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Summary

In the field of the structural analysis, classical beam and plate theories are usually used

although those theories have serious limitations. In the field of the aerospace, specially for

composite laminates, this theories can lead to an errors (for example in free edge analysis,

torsion or in-plane deformations).

The aim of this work is to present the Carrera Unified Formulation, a theory which over-

come the limits of classical theories with a low computational cost (On contrast with the solid

models that have a high computational costs). This formulation can be used to analyse a

global model or to perform a local analysis in a complex region of a global model. In order to

carry this last type of analysis a Python interface between the global model (designed with a

commercial software) and the Mul2 code (software based on CUF designed by the Department

of Mechanical and Aerospace engineering of Polito) has been developed during this thesis.

To summarize the structure and the content of this thesis, a brief explanation of each

chapter is provided next.

Chapter 1 presents the fundamentals of elasticity and the classical beam and plates

theories. Stress and deformations vectors, strain - displacements relations and the Hooke’s

law are explained in the fundamentals of elasticity. An approach on the Euler Bernoulli Beam

theory (EBBT), Timoshenko Beam Theory (TBT), Kirchoff-Love classical plate theory and

Reissner-Midlin plate theory is presented. The displacement field, the strain-displacements

relations and constitutive equations of each model are explained in this chapter.

The Carrera Unified Formulation (CUF) is presented in Chapter 2. How it works for

beam and plates, the displacements fields for each model and the Taylor and Lagrange expan-

sions functions are explained in this chapter. An introduction to finite element formulation
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as well as the construction of the governing equations, stiffness matrix and loading vector are

also described.

In Chapter 3 a brief introduction to composite materials laminates and composites air-

craft is presented. The history about this type of materials and their use in the aerospace

industry is summarized and the importance of composite laminates in this industry is ex-

plained.

Chapter 4 presents the Mul 2 code. This code is been developed by the Department

of Mechanical and Aerospace Engineering of Politecnico di Torino by a research group lead

by Erasmo Carrera. This software is based in CUF and works for beams, plates and shells

in different fields and applications. In this chapter it is explained how is this software used

during the thesis.

The global local approach is introduced in Chapter 5. The application of the boundary

conditions between the global model and the local region is described and the python interface

in charge of connect the global model designed by a commercial code with the Mul2 code (the

software in charge of the local analysis) is presented. In the appendix a manuals of the plate

Python interface and element wise Python interface can be found.

The numerical results for beam and plate examples are displayed in Chapter 6 and

Chapter 7. A comparison between the results with the global local approach and those

provided by the commercial software Nastran are shown.

Finally the conclusions of this work are presented in Chapter 8.
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Chapter 1

Fundamentals of beam and plate

structures

1.1 Preliminars

For the next chapters the reference system adopted for the beam structures is Cartesian axes

represented at Fig.1.1.

Figure 1.1: Beam reference system

The reference system above is referred to a beam whose axial extension (L) is clearly

predominant in comparison with any other orthogonal dimension. x-z beam cross section is

indicated with Ω.

The reference system used for plate structures is displayed in Fig.1.2, considering in this
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case the dimension of the cross section predominant in comparison with the dimension along

z axis (thickness direction).

Figure 1.2: Plate reference system

The displacement field vector referring to the reference system of beam or plate is the

following:

u(x, y, z; t) =


u(x, y, z)

v(x, y, z)

w(x, y, z)

 (1.1)

The terms ux, uy and uz are the components along x,y and z respectively depending on

the position where are evaluated. This variables are usually the solution of the problem and

the theory of the elasticty focuses in the determination of these.

1.2 Fundamentals of elasticity

1.2.1 Stress and Deformation vectors

The stress and deformation vectors are introduced. In Fig.1.3 the stress and deformation

components are represented.
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(a) Stresses (b) Deformations

Figure 1.3: Stress and Deformation components

For each plane there are three stress components resulting in a total of 9 components.

They can be write in a matrix where the normal components are placed at the diagonal. This

matrix is called stress tensor:

σ =


σxx σxy σxz

σyx σyy σzx

σzx σzy σzz

 (1.2)

This tensor has the particularity, following the Cauchy’s theorem, that the shear stress are

equal 2 to 2. This is σij = σji, resulting to a symmetric stress tensor with only six different

components to define the stress state. This components can be written in a column vector

like:

σσσT =
{
σxx σyy σzz σxy σxz σyz

}
(1.3)

The deformation components can be also written in matrix form the same way as the

stresses. The matrix is called strain tensor:

ε =


εxx εxy εxz

εyx εyy εzx

εzx εzy εzz

 (1.4)

The strain tensor is also symmetric being εij = εji, so it can be written as a column vector:

εεεT =
{
εxx εyy εzz εxy εxz εyz

}
(1.5)
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Usually both stresses and strains are divided in two different groups regarding if they are

orthogonal or tangent to the cross-section. So, the previous vectors can be rewrite as:

σσσn =
{
σyy σxy σyz

}T
εεεn =

{
εyy εxy εyz

}T (1.6)

σσσΩ =
{
σxx σzz σxz

}T
εεεΩ =

{
εxx εzz εxz

}T (1.7)

The sub-indexes n and ω refer to the normal and in-plan components of the vector re-

spectively.

1.2.2 Linear Strain-Displacement relations

Assuming ”small deformations” the strain components can be linear related with the dis-

placement components as following:

εεεxx =
∂u

∂x

εεεyy =
∂v

∂y

εεεzz =
∂w

∂z

εεεxy =
1

2
(
∂u

∂y
+
∂v

∂x
)

εεεzx =
1

2
(
∂w

∂x
+
∂u

∂z
)

εεεzy =
1

2
(
∂w

∂y
+
∂v

∂z
)

(1.8)

Regrouping the strains again in the normal and in-plane components the previous equa-

tions can be written as:

εεεTn =
{
v,y v,z + w,y v,x + u,y

}
εεεTΩ =

{
u,x w,x u,z + w,x

} (1.9)
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Where the comma indicates the derivation symbol and the coordinate after it the deriva-

tion direction.

To simplify the expression, the matrix notation is used. The previous equation are rewrit-

ten as:

εΩ = DΩu

εn = Dnu = (DnΩ +Dnn)u
(1.10)

where DΩ, DnΩ and Dnn are the differential matrix operators defined as:

DDDΩ =


0 0 ∂

∂z

∂
∂x

0 0

∂
∂z

0 ∂
∂x



DDDnΩ =


0 ∂

∂z
0

0 ∂
∂x

0

0 0 0



DDDnn =


0 0 ∂

∂y

∂
∂y

0 0

0 ∂
∂y

0



(1.11)

The geometrical relations between strains and displacements can also be defined with the

compact vectorial notation as:

ε = Du (1.12)

where D in the compact form is the following linear differential operator:

DDD =



0 ∂
∂y

0

∂
∂x

0 0

0 0 ∂
∂z

∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y

∂
∂y

∂
∂x

0


(1.13)
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1.2.3 Hooke’s law

The Hooke’s law define a relation between strain and stresses assuming a linear elastic be-

haviour ot the material wich suffers the deformation. This relation is defined as following:

σσσ = C εεε (1.14)

where C is the stiffness matrix wich relates both variables. Considering the previous

notation, the Hooke’s law can be defined like:

σσσn = CCCnnεεεn +CCCnΩεεεΩ

σσσΩ = CCCΩnεεεn +CCCΩΩεεεΩ

(1.15)

where the matrix C has been devidied in four different parts considering the normal or

in-plane components of the stresses and strains.

In case the material is isotropic, the matrix C can be written as following:

C =



C33 C23 C13 0 0 0

C23 C22 C12 0 0 0

C13 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


(1.16)

The coefficients of the stiffness matrix depend only on the Young’s modulus, E, and the

Poisson ratio, ν, and they are:

C11 = C22 = C33 = (1−ν)E
(1+ν)(1−2ν)

C12 = C13 = C23 = νE
(1+ν)(1−2ν)

C44 = C55 = C66 = E
2(1+ν)

(1.17)
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1.3 Beam theories

1.3.1 Euler-Bernoulli Beam Theory

The Euler-Bernoulli beam theory, or EBBT, is a simplified model that is used for the case of

a beam with only lateral loads and small deflections. This model relays in three assumptions:

The first one is that the cross-sections remains always rigid, plane and normal to the deformed

axis of the beam. This can be written as follows:

εεεxx =
∂u

∂x
= 0

εεεzz =
∂w

∂z
= 0

εεεzx =
1

2
(
∂w

∂x
+
∂u

∂z
) = 0

(1.18)

The second assumption to be made is that the cross-section of the beam (this is the x-z

plane) rotates around a neutral surface causing that the axial displacement is linear along the

axis x and z. That can be write mathematically as:

v(x, y, z) = v1 + φz(y)x+ φx(y)z (1.19)

The third and last assumption is that the cross-section remains perpendicular to the

neutral surface when loads are applied. This cause that the shear strains εxy and εyz are

approximate to 0. So,

εxy = εyz = 0 (1.20)

Considering this last assumption it can be derived that the rotations of the section around

x and z are equal to the variation of the axial displacements along the axis z and x respectively

as it can be observed in Fig.1.4,

φφφz = − ∂v

∂x

φφφx =
∂v

∂z

(1.21)
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Figure 1.4: EBBT model of deformations

Considering Eq.1.20 and Eq.1.8 then the rotations along the z and x axis are:

φz =
∂u

∂y

φx = − ∂w

∂y

(1.22)

With the three assumptions presented and considering a generic beam structure whose

longitudinal axis lays on the coordinate y and its cross-section is defined in xz-plane. The

kinematic field of EBBT can be write as:

u(x, y, z) =u1(y)

v(x, y, z) =v1(y) − x
∂u1

∂y
(y) − z

∂w1

∂y
(y)

w(x, y, z) =w1(y)

(1.23)

where ux, uy and uz are the components of the 3D displacement field vector along x, y

and z respectevely and ux1 , uy1 and uz1 are the displacements of the beam axis.
∂ux1
∂y

and
∂uz1
∂y

are the rotations of the cross-sections, φx and φz. The problem has three unknown variables,

three degrees of freedom (DOF), once this variable are found all the displacements, strains
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and stresses can be obtained.

The only deformation not disregarded is the axial strain, εyy considering all the previous

hypothesis. As it is been defined before, in Eq.1.8, the axial strain is equal to the variation of

the axial displacement along y axis. Substituting the Eq.1.19 in the definition of axial strain

results:

εyy(x, y, z) =
∂v1

∂y
+
∂2u1

∂y2
x− ∂2w1

∂y2
z (1.24)

Finally applying the Hooke’s law and renaming the derivatives to kyy , k
z
yy and kxyy respec-

tively, the following equation is obtained:

σyy(x, y, z) = E(kyy + kzyyxk
x
yyz) (1.25)

1.3.2 Timoshenko Beam Theory

The Timoshenko Beam Theory (TBT) assume the first two hypothesis of the Euler Bernoulli

Beam Theory but not the last hypothesis, being the cross-section not necessary perpendicular

to the neutral surface. So, differently form the EBBT, the shear stresses εxy and εyz are not

negligible and the cross-section rotation around the neutral surface is not anymore equivalent

to the derivatives of the axial displacement along the orthogonal axis. Now, the displacement

field can be written as following:

u(x, y, z) =u1(y)

v(x, y, z) =v1(y) − xφz(y) − zφx(y)

w(x, y, z) =w1(y)

(1.26)

Instead of three unknows as with EBBT, TBT has five unknows, adding the two rotations

along the orthogonal axis to the three displacements. In Fig.1.5 the comparison between

EBBT and TBT is shown.
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Figure 1.5: TBT vs EBBT

As the shear strains out-plane are not negligible the strain field in TBT results:

εyy =
∂v1

∂y
+
∂φz
∂y

x+
∂φx
∂y

z

εyz =
1

2
(φz +

∂w1

∂y
)

εxy =
1

2
(φx +

∂u1

∂y
)

(1.27)

Applying the Hooke’s law (constitutive equation) the stresses can be obtained:

σyy =E(
∂v1

∂y
+
∂φz
∂y

x+
∂φx
∂y

z)

σyz =
1

2
G(φz +

∂w1

∂y
)

σxy =
1

2
G(φx +

∂u1

∂y
)

(1.28)

Where E is the Young Modulus and G the shear modulus.

The shear stresses obtained by TBT don’t satisfy the stress-free condition at the unloaded

edges of the cross-section.
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1.4 Plate theories

1.4.1 Classical plate model Kirchoff-Love

Analogous to EBBT, the classical plate model based on Kirchoff-Love hypothesis assumes

three hypothesis.

1. The straight lines normal to the mid-surface remain straight after any deformation.

2. The straight lines normal to the mid-surface remain normal to the mid-surface after any

deformation.

3. The thickness of the plate remains constant during the deformation.

Considering the z axis the thickness direction and the mid-plane laying in the xy-plane,

the kinematic field of the Kirchoff-Love plate model can be write as following:

u(x, y, z) =u1(x, y) − z
∂w1(x, y)

∂x

v(x, y, z) =v1(x, y) − z
∂w1(x, y)

∂y

w(x, y, z) =w1(x, y)

(1.29)

Being u1, v1 and w1 the displacements of the mid-plane. The angles between the normal

to the mid-surface and z-axis φx and φy considering the third assumption can be expressed

as:

φx = − ∂w1

∂y

φy = − ∂w1

∂x

(1.30)

Considering the three kinematic assumptions and the relations between strains and dis-

placements, the only strains that are not non-zero are in the in-plane directions. εxy can be
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formulated as:

εxy(x, y, z) =
1

2
(
∂u1

∂y
+
∂v1

∂x
) − z

∂w2

∂x∂y
(1.31)

Finally, applying the Hooke’s law (the constitutive equations) the shear stresses can be

written as following:

σxy(x, y, z) =
1

2
G(
∂u1

∂y
+
∂v1

∂x
) − zG

∂w2

∂x∂y
(1.32)

1.4.2 Reissner and Mindlin plate model

Considering the angles φx and φz not equal to the partial derivatives of the tranverse dis-

placements with respect to the in-plane coordinates x,y, the shear stresses can be taken into

account. The resulting kinematic field introduced by Reissner and Mindlin is:

u(x, y, z) =u1(x, y) − zφy(x, y)

v(x, y, z) =v1(x, y) − zφx(x, y)

w(x, y, z) =w1(x, y)

(1.33)

This plate model does not consider the effects due to thickness stretching and, as the

TBT, does not satisfy the null stresses conditions at the top and bottom faces of the plate.

The strain field can be formulated as:

εxy(x, y, z) =
1

2
(
∂u1

∂y
+
∂v1

∂x
) − z

2
(
∂φx
∂y

+
∂φy
∂x

)

εxz(x, y, z) =
1

2
(
∂w1

∂x
− φx)

εyz(x, y, z) =
1

2
(
∂w1

∂x
− φx)

(1.34)

To account for the inaccuracy in the shear strain, a correction factor, k can be applied in

both εxz and εxz.

More information about the beam and plates theories can be found in [1] and [2] as well as

different examples and the comparison between the beam and plates theories with the CUF

theory that will be presented next.
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Chapter 2

Carrera Unified Formulation - CUF

theory

It is well-known that classical theories have several limitations for the study of generic struc-

tural problems. High order effect or physical inconsistencies such as torsion or in-plane de-

formations have to be solved with the enrichment of the kinematics, theoretically with an

infinite terms. But the more terms used in the kinematics results in more complexity of the

formulation and resolution of the problem.

In this Chapter the Carrera Unified Formulation is presented ([1], [2], [3], [4], [5]). This

formulation solve the issues previously presented and describes the kinematic field in a unified

manner that will be then exploited to derive the governing equation in a hierarchical compact

way.

2.1 Displacement field for one dimensional models

The displacement field in CUF framework is described as a generic expansion of the generalized

displacements by arbitrary functions. In case of one-dimensional models (beam models)

the functions are depending of the cross-section coordinates:

u(x, y, z) = Fτ (x, z)uτ (y) τ = 1, 2, ...,M (2.1)

where Fτ are the functions of the cross-section coordinates x and z, uτ the general dis-

placements vector and M is the number of terms in the expansion.

17



The discretization along y-axis of the beam is made by means of finite element method. So, the

generalized displacements, uτ , are described as functions of the unknown nodal displacement

vector, qτi and the one dimensional shape functions, Ni:

uτ (y) = Niqτi i = 1, 2, ..., k (2.2)

where k is the number of element nodes and the unknown nodal vector is defined as

following:

qτi =
{
quτi qvτi qwτi

}T
(2.3)

Different sets of functions can be used to model the 1D element. In this thesis the only

functions used are the Lagrange-type shape functions. Three types of Lagrange elements are

considered and described. Each type has a different number of nodes in the element and

consequently different polynomial degree of the functions.

Two-node B2 element

Figure 2.1: Two-node B2 element

N1 =
1

2
(1 − r), N2 =

1

2
(1 + r),

 r1 = −1

r2 = +1
(2.4)

where r varies from -1 to +1 and ri indicates the node position within the beam bound-

aries.
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Three-node B3 element

Figure 2.2: Three-node B3 element

N1 =
1

2
r(1 − r), N2 =

1

2
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r3 = 0

(2.5)

Four-node B4 element

Figure 2.3: Four-node B4 element
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3
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(2.6)

By substituting the equation 2.2 in the equation 2.1 the displacement field results:

u(x, y, z) = Fτ (x, z)Ni(y)qτi τ = 1, 2, ...,M i = 1, 2, ..., k (2.7)

where M is the number of terms of the expansion and i the number of nodes for each

element in the structural mesh.
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About the functions of the cross-section expansion, different refined theories have been intro-

duced. Taylor and Lagrange expansions will be next explained although in this thesis only

Lagrange expansions on the beam cross-section have been used.

2.1.1 Taylor expansions

The Taylor expansion model is based in Taylor polynomials which are used as generic functions

in the displacement field of the cross.section. The expansions order is introduced as an input

and arbitrary. The 2D polynomials set are the type xizj. For example, the third-order, N=3

derives into the following displacement field:

ux = ux1 + xux2 + zux3 + x2ux4 + xzux5 + z2ux6 + x3ux7 + x2zux8 + xz2ux9 + z3ux10

uy = uy1 + xuy2 + zuy3 + x2uy4 + xzuy5 + z2uy6 + x3uy7 + x2zuy8 + xz2uy9 + z3uy10

uz = uz1 + xuz2 + zuz3 + x2uz4 + xzuz5 + z2uz6 + x3uz7 + x2zuz8 + xz2uz9 + z3uz10

(2.8)

As it can be observed the N=3 model uses constant, linear, parabolic and quadratic

generic functions. This kinematic filed is able to represent higher order effects than the

classical one. This can be achieve by paying the cost of that now are 30 unknown variables

for the displacement field on contrast with the five unknowns of the Thimoshenko model, for

example.

The case with N=1 is known as complete linear expansion case (CLEC) and permits a

linear distribution on the cross-section and the terms εxx, εzz and εzz which were negligible with

the classical beam theories now can be accounted. The N=1 Taylor expansion displacement

fields can be described as:

ux = ux1 + xux2 + zux3

uy = uy1 + xuy2 + zuy3

uz = uz1 + xuz2 + zuz3

(2.9)

The classical models, EBBT and TBT are particular cases of the N=1 model (CLEC)

after applying the hypothesis for each theory mentioned before. Accounting the in-plane

deformations by the CLEC leads to the detection of the torsional effects.
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2.1.2 Lagrange Expansion

Lagrange expansions (LE) beam theories are based in the Lagrange polynomials, used as a

generic functions above the cross-section of the beam. The cross-section is divided into a

local expansion sub-domains, refining the mesh to be able to represent complex beam shapes.

The polynomial degree depends on the type of Lagrange Expansion used. The more typical

lagrange polynomials are three-node linear (L3), four-node bilinear (L4), nine-node cubic (L9)

and sixteen-node quartic (L16). The interpolation functions and the nodes position of L3, L4

and L9 Lagrange expansion elements is next presented.

Three-node linear L3 element

Figure 2.4: Three-node linear L3 element

The L3 element interpolation functions are given by:

F1 = 1 − r − s, F2 = r, F3 = s (2.10)

where r and s take the values -1 and +1.
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Three-node linear L4 element

Figure 2.5: Three-node linear L4 element

Fτ =
1

4
(1 + rrτ )(1 + ssτ ), τ = 1, 2, 3, 4 (2.11)

where r and s vary from -1 to +1.

Three-node linear L9 element

Figure 2.6: Three-node linear L9 element

Fτ =
1

4
(r2 + rrτ )(s

2 + ssτ ), τ = 1, 3, 5, 7

Fτ =
1

2
s2
τ (s

2 + ssτ )(1 − r2) +
1

2
r2
τ (r

2 + rrτ )(1 − s2), τ = 2, 4, 6, 8

Fτ = (1 − r2)(1 − s2), τ = 9

(2.12)

where r and s vary from -1 to +1. The displacement field above the cross-section for the L9
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element results:

ux = F1ux1 + F2ux2 + F3ux3 + F4ux4 + F5ux5 + F6ux6 + F7ux7 + F8ux8 + F9ux9

uy = F1uy1 + F2uy2 + F3uy3 + F4uy4 + F5uy5 + F6uy6 + F7uy7 + F8uy8 + F9uy9

uz = F1uz1 + F2uz2 + F3uz3 + F4uz4 + F5uz5 + F6uz6 + F7uz7 + F8uz8 + F9uz9 (2.13)

By adopting higher order Lagrange polynomials refined beam models can be obtained.

Also a combination of Lagrange polynomials on multi-domain cross-section are used to refine

some models.

2.2 Displacement field for two dimensional models

The displacement field for plates two dimensional models can be described as following:

u(x, y, z) = Fτ (z)uτ (x, y) τ = 1, 2, ...,M (2.14)

This displacement field differs from the beam displacement field as now the generalized

displacement are function of the mid-plane coordinates of the plate and the expansion mesh

is in the thickness direction (z-axis).

So, now, the expansion mesh is one dimensional in the thickness direction. The expansion

functions Fτ now depends only on the z coordinate meanwhile the generalized displacements

uτ (x, y) depends on x and y coordinates.

The expansion functions Fτ can be model as Lagrange polynomials like the one dimensional

functions for the generalized displacements for the beam (Nτi). B2, B3 and B4 elements are

considered. This functions can also be model using Taylor polynomials.

The generalized displacements, uτ are described as functions of the unknown nodal displace-

ments vector, qτi and the two dimensional shape functions, Ni. This functions that only

depend on y coordinate in beam models, in plate depend on x and y coordinate, the mid-

plane coordinates of the plate.

uτ (x, y) = Ni(x, y)qτi i = 1, 2, ..., k (2.15)
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So, analogously to the beam the displacement field of a plate results:

u(x, y, z) = Fτ (z)Ni(x, y)qτi τ = 1, 2, ...,M i = 1, 2, ..., k (2.16)

where M is the number of terms of the expansion (i.e the number of nodes for each element

in the expansion) and i the number of nodes used for each element in the structural mesh.

2.3 Governing equation and stiffness matrix

The governing equations are derived by the principle of virtual displacements, PVD. In this

section only the static analysis will be accounted for the deduction of the governing equations

as all the examples been carried on in this thesis are analysed statically. For the sake of

simplicity the governing equations are only derived for the beam, but the same process can

be done to obtain the governing equations of a plate.

The principle of virtual displacements states that to have equilibrium in a structure the

necessary condition is that the virtual variation of the internal work has to be equal to the

virtual variation of the external work, so:

δLint = δLext (2.17)

The internal work can be defined as equivalent to the elastic strain energy:

δLint =

∫
l

∫
Ω

δeTσdΩdy (2.18)

where l stands for the length of the beam and Ω for the cross-section area. The internal

work can also be divided in to two parts, the in-plane actions, LΩ
int and the normal actions,

Lnint. This results:

δLint =

∫
l

∫
Ω

δeTΩσΩdΩdy +

∫
l

∫
n

δeTnσndΩdy (2.19)

By considering the geometrical relation (1.12), the constitutive law (1.14), the CUF kine-
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matic field (2.1) and the FEM discretization (2.2), the internal work can be rewritten as:

δLint =

∫
l

δqqqTτiNi[

∫
Ω

(DDDT
ΩnFτIII)CΩn(DDDnnFsIII)dΩ]Njqqqsjdy+

+

∫
l

δqqqTτiNi[

∫
Ω

(DDDT
ΩnFτIII)CΩΩ(DDDΩnFsIII)dΩ]Njqqqsjdy+

+

∫
l

δqqqTτiNi[

∫
Ω

(DDDT
ΩnFτIII)CΩΩFsdΩ]IIITΩyNj,zqqqsjdy+

+

∫
l

δqqqTτiNi[

∫
Ω

(DDDT
nnFτIII)Cnn(DDDnnFsIII)dΩ]Njqqqsjdy+

+

∫
l

δqqqTτiNi[

∫
Ω

(DDDT
nnFτIII)CnΩ(DDDΩnFsIII)dΩ]Njqqqsjdy+

+

∫
l

δqqqTτiNi[

∫
Ω

(DDDT
nnFτIII)CnΩFsdΩ]IIITΩyNj,zqqqsjdy+

+

∫
l

δqqqTτiNi[

∫
Ω

FτCΩn(DDDnnFsIII)dΩ]Njqqqsjdy+

+

∫
l

δqqqTτiNi[

∫
Ω

FτCΩΩ(DDDΩnFsIII)dΩ]Njqqqsjdy+

+

∫
l

δqqqTτiNi[

∫
Ω

FτCΩΩFsIIIdΩ]IIITΩyNj,zqqqsjdy

(2.20)

Introducing the stiffness matrix of the finite element, the previous expression can be

compacted as:

δLint = δqqqTτiKKK
τsijqqqsj (2.21)

where Kτsij is the fundamental nucleus of the stiffness matrix. The nine terms of this

matrix are formulated below:
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Kτsij
xx = C22

∫
l

NiNjdy

∫
Ω

Fτ,xFs,xdΩ + C44

∫
l

NiNjdy

∫
Ω

Fτ,zFs,zdΩ

+ C66

∫
l

Ni,yNj,ydy

∫
Ω

FτFsdΩ

Kτsij
xy = C23

∫
l

NiNj,ydy

∫
Ω

FτFs,xdΩ + C66

∫
l

Ni,yNjdy

∫
Ω

Fτ,xFsdΩ

Kτsij
xz = C12

∫
l

NiNjdy

∫
Ω

FτzFs,xdΩ + C44

∫
l

NiNjdy

∫
Ω

Fτ,xFs,zdΩ

Kτsij
yx = C23

∫
l

Ni,yNjdy

∫
Ω

FτxFsdΩ + C66

∫
l

NiNj,ydy

∫
Ω

FτFs,xdΩ

Kτsij
yy = C33

∫
l

Ni,yNj,ydy

∫
Ω

FτFsdΩ + C55

∫
l

NiNjdy

∫
Ω

Fτ,zFs,zdΩ

+ C66

∫
l

NiNjdy

∫
Ω

Fτ,xFs,xdΩ

Kτsij
yz = C13

∫
l

Ni,yNjdy

∫
Ω

Fτ,zFsdΩ + C55

∫
l

NiNj,ydy

∫
Ω

FτFs,zdΩ

Kτsij
zx = C12

∫
l

NiNjdy

∫
Ω

Fτ,xFs,zdΩ + C44

∫
l

NiNjdy

∫
Ω

Fτ,zFs,xdΩ

Kτsij
zy = C13

∫
l

NiNj,ydy

∫
Ω

FτFs,zdΩ + C55

∫
l

Ni,yNjdy

∫
Ω

Fτ,zFsdΩ

Kτsij
zz = C11

∫
l

NiNjdy

∫
Ω

Fτ,zFs,zdΩ + C44

∫
l

NiNjdy

∫
Ω

Fτ,xFs,xdΩ

+ C55

∫
l

Ni,yNj,ydy

∫
Ω

FτFsdΩ

(2.22)

where the constants Cij stand for the material stiffness coefficients.

The external work will be defined as:

δLext = δqqqTP (2.23)

where P is the loading vector. Introducing this equation and the definition of the internal

work in Eq.2.17 the algebraic system to be solved results:

KKKqqq = PPP (2.24)

In Fig.2.7, Fig.2.8 and Fig.2.9 the assembly procedure of the stiffness matrix is shown.

The stiffness matrix s built from the pairs of indexes τ , s and i, j. The first two indexes

refer to the expansion functions on the cross-section, meanwhile the i, j indexes refer to the

structural element mesh. So, for each structural node there is a a τ - s sub-matrix. This
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matrix is created by assembling the K fundamental nucleus. This matrix is shown in Fig.2.7.

Figure 2.7: Assembly of the τ − s sub-matrix

In order to create the i-j sub-matrices the matrices τ - s of each node of the structural

elements are assembled. So, each matrix i-j represent each of the structural elements of the

structure. This assembly is shown in Fig.2.8

Figure 2.8: Assembly of the i− j sub-matrix

Finally, assembling the i-j matrices the global stiffness matrix is created as it is displayed
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in Fig.2.9 . The dimension of the global stiffness matrix will be (x,x) being x the number of

degrees of freedom (DOF’s) of the entire model.

Figure 2.9: Assembly of the global stiffness matrix

2.4 Loading vector

In all the examples of the thesis only point loads have been considered so in this section, this

type of loads will be explained. The generic components of a point load can be represented

with the following vector:

FFF = [Fx, Fy, Fz] (2.25)

The virtual work of a generic force can be defined as:

δLext = δuuuTF (2.26)

where δu are the virtual displacement resultants of the point load. Introducing the finite

element discretization and the nodal displacements and the CUF shape functions notation

this equation is written as:

δLext = δqqqTτiFτNiFFF (2.27)

Reagrouping the longitudinal shape functions and the expansion functions with the force
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vector results:

δLext = δqqqTτiP
τi (2.28)

where P is the loading vector.
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Chapter 3

Composite materials

Nowadays composite materials are extremely common in many engineering applications. Con-

crete and wood, for example are composite materials. A composite material is made from two

or more materials with different physical or chemical properties. When this two materials are

combined they produce a material with different characteristics than both. The individual

components remain separate in the final structure and can be distinct contrasting composites

from mixtures or solid solutions where the different materials can not be distinct in the final

structure. The new material will be preferred than the individual ones having more strength,

being lighter or less expensive between other reasons.

For example considering concrete, it’s very strong if you use it in vertical beams to support

the weight of a building or a structure (compression) but it’s weak and tends to bow and snap

if it’s used horizontally (in tension). A great an usual solution is to pour wet concrete around

tight steel bars (rebars) that results into a composite material called reinforced concrete. This

steel bars pulls on the concrete to stop it snapping when it’s under tension, while the concrete

protects the steel from rust and decay. The result is a composite material that works well

under tension and compression.

The most common reason for making a composite is adding strength, but it is not the

only one. Other examples of properties that someone would like to improve could be fatigue

resistance (for example in a part of an airplane that it is repeatedly stressed and strained dur-

ing flight), tolerance at higher temperatures (for example in an engine part), more stiffness

keeping a material lightweight, carry heat and electricity better etc.

30



3.1 Composite materials in aeronautics

Composite materials have been used in aeronautics many years. The benefits of exploiting

the excellent specific strength and stiffness properties of composites, specially for lightweight

structural design are very transcendental.

The composites took-off in aircraft in 1909 with the invention of phenolic resin. The

most famous example of the first composites aircrafts was the deHavilland Albatross man-

ufactured from a sandwich fuselage construction. This aircraft was later developed into the

deHavilland Mosquito (a combat aircraft for the second world war). Mosquito had wooden

construction with fibres made of phenolic resins that made it extremely light, fast and agile

and cheaper than its metallic counterparts. In the Fig.3.1 both deHavilland models are shown.

(a) DeHavilland Albatross, Source: Wikipedia (b) DeHavilland Mosquito, Source: bomber-
commandmuseum.ca

Figure 3.1: Examples of deHavilland Albatross and Mosquito

Since the development of carbon and glass fibres in the 1950’s the aerospace industry is

moving to all-composite aircrafts. Nowadays the most common fibres used are glass, carbon,

aramid-kevlar and the most resin types used are phenolic, polyester and epoxy:

- Glass fibres are used specially in boats and doesn’t have high strength or stiffness.

- Carbon fibres are highly used in aerospace being more strength and stiff than glass ones

but more expensive.

- Aramid-kevlar fibres have more or less the same strength than glass fibres but a bit

more of stiffness. Their use in aerospace is less than carbon fibres (sometimes for impact

protection on aircraft) and are more suitable for bullet-proof vests, helmets etc.

- Phenolic resin is used in aircarft interiors because it have a good chemical, heat and
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fire resistance although in tends to be brittle.

- Polyester resin is more used in boats, wind turbine blades and other cost critical

operations. Its tougher than the phenolic but it burns very easy.

- Epoxy resin is used in combination with carbon fibres for high performance lightweight

applications such as aircrafts being the most common resin in aerospace. It have good chemical

resistance and it can be made quite tough.

The change from metallic to composite construction has also induced a change in the design

and methodology of aircraft components due to the difference between mechanical physical

and chemical properties between metallic and composites. For example, the failure modes

in composites are very different and can be a fibre or resin failure, debonding, delamination,

etc. That, generally, increases the analytical workload and sometimes this failures are more

difficult to exactly predict.

The first generation of commercial aircrafts that contain large proportion parts made of

composite materials, such the Boeing 787 Dreamliner and Airbus A350 XWB (Fig.3.2), are

doing regular flights for a few years. The composite materials enables the designer to tailor

optimum mechanical properties by orientating the direction of the fibre with the primary load

paths. Reinforcing the fibres has other advantages like ease to manufacture complex shapes

and excellent fatigue and corrosion resistance.

(a) Boeing 787 Dreamliner Source: boeing.com (b) Airbus A350 XWB Source: airbus.com

Figure 3.2: First commercial aircrafts with large proportion of composite materials
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3.2 Composite laminates

A composite laminate material is a composite material where each material compose a layer.

These layers are bonded together using resin in the thickness direction. Each layer made

of different material could consist of short fibres, unidirectional continuous fibres or also

woven fibres embedded in a matrix. Controlling the orientation of fibres in each laminate the

properties of the composite laminate can be altered and more strength, durability or some

other benefits can be achieved. A composite laminate example is shown in Fig.3.3

Figure 3.3: Example of a composite laminate

Usually the composite is made symmetrically. The ply orientation is symmetrical about

the mid plane of the laminate, so, for each ply above the mid-plane, there is an identical ply

(in material, fibre orientation angle and thickness) at an equal distance below the mid-plane.

This can be write with the following expression:

θ(z) = −θ(z) where z is the distance from the mid-plane of the laminate.

3.3 CUF formulation for composite laminates

In this section the CUF formulation for composite laminates beams and plates is presented.

Notice that only Lagrange polynomials for both structural and expansion mesh have been

used during this thesis, so the CUF assembly for beams and plates composite laminates is

explained for this type of expansions.
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3.3.1 Beam models

Consider a generic beam model like the one shown in Fig.3.4 with three different layers. The

structural mesh takes place in the y-longitudinal axis of the beam meanwhile the cross-section

of the beam relays in the plane x-z where the different layers have to be taken in account.

Figure 3.4: Generic composite laminate beam

Structural mesh

About the structural mesh, Lagrange polynomials B2, B3, B4 (or higher order if needed) can

be used. In Fig.3.5 the beam previously proposed is described by two B3 elements. In each

of the nodes an expansion in the x-z will be done.

Figure 3.5: Structural mesh - 2B3
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Expansion mesh

The expansion mesh can be designed with the different Lagrange expansions described in

chapter 2. In this case, one L9 element per layer has been considered as it is displayed in

Fig.3.6.

Figure 3.6: Expansion mesh - 1L9 per layer

The assembly of the stiffness matrix can be done through two different methods. The

equivalent single layer and the layer wise. This two methods are shown in Fig.3.7. The first

one is basically used for Taylor expansions and sums the contributions of each single layer

into an unique equivalent one. As in this thesis only LE have been considered the method

used is the Layer wise (LW). This method maintain the different properties of each single

layer and join them in the interface.
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Figure 3.7: Assembly procedure of the stiffness matrix through ESL and LW approaches,
Source: [6]

3.3.2 Plate models

Now, consider a generic composite laminate plate with three different layers as it is shown in

Fig.3.8. In this case, the structural mesh is formed by the x-y plane and the expansion mesh

takes place in the thickness direction (z - coordinate).

Figure 3.8: Generic composite laminate plate

Structural mesh

So the structural mesh is considered in the x-y plane. Analogously for the beam the polyno-

mials used to create the structural mesh are the Lagrangian ones, like for example the mesh
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structure Fig.3.9 where a Lagrangian polynomial of ninth order is used (Like before with the

expansion cross-section, other orders can also be used and are explained in chapter 2). For

each node of the structural mesh and expansion in the thickness direction (z) will be done.

Figure 3.9: Structural mesh - 4Q9

Expansion mesh

Analogously of the structural mesh of the beam model, in the plate expansion mesh, Lagrange

polynomials of order B2, B3, B4 etc can be used. In this case (Fig.3.10) one B3 element per

layer is considered.

Figure 3.10: Expansion mesh - 1B3 per layer
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Chapter 4

Mul2 code

In this chapter the Multilayered structures code is presented. As it is said before nowadays

multilayered structures are being extensively used in a huge different engineering fields such as

aerospace, automotive or civil engineering. As the classical structural analysis tools (which are

available in commercial software like Ansys, Nastran etc) are not good enough to predict the

behaviour of this type of structures, the MUL2 project has been developed by the Mul2 search

group at PoliTO guided by Erasmo Carrera ([7]). This project is dedicated to the development

of an advanced structural model for multilayered structures with particular attention to the

multi-field analysis and the fluid-structure interactions. The software is based in the Carrera

Unified Formulation (CUF) and works for beams, plates and shells. The Mul2 tool has been

applied in different fields and applications like aeroelasticity, aircrafts design, biomechanics,

composites, damage and failure, multifield analysis, rotor-dynamics among others.

During the thesis the Mul2 code has been used as a tool to perform the analysis of different

models and structures. This chapter doesn’t pretend to enter inside how the software works

or the different capabilities of it. Instead how the software is used to perform beam and plate

structural analysis is presented.

The software read 12 input files where all the inputs of the problem are defined. Once the

input files are read by the software, the analysis is performed and finally a post-processor file

is created. This file can be open with different post-processor software in order to visualize

all the displacements, stresses or others field that wanted to be studied.

The 12 input files where the problem is described are next explained. An important thing

to take into account is that the first number of the file correspond to the lines that the soft-

ware will read.
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File ANALYSIS

In this file the type of the analysis that will be carried out is defined. To perform a static

analysis as all the cases in this thesis, the file has to begin with 101 as it can be seen in Fig.4.1

Also a coefficient correction named sheral locking correction beam can be activated, but it is

not necessary for the problems exposed during this work.

Figure 4.1: Example of an analysis input file

File INFO MODEL

As it is shown in Fig.4.2 this file provides information about the case study, the sides to be

studied, no sub-domains in plane and out-plane and the number of elements. This file is only

informative and do not plays a role in the analysis by the software Mul2.

Figure 4.2: Example of an info model file

File VERSORS

The file versors defines the versors used to orientate the local reference system of the elements.

The four numbers to be defined are the ID and the X, Y and Z components of the versor in

the global reference system. This versors will be used in the connectivity file to orientate the

elements in the space. An example of this file is displayed in Fig.4.3.

Figure 4.3: Example of a versors file
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File MATERIAL

In this file the material and its properties are defined. In Fig.4.4 an example of this file

is displayed. Isotropic or orthotropic material can be defined. Young, shear modulus and

poisson coefficient5 have to be provided. Thermal, magnetic, electric or other properties can

also be defined but they have no interest in this project.

Figure 4.4: Example of a material file

File LAMINATION

If the part or structure to be analyzed contains composites laminates, the different layers have

to be defined. An example is shown in Fig.4.5. The second column indicates the ID of the

layer, the third the material to be considered in this layer (previously all the materials had

to be defined in the material file), next the rotation around y-axis of the layer and last the

rotation around z axis.

Figure 4.5: Example of a lamination file

File NODES

The structural mesh is defined in this file. Notice that if the case to study is a beam the

structural mesh will be in the plane x-z, instead if a plate is been studied the structural mesh

will be the x-y plane. The first column is the node ID, the next columns the position in the

space of the node, the following the kinematic model (Lagrange expansion, Taylor expansion,

Legendre expansion or miscellaneous expansion) that in this thesis is always Lagrange expan-

sion and the last one the order of the expansion defined before. An example is been displayed

in Fig.4.6.
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Figure 4.6: Example of a nodes file

File EXP MESH 01

The file EXP MESH 01 contains the expansion mesh of the part. There is a 01 number because

it is possible to have more than 1 expansion mesh file although all the problems studied in

this thesis only have one expansion mesh file. So, here the expansion mesh is defined, this is

the x and y coordinates if the case studied is a beam or the z coordinate in case the part is a

plate. An example of a plate expansion mesh is shown in Fig.4.7.

Figure 4.7: Example of an expansion mesh file

File CONNECTIVITY

The file connectivity provides the type of element to be used in the structural mesh and the

connection between the nodes in each element. So in the first column the type of element

(Q3, Q4, Q9, Q16, B3, B4 etc) to be used is defined, then the ID of the element following

the nodes in order that form that element. The lasts two columns are the versor taken into

account and the expansion that has to be used in the element.
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Figure 4.8: Example of a connectivity file

File EXP CONN 01

Analogously with the previous file, this file contains the type and connectivity of the elements

used in the expansion mesh with the difference that in the third column the layer in wich the

element is located has to be provided. There is an example of this file in Fig.4.9.

Figure 4.9: Example of an expansion connectivity file

File BC

The boundary conditions of the problem are defined in this file. Both loads and constraints

are introduced in this file. D-POINT and D-PLANE are used to impose displacements in a

node or in a plane and F-POINT to impose a force in a node. Other boundary conditions like

pressure, temperature, voltage etc can be also imposed but have not interest in this project.

There is an example of this file in Fig.4.10. In the case of a plane constraint, the first number

is the ID, the next four numbers are the coefficients A, B, C and D of the plane equation

and the three last inputs are if the plane is fixed (0) or free (N) in the X, Y and Z directions

respectively. Same for the D-POINT constraint replacing the equation of the plane by the X,

Y and Z position of the point. Finally for the F-POINT the first column is the ID, the three

following the X, Y and Z position of the point and the last three columns the value of the

force in vectorial mode (X, Y and Z components).

Figure 4.10: Example of a boundary conditions file
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File PBC

This file contains the number of periodical boundary conditions but it will not be explained

as it is not used in all the thesis.

File POSTPROCESSING

The last file is the postprocessing file. This file contains the postprocessing information.

PARA indicates that the postprocessing file that the software MUL2 will create is a paraview

file. It can be replace by GMESH creating a GMESH file. With the comand PNT plus the id

and the position the software will create a file with all the information about this point. An

example of the file is displayed in Fig.4.11.

Figure 4.11: Example of a postprocessor file
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Chapter 5

Global Local Analysis

In this chapter the global/local methodology through the Carrera Unified Formulation is

presented ([4], [8], [9], [10]). The global/local approach is useful in case of complex and

localized stress fields in aircraft structure models. Specially in case of laminates composites

where commercial software 2D analysis can lead to an error specially in the out-plane stresses

and free edges. The local/global approach can approximate well this type of stresses and

making the analysis computationally more efficient than the solid models generally required

to capture this stress fields.

This work around the global local analysis has been studied in collaboration with Em-

braer SA, a Brazilian aerospace conglomerate that produces commercial, military, executive

and agricultural aircrafts and also provides aeronautical services. Embraer SA is the third

largest producer of civil aircraft (after Boeing and Airbus). PoliTO and Embraer SA have a

collaboration deal focus in the structural analysis of the aircraft that implies the studying of

the global local approach through the CUF.

The global models are simulated using 1D, 2D or a combination of both finite elements

with commercials software (Nastran has been used in this thesis). These models have low

computational costs but as it is said they cannot capture satisfactory complex stress fields

due to the kinematic assumptions of the 1D/2D finite elements. Although these models are

not accurate the critical regions of the global model can be identified and then a local analysis

with the CUF can be performed in these regions, detecting those complex stress fields with a

high accuracy and low computational cost (Fig.5.1). To do the local analysis the boundary

conditions (BCs) for the local model have to be extracted from the Nastran global model.
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Figure 5.1: Global local model

5.1 Application of the boundary conditions

There are two types of boundary conditions for the local model, mechanical BC’s and geo-

metrical BC’s.

Mechanical boundary conditions

If forces or moments are apply at the interface of the local model the static problem becomes

indeterminate and the structure is unconstrained. Consequently, the stiffness matrix is sin-

gular. This problem is usually solved by a procedure known as Inertia relief. In this thesis no

mechanical boundaries had to be applied and the Inertia relief procedure is not explained.

Even though this approach can be found in [11] and [12].

Geometrical boundary conditions

Contrary to the mechanical BC’s, the geometrical BC’s, i.e the displacements and rotations at

interface do not require any exceptional procedure as the system is constrained. That results

to a determinate problem that can be solved. In the majority of the global/local approaches

the geometrical BC’s are used instead of the mechanical ones.

Fig.5.2 displays how the geometrical boundary conditions are calculated in the local region.

Considering two points A and B located at the interface of the local region which displacements
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and rotations are known. Using a linear interpolation function it is possible to obtain in all

the middle nodes between A and B of the CUF local model the displacements and rotations.

Commercial codes only gives translational displacements (ux, uy, uz) and rotations (θx, θy, θz)

in the mid-plane in case of beams or plates. With the use of Lagrange polynomials in CUF it is

needed to calculate the 3D displacements over the interface surfaces. In order to calculate the

rest of nodes translations displacements Timoshenko can be applied for beams and Reissner

- Mindlin for plates. As it is seen before, for 1D structures Timoshenko displacement field

corresponds to:

u(x, y, z) =u0(y)

v(x, y, z) =v0(y) + xφz(y) − zφx(y)

w(x, y, z) =w0(y)

(5.1)

And when 2D plate structures have to be considered the Reissner - Mindlin displacement

field is used:

u(x, y, z) =u0(x, y) + zφy(x, y)

v(x, y, z) =v0(x, y) − zφx(x, y)

w(x, y, z) =w0(x, y)

(5.2)

Where u0, v0, w0 are the translational displacements and θx, θy, θz are the rotations of the

global nodes located at the interface of the local region. In both cases, 1D or 2D, the rotations

of the middle zone are used to compute the displacement of all the cross-section nodes at all

the interface levels.

An example is shown in Fig.5.2(c). The displacements and rotations computed by the

commercial code in the node i are used to find the displacements in the nodes t and b through

the Reissner - Midlin displacement field.
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(a) Arbitrary global and local region

(b) Global to local geometrical BC’s

(c) Global and local kinematics

Figure 5.2: Global to local, Source: [9].

5.2 Global local process and Python interface

To summarize the process that has been carried on in this thesis, displayed in Fig.5.3, is the

following. First, the global model has to be designed and analysed using a (Nastran-FEMAP

). Once the global model has been analysed, the local zone of interest has to defined. The

nodes that form this local zone are selected. To run the python interface two files from the

Nastran are necessary. The bdf file containing all the information about the global model

(this is the materials, the lamination, the mesh, the coordinate systems used etc) and a file

47



with the position, displacement and rotation of each node selected in the local zone. On

the python interface the case of study and the local zone mesh are designed. Selecting the

case of study is imposing which edges are free edges and which are continuous edges. In the

free edges no boundary conditions will be imposed. In Fig.5.4 the local zone is shown. The

local zone has to be defined by four straight lines forming four edges. So, 11 cases of study

can be analysed, the case of four continuous edges, four cases with one free edge and six

cases with two free edges. Regarding the mesh, the structural, the expansion mesh and their

connectivities have to be defined. As they differ with beam or plate interface, the meshes are

explained in the beam and plate interface sections.

Once the case of study has been selected and the mesh has been designed, the input files are

written by the code. Finally the python interface offer the option to run the Mul2 analysis of

the local zone created. In the appendix there are the manuals of the plate interface and the

element wise interface (explained in the next sections).

Figure 5.3: Global local analysis process
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Figure 5.4: Local zone edges

5.2.1 Beam interface

The beam interface code was written before my incorporation on the project. In this code

the local zone is always studied as a beam. Even if we have a very thin plate, the local zone

mesh will be created with an expansion in the beam axis (y-axis).

So, the expansion mesh is created in the cross-section xz. This mesh can be designed with

L9 elements or with L16 elements. This is the first choice that has to be done. Then, three

different meshes can be selected. An equally spaced mesh, a chebysev mesh, or a square

chebysev mesh. This two lasts meshes concentrate the nodes on the boundary resulting more

reliable for the study of the free edge cases. Once the type of the mesh is selected, the number

of elements in x and z have to be defined. The python interface will show a scheme with the

mesh selected for the user and ask him if he is satisfied with the mesh. If not, the user will

be able to redefine the mesh.

Regarding on the structural mesh, the number of elements B4 that are wanted for the

structural direction (y) have to be defined.

Normally, the study of the different cases will include layers on the z direction. This layers

can be composed by the same material changing only the orientation or by different materials.

This last case was not considered in the original beam code and had to be implemented. Now,

no matters how many materials compose the layers and how are this layers oriented the code

is able to perform the analysis.
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5.2.2 Plate interface

In order to carry out better analysis in 2D plates, the plate interface was implemented. This

interface performs equally than the beam interface with the difference that i the structural

mesh is defined in the xy plane and the expansion mesh is defined in the thickness direction

(normally z direction). So, now, for the structural mesh Q9 or Q16 elements can be used and

for the expansion mesh B4 elements are used. The code works similar to the beam code and

it is explained in the manual that can be found in the appendix.

5.2.3 Element wise interface

The main limitation of the previous interfaces is that only work for a rectangular meshes like

the local zone shown in Fig.5.4. But normally, in the structures that have to be analysed,

specially in the aircrafts, the meshes are not regular and rectangular meshes. Instead of that

the meshes are distorted like is shown in Fig.5.5.

Figure 5.5: Distorted mesh

So, the last version of the code is working with an element wise (EW) interface. Four

nodes composing an element have to be selected from the Nastran file. With the four nodes

information (position, displacements and rotations) and the bdf file the analysis is launched.

The code asks first if a free edge case wants to be considered or on contrary the four edges are

continuous. Then the type of mesh that wants to be displayed (that is equidistant or chebysev

mesh) is designed. If a free edge case is selected the next step is to indicate which of the four

edges is the free edge. Then the number of elements (Q9 or Q16) along each edge have to

be defined. Once the mesh has been decided and validated the input files will be create and

the Mul2 code will be ready to launch the analysis of the local zone. In the manual in the

appendix there is more details about the functioning of the code.
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This code has no limitations in the orientation of the element in the space. There is no

problem if the element is in the xy plane or xz plane or in a random plane. The code will

extract the information of the element orientation and the material direction from the bdf.

5.2.4 The bdf file

The bdf file contains all the information referring the analysis model. This is, the different

coordinate systems, the material and lamination data and the mesh designed, concretely the

position of each node and the nodes that form each element as well as the coordinate system of

the element. The property used in Nastran to define a laminate plate or beam is the PCOMP

(PSHELL is used in absence of laminates). Inside this properties the different laminates are

defined with the corresponding material and orientation. All this information is extracted in

the Python code to be able to write all the input files presented in Chapter 5.

51



Chapter 6

Numerical results - Beam model

During this chapter the numerical results for beam models are presented. Two different beams

are analysed. The first one, a cantilevered C section beam is analysed using a global CUF

model through the Mul2 code. Then an eight layer beam is analysed first using a global CUF

model and next using a global local model and the results obtained with both methods are

compared.

6.1 Cantilivered C section beam

A cantilevered C-section beam is considered. The cross-section geometry is shown in Fig.6.1.

The length-to-height ratio, L/h, is equal to 20. The height-to-thickness ratio, h/t , is as

high as 10 with h and b2 equal to 1 m, and b1 as high as b2. Two point loads are applied

at [0, L,±0.4]. 6L9 distribution is adpoted and shown in Fig.6.2. The material data is: the

Young modulus, E, is equal to 75 GPa; the Poisson ratio, ν, is equal to 0.33. The model is

analyzed through the Mul2 code entering the input files manually.

The analysis has been developted with 11349 DOF’s, probably more than the necessaries,

but assuring more accuracity in the results.

The maximum vertical displacement, uz, takes place at point [−0.5, L,±0.4] with a value

of −2.952·10−8. The model is also analyzed with 9L9 distribution and the value calculated

differs a bit from the previous one, been −2.982·10−8. This two values obtained by Lagrange

expansion through the Mul2 code are compared with others values obtained from the Mul2

search group in [3] in Table 6.1. This models are the solid model that provides the exact

solution but as it can be seen with a high computational cost (84600 DOF’s), the Euler -
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Figure 6.1: C section geometry.

Figure 6.2: 6L9.

Bernoulli beam theory that is not able to detect the vertical displacement because of the

hypothesis made by this model (see chapter 2) and different taylor expansion models that

with a higher order of expansion approximates the solution.
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model DOFs uz x 108 [m]
SOLID 84600 −3.067

Taylor models [3]
EBBM 155 0.0
N=4 1395 −0.245
N=8 4185 −2.161
N=11 7254 −2.565

LE models [3]
6 L9 11349 −2.952
9 L9 5301 −2.982

Table 6.1: Degrees of freedom and maximum displacement for each model of the cantilivered
C section beam.

6.2 Eight layer beam

A thick layer cantilever beam is considered. The beam is 90 mm long and its rectangular

section is 10 mm high and 1 mm wide. Fig.6.3 shows the vertical distribution of the layers.

Two different materials are employed for the lamination, 1 and 2. Both have the same elastic

modulus in the transversal direction, ET equal to 1 GPa, shear modulus, GTL equal to 0.5

GPa, and poission ratio, ν, equal to 0.25. The poisson ratio and the shear modulus are

assumed to be constant in all directions. They differ in the longitudinal elastic modulus, wich

is 30 GPa for material 1 and 5 GPa for material 2. Four equal loads are applied at the corners

of the beam’s tip, summing a total of -0.2 N in the vertical direction.

Figure 6.3: C section geometry.

6.2.1 Global model

The eigth layer beam is analyzed using the CUF formulation and the Mul2 code. 8L9 elements

are used in the x-z plane, one for each layer. The input data is entered manually and the

results are analyzed with Paraview. Fig.6.4 shows the deformed beam and the displacements

along z axis. The maximum uz occurs in the free end of the beam with a value of 3.01·10−5.
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Figure 6.4: Displacements of the eight-layer beam

The stresses at the mid span along the z axis of the beam can also be analyzed with Paraview.

σyy and σyz at mid span are shown at Fig.6.5.

(a) Normal stress (b) Shear stress

Figure 6.5: Normal and shear stress distribution along the z-axis at mid-span for the eight-layer beam.

6.2.2 Global local model

The same beam is analyzed using a global local model. The global model is designed with

FEMAP with the laminate plate property. The mesh used and the translation along z axis is

shown at Fig.6.6. The maximum displacement along z axis, 3.04·10−5, that occurs in the free

edge differs a bit from the value obtained with the CUF formulation.

Once we have the global model, we can perform local analysis using the interface code

developted with Python. From the global model and the displacements at the boundary of

the zone of interest the code will creat the input files that will be entered in the Mul2 code.
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Figure 6.6: 2D eigth layer beam z displacements.

At the python interface the case of study (il est the sides of the zone of interest where we

applied boundary conditions),the type of mesh and the number of divisions along each axis

have to be indicated. The python interface code has been adapted to be able to launch the

analysis with layers composed with different materials. The code was only able to discern

between layers with different orientation.

Once the Mul2 code is launched with the condicions named before, postprocessor analysis

is performed with Paraview. Stresses at mid span can be analyzed and compared with those

found with the global model. A local zone in the mid span of the beam is considered. The

stresses at mid span are represented at Fig.6.7 as well as those stresses calculated by the

global model. It can be observed that both models detect perfectly the stresses.

Figure 6.7: Normal stress distribution along the z-axis at mid span
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Layers with different orientation

In order to validate the code modification a more complex example is considered. The same

beam with the eigth layers is considered. The material composition of the layers is not changed

but now different orientations of the layers are imposed. From the top to bottom the angles of

the layers are [0, 90, 45,−45,−45, 45, 90, 0] (o) and the materials are still [1, 2, 1, 2, 2, 1, 2, 1].

So now, instead of two different layers, four different layers are considered and shown at

table.6.2.

Layer Material Angle

1 1 0
2 2 90
3 2 -45
4 1 45

Table 6.2: Eight layer beam lamination.

Using the same group created for the previous example stresses at mid span are shown at

Fig.6.8. Normal stresses varies from those obtained before. Logically stresses at the first and

last layers are the same as this layers are oriented equally as before. Basically the stresses

at the third and fifth layers varies from 50000 Pa to almost 0. In the Fig.6.8 also stresses

calculated by Nastran are shown.

Figure 6.8: Normal stress distribution along the z-axis at mid span
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Chapter 7

Numerical Results - Plate Model

The Numerical results for different plate model are presented in this chapter. Three different

models are analysed. First a 3 ply composite rectangular plate under bending is studied using

a CUF global local model and the results obtained with this method are compared with those

obtained by Nastran. Then to carry out an EW approach with an irregular mesh approach

a plate hole model is analysed. Finally a part of an aircraft wing provided by Embraer SA is

studied both with the plate interface and the EW approach.

7.1 3 Ply Composite Rectangular Plate Under Bending

A 3 plies composite plate is considered. The plate is free at one end and clamped at the other

end. The cross-section is shown in Fig.7.1. At the centre of the free end the structure is loaded

by a point load in z-direction its magnitude is −1·10−3. The plate dimensions are L = 2.0 m

(length) and b = 0.1 m (width). Each ply has a thickness of tply = 0.001 m resulting to a total

thickness of the plate of t = 0.003m. The stacking sequence of the laminate is [0, 90, 0] (o).

The material considered for the plate is an otrhotropic material with the following properties:

E11 = 40 GPa, E22 = E33 = 4.0 GPa, ν12 = ν13 = ν23 = 0.25, G12 = G13 = G23 = 1.0 GPa.

The Global model is realized in MSc-Nastran with Femap and a mesh of 10 x 200 plate

elements is considered. The local region taken into account constitutes a small region within

the global structure. The local region is located at the central of the model and its geometrical

parameters are the followings: Llocal = 10.0 mm, blocal = 10.0 mm and the thickness of the

plate hlocal = t = 3.0 mm. In the Fig.7.2 the global structure is shown with the local region

selected for the analysis.
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(a) Plate model (b) Rectangular cross section

Figure 7.1: Plate model and geometrical features

This example was before analysed considering the plate a beam with the cross-section in

the plane x-z. The CUF local model considered was 20 B4 structural elements used along

the y-axis direction and then the LE (Lagrange Expansion) sub-domain distribution along

the plane x-z. Two different sub-domain distributions were adopted. The first one consists

of 5x9 L9 sub-domains (5 along x and 9 along z) while the second one consists of 5x9 L16

sub-domains (5 along x and 9 along z) with 3 sub-domains for each layer of the structure.

The results are in the report [9]. With the development of a python interface suitable to

work with plates the same problem is carried on but in this case the CUF model considered

varies. The expansion mesh takes place in the z axis with 3 B4 structural elements (one for

each layer) and the structural mesh is defined in the x-y plane. The sub-domain adopted was

10x10 L9.

Figure 7.2: Local region

In Fig.7.3 the comparison between the global displacements calculated by Nastran and the

local displacements obtained by the CUF formulation through the Mul2 code is displayed. As

it can be observed, the displacements obtained by the two different ways are the same with a

values between 0,09390 and 0,09734 mm.
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(a) Displacements on the mid span local zone obtained by Nastran

(b) Displacements on the mid span local zone obtained by CUF (Mul2 code)

Figure 7.3: Local zone displacements

Regarding on the stresses, σyy and σyz are studied. The comparison between the stresses

obtained by Nastran and by CUF is displayed in Fig.7.4. It can be observed that in Nastran

code always give a constant value on each layer of in-plane or out-plane stresses. With the

global/local approach, it is possible to predict the behaviour of all the stresses. The results of

the Nastran code coincide with the global/local model only in the middle of each layer. Also,

the global/local model capture the quadratic behaviour of the shear stress.
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(a) Normal stress (b) Shear stress

Figure 7.4: Normal and shear stress distribution along the z-axis at mid span

7.2 Plate hole: the element wise approach

The next example analysed is the typical plate hole under a pressure load applied on the two

sides of the plate . This case is not a composite laminate problem but is useful to validate

the element wise Python code. With the previous codes (beam and plate interface) was not

possible to analyse irregular meshes so an element wise code had to be programmed in order

to be able to perform this type of analysis. As the name indicates this code takes only one

element of the mesh and create the input files for the Mul2 code of this element as it was

explained before.

In the Fig.7.5 the geometrical features of the plate are shown.
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Figure 7.5: Plate hole model and geometrical features

The dimensions of the plate are L = 100 mm and h = 50 mm and a hole of radius r = 20

mm. The materials considered is steel with properties of Young’s Modulus E = 210000 MPa

and poisson’s ratio ν = 0.3. The pressure load considered for this problem has a value of F

= 100 N/mm2.

The plate has not boundary conditions, so is not fixed in space. This introduces a degree of

freedom that is not wanted in finite element analysis. To solve that symmetries are used. The

symmetries will play the role of boundary conditions and moreover will reduce the number of

elements in the analysis. So, the problem is reduced to the structure shown in Fig.7.6.

Figure 7.6: Plate hole reduced model

The problem is solve with Femap (Nastran). The mesh structure is shown in Fig.7.7. The

mesh is rectangular with the exception of the elements around the arc wich are irregulars.
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This zone will be the critical one.

Figure 7.7: Plate hole mesh structure

In Fig.7.8 and Fig.7.9 total displacements and Von Misses stresses are displayed. The

most critical element of the strcture is marked with a black arrow.

Figure 7.8: Plate hole global total translation

In this case the results have credibility as the plate is made from an isotropic material and

without composite laminates. But it is an interesting example in order to validate the python

element wise interface, for example checking the displacement results inside the element and

comparing those results with the Nastran results. In Fig.7.10 the displacements in the critical

element of the structure are shown and correspond with the Nastran displacements shown in

Fig.7.8.
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Figure 7.9: Plate hole Von Misses stresses

Figure 7.10: Plate hole displacements in the most critical element

With the global/local analysis is possible to plot the displacements in the thickness direc-

tion (z axis). This displacements are displayed in Fig.7.11.
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Figure 7.11: Plate hole displacements in z direction of the most critical element

Finally the Von Misses stresses in the element analyzed are shown in Fig.7.12. As it can

observed those stresses corresponds with the stresses calculated by Nastran.

Figure 7.12: Plate hole Von Misses stresses in the most critical element

7.3 Wing structure

A part of a wing structure is analysed. This example has been provided by Embraer SA,

company that collaborates with PoliTO in different projects. The structure is displayed in

Fig.7.13. The hole was not in the original wing structure but in order to made the wing a

more academic example the hole has been introduced. The part has a length of 0.6 m, a

width of 0.8 m and a height of 0,05 m. The wing structure is fixed on three sides as it can be

seen in Fig.7.13. The fourth side is under a punctual compressive force that act on the centre
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of the y-axis (y = 0.4 m) and on z = 0.02 m with a value of 500000 N.

Figure 7.13: Wing model and constraints

The wing is made from an otrhotropic material and composed by 12 laminates. The material

properties are the following: E11 = 165 GPa, E22 = E33 = 9.0 GPa, ν12 = ν13 = ν23 = 0.34,

G12 = G13 = 5.6 GPa and G23 = 2.8 GPa. The stack sequence is [0, 90, 45, -45, 0, 0, 0, 0,

-45, 45, 90, 0]o.

As it is said before when it comes to composite laminates the results given by Nastran are

not totally reliable in the critical zones. But they can give a first approach, an approximation

of the real solution and detect which zones are the most critical in order to then work on

the local approach in these zones. That occurs specially for the stresses and not for the

displacements. In Fig.7.14 the displacements of the model are displayed.

Figure 7.14: Wing structure displacements
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σxx stresses are studied in the first layer in order to find where are the critical zones of

the wing structure. σxx stresses are displayed in Fig.7.15. Logically the most critical part of

the structure is the zones around the hole where the stresses achieve the maximum. In order

to do an exhaustive analysis all the components of the stresses of all of the layers would have

to be analysed, but an academic analysis is been performed to be able to validate the code

programmed. In Fig.7.16 a zoom in the zone around the hole is displayed.

Figure 7.15: Wing structure σxx stresses at the first layer

Figure 7.16: Wing structureσxx stresses around the hole

Accounting this the wing will be first analysed around the hole using the python plate

interface and analysing the free edge effect with both the plate interface and the element wise

interface. Then, an element wise analysis on the vertical surface is also been carried on in
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order to validate that the code is able to work no matters the orientation of the element that

is been studied.

7.3.1 Local analysis around the hole

The four sides of the hole are been analysed. This is done for validate that the code is able

to study the four cases of free edge that are presented in this problem. Looking at Fig.5.4

the edges A and C are those that have a constant y coordinate and the edges B and D those

with x coordinate constant. The four local zones are highlighted in Fig.7.17 with the free

edge marked with the corresponding letter in white.

Figure 7.17: Local zones to be studied

The CUF local analysis is been carried out with 4L9 x 8L9 elements in plane in the local

zones 2 and 4 and 10L9 x 4L9 in the 1 and 3 local zones. Regarding on the elements per layer,

two B4 elements per layer have been used for all four local zones. As these are cases with a

free edge chebysev distribution of the nodes has been used in order to obtain better results.

The first thing to validate in each zone is the displacements. In Fig.7.18 the displacements

around the hole calculated by Nastran are shown. This displacements are compared with those

resulting of the local analysis displayed in Fig.7.19. As it can be observed the displacements

calculated with the global model and the local model are the same as it is expected.
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Figure 7.18: Total displacements around the hole

(a) Local zone 1 (b) Local zone 2

(c) Local zone 3 (d) Local zone 4

Figure 7.19: CUF local zone displacements

Once the displacements are validated the analysis of the stresses are performed. The

stresses taken into account are the stresses in plane, σxx, σyy and σxy and the stresses out of

plane, σyz and σxz. The point analysed in local zone 1 is located at the centre of x coordinate

and near the free edge, is the point A of the Fig.7.20.
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Figure 7.20: Points where the analysis have been developted.

In Fig.7.21 the stresses in plane are represented. All the graphs show the stresses calculated

by Nastran and by the CUF.
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(a) Normal stress - σxx

(b) Normal stress - σyy

(c) Shear stress - σxy

Figure 7.21: Normal and shear stresses in plane
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It can be observed that Nastran is able to approximate well the stresses in plane but it

shows always a constant value along each layer on contrast with the CUF model that is able

to plot the exact value in every point of the layer.

Free edge analysis

In the free edges of a composite laminates high and interlaminar stresses are present. This

stresses are consequence of the mismatch in elastic properties between plies and can cause

edge delamination or interlaminar fracture in the composites laminates that are manufactured

by conventional lay-up technique. This delamination might lead to severe safety problems,

for example the reduction of stiffens, strength and fatigue life. Therefore, is important to

understand the behaviour of this stresses in order to prevent the failure of the composite

laminate at free edges.

A free edge analysis is performed in point B of the Fig.7.20. The stresses taken into

account in this analysis are σzz and σxz. The stresses at this point are analysed using the

local model introduced before and doing an element wise analysis in the element where the

point is located. This analysis has been carried on with 8Q9 elements per each side of the

element and 2B4 elements per layer. The structural mesh has been meshed with a chebysev

model. In Fig.7.22 there is the comparison of the values of σzz and σxz obtained by the plate

local model and the element wise model.
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(a) Normal stress - σzz

(b) Shear stress - σyz

Figure 7.22: Normal and shear stresses out plane in the free-edge

It can be observed that both models, the plate local model that contains the zone 1 of

the Fig.5.4 and the element model that only constitute the element that contains point A

and B and that is a more refined model, obtain approximative the same values of the stresses

out-plane in the free-edge on contrary that Nastran that is not able to obtain this stresses

out-plane in the free-edge in case of composites.
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7.3.2 Element wise analysis

A random element placed in the vertical zone of the wing structure is chosen. The local

coordinate system of this element is not coincident with the global one. The python code is

able to transform the data of the element from the local to the global coordinate. Once the

transformation is done Mul2 code is able to perform the analysis of the element.

The analysis has been performed with 5L9x5L9 elements for the structural mesh (plane

x-z) and one element B4 per layer on the y coordinate.

The displacements of the element are validated comparing those found with the global/local

model runned by the Mul2 code and those provided by Nastran (Femap). The comparison is

shown in the Fig.7.23. As it can be observed the displacements are the same no matters the

model, validating the global local CUF model.

(a) Global displacements - Nastran 2D

(b) Local displacements - CUF

Figure 7.23: Local and Global displacements of a vertical element
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Regarding of the stresses an analysis on the middle point is carried on. The graphs are

presented in Fig.7.24. The stresses calculated by Nastran or by te global/local model are

pretty similar, validating that the code is performing correctly.
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(a) Normal stress - σxx

(b) Normal stress - σzz

(c) Shear stress - σxz

Figure 7.24: Normal and shear stresses on the element middle point
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Chapter 8

Conclusions

In this chapter a summary of the work done and the conclusions that can be extracted from

this project are presented.

The Carrera Unified Formulation is used to perform local analysis for composite laminates,

as the classical beam and plates theories have several limitations in the prediction of high

order effects or in-plane deformations. The global local approach consists in the analysis of

the global model with a commercial code (normally Nastran) to identify which parts of the

model presents complex stress fields fields, where a local analysis is carried out, to perform a

local analysis in those parts. Also the free edge effect in composite laminates is better predict

by the CUF formulation instead of the calculations made from the commercial code 1D or

2D models.

In the framework of the global local approach a Python interface has been developed.

Originally, there was a python interface for the beams models but no for plates. The beam

model interface has been improved to be able to work with layers made from different materials

and with different orientations. This interface has been validated with a numerical example.

Once the beam interface was validated a plate interface was coded to be able to perform in

plates the same type of analysis that were done in beams. This plate interface works equal

as the beam interface but having the expansion mesh on the z-axis (thickness direction) and

the structural mesh in the x-y plane. The results calculated through this plate interface were

validated and compared with those calculated with Nastran or with the beam model.

Both beam and plate interface are not able to deal with irregular meshes, elements not
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formed by four straight lines parallel two to two (rectangular elements). Moreover the plate

and beam interface are only able to work with elements orientated in the y global coordinate

in case of the beam and in the x-y plane global coordinates in the case of the plate. This

problems are solved with the element wise approach, that permits a local analysis of any

element oriented in any direction and without the need to be a rectangular element. This last

python interface has also been validated with two different examples
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Chapter 9

Apendix

9.1 Python plate interface manual

Nastran

1. Save the bdf file of the Nastran model

2. On the Nastran model select results to data table then select the three translations and

the three rotations.

3. Once the translations and rotations are selected click done and select the nodes that form

the boundary of the local zone to be analysed. In case one or more boundaries are free edge

there is no need to select the nodes that conform it.

4. Nastran model will create a table with the translations and rotations of the selected nodes,

save this table at the same folder than the bdf file (recommended).

Python interface

1. Run the python code.

2. Select the bdf file of the model that has to be analysed.

3. Select the file with the boundary local zone displacements and rotations. Make sure that

Nastran has saved this file with point for decimal separator.

4. Select the case you want to study (Fig.9.1). In case there is no free edge select case 1.

On contrary select the case corresponding of your local zone. A and C are the edges with a

constant global coordinate y and B and D the edges with constant coordinate x.
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Figure 9.1: Local zone case selection

5. Decide wether you want to work with Q9 elements or Q16 elements (Fig.9.2).

Figure 9.2: Element type selection

6. Decide the type of mesh you want to use between three types as it is shown in Fig.9.3.

Equidistant mesh (normal mesh), chebyshev mesh and square chebyshev mesh. This two last

meshes are recommended for free edges because they concentrate the nodes on the boundary.

Figure 9.3: Mesh type selection

7. The next step is to choose the number of elements (Q9 or Q16 depending on the previous

chose) along the plane coordinates x,y, and the number of elements (B4) for each layer that

you wnat to consider (Fig.9.4).
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Figure 9.4: Number of elements selection

8. Then the code will open a window with a graph of the structural mesh you have decided

(Fig.9.5). Once the window is close you can decide whether you like the structural mesh or

do you want to change it (Fig.9.6).

Figure 9.5: Structural mesh

Figure 9.6: Decision about the satisfaction on the structural mesh

9. Finally the code give you the opion to run automatically the Mul2 code (Fig.9.7).
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Figure 9.7: Selection wether you like to run Mul2 code or not

9.2 Element wise interface manual

Nastran

1. Save the bdf file of the Nastran model.

2. On the Nastran model select results to data table then select the three translations and

the three rotations.

3. Once the translations and rotations are selected click done and select the nodes that form

the element to be analysed.

4. Nastran model will create a table with the translations and rotations of the selected nodes,

save this table at the same folder than the bdf file (recommended).

Python interface

1. Run the python code.

2. Select the bdf file of the model that has to be analysed.

3. Select the file with the nodes displacements and rotations. Make sure that Nastran has

saved this file with point for decimal separator.

4. Select if you want to study a case with free edge or not (Fig.9.8).

Figure 9.8: Select if a free edge has to be considered

4.1. In case a free edge is selected, the number of free edges to be considered (at the

moment only one free edge can be studied) and the nodes that form the free edge have to be

indicated as it is displayed in Fig.9.9.
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Figure 9.9: Select the nodes that conform the free edge

5. Decide wether you want to work with Q9 elements or Q16 elements (Fig.9.10).

Figure 9.10: Element type selection

6. Decide the type of mesh you want to use between three types as it is shown in Fig.9.11.

Equidistant mesh (normal mesh), chebyshev mesh and square chebyshev mesh are available.

Figure 9.11: Mesh type selection

7. The next step is to choose the number of elements (Q9 or Q16 depending on the previous

chose) along each side of the structural mesh, and the number of elements (B4) for each layer

that you want to consider (Fig.9.12).

Figure 9.12: Number of elements selection

8. Then the code will open a window with a 3D graph of the structural mesh you have decided
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(there is an example in Fig.9.13). Once the window is close you can decide wether you like

the structural mesh or do you want to change it (Fig.9.14).

Figure 9.13: Structural mesh

Figure 9.14: Decision about the satisfaction on the structural mesh

9. Finally the code give you the option to run automatically the Mul2 code (Fig.9.15).

Figure 9.15: Selection whether you like to run Mul2 code or not
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