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Summary

The aim of this study is to determine the potential of the informative content enclosed
in the two image modalities proper of bp-MRI (i.e. T2-weighted and diffusion weighted) in
order to automatically detect malignant lesions on behalf of the prostate. All the elaborations
will be performed separately for the two image modalities, as initial exploratory trial.

Firstly, segmentation is necessary to isolate the prostate gland. The algorithm designed for
this purpose is completely automatic and based on the location of the prostate in each im-
age. It receives as input the ADC map, created from DW sequences, whilst the outcoming
segmentation is utilised for the T2-weighted images as well.

Once the prostate is delineated, feature extraction of first order statistics and texture features
(i.e. GLCM and GLRLM) is performed, considering non-overlapping regions of interests
from the obtained masks for both image modalities.

Characterised by a significant disproportion concerning healthy and cancerous areas, the la-
belled data set is then used to build a balanced training set embedding the two classes by
means of decision trees.

A genetic algorithm is employed to simultaneously select the most relevant and instructive
features and optimise the parameters of a support vector machine. This approach led to
comparable performances in terms of sensitivity and specificity (around 0.7), which are not
enough considering the consistent difference in test set size between malignant and benign
samples. What immediately emerges is the need of a greater representativeness of healthy
zones, proved by the relatively low specificity, which would compromise the correctly iden-
tified cancerous areas.

To enhance the representation of benign tissue, another training set is conceived beginning
from decision trees outcome and applying dendrogram clustering on the most numerous be-
nign nodes. The corresponding clusters will constitute diverse benign classes, randomly
extracting from each a number of elements equal to the number of malignant ROIs com-
prised in the decision tree based training set.

A multiclass version of SVM is trained with dendrogram based training set and the optimised
parameters chosen by the genetic algorithm, effectively revealing improved identification of
non cancerous regions.

K-nearest neighbours classifier is also tested but without any amelioration.

Due to insufficient identification of benign tissue, neural networks are implemented to seek
high specificity along with a good tumour recognition.



Feedforward NNs are investigated analysing their outcome according to several hidden
layers structures using both aforesaid training sets. Although benign classes from dendro-
gram based training set ensure high specificity, tumour identification results worsened.

To further exploit the ability of the NNs to recognise a single label, consecutive networks are
implemented in a cascade and the class featured with lowest misclassified number of benign
elements as malignant is not included in the next NN training set.

Since only small changes are found, the final attempt tries to increment the presence of un-
seen benign samples, by performing dendrogram clustering on the healthy portion of test set
belonging to the network with smallest number of false positives to construct new classes for
healthy tissue, thus enforcing their representation. This conclusive method actually achieved
a better performance in the recognition of benign samples, at the expenses of a weakened
tumour detection.

This study outlines the complexity in designing a system enabling reliable tumour detec-
tion, accompanied by appropriate identification of healthy tissue.

As demonstrated by all these trials, the key is to create a training set which encompasses as
much knowledge as possible, compensating for data diversity and difference in sample size
relative to the two classes.

In conclusion, there exists a basis for bp-MRI protocol to be employed in prostate cancer
detection, hoping this work will pave the way for finding an efficient strategy.



1 Introduction

1.1 Rationale

Prostate cancer is one of the most widespread malignant male pathologies [1]. In Eu-
rope, the standardised rates referring to 2012 concerning new diagnosis and deaths amount
respectively to 96 and 18 cases per 100000 subjects [2]. Due to the continuous increase of
the population and their ageing, the incidence rate associated with prostate cancer is set to
increment in the next decades, along with a considerable growth of the costs related to treat-
ment and diagnosis, even considering indolent cancer [3].

Nowadays, PCa diagnosis establishes that men beyond 50 years of age undergo PSA
blood test and digital rectal examination during the urological visit. If some anomaly arises
from either of them, the patient is usually subjected to random systematic transrectal ultra-
sound biopsy. Furthermore, many international research groups have proved the accuracy of
multi-parametric resonance imaging to identify clinically significant PCa with 82% as posi-
tive predictive value and over 95% as negative predictive value to rule out high risk PCa [4}35]].
Nevertheless, up to now the use of mp-MR in the clinical practice to diagnose subjects with
PCa suspicion is limited by the elevated economic expenses and the prolonged time needed
to perform the exam.

In this context, the research activity carried on by Candiolo Cancer Institute proposes the
introduction of an alternative examination reserved to a biopsy-naive population who may
be affected by PCa. This new clinical path includes the so-called bi-parametric magnetic
resonance, which differs from the mp-MR in the number of sequences (one less with respect
to mp-MR), and the unemployment of both the endorectal coil and the intra-venous injection
of a contrast agent. These characteristics result in:

e reduced exam duration (about 30 minutes less);

e decreased probability of complications and preparation time for the patients, who
would be more prone to perform the exam;

e more rapid and less demanding readings for the radiologists, because of restricted
number of images to analyse;

e diminished cost of the exam.

In addition, a Computer Aided Diagnosis system could be developed to automatically
detect the presence of prostate cancer from bp-MR images. As a fast and user-independent
software tool, it would provide a great aid to the expert radiologists by speeding up the
diagnostic process and overcome intra and inter-subject variability.



1.2. Prostate Cancer

In order to assess the efficacy of bp-MR in the diagnosis of PCa, a clinical study is per-
formed, enrolling patients declared eligible after urological visit, who are randomised in two
groups: in the former the diagnosis is established with bp-MR, while in the latter mp-MR is
employed. All the participants are subjected to either random or fusion TRUS biopsy.

For additional information about the aforementioned study please refer to the clinical
trial in [6].

1.2 Prostate Cancer

The prostate (also called prostate gland) is an organ belonging to the male reproductive
system. It is located underneath the urinary bladder inside the pelvic body cavity and in front
of the rectum. Its size is similar to the one of a walnut, but it tends to enlarge with ageing.
Posteriorly to the prostate, there are the seminal vesicles (i.e. glands which produce a con-
sistent part of the fluid composing semen), while the urethra passes throughout the prostate,

as shown in figure[T.1][[7]].

Seminal
vesicle

Prostate

Cancerous
tumaor

Figure 1.1: Representation of the prostate along with surrounding organs 7]

Referring to McNeal’s nomenclature of the prostate [8]], the following areas can be dis-
tinguished [9]:

e peripheral zone, comprising more than 70% of the glandular prostate, it is the most
common site affected by cancer. This region contains the proximal urethral segment
of the prostate, which lies between the verumontanum (i.e. portion in which the ejac-
ulatory ducts enter the urethra) and the urinary bladder. In this tract, the preprostate
sphincter is present;

e central zone, including about 25% of the glandular prostate, its structure is different
than the peripheral one, in terms of size and shape of acini and ducts (much larger and
with an uneven contour). It is less predisposed to diseases;

e transitional zone, located in the preprostate region, it amounts to only 5% of the total
volume of the prostate, but its expansion can cause the urethra to be compressed and
the bladder outlet to be obstructed;
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e anterior fibromuscular stroma, which completely covers the anterior surface of the
prostate, presenting a nonglandular composition.

Furthermore, three regions can be delineated considering the coronal plane: base, midg-
land and apex.
A schematic representation of the aforesaid zones is given in figure[1.2]

Seminal Vesicles

Urethra

Figure 1.2: Detailed illustration of prostate areas (PZ: peripheral zones, TZ: transition zones, CZ: central
zone, AS: anterior fibromuscular stroma, SV: seminal vesicles, US: urethral sphincter, a: anterior, mp: medial
posterior, Ip: lateral posterior). The prostate is divided laterally by a vertical dashed line and into
anterior/posterior by a horizontal dashed line passing through the centre of the gland
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Among benign pathologies affecting prostate, there are focal prostate atrophy, transition
zone nodules, prostatitis, benign prostatic hyperplasia nodules concerning peripheral zone,
and calcifications [11]. Instead, prostate cancer represents the most common malignancy in
men.

PCa is only second to skin cancer as most common cancer in American male population [12]].
The diagnosis of prostate cancer is estimated to be about 1 man in 9, with higher probability
in men aged 65 or older. As cause of death, it follows lung cancer with about 1 male subject
in 41 who will die of PCa [12]. In Italy, about 1 man in 8 could be diagnosed with prostate
cancer during his lifetime [13]].

Among risk factors of this disease, the following can be mentioned [[13]]:

e age: very low probability before 40 years, while it increases after 50 years (about 2
tumours in 3 are found in men over 65 years);

e genetic heritage: the risk is doubled if a family member has had prostate cancer with
respect to a subject with no family cases;

e high hormonal levels, such as testosterone and insulin-like growth factor (IGF)-1;
o lifestyle related causes, for instance obesity and lack of physical activity.

Race-etnicity is also encountered as a possible risk factor [14].

Figure [I.3] displays the increment in the incidence of prostate cancer related to Great
Britain, as an emblematic example [3]].

Male cancers 2030
Male cancers 1984 Male cancers 2007

Other 25%
Other 23% Other 25%

Pancreas

3%'\
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Melanoma 1% | stomach
Pancreas 3% pancreas 3%
Melanoma__. =k oo ——
Kidney 3% g‘,«ﬁ ung
2% £ ‘,gva‘d“ 2k
£
HL > gw‘#\
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Figure 1.3: Most widespread cancers in men considering 1984, 2007 and a prediction for 2030, showed using
pie charts with areas proportional to cases number [3]]

Prostate cancer advancement is described mainly by two variants [[15]:

e slow: these tumours have a gradual development and they remain enclosed in the
prostate. They represent around up to 85% of all prostate cancers [16]. Active surveil-
lance can replace treatment in this condition;

6
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e fast: their progression is accelerated and they soon reach other organs, creating metas-
tases especially in the bones [17].

Being these two courses so diverse, it is pivotal to discriminate aggressive from slow-growing
prostate cancer.

In order to determine the aggressiveness of PCa, a bioptic sample of the gland must be anal-
ysed. This enables to assess the Gleason Score, utilised to classify prostate cancer based
on the quantity of tumour cells, on a scale from 1, lowest grade indicating that malignant
tissue is very similar to healthy areas, to 5, when cancerous cells present abnormal aspect
and growth. If there is GS bigger than 7, it designates the simultaneous presence of different
levels of aggressiveness and it is given by the sum of the two grades, where the first grade
refers to the predominant portion of the prostate [[18].

Furthermore, PCa tends to evolve in specific areas of the prostate [19-21]:

e about 70 — 80% in the peripheral zone;
e 10 — 20% in the transition zone;

e around 5% in the central zone.

1.3 MRI for Prostate Cancer

Magnetic resonance imaging is utilised in the assessment of diseases concerning prostate
gland, in light of the high-resolution images it offers [22]. In this section, insights about the
MRI protocol employed in common clinical practice will be provided together with a viable
alternative.

1.3.1 Multi-parametric MRI

Multi-parametric magnetic resonance imaging has proven to be effective in the identifi-
cation of malignant and benign pathologies of the prostate, due to the combined information
retrieved by the multiple adopted modalities.

MR sequences generally used for prostate imaging are listed in the following:

e T2-weighted, yielding anatomical details, in conjunction with pelvic phased array coil
and endorectal coil has been extensively exploited for local staging and diagnostic
check-ups of PCa [23]24];

e dynamic contrast enhanced, created to quantify perfusion parameters to distinguish
cancerous from healthy tissue [25,[26], revealing tumour vascular architecture;

e diffusion weighted, able to examine diffusion of water molecules, which results less-
ened in dense cellular environments such as cancers [[27].

Magnetic resonance spectroscopy imaging is another technique which investigates the level
of certain metabolites (e.g. creatine, citrate, choline) and polyamines (e.g. spermidine, sper-
mine and putrecine). According to these levels, cancerous areas can be recognised as con-
firmed by earlier studies [27,28]].
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Encouraging results infer the efficacy of multimodal MRI to detect PCa, combining morpho-
logical information from T2-w with functional modalities, such as DCE-MRI, DWI and/or
MRSI. The improvements include enhancement of cancer localisation [29,30] and volume
assessment [31]] in the peripheral zone.

The previously mentioned MR sequences can be used together in diverse combinations
[32.33]], even though T2-w is often included to preserve morphological references.

Some research groups tried to differentiate low-grade from high-grade PCa starting from
mp-MR featuring T2-w and DCE modalities together with MRSI, obtaining promising find-
ings [34]]. Applications of mp-MRI comprise also prostate cancer radiotherapy, to delineate
healthy and unhealthy tissue and assess staging of the disease [35].

With the aim of making the interpretation of prostate MRI less biased by radiologists’ sub-
jectivity, the prostate imaging reporting and data system (PI-RADS) has been conceived to
favour standardisation and reporting of MRI [10,36].

In spite of the aforementioned qualities, interpreting prostate MRI can be very challenging
and often confounding also for experienced readers [11,37]. This sanctioned the construc-
tion of software tools for supporting the clinicians in the diagnostic process, strengthened by
the significant informative content retrievable from this imaging modalities.

To further consolidate the necessity of standardisation and agreement among expert radiolo-
gists, an advancement in this field is represented by the development of computer-aided diag-
nosis systems, able to provide quantitative and user-independent information about prostate
cancer localisation and even staging. Among the main advantages, there are reproducibility
and reduction of the time required to analyse MR scanning. A representative example of the
architecture of a CAD system is given in figure

For a systematic review on CAD systems the reader is referred to [38].

The major downside associated to mp-MRI is the use of the ERC coil and/or the injection
of the intra-venous contrast agent, which could cause discomfort in the subjects, making
them less willing to perform the exam. There exists also the chance some subjects are allergic
to the contrast agent.

To overcome this issue, a non-invasive protocol called bi-parametric MRI has been designed
and it is currently examined to understand whether it is suited as a diagnostic tool.
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Figure 1.4: Detection of prostate cancer by means of a computer aided diagnosis system [38]]

1.3.2 Bi-parametric MRI

Nowadays, bi-parametric magnetic resonance imaging is revealing to be appropriate for
the detection of prostate cancer. It comprises non invasive MR sequences such as T2-
weighted and DW modalities. Some preliminary studies show it provides similar perfor-
mances among radiologists compared to multi-parametric MR [39-41]].

In a recent work of Di Campli et al. [42], the diagnostic accuracy of a bp-MR protocol with
respect to the traditional mp-MR was evaluated regarding identification of clinically signif-
icant cancer. Specifically, they proved there was no considerable disagreement within the
performances of readers with different years of experience (7, 3 and 1 years) using the two
sets of images. This result is promising as it underlines the validity of the bp-MR protocol,
even in the case of clinicians with a minor level of expertise.

The research conducted in [43]] utilised bi-parametric MR protocol in conjunction with PSA-
density, discovering the greater performance of the former in detecting prostate cancer. They
acquired images with a 3 T scanner from a biopsy-naive population with clinical suspicion
of PCa. They reinforced the potential of bp-MRI, especially before any previous biopsy, to
play a crucial role in the diagnosis of prostate cancer, for it may spare invasive procedures
and unneeded treatments.

The study of Niu et al. [44]] examined texture features extracted from bi-parametric MRI for
distinguishing high-grade PCa, proving its feasibility.

These preliminary findings suggest bp-MR protocol may encompass the knowledge neces-
sary to differentiate benign from malignant tissue belonging to the prostate.



2 Prostate Segmentation

2.1 Patients

In order to be eligible for enrolment, male participants complied with these requisites:
e age equal or inferior to 75 years;

e no previous prostate biopsy (i.e. biopsy naive);

e negative findings in urological visit;

e PSA level smaller than 15 ng/ml (found to increase in at least two successive tests).

All patients waived written informed consent to enter this clinical trial.

A schematic representation illustrating the study population for prostate segmentation is
presented in figure 2.1]

38 male subjects assessed
for enrolment

Exclusion criteria:
* MR images affected by
v artefacts (n=1)
*  Misalignment between
image modalities (n = 1)

36 subjects included in
the study

Figure 2.1: Schematic representation of the study population for prostate segmentation

Table [2.1] details the main characteristics of the included subjects.

Patients All (n = 36)
Age 68.4 (52.9-179.1)
PSA (ng/ml) 6.2 (3.2 -16)

Table 2.1: Characteristics of the study population. Measurements are given as median (range)

10
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2.2 MR Image Acquisition

Images were acquired using a 1.5 T scanner (OptimaMR450w, GE Healthcare, Milwa-
kee, Illinois, USA), adopting the setting in table

Sequence ST (mm) FOV (cm) NEX AM (pixels) RM (pixels) Additional information
T2-w (SE) 3 16x16 16 256 x 192 512 x 512
DW (EPL, SE) 3 20x20 1 128 x 100 256 x 256 b-values: 0 — 1000 s/mm?

Table 2.2: MRI protocol for T2-weighted and diffusion weighted modalities (ST: slice thickness, FOV: field
of view, NEX: number of excitations, AM: acquisition matrix, RM: reconstruction matrix, SE: spin echo, EPI:
echo planar imaging)

Imaging parameters were in accordance with the scanning requirements for prostate
imaging [45].
Since the dimensions of T2-weighted and diffusion weighted images differ, DW images are
subjected to up-sampling taking as reference T2-w modality. By doing so, T2-w and DW
images present matching dimensions (512 X 512 pixels per 24 slices) and they will be em-
ployed for all the succeeding elaborations.

The apparent diffusion coefficient map is calculated pixel-wise by means of the monoex-
ponential model [46,47] in equation 2.1}

1 /S,
ADC; = - x| (—) 2.1
, X In s, (2.1)

where b = 1000 s/mm?, S is the pixel value from DW image with b = 0 s/mm?, S, is the
pixel value from DW image with 5 = 1000 s/mm? and In indicates the natural logarithm.

To guarantee the alignment between the two image modalities, every patient’s set of im-
ages was individually evaluated by segmenting the prostate in one sequence and projecting
it to the other.

Referring to the study population, no considerable misalignment existed, leading to the un-
employment of a registration procedure. Thanks to the absence of the endorectal coil, in-
cluded in the mp-MR protocol, there is no substantial deformation, also enforced by the fast
image acquisition. In fact, only one patient has been excluded due to misalignment after
the re-sampling procedure, very likely caused by motion artefacts during the acquisition (see

figure[2.2).
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2.2. MR Image Acquisition

(a) Patient presenting misalignment

(b) Patient with no misalignment

Figure 2.2: Representative examples to visualise the problem of misalignment between image modalities

12



2.3. Algorithm

2.3 Algorithm

Prostate segmentation is a mandatory step to focus the analysis on the region of interest,
i.e. the prostate.
The segmentation algorithm proposed in this work has the aim of automatically isolating the
prostate gland from the other biological structures present in the images. Essentially, it is
based on the location of the prostate known to be approximately in the centre of each image.
The algorithm has been developed using in-house C++ software along with ITK open source
libraries [48]].
A schematic representation of the procedure here employed is displayed in figure 2.3]

Thresholding

ADC map Preprocessing based on K-means

MASK Compuj[ation of Largest iject
Bounding Box Extraction

Figure 2.3: Phases of segmentation algorithm

Preprocessing

The input given to the algorithm is constituted by the ADC map (computed as in equa-
tion [2.1)), which is featured with more homogeneous background and less tissue diversity
compared to T2-weighted modality.

Due to the re-sampling procedure, each image in the two sequences presents the same size
(512 x 512 pixels per slice), hence it is equivalent referring to the horizontal dimension (x)
or vertical dimension (y).

The preprocessing phase consists of a contrast adjustment to enhance the most numerous
grey tones in the image, by windowing between the 50th and the 99th percentile of pixel
intensities (see figure [2.4). Consequently, the biological structures are preserved, whereas
the background becomes more uniform.

Furthermore, grey tones are rescaled between 0 and 255.

13



2.3. Algorithm

The main advantage of such steps is to create a common ground to begin with for all images,
trying to lessen the variety of characteristics proper of each single patient.
Thresholding based on K-means

Referring to [49] as an insight, they used Fuzzy-C-Means to smooth inhomogeneities of
the MR field. For the purpose of this study, k-means algorithm appears suitable to distinguish
the prostate, by clustering pixels on the basis of their intensity value.

Choosing K = 4 as number of clusters revealed to be experimentally the most appropriate
choice in view of next steps. In particular, the following areas can be differentiated:

e background;
e edges of present structures;
e inner part of present structures;

e outer part of present structures (excluding edges).

The attribution between each cluster and the aforementioned zones aids to identify macro-
scopic references, in the attempt to simplify the more variegate reality.

Figure [2.4] shows the images obtained with the preprocessing and the output of k-means
algorithm.

Figure 2.4: From left to right: ADC map given as input, image resulting from preprocessing, image
representing k-means pixel clustering

The outcome of the thresholding applied on the k-means pixel clustering is presented in
figure[2.5] so that the background is not considered.

14



2.3. Algorithm

Figure 2.5: On the left: result of thresholding applied on output of k-means algorithm. On the right: image
obtained after largest object extraction

Largest Object Extraction

The largest object in each slice is extracted according to the procedure in figure [2.6|based
on centroid coordinates. An object is intended as a group of joint pixels, creating an area of
a certain extension.

After computing centroid coordinates of the first largest object, they are checked to be in the
centre of the image, i.e. between the 25% and 75% of the slice x and y dimensions. This
range is taken into account because of the variability of prostate size among patients and
the possibility of having part of bladder or rectum contained in the area, thus altering the
coordinates.

If the first object does not satisfy the condition, then the coordinates of the second largest
object are tested and so on until a maximum of 4 iterations. This can be explained by the
presence of objects at the corners of the image, which compete in terms of number of pixels
with the central object, especially in the final slices of the volume (due to the restriction of
prostate diameter).

In order to avoid the presence of holes inside the objects, a hole filling operation with a disk
of radius 7 pixels on both x and y dimension and width of 1 pixel along the z dimension
(intended as direction to scan the slices) is performed.

An example of the outcome of the largest object extraction procedure is displayed in figure
and from now on it will be addressed to as LOE mask.

15



2.3. Algorithm

START

Computation of |
[Cy . Cy] of object n n=n+l

Extraction of the

Keep largest object .
(n+1) largest objects

v :

Largest object Keep the smallest
extraction object among them
v
END

Figure 2.6: Flowchart for retrieving largest object in each slice based on centroid coordinates ([Cy, C,]:
centroid coordinates respectively along x and y, Li: 25% of horizontal image dimension, L,: 75% of
horizontal image dimension, n: objects counter)

Computation of Bounding Box

It is fundamental to underline that the LOE mask by itself cannot ensure the limitation of
biological structures other than the prostate. To solve this issue, a bounding box (abbreviated
as BB) enclosing the prostate is computed with the schematic representation provided in

figure
Losical " Selection of slice
ogical operations for BB computation

Median BB
computation

Multiplication with
LOE mask

Figure 2.7: Phases of bounding box computation

[ MASK
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2.3. Algorithm

Primarily, the undermentioned logical operations are performed (see figure [2.8)):

e AND, between the LOE mask and the cluster from k-means algorithm containing only
the edges of present structures;

e XOR, between the result of the previous operation and the LOE mask.

Figure 2.8: Logical operations performed beginning from k-means cluster comprising the edges of present
structures (on the upper left) and LOE mask (on the upper right)

Ultimately, the largest object in each slice is extracted to obtain the final image, called XOR
mask, used to designate the slice to be taken as reference for computing bounding box coor-
dinates.

Bounding box coordinates will be indicated as in equation [2.2}

(X1, X2, Y1, Y2l (2.2)

where X; and X, are respectively minimum and maximum x coordinates, while Y; and Y, are
respectively minimum and maximum y coordinates.

The selection of the slice eligible for bounding box computation consists of ascertaining
that the minimum y coordinate of the current BB is beyond 25% of image dimension (L;):

Y1 > L (2.3)

The first slice to be tested is the central slice in the volume, since it certainly includes the
prostate. If the condition in equation is not satisfied, then next slice is checked until the
acceptable one is found.

17



2.3. Algorithm

START )

A

Median BB coordinates
for slices [n-1, nt+1]

I

Median BB coordinates
for slices [nt+2, nt4]

No Yes

[le r XZm ’ Ylu r Y2u] [Xlu r Xle r Ylu 1 Ylu]

i

Increment of median BB
coordinates

END

Figure 2.9: Flowchart for retrieving median bounding box coordinates (L;: 70% of vertical image dimension,
C can be either X or Y, subscript m indicates median coordinates considering slices [n — 1,n + 1], while
subscript u indicates median coordinates considering slices [n + 2,n + 4])

With the goal of finding the bounding box which most faithfully contains the prostate,
the method in figure [2.9]is implemented.
At the beginning, median coordinates considering slices in the range [n — 1,n + 1] are com-
puted, where n corresponds to the number of the slice eligible for bounding box computation.
Thereupon, the following two conditions are tested:

e minimum y coordinate beyond 70% of vertical image dimension, to ensure the rectum
is not included;

o difference between maximum and minimum x coordinate being smaller than one third
of the maximum x coordinate, to ascertain prostate diameter is within the expected
range (same condition is applied for y coordinate).

18



2.3. Algorithm

If either one of the previous statements is verified, slices in the range [n + 2, n + 4] are
considered to calculate median BB coordinates. As a further control point, the condition
regarding the difference between maximum and minimum x coordinate being smaller than
one third of the maximum x coordinate is tested: if it is true, all four coordinates are up-
dated taking into account median coordinates of current slices, otherwise only minimum and
maximum coordinates along y are modified. In such manner, the diameter of the prostate
along the horizontal dimension is preserved, whether no anomaly arises from former checks.
In fact, moving toward the final slices, the diameter is restricted as the whole prostate is
scanned.

An increment of 40% and 30% respectively along x and y coordinate with respect to bound-
ing box area is added to the obtained BB. This is a preventive measure, not to miss any pixel
belonging to the prostate, although there is the chance to segment tissue outside the prostate
itself.

The ultimate mask is given by the multiplication of the bounding box image (i.e. mask with
pixel equal to 1 in BB area) with the LOE mask.

An example of the outcome resulting from the segmentation algorithm is reported in figure
2.10

Figure 2.10: From left to right: final mask on ADC map and T2-w image

2.3.1 Reference Standard

Manual segmentation of the prostate has been provided slice by slice on T2-weighted and
ADC map for each patient by an expert radiologist and will be used to validate the automatic
masks.

19



2.3. Algorithm

2.3.2 Statistical Analysis

The statistical analysis to estimate the performance of the segmentation algorithm is fo-
cused on the following metrics, obtained from the confusion matrix in table @

e recall (also called sensitivity), establishing the quantity of pixels belonging to the
prostate actually segmented [S0]:

TP
Recall = ———— 2.4)
TP+ FN

e precision, assessing the proportion of the automatic segmentation which is compre-
hended in the reference mask [51]]:
TP

Precision = ———— (2.5
TP+ FP

e Dice Coefficient, measuring the proportion of the overlapping region considering ref-
erence and automatic segmentation [52,53]]:

2TP

DC =
2TP+ FP+FN

(2.6)

These metrics are all unitless, ranging from 0, meaning worst-case scenario (no pixel in
common) to 1, i.e. ideal segmentation (corresponding to the ground truth).

True class

T P
Predicted T TN FN
class P FP TP

Table 2.3: Confusion matrix used to compute metrics (P: label for prostate, T: label for tissue other than
prostate, TP: true positive, FP: false positive, TN: true negative, FN: false negative)

Every metric is computed slice by slice for both T2-w and ADC masks.
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2.4 Validation

The segmentation algorithm proposed in this study shows high sensitivity across all slices
belonging to each patient. This is very crucial, since for the purpose of classification it is
essential not to leave out any pixels proper of cancerous tissue.

Median values and range for the computed statistics are provided in table [2.4

Image type DC Recall Precision
ADC map 0.74 (0.32-0.94) | 1.00(0.94 -1.00) | 0.59 (0.19 - 0.88)
12-w 0.72(0.27-0.93) | 1.00(0.97 -1.00) | 0.56 (0.16 - 0.88)

Table 2.4: Metrics to evaluate segmentation performances considering the entire set of patients.
Measurements are given as median (range)

Whilst the range of sensitivity is limited to a very small interval, precision and Dice co-
efficient reach a much broader series of values. Moreover, the median precision value yields
the lowest performance.

Dice coeflicient values retain a median performance across all slices around 0.7 for both T2-
w and ADC map.

In order to better comprehend the reason behind poor performance regarding precision, fig-
ure[2.T1|provides the median precision value for each patient, whose slices have been divided
in base, midgland and apex.

As observable from figure the majority of subjects presents the highest value of preci-
sion, mostly above 0.6, in the slices corresponding to the midgland. As a matter of fact, the
computation of the bounding box takes as reference one of the slices surely belonging to the
central part of the prostate, thus achieving better results.

Furthermore, the increment of the bounding box area contributes to diminish the precision,
especially considering the extremities of the volume.
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T2-w | Median precision value across patients
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Figure 2.11: Median value of precision considering base, midgland and apex for each patient

The separation of the three zones of the prostate presents better performances also con-
sidering median Dice coefficient in the midgland, as visible from figure 2.12]
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1 T2-w | Median Dice Coefficient value across patients
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Figure 2.12: Median value of Dice coefficient considering base, midgland and apex for each patient
As evident from figures 2.13] and [2.14] both Dice coefficient and precision are charac-
terised by a wider range in the area proper of the apex. This could be explained by the fixed

dimension of the bounding box, which is much greater with respect to the dimension of the
prostate in the final slices of the volume.
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2.4. Validation

Figure [2.15]exhibits segmentation performances on two subjects, showing a case of more
and less pronounced oversegmentation.

(a) Example of considerable oversegmentation

(b) Example of slight oversegmentation

Figure 2.15: Outcome of the segmentation algorithm. On the left, prostate mask applied on ADC map. On
the right, prostate mask applied on T2-w

In spite of the presence of pixels beyond the prostate, especially in the slices outside the
central part of the gland, the automatic masks guarantee segmentation of the whole prostate,
assuring complete inclusion of healthy and cancerous tissue, thus being suitable to be em-
ployed in the next elaborations.
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3 Machine Learning
for Tumour Detection

Tumour detection is known to be one of the most complex and challenging tasks in
biomedical engineering. This study proposes to investigate diverse classification techniques
to locate malignant lesions on behalf of the prostate.

Figure provides a concise scheme to illustrate the elaboration process, which is to be
delineated in details throughout this chapter.

Feature
Extraction

First order statistics
GLCM
GLRLM

Classifier
Construction

L GA&SVM
Rand lati Classification
DT based andom population R
E of solutions from GA Optimisation

& SVM T
v
Dendrogram based Raudm'n population G/l\ &
training set of solunf)ns from GA - » Multi-class
& Multi-class SVM k-NN
\Phase A )

Neural Networks

DT based Feedforward . Cascade of
training set W Neural Networks W Feedforward

Dendrogram based Dendrogram based
training set training set

Phase B

o J

Figure 3.1: Schematic representation highlighting every step implemented for tumour detection

All the passages here described are applied separately to the two image types (ADC map
and T2-w).

The elaborations for the tumour detection phase have been implemented with MATLAB
Software, Release 2018b (The MathWorks, Inc., Natick, Massachusetts, United States).
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3.1. Patients

3.1 Patients

The study population involved in the tumour detection phase is shown in figure They
represent the subset of the subjects in section 2.1, who resulted positive according to MR.

27 male subjects assessed
for enrolment (MR+
subjects with at least 1

confirmed PCa)

25 subjects included in

the study

v

Exclusion criteria:

MR images affected by

artefacts (n=1)

Misalignment between
image modalities (n=1)

Figure 3.2: Schematic representation of the study population for tumour detection

Details about patients and lesions can be found in table

Patients MR+ subjects (n = 25)

Age (vears) 70.2 (52.9-79.1)*

PS4 (ng/ml) 6.2 (4.1-16)*

Lesions All (n = 36) PZ (n = 34)

No. of lesions with GS
343 10 8 2
3+4 10 10 0
4+3 3 3 0
4+4 8 8 0
4+5 3 3 0
5+5 2 2 0

Size (mm)

<7 18 17 1

8-9 3 5 0
>10 15 14 1

Table 3.1: Characteristics of patients and lesions. *Measurements are given as median (range)

3.1.1 Reference Standard

Manual segmentation of malignant lesions was performed by an expert radiologist on
T2-weighted and ADC map.
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3.2. Feature Extraction

3.2 Feature Extraction

Feature extraction aims at gaining relevant information from the original set of data (e.g.
an image) by creating an ensemble of variables, thus diminishing the number of involved
parameters without losing any prime content [S4]].

In this study, the features listed in table are extracted from T2-w and ADC masks,
comprising first and higher order statistics (i.e. texture analysis by means of GLCM and
GLRLM). Details about these features and their abbreviations can be found in section [3.5] of
the appendix.

FE has been performed by means of C++ in-house software and ITK open source libraries
[48]].

First order statistics | GLCM GLRLM
Mean Contrast HGRE
SD Correlation LGRE
Skewness Energy GLNU
Kurtosis Entropy RLNU
10” percentile Cluster prominence
25" percentile Cluster shade
50" percentile Haralick correlation
75" percentile Homogeneity

Variance

Sum average

Sum entropy

Sum variance

Difference variance
Difference entropy
Information correlation 1
Information correlation 2
Dissimilarity

Max GLCM

Table 3.2: List of extracted features (SD: standard deviation, GLCM: Gray Level Co-occurrence Matrix,
GLRLM: Gray Level Run Length Matrix, HGRE: High Gray-Level Run Emphasis, LGRE: Low Gray-Level
Run Emphasis, GLNU: Gray-Level Non-uniformity, RLNU: Run Length Non-uniformity )

Each feature is computed considering non-overlapping regions of interest composed by
5 % 5 pixels, in which every slice is divided taking into account only the prostate mask re-
sulting from the algorithm in section 2.3

Many research groups [55H58]] proved the efficacy of ADC map and T2-w signal intensi-
ties to distinguish healthy from unhealthy tissue. To preserve and exploit this knowledge,
first order statistics are included in the extracted variables. It is important to underline that
this type of analysis is not concerned with the positioning of grey levels in the image and
their relationships, as it considers the single grey tone by itself.

Texture analysis was first introduced by Haralick [59], who intended to acquire information
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3.2. Feature Extraction

about the spatial distribution of grey intensities, creating a set of features able to describe an
image patch by associating it to a visual perception (i.e. rippled, coarse, irregular, smoothed).
His idea was to transform into mathematical expressions what the human eye can perceive
and naturally describe.

In general, a gray-level co-occurrence matrix can be pictured as a bi-dimensional histogram
of the intensities present in an image.

Referring to an image of N grey levels, a gray level co-occurrence matrix is a N X N matrix
T,, where v is the displacement vector indicating the difference in spatial locations of n pix-
els. Each entry of the matrix 7, of coordinates (x, y) represents the number of times the pixel
pair with grey levels x and y at distance equal to v occurs.

Posteriorly to normalisation with respect to total number of occurrences, the GLCM contains
the probability of occurrence of each pixel pair characterised by intensities x and y, which
are distant v [60,/61]).

Figure [3.3] shows a simplified example to understand GLCM computation.

Grey-Scale Image Numeric Grey Levels GLCM
/1" D ) Neighbor Pixel Value (j)
1 2 3
2 (31
E« 1+1=2
2 (22 g
THES 3
L] 34 3 L

Normalized GLCM

Normalized GLCM Histogram Neighbor Pixel Value (j) Neighbor Pixel Value (j)

30% 1 1 2 3 1 2 3

1 8% 0% 17% 1 1 0 2

0% 25% | 17% 0 3 2

Reference Pixel
Value (i)
[N

3 8% 17% 8% 3 1 2 1

w

5 3
g 22
~
e
-—
Reference Pixel
Value (i)
~N

~

™

Figure 3.3: Simplified example about GLCM calculation. 1) An image of 4 x 4 grey tones is taken into
account and transformed into a numeric grid. 2) Considering a pixel with intensity 1 and its immediate
neighbour to the right (i.e. 3), there are two occurrences in the image, thus the entry (1, 3) of the GLCM matrix
if filled with 2. Following the same criterion, the entire GLCM is filled. 3) The gray-level co-occurrence
matrix is thus normalised so that each entry holds the probability of every pixel pair. Adapted from [|62]

A gray level run length can be defined as a contiguous set of pixels presenting the same
intensity [63]].

Gray level run length matrix is a texture representation which counts the presence of runs
of pixels of each grey tone present in an image. As reported in [64], the entry (x,y) of the
GLRLM matrix identifies the occurrence of pixels of grey level x with run length y.

While GLCMs are square matrices because the quantity of bins must match and the co-
occurrence couples must be symmetric, GLRLMs may have an unequal number of rows and
columns. In fact, it is crucial to preserve the information about the symmetrical couples for
GLCM, whereas in the case of the GLRLM this would only be cause of redundancy.
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3.3. Classifier Construction

1350 90° 450
x mmmemmp | (°

Figure 3.4: Representation of the four directions along with texture features are computed. The red cross
designates the center of the 5 X 5 ROI

Regarding the calculation of GLCM derived features performed in this study, two con-
tiguous neighbouring pixels are considered as displacement vector in four possible directions
(0°, 45°, 90°, 135°). The same directions are evaluated for GLRLM (see figure [3.4).

The number of gray levels for GLCM and GLRLM matrices is set to 64 bins.

Every ROI has been assigned malignant class (denoted by 1) only if the pixels belonging
to the ROI are fully contained in the tumour mask, otherwise the ROI is attributed benign
class (denoted by 0).

Prior to further elaborations, the entire set of features was scaled according to min-max scal-
ing in equation [3.1] where f; represents the i-h value of the current feature, while max(f)
and min(f) are respectively its maximum and minimum value.

fi — min(f)
fi= . (3.1)
max(f) — min(f)
From now on, the terms sample, element and ROI denote indiscriminately the same entity,
i.e. the vector of features corresponding to each ROI. The malignant class will be also

denominated positive class, while the benign class corresponds to the negative class.

3.3 C(lassifier Construction

The classification problem is part of the computational intelligence field and it can be
conceded as a critical issue in biomedical engineering, especially concerning the diagnostic
process [63]].

Throughout this study, supervised classification will be exploited in order to detect malig-
nant lesions belonging to the prostate gland. Generally speaking, a supervised classifier can
be viewed as a machine which is responsible for finding the relationships between the class
label and the structure of the data. To do so, a training set composed of samples with their
corresponding class must be given as input to such a machine.

The construction of the training set plays a vital role, as it influences the ability of the clas-
sifier to correctly recognise unexplored data. Depending on the level of knowledge enclosed
in the training samples, the classification performance will be affected as more possible sce-
narios are comprised in the training samples.
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3.3. Classifier Construction

Concerning the medical domain, it is particularly challenging to collect a vast and exhaustive
quantity of data because of [66]:

1. huge amount of time needed for image acquisitions;
2. difficulty in gathering data in the case of low prevalence diseases (e.g. cancer);
3. variability related to the same disease.

The here proposed study is as well characterised by an imbalanced data set made of benign
and malignant samples, therefore facing all the correlated issues (e.g. finite sample size, large
data dimensionality). The main concern is then to create a training set which encounters for
the heterogeneity of available data, regardless of the prevalence of one class compared to the
other.

3.3.1 Decision tree based training set

The first method applied to create the training set is the decision tree, a supervised clas-
sifier that recursively partitions the instance space. Useful as an exploratory technique, a DT
is composed by:

e a root node, first existing node with no incoming branches;
e test nodes, with outgoing branches;
e [eaf nodes, terminal nodes holding the class label.

In the most common and plain case, each internal node divides the instance space according
to the values of a single attribute [67]]. In order to determine the best splitting attribute, it is
necessary to choose a heuristic able to divide the labelled data set into single classes.

One of the most used attribute selection measures is the Gini index, which establishes the
impurity of the data partition by means of the probability that an arbitrary sample belongs to
each class.

In the creation of training and test sets, only those slices embedding cancerous lesions are
considered. Table shows the number of available samples separated per class and image

type.

Image type Malignant ROIs Benign ROIs
ADCmap 1136 58413
T2-w 1090 60235

Table 3.3: Total number of ROIs separated per class and image type
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3.3. Classifier Construction

The approach conceived to build the training set starting from decision trees is constituted
by two phases, summarised in figure 3.5

Phase 1 Phase 2

» DT for each patient « DT for each patient
* Extraction of malignant samples * Extraction of benign samples
» Extraction of impure samples

Figure 3.5: Phases of decision tree based approach for training set construction

In the first phase of figure [3.5] the decision tree algorithm is applied to each patient
separately, randomly extracting elements belonging to the nodes as follows:

1. find all nodes containing at least one malignant sample;
2. extract a number of samples (n.) equal to half of the elements held by the node;

3. check whether the node contains samples of the benign class and in the positive case
extract benign elements (n) according to equation

n
n= min(nm, ?b) 3.2)
where n,, indicates the number of malignant elements in the considered node, and n,
is the number of benign elements contained in the same node.

Equation [3.2]has been adopted in order to include those elements which are more resembling
to malignant samples, thus ensuring a good representation of data diversity without compro-
mising the total number of benign elements.

It is worth underlining that every decision tree presented a considerable inhomogeneity tak-
ing into account malignant ROIs, which led to have nodes containing few malignant elements
together with a limited amount of benign elements in the majority of cases. Those peculiar
nodes are here denominated impure nodes, due to the simultaneous presence of both classes,
and the benign elements extracted from them are called impure elements. The possibility of
having few malignant samples in a node assigned benign label, characterised by a consistent
number of benign elements, can also occur. Nevertheless, this is taken care of during the
process of picking impure elements.

The more malignant ROIs are present, the more branches are created in the trees, as seen in
figure[3.6] therefore suggesting the unexpected inhomogeneity proper of cancerous lesions.
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3.3. Classifier Construction

(a) DT of a patient with few malignant ROIs
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(b) DT of a patient with many malignant ROIs
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Figure 3.6: Emblematic examples of decision trees for patients with different number of malignant samples
and a comparable number of benign samples (superior to 2500). Red boxes highlight leaf nodes assigned

malignant label

Once the total number of malignant ROIs (M) and impure elements (/) is known, the
second phase in figure [3.5]can begin with the computation of each patient’s DT, followed by

next steps:

1. find all nodes containing at least one benign sample (regardless of the presence of

malignant elements);
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3.3. Classifier Construction

2. consider only the nodes containing a number of elements at least equal to 5% of the
total amount of benign ROIs present in the subject’s data set (7;,,);

3. extract elements randomly () in accordance with equation

M-1
np = ny x T (n1, | D (3.3)

Nyor

where n;, is the number of benign elements belonging to the node, and n, corresponds
to 1% of n,,;.

The limit imposed at 5% of the total amount of benign ROIs of each patient derives from
the fact that there exists a restricted number of nodes containing nearly all benign elements.
This value enables to include the most represented benign ROIs in the training set.

Indeed, equation allows to pick a reasonable number of benign samples, in view of the
selected malignant and impure elements.

As noticeable from table [3.4] the number of positive and negative samples comprised in
the training set slightly differs. However, being the difference so small, this should not affect
the classifier performance and the two classes can be retained balanced.

Image type Malignant ROIs Benign ROIs
ADCmap 780 886
T2-w 768 925

Table 3.4: Number of ROIs separated per class and per image type constituting decision tree based training set

Decision trees are also featured with the benefit of establishing the most relevant at-
tributes useful to discriminate the classes. The two image modalities present frequently
selected variables and others rarely appearing, hence enforcing the great variability proper
of the involved set of data.

Figure exhibits bar diagrams representing the frequency of each feature for all decision
trees: it is evident that no variable is selected considering the entire study population.
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Figure 3.7: Occurrence of selected attributes across all decision trees
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3.3.2 Feature Selection with Genetic Algorithms

The purpose of feature selection is to identify a subset of variables able to [68]:

e preserve relevant informative content;

decrease dimensionality;

eliminate superfluous and redundant data;

ameliorate classification performance;
e enhance result understandability.

Two principal strategies can be adopted for FS: filter methods, characterised by recogni-
tion of the most relevant features without considering the learning task (regardless of subsets
comprising high discriminative variables), and wrapper methods, which select features along
with evaluating the goodness of the learning algorithm [[69]]. Although wrapper methods may
present a heavy computational burden, they contribute to superior classification performance
and parameters optimisation for classifier or learning algorithm.

When implementing a classifier, it is pivotal to tune its parameters as well as try to find a
subset of features which may reach the best classification outcome [70]. Among the various
methods such as grid or random search, a heuristic search can be utilised to simultaneously
perform FS and tuning classifier parameters.

In this study, a genetic algorithm is applied, which has been already used to solve optimisa-
tion problems [[71]] or find tuning parameters [70]. Up to now, few applications are recovered
concerning these two aspects at the same time (one of them can be found in [[72]]).

Belonging to the field of evolutionary computing, GAs are optimisation methods inspired
by evolutionary processes (e.g. natural selection, reproduction) to create computer-based
problem solving methods. They can be used to prune the set of involved variables, by dis-
covering those which reduce generalisation errors [65].

Three main operators can be encountered:

e selection, to represent the survival of the fittest individuals;
e crossover, to model reproduction;
e mutation, to introduce diversification through the generations.

Every solution of a genetic algorithm is codified as a binary vector of fixed dimension, called
chromosome, whereas each bit is referred as a gene.

GAs perform a stochastic population-based research, thus the first step is to produce an initial
population of candidate solutions, by assigning a random value from the permitted domain
to each gene. They may need to satisfy an admissibility condition.

Moreover, it is cardinal to determine population dimension and number of iterations, for
they influence the exploration capacity of the algorithm. The goodness of each individual is
established by means of an objective function, called fitness function.
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Figure 3.8: Schematic representation of an evolutionary algorithm

Once the best solutions are identified, mutation and crossover operators are applied to
generate the offspring, respectively by combining parts of existing solutions and randomly
changing the genes. Afterwards, the selection operator is in charge of preserving the fittest
individuals of each generation, thus yielding the population for the next generation. This
operator is particularly important to assure the survival of good solutions and avoid stopping
in a local optimum.

A genetic algorithm ceases when a limit is reached in terms of executed number of genera-
tions or fitness function evaluations or when a convergence criterion is met.

3.3.3 Classifier

A suitable classifier to be used in combination with a genetic algorithm is the support
vector machine [63]]. It is a binary supervised learning classifier, which maps the non-linear
input vectors into a high dimensional feature space in which they become linearly separa-
ble [73]]. Training a SVM consists in finding the hyperplane, able to best split the two classes,
characterised by furthest distance from the nearest training samples (so called support vec-
tors).

In order to build a SVM, the following must be set:

e kernel function, non linear function which projects samples from the input space to the
output space;

e parameter C, numerical value to establish the number of misclassified samples: a strict
margin results from a high value of C, even if the points are linearly separated, whereas
a small C leads to a large margin with misclassification errors.

The learning task expressed as an optimisation problem with linear constraints aims at bal-
ancing the maximisation of the margin with the error penalty.
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Figure 3.9: Soft-margin support vector machine in a 2-D example [65]

Parameters setting

The fitness function implemented in the GA is reported in equation [3.4] [72]. It solves a
minimisation problem, thus the smaller its value (ideally 0) the better the solution is.

+
fitness; = 1 — M + 0.3 X (|spec — sens)) (3.4)

In equation sens and spec refers respectively to sensitivity and specificity of the classi-
fier with parameters and selected variables chosen by i-th solution, considering classification
performance on the test set (in table [3.3)).

Sensitivity and specificity (respectively in equations[3.6]and[3.7)) are computed from the con-
fusion matrix in table

This fitness function attempts to compensate for the imbalanced classes present in the test
set, by using the so called averaged accuracy (i.e. the second term in equation in order
to evenly weigh the two metrics.

Experimental trials conducted in this study found that the genetic algorithm did not evolve
finding in the initial population of random individuals the solution with the best fitness. The
setting used in these trials is here detailed:

e number of individuals: 200;

e number of iterations: 5000;

e number of parents: 0.8 X number of individuals;
e number of repetitions: 1;

e number of genes: 36, codified as:

— first 30 bits corresponding to the features;

— next 2 bits for SVM kernel function (polynomial of order 2, polynomial of order
3, linear, radial basis function);
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— last 4 bits for parameter C of SVM according to equation [3.5] where Cy;, repre-
sents the decimal value of the bits;

C=05, if Cy =0
C=1, if Cop=1 (3.5)
C=10x(Cy, -1, lf Cpin>1

Kernel function

Features Parameter C

Figure 3.10: Schematic representation of GA solution encoding with SVM parameters. Each square
represents a single bit

e crossover probability: 1;
e crossover cutting points: 2;

e mutation probability: 0.2, decreased to 0.15 after 200 iterations and 0.1 after 400
iterations.

With regard to the bits representing the features, they are codified according to the Yes/No
variables encoding, i.e. the bit equals 1 if the variable is selected, O otherwise.
A solution is considered admissible if at least 2 features are equal to 1.

Due to the premature identification of the best solution, the genetic algorithm in figure [3.11]
is implemented (the encoding for each solution remains unchanged): generating a random
population of 1000 individuals, the fitness function is evaluated for each of them and the
one with the smallest value is elected as best. By doing so, the GA serves to determine the
classifier parameters and examine the behaviour of the classifier according to the selected
features.

40



3.3. Classifier Construction

Random population of
1000 admissible
solutions

Fitness value for each solution

Selection of best solution
according to smallest
fitness value

Feature selection and
classifier parameters

Figure 3.11: ITmplementation of the genetic algorithm to set classifier parameters and selected features

Results

Parameters established by the genetic algorithm along with number of selected variables
and fitness value of the best solutions are reported in table[3.5]

Image type Best fitness value No. of selected variables Kernel function Parameter C
T2 0.28 22 Radial basis function 100
ADC 0.27 20 Radial basis function 140

Table 3.5: SVM. Parameters selected by the genetic algorithm and best fitness values

Details about the selected features can be found in figure[3.6] with a binary representation
indicating presence of the variable (cell in white) and absence of the variable (cell in black).
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Table 3.6: SVM. Binary representation of FS performed by the genetic algorithms. White cells correspond to
selected variables, black ones indicate those features that are not considered

The performances emerged from this first approach are presented in form of normalised
confusion matrices in table[3.7

T2-w
TRAINING SET TEST SET
True class True class
0 1 0 1
Predicted] 0 0.72 0.21 Predicted)] 0 0.71 0.22
class 1 0.28 0.79 class 1 0.29 0.78 True class
0 1
Predicted)| 0 | TN | FN
ADC map class 1 | FP | TP
TRAINING SET TEST SET
True class True class
0 1 0 1
Predicted] 0 0.68 0.24 Predicted| 0 0.72 0.23
class 1 0.32 0.76 class 1 0.28 0.77

Table 3.7: SVM. Classification performances considering training and test sets per image modality. The
reference confusion matrix is reported on the right (1: malignant label, O: benign label)
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Evaluation metrics derived from the confusion matrices (reference in figure are de-
tailed below:

e sensitivity indicates the number of ROIs classified as tumours, actually belonging to

the malignant class;
TP

Sens = ——— (3.6)
TP+ FN
e specificity estimates the amount of ROIs classified as healthy, actually belonging to

the negative class.
TN

Spec = —— 3.7
P = TN+ FP G-7)

Whereas the classifier seems to recognise malignant samples in an acceptable amount
(both in training and test sets), the benign class is characterised by a lower identification,

especially taking into account the much greater presence of negative samples.

Sensitivity and specificity obtained for each patient are represented in figure [3.12]
It can be noticed that the metrics concerning T2-w are less variable among patients with
respect to ADC map. However, while the specificity stays around 0.6 or above in the two
image sets, sensitivity reveals to have a value below 0.5 for more than one patient.
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Figure 3.12: SVM. Sensitivity and specificity across patients
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In figure [3.13] the resulting outcome of SVM tumour detection is displayed for two
patients, showing the difference between a large and a small tumour.
False positives (i.e. benign samples classified as malignant) are particularly present in the
T2-w mask, even though the cancerous lesion is recognised at least partially.

12-w ADC map

r

Figure 3.13: SVM. Examples of tumour detection. Red dots indicate the centre of each ROI classified as
malignant, while blank squares correspond to cancerous tissue
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3.4 Classification Optimisation

Due to the relatively low recognition of the benign class characterising the former ap-
proach, next attempt proposes to improve the representation of healthy tissue by means of
enlarging the training set with more than a single negative class.

3.4.1 Dendrogram based Training Set

The dendrogram based approach arises from the necessity to increase the representation
of the benign class. As a matter of fact, the latter is affected by a huge diversification inter
and intra-patients. To solve this issue, benign elements are grouped through dendrogram
clustering, a technique which merges samples on the basis of a similarity measure.

Keeping unaltered the malignant ROIs extracted with the decision tree based training set (see
section [3.3.1), benign ROIs are gathered as follows starting from DT of each patient:

1. find all nodes containing at least one benign sample (regardless of the presence of
malignant elements);

2. sort these nodes in descending order given number of elements held by each node;
3. consider the first three nodes (i.e. the ones with the largest number of elements).

At this point, dendrogram clustering is applied on all benign samples enclosed by the afore-
mentioned nodes. The classes are obtained by cutting each dendrogram (one per image
modality) and extracting randomly from every cluster a number of samples equal to:

{M ifng>M 58)

ng otherwise

where M is the total number of malignant elements present in the DT based training set and
n, corresponds to the number of elements present in the current cluster.

The cutting level has been chosen to create groups separated by a certain distance and rather
homogeneous in terms of inner variability and number of elements.

Figure [3.14] shows the clusters obtained from the dendrograms.

In table the number of elements belonging to each class is reported per image modality.

Benign ROIs
Image type Malignant ROIs | Class A ClassB Class C Class D
ADC map 780 780 780 780 780
T2-w 768 768 768 768 607

Table 3.8: Number of ROIs reported per class and per image type constituting dendrogram based training set
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Figure 3.14: Dendrograms with overlapping red boxes representing clusters
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3.4.2 C(lassifiers
Multiclass SVM

When more than two classes are present, it is possible to exploit a multiclass version of
the SVM, which can work with different strategies [74]. For further details on the implemen-
tation of the two-class support vector machine, the reader is referred to section [3.3.3]

In the context of this study, the one-versus-one coding design is adopted, consisting in train-
ing L(L — 1)/2 binary classifiers, where a class is considered positive and the other negative,
and L is the total number of classes.

Even with the dendrogram based training set, the genetic algorithm mentioned in section
[3.3.3] showed no developments from the initial population, so the approach in figure [3.11]is
implemented in this case as well.

The fitness function in equation [3.4 will consider sensitivity and specificity relative to multi-
class SVM performance.

Table reports classifier parameters set by the genetic algorithm along with number of
selected variables and fitness value of the best solutions.

Image type Best fitness value  No. of selected variables Kernel function Parameter C
T2 0.25 28 Polynomial of order 3 140
ADC 0.27 23 Polynomial of order 3 140

Table 3.9: Multiclass SVM. Parameters selected by the genetic algorithm and best fitness values

Details about the selected features can be found in figure [3.10] with a binary represen-
tation indicating presence of the variable (cell in white) and absence of the variable (cell in
black).
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Table 3.10: Multiclass SVM. Binary representation of FS performed by the genetic algorithms. White cells
correspond to selected variables, black ones indicate those features that are not considered

Final performances obtained with this classifier are shown in form of normalised confu-
sion matrices in table The superior recognition of benign samples found in the training
set is not retrieved in the test set, characterised by pretty balanced sensitivity and specificity
(approximately equal to 0.7).

T2-w
TRAINING SET TEST SET
True class True class
0 1 0 1
Predicted 0 0.92 0.26 Predicted| 0 0.76 0.27
class 1 0.08 0.74 class 1 0.24 0.73 True class
0 1
Predicted| 0 | TN | FN
ADC map class 1 | FP | TP
TRAINING SET TEST SET
True class True class
0 1 0 1
Predicted 0 0.92 0.29 Predicted| 0 0.80 0.29
class 1 0.08 0.71 class 1 0.20 0.71

Table 3.11: Multiclass SVM. Classification performances considering training and test sets per image
modality. The reference confusion matrix is reported on the right (1: malignant label, O: benign label)

Concerning the ADC map, the results in figure show an overall improvement in
terms of specificity comparing SVM with multiclass SVM for the study population.
Regarding sensitivity values instead, more than one half of the subjects presents their malig-
nant samples better recognised by the SVM.

49



3.4. Classification Optimisation

Specificity

0.3~

02—

0.1-

RSP S

ADC map | SVM vs Multiclass SVM | Specificity across patients
I R R | R E— T

| | | | | | |
A NP R SRR SN
Patient #

¢-~8VM -o-Multiclass SVM

(a) Specificity

| 1 |
'\(ﬂ/ ’\q"b \r‘g-)

N ™
RS SN I

Sensitivity

ADC map | SVM vs Multiclass SVM | Sensitivity across patients
T T [

> N N O & N
G - SRR AR R OISR RN RS

J
I
>

|

RN
Patient #

0~ SVM -o-Multiclass SVM

(b) Sensitivity

N

|
P&

N ™
IR NI LR IR

Figure 3.15: SVM vs Multiclass SVM. Classification performances across patients on ADC map

A similar trend can be observed for T2-w considering specificity, whereas less than half
of the subjects shows higher sensitivity with SVM classifier.
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Figure 3.16: SVM vs Multiclass SVM. Classification performances across patients on T2-weighted modality
A comparison concerning a subject with many misclassified elements is provided in fig-

ure in which no considerable improvement is found for T2-w, whilst the outcome of
ADC map for multiclass SVM shows less false positives.
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SVM Multiclass SVM

72-w

ADC map

Figure 3.17: SVM vs Multiclass SVM. Examples of tumour detection for a patient with several false positives.
Red dots indicate the centre of each ROI classified as malignant, while blank squares correspond to cancerous
tissue

Dendrogram based training set demonstrates its greater efficacy in detecting benign ele-
ments, although a slight reduction in tumour recognition can be inferred.
Next attempt is to assess the performance of another classifier to seek general improvements
and examine the differences which will arise.

k-Nearest Neighbours

k-Nearest Neighbours performs classification based on the nearest distance unlabelled
examples present with respect to the training set.
Considering a number k of neighbours, the distance of the analysed element is computed
with each sample of the training data, according to a precise metric. These distances are
sorted in descending order and the tested element is assigned to the most represented class
among the neighbours. This is designated as majority voting procedure [75].

As preliminary trial with k-NN classifier, a genetic algorithm with the undermentioned pa-
rameters is implemented:

e number of individuals: 50;
e number of iterations: 20;

e number of parents: 0.8 X number of individuals;
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e number of repetitions: 1;

e number of genes: 36, codified as:

— first 30 bits corresponding to the features;
— next 2 bits for distance metric (euclidean, chebychev, minkowsky, cityblock);

— last 4 bits for parameter K (i.e. number of neighbours) according to equation 3.9
where K;, represents the decimal value of the bits;

K =16 + Ky, (3.9)

Distance metric

Features Parameter K

Figure 3.18: Schematic representation of GA solution encoding with k-NN parameters. Each square
represents a single bit

e crossover probability: 1;

e crossover cutting points: 4;

e mutation probability: 0.2.

In contrast to the version with SVM classifiers (see sections [3.3.3] and [3.4.2)), the here
performed GA evolved from the initial population in its research for the best solution.

The outcome of this genetic algorithm is exhibited in table while the selected fea-
tures can be viewed in figure[3.13]

Image type Best fitness value No. of selected variables Distance metric Parameter K
T2 0.28 11 Cityblock 16
ADC 0.26 8 Chebvychev 16

Table 3.12: Multiclass k-NN. Parameters selected by the genetic algorithm and best fitness values
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Table 3.13: Multiclass k-NN. Binary representation of FS performed by the genetic algorithm. White cells
correspond to selected variables, black ones indicate those features that are not considered

Final performances reached by this classifier are shown in form of normalised confusion
matrices in table

T2-w
TRAINING SET TEST SET
True class True class
0 1 0 1
Predicted| 0 0.90 | 0.25 Predicted| 0 0.72 | 0.27
class 1 0.10 | 0.75 class 1 0.28 | 0.73 True class
0 1
Predicted| 0 TN FN
ADC map class 1 FP TP
TRAINING SET TEST SET
True class True class
0 1 0 1
Predicted) 0 0.90 | 0.26 Predicted| 0 0.74 | 0.25
class 1 0.10 | 0.74 class 1 026 | 0.75

Table 3.14: Multiclass k-NN. Classification performances considering training and test sets per image
modality. The reference confusion matrix is reported on the right (1: malignant label, O: benign label)

As clear in figure [3.19] multiclass SVM outperforms k-NN in terms of specificity on
ADC map. Sensitivity across patients differs in the two classifiers, but k-NN reveals better
performance on malignant samples in more than half subjects. Comparable performances
are obtained on the test set for T2-weighted modality, related to those proper of multiclass
SVM (in table [3.11).

Both classifiers present a high recognition of benign samples on the training set, which how-
ever cannot be retrieved on the test set.
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Figure 3.19: Multiclass SVM vs Multiclass k-NN. Classification performances across patients on ADC map
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Referring to the outcome regarding T2-w, a pretty similar trend arises for the specificity,
whereas the sensitivity is higher for the majority of patients in the case of multiclass SVM.
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Figure 3.20: Multiclass SVM vs Multiclass k-NN. Classification performances across patients on T2-weighted
modality

Observing figures [3.21] and [3.22] multiclass SVM performance is slightly superior in
terms of specificity, concerning both image modalities, with respect to multiclass k-NN.
Sensitivity is comparable between the two classifiers.
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Multiclass SVM Muliiclass k-NN

Figure 3.21: SVM vs Multiclass SVM. Examples of tumour detection referred to T2-w. Red dots indicate the
centre of each ROI classified as malignant, while blank squares correspond to cancerous areas

Multiclass SVM Multiclass k-NN

Figure 3.22: SVM vs Multiclass SVM. Examples of tumour detection referred to ADC map. Red dots indicate
the centre of each ROI classified as malignant, while blank squares correspond to cancerous areas
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Since the recognition of benign elements is still not satisfying, a completely diverse ap-
proach will be tested to investigate how this aspect can be improved without jeopardising
tumour detection.

It is worth pointing out that decision trees involved in the construction of the training sets did
not exclude any available feature (see figure [3.7). For this reason, the complete ensemble of
variables will be taken into account in the next phase.

Feedforward Neural Networks

Artificial neural networks are information-processing models, which mimic the function-
ing of the biological nervous system [65]].
The main actor is the neuron, i.e. the fundamental core of a neural network responsible for
the learning process achievable with massive inter-synaptic connections.
As a biological neuron is made up by a nucleus, enclosed in the cell body receiving incoming
signals, and a bunch of dendrites which encounter the information from neighbouring neu-
rons (i.e. the data fed as input to the system), the artificial neuron is characterised by [65]]:

e summation and activation function, part of the processing centre to decode and de-
vise the input responses. Mathematically, it embeds an activation function f, which
elaborates the inputs gathered at the summation node;

e input x; is modelled by a scalar weight w; multiplied with itself. It can be associated
with the electrical input to the biological neuron:

yi = f(Zkak) (3.10)

There may be multiple inputs;
e output y;, which signifies the strength of the electrical pulse moving along the axon;

e feedback, it can be provided in certain types of NNs and gives the capability to become
adaptive by feeding the output back to the input.

A schematic representation of an artificial neuron, also called perceptron, is displayed in

figure[3.23]
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Figure 3.23: Representation of an artificial neuron [65]]
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The learning process requires the modification of neuron weights, in order to make the
network output match the true label, based on the error between the desired and computed
output. Training is usually performed with general optimisation algorithms, to be effortlessly
implemented on a computer.

Connecting more than one perceptron into a network leads to the construction of a multi-
layer perceptron featured with the backpropagation algorithm (see figure[3.24)). The latter is
constituted by two steps:

1. computation of the derivatives belonging to the network training error with respect to
the weights;

2. adjustment of the weights through a gradient descent method, exploiting the error
derivatives to reduce the output errors.

Obviously, the backpropagation algorithm supposes the neurons to possess differentiable
activation functions.

Input layer Hidden layer Output layer
Layer 0 Layer 1 Layer 2

Figure 3.24: Example of a two-layer MLP [65]]

Particularly when dealing with non-linear dependencies among the variables, the pres-
ence of hidden layers is advisable to increase the connections in the network, thus enhancing
its learning ability.

Neural networks have been already exploited to reduce false positives in the case of a
computer-aided diagnosis system based on mp-MRI [76]. Seeking the same goal, different
architectures for neural networks and training sets are tested to understand the consequent
impact on performances.
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Experimental trials With the aim of discovering the behaviour of feedforward neural net-
works in the context of this study, the first attempt has been made using decision tree based
training set (see section [3.3.1).

The established setting is the following:
e number of input neurons: 30;
e number of output neurons: 1;

e hidden layers architecture: the structures listed in table are tested to explore vari-
ous scenarios, ranging from 1 to maximum 3 hidden layers;

No. of hidden layers

1 2 3

5 [1530] [51530]
10 [30 15] [53015]
15 [30 60] [15530]
20 [60 30] [15305]
30 [20 30] [305 15]
60 [30 20] [30 15 5]
[1030] | [153060]
[30 10] | [1560 30]
[1020] | [30 15 60]
[20 10] | [3060 15]
[10 15] | [60 15 30]
[1510] | [603015]
[20 60] | [1020 30]
[6020] | [10 30 20]
[20 10 30]
[20 30 10]
[30 10 20]
[30 20 10]

Table 3.15: List of tested hidden layers (number of neurons in each layer is provided)

e input neurons activation function: log-sigmoid in figure [3.23}

60



3.4. Classification Optimisation
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Figure 3.25: Input neurons log-sigmoid activation function

e output neurons encoding function: linear;
e backpropagation algorithm: Levenberg-Marquardt optimization [77];
e number of repetitions: 10.

The resulting performance of each NN is evaluated in terms of specificity and sensitivity
on training and test sets per image type.

Two criteria are applied to determine the best structures:
1. median sensitivity on test set across all repetitions (here denominated MaxMedian);

2. smallest difference between maximum and minimum value of sensitivity on test set
across all repetitions (here denominated MinDiff).

For both image modalities, median sensitivity and specificity stays above 0.6 for training and
test sets, as retrievable from figure [3.28]
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T2-w | Performance across all repetitions according to NN hidden layers
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DT based training set - MaxMedian criterion. Performance proper of each NN structure in terms

of specificity and sensitivity evaluated on training and test sets. Dashed boxes indicate the structure elected as

Figure 3.26.

best

fied by the

fact that the output can change every time, thus it is important to identify the most reliable

this is justi

More than a single repetition is performed for each structure

configuration. Those NNs satisfying MinDiff criterion should fulfil this demand (see figure
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T2-w | Performance across all repetitions according to NN hidden layers

Difference between max and min specificity

© o ¥ o

o o S [}
oadg Ul - 98dg xep

o

Difference between max and min sensitivity

® © ¥ o
o o o o

SUSS UIN - SUBS Xe

o

(B Training set MM Test set|

(a) T2-weighted

ADC map | Performance across all repetitions according to NN hidden layers

Difference between max and min specificity

N

,19\

Difference between max and min sensitivity

|
- @

o
Suag ul

S06

[ Training set Ml Test set|

(b) ADC map

DT based training set - MinDIff criterion. Performance proper of each NN structure in terms of

specificity and sensitivity evaluated on training and test sets. Dashed boxes indicate the structure elected as

.

Figure 3.27

best

In order to give a closer look at subject-wise performance, the outcome of the repetition

d for both structures, whose results are displayed

1S €xXamine

presenting the greatest sensitivity

in figure [3.28]
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Figure 3.28: DT based training set. Sensitivity and specificity across patients considering the best elected
structures

While the ability to recognise benign elements seems more stable across patients and
greater in the case of the MinDiff criterion, malignant samples are detected in a smaller
amount in some subjects more than others, considering both selected structures.

From the normalised confusion matrices in table [3.16] the MaxMedian structure presents
higher sensitivity, which is instead pretty balanced with specificity for MinDiff structure,
concerning the two image modalities.
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MinDiff
T2-w
TRAINING SET TESTSET
True class True class
0 1 0 1
Predicted) 0 0.68 | 0.26 Predicted| 0 0.73 | 0.26
class 1 0.32 | 0.74 class 1 0.27 | 0.74 True class
0 1
Predicted| 0 TN FN
ADC map class 1 FP TP
TRAINING SET TESTSET
True class True class
0 1 0 1
Predicted| 0 0.66 | 0.24 Predicted| 0 0.70 | 0.22
class 1 0.34 | 0.76 class 1 0.30 | 0.78
MaxMedian
T2-w
TRAINING SET TEST SET
True class True class
0 1 0 1
Predicted| 0 0.61 | 0.22 Predicted| 0 0.65 | 0.21
class 1 0.39 | 0.78 class 1 0.35 | 0.79 True class
0 1
Predicted| 0 TN FN
ADC map class 1 FP TP
TRAINING SET TEST SET
True class True class
0 1 0 1
Predicted| 0 0.64 | 0.21 Predicted| 0 0.68 | 0.20
class 1 0.36 | 0.79 class 1 0.32 | 0.80

Table 3.16: DT based training set. Classification performances obtained considering training and test sets per
image modality and best elected NN structures. The reference confusion matrix is reported on the right (1:
malignant label, 0: benign label)

Figure [3.29]shows the MinDiff criterion to be lightly more effective in limiting the num-

ber of false positives for T2-w compared to MaxMedian, whereas for ADC map in figure
there is no apparent difference between performances of NN structures.
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MinDiff MaxMedian

Figure 3.29: DT based training set - T2-w. Examples of tumour detection according to best elected NN
structures. Red dots indicate the centre of each ROI classified as malignant, while blank squares correspond to
cancerous tissue

MinDiff MaxMedian

Figure 3.30: DT based training set - ADC map. Examples of tumour detection according to best elected NN
structures. Red dots indicate the centre of each ROI classified as malignant, while blank squares correspond to
cancerous tissue

Without any modification to the parameters described earlier in this section, the same
structures have been tested using dendrogram based training set (see section[3.4.1), to analyse
how the NNs work when fed with a more diversified data set.
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T2-w | Performance across all repetitions according to NN hidden layers
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(b) ADC map

Dendrogram based training set - MaxMedian criterion. Performance proper of each NN

structure in terms of specificity and sensitivity evaluated on training and test sets. Dashed boxes indicate the

Figure 3.31

structure elected as best
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Figure [3.31] highlights a considerable decrease in the median sensitivity per structure,
involving both image modalities.

T2-w | Performance across all repetitions according to NN hidden layers
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Figure 3.32: Dendrogram based training set - MinDiff criterion. Performance proper of each NN structure in
terms of specificity and sensitivity evaluated on training and test sets. Dashed boxes indicate the structure
elected as best

Considering patient-wise performances in figure [3.33] recognition of benign samples is
actually ameliorated (it was in fact the desired outcome). Nevertheless, tumour detection
appears to be worsened, being very diverse across subjects.
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T2-w | NN Hidden Layers [15 5 30] (MinDiff) vs [15 30 60] (MaxMedian)
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Figure 3.33: Dendrogram based training set. Sensitivity and specificity across patients considering the best
elected structures

Observing performance on training and test sets given in table[3.17]specific for the elected
structures, specificity remains high for both criteria, while sensitivity is considerably lower

for MinDiff.

69



3.4. Classification Optimisation

MinDiff
T2-w
TRAINING SET TEST SET
True class True class
0 1 0 1
Predicted| 0 0.98 | 0.73 Predicted| 0 0.94 | 0.72
class 1 0.02 | 0.27 class 1 0.06 | 0.28 True class
0 1
Predicted| 0 TN FN
ADC map class 1 FP TP
TRAINING SET TEST SET
True class True class
0 1 0 1
Predicted| 0 0.95 | 0.51 Predicted| 0 0.86 | 0.48
class 1 0.05 | 0.49 class 1 0.14 | 0.52
MaxMedian
T2-w
TRAINING SET TEST SET
True class True class
0 1 0 1
Predicted| 0 0.97 | 0.55 Predicted| 0 0.88 | 0.54
class 1 0.03 | 0.45 class 1 0.12 | 0.46 True class
0 1
Predicted| 0 TN FN
ADC map class 1 FP TP
TRAINING SET TEST SET
True class True class
0 1 0 1
Predicted| 0 0.93 | 0.44 Predicted| 0 0.83 | 0.42
class 1 0.07 | 0.56 class 1 0.17 | 0.58

Table 3.17: Dendrogram based training set. Classification performances considering training and test sets per
image modality and best elected NN structures. The reference confusion matrix is reported on the right (1:
malignant label, O: benign label)

Specificity is considerably increased using dendrogram based training set relative to fig-
ures [3.34]and [3.35] However, a loss in tumour detection is found compared to performance
of DT based training set (see figures [3.29]and [3.30).
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MinDiff MaxMedian

Figure 3.34: Dendrogram based training set - T2-w. Examples of tumour detection according to best elected
NN structures. Red dots indicate the centre of each ROI classified as malignant, while blank squares
correspond to cancerous tissue

MinDiff MaxMedian

Figure 3.35: Dendrogram based training set - ADC map. Examples of tumour detection according to best
elected NN structures. Red dots indicate the centre of each ROI classified as malignant, while blank squares
correspond to cancerous tissue
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To summarise the results obtained with these last elaborations, table [3.18] provides the
maximum or minimum values for specificity and sensitivity considering all structures along
with an evaluation of the performance variability among the study population.

DT based Dendrogram based
training set training set
T2 ADC T2 ADC
Performance on test set* Sens <0.8 <0.7 <0.4 <0.5
Spec <0.7 <0.7 >0.95 >0.8
Variability across subjects | Sens Low Low High High
Spec Low Low Low Low

Table 3.18: NNs performance comparison between the two employed training sets, given per image modality.
*The reported number is the upper or lower bound of existing values (regarding sensitivity and specificity)

What emerges from table [3.18|is that using dendrogram based training set causes a sig-
nificant worsening in the recognition of the positive class, although healthy tissue is better
identified.

The ideal situation would be to reach such good performances also when detecting malignant
lesions without being deprived of the recognition characterising the benign class.

Next approach is thought to achieve this purpose, even to find out if there exist benign classes
which are better identified than others.

Cascade of Feedforward Neural Networks

A cascade of neural networks is implemented to exploit the ability of an ensemble of
NN to recognise each class one by one.
This is performed by subsequently removing the benign class with highest recognition and
lowest number of misclassified elements as malignant.
As a consequence, reducing at each step the classes involved in the training set lowers
the variability and simplifies the learning process, hopefully leading to an improved per-
formance.
A multiclass data set is then required, in fact dendrogram based training set is exploited,
enabling greater representation of healthy tissue.
The elements correctly classified as benign by each neural network in the cascade will fall
in the true negatives, while those wrongly identified as malignant will be considered false
positives. Both of them will contribute in the performance of the last neural network in the
cascade, presented in form of normalised confusion matrices.

The parameters set for all the networks are the same listed in section [3.4.2] except for the
hidden layers structure, which is fixed at 1 hidden layer of 30 neurons, as preliminary trial.
In the following tables, label 1 denotes malignant class, while labels from 2 to 5 are associ-
ated with the classes of benign tissue created from the clusters in figure 3.14
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TRAINING SET
NN, Predicted Class
1 2 3 4 5
1 0.436 0.494 0.065 0.005 0.000
2 0.186 0.742 0.065 0.005 0.001
True class 3 0.005 0.379 0.538 0.077 0.000
4 0.000 0.001 0.090 0.909 0.000
5 0.000 0.005 0.013 0.046 0.936
NN, Predicted Class
1 2 3 4
1 0.444 0.497 0.058 0.001
True class 2 0.188 0.781 0.031 0.000
3 0.009 0.421 0.495 0.076
4 0.000 0.000 0.097 0.903
NN; Predicted Class
1 2 3
1 0.415 0.551 0.033
True class 2 0.158 0.827 0.015
3 0.004 0.478 0.518
NN, Predicted Class
1 2
1 0.847 0.153
True class 2 | 0313 0.687

Table 3.19: ADC map - 1% NNs Cascade. Normalised confusion matrices belonging to each neural network.
Rows enclosed in the bold boxes highlight the class which is not included in the training set of the successive
neural network (1: malignant label, benign labels from 2 to 5)

Final performance on test set is reported in table [3.20]
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TEST SET
Predicted Class
1 0
True class 0.825 0.175
0.387 0.613

Table 3.20: ADC map - 1*" NNs Cascade. Normalised confusion matrix belonging to test set (1: malignant

based training set.

class, O: benign class)

It is evident from table [3.20] there has been no improvement in detecting benign samples
considering final performance of the NNs cascade.
Starting from remaining test set used in the last neural network of the cascade (i.e. NN,)
while keeping classified elements from previous structures, dendrogram clustering is applied
only on benign samples to constitute a new training set, trying to provide a greater repre-
sentation of the negative class. Malignant samples are the same considered in dendrogram

Figure [3.36shows the resulting dendrogram on benign ROIs along with clusters.
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Figure 3.36: ADC map. Dendrogram clustering on benign samples of NNy test set. Dashed red boxes enclose

extracting elements from every cluster.

clusters

A second cascade is implemented exploiting the classes formed from each cluster in fig-
ure [3.36] The new training set for benign samples is built as in equation [3.8] by randomly
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Table [3.21] specifies performance on training set and highlights the class, excluded from the
succeeding training set, based on lowest number of benign elements classified as malignant.

TRAINING SET
NN Predicted Class
1 2 3 4 5 6
1 0.036 0.340 0.313 0.214 0.082 0.015
2 0.100 0.755 0.140 0.005 0.000 0.000
True class 3 0.008 0.233 0.494 0.218 0.045 0.003
4 0.004 0.044 0.396 0.495 0.059 0.003
5 0.000 0.003 0.108 0.537 0.323 0.029
6 0.000 0.001 0.037 0.155 0.473 0.333
NN Predicted Class
1 2 3 4 5
1 0.087 0.418 0.363 0.129 0.003
2 0.078 0.891 0.031 0.000 0.000
True class 3 0.005 0.392 0.524 0.078 0.000
4 0.003 0.046 0.432 0.471 0.049
5 0.000 0.005 0.315 0.540 0.140
NN, Predicted Class
1 2 3 4
1 0.221 0.553 0.213 0.014
True class 2 0.059 0.903 0.038 0.000
3 0.003 0.371 0.608 0.019
4 0.004 0.094 0.505 0.397
NN, Predicted Class
1 2 3
1 0.445 0.508 0.047
True class 2 0.021 0.946 0.033
3 0.001 0.442 0.556
NN, Predicted Class
1 2
True class 1 0.853 0.147
2 0.762 0.238

Table 3.21: ADC map - 2"¢ NNs Cascade. Normalised confusion matrices belonging to each neural network
training set. Rows enclosed in the bold boxes highlight the class which is not included in training set of the

successive neural network (1: malignant label, benign labels from 2 to 6)

The confusion matrix regarding training set of the last neural network in the second

cascade exhibits a considerable decrease in the recognition of benign samples.
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TEST SET
Predicted Class
1 0
True class 1 0.757 0.243
0 0.340 0.660

Table 3.22: ADC map - 1*" and 2"¢ NNs Cascades. Normalised confusion matrix considering complete test set
(1: malignant class, O: benign class)

Performances presented in table [3.22] are obtained considering the outcome of NNy and
those elements already classified by the previous NNs.
A slight amelioration concerning specificity is found, but it is not sufficient to reach an ac-
ceptable outcome.
Given the worsening of the final network in the second cascade, another attempt is made by
clustering benign samples of the remaining test set from NNj.

Dendrograms belonging to classes 2 and 3 (involved in NNjg) are cut in order to extend
the presence of these classes in the training set, creating a class from each of the newly
formed clusters (see figures [3.37|and [3.38). Samples are randomly extracted from each class
according to equation [3.8]
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Figure 3.37: ADC map. Dendrogram on class 2 from remaining test set of NN,. Dashed red boxes enclose
clusters
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Distance

ROIs

Figure 3.38: ADC map. Dendrogram on class 3 from remaining test set of NN,. Dashed red boxes enclose
clusters

Table reports the confusion matrices of each neural network in the 3" cascade re-

garding training, whereas table [3.24] shows final performances on entire test set considering
all three cascades.
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TRAINING SET
NNy, Predicted Class
1 2 3 4 5 6
1 0312 0345 0.155 0.078 0.097 0.013
2 0.010  0.605 0.322 0.051 0.012 0.000
True class 3 0.015 0338 0483 0.128 0.035 0.000
4 0.001 0.099 0.554 0.328 0.015 0.003
5 0.000  0.001 0.029 0.208 0.726 0.036
6 0.000  0.000 0.019 0.119 0.608 0.254
NNy, Predicted Class
1 2 3 4 5
1 0309 0417 0.217 0.049 0.009
2 0.041 0.555 0.372 0.032 0.000
True class 3 0.006 0388 0.559 0.046 0.000
4 0.000  0.055 0423 0.506 0.015
5 0.000  0.006 0.090 0.405 0.499
NN, Predicted Class
1 2 3 4
1 0372 0454 0.165 0.009
True class 2 0.015 0737 0.244 0.004
3 0.001 0.359  0.60S5 0.035
4 0.001 0.071 0.440 0.488
NN, Predicied Class
1 2 3
1 0.559 0417 0.024
True class 2 0.006 0.965 0.028
3 0.001 0.599 0.400
NN, Predicted Class
1 2
True class 1 0912  0.088
2 0.808  0.192

Table 3.23: ADC map - 3" NNs Cascade. Normalised confusion matrices belonging to each neural network.
Rows enclosed in the bold boxes highlight the class which is removed in the training set of the successive

neural network (1: malignant label, benign labels from 2 to 6)
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TESTSET
Predicted Class
1 0
1 0.812 0.188
True class
0 0.370 0.630

Table 3.24: ADC map - 1%, 2™ and 3" NNs Cascade. Normalised confusion matrix considering complete test
set (1: malignant class, 0: benign class)

Although the representation of benign samples has been incremented, the expected im-
provement about their detection is still not accomplished.

Given these results, a further trial is performed changing the method to extract elements
for training set construction.

Starting with test set proper of NN, in table and considering its dendrogram in figure
the same clusters are taken into account. Each of them (called reference cluster) is
divided in 10 subclusters, and a number n of elements is picked randomly from each using
equation [3.11] in which:

e 7. is number of elements in the current subcluster;

e M is number of malignant samples in dendrogram based training set (see table [3.8));

e 1, 1s total number of elements in the reference cluster.

n. XM

nref

(3.11)

n =

Malignant data for training set are not changed (i.e. equal to the samples from dendro-
gram based training set) and joined with the new benign classes.
The aforesaid procedure to build the training set will be denominated proportional sampling.

A schematic representation of the approach employed in each successive cascade is pre-
sented in figure [3.39
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Dendrogram clustering Training set creation with
on benign samples proportional sampling
Identify NN with high Multi-class
[ misclassification error H TESTSET / TRAINING SET /

1 |

Figure 3.39: ADC map - NNs cascade with proportional sampling. Schematic representation of the procedure
adopted to implement cascade of NNs

In particular, the first step is to identify the network presenting a low misclassification
error regarding benign samples mistaken as malignant. When this error starts to increase
with respect to the previous NN in the cascade, the approach proceeds as follows:

1. benign samples from test set of the elected network undergo dendrogram clustering;
2. cutting level is established;

3. proportional sampling is used to construct training set;

4. NN is fed with this training set and the test set from which it derives.

As a matter of fact, the aim is to limit the presence of false positives, sampling the test set
featured with a considerable misidentification.

Accounting for training set performance of each network in the cascade, the class charac-
terised by lowest number of benign elements predicted as malignant is not included in the
next NN training set.

Samples classified as benign truly belonging to the benign class will be considered true neg-
atives, whilst those with actual malignant class will be denoted as false positives. All of them
will contribute in the performance of the last network of the cascade.

Dendrograms and their clusters proper of this phase are reported in the appendix (section
B.5).

Performances resulting from training set of each neural network can be found in section [3.5]
of the appendix.

In order to evaluate misclassification errors, table is constructed on test set of every
single network giving the normalised number of malignant and benign samples recognised
according to NN prediction.
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Predicted Class
1 2 3 ven vee n

Malignant
Benign

True class

Table 3.25: Template providing normalised number of malignant and benign elements per NN prediction.
Class 1 denotes malignant samples, while benign classes are denoted from 2 to n

ADC | NNs cascade - Training sets with proportional sampling | Performance on test set
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Figure 3.40: ADC map - NNs cascade with proportional sampling. Each row comprises a NNs cascade. The
bars represent the normalised number of malignant and benign samples according to NN prediction on test set.
Dashed boxes highlight the test set whose samples will be used in the creation of the training set for the
following cascade (1: malignant label, benign labels from 2 to 7)

As discernible from table [3.26] there is a significant enhancement in the correct identifi-

cation of the negative class thanks to the implementation of 8 NNs cascades. Nevertheless,
the sensitivity is consistently diminished, resulting around 0.5.

81



3.4. Classification Optimisation

TEST SET
Predicted Class
1 0
1 0.49 0.51
Tr 1
necuass |y 0.17 0.83

Table 3.26: ADC map - NNs cascade with proportional sampling. Normalised confusion matrix considering
complete test set (1: malignant class, 0: benign class)

To closely observe the outcome of this approach in a patient-wise fashion, figure [3.41]
provides sensitivity and specificity per subject.

ADC map | NNs cascade - Training sets with proportional sampling

] Classification performances across patients
R S B A E E N B I

09 m

08 -

0.7 m

06 m

03 m

0.2 7

01} .

N N N N
ACTIN - S ST AT U U SR IR SRS GG SR IR S R SR LRI GO LR
Patient #

I Spec [l Sens

Figure 3.41: ADC map - NNs Cascade with Proportional Sampling. Patient-wise sensitivity (Sens) and
specificity (Spec)

Specificity stays above 0.7 for the entire study population, whereas sensitivity varies
across patients in a much broader range (roughly from 0.3 to 0.8).

Some examples of tumour detection realised by NNs cascade with proportional sampling
are exhibited in figure [3.42]

Several falsely recognised benign samples undermine the correct identification of cancerous
zones, as visible in the upper left corner of figure [3.42]

Since the tumour in the upper right corner of figure [3.42]is small, it could be more probably
disregarded as a malignant area.
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.

Figure 3.42: ADC map - NNs cascade with proportional sampling. Examples of tumour detection. Red dots
indicate the centre of each ROI classified as malignant, while blank squares correspond to cancerous areas
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3.5 Overall Comparison

Throughout this study, several supervised machines have been tested with the aim of
achieving a good performance in detecting malignant areas, as well as in limiting the amount
of benign samples misidentified as cancerous.

Performances accomplished by each classifier are reported in figure [3.43] for ADC map and
in figure [3.44] for T2-weighted, in terms of false positives, sensitivity and specificity.

ADC map | Overall Performance Comparison

Prop NNs Cascade

Dend NNs Cascade (3)

Dend NNs Cascade (2)

Dend NNs Cascade (1)
Dend MaxMedian NN

Dend MinDiff NN

DT MaxMedian NN

DT MinDiff NN

Multiclass k-NN

Multiclass SVM

SWVM

09 1

=]
[=]
-

02 03 04 05 06
FP mSensitivity = Specificity

(=]
~
[=]
[==]

Figure 3.43: ADC map. Comparison in terms of number of false positives, sensitivity and specificity
considering all classifiers. (DT: Decision tree based training set, Dend: Dendrogram based training set, Prop:
Proportional sampling training set)

Neural networks enable to recognise more correctly benign samples employing dendro-
gram based training set and in the case of NNs cascade with proportional sampling with
ADC map.

On the other hand, multiclass SVM shows higher specificity, which competes with NN re-
sults.

Referring to T2-weighted, all classifiers but dendrogram based training set NNs present a
balanced performance between sensitivity and specificity, approximately around 0.7. The
best outcome regarding specificity is accomplished by NNs with dendrogram based training
set, even though sensitivity is much decreased.
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T2-w | Overall Performance Comparison

Dend MaxMedian NN

Dend MinDiff NN

DT MaxMedian NN

DT MinDiff NN

Multiclass k-NN

Multiclass SVM

SVM

(=]
=
ry

02 03 04 05 06 07 08 09 1
FP mSensitivity = Specificity

Figure 3.44: T2-weighted. Comparison in terms of number of false positives, sensitivity and specificity
considering all classifiers. (DT: Decision tree based training set, Dend: Dendrogram based training set)

False positives are in general more significant with SVM, multiclass SVM and multiclass
k-NN and NNs using decision tree based training set for both image modalities. This could
be explained mainly by two reasons:

e dendrogram based training set embodies a more complete representation of healthy
regions, improving their differentiation;

e neural networks outperform the other classifiers due to their structure and learning
process which allow to discover inner relationships among the samples and exploiting
them to recognise the true label.

Some representative outcomes of tumour detection per classifier and image type are pro-
vided in figure [3.45]and [3.46] analysing subjects with decreasing tumour size.
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Dend — MaxMedian NN NNs? Cascade

Dend — MinDiff NN

DT — MaxMedian NN

DT — MinDiff NN

Multiclass k-NN

L2

Multiclass SVM

SVYM

Figure 3.45: ADC map. Examples of tumour detection performed by all classifiers, referring to large, medium
and small cancerous areas. Red dots indicate the centre of each ROI classified as malignant, while blank
squares correspond to cancerous tissue

Regarding ADC map, misclassified ROIs result restricted especially in the case of the
medium-sized lesion, although detecting the small tumour becomes more and more difficult.
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Dend MaxMedian NN

Dend MinDiff NN

DT MaxMedian NN

DT MinDiff NN

Multiclass k-NN

Multiclass SVM

SVM

Figure 3.46: T2-weighted. Examples of tumour detection performed by all classifiers, referring to large,
medium and small cancerous areas. Red dots indicate the centre of each ROI classified as malignant, while
blank squares correspond to cancerous tissue

In the case of T2-weighted, false positives considerably worsen image appearance as they
are present in a great amount except in the case of dendrogram based training set NNs, where

also sensitivity is much lessened.

These are just few examples to visually provide an idea of the performances: it is essen-
tial to remember every subject is unique and cannot be interpreted as a generalisable result.
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All the trials performed in this study outline the complexity found in constructing a su-
pervised classifier able to identify cancerous lesions.
This complexity can be attributed to:

e imbalanced malignant and benign classes;
e huge heterogeneity inherent benign samples and their similarity with cancerous areas;
e intra and inner subjects variability, including even malignant samples.

To overcome these aspects, the adopted approaches comprised changes in the training set
together with the classifiers in the attempt to retrieve a good combination.

The most decisive step has revealed the creation of the training set, as performances of the
classifiers radically modified. Of course, feeding each machine with a diverse information
content causes the generation of a different model which may turn out to be more or less
efficient in classifying than the previous ones.

Certainly, those training sets featured with multiple benign classes (i.e. dendrogram based
and proportional sampling) encounter both for data diversity and difference in sample size
providing the classifiers with an acceptable knowledge in terms of heterogeneity needed for
the detection.

Final results demonstrate there exists still an improvement margin to keep identifying un-
healthy regions along with healthy ones, as one cannot be as effective without the other.
Nevertheless, this study can be considered as a starting point to be further analysed and ame-
liorated with the goal of finding a satisfying set up for prostate cancer detection based on
bi-parametric MRI.
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Conclusions and future work

This thesis project represents one of the first attempts to identify prostate cancer using
only the non-invasive sequences proper of bp-MR protocol.
Conceived as a completely automatic system, it comprises prostate segmentation and tumour
detection in view of the creation of a software tool which could act as support for radiologists
in PCa screening.

The algorithm designed to segment the prostate is ensuring with regard to sensitivity, con-
firmed by robust and satisfying performances across the study population. However, it suffers
from over segmenting tissue outside the prostate (e.g. rectum or bladder) due to the adoption
of the fixed bounding box dimension in the entire volume.

In order to improve its performance, an adaptive bounding box could be used to follow the
actual extension of the prostate in each slice. Another useful advancement could be to inde-
pendently determine presence or absence of the prostate in each image to select the useful
ones. Edge detection may instead be utilised to precisely delineate prostate contour.

As common in the medical domain, the huge difference in sample size between healthy
and unhealthy regions characterised this work and led to several trials, with the aim of over-
coming this aspect along with the significant data variability which comes with it.

The first approach implemented to detect PCa comprehended simultaneous feature selection
and classification using a genetic algorithm in conjunction with support vector machine, ex-
ploiting the training set constituted beginning from decision trees proper of each patient.
Although a sensitivity around 70% was acceptable as initial result, it soon emerged the ne-
cessity to reach a much higher specificity to make tumour detection valid.

Bearing this concept in mind, all succeeding trials tried to enrich benign samples represen-
tation changing the training set. Dendrogram clustering was involved to create more classes
concerning healthy areas, then fed to a multiclass version of the SVM and to k-nearest neigh-
bours classifiers. While some ameliorations were brought by the support vector machine, the
same did not occur for k-NN.

To discover whether a totally different classification strategy could enhance healthy tissue
identification without losing in sensitivity, feedforward neural networks played a crucial role,
showing similar performances to previous classifiers when using the two-class training set,
but superior recognition in the case of more benign classes.

Given these results, a cascade of neural networks was performed to exploit the ability of each
NN to correctly identify a benign class with a negligible error concerning false positives.
Since the desired outcome was still not accomplished, the conclusive attempt included con-
secutive NN, working with a training set built by proportionally sampling clusters resulting
from dendrogram on test set of the network presenting increasing misclassification error.

At the end, this method achieved a great performance in classifying benign samples with the
downside of a worsened tumour detection.
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In conclusion, this work demonstrated the difficulty in conceiving a system suitable for
prostate cancer detection assuring a good tumour recognition along with an acceptable be-
nign tissue identification. This is pivotal if such a system should be employed as a screening
tool for PCa, although always supervised by expert radiologists.

A fundamental encountered issue is the substantial intra and inter subject variability which
causes an enormous data heterogeneity concerning both malignant and benign areas.

Being the tumours outnumbered with respect to non cancerous regions and given their size
which could be also considerably small, all the supervised classifiers found very difficult to
distinguish between the two.

As evident from these preliminary trials, training set construction has proven to be essential
in establishing the goodness of the classifiers.

In addition, even though all these elaborations were performed in parallel for the two image
modalities, together they may compensate for reciprocal errors and enrich the final perfor-
mance.

Future advancements may come up with a strategy to increase the informative content en-
closed in the data set with the creation of multiple classes for healthy and cancerous tissue
as well.

Bi-parametric MRI protocol certainly embeds valuable knowledge to detect prostate cancer:
further researches are required to find a robust and reliable strategy to exploit this informa-
tion.



Appendix

GLCM Texture Features

GLCM texture features mentioned in chapter [3.2] are described in the current section
[59.78]]. Parameters notation is detailed in table [3.27]

Notation Meaning

G grey level

P(ij) entry of the GLCM

P, marginal probability from the GLCM (sum of the rows)

P, marginal probability from the GLCM (sum of the columns)
u mean value of P

o standard deviation of P

Table 3.27: Parameters notation adopted in the computation of GLCM texture features

In particular, P(i, j) represents the co-occurrence of a couple of grey levels at a specified
distance in terms of pixels.

GLCM feature Abbreviation
Contrast Contrast
Correlation Correlation
Energy Energy
Entropy Entropy
Cluster prominence ClusterProm
Cluster shade ClusterS hade
Haralick correlation HaralickCorr
Homogeneity Homogeneity
Variance Variance
Sum average SumAverage
Sum entropy SumEntropy
Sum variance SumVariance
Difference variance Dif fVariance
Difference entropy Dif fEntropy
Information correlation 1 | InfCorrl
Information correlation 2 | InfCorr2
Dissimilarity Dissimilarity
Max GLCM MaxGLCM

Table 3.28: Abbreviations for GLCM texture features

In the following equations, n = |i — j|.
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Contrast quantifies local variations of intensities appearing in an image, favouring the
couples (i, j) apart from the diagonal (i.e. when i # j). Its value could be particularly
affected by the highest and the lowest value of the considered set of pixels, mostly in the
case of displacement vector made of only two pixels. Significant variability of grey tones in
the image leads to high values of contrast.

nz( PG, j)) (3.12)

n=0 i=0 j=0

G-1 G-1G-1
Contrast =

Correlation estimates the linear dependency among grey levels of neighbouring pixels. Re-
gions with similar grey scale intensities will present high values of correlation.

G-1G-1 . ..
- Mx - P )
Correlation = E (= = )P ) (3.13)
i=0 j=0 TxTy

Energy (also called angular second moment) measures the homogeneity of the image: the
higher its value, the more homogeneous the image will be, because of the elevated occur-
rences of the couples (i, j).

G-1G-1
Energy = ZP(: )? (3.14)
i=0 j=
G-1G-1
Inertia =) (i = j)*P(i, j) (3.15)
i=0 j=0

Entropy evaluates the randomness of the intensity distribution. More diverse probabilities
result in a high value of Entropy, while it decreases for unequal probabilities.

G-1G-1
Entropy = PG, j) In(P(, j)) (3.16)
i=0 j

Q

1l
(=)

ClusterShade and ClusterProm can be considered as 2-D versions respectively of skewness
and kurtosis.

G-1G-1
ClusterS hade = Z Z(l +J— Uy — ,uy)3P(i, J) (3.17)
i=0 j=
G-1G-1
ClusterProm = G+ j—pu,— ,uy)4P(i, J) (3.18)
i=0 j=0
G-1G-1
i, )P, X Uy
HaralickCorr = Z( PP ) = 1 X 1 (3.19)
= = OOy
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Homogeneity, also known as inverse difference moment, gives information about local
homogeneity. The term (1 + (i — j)?) in the denominator of equation decreases the
contribution of more diversified areas.

G-1G-1
1
Homogeneity = — PG, j)? 3.20
geneity ;;1+(i_j)2(]) (3.20)
Variance emphasizes the elements which are more distant from the mean value of P(i, j).
It can be interpreted as a measure of heterogeneity and it is not correlated to any spatial
frequency, unlike Contrast.

Q

G-1 G-1G-1
Variance (i- ,ux)zP(i, Jj)+ (J — My) Y2 P(i, J) (3.21)
=0 i=0 j=0

._.

Il
[«

i

~.

In order to define the remaining features, next parameters must be set:

-1 G-1

Priy = P, j) (3.22)
i=0 j=0

where n = 2,3,...,2G and i + j = n, while
G-1 G-1

P(i, j) (3.23)

i=0 j=0
wheren =0,1,...,G—1and |i — j| = n,

2G

SumAverage = Z nP.,(n) (3.24)
n=2
26
SumVariance = Z(n -S umAverage)zPHy(n) (3.25)
n=2
G-1
Dif fVariance = Z(n — ,ux_y)2 Py_y(n) (3.26)
n=0

In particular, u,_, corresponds to the average value of P,_,(n).

2G

SumEntropy = — Z Py (i) In(P iy (i) (3.27)
=2
G-1

Dif fEntropy = — Z P,_(i) In(P,_(i)) (3.28)

i=2
Entropy — HXY1

InfCorrl =
nfCorrl = = HX.HY)

(3.29)
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HX and HY represent respectively the entropy of P,, indicating sum of GLCM rows, and

Py, indicating sum of GLCM columns.
HXY1 = — Z Z P(i, j) In(P,(i)Py(j)
i
HXY2 == " %" P(DPy(j) In(Pu()Py()))
i
II’lfCOI’I"Z =1= e—Z(HXYZ—Entropy)

MaxGLCM = max(GLCM)

1

Dissimilarity = = > 3" i+ 1) = (j + DIPu(i. )
J
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Appendix

GLRLM Texture Features

GLRLM texture features mentioned in chapter @ are listed in the current section [|64,
79]. Notation adopted for the calculation of GLRLM is provided in table [3.29

Notation Meaning

G grey level (rows of the GLRLM)

p(, jl)  entry of the GLCM

R greatest sequence

n number of pixels in the image

u mean value of P

J length of the sequence (columns of the GLRLM)

Table 3.29: Parameters notation adopted in the computation of GLRLM texture features

GLRLM feature Abbreviation
Gray Level Non-uniformity GLNU
Run Length Non-uniformity RLNU
High Gray-Level Run Emphasis | HGRE
Low Gray-Level Run Emphasis | LGRE

Table 3.30: Abbreviations for GLRLM texture features

GLNU weighs more runs of greater lengths and equals smaller values when the analysed
sequence has uniformly distributed grey levels.

> (2 p. jlo) )
2 2% pG, jl6)

Instead, RLNU focuses on the length of the distribution, thus it assumes low values if the
sequence is evenly distributed for each run length.

GLNU = (3.35)

>R (RS pG. jlo) )

RLNU = — (3.36)
i1 X1 PG j10)
HGRE and LGRE estimates the presence of grey levels in each run lengths.
G R 2 . + -
i= Z = l (l’ |9)
HGRE = =212t L Ph (3.37)
i1 2j=1 P J16)

36 TR 2o

LGRE = =22l F (3.38)

T4 2N pa, 1)
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Decision Trees

Decision trees computed considering features extracted from ROIs belonging to ADC
map used for training sets construction are reported in the following.
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X2 <0.123248 J\x2 >= 0.123248 8 < 0.255551 /A%B >= 0.255551 x4 <0.080478Ax4 >= 0.080478
s 3 X156 <0.589104 &x15 >= 0.589104 x9 <0.135834 %9 >= 0.135834 X21 <0.0512157 221 >= 0.0512157
s X9 <0.148016 2Ax9 >= 0.1480389 < 0.955938 /Xx19 >= 0.95593821 < 0.051614 21 >= 0.051614
X9 <0.146415 Ax9 >= 0.146415 3 s x12 < 0.964401 £x12 >= 0.964401 )

(b) Patient #19
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X2 < 0,0671926-Lox2 >= 0.0671925

x1 < 0.220691-Axt==10.220691

x1 <0.287 >=0.287882 ,
50599 x10 < 0.5854( x1 <0.203919-Axt>=10203919 x19<0.9

>=0.0292268

4>= 0203433

Ax19>=|

=.0.204148 X28 <0.0650594 Ax28

X29 <0.070463 9 >= 0.0] 6¢

153 Px15>=0Q

>=

i \“ *

<02 16 ij . >=0.176083 A JE
%29 <0 0965278 /\3x18 ﬁ{soase
4<0.0821411 }*AMJE

3D

0.0¢

18 >= 0.380396

7 >= 0435191

x4 <0.0829%76.

x23 < 0.589T85 423 >= 0.589185

91760.0454717

x4 <0.087148¢ > 7 >=0.437105 . Ax16 >= 00125191 X7 < 0.4¢03120§59436 H1449342.0859436

X28 <0.0524883 X2 x2B 1670052188340, 163@31< 0587255423 >= 0.587255 x19< 4.9%491 Ax19 >= 0.932491

X2 <0.110144 2 X28 < 0.0487907Ax28 >=

.0487907 X17 <0.32§124 fx17 >= 0.320124

X17 < 0.456675 <10

= 0.16565425 < 0.909724 AZ5 >= 0.909724 18 <0.507982Ax18 >= 0.50798B < 0.96179 J\x19 >= 0.961079
X28 < 0.048785 A\ x2815=<000BBFEED L
X30 < 0.979167 X308 % DI

x13 <0.275921 A‘A 06EDREA/2 >= 0.

x16 <0.0803285 x16 >#0.6508:

10341 x5 >= 0.240341

16 <0.0791103 Zx16

80748 100231238 45 ¥ 0231238
X3 <0.309784 £x3 >= 0.389784
x14 <0.354957 J\x14 >= 0.359957

x16 <0.0482414 JAx16 >= 0.0482114

(c) Patient #24

>=0.112516

>=0.11235

>=0.285619

3 >= 0.595483

x23 <0.594619

3 >= 0.594619

x4 <0.081632 454 >= 0.081632

(d) Patient #34
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x18 < 0.572089-Ax18 >= 0572989

X6 <0.138414 Axg>= 0.138414 x14 <0.17602Ax14 >= 0.17602
X20 <0.388567 /4520 >= 0.388567 X1 <0.155753A04 >= 0165759 g X23 <0.581371A523 >= 0.581371
<0.192665 /xB >= 01926653 X5 < 0.23644F40 >= 0.235443 X19 <0.923842 3519 >= 0.923842 X22 <0.764974A52 >= 0764974
%8 40.193934 28 >= 0.193034 X2 <0.0733785 A5G >= 0.0733785 x24 <0.988515 424 >= 0.988515 X19 $0.955375 419 >= 0.955375 x13 <0.381357Ax13 >= 0.381357
o x16 <0.0833831 4416 >= 0.0833831 21 <0.04244724301 >= 00424472 x24 0.98865 A\x24 >= 0.98865 o x4 <0.0718117 £G4 >= 0.0718117 3
x14 40520275 \x14 >= 0529275 x18 <0.572733 /Xx18 x5 ©.67055B3 J\x5 >= 0.165233 s X2 <0.0727838 452 >= 0.07BF8AB0176089 L\x16 >= 00176089
: x26 <0.0419581 Zx26 >= 0.041988%22 40.770558 £\x22 >= 0770558 X2 $0.123761 42 >= 0323761 385541 Ax20 >= 0.385541
X28 <0.157506 £Xx28 >= 0.1575%6 ¢ X17 $0.405278 41 h=QATSBETS Jxd >= 00795376
X9 <0.164164 49 >= 0.164164 § x4 <8.0794757 fixa >= 0.094757
9 40164916 59 >= 0.164916 ¢

(e) Patient #37

X8 <0.37760 = 0377607

x5 < 0.266729-E5%8= 0.266729

X14 <0.348793 AXTA >= 0.348793 x1<0.26

x14 <0.34868 £x14 >= 0.34868

3 4421 >= 0.062774

X3 < 0532148453 >= 0532146

x1 <0.322328 A5 >= 0.322328

X1 <032186. AK1 >= 032186 X28 <0.0711807 Ax28 >= 0.0711807
X24 <0.997523 L5324 >= 0.997523 g x18 <0.671839 Ax18 >= 0.671839
X9 <0.112764 459 >= 0.112764 3 x28 <0.0719137 x28>=0,071913‘

%9 <0.111389 259 >= 0.111389  x2 <0.0370212A\x2 >= 0.0370212

X23 <0.603206 £x23 >= 0.603206' x4 <0.0818963 Ax4 >= 0.0818963

x4 <0.0811584 x4 >= 00811584

(f) Patient #52
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8 <0.23982; 0239822
X8 <0.239313 9313 X5 < 024753646 >= 0.2475,
x14 <0.214467 Axtt>= 02714467 %5 <0.247067 2565 >= 02477
s X21 <0.0145476%5x21 >= 0.0145476 X2 0127196 Xx2 >= 0.12496
X3 <0.433146 AxT>= 0.433146 X23 < 0.5952024x23 >= 0.595202 X2 <0.12626 452 >= 013626
§ 3 X3 <0.280519-A%T 5= 0.280519 X5 < 0076782748 >= 0.0767827 § 3
H x10 <0.569898 Ax10 >= 0.569 X5 < 0077453040622 0,0774539
19 <0.971494 19 >= 0.97 194 x13 <0.433THAX13 >= 0.433414
X2 <0.123494 £x2 >= 0123484 X8 <0.119 0.119318 2
X2 <0.120657 252 >= 0.120%% X2 <0.145275 [Ag2 5= 0.145275 X5 < 0.1414B8AS >= 0.141488
X1 <0.130774 £t >= 0130474 14 <0.314045 14 >= 0.314028 X5 <0.141422 556 >= 0.141422 s
x1<0.125955 41 >= 0.1)5955 x26 <1.048951 2\x26 >= 0.048951 x18 <0.550894 AKT8 >= 0.550894
g o X23 <0.675169 /2523 >= 0.675169 x27 <0.263838AK27 >= 0.263838
%9 9161812 9 >= 0181612 X28 < 0.0942688 A\x28 >= 0.0942686

12 <0.991282 £12 >= 0.99 182
x18 <0.568519 4Ax18 >= 0.569619
18 <0.565198 18 >= 0.596198

x21 <0.0390594 Z4x21 >= 0.8390594

(g) Patient #57

X8 <0.21252,

>= 0212523

G >= 0.129997

x1 >= 0.153586

X22 <0.776293 fAx22 >= 0.776293

1>= 0048625

(h) Patient #71
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156 >= 0.138353

>= 00738391

15 >= 0.137921

x15 <0.137921

3 >= 0.584798

X23 <0.584702

>= 0.0668271

X2 <0.0668822 Ax2 >= 0.0668822

%26 <0.0174825 £Xx26 >= 0.0174825

x4 <0.109732 x4 >= 0.109732

(i) Patient #72

= 0318791

X8 <0.318
A30 >= 0.923611

x30 <0.9236

=0.0660159
gt <0.0761068 axd >= 00761

8.>= 0.318761

X24 <0.974485 Lod 5= 0.974485 X8 <03TBIBEA
¥4 <0.0760175 x4 >= 0.070175

<0.570505 £4X14 >= 0570505 X5 <0.27474T A5 >= 0274747 x23 <0.573779-£xg3 >= 0573779
X5 <0.21845TAx5 >= 0.218451

X1 020555 Jxix6=CR05ER3 L5 >= 0151923
X7 <0.243457 A7 >= 0243457

%< 0.0354296 A\x2 >= 0.0354296 X2 <0.102916 £52 >= 0.102916
X214 0.0193304 JAx21 >= 0.0193304 X2 <0.102544 £Xx2 >= 0.102544 X1 <0.251168 41 >= 0.283 168.575632 Ax23 >= 0.575632
x4 <0.113332 x4 >= 0.113%62 %22 <0.761974 A\x22 >= 0.761974

%9 £0.164608 J3x9 >= 0164608 x14 < 0.547256 £%14 >= 0.547256
x12 <0.937994 Ax12 >= 0.937994

4583 g

x¥<0.447791 L3 >= 0447791 x10 <0.424583 ox10 >:

0
x9 40.142868 J\x9 >= 0.142868 $ X24 <0.972341 4%

4 >= 0.9723419 < 0.964586 Ax19 >= 0.964586

>=0.182775%

x11 < 0800422495 S3xt 6.0 ERTE

$ x2 $0.183516 J\x2 >= 0.183516

(j) Patient #79
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X5 <0.120985 /A5

0.120985

X5 <0.121421 x5 >= 0.121421

X22 <0.788098 J2x22 >= 0.788098

X2 <0.153119 452 >= 0.153819

X23 <0.591116 /A

x14 <0.559825 A\x14 >= 0.559825

X2 <0.0810182

x5 <0.159914 = 0159914

x13 <0.250913 Ax13 >= 0250913

X7 <0.228854 K7 >= 0.228854

x2 <0.126121

3>=0.591116

X22 <0.77957 £Xx22 >= 0.77957

>= 00810182

X2 <0.0779766 £x2 >= 0.0778766

X8 <0.23379

A2 >=

<0.0757057 {Xx4 >= 0.0757057 3

0.951389 A\x30 >= 0.951389

126121

X8 <0.285201-Lx8 >= 0.285291

X3 <0.5296

>= 023379

X8 <0.283753448 >= 0.283753

x19 <0.846283 2519 >= 0.846283

X3 < 0.485457 A3 >= 0.485457

%22 <0.764196 L5322 >= 0.764196

#23 <0.583002 JAx23 >= 0.583002

€3 <0.669150 Ax23 >= 0669159

26<0.156267 f\x2 >= 0.156267

X7 <0.26807:

X8 < 0.304902-4:x8 >= 0.30490,

B <0.304803 48 >= 0.304803

A7 >= 0.268075

x18 <0.363091 A\x18 >= 0.363091

(k) Patient #91

X9 <0.137014 A%

X1 < 0.00495341 211 >= 0.00495341

x4 <0.109005 /54 >= 0109005

A53=0.155103

X2 < 01083854,

X2 <0.0459245 A >= 0.0459245

X27 < 0188876 AN27 >= 0.188876.

X9 <0.162654 4x0 >= 0.162654

%22 < 0846123 %22 >= 0846123 3

=0.108348

X17 < 0.644689 A\x17 >= 06446895 < 0.249505 LK15 >= 0.249505

x8 <0274 = 0.274928

X23 < 0.68872T A3 >= 0.689729

X28 < 0146244 228 >= 0.146244

x8 <0.215239 A48 >= 0.215239

x19 < 0.969756 19 >= 0.969756

x14 < 0.507637 {&x14 >= 0507637

1 3

¢ x14< 0508852 f\x14 >= 0508852

X8 < 031607648 >= 0.316076

X8 <0.315549 8 >= 0.315549

(1) Patient #100
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x13 <0.0503853-Ax13>= 0.0503853

= 0194316
=0.106982 0
x18 <0.822159 AK18 >= 0.822159 X8 <0.123798Ax@ >= 0.123798
X27 <0.371052 2527 >= 0.371052 s x11 <9.712956-08Ax1 1 >= 9.71295¢-05
X9 <0.123412 £x9 >= 0.128142.254474 A2 >= 0.254474 X24 <0.95419%24 >= 0.95419
x4 <0.0945801 £x4 >= 0.0945801 o x23 <0.665324 A5x23 >= 0.665324 X3 < 0.53168TAE >= 0.531641
» X9 <0.125374 2Ax9 >= 0.125374 X5 <0.108109. 455 >= 0.108109
X3 <0.223176 Ax3 >= 0.223176 X1 <0.155402A\x1 >= 0.155402
X8 <0.193157 A8 >= 0.193157 X7 <0.153488 A7 >= 0.153488

x19 <0.934908 2%19 >= 0.934908

& X3 <0.399166 A1x3 >= 0399166

(m) Patient #107

X10 < 0.34615-L540.>= 0.34615

x10 <0.345933 AxTUS= 0.345933

X5 <0.243719 Ax55= 0.243719

X5 < 0.244123 A5 >= 0244123

X23 <0.57920;

3 >= 0.579203

x13 <0.093658545x13 >= 0.0936586

x21 <0.03766434521 >= 0.0376644

x1 <0.332097 A1 >= 0.332097 X6 < 0256423 46 >= 0.256423

X9 <0.224562 A%9 >= 0.224552 x1<0.332888 A1 >= 0.332888

X5 <0.264177 AAx5 >= 0.264177

(n) Patient #111
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>=0.211498

>=0.211426

>=0.128869

X1 <0.13555¢

X27 <0.217741 327 >= 0217741

(o) Patient #122

X7 <0.274456-A0x7 >= 0274456

x1 <0.276528%4
X26 <0.05594 6.>= 0.0559441
x1<0.28 %I 5= 0.285855
X28 <0.0678701 L4x2B>= 0.0678701 X3 < 045755843 >= 0457558
g X9 <0.279686 250 >= 0.279686 X3 <0.458071A\x3 >= 0.458071

X8 < 0422072458 >= 0.422072 ] %29 <0.0246598 £3x29 >= 0.0246598

X6 <0.369963 4556 >= 0.369963

X23 <0.651448 2523 >= 0.651448 x11 <0.00106838Ax11 >= 0.00106838
8 x23 <0.651821 2\x23 >= 0.651821 X8 <0.421243 A\x8 >= 0.421243
. x14 <0.50957 £Xx14 >= 0.50957

(p) Patient #128
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X2 <0.0764273 AxZ 5= 0.0764273

x19 < 0.952768 219 >= 0.952768

X5 <0.165147 £

X2 < 0.0760792 A

>= 00760792

x14 <0.524087 AK14 >= 0524087

8 >= 0.05000%11 <0.00140832 A\x11 >= 0.00140832

X28 <0.050001 £

X28 <0.0499044 Xx28 >= 0.0499044 18 <0.467752 218 >= 0467752

X5 <0.165423 A\

X8 <0.292

>=0.165147

>=0.165423

x15 <0.122254 Ax15 >= 0.122254

x12 <0.919397 Ax12 >= 0.919397

x11 <9.71295-05 A\x11 >= 9.71295¢-05

X8 <0.227573 Ax8 >= 0.227573

X8 <0.227328 /Xx8 >= 0.227328 3
:
(q) Patient #135
x8<0.2124 = 0.212452
X2 <0.131851-4%25= 0.131851 X8 <0.248758A\x8 >= 0.248158
x16 <0.07817524%76 >= 0.0781757 X8 <0.21239A\x8 >= 0.21239 X8 < 0.248123 L3580 >0 Ax22 >= 0.910
X6 <0.136571-4556 >= 0.136571 X27 <0.0276415 %27 >= 0.0276415 X24 <0.998185 Ax24 >= 0.99818! X7 <0.243839 A7 >= 0.2438300. o 61419 J)x21>= (

X27 <0.157732. &7 >= 0157732

X22 <0.826134 422 >= 0.846136 <0.178901 AAx6 >= 0.178901 x3 <0.336826 L3 >= 0.336826

X29 <0.132896 £x29 >= 0.132896

Jax16>= 0.0519562  x15 < 0.672597 Ax15 >= 0.672397

0.61813 4523 >= 0.61813 x1 <0.147878x1 >= 0.14787 X27 <0.371079 Ax27 >= 0.3 50790.133296 £4x6
X2 < 08109246 A\x2 >xD4 024855 253 >= 0.24565 28 <0.825493 £x22 >= 0925493 1 <§.13386 fix1 >= 04331
$ 16 <0.03493 216 >= 0.03493 X28 <0.0041991 2528 >= #0941991 s

x29 <0.0711806 Ax29 >= 0.0711806

X2 <0.13097 £x23= 0.638035 %23 >= 0.648635

x19 < 0.887561 /x19 >= 0.88756 1

<0.814067 $)x22 >= 0.814067

X24 <0.983368 x24 >= §983368

0f1419% 065470164406

>= §0517416 x4 <0.073211 x4 >= 0.073211°8

x1660.0348519 A\x16 >= 0.0348519

X29 <0.0543027 429 >= $0543027

(r) Patient #155
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x8 <0 =0211611
X5 < 0.0817404-Lox6==00817194 X8 <0239 H
0.0337456 /A%5>= 0.0337456 X2 <0.1119784%2 >= 0.111978 X8 < 0.28040/ D G0
535c(%10.8601622596 2 >= 0.866487 X6 < 00818285455 >= 0.0818286 x19 <0.957373 Ax19 >= (O 3M
821 Qo0 03I A >= 00338123 X6 <0.133672 456 5= 0.133672 x16 <0.128098A16 >= 0.129094 ¢ x15 <0.462519 A\x4a9= 04228684 1%0980.9587
28 ¢ x2<0599819A423 >= 0545980903028 Ka29 x10 <0.616552-45K10 >= 0.616558 <0.158109 406 >= 0158109 x13 <0. LG
X7 <0.0581044 £57 >= 0.058 3044 0.68601 13240 :r'uA x13<0.216873 A543 >= 0216873 x29 <0.0497948529 >= x19 <0. /\| 3 >=0.236478
X3 < 0.246332 Hix3 419 27688238 Axx20< 0. 0.388824  x1 <0.210451 451 >= 0.210451 X2 <0.10984 TANQ >= GADIEA.BYE485 4ix22 >= 0.826485 X7 <0.195336 Ax7 >= §1963 0.0235153

x13 < 0987329 A1 3x420: 1892982 fx12>=
16 < 0128467 /438 6 S-242 QAT 5 §= 0.2448

x19 <0.955938 ¢

x4 <0.0756453 Jxa >= 0.0%

X28 <0.156662 £

x19 <0.959112 Ax19 >=

X6 <0.113143 £6 >= 0.

8 >0.1568620.923395 AX19>= 0.923395 x4 <0:993501 Jxd.

1950016763 4{014 002600678319 >=

925391 $

142.783014 £x18 >& 0#/8@044.0989555 A2 >= 0.0989555

203600.65989% 0.103003

x23

f21>y 4

1>=

0

X23 <0.584307 4\x23 >= 0.584307

x16 < 0. 16 >= 0.08288

X2 <0.0811454 >=0.0811554

0.193501

x13 <0.208707 Zx13>=

208707

x13 <0.208388 /X

X27 <0.10573 £

x13 <0.207463 Ax13 >= 0.207463

< §.0235153 {2

(s) Patient #163

A1 >=0.294022

X21 <0.024517 /X

X2 <0.031049 Kx2 >= 0.031049

1>= 00245117

x10 <0.570326

A1 >= 0437387

Ax10>= 0.570326

>=0.0596652

X5 <0.313143AG >= 0313143

x15 <0.298858 £

A5 >= 0.314307

3 >= 0.592561

X21 <0.0436429 4

X8 <0.39962 A8 >= 0.39962

9 >= 0.0754156

(t) Patient #169

105



Appendix

>=0.071018

x10 <0.5134

x10 <0.570408 2Ax10 >= 0570408 >=0.209409

X5 <0.213953

X8 <0.29303!

5 >= 0.213953

>=0.293685

>=0.293035

(u) Patient #171

X8 <0.236124-Lx8->2.0
X5 <0.12729 =011272%
0989117 /A5 = 0.0989117 X8 <0.1769254%@ >= 0.176926
4078 >= 0.0781566 X2 <0.0545325 AqZ >= 0.0545325 x4 <0.06994T5x4 >= 0.0699495
11 Ax13>=0213052 ¢ X8 < 0.2058174558 2= 0.205817
5 ‘!\n‘g \‘ 1[>\ 7%\ >=0348561  x10 <0.418477 AgT0>= 0.418477
16 < 0.079468 § BN 2518 >= 078'120.419739 810 >= 0.419739

I

<0.0247818 fo2n gt

02511 X7 <0.189508 A7 >= 0.189506

X9 <0.238762 >=0.2387¢

Wi
A M

X20 <0.409515

3 >= QB 12885402 Ax5 >=XBHBAEID.

X8 <0257839 4@ >= 0.257839

X8 <0.257797 £5@ >= 0.267/97.284612 A4x14 >= 0.28

x15 <0.75802 £x15 >= 08800, 2¢ 010! >

\

X28 <0.0482016 £x28 >= 0.

96025322 >

JANZANE WY

>= (13600502164 41|

x16 <0

X8 <0.234898

0>= 0.409515 602164

>=0.071601 x23 <0.611288 /X
7 <0.14 16

A

VASAN

>= 0588514

.

=0.891153 x16 <0.0693137

18 >= 0.0693137

X2 <0.12

X2 <0.127

13 <0.237492 Jx330= 0.4 8608300
18 < 0.0530725 4004

x17 <0.645091

0.39565 1

3 >= 0.488m211122 L8

17 >= 0.64592! x17 <0.286522

= 0.39556 <0.099126

= 0.211%27 <0.342651 [xa7

1§ >= 0.2865228 < 0.05681

8 >= 0.0463295

@ >= 0.0889126

0.342651

8 >= 0.0568168

(v) Patient #172
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X8 <0.291856-L5%8 >= 0.291856

x18 <0.28423TAx18 >= 0.284291

Lxzs=0108775

X2 <0.167433Ax2 >= 0.161434. X1 <0.878347 £\x12 >= 0878347

X5 <0.11729 =0.117202
g 16 <0.0203502 AK16 >= 0.0203502 X5 <0.190562°A\5 >X DB 4Kz S:002207A\xd >= 0.072241
X2 < 00611629 A%Z >= 0.0611629 x4 <0.0827133 Axd >= 00827133 ¢ X2 <0.161423 A2 >= 1145 A6 >= 0caod o7 03
16 <0.106465 /K16 >= 0.106465 X7 <0477453A%7 >= 0177459 x9 <0.17107 450 »10<10:40D342 A\x13 >= 0.410342 X24 <0.997879.£524 >= 0.997879  x11%<0.0083418 411 >= 0.0083GH
X5 <0.219936 L6 >= 0.219936138< 0.168071 4K15 >= 0.168071  x8 < 0.251381 A\x8 x+20:06 022642283640, 6672 18 00286012  x9 <0.107827 AG0 >= 0.107827 s $
X16 < 0.0738172 4618 6-000MHHE 22x28 >= 0,04 709 < 0.40968 A\xA8= 04689 /18 >= 0.321009 98 04361165 J\x28 x-00EEI60665K23 >= (BSI0MFI319 Axd >= 0.079319
- £522>= 0.79853p2 40.792348 522 >= 0.792348 X9 <0.117597 £ox9 >H0.117507 ) < B394806 453 >= ABB4EDO555784 JAx16 >= 0.0555784
8 <u,u«442 x28 >= JAXMZ S X24 < 08953266 fx24 >=3 QMR A2A2DAN X $ 8 X1 <0.277361 Jox1 #1807 0854395 Ak +0):67 08650998 >= 057161
X3 <0.46625 43 >= 0.467625 26 < 04279721 £\x26 >= 0027978 <§.97365 Ax19 >= 0972365 §x19<0.918788 £x19 >¥1a THP222 J\x14 >= 0.572222
X19 <0.943251 4ox19 4 0.943251 ¢ X2 < (795252 \x22 >= 079528
$ ¥9 <0.140653 49 >30.140553
8
(w) Patient #173
X3 <0.399057-44x3 >= 0.399057
13 <0.109889 AXT3 >= 0.109889 X3 <0.3092TAX3 >= 0.39921
x13 <0.109856 213 >= 0.109858 < 0.918307 A\x24 >= 0918307 X6 <0.143419 A6 >= 0.143419
4<0.32876 £5x14 >= 0.32876 g x2<00295826 2\ >= 0.0295626 g X6 <0.145417 A6 >= 0.145417
2f <0.770432 222 >= 0.770432 x2 <0.0290801 452 >PNRIB0441917 229 >= 0.00441917 X22 <0.7999534x22 >= 0.799953
£l <0.193225 f\x1 >= 0193225 ¢ H X2 <0.0538348 A2 >= 0.0538348 x18 <0.398404 £45%18 >= 0.398404 >= 0155428
x1<0.170799 £ix1 >= 0.§70799 X2 <0.053671 452 >= 0053671 X9 <0.126719 A0 >= 0.126719 s 8 x15 <0.336872A15 >= 0.336872
$ %9 <0.126696 249 >= 0.126696 X22 <0.884931 4G22 >= 0.884931x8 < 022104248 >= 0.2
x10 <0.585488 /2610 >= 0.585488< 0.403372 43 >= 040332

4x15 >= 0.261296

x4 <0.0864337 L4 >= 0.0864337
x19 <0.942686 519 >= 0942686 0.116285 Jyxdxt5 ©.IE

Gix4 6:8B0IBFASBR02 >= 0.830327

x4 <0.086418;
x15 <0.284663 /15 x2D2BMEEEE35 A\x22 >= 0.855985

K22 < §830409 422 >= 0.830409
Ax9 >= 0.148985

x13 < 0.149275xA6c¢ D281

X13 <0.148278 413 >= 0p1482; s s

(x) Patient #174
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x1 <0.210552-45>= 0.210552

X1 <0.158969 AKT >= 0.158969 x30 <0.92361

x24 <0.951033 A\x24 >= 0.951033

X3 <0.228726 £\x3 >= 0.228726

X9 <0.139802 2Ax@ >= 0.139802

x13 <0.377558 Ax13 >= 0.377558

x19 <0.967759 Zx19 >= 0.967759

Ax30>= 0.923611 §

X2 <0.0545423-552 >= 0.0545423

X27 <0.392787 £552

X14 <0.184755x14 >= 0.18475

X8 < 021758

X7 <0.200234 A7 >= 0.209234

X5 <0.149252 4G5 >= 0.149252

7 >= 0.392787

X9 <0.112186 ££x9 >= 0.1121863 < 0.308207 A

X9 <0.11178 449 >= 0.11178

X5 <0.150871 x5 >= 0.150871

>=0.308207

8 >= 0217595

(y) Patient #182
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Decision trees computed considering features extracted from ROIs belonging to T2-w
used for training sets construction are reported in the following.

x28 < 0.122304 AAx78

X5 < 025206524632 0, 252065

X8 < 026229548 22 0.262293

8= 0.122304
x8 <0.315018%%8 >= 0.315018

X5 <0.301112-E583= 0.301112

0.469846 Kx27x28 8 ABTBABET S\x28 >= 0.122357
x19 < 0.941483 419 >= 0.94148

27 < 469946 w27 >3

60945 775 A5 >= 0.167775 X5 <0.252768 43K5 >= 0.252768 X6 <0.29358 46 >= 0.20358 X8 < 0.315874- A58 >= 0.315874
< 0.168118 Ax5 >= 0.168118 1< 0.0480353 Ax16 >= 0.0480353 X1 < ®284241 fi1 >= 0.26@P44 0.109687 A0 >= 0.109687 x13779.0484598 413 >= 0.0484598
w9 < 0284835 13 = 0.2848354 < 0.0413574 23 >= 0.041357 x21< 00432653821 >= 00432683 x1ff< 05712813 >= 0.5712
x13 < 0284183 13 >= (284183 ¥ x10 < 0172624 10 = 0.172624 x19 < 0875143 AY9 >= 0875149 x2 < §142886 M2 >= 0. 142886
X6 <0277682 A6 >= 0.277682 X2 <0.0869065 /242 >= 0.086906615 < 0.600561 A15 >= 0.600561
x19 < 0.67083 /K19 >=0.678369118 A9 >= 0.0569118 x2 < 0.0866339 %2 >= 0.08663322 § 0.562329 2Xx22 >= 0.562329
X< 00358198 JA2 16 636898658 Ax16 >= 00818658 x14 < 0.480526 14 >= 0.480526 H x3 40519774 f\x3 >= 0519774
17 < 300486 Y17 >= 0.300485

x18 < 0.58115 £x18 >= 0.58115

X2 <0.0346288 A2 >= 040462886 < 277944 Jh\x6 >= 0.277944 g

x21 < 0.154808 /21 >= 0.154808 s
x21 40.158654 21 >= 0158654

x23 < $065887 23 >= 0.065887

(a) Patient #13

x4 <0.0305675%4

X29 < 00425692 AFF9 >= 0.0425692

X6 <0.165952 X6 >= 0.165952 >=0.180699

A8 >=0.201056

5 >= 0.975006

x13 < 0122077 AGT3 >= 0.122977

Axs >=0.187161

x8 <0.183822 A\x8 >= 0.183822

x14 < 0.380007 /14 >= 0.380007

(b) Patient #19
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X2 <0.0617138-L%2 2200617138

%20 < 0855382420 >= 0.855382

X5 < 027500 £A%E5= 027509

x1<0.12820 550 >= 0.12829 s X2 <0.0965655 /A2 >= 0.0965655 s

X2 <0.096503 242 >= 0.096503< 0.0081009 A4 >= 0.0081009

X27 < 0.61843TAT >= 0.618449

x19 < 0427131859 >= 0.427131

X2 < 0048783455 ? x13 < 0.36601.4K13 >= 0.36601 L 1
15 < 0.218931 AKT5 > 0.218931 X2 < 0060658742 >= 0.0606567 x28< 0146495628 >= 0.146495 X0 <0.155328 0 >= 0165328 x2<0128775 A2 >=0.128775
<0.119951 248 >= 0.11898 % 0.446904 A\x18 x23 < 0.3585B A0208797 BeeM0>= 0.108797  x29 < 0.161008.4529 >= 0.161008  x14 < 0.48386 37y 22695 0.0624999 X2 <0.128615 (X2 %140 1286667 Fx14 >= 0.14667
x13 0351644254048 200010195 x7<0248338 447 >= 02483984 & 9 <0.0350203 K0 >= 0.03502< 0.0645749 A 16 >= 0.08857851A 2446 1) smage286 2 <0.123426 42 >= 0.123426 9k 00537954 Y¢S >= 0.0537054
A >=01

x4 <0.0591465 \xd >= 0xa50400f824117 A\x23 >= 0.0824147<9.0815801 fxé >= 0.0315101 x18 < 0.315008

>= 0,467 0.569427 %22 >= 0.569427

2 T / T
5 < 0.185886 15><ov/5 x13 < 0.287533; >= 083550994315 £\x12 >= 0.99431513 < 0.128954 .219197 x16 < 0.10477» >=0$84814  x14 < 0697341 0.69734
X23 < 00871109 00871109

x26 < 0.0714886 J\x26 >= 0.0714286

x11<0.017438 Jhct1 xam-00zm0 20 3026757

x4 <0.0605843 Q\xé >= 0.0605043

(c) Patient #24

X23 < 0.0745971 %

§>=0.187782 x15 < 0.64459 $\x15 >= 0.64459

A6 >=0.187883 X15 < 0.645776 15 >= 0.645776

22 < 0.856206 2422 >= 0.856206

X28 < 0.15036 /2428 >= 015036 x23 < 0.0519454 223 >= 00519454

X25 < 0.875008 JAX25 >= 0.875008

X28 < 0150643 A28 >= 0150643

X16 < 0.180348 16 >= 0.180348

(d) Patient #34
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x2<0.0126365-4

8 < 0.0955026 P%Z8 5= 0.0955026

X27 < 0.211215 489

x10

x10 < 0.181175% %40 >= 0.181119.
x2<005 =0.0517667
X2 < 005173324575 0.0517337 X2 <0.08767454%2 >= 0.0876746
x29 < 00620299 579 >= 0.0620299 X2 <0.087626-£52 5= 0.087626 X23 < 00181473423 >= 0.0181473
7 >= 0211215 x2<0051547 A2 >= 0.0515477 X9<0.0484381 AT 5= 0.0484381 x14 40.714602 \x14 >= 0.714¢
0.365051 Q10 >= 0365051 x13 < 0215191 AK13 >= 0215191 §22 < 0564268 522 >= 0584268 x12 < 0631585 K12 >= 0831585 w14 < f716513 s >= 0
19 <0,§902551 o x2 00228859 T2 = 0.0224750 ¥10.< 0471793410 >= 0471783 § x2b<0.82501 25 >= 062501 x4 <00338233Aé >= 0.0336233

< 08220778 20645 9AIDIRR4 >= 0.0450802 < 0.216737 LAx13 >= 0216737

x2 < 0501671 fw2 >=

¢ ¢ 0501

X2 < 08502820 [i\x2 >= 0 0ED2ART0901 {22 >= 0.79901

§¢ <0.0679783 fxé >= 0 679783

1 %23 < 0448737 J\x23 >= 0.448737

x12 §0.742737 fx12 >= 0.7428070.526220

x13 40

3 >=0.526229x16 < 0.109558 P16 >= 0.109558

Ax19 >= 0.831689

x22 < #688615.

22 >=

16>= 0.

86#7 < 0.157121 fix17 13 >= 0.140898

(e) Patient #37

13 < 0.0390981 Ax13 >= 00390981

11 >= 0.104262

x12 < 0.69153;

©>=0.079458

23 >= 0.0391826

x28 < 0209383 A28 >= 0.209383

(f) Patient #52
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X7 <0.18459-L07 2= 0.18459

X7 <0.184400- L5722 0.184499 X1<0207835 41 >=0.2078¢
0860699 2 x1<0207695 A1 >=0.2076%
X5<0,098426 0964208 9 %28 <0.122251 28 >= 012221
X23 < 0.0916416 4875 >= 0.0916416 X5 <0.004557 A6 22.0,0084552 x18 < 520471 18 >= 0520471
0412026 43 >= 0.412028 x8<0 1668 ¢
x14 < §.723375 J\x14 >= 0.723375 X5 <0.133206 A¥5>= 0.133206 X17 < 0659978417 >= 0.659974
{ % 28 < 0212234 528 w20, 2132932690 21 >= 00932652 x14 < 0.68447 AT >= 0684477 .
X19 < 0.814653 219 >= 0.814653 : x19 < 0942185, 219 >= 0.92318D.092579 23 >= 0.092579
g2 < 0.68842 A\x12 >= 0.88842 X7<0.184181.857 >= 0.184181 (7 <0153711 7 >= 0153711
8 <0.115916 A8 >=0.115916 X29 < 0.294104-43529 >= 0.204101 S &1 <0.175487 A1 >=0.175487
190446316 440 >= 0.M6316 x4 <0.0223617 A >+ 0.0223617 ’ ¥3.<0705888 A >= 0.705888

X9 <0.195138%%9 >= 0.195139. X7 <0.156784 7 >= 0.15678)

x9 < 09794913 A9 >= 00794913

X22 < 0.754548 4ax22 >= 0.754548x9 < 0.195938 29 >= 0.195938
xt6 <g216007 Not6 >= 09780 x11 < 0002043 A1 = 0.0928458 i

X7 <0.18332 &7 >= 0.183%2

+8 0131554 248 >= 0133y

X8 <0.130649 L8 >= 0.1

x21<0.124038 {Ax21 >= 0424038

(g) Patient #57

x2<0.043331 >20.0433317

22 >= 0.82454 X2 <0.098551 42 >= 0.008551

19 >= 0.89617

x19 < 0.89617

16 >= 0196634

19 >= 0.89617

(h) Patient #71
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x23 < 0.102196. 8523 >= 0102196

X23 < 0.0044135 £2523 >= 0.0944135

X28 < 0.213181 28 >= 0.213181

X7<0.167885.42

x15 < 0.58851

X8 <0.172381 A\

0.172381

x8<0.172306

x9.<0211137 A9 >=0.211137

>=0.167885

g x9<0211944 2@ >= 0.211944

x4 <0.0753364 Ax4 >= 0.0753364 v X30 < 0.775 F\x30 >= 0.775

A15 >= 0588517 %10 < 0.556218 10 >= 0.556218

X3<0.437605 £%3 >= 0.43760512 < 0.96874 AAx12 >= 0.96874

X22 < 0.816067 2422 >= 0.816067

x14 < 0.60112TA%14 >= 0601121

X8 <0.1766;

176614 X2 <0.0323449 592

x23 < 0.147403 /AGZ3 >= 0.147403

X2 < 0.813217 Az

19 $0.898931 419 >= 0.8389;

0323449

A1 >=
¢ . ¢ ] x13<0.379873 A\13 >= 0.379873
¢ . X6<00882073 4565200882073 x3<0571904 Jx3 >= 0571904 . ’
X6 < 0.0879885 A6 >= 0.0879885 x19 < 0.89617 19 >= 0.89617
8 §
A 220.0380764
X6 < 0.334494- LKES= 0.334494 X2 < 0.06469574%2 >= 0.0546957
X5 < 0178914455 5= 0.178914 s X2 < 00646493 352 >= 0.0546493 x22 < 0.631305 4322 >= 0.631305
14

x19 < 0.963206 Zx19 >= 0.963906

x22 < 0.630822 2422 >= 1:630812659739 A1 >= 0.659739

X7 <02724794%7

@882 529 >= 011996 X7 <0.26047.567 >= 0.26047 3
¥ x11<00761032 A1 >= <0.128571 Rsa of >=0.02036780.193551 (A%5 >= 0.193551 2 x2 <0.0572637 (2 >= 0.0572639.113419 x5 8  x1<9.186919 A1 >=0.186919
x1440.30376 Ax14 >= 0.30376 X 22 >= 0.663683 5<0204142805 >= 0.204142 x23 < 0.0801471 fx23 >=¥p 0801479 & £ <0563849 N3 >=0
x4 400686411 e 212585 X1<0.191226 1 >= 0.191226:2 < 0.0543765 A\ 0543765 x19 < 0.84887 {19 >8 0.84887 x11< 0061644 Jx11 >=w.06'
X13<0.24 0.103192

s x24 < 0.98843 Ax24 >= 0.98848

x21<0.160577 £x21 >#0.16057|

x13 < 0105674 2§13 >= 0.105674

x11 40.0159818 Ax11 >= 0.0159818

x13 < 0,278 QoS 4

00726115

$38 <9.08§5224 428 >= 0.0805224

(j) Patient #79
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x8<0220

X7 < 0255857 A7 >= 0.255857

X2 <0.0627630-L%2520.0627639

X7 <0255763 7 >= 0255763 3

X6 <0.162491-AKE5= 0.162491 X6 <0.2028
<0.0509615 AKZT >= 0.0509615 =0.183837 1<0201650 1 >=0.201659  x14 < 0.343964 14 >= 0.343964 3
c x29 < 0.117625 25 >= 0.117625 X8 <0219B5TAS >=0.219861 ¢ B x14.<0342345 Lt >= 03423458
X16 < 0.12634 Zx1@8< 0.0263276 J\x28 >= 0.0103276 x15 < 0.602538- K15 >= 0.602538 X16 < 0.110677 416 >= 0.1106}
x21 < 0167308 ARZ1 >= 0.167308 .

x21 < 0.0807691 2521 >= 00807691 x10 < 0.474792 Ax10 >= 0.474792

x2<0.0352365 402 >=0.0362365  x30 < 0.825 A4x30 >= 0.825 x1<0.20069 Ax1 >=0.20069

21 < 0.0071152 421 >= 0.0971152 X3 <0.336927 A3 >= 0.336927

<0.0565935 2 >= 0.0565935 1< 0.176923 J\x21 >= 0.176923

8.220.247062

8 <024

X8 < 0295868 A\x8 >= 0.205668

X5 <0.175309- A% 3= 0.175300

X7 <0.300903 7 >= 0.309208 0.48974 S22 >= 0.48974

x2 <0.05508784%2 >= 0.0550879

<0.0437789 3@ >= 0.0437789
x19 < 0.867907 £x19 >= 0.867907 Y <0297462 Jix1>=0.29

x8<02141884%8

X13 < 0.138934 KT >= 0.138934

X18 < 0.675324 718 >= 0.675324 x4 < 0.285145 /Aol DEHTED S\ >= 0.05581901 < 0297402 1 >=

x24 < 0.904807 824 >= 0.904807  x24 < 0.943009 A\x24 >= 0.943009 X5 <0.201165 /A%6 >= 0.201165

A\16 >= 0,108 0.666069 24522 >= 0.665085208625 JAXS >+ 0.208625 %8 <0246725 fut >= 0.24672 x12 < 0759093 fx12 = 0.759986 < 218552 Jc16 >= 0.218552

x28 <

>=0. 19 >= 0.876419 9 x2 <0.0920788 2 >= 0.09201

20< @ »
23 < me 23 >= 0.1621 ¢ émm'

0550182

8>=024107 x4 <09550182 fxa >=

(1) Patient #100
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X8 <0.1837;

X27 < 0.561304-4537 >= 0561301

A

X8 <0.183696-L58 >= 0 183696 X22 < 0763652222 >= 0.76366

5 <0.138103-A%55= 0.138103

125156

28 < 0.0435165%4

X6 <0.134847 A6 5= 0.134847

x23 < 0.5753784%23 >= 0.575374

8 >= 0.0432088

x28 < 0.0189739 /2§28 >= 0.0189739

x28 < 0.0198137£\28 >= 0.0198137

X23 < 0.185786 AAx23 >= 0.185786

x26 < 00428571 2526 >= 004285718

x21<0.0384671

X3 <0.88360

X9 <0.039838;

x14 < 0.304561 2514

L3222 0.883607

Ay21 >= 0.0384615

Ay >=0.0398383

X14 < 0.305346 A 14 >= 0.305346

30456111 < 0.00152214 A1 >= 0.00152214

x13 < 0.137301 413

(m) Patient #107

x14<08

X5 <0.19347-858

X23 < 0.0825772 4323 >= 00825772 X5 <0.193706%%6.2= 0.193706

x23 < 0.0814186 Xx23 >= 0.0814 1 x14 < 0.320155%5% 0.320155

X7 < 0182442 A7 5= 0 182442
x11<0.0175038 JAXTT >= 0.0175038 X2 < 0.05698¢
1 <0.195193 A1 >=0.195193 X2 <0.0566799 /AF2 >= 0.0566799

x10 < 0.535994 2410 >= 0535994
x1<0226631 441 >= 0226631 B
x1<0.226431 21 >=0.226431

X6 <0.236707 256 >= 0.236707

§%5 < 0241008 $x5 >= 0241008

X1 < 02753374

= 0.846529

>=0.0569883

x13 < 0.107569A13 >=

=0.275337

107569

X13 < 0.10617 213 >= (<6 07266771 2B >= 0.266771

#/x8 0267558 Jx >= 0.267558

(n) Patient #111
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23 >= 0610689

8 >=0.167406

8 >=0.167306

X6<0.1883

>=0.188377

X2 <0.019009:

>=0.0190094

x4 <0.066559

(o) Patient #122

270.0462192

>=0.0607287

1 >= 0.0442307

24 >= 0.988772

x10 < 0.351622

10 >= 0.351622 10 >= 0.566833

28 >= 0.171511 10 >= 0.571309

28 >= 0.173732

(p) Patient #128

116



Appendix

x14

X4 <0.0461683 K4 >= 0.0461683

A

X2 < 0.0580455-A55 0.0580455

<0.269

X5 <0277254%65 >=0.27723

X5 < 0276086265 >= 0.276086

X7 <0.186065. 457 >= 0.186065

X2 <0.0402373 A2 >= 0.0402373

A

x2<0.058114

=0.0581141

x28

X2 <0.072776 L2

X2 <0.0727669 22 >= 0.0727669

x19 < 0.702208 419 >= 0.702298

x19.< 0698332 419 >= 0.698332 8

< 0.334897 A28

>=0.072776 x5<0.311848 J\x5 >=

311848

4 1
x4 <0.0457102 (x4 >=0.0457102 X5 <0.250995 /245 >= 0.250995 x1 <0.195583 Ax1 >= 0.195583
¢ . 29 < 0134578 (29 >= 0134578 »
x11 < 0.020548 &1 >= 0.020648
1 b
x8<0.167010-L8
X8<0.16698 x15 < 0.0499878 845 >= 0.0499474
X7 <0.163864+-A57 2= 0.163861 15 < 00892116 375 >= 0.0492116 X17 < 0.0779836F 1722 00779826

x2.<00418165. A5 0.0418166 X8 <016TEFANE >= 0.161894 o 7 <OTTTIEAG 5= 021779
744391 42%16 >= 0.0744391 X7 <0.1502 150238 6717 0.164115 X7 <0217735 A%7 >=0.217735 x19 < 0.934943 A19 >= 0.93494
< 0.0873376 445 D:2BOBTBLE14 >= 0.269997 X5<0.127200 45 >= 0127204 ¢t s ¢ 8 X17 < 0764114 247 >= 0.764114'} X5 < 0247706 A% D020 BT x4 >= 0

g4 < 0.410243 Ax14 >= 0.410243 x13 < 0.409362 213 >= 0.409362 15 < 0.647902.8K15 >= 0.647902 X5 <0247683 A5 >= 0.24: *
x14 < 0.4091184%5010287070HA8 >= 0.028788 0.168744 445 >= 0168744, x4 <0.0527755 K4 >= 0.0527755x14 < 0.398138 R 14 >= 23060018595 223 >= 0.348595

8
8 < 8259750 A28 >= 0259763 §.161111 A >=0.161111

x19 < 0820134 Jix19 >= 0.8282340 0$85423 02 >= 0.0885423

x4 <0.05261/244 >=0.05261 x7 <0.214585 A7 >= 0.21458%

x21< 0214423 2521 >= 0.214423  x12< 0.760480% 024 TH36RI6>= 0.214743

X24 < 0.852768 3524 >= 0.852768 XTg< 0.0722084 Lx11 >= 8.07280
¢ x8<0170418A8 >= 0.170414 .
x15 < 0551187 A\x15 >= 055187
x23 < 0.31074 £23 >= 0.31094

x29 < 0.0234998 Z429 >= 0.02349%8

xP< 0182932 R

182932

x1<0.182222 fx1

x1<0881993 At >=0.281993

(r) Patient #155
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x1.<0.161727 Lot-22.0 161727
%<0 - X7 < 0TI >= 0173522
1<0.090007 AgT5=0.090007 %28 < 0 0231757428 2= 00231267 X7<0173404 457 >=0.173494  x7 < 02210637 >=0.221)
X1 < 01615174 > 0.161517 19 < 0934043 419 >= 0034983 x7 <0.220981 47 >= 0.220991

$1 <0.0001269 A1 >=0.0901269

s x10 < 0.179031810 >= 0.179031 x29 < 0.114349

X2 <0.0932005 502 >= 0.003 %
x2<0.0020833 A2 >= 0.09298 %
X9 <0.11986 249 >=0.11986
X9 <0.11717 Lx0wt70: 01247545 Ax17 >= 0.241545
§ X178 0240524 417 >= (Rp40524

X28 < 0.0129231 {28 >=9.0129231

x

x6 <0.119954-4
11aa 11 < 0124651 >= 0124809 16 < 063748 438 = 043748 X< 00645421 2516 >= 0.0645421g16 < 0259435 Ac1a >= 0250438

Q535
9 x28 < 000527364538 >= 0.00527364 X78:0.114570 67 >= 0114579 x3 < 05375684 >= 0.537568 #20 < 0.524008 Y20 >= 05240981 < §258599 JAct >=0.258509
x11 < 0.00837149 Ax11 0837149 x1<0. 59109 41 >=0.259109

K1427 0.439857 2418 >= 0.439857 ?

0945661 x14 < 0.62088 B 1P =< DER0EE 1 L7

X24 < 0.945661 524
1 <0.159688 Zx1 >= 159688 x28 < 0.0220017 28 >= 0.4p20017 & x28 < 0.265358 Y28 >= 0.265358 x16 < 0.178944 16 =¥ 178044
x1<0.142141 A1 >=0.142141 X2 < 0.629086 £4x22 >= 0.629086 $

>=0.0828408

X5 <0.147085 /A 5 >=0.14085 X3 < 046818 40828
x1<0.141971 £t >=0.19971 ¢ el 0.0§53381 Jhus > 0.0863381

788

X6 <0.141788 6

x6<0.125009 6 >= 0.129009

x4 <0.0632202 x4 >= 0.0639202

x30 40,875 x30 >= 0.875

(s) Patient #163

x2 <0.051832-42 >= 0.051837
x1<0.234656 A1 234656 X2 <0.06904154%2 >=0.0690415
e X8 <0.295218 A8 >= 0.295218 X2 <0.0679899 AK2 >= 0.0679899 X19 < 0.909955 219 >= 0.909955
x3<0.581733 3 >= 0.581733 . x4 <0.029203 24 >= 0.029203 x2 <0.0747586 {Kx2 >= 0.0747586 .
X9 <0.457623 £x9 >= 0.457623 . x13< 0,514 fx13 >= 0.514 x2<0.0744277 £x2 >=0.0744277 .
x10 < 0.485248 %10 >= 0.485248 . x16 < 0.0700216 16 >= 00700216 s
i 0 1 1)

(t) Patient #169
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X8 <0.173224-E8 22 0173274

X5 <0.167276-E58 3= 0.167276 X7 < 0209589 4% >= 0.209589

x1<0.174058 AFT >= 0.174058 X3< 05239843 >= 052398 X7 <0200314 27 >=0.200314

X23 < 0.366158 %23 >= 0.366158 ? x21 < 0158654 2421 >= 0.15865¢ x1<0.152703 x1

152703 x7 <0.206828 X7 >= 0.206828

] X23 < 0.369679 J\x23 >= 0.369679 x13 < 0.304931 213 >= 0.304931 ’ g X7 < 0.206876 7 >= 0.206876
< L5 >=
¢ . *5<0.168289 245 >= 0.168289 * ¢ .
¢ X8 <0.144475 S\x8 >= 0.144475
13 < 0.0890847 JAx13 >= 0.0890847
S
X8 <0.195375- L8 >= 0.105375
X9 < 0.478210- A== 0.478219 x28 < 0.00134385 A28 >= 0.00134385
x8<0 28365 $ & x8<0211808 A48 >=021180
X5 <0.150: 0308 ? X8 <0.211784 fAgtBo6. 232 1>z
768617 /AXZ3 5= 0.00768617 x14 < 0.261423 L& 14 = 0209838 /iy 1>802
x5 40116784 £S5 >=0.116784 X16 < 00922479 AT >= 0.0022479 x28 < 0.001B5234 %28 >= 0.0018523

x23<0. 3879 AY 23>=0287
§ 01170128

117012 X29 < 0.0901637 4429 >= 0.090163713 < 0.259645A\13

0.259645 X18 < 0.679283E18 679284 x23 < 0.264812 4\x23 >= 0.284812
¥ x0<0059657 00 >= 0059651 x2<002§229 w2 >0 01288795 /2B OS5 >= 0027031 10 < 0.727812 8540 5= 0.727812 X17 < 0.54168B 17 >= 0.541668 4 s
X9 <0.0694757 %9 >= 0.059470 < 0125086029 >= 0.125086 B < 0409488 A0 =-0BAPOBILK1675600.J008 16 0.167591 X13 < 0.066: AT 0.0663218 3 i
$ b x0<07254G0>= 0725 3 10 < 0456204 K10 >= 0.4392630 < §.244574 JxascHe12a4BS 7 5= 0128432 X6 01775834 >=0.177563
o x29 < 0.123831 Ax29 >= 0.123831x29 < 0.0986149 £\x29 >= 0.0966149 ¢ s X6<017753ZARE>=0.177537  x14 < 0.332828 A4 >= 0.332828
x4 <0.0506898:£979640 36:0.0798109x1 < 013053 41 >=0.139053 X2 <0.030783 %2 >= 0.030783 1 O 4 x16 < 0.286703 16 >= 0.286703

x4 <0.0499655 A4 >= 0. 9199855 8 [ ¢ x12<071292682 >= 0712926 X23 < 0.0783126 223042 3:(7831269 12 >= 0.811409
%23 < 0.186731 £4x23 >= 0186731 x4 <0.0910028 44K >= 0.09100281 < 019523301 >= 0195268 0.172469 /&1 >0 472482992 A1 >= 182902
5 < (146522 Jus >= 0.146522 8013< 0303171 €13 >= 0303171 gx23 < 0.0774254

20 482077 74354

»162922

29.< 00757433 w29 3= 0.0757433

X3 <0.442107 4843 x-0B87Z39RK 13 >= 0.30773 x8 0192683 A8 >= 0472683

° x3<0.44162 fx3 >#0.4162¢ 0.587004 JAx15 >= 0.587004 X8 <0.17$838 48 >= 0.172838
%25 < 0310468 423 >30.310468

20 < 0.25617 20 >8 0.25617

x17 < 0250411 fxr7 R 0259411

(v) Patient #172

119



Appendix

X6 <0.156673 456 >= 0.156673

0.0051922 21 >=

43986 %9 >= 0143986

X27 < 0.656389.4%

X14 < 0.726496 P14 >= 0726496

16 < 0.0698098 2416 >= 0.0699098
x21<0.170192 A\x21 >= 0.1ZD¥I20145168 %2 8:000MA x2 >= 0.0244
X6 <0.162339 6 >= 0.18339

X6<0.162114 6 >= 0.

X8 < 0220788 L8

x16 < 0.030360T£16 >= 0.0303601

X5 < 0.180574-L5%E5= 0.180571
>= 0.656389 x1<0210703A] >=0.210703 X9 < 049523809 >= 0.495234
x13 < 0.406324513 >= 0.40632 x28 < 0.00572584 A\x28 >= 0.00572584 X9 <0.0315495 2AK9 >= 0.0315495 1
X2 < 00322157452 >= 0.0322157 g X9 < 0441323 £\x0 >= 0.441323 g X8 < 0239366 £\x8 >= 0.239366

x19 < 0.902713 %19 >= 0.9627 (B158475 A5 >= 0.158475

X17 < 0.466456 2%17 >= 0.466456 x1<0200148A%]1 >=0.200144 x28 < 0.0295442 4828 >= 0.0295442 x8 < 0239268 (A8 >= A EBI2B834943 Ax19 >= 0.934943

0B84 365 28 >= 090484365

X17 < 0.617497 17 x28

x14< 0551216 414 >= 056121 x18 < 0.18828 AKI8 >= 0.18828 x19 < 0.807747 Ax19 >= 0.8075¢B < 0298749 A2 >= 00266749

d ¥2<00641103 Y2 >= 0.0641803 ¥2 < 00352198 2 >= 0.0352198 21 < 0.0874999 21 20 PET0982017 25 >= § 00462017

x13 < 0895527 413 >= 0.395587< 0.185867 w0 >= 0185867 [

x8 <0491072 8 >= x19 < 0878419 219 >= 0.878419

w2114 s ¢ 13 < 0.230155 £13 >= 0230155 9

< 0135577 Rt >= 0.135577

x14 < 0.37048 [ix14 >= $.37048

x23 < 0.386505 4L azms2anaReam>= 0.184249

(w) Patient #173

x10 < 0.268689 /AK70 >= 0.268689

< 0267755 Ax10 >= 0.26 /55 ¢

X7 <0.216406-L7.2= 0.216406

X7 < 0216302 257520216392 X22 < 0.52297T4%22 >= 0.522971
X5 <0.170378- A5G 5= 0.170378 X2R < 0.521717 {8522 >= 0521717 x23 < 0.349188 %23 >= 0.349188
X5 < 01704485 >= 0.170448 $ L X9 <0.0797776 /A9 >¥23 870 TABR02 $x23 >= 0.349
X8 <0.147137 58 22 0147137 9 <0.0796935 9 >=0.079693% ¢ 3
X3<0.662176 AT = 0.662176 x4 <0.0668919 K4 >= 0.06689Y0
x4 <0.320476- A 3= 0.320476 X23.< 012364523 >= 0.123645 X13.< 0.154547 413 >= 0.15Yp47

X8 <0.146514 X8 >= 0.146 914

X9 <0.0400232 AXF 5= 0.0400232

0847165

x2<0.0647165A%2

x13 < 0.0989495 213 >= 0.0989495 x2 < 0.0647275 52 >= 0.0647275

x1<0.165684 £&1 >= 0.165684 X22 < 0.724318 %22 >= 0.724318

x13%0.0983214 w13 >= 0.0983214  x13 < 0.145637 K13 >= 0.145637x9 < 01195682 A >= 0.119562

86 <0211232 A6 >=0.211232 .

X§<0211311 A6 >=0.211311

(x) Patient #174
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X5<0.10596

X2<00:

L55=0.1059%2

X6 <0.14067826 >= 0140678

x14 < 0.324613 A4 >= 0.324613

x3<0.542784 23 >= 0.542784 x17 < 0.437003 17 >= 0.4%00B < 0.166432 S >=

x4 <0.0709538 Lix4 >x18 670936856 Lx 18

X29 < 0.128655 [Ax29 >= 0.128855

x4 <0.0369591 x4 >= 0.0

X2 <0.0357425 %

X6 <0.134351 A¢6 >= 0.134351  x28 < 0.00272484 /Ax28 >= 0.00272484

166432

X5<0.177222 s

x§<014112 s >= 0.14112

2>=0.0357425

= 0,0358059

X8 < 0.152062 2K8 >= 0.152062

x11<0.0120372.45

1>= 0.0120377

x4 <0.0281069 /A%4 >= 0.0281069 X7 <0.156804 27 >= 0.156804

x14 < 0.450489 A\x14 >= 0.450489

X5 <0.112673 445 >= 0.112673

X8 <0.117381 x8

117381 x14 < 031453 £x14 5001453122 x5

6 < 0.121225 /A8 >= 01212284 < 0.306817 {14 >= 0.3

17 x% < 0.128571 26 >= 0.128571

16 40.0989158 Ax16 >=

? x248 0951917 424 >= 0.951917

x24 < 0.784582 8224 >= 0.784582
X165 < 0.16144 15 >= 0.1614

X15 < 016018 fx15 >= 01418

(y) Patient #182
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Performance on training sets of NNs Cascade

Performances obtained with training sets constituted with proportional sampling are pro-
vided in form of normalised confusion matrices. The class not included in the next neural
network training set corresponds to the row enclosed by bold box in each table, while dashed

boxes indicate the NN whose test set undergoes dendrogram clustering.

NNE Predicted Class NN%, Predicted Class
1 2 3 4 S 6 1 2 3 4 S 6
1 0.015 0.224 0.460 0.223 0.067 0.010 1 0.037 0.344 0.315 0.209 0.081 0.014
2 0.023 0.614 0.353 0.010 0.000 0.000 2 0.054 0.627 0.269 0.044 0.006 0.000
True class 3 0.001 0.117 0.590 0.264 0.028 0.000 True class 3 0.001 0.305 0.458 0.197 0.037 0.001
4 0.000 0.010 0.382 0.551 0.056 0.000 4 0.000 0.000 0.232 0.715 0.053 0.000
5 0.000 0.003 0.135 0.628 0.222 0.013 5 0.000 0.010 0.117 0.562 0.291 0.020
6 0.000 0.000 0.037 0.282 0.493 0.187 6 0.000 0.014 0.087 0.242 0.510 0.146
NN 2 Predicted Class NN z1,1 Predicted Class
1 2 3 4 5 1 2 3 4 S
1 0.050 0.463 0.413 0.071 0.004 1 0.062 0.536 0.246 0.146 0.010
2 0.049 0.895 0.056 0.000 0.000 2 0.032 0.937 0.031 0.000 0.000
True class 3 0.001 0.354 0.578 0.065 0.001 True class 3 0.005 0.394 0.445 0.151 0.005
4 0.000 0.050 0.486 0.447 0.017 4 0.000 0.000 0.190 0.772 0.038
5 0.000 0.015 0.423 0.469 0.092 5 0.000 0.006 0.119 0.621 0.254
NN; Predicted Class NNE, Predicted Class
1 2 3 4 1 2 3 4
1 0.190 0.555 0.245 0.010 1 0.200 0.658 0.128 0.014
True class 2 0.037 0.936 0.027 0.000 True class 2 0.036 0.954 0.010 0.000
3 0.003 0.432 0.533 0.032 3 0.006 0.556 0.414 0.023
4 0.003 0.104 0.490 0.404 4 0.000 0.008 0.254 0.738
P T T T T T T T T T T T T T T T T T T T T ST T T T T T T T T ] 2 ]
i NNg Predicted Class i i NN, Predicted Class E
H 1 2 3 H H 1 2 3 H
H 1 0.441 0.519 0.040 i H 1 0.260 0.681 0.059 |
| |True class 2 0.027 0.963 0.010 | i |True class| 2 0.018 0.976 0.006 |
3 0.012___0481 _ 0508 | | 3 00060542 0451 | |
i, rm—m I i, irirr im0 I
NN g Predicted Class NN 74 Predicted Class
1 2 1 2
True class 1 0.813 0.187 True class 1 0.818 0.182
2 0.746 0.254 2 0.808 0.192

Figure 3.47: ADC map - NNs cascade with proportional sampling. Normalised confusion matrices regarding
training sets from NNg’ to NN{’ 4+ Rows enclosed in the bold boxes highlight the class which is not included in
the training set of the successive neural network. Dashed boxes indicate the NN whose test set undergoes
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NNY Predicted Class NNY, Predicted Class
1 2 3 4 5 6 1 2 3 4 5 6
1 0.082 0.338 0.274 0.204 0.090 0.012 1 0.054 0.324 0.419 0.167 0.024 0.012
2 0.080 0.708 0.204 0.008 0.000 0.000 2 0.099 0.554 0.292 0.042 0.013 0.000
3 0.005 0.261 0.472 0.223 0.037 0.001 True cl 3 0.006 0.379 0.553 0.059 0.003 0.000
True class| 0000 0018 0421 0488 0073  0.00 ruecss -y 0001 0021 0476 0483 0019  0.000
5 0.000 0.001 0.027 0.423 0.522 0.027 5 0.001 0.023 0.362 0.551 0.063 0.000
6 0.000 0.001 0.026 0.260 0.563 0.150 6 0.000 0.000 0.034 0.139 0.343 0.484
NNBg Predicted Class NN, Predicted Class
1 2 3 4 5 1 2 3 4 5
1 0.177 0.491 0.197 0.118 0.017 1 0.104 0.331 0.378 0.171 0.017
2 0.076 0.758 0.162 0.004 0.000 2 0.078 0.713 0.204 0.005 0.000
True class 3 0.012 0.356 0.537 0.092 0.004 True class 3 0.008 0.236 0.631 0.123 0.003
4 0.000 0.024 0.403 0.506 0.067 4 0.000 0.012 0.297 0.632 0.060
5 0.000 0.004 0.047 0.543 0.406 5 0.003 0.012 0.205 0.524 0.256
NN, Predicted Class NNS, Predicted Class
1 2 3 4 1 2 3 4
1 0271 0.555 0.145 0.029 1 0.105 0.582 0.297 0.015
2 0.075 0.806 0.111 0.009 2 0.050 0.946 0.004 0.000
True cly
True class| 4 0028 0492 0460 0021 rue class) 5 0.001 0439 0554 0.005
4 0.000 0.026 0.447 0.527 4 0.000 0.033 0.617 0.349
» [ p T ;
NN Predicted Class H NN33 Predicted Class !
1 2 3 | 1 2 3 !
1 0.240 0.735 0.026 1 1 0.423 0.504 0.073 i
True class| 2 0.026 0.967 0.008 True class| 2 0.124 0.862 0.014
3 0.010 0.710 0.280 ' 3 0.017 0.565 0419 | !
T 1
[ oy i NN?
H NAP Predicted Class | 1 24 Predicted Class
: L 1 2 5 1 2
|
' 1 0.759 0241 |1 1 0.800 0.200
] True cle
| |True class| 0715 0285 | e class) 0.644 0356
i

Figure 3.48: ADC map - NNs cascade with proportional sampling. Normalised confusion matrices regarding
training sets from NN’ f 5 to NNj,. Rows enclosed in the bold boxes highlight the class which is not included in
the training set of the successive neural network. Dashed boxes indicate the NN whose test set undergoes

123
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NNb Predicted Class NN%, Predicted Class
1 2 3 4 5 6 1 2 3 4 5 6 7
1 0.018 0.141 0.436 0.300 0.088 0.017 1 0.026 0.104 0.168 0.341 0.287 0.058 0.017
2 0.113 0.649 0.233 0.005 0.000 0.000 2 0.023 0.327 0.489 0.143 0.018 0.000 0.000
True class 3 0.003 0.117 0.595 0.262 0.023 0.001 3 0.008 0.141 0.226 0.332 0.245 0.047 0.000
4 0.000 0.019 0.342 0.609 0.030 0.000 True class 4 0.000 0.000 0.004 0.295 0.607 0.092 0.001
5 0.001 0.032 0.323 0.544 0.099 0.001 5 0.001 0.010 0.063 0.380 0.474 0.068 0.004
6 0.001 0.000 0.068 0.362 0.452 0.117 6 0.000 0.004 0.064 0.282 0.505 0.138 0.006
7 0.000 0.002 0.005 0.016 0.182 0.435 0.360
NN 12’6 Predicted Class NN ‘3’1 Predicted Class
1 2 3 4 5 1 2 3 4 5 6
1 0.154 0.312 0.335 0.185 0.015 1 0.045 0.191 0.317 0.351 0.088 0.008
2 0.051 0.667 0.276 0.006 0.000 2 0.056 0.506 0.355 0.082 0.001 0.000
True class 3 0.013 0.285 0.568 0.129 0.005 True class 3 0.006 0.282 0.524 0.180 0.008 0.000
4 0.000 0.013 0.285 0.650 0.053 4 0.000 0.005 0.325 0.621 0.049 0.000
5 0.000 0.015 0.244 0.599 0.142 5 0.000 0.004 0.160 0.588 0.230 0.018
6 0.003 0.015 0.126 0.373 0.419 0.064
NN 12,7 Predicted Class N Ngz
1 2 3 4 Predicted Class
1 0.227 0.600 0.155 0.018 1 2 3 4 5
True class 2 0.019 0.867 0.114 0.000 1 0.076 0.318 0.356 0.231 0.019
3 0.005 0.509 0.485 0.001 2 0.040 0.825 0.134 0.001 0.000
4 0.002 0.015 0.403 0.580 True class 3 0.008 0.266 0.689 0.036 0.001
4 0.000 0.005 0.341 0.644 0.009
"""""""""""""""""""""""" ! S 0.001 0.015 0.182 0.692 0.109
NN5, Predicted Class ! ; -- :
1 2 3 H 1 '
0440 0531 0019 | | L 5 Predicted Class :
True class 0005 0994 0001 | i : 1 2 3 ;
3 0.027 0.768 0.205 ! ! 1 0.390 0.419 0.159 0.032 !
____________________________________________ i "\ 7rue class| 2 0.022 0951 0027  0.000 | !
| 3 0.003 0.377 0.569 0.051 |
NN, Predicted Class , 4 0.003 0.017 0357 0624 |1
1 7725 et ’
.955 0.045
True class ; 3.876 0_(1)24 NN;"* Predicted Class
1 2 3
1 0.505 0.432 0.063
True class 2 0.017 0.981 0.003
3 0.004 0.576 0.420
NN gs Predicted Class
1 2
True class 1 0.873 0.127
2 0.807 0.193

Figure 3.49: ADC map - NNs cascade with proportional sampling. Normalised confusion matrices regarding
training sets from NNé’5 to NNé’S. Rows enclosed in the bold boxes highlight the class which is not included in
the training set of the successive neural network. Dashed boxes indicate the NN whose test set undergoes
dendrogram clustering (1: malignant label, benign labels from 2 to 7)
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NN, Predicted Class
1 2 3 4 5 6 7
1 0.048 0.228 0.261 0.242 0.153 0.068 0.014
2 0.055 0.713 0.226 0.006 0.000 0.000 0.000
3 0.004 0.176 0.732 0.089 0.000 0.000 0.000
True class 4 0.000 0.001 0.236 0.679 0.082 0.001 0.000
5 0.000 0.010 0.210 0.422 0.278 0.080 0.008
6 0.000 0.001 0.020 0.191 0.463 0.324 0.064
7 0.000 0.000 0.004 0.015 0.202 0.780 0.471
NN g? Predicted Class
1 2 3 4 S 6
1 0.079 0.250 0.309 0.249 0.095 0.018
2 0.097 0.659 0.236 0.008 0.000 0.000
True class 3 0.010 0.227 0.648 0.110 0.004 0.000
4 0.001 0.024 0.372 0.515 0.083 0.004
5 0.001 0.021 0.181 0.489 0.285 0.023
6 0.000 0.003 0.033 0.246 0.506 0.212
NNga Predicted Class
1 2 3 4 5
1 0.106 0.279 0418 0.192 0.004
2 0.059 0.701 0.237 0.003 0.000
True class 3 0.000 0.154 0.809 0.037 0.000
4 0.001 0.014 0.629 0.354 0.001
5 0.000 0.009 0.325 0.634 0.032
NN 59 Predicted Class
1 2 3 4
1 0.333 0.431 0.199 0.037
True class 2 0.056 0.853 0.091 0.000
3 0.001 0.279 0.678 0.042
4 0.000 0.027 0.513 0.460
NN ZD Predicted Class
1 2 3
1 0.577 0.390 0.033
True class 2 0.042 0.941 0.017
3 0.000 0.508 0.492
NN 21 Predicted Class
1 2
mean| 1180

Figure 3.50: ADC map - NNs cascade with proportional sampling. Normalised confusion matrices regarding
training sets from NN;’6 to NN},. Rows enclosed in the bold boxes highlight the class which is not included in
the training set of the successive neural network (1: malignant label, benign labels from 2 to 7)
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Dendrograms of NNs Cascade

Dendrograms and their clusters belonging to test sets of NNs cascade with proportional

sampling are reported in this section.
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Figure 3.51: ADC map - NNs cascade with proportional sampling. Dendrogram and clusters belonging to test
set of NNg . Dashed red boxes enclose clusters
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Figure 3.52: ADC map - NNs cascade with proportional sampling. Dendrogram and clusters belonging to test

p
set 0fNN13.

Dashed red boxes enclose clusters
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Figure 3.53: ADC map - NNs cascade with proportional sampling. Dendrogram and clusters belonging to test
set of NN{’Q. Dashed red boxes enclose clusters
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Figure 3.54: ADC map - NNs cascade with proportional sampling. Dendrogram and clusters belonging to test
set of NN;. Dashed red boxes enclose clusters
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Figure 3.55: ADC map - NNs cascade with proportional sampling. Dendrogram and clusters belonging to test
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Figure 3.56: ADC map - NNs cascade with proportional sampling. Dendrogram and clusters belonging to test

p
set of NN;,.
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List of Abbreviations

Abbreviation Definition

ADC Apparent Diffusion Coefficient

AM Acquisition Matrix

AS Anterior fibromuscular Stroma

BB Bounding Box

bp-MR bi-parametric Magnetic Resonance
CAD Computer Aided Diagnosis

CzZ Central Zone

Dend Dendrogram based training set

DRE Digital Rectal Examination

DT Decision Tree

DW Diffusion Weighted

ERC Endorectal coil

FE Feature Extraction

FN False Negative

FOV Field of view

FP False Positive

FS Feature Selection

GA Genetic Algorithm

GLCM Gray Level Co-occurrence Matrix
GLNU Gray Level Non-uniformity

GLRLM Gray Level Run Length Matrix

GS Gleason Score

HGRE High Gray-Level Run Emphasis

ITK Insight Segmentation and Registration Toolkit
k-NN k-Nearest Neighbours

LGRE Low Gray-Level Run Emphasis

LOE Largest Object Extraction
MaxMedian =~ Maximum median sensitivity criterion
MinDift Minimum difference criterion

MLP Multilayer Perceptron

mp-MR multi-parametric Magnetic Resonance
MR Magnetic Resonance

MRI Magnetic Resonance Imaging

MRSI Magnetic Resonance Spectroscopy Imaging
NEX Number of excitations

NN Neural Network
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PI-RADS Prostate Imaging Reporting And Data System
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PZ Peripheral Zone

RLNU Run Length Non-uniformity

RM Reconstruction Matrix

ROI Region of Interest

SD Standard Deviation

Sens Sensitivity
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SVM Support Vector Machine

T Label for Tissue other than prostate
T2-w T2-weighted
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TN True Negative

TP True Positive

TZ Transition Zones
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