model Updating

is very low because these parameters come from the CAD data or from the previous
measures on a similar aerofoil. On the other hand, there is a good confidence on
the measure of the stiffnesses Kh and Kα because they are computed by using the
measures of high precision lasers. Finally, the measure of the damping is not very
accurate because it is very difficult to identify this parameter in a good way. In
general, all the physical distances are considered fixed because there are no large
uncertainties on them and because it is easy to measure them.

The initial parameters given from the CAD data, from the previous model and
from the experimental measures of Chapter 4 are listed in Table 5.1:

Data Initial parameters

ζh [-] 0.0049

ζα [-] 0.0108

mT [Kg] 12.4518

Iα [Kgm2] 0.0364

Sα [Kgm] 0.190

Kh [N/m] 8650

Kα [Nm/rad] 70

Table 5.1: Initial parameters obtained from the CAD model, from the previous
studies on similar aerofoil and from experimental measures.

5.2.1 Model updating with seven parameters

The first attempt of updating is made with all the seven parameters. The fitting
in this way appears perfect but the found parameters are probably not physical
because there are too many updated parameters. The Figure 5.1 and 5.2 show the
results. The dotted line curve indicates the analytical FRF obtained using very
rough starting data while the continuous curve indicates the optimized analytical
FRF. The black curve indicates the experimental data obtained at zero wind-speed.
The Table 5.2 shows the final optimized parameters. Since the stiffnesses have been
measured with high accuracy, there is a too large change of them. In particular the
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pitch spring change its value a lot and this probably means that the parameters
found are not completely physical.
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Figure 5.1: Updated pitch FRF with seven parameters.
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Figure 5.2: Updated plunge FRF with seven parameters.
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Data Initial parameters Final parameters

ζh [-] 0.0049 0.0040

ζα [-] 0.0108 0.0100

mT [Kg] 12.4518 15.3528

Iα [Kgm2] 0.0364 0.0502

Sα [Kgm] 0.190 0.150

Kh [N/m] 8650 9660

Kα [Nm/rad] 70 61.45

Table 5.2: Optimized parameters: the listed parameters come from the model up-
dating by using seven different parameters in the optimizer function.

5.2.2 Model updating with three parameters
Since in the FRFs has just two peaks, it is possible to update only few parameters in
the model updating. Therefore the numbers of updated parameters is now reduced
at three. The model’s updating is performed in the following way:

• Kh andKα are not updated but they are measured experimentally as described
in Chapter 4 and they are kept constant;

• mT , Sα, Iα are updated with the optimizer function;

• ζh and ζα are updated before with optimizer function and after manually mod-
ified;

A very good fitting between the experimental and the numerical data is obtained
by applying the described procedure and the Figure 5.3 and 5.4 show the results.
Since the optimizer requires the difference between the experimental and the ana-
lytical FRFs, it is necessary to find out a way to write analytically the system FRFs.
The experimental FRFs have been obtained with just the excitation in plunge di-
rection, therefore the analytical one has to be built in the same way. The Equation
5.2 describes the model used to get the analytical FRF.C

mT Sα
Sα Iα

DI
ḧ
α̈

J
+
C
ch 0
0 cα

DI
ḣ
α̇

J
+
C
kh 0
0 kα

DI
h
α

J
=
I
F
0

J
(5.2)
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Figure 5.3: Updated pitch FRF with three parameters.
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Figure 5.4: Updated plunge FRF with three parameters.

By rewriting the equation in the Laplace domain it is possible to obtain the
analytical FRF in the following way:

H(s) = Iαs
2 + cαs+Kα

(mT s2 + +chs+Kh)(Iαs2 + cαs+Kα)− S2
αs

4 (5.3)
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A(s) = − Sαs
2

(mT s2 + +chs+Kh)(Iαs2 + cαs+Kα)− S2
αs

4 (5.4)

The Equations 5.4 and 5.3 represent the mathematical expression to compute
respectively: the plunge FRFs and the pitch FRF. The updated parameters are
shown in the following Tables 5.3 and 5.4.

Data Initial parameters Final parameters

ζh [-] 0.0049 0.0048

ζα [-] 0.0108 0.0113

Table 5.3: Semi-automatically optimized parameters.

Data Initial parameters Final parameters

mT [kg] 12.4518 13.6598

Iα [kgm2] 0.0364 0.0578

Sα [kgm] 0.190 0.165

Table 5.4: Automatically optimized parameters.

The large variation of Sα, Iα and mT is due to the fact that the first starting
data are calculated from the CAD model which represents only the wing and not the
external structure while the total mass is taken from a model previously developed on
the same support structure. Using these updated data, with an elastic axis position
of 132 mm from the leading-edge tip, the flutter-speed is about 16.7 m/s and a quite
good fitting of the FRFs is obtained. The experimental flutter-speed is about 15.7
m/s therefore the difference between the experimental and the analytical model is
not so large. The position of the elastic axis computed with the CAD model is not
so accurate. In fact, the physical plays between the connected parts can modify this
measure during the assembling process. To improve the flutter-speed prediction, the
position of the elastic axis is measured again directly on the physical model and the
Table 5.5 shows the measures.

By using the new axis position it is possible to predict a better analytical flutter-
speed which changes from 16.7 m/s to 16.2 m/s, therefore there is a difference of
just 0.5 m/s between the predicted and the experimental flutter-speed. To confirm
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Figure 5.5: Decay rate: compare between the experimental and the numerical re-
sults.
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Figure 5.6: Frequencies: compare between the experimental and numerical results.

the goodness of the results, the experimental poles are compared with the numer-
ical predicted ones. The experimental poles are extracted by the FRFs computed
with the wind described in Chapter 4. The trend of the real parts of the poles is
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represented in Figure 5.5. For the sake of completeness, the trend of the imaginary
parts of the poles has also been plotted in the Figure 5.6. Since there is a very
good fitting between the experimental and the analytical data and there is a very
good prediction of the flutter-speed, it is possible to consider the model completely
updated.

Data Initial measure from CAD Experimental measure

Elastic axis [mm] 132 136

Table 5.5: Elastic axis position from the leading-edge tip.
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Chapter 6

Control Strategy and
Experimental Implementation

The wing model has to be controlled in order to avoid the flutter onset, therefore a
control system is necessary. The controller applies experimentally a control law by
using the dSPACE for the closed- and open-loop system. The receptance method
[10] is used to apply the control strategy for the closed-loop system and the numerical
and experimental results are discussed in this chapter.

6.1 Controller
The controller is composed by an high authority control (HAC) and a low authority
control (LAC). The LAC and HAC work together to control the system in open-loop
and closed-loop mode. Basically, the LAC is represented by the PID control which is
implemented in the dSPACE. It controls the position of flaps with respect the given
signal: if the signal given to the PID is a constant position or sinusoidal signal, the
system is working as an open-loop system while, if the given signal comes from the
HAC, the system is working as a closed-loop system because the signal is related
to the position of the aerofoil. The HAC is a PD control which creates the control
signal on the base of the displacements and the velocities given by the two lasers.
Both the controls are written in SIMULINK and converted in C++ code in order
to implement them in the dSPACE controller. A control interface allows to monitor
and to set all the parameters written in the SIMULINK code and the dSPACE is
able to apply the instruction in real time. The gains Ki, Kd and Kp applied in
the LAC have been obtained in Chapter 4 with the Ziegler - Nichols method in
a completely experimental way, while the gains applied on the HAC are obtained
through the experimental application of the receptance method.

The Figure 6.1 represents the general scheme of the control architecture where:
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Figure 6.1: Representation of the control scheme with HAC and LAC.

• dLE and dTE represent the disturbance signals given to the control system;

• θLE and θTE represent the angular position read by the encoders;

• y1 and y2 represent the lasers positions;

• uLE and uTE represent the control law given from the HAC.

It is important to notice that the outputs in the analytical model can be chosen
by properly defining the matrix Css. The experimental MIMO system has two
outputs and two inputs, respectively: the two lasers and the two flap angles. In the
open-loop configuration, the control system receives the disturbances dLE and dTE
which can be a sinusoidal signal or just a constant position. The disturbance signal
is compared with the actual position, θLE and θTE, of the trailing- and leading-edge
flap and a voltage is computed and applied to each motor. In this way, the motors
are able to follow exactly the given input signal. In closed-loop configuration, the
system outputs y1 and y2 are given to HAC which is able to apply different gains:
FT is the derivative gains matrix while GT is the proportional gains matrix. By
applying these gains the HAC is able to compute and to pass to the LAC two
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different signals uLE and uTE which describe the required control law applied on the
flaps. In particular the Figure 6.2 represents in detail the PID control implemented
in the LAC. The encoder signal is compared with the disturbance signal and the
difference of the two signals is multiplied by the gains. The derivative gains is applied
on the derivative of the signal while the integrative gains multiplies the integrated
signal. The total sum of the outputs signal is converted in voltage in order to apply
the required torque on the motor.

dLE

θ
LE

Ki

Kd

Kp

Voltage 

Proportional gain

Derivative gain

Integrative gain

  discrete 
derivative

time discrete
     integral

Figure 6.2: Representation of the PID control for the leading-edge flap. The same
representation can be applied for the trailing-edge flap.

The HAC is represented in detail by the Figure 6.3. The two laser signals are used
to compute the angular position signal u. In this case there are just the proportional
and the derivative gains because the HAC is a PD control. In the closed-loop system,
the control law u is given to LAC in order to control the flaps in the required way.

y
1

  discrete 
derivative

F1

G1

Derivative gain

Proportional gain
u

y
2

F2

G2

  discrete 
derivative

Derivative gain

Proportional gain

Figure 6.3: Representation of the PD control.
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6.2 The receptance method
The receptance method is an experimental method based on the knowledge of the
receptance H(s) where s is the Laplace variable. By using the computed receptance
or a transfer function R(s) which includes the receptance, the method is able to
compute the gains matrices FT and GT which place the poles on the desired location.
The method can be applied both numerically and experimentally and it can be used
both on SISO system and on MIMO system. In this case just the MIMO version of
the receptance method is explained and applied.

6.2.1 Theory of receptance method

A quick explanation of the theory of the receptance method described by Motter-
shead et al. [10] is given in this section. The original theory described by Ram
et al. [12] is based on the Sherman-Morrison formula which allows the application
of the method just on SISO systems. A reformulation of the method [10] allows
the extension to the MIMO system with which is possible to apply the full pole
placement or the partial pole placement.

Let M, C and K be ∈Rn×n and respectively the general mass, damping and
stiffness matrices of a MIMO system where n is the number of degrees of freedom
and m represents the number of inputs. M is positive defined and symmetric matrix
while C and K are symmetric and semi-positive defined matrices and B represents
the control matrix. The open-loop eigenvalues and eigenvectors are respectively λk
and vk while the closed-loop eigenvalues and eigenvectors are µk and wk. The matrix
B is composed by the control vector of each input, B = [b1, ...,bm]. In the same
way it is possible to write all the gains feedback matrices, in fact F = [f1, ..., fm]
and G = [g1, ...,gm]. The idea is to place the first p poles of the system in the
desired location and to maintain the non-placed poles λk for k = p + 1, ...,2n in
same position. The receptance method starts from the definition of the quadratic
eigenvalues problem which in open-loop system is:

(λk2M + λkC + K)vk = 0 k = 1, ...,2n (6.1)

and in closed-loop system is:

(µk2M + µkC + K)wk = B(µkFT + GT ) k = 1, ...,2n (6.2)

By making some mathematical passages it is possible to creates two matrix
equations from the definition of the quadratic eigenvalue problems. For the first p
placed poles µk, the receptance method gives the following equation:
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
µkwk

T 0 . . . 0 wk
T 0 . . . 0

0 µkwk
T . . . 0 0 wk

T . . . 0
... ... . . . ... ... ... . . . ...
0 0 µkwk

T . . . 0 0 wk
T . . .





f1
...

fm
g1
...

gm


=


αµk,1
αµk,2...
αµk,m

 (6.3)

In a simple compact notation the equation appears as:
Pky = αk k = 1, . . . , p (6.4)

Where the closed-loop eigenvectors can be defined with the following equation:
wk = αµk,1rµk,1 + ...+ αµk,mrµk,m k = 1, ..., p (6.5)

The coefficients αµk,j are the arbitrary coefficients that come from the definition
of the problem and rµk,j are the column vector of the transfer function matrix
R(µk) = H(µk)B computed with the placed poles µk. The arbitrary coefficients
αµk,j represent the weight scalar factors with which the closed-loop eigenvectors wk
are determined.

The method provides a matrix equation also for the non-placed poles λk. For
k = p+ 1, ...,2n the correspondent matrix equation is:


λkvk

T 0 . . . 0 vk
T 0 . . . 0

0 λkvk
T . . . 0 0 vk

T . . . 0
... ... . . . ... ... ... . . . ...
0 0 λkvk

T . . . 0 0 vk
T . . .





f1
...

fm
g1
...

gm


=


0
0
...
0

 (6.6)

In a simple compact notation the equation appears as:
Qky = 0 k = p+ 1, . . . ,2n (6.7)

From Equations 6.3 and 6.6, the pole placement for a MIMO system can be
actuated by solving the following linear system:

P1
...

Pp
Qp+1

...
Q2n





f1
...

fm
g1
...

gm


=



α1
...
α1
0
...
0


(6.8)
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The mathematical structure of the method allows to apply it experimentally in a
very simple way; in fact, the receptance matrix H can be measured and implemented
in the method. There is no need to identify the matrices M,C and K because the
receptance is sufficient to apply the method. The main drawback consists in the
choice of the arbitrary coefficients in multiple pole placement when the m > 1. In
fact, the gains fj and gj are dependent on the choice of such parameters αµk,j from
which the closed-loop eigenvectors are imposed. In fact, the receptance method is
able to place all the poles and all the eigenvectors of a MIMO system with the same
number of sensors and the same number of input.

6.2.2 Mathematical implementation in a state space system
In Chapter 2, the presence of aerodynamic loads has brought to have the numerical
model represented in the state space form. On the other hand, in Chapter 4 also the
experimental FRFs have been transformed into four state space matrices, therefore
the is no possibility to use in the receptance method the matrices M, C, K and
certainly not the matrix B because they are completely unknown. Anyway, it is
possible to get the transfer function between the output y and the input u, in the
following way:

R(s) = Css(Isss−Ass)−1Bss + Dss (6.9)

Where s represents the generic Laplace variable. When s is replaced with µk, each
column of the transfer function R(µk) represents exactly the vectors rµk,j used in the
receptance method for the definition of the closed-loop eigenvectors wk. Therefore,
the closed-loop eigenvector wk and the matrix Pk can be easily obtained. The prob-
lem come from the definition of the open-loop eigenvector vk because there is not
a simple definition. The simplest solution consists into using directly one column
of the transfer function R(λk) as open-loop eigenvector vk, i.e when the Laplace
variable s is replaced with the open-loop pole λk. Since the transfer function is
computed for the open-loop pole, just a column of R(λk) is required to apply the
method and so it is possible to get easily vk and the matrix Qk. The main draw-
back of this solution consists in the development of numerical problems which may
bring to wrong results, in fact the computation of R(λk) leads to inversion of an
ill-conditioned matrix. A possible solution of this problem is to apply directly the
experimental open-loop eigenvectors into the method in order to avoid the compu-
tation of R(λk). Obviously, in the numerical application this is not possible and the
numerical error can not be avoided.

The application of the receptance method is the same for the numerical and
the experimental application. The only difference between the two sets of matrices
consists into the definition of the outputs. In fact, the experimental transfer function
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is obtained by considering the angle of the flaps as inputs and the lasers positions
as outputs while the plunge displacement and the pitch angle were used as outputs
in the analytical model. Therefore, in the experimental case the outputs do not
coincide with the states anymore. It is necessary to figure out a new way to write
the closed-loop system in order to compute the new closed-loop poles after the
application of the receptance method. The state space matrices allow to write two
equations from which it is possible to find the solution to this problem:

ẋ = Assx + Bssu (6.10)

y = Cssx + Dssu (6.11)
By replacing the Equation 2.66 in 6.10:

ẋ = Assx + Bss(FT ẏ + GTy) (6.12)

Since Dss is a null matrix, thus it is possible to derive the Equation 6.11 and to
get:

ẋ = Assx + Bss(FTCssẋ + GTCssx) (6.13)
By rearranging it is possible to obtain the solution:

ẋ = (Iss −BssFTCss)−1(Ass + BssGTCss)x (6.14)
Again, by using the new dynamic matrix, it is possible to solve the associated

eigenvalues problem and to obtain thesystem poles.

6.2.3 Numerical results
The receptance method may be applied numerically; in fact, it is necessary to know
just the receptance matrix to use the method. Since the MIMO system has two
outputs and two inputs, it is possible to place all the eigenvectors and all the eigen-
values but the nature of the instability problem brings to increase the damping and
to separate the frequencies in order to avoid the premature onset of the flutter.
To have the same representation of the previous experimental FRFs of Chapter 4,
the numerical inputs are the flap angles and the numerical outputs are the laser
displacements. It is possible to change the damping or the frequency of each pole,
therefore the pitch mode, the plunge mode and both the modes together can be
modified.

For the sake of simplicity, just three numerical tests are performed at the wind-
speed of 12.8 m/s:
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Figure 6.4: Test 1, numerical increase of plunge damping at 12.8 m/s.

• test 1 : increase of plunge damping ;

• test 2 : increase of plunge and pitch damping together;

• test 3 : decrease of plunge frequency.

Although the method is able to place just the imaginary part and real part of
the poles, it is possible to speak about control of the damping or control of the
frequency because the difference between the two quantities is very small. The
transfer functions between inputs and outputs of the analytical system are also
influenced by the poles placement. In fact, it is possible to check the efficiency of
the control by plotting on the same plane the closed-loop and the open-loop FRFs.
The test 1 provides for having the real part of the first pole multiplied by a factor
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2 and for a factor 3. The FRFs numerically obtained for the first test are shown in
the Figure 6.4. All the figures confirm that the poles placement is done correctly
because the peak of the plunge mode decreases. The Figure 6.7(a) shows the pole
placement for the first numerical tests and the Table 6.1 shows the obtained poles.
Since the method is applied numerically, the pole placement is perfect and there is
no difference between the expected poles and the computed ones.
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Figure 6.5: Test 2, numerical increase of damping for both the modes at 12.8 m/s.

The test 2 provides for doubling the real parts of the poles of both the modes.
The Figure 6.5 shows the transfer function in open- and closed-loop and it is possible
to notice that both the peaks reduced their maximum amplitude, therefore the
control is made correctly. Also in this case the numerical results have not errors
and the pole placement in the complex plane is represented in Figure 6.7(b). It is
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Parameter Open-loop pole Closed-loop pole, ζ × 2 Closed-loop pole, ζ × 3

First pole -0.64499±25.5811i -1.2999±25.5811i -1.9498±25.5811i

Second pole -1.4720±32.1809i -1.4720±32.1809i -1.4720±32.1809i

Table 6.1: Pole placement of the first numerical test.

possible also to control the imaginary part of the poles as requested by test 3 where
the plunge frequency is decreased by the 5 % and the 10 %. In fact, the Figure 6.6
shows the four transfer functions in open-loop and closed-loop system for the last
numerical test.
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Figure 6.6: Test 3, numerical decrease of plunge frequency at 12.8 m/s.

83



6 – Control Strategy and Experimental Implementation

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6
Real axis

-40

-30

-20

-10

0

10

20

30

40

Im
ag

in
ar

y 
ax

is

Pole Placement

Open-loop
Closed-loop  x 2
Closed-loop  x 3

(a) Increase of plunge damping.

-3 -2.5 -2 -1.5 -1 -0.5
Real axis

-40

-30

-20

-10

0

10

20

30

40

Im
ag

in
ar

y 
ax

is

Pole Placement

Open-loop
Closed-loop  x 2

(b) Increase of both the damping’s modes.

-1.5 -1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8 -0.7 -0.6
Real axis

-30

-20

-10

0

10

20

30

Im
ag

in
ar

y 
ax

is

Pole Placement

Open-loop
Closed-loop  x 0.95
Closed-loop  x 0.90

(c) Reduction of plunge frequency.

Figure 6.7: Pole placement for different cases at 12.8 m/s.

Finally, the representation of the poles in the complex plane of Figure 6.7(c)
shows the position of the new poles. Also in this case all the FRFs are perfectly
modified and all the poles are perfectly placed. The poles are perfectly placed
without any errors because the method is applied just numerically. In this case the
obtained gains are probably wrong for an experimental application, therefore they
are not reported. In fact the receptance method have to be applied experimentally
to obtain good results. In the numerical case, the arbitrary coefficients αµk,j are kept
equal to 1 and 1 for the plunge mode and they are fixed at the values 1 and −0.5 for
the pitch mode in all the cases. These coefficients are able to affect the gains and
to divide the control effort between the two flaps: in fact, by choosing αµ1,1 = 0 the
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leading-edge flaps will not work. Therefore, by choosing properly the α coefficients,
it is possible to keep the gains as low as possible. In particular when the closed-loop
eigenvectors are kept equal to the open-loop eigenvectors the gains are the lowest
possible because the control is moving just the poles. From the numerical point of
view this is not particularly interesting because it is not possible to know exactly
the control effort.

6.3 Experimental results
The receptance method is now experimentally applied. At this point, the implemen-
tation is very simple since in the previous sections the method has been explained
and applied. Moreover, in Chapter 4 it has been explained how to find experimen-
tally the state space matrices, therefore it is necessary just to use the experimental
state space matrices in the receptance method to find the solution. In the experi-
mental case, the coefficients αµk,j have a very important role: in fact, they impose
the closed-loop modeshapes and so the control effort. If the control effort is too
large, the physical system may be not able to apply the computed gains to get the
pole placement. Too large gains are very dangerous for the physical model because
they can lead to break the moving control surfaces. All the experimental results are
obtained by applying the experimental control gains and the FRFs in closed-loop
are acquired by exciting the structure with the shaker when the system is controlled
in closed-loop mode.

6.3.1 Partial pole placement
In the first experimental tests the a partial pole placement is applied by using the
receptance method. The experimental results are obtained by applying the following
coefficients: αµ1,1 = 1 αµ1,2 =1 for the control of the first two poles and αµ1,1 = 1
αµ1,2 =−0.5 for the control of the second two poles. These coefficients are chosen
arbitrarily in order to find low gains and they are optimized experimentally with
different tests in order to find the lowest control effort. Four different kind of tests
have been carried out in order to see the efficiency of the receptance method:

• test 1 : increase of plunge damping with ζ1 × 2 and ζ1 × 3;

• test 2 : increase of pitch damping with ζ2 × 2 and ζ2 × 3;

• test 3 : decrease of plunge frequency with ω1 × 0.96 and ω1 × 0.90;

• test 4 : increase of pitch frequency with ω2 × 1.04 and ω2 × 1.10.
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In order to have better results and less control effort, the experimental open-loop
poles λk and the experimental open-loop mode-shapes vk, are directly inserted into
the receptance method’s code and they are used to compute the matrix Qi. They
have been computed by using same FRFs used for the computation of the matrices
Ass, Bss, Css and Dss. A little drawback of this method is that the numerical
pole placement is not perfect anymore but there is a very little change also in the
fixed poles. This operation is useful in order to avoid numerical errors related to the
computation of the open-loop modeshapes directly from the acquired receptance. In
fact the computation of R(λk) creates a quasi-singular matrix which is very difficult
to invert.

Increase of plunge damping

First of all, the increase of plunge damping is tested. In this particular case, the
control effort is the lowest possible because the first pole and the real part of the
poles are simple to control. The gains for the triple damping case are shown in the
Table 6.2.

Gains Leading-edge Trailing-edge

f1 [deg/mm] −0.0281 −0.0280

f2 [deg/mm] −0.0273 −0.0273

g1 [deg/mm] 0.6240 0.6240

g2 [deg/mm] 0.6568 0.6567

Table 6.2: Obtained gains to triple the plunge damping at 12.8 m/s for the two
control surfaces.

In this case the arbitrary coefficients αµk,j are both set equal to one in fact the
gains for the leading- and trailing-edge flaps are very similar between themselves.
The expected poles and the experimental found poles are graphically shown in Figure
6.8.

Even if the experimental pole placement is not perfect it is possible to notice
that the poles trend is correct. In fact is clear that the plunge damping is increased
a lot while the other poles are almost the same. This effect can be confirmed by the
closed-loop FRFs of the front and back laser. The first peak decreases in amplitude
because the damping is increasing and the other peak remains the same because
the corresponding pole is kept constant. The experimental results are shown in the
Figure 6.9.
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(a) Doubled plunge damping.

-2 -1.5 -1 -0.5 0 0.5 1
Real axis

-40

-30

-20

-10

0

10

20

30

40

Im
ag

in
ar

y 
ax

is

Poles placement: 1 x 3

Open loop
Closed loop expected
Closed loop experimental

(b) Tripled plunge damping.

Figure 6.8: Increase of plunge damping at 12.8 m/s by using the experimental
natural eigenvectors.
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(b) Back laser output.

Figure 6.9: Synthesized FRFs experimentally obtained for the increase of plunge
damping at 12.8 m/s by using experimental open-loop eigenvectors.

Increase of pitch damping

With the receptance method is also possible to control the other pole of the system,
therefore also the damping of the pitch mode can be increased. As before two tests
have been carried out: the first one tries to double the pitch damping and the second
one tries to triple the pitch damping. Also in this case the gains are not too large
because the increase of damping does not require an excessive control effort. The
Table 6.3 shows the gains to triple the damping.
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Gains Leading-edge Trailing-edge

f1 [deg/mm] −0.0580 0.0145

f2 [deg/mm] 0.0090 −0.0022

g1 [deg/mm] 2.2186 −0.5547

g2 [deg/mm] −0.3423 0.0856

Table 6.3: Obtained gains to triple the pitch damping at 12.8 m/s for the two control
surfaces.

In the case ζ2 × 3, the real part of the second pole should be larger in the
experimental results. In fact, the table 6.6 shows that there is a big difference
between the expected and the experimental poles. This discrepancy can explained
by taking into account the algorithm used to compute the poles from the FRFs: in
fact, a very large damping is not easy to identify and it is very probable that the
algorithm is not able to identify it correctly. Despite the identification problem,
the complex plane shows the correct trend of the poles which are moving in the
correct direction. In fact, the real part of second pole increases and the other pole
is kept almost constant. Figure 6.10 shows the experimental and expected results
in complex plane for both the cases.
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(a) Doubled pitch damping.
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(b) Tripled pitch damping.

Figure 6.10: Increase of pitch damping at 12.8 m/s by using the experimental natural
eigenvectors.
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Finally the FRFs of the closed-loop and open-loop system are illustrated in Figure
6.11.
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Figure 6.11: Synthesized FRFs experimentally obtained for the increase of pitch
damping at 12.8 m/s by using experimental open-loop eigenvectors.

Decrease of plunge frequency

The imaginary part of the pole can be also controlled by using the receptance
method. There is no doubt that in this case the control effort increases because
the imaginary part is larger than the real part, as consequence the change of natural
frequencies is lower with respect the change of system’s damping. Two cases have
been performed:

• change of frequency about 4%;

• change of frequency about 10%.

The change of resonance frequency can be performed by changing the imaginary
part of the first pole. In this case by changing about 10% the plunge frequency,
the gains appears larger with respect the previous cases. The Table 6.4 shows the
experimental gains for moving the plunge frequency of 10 %. The representation of
poles in the complex plane gives a better idea about the control efficiency. In fact
also in this case the poles are placed at least in the correct direction as shown in
Figure 6.12.

The closed-loop FRFs for both the studied cases confirm the efficiency of the
controller and the correct movement of the experimental poles. The Figure 6.13
shows the FRFs computed for the closed- and open-loop system. It is possible to
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Gains Leading-edge Trailing-edge

f1 [deg/mm] 0.0685 0.0682

f2 [deg/mm] 0.0704 0.0706

g1 [deg/mm] 1.9026 1.9026

g2 [deg/mm] 1.8352 1.8351

Table 6.4: Obtained gains to decrease the plunge frequency about 10% at 12.8 m/s
for the two control surfaces.
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(a) Small decrease of plunge frequency.
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(b) Large decrease of plunge frequency.

Figure 6.12: Decrease of frequency at 12.8 m/s by using the experimental natural
eigenvectors.

notice that the system’s FRFs in closed-loop and in open-loop have a different shape
not only in the modified peak. Since the peaks appear to be placed in the correct
position, the reason about this difference can be due by the fact that the FRF
representation is just a section of 3D complex plane in which there are: amplitude,
real and imaginary part of the poles. Therefore, it is possible to have a different
shape of the FRF provided that the poles are correctly placed.

Increase of pitch frequency

For the sake of completeness also the imaginary part of the second poles is placed.
As before the imaginary part is increased about 4% and about 10%. The Table 6.5
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(b) Back laser output.

Figure 6.13: Synthesized FRFs experimentally obtained for the decrease of plunge
frequency at 12.8 m/s by using experimental open-loop eigenvectors.

shows the gains used to get an increase about 10% of the pitch frequency.

Gains Leading-edge Trailing-edge

f1 [deg/mm] −0.0728 0.0364

f2 [deg/mm] 0.0112 −0.0056

g1 [deg/mm] −1.8329 0.9165

g2 [deg/mm] 0.2833 −0.1417

Table 6.5: Obtained gains to increase the pitch frequency about 10% at 12.8 m/s
for the two control surfaces..

It is possible to see that trailing-edge’s gains are the half with respect the leading-
edge ones and also the sign is the opposite. This is due by the arbitrary coefficients
which are respectively equal to 1 and −0.5. Also in this case the representation of
poles placement in the complex plane shows the correct trend of the moved poles
as shown in Figure 6.14. Finally the last FRFs of closed-loop and open-loop system
are illustrated in Figures 6.15.

The Table 6.6 shows the pole placement obtained for the test 1, test 2, test 3
and test 4 and the flutter-speed obtained for each set of gains. It is seen that the
experimental poles appear to be stable in the percentage errors and the maximum
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(a) Small increase of pitch frequency.
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Figure 6.14: Decrease of frequency at 12.8 m/s by using the experimental natural
eigenvectors.
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Figure 6.15: Synthesized FRFs experimentally obtained for the increase of pitch
frequency at 12.8 m/s by using experimental open-loop eigenvectors.

error registered is about 37% . It is necessary to consider that the maximum error
comes from the lowest value of the pole, i.e. the real part of the first pole, therefore
the correlated absolute difference is very tiny. In addition, the displacement of the
pole is very large, therefore it is expected a large error. The flutter-speed increases
when the frequencies are separated and it remains basically the same when the
damping is increased. This fact is connected to definition of flutter: in fact, the
flutter appears when the two peaks are very close therefore, by pushing away the
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1st mode 1st mode 2st mode 2st mode
Real[1/s] Imag.[rad/s] Real[1/s] Imag.[rad/s] Flutter[m/s]

Open− loop -0.5591 ±25.8804 -1.3871 ±31.5667 15.6

Test1 ζ1 × 3 -1.6446(3.5%) ±26.7789(4.0%) -1.1242(-19.5%) ±32.2390(1.6%) 15.7

Test2 ζ2 × 3 -0.6567(25.3%) ±26.4836(2.8%) -3.2195(-22.4%) ±31.3217(1.1%) 15.9

Test3 ω1 × 0.9 -0.6726(26.6%) ±23.9264(3.2%) -1.6320(12.9%) ±32.3521(2.2%) >18

Test4 ω2 × 1.1 -0.7137(37.1%) ±26.4648(3.2%) -1.7861(29.2%) ±33.9732(−2.5%) 16.5

Table 6.6: Pole placement of the four experimental tests at 12.8 m/s. For the
sake of simplicity, just the poles with the larger displacements are reported and the
percentage error between the absolute values of expected poles and experimental
poles it is indicated in brackets. The last column indicates the flutter-speed for each
case.

peaks, the flutter appears at larger wind-speed. Experimentally, it is seen that when
the damping of a mode is increased the flutter appears with the mode of the non-
modified pole, i.e. if the plunge damping is increased the flutter appears at about
the same wind-speed in the pitch mode and viceversa. In conclusion it is possible
to state that the use of the experimental open-loop eigenvectors in partial poles
placement allows to have a good application of the receptance method and it allows
to reduce the control efforts even if the αµk,j coefficients are not the optimized ones.

Total pole placement

It is possible to apply also the total poles placement. In this case there are no
numerical errors because all the poles are moved. Just two different tests were per-
formed, and other optimized arbitrary coefficients were used: αµ1,1=2.5, αµ1,2=0.5,
αµ2,1=2.5 and αµ2,2=−1. In particular, were tested:

• Test 5 : separation of frequencies with ω1 × 0.96 ω2 × 1.04;

• Test 6 : increase of damping with ζ1 × 1.5 ζ2 × 1.5.

The control effort increases because both the poles are controlled at the same
time, therefore is not possible to modify the poles as before. In fact, the real part
of poles is multiplied for just a factor about 1.5 and the imaginary parts are moved
for just the 4%. Also in this case the both the FRFs of closed- and open-loop are
reported as shown in Figures 6.16 and 6.17 and pole placement is illustrated in
complex plane in Figures 6.18.
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Figure 6.16: Separation of frequencies at 12.8 m/s, synthesized FRFs.
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Figure 6.17: Increase of damping at 12.8 m/s, synthesized FRFs.

The FRFs show that the application of the receptance method works experimen-
tally also in the total poles placement and the poles tend to be placed in the correct
location.

The results of Table 6.7 show that the experimental pole placement is good
also in this case even if the arbitrary coefficients are not the optimal one. The
separation of frequencies allows to get a very high increase of flutter-speed even if
the frequencies are moved for just the 4%. This fact denotes an high control effort
when the frequencies are controlled: in fact, the real parts of the poles have a lower
absolute value with respect the imaginary ones and this fact leads to get a larger
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Figure 6.18: Pole placement for different cases at 12.8 m/s.

1st mode 1st mode 2st mode 2st mode
Real[1/s] Imag.[rad/s] Real[1/s] Imag.[rad/s] Flutter[m/s]

Open− loop -0.5591 ±25.8804 -1.3871 ±31.5667 15.6

Test5 -0.5346(0.4%) ±24.9757(1.0%) -1.2876(-7.34%) ±35.2236(7.9%) >18

Test6 -0.7971(0.2%) ±26.0375(1.1%) -1.633(-20.2%) ±31.1457(−1.3%) 15.7

Table 6.7: Pole placement of the first two experimental tests at 12.8 m/s to control
both the poles. All the poles and the flutter-speed are reported in the columns
and the percentage error between the absolute values of the expected poles and the
experimental poles is indicated in brackets.

control effort when the frequency is controlled. As before, when the damping is
increased the flutter appears at the same wind speed.

The gains used in test 5 and test 6 are now reported in Table 6.8.
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Test 5 Test 5 Test 6 Test 6
Gains Leading-edge Trailing-edge Leading-edge Trailing-edge

f1 [deg/mm] −0.0187 0.0157 −0.0413 −0.0132

f2 [deg/mm] 0.0057 −0.0181 0.0196 0.0477

g1 [deg/mm] 0.6616 −0.2567 −1.2836 −0.9547

g2 [deg/mm] −0.2536 0.3746 0.6112 1.6189

Table 6.8: Obtained gains from test 5 and test 6 for the two control surfaces.
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Chapter 7

Conclusion and Further works

The two DOFs model was designed, validated and experimentally controlled with
the receptance method but there are many other possible applications of this system,
both in the linear and non-linear field. From the linear point of view, it is possible to
investigate other methods to control the structure or to better the application of the
previously applied method. In particular the receptance method can place both the
mode-shapes and the poles of the system but the minimum control effort is obtained
when the closed-loop modeshapes are very similar to the open-loop one. In this par-
ticular condition, just the poles are placed without changing the modeshapes. It
is possible to impose this condition by properly choosing the arbitrary coefficients
αµk,j. Mokrani et al. [14] have developed a theory to find the minimum control
effort when the receptance method is applied. The theory provides for imposing
the closed-loop modeshapes by using the least-square solution to find the arbitary
coefficients and an experimental test could confirm this theory. Another interest-
ing application is the gains scheduling which provides for applying the receptance
method at different wind-speed on the same structure. In this way the gains are not
constant anymore but they are changing on the base of the wind-speed. Through
the application of the gains scheduling, it could be possible to control the system in
very good way and it should be possible to impose experimentally the flutter-speed.
An experimental verification could lead to good results in the flutter control. There
are also many other application in non-linear field. In fact, it is possible to study the
LCO when a non-linearity is applied on the linear model. In this two-DOFs model,
the non-linear spring could be applied on the plunge direction and in this way should
be possible to choose properly the characteristic of the spring. In general, the pole
placement and the study of the non-linear structure could be actuated numerically
and experimentally with the implementation of the feedback linearisation technique.

In conclusion, the main object of this thesis is tho development, the validation
and the control of experimental a two-DOFs pitch and plunge model for the flutter
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prediction. Often, there are no clear links between the internal dynamic of the struc-
ture and the flutter onset, especially in the experimental case, therefore a simple
model was necessary to experimentally replicate the flutter phenomenon. The phys-
ical model has demonstrated to be very well designed for investigation purposes: in
fact by using the support structure, the flutter-speed has been experimentally set at
the required wind-speed and the frequency response study led to find just two main
modes as requested by the design constrains. The control surfaces demonstrated to
be very efficient even if they are very small with respect the entire wing span, in
fact by choosing properly the gains for the high authority control it was possible to
increase the flutter-speed in closed-loop mode behind the speed limit of the wind
tunnel of 18 - 20 m/s. The analytical model demonstrated that the unsteady loads
assumption is appropriate to simulate the aeroelastic conditions of the two-DOFs
wing model. In fact, it led to very good results in the flutter prediction and in
the prediction of the poles trend. Finally, the application of the receptance method
has shown very good results in the pole placement even some arbitrary coefficients
were used. The experimental control gains found at 12.8 m/s with the receptance
method were used to find the new flutter-speed in closed-loop mode. The frequencies
separation led to increase the flutter-speed of the closed-loop system demonstrating
that the correspondent gains can be used to make the wing more stable while the
increase of damping did not change a lot the flutter-speed of the closed-loop system
but just the flutter mode. The model has been validated, experimentally tested and
used in different situations and application giving always good results.
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Appendix A

Additional matrices

[Aa] =
−πb2sp πb3spa

πb3spa −b4spπ(1
8 + a2)

 (A.1)

[B] =
C

−πbsp −b2spπ − πspb2(0.5− a)
πspb

2(0.5 + a) −b3spπ[(0.5− a)− (0.5− a)2]

D
(A.2)

[C] =
C
0 −bspπ
0 spπb

2(0.5 + a)

D
(A.3)

[N ] = 2πρUspb
C

−a0 −a1
a0b(0.5 + a) a1b(0.5 + a)

D
(A.4)
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