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Summary

The aim of this study is to determine the potential of the informative content enclosed
in the two image modalities proper of bp-MRI (i.e. T2-weighted and diffusion weighted) in
order to automatically detect malignant lesions on behalf of the prostate. All the elaborations
will be performed separately for the two image modalities, as initial exploratory trial.

Firstly, segmentation is necessary to isolate the prostate gland. The algorithm designed for
this purpose is completely automatic and based on the location of the prostate in each im-
age. It receives as input the ADC map, created from DW sequences, whilst the outcoming
segmentation is utilised for the T2-weighted images as well.

Once the prostate is delineated, feature extraction of first order statistics and texture features
(i.e. GLCM and GLRLM) is performed, considering non-overlapping regions of interests
from the obtained masks for both image modalities.
Characterised by a significant disproportion concerning healthy and cancerous areas, the la-
belled data set is then used to build a balanced training set embedding the two classes by
means of decision trees.
A genetic algorithm is employed to simultaneously select the most relevant and instructive
features and optimise the parameters of a support vector machine. This approach led to
comparable performances in terms of sensitivity and specificity (around 0.7), which are not
enough considering the consistent difference in test set size between malignant and benign
samples. What immediately emerges is the need of a greater representativeness of healthy
zones, proved by the relatively low specificity, which would compromise the correctly iden-
tified cancerous areas.
To enhance the representation of benign tissue, another training set is conceived beginning
from decision trees outcome and applying dendrogram clustering on the most numerous be-
nign nodes. The corresponding clusters will constitute diverse benign classes, randomly
extracting from each a number of elements equal to the number of malignant ROIs com-
prised in the decision tree based training set.
A multiclass version of SVM is trained with dendrogram based training set and the optimised
parameters chosen by the genetic algorithm, effectively revealing improved identification of
non cancerous regions.
K-nearest neighbours classifier is also tested but without any amelioration.
Due to insufficient identification of benign tissue, neural networks are implemented to seek
high specificity along with a good tumour recognition.
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Feedforward NNs are investigated analysing their outcome according to several hidden
layers structures using both aforesaid training sets. Although benign classes from dendro-
gram based training set ensure high specificity, tumour identification results worsened.
To further exploit the ability of the NNs to recognise a single label, consecutive networks are
implemented in a cascade and the class featured with lowest misclassified number of benign
elements as malignant is not included in the next NN training set.
Since only small changes are found, the final attempt tries to increment the presence of un-
seen benign samples, by performing dendrogram clustering on the healthy portion of test set
belonging to the network with smallest number of false positives to construct new classes for
healthy tissue, thus enforcing their representation. This conclusive method actually achieved
a better performance in the recognition of benign samples, at the expenses of a weakened
tumour detection.

This study outlines the complexity in designing a system enabling reliable tumour detec-
tion, accompanied by appropriate identification of healthy tissue.
As demonstrated by all these trials, the key is to create a training set which encompasses as
much knowledge as possible, compensating for data diversity and difference in sample size
relative to the two classes.
In conclusion, there exists a basis for bp-MRI protocol to be employed in prostate cancer
detection, hoping this work will pave the way for finding an efficient strategy.
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1 Introduction
1.1 Rationale

Prostate cancer is one of the most widespread malignant male pathologies [1]. In Eu-
rope, the standardised rates referring to 2012 concerning new diagnosis and deaths amount
respectively to 96 and 18 cases per 100000 subjects [2]. Due to the continuous increase of
the population and their ageing, the incidence rate associated with prostate cancer is set to
increment in the next decades, along with a considerable growth of the costs related to treat-
ment and diagnosis, even considering indolent cancer [3].

Nowadays, PCa diagnosis establishes that men beyond 50 years of age undergo PSA
blood test and digital rectal examination during the urological visit. If some anomaly arises
from either of them, the patient is usually subjected to random systematic transrectal ultra-
sound biopsy. Furthermore, many international research groups have proved the accuracy of
multi-parametric resonance imaging to identify clinically significant PCa with 82% as posi-
tive predictive value and over 95% as negative predictive value to rule out high risk PCa [4,5].
Nevertheless, up to now the use of mp-MR in the clinical practice to diagnose subjects with
PCa suspicion is limited by the elevated economic expenses and the prolonged time needed
to perform the exam.

In this context, the research activity carried on by Candiolo Cancer Institute proposes the
introduction of an alternative examination reserved to a biopsy-naı̈ve population who may
be affected by PCa. This new clinical path includes the so-called bi-parametric magnetic
resonance, which differs from the mp-MR in the number of sequences (one less with respect
to mp-MR), and the unemployment of both the endorectal coil and the intra-venous injection
of a contrast agent. These characteristics result in:

• reduced exam duration (about 30 minutes less);

• decreased probability of complications and preparation time for the patients, who
would be more prone to perform the exam;

• more rapid and less demanding readings for the radiologists, because of restricted
number of images to analyse;

• diminished cost of the exam.

In addition, a Computer Aided Diagnosis system could be developed to automatically
detect the presence of prostate cancer from bp-MR images. As a fast and user-independent
software tool, it would provide a great aid to the expert radiologists by speeding up the
diagnostic process and overcome intra and inter-subject variability.
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1.2. Prostate Cancer

In order to assess the efficacy of bp-MR in the diagnosis of PCa, a clinical study is per-
formed, enrolling patients declared eligible after urological visit, who are randomised in two
groups: in the former the diagnosis is established with bp-MR, while in the latter mp-MR is
employed. All the participants are subjected to either random or fusion TRUS biopsy.

For additional information about the aforementioned study please refer to the clinical
trial in [6].

1.2 Prostate Cancer

The prostate (also called prostate gland) is an organ belonging to the male reproductive
system. It is located underneath the urinary bladder inside the pelvic body cavity and in front
of the rectum. Its size is similar to the one of a walnut, but it tends to enlarge with ageing.
Posteriorly to the prostate, there are the seminal vesicles (i.e. glands which produce a con-
sistent part of the fluid composing semen), while the urethra passes throughout the prostate,
as shown in figure 1.1 [7].

Figure 1.1: Representation of the prostate along with surrounding organs [7]

Referring to McNeal’s nomenclature of the prostate [8], the following areas can be dis-
tinguished [9]:

• peripheral zone, comprising more than 70% of the glandular prostate, it is the most
common site affected by cancer. This region contains the proximal urethral segment
of the prostate, which lies between the verumontanum (i.e. portion in which the ejac-
ulatory ducts enter the urethra) and the urinary bladder. In this tract, the preprostate
sphincter is present;

• central zone, including about 25% of the glandular prostate, its structure is different
than the peripheral one, in terms of size and shape of acini and ducts (much larger and
with an uneven contour). It is less predisposed to diseases;

• transitional zone, located in the preprostate region, it amounts to only 5% of the total
volume of the prostate, but its expansion can cause the urethra to be compressed and
the bladder outlet to be obstructed;

4



1.2. Prostate Cancer

• anterior fibromuscular stroma, which completely covers the anterior surface of the
prostate, presenting a nonglandular composition.

Furthermore, three regions can be delineated considering the coronal plane: base, midg-
land and apex.
A schematic representation of the aforesaid zones is given in figure 1.2.

Figure 1.2: Detailed illustration of prostate areas (PZ: peripheral zones, TZ: transition zones, CZ: central
zone, AS: anterior fibromuscular stroma, SV: seminal vesicles, US: urethral sphincter, a: anterior, mp: medial

posterior, lp: lateral posterior). The prostate is divided laterally by a vertical dashed line and into
anterior/posterior by a horizontal dashed line passing through the centre of the gland [10]
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1.2. Prostate Cancer

Among benign pathologies affecting prostate, there are focal prostate atrophy, transition
zone nodules, prostatitis, benign prostatic hyperplasia nodules concerning peripheral zone,
and calcifications [11]. Instead, prostate cancer represents the most common malignancy in
men.

PCa is only second to skin cancer as most common cancer in American male population [12].
The diagnosis of prostate cancer is estimated to be about 1 man in 9, with higher probability
in men aged 65 or older. As cause of death, it follows lung cancer with about 1 male subject
in 41 who will die of PCa [12]. In Italy, about 1 man in 8 could be diagnosed with prostate
cancer during his lifetime [13].

Among risk factors of this disease, the following can be mentioned [13]:

• age: very low probability before 40 years, while it increases after 50 years (about 2
tumours in 3 are found in men over 65 years);

• genetic heritage: the risk is doubled if a family member has had prostate cancer with
respect to a subject with no family cases;

• high hormonal levels, such as testosterone and insulin-like growth factor (IGF)-1;

• lifestyle related causes, for instance obesity and lack of physical activity.

Race-etnicity is also encountered as a possible risk factor [14].

Figure 1.3 displays the increment in the incidence of prostate cancer related to Great
Britain, as an emblematic example [3].

Figure 1.3: Most widespread cancers in men considering 1984, 2007 and a prediction for 2030, showed using
pie charts with areas proportional to cases number [3]

Prostate cancer advancement is described mainly by two variants [15]:

• slow: these tumours have a gradual development and they remain enclosed in the
prostate. They represent around up to 85% of all prostate cancers [16]. Active surveil-
lance can replace treatment in this condition;
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1.3. MRI for Prostate Cancer

• fast: their progression is accelerated and they soon reach other organs, creating metas-
tases especially in the bones [17].

Being these two courses so diverse, it is pivotal to discriminate aggressive from slow-growing
prostate cancer.
In order to determine the aggressiveness of PCa, a bioptic sample of the gland must be anal-
ysed. This enables to assess the Gleason Score, utilised to classify prostate cancer based
on the quantity of tumour cells, on a scale from 1, lowest grade indicating that malignant
tissue is very similar to healthy areas, to 5, when cancerous cells present abnormal aspect
and growth. If there is GS bigger than 7, it designates the simultaneous presence of different
levels of aggressiveness and it is given by the sum of the two grades, where the first grade
refers to the predominant portion of the prostate [18].

Furthermore, PCa tends to evolve in specific areas of the prostate [19–21]:

• about 70 − 80% in the peripheral zone;

• 10 − 20% in the transition zone;

• around 5% in the central zone.

1.3 MRI for Prostate Cancer

Magnetic resonance imaging is utilised in the assessment of diseases concerning prostate
gland, in light of the high-resolution images it offers [22]. In this section, insights about the
MRI protocol employed in common clinical practice will be provided together with a viable
alternative.

1.3.1 Multi-parametric MRI
Multi-parametric magnetic resonance imaging has proven to be effective in the identifi-

cation of malignant and benign pathologies of the prostate, due to the combined information
retrieved by the multiple adopted modalities.
MR sequences generally used for prostate imaging are listed in the following:

• T2-weighted, yielding anatomical details, in conjunction with pelvic phased array coil
and endorectal coil has been extensively exploited for local staging and diagnostic
check-ups of PCa [23, 24];

• dynamic contrast enhanced, created to quantify perfusion parameters to distinguish
cancerous from healthy tissue [25, 26], revealing tumour vascular architecture;

• diffusion weighted, able to examine diffusion of water molecules, which results less-
ened in dense cellular environments such as cancers [27].

Magnetic resonance spectroscopy imaging is another technique which investigates the level
of certain metabolites (e.g. creatine, citrate, choline) and polyamines (e.g. spermidine, sper-
mine and putrecine). According to these levels, cancerous areas can be recognised as con-
firmed by earlier studies [27, 28].
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1.3. MRI for Prostate Cancer

Encouraging results infer the efficacy of multimodal MRI to detect PCa, combining morpho-
logical information from T2-w with functional modalities, such as DCE-MRI, DWI and/or
MRSI. The improvements include enhancement of cancer localisation [29, 30] and volume
assessment [31] in the peripheral zone.
The previously mentioned MR sequences can be used together in diverse combinations
[32, 33], even though T2-w is often included to preserve morphological references.
Some research groups tried to differentiate low-grade from high-grade PCa starting from
mp-MR featuring T2-w and DCE modalities together with MRSI, obtaining promising find-
ings [34]. Applications of mp-MRI comprise also prostate cancer radiotherapy, to delineate
healthy and unhealthy tissue and assess staging of the disease [35].

With the aim of making the interpretation of prostate MRI less biased by radiologists’ sub-
jectivity, the prostate imaging reporting and data system (PI-RADS) has been conceived to
favour standardisation and reporting of MRI [10, 36].
In spite of the aforementioned qualities, interpreting prostate MRI can be very challenging
and often confounding also for experienced readers [11, 37]. This sanctioned the construc-
tion of software tools for supporting the clinicians in the diagnostic process, strengthened by
the significant informative content retrievable from this imaging modalities.
To further consolidate the necessity of standardisation and agreement among expert radiolo-
gists, an advancement in this field is represented by the development of computer-aided diag-
nosis systems, able to provide quantitative and user-independent information about prostate
cancer localisation and even staging. Among the main advantages, there are reproducibility
and reduction of the time required to analyse MR scanning. A representative example of the
architecture of a CAD system is given in figure 1.4.
For a systematic review on CAD systems the reader is referred to [38].

The major downside associated to mp-MRI is the use of the ERC coil and/or the injection
of the intra-venous contrast agent, which could cause discomfort in the subjects, making
them less willing to perform the exam. There exists also the chance some subjects are allergic
to the contrast agent.
To overcome this issue, a non-invasive protocol called bi-parametric MRI has been designed
and it is currently examined to understand whether it is suited as a diagnostic tool.
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1.3. MRI for Prostate Cancer

Figure 1.4: Detection of prostate cancer by means of a computer aided diagnosis system [38]

1.3.2 Bi-parametric MRI
Nowadays, bi-parametric magnetic resonance imaging is revealing to be appropriate for

the detection of prostate cancer. It comprises non invasive MR sequences such as T2-
weighted and DW modalities. Some preliminary studies show it provides similar perfor-
mances among radiologists compared to multi-parametric MR [39–41].
In a recent work of Di Campli et al. [42], the diagnostic accuracy of a bp-MR protocol with
respect to the traditional mp-MR was evaluated regarding identification of clinically signif-
icant cancer. Specifically, they proved there was no considerable disagreement within the
performances of readers with different years of experience (7, 3 and 1 years) using the two
sets of images. This result is promising as it underlines the validity of the bp-MR protocol,
even in the case of clinicians with a minor level of expertise.
The research conducted in [43] utilised bi-parametric MR protocol in conjunction with PSA-
density, discovering the greater performance of the former in detecting prostate cancer. They
acquired images with a 3 T scanner from a biopsy-naı̈ve population with clinical suspicion
of PCa. They reinforced the potential of bp-MRI, especially before any previous biopsy, to
play a crucial role in the diagnosis of prostate cancer, for it may spare invasive procedures
and unneeded treatments.
The study of Niu et al. [44] examined texture features extracted from bi-parametric MRI for
distinguishing high-grade PCa, proving its feasibility.
These preliminary findings suggest bp-MR protocol may encompass the knowledge neces-
sary to differentiate benign from malignant tissue belonging to the prostate.
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2 Prostate Segmentation
2.1 Patients

In order to be eligible for enrolment, male participants complied with these requisites:

• age equal or inferior to 75 years;

• no previous prostate biopsy (i.e. biopsy naı̈ve);

• negative findings in urological visit;

• PSA level smaller than 15 ng/ml (found to increase in at least two successive tests).

All patients waived written informed consent to enter this clinical trial.

A schematic representation illustrating the study population for prostate segmentation is
presented in figure 2.1.

Figure 2.1: Schematic representation of the study population for prostate segmentation

Table 2.1 details the main characteristics of the included subjects.

Patients All (n = 36)
Age 68.4 (52.9 − 79.1)
PSA (ng/ml) 6.2 (3.2 − 16)

Table 2.1: Characteristics of the study population. Measurements are given as median (range)
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2.2. MR Image Acquisition

2.2 MR Image Acquisition

Images were acquired using a 1.5 T scanner (OptimaMR450w, GE Healthcare, Milwa-
kee, Illinois, USA), adopting the setting in table 2.2.

Sequence ST (mm) FOV (cm) NEX AM (pixels) RM (pixels) Additional information
T2-w (SE) 3 16x16 16 256 × 192 512 × 512
DW (EPI, SE) 3 20x20 1 128 × 100 256 × 256 b-values: 0 − 1000 s/mm2

Table 2.2: MRI protocol for T2-weighted and diffusion weighted modalities (ST: slice thickness, FOV: field
of view, NEX: number of excitations, AM: acquisition matrix, RM: reconstruction matrix, SE: spin echo, EPI:

echo planar imaging)

Imaging parameters were in accordance with the scanning requirements for prostate
imaging [45].
Since the dimensions of T2-weighted and diffusion weighted images differ, DW images are
subjected to up-sampling taking as reference T2-w modality. By doing so, T2-w and DW
images present matching dimensions (512 × 512 pixels per 24 slices) and they will be em-
ployed for all the succeeding elaborations.

The apparent diffusion coefficient map is calculated pixel-wise by means of the monoex-
ponential model [46, 47] in equation 2.1:

ADCi =
1
b
× ln

(S 0

S b

)
(2.1)

where b = 1000 s/mm2, S 0 is the pixel value from DW image with b = 0 s/mm2, S b is the
pixel value from DW image with b = 1000 s/mm2 and ln indicates the natural logarithm.

To guarantee the alignment between the two image modalities, every patient’s set of im-
ages was individually evaluated by segmenting the prostate in one sequence and projecting
it to the other.
Referring to the study population, no considerable misalignment existed, leading to the un-
employment of a registration procedure. Thanks to the absence of the endorectal coil, in-
cluded in the mp-MR protocol, there is no substantial deformation, also enforced by the fast
image acquisition. In fact, only one patient has been excluded due to misalignment after
the re-sampling procedure, very likely caused by motion artefacts during the acquisition (see
figure 2.2).
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2.2. MR Image Acquisition

(a) Patient presenting misalignment

(b) Patient with no misalignment

Figure 2.2: Representative examples to visualise the problem of misalignment between image modalities
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2.3. Algorithm

2.3 Algorithm

Prostate segmentation is a mandatory step to focus the analysis on the region of interest,
i.e. the prostate.
The segmentation algorithm proposed in this work has the aim of automatically isolating the
prostate gland from the other biological structures present in the images. Essentially, it is
based on the location of the prostate known to be approximately in the centre of each image.
The algorithm has been developed using in-house C++ software along with ITK open source
libraries [48].
A schematic representation of the procedure here employed is displayed in figure 2.3.

Figure 2.3: Phases of segmentation algorithm

Preprocessing

The input given to the algorithm is constituted by the ADC map (computed as in equa-
tion 2.1), which is featured with more homogeneous background and less tissue diversity
compared to T2-weighted modality.
Due to the re-sampling procedure, each image in the two sequences presents the same size
(512 × 512 pixels per slice), hence it is equivalent referring to the horizontal dimension (x)
or vertical dimension (y).
The preprocessing phase consists of a contrast adjustment to enhance the most numerous
grey tones in the image, by windowing between the 50th and the 99th percentile of pixel
intensities (see figure 2.4). Consequently, the biological structures are preserved, whereas
the background becomes more uniform.
Furthermore, grey tones are rescaled between 0 and 255.
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2.3. Algorithm

The main advantage of such steps is to create a common ground to begin with for all images,
trying to lessen the variety of characteristics proper of each single patient.

Thresholding based on K-means

Referring to [49] as an insight, they used Fuzzy-C-Means to smooth inhomogeneities of
the MR field. For the purpose of this study, k-means algorithm appears suitable to distinguish
the prostate, by clustering pixels on the basis of their intensity value.
Choosing K = 4 as number of clusters revealed to be experimentally the most appropriate
choice in view of next steps. In particular, the following areas can be differentiated:

• background;

• edges of present structures;

• inner part of present structures;

• outer part of present structures (excluding edges).

The attribution between each cluster and the aforementioned zones aids to identify macro-
scopic references, in the attempt to simplify the more variegate reality.
Figure 2.4 shows the images obtained with the preprocessing and the output of k-means
algorithm.

Figure 2.4: From left to right: ADC map given as input, image resulting from preprocessing, image
representing k-means pixel clustering

The outcome of the thresholding applied on the k-means pixel clustering is presented in
figure 2.5, so that the background is not considered.
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2.3. Algorithm

Figure 2.5: On the left: result of thresholding applied on output of k-means algorithm. On the right: image
obtained after largest object extraction

Largest Object Extraction

The largest object in each slice is extracted according to the procedure in figure 2.6 based
on centroid coordinates. An object is intended as a group of joint pixels, creating an area of
a certain extension.
After computing centroid coordinates of the first largest object, they are checked to be in the
centre of the image, i.e. between the 25% and 75% of the slice x and y dimensions. This
range is taken into account because of the variability of prostate size among patients and
the possibility of having part of bladder or rectum contained in the area, thus altering the
coordinates.
If the first object does not satisfy the condition, then the coordinates of the second largest
object are tested and so on until a maximum of 4 iterations. This can be explained by the
presence of objects at the corners of the image, which compete in terms of number of pixels
with the central object, especially in the final slices of the volume (due to the restriction of
prostate diameter).
In order to avoid the presence of holes inside the objects, a hole filling operation with a disk
of radius 7 pixels on both x and y dimension and width of 1 pixel along the z dimension
(intended as direction to scan the slices) is performed.
An example of the outcome of the largest object extraction procedure is displayed in figure
2.5, and from now on it will be addressed to as LOE mask.
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2.3. Algorithm

Figure 2.6: Flowchart for retrieving largest object in each slice based on centroid coordinates ([Cx,Cy]:
centroid coordinates respectively along x and y, L1: 25% of horizontal image dimension, L2: 75% of

horizontal image dimension, n: objects counter)

Computation of Bounding Box

It is fundamental to underline that the LOE mask by itself cannot ensure the limitation of
biological structures other than the prostate. To solve this issue, a bounding box (abbreviated
as BB) enclosing the prostate is computed with the schematic representation provided in
figure 2.7.

Figure 2.7: Phases of bounding box computation

16



2.3. Algorithm

Primarily, the undermentioned logical operations are performed (see figure 2.8):

• AND, between the LOE mask and the cluster from k-means algorithm containing only
the edges of present structures;

• XOR, between the result of the previous operation and the LOE mask.

Figure 2.8: Logical operations performed beginning from k-means cluster comprising the edges of present
structures (on the upper left) and LOE mask (on the upper right)

Ultimately, the largest object in each slice is extracted to obtain the final image, called XOR
mask, used to designate the slice to be taken as reference for computing bounding box coor-
dinates.
Bounding box coordinates will be indicated as in equation 2.2:

[X1, X2, Y1, Y2] (2.2)

where X1 and X2 are respectively minimum and maximum x coordinates, while Y1 and Y2 are
respectively minimum and maximum y coordinates.

The selection of the slice eligible for bounding box computation consists of ascertaining
that the minimum y coordinate of the current BB is beyond 25% of image dimension (L1):

Y1 ≥ L1 (2.3)

The first slice to be tested is the central slice in the volume, since it certainly includes the
prostate. If the condition in equation 2.3 is not satisfied, then next slice is checked until the
acceptable one is found.
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2.3. Algorithm

Figure 2.9: Flowchart for retrieving median bounding box coordinates (L1: 70% of vertical image dimension,
C can be either X or Y , subscript m indicates median coordinates considering slices [n − 1, n + 1], while

subscript u indicates median coordinates considering slices [n + 2, n + 4])

With the goal of finding the bounding box which most faithfully contains the prostate,
the method in figure 2.9 is implemented.
At the beginning, median coordinates considering slices in the range [n − 1, n + 1] are com-
puted, where n corresponds to the number of the slice eligible for bounding box computation.
Thereupon, the following two conditions are tested:

• minimum y coordinate beyond 70% of vertical image dimension, to ensure the rectum
is not included;

• difference between maximum and minimum x coordinate being smaller than one third
of the maximum x coordinate, to ascertain prostate diameter is within the expected
range (same condition is applied for y coordinate).

18



2.3. Algorithm

If either one of the previous statements is verified, slices in the range [n + 2, n + 4] are
considered to calculate median BB coordinates. As a further control point, the condition
regarding the difference between maximum and minimum x coordinate being smaller than
one third of the maximum x coordinate is tested: if it is true, all four coordinates are up-
dated taking into account median coordinates of current slices, otherwise only minimum and
maximum coordinates along y are modified. In such manner, the diameter of the prostate
along the horizontal dimension is preserved, whether no anomaly arises from former checks.
In fact, moving toward the final slices, the diameter is restricted as the whole prostate is
scanned.
An increment of 40% and 30% respectively along x and y coordinate with respect to bound-
ing box area is added to the obtained BB. This is a preventive measure, not to miss any pixel
belonging to the prostate, although there is the chance to segment tissue outside the prostate
itself.
The ultimate mask is given by the multiplication of the bounding box image (i.e. mask with
pixel equal to 1 in BB area) with the LOE mask.
An example of the outcome resulting from the segmentation algorithm is reported in figure
2.10.

Figure 2.10: From left to right: final mask on ADC map and T2-w image

2.3.1 Reference Standard
Manual segmentation of the prostate has been provided slice by slice on T2-weighted and

ADC map for each patient by an expert radiologist and will be used to validate the automatic
masks.
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2.3. Algorithm

2.3.2 Statistical Analysis
The statistical analysis to estimate the performance of the segmentation algorithm is fo-

cused on the following metrics, obtained from the confusion matrix in table 2.3:

• recall (also called sensitivity), establishing the quantity of pixels belonging to the
prostate actually segmented [50]:

Recall =
T P

T P + FN
(2.4)

• precision, assessing the proportion of the automatic segmentation which is compre-
hended in the reference mask [51]:

Precision =
T P

T P + FP
(2.5)

• Dice Coefficient, measuring the proportion of the overlapping region considering ref-
erence and automatic segmentation [52, 53]:

DC =
2T P

2T P + FP + FN
(2.6)

These metrics are all unitless, ranging from 0, meaning worst-case scenario (no pixel in
common) to 1, i.e. ideal segmentation (corresponding to the ground truth).

Table 2.3: Confusion matrix used to compute metrics (P: label for prostate, T: label for tissue other than
prostate, TP: true positive, FP: false positive, TN: true negative, FN: false negative)

Every metric is computed slice by slice for both T2-w and ADC masks.
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2.4 Validation

The segmentation algorithm proposed in this study shows high sensitivity across all slices
belonging to each patient. This is very crucial, since for the purpose of classification it is
essential not to leave out any pixels proper of cancerous tissue.
Median values and range for the computed statistics are provided in table 2.4.

Table 2.4: Metrics to evaluate segmentation performances considering the entire set of patients.
Measurements are given as median (range)

Whilst the range of sensitivity is limited to a very small interval, precision and Dice co-
efficient reach a much broader series of values. Moreover, the median precision value yields
the lowest performance.
Dice coefficient values retain a median performance across all slices around 0.7 for both T2-
w and ADC map.

In order to better comprehend the reason behind poor performance regarding precision, fig-
ure 2.11 provides the median precision value for each patient, whose slices have been divided
in base, midgland and apex.
As observable from figure 2.11, the majority of subjects presents the highest value of preci-
sion, mostly above 0.6, in the slices corresponding to the midgland. As a matter of fact, the
computation of the bounding box takes as reference one of the slices surely belonging to the
central part of the prostate, thus achieving better results.
Furthermore, the increment of the bounding box area contributes to diminish the precision,
especially considering the extremities of the volume.
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2.4. Validation

(a) T2-weigthed

(b) ADC map

Figure 2.11: Median value of precision considering base, midgland and apex for each patient

The separation of the three zones of the prostate presents better performances also con-
sidering median Dice coefficient in the midgland, as visible from figure 2.12.
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(a) T2-weigthed

(b) ADC map

Figure 2.12: Median value of Dice coefficient considering base, midgland and apex for each patient

As evident from figures 2.13 and 2.14, both Dice coefficient and precision are charac-
terised by a wider range in the area proper of the apex. This could be explained by the fixed
dimension of the bounding box, which is much greater with respect to the dimension of the
prostate in the final slices of the volume.
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(a) T2-weigthed

(b) ADC map

Figure 2.13: Minimum, median and maximum value of precision considering base, midgland and apex for
each patient
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(a) T2-weigthed

(b) ADC map

Figure 2.14: Minimum, median and maximum value of Dice coefficient considering base, midgland and apex
for each patient
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Figure 2.15 exhibits segmentation performances on two subjects, showing a case of more
and less pronounced oversegmentation.

(a) Example of considerable oversegmentation

(b) Example of slight oversegmentation

Figure 2.15: Outcome of the segmentation algorithm. On the left, prostate mask applied on ADC map. On
the right, prostate mask applied on T2-w

In spite of the presence of pixels beyond the prostate, especially in the slices outside the
central part of the gland, the automatic masks guarantee segmentation of the whole prostate,
assuring complete inclusion of healthy and cancerous tissue, thus being suitable to be em-
ployed in the next elaborations.
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3 Machine Learning
for Tumour Detection

Tumour detection is known to be one of the most complex and challenging tasks in
biomedical engineering. This study proposes to investigate diverse classification techniques
to locate malignant lesions on behalf of the prostate.

Figure 3.1 provides a concise scheme to illustrate the elaboration process, which is to be
delineated in details throughout this chapter.

Figure 3.1: Schematic representation highlighting every step implemented for tumour detection

All the passages here described are applied separately to the two image types (ADC map
and T2-w).

The elaborations for the tumour detection phase have been implemented with MATLAB
Software, Release 2018b (The MathWorks, Inc., Natick, Massachusetts, United States).
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3.1 Patients

The study population involved in the tumour detection phase is shown in figure 3.2. They
represent the subset of the subjects in section 2.1, who resulted positive according to MR.

Figure 3.2: Schematic representation of the study population for tumour detection

Details about patients and lesions can be found in table 3.1.

Table 3.1: Characteristics of patients and lesions. *Measurements are given as median (range)

3.1.1 Reference Standard
Manual segmentation of malignant lesions was performed by an expert radiologist on

T2-weighted and ADC map.
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3.2 Feature Extraction

Feature extraction aims at gaining relevant information from the original set of data (e.g.
an image) by creating an ensemble of variables, thus diminishing the number of involved
parameters without losing any prime content [54].
In this study, the features listed in table 3.2 are extracted from T2-w and ADC masks,
comprising first and higher order statistics (i.e. texture analysis by means of GLCM and
GLRLM). Details about these features and their abbreviations can be found in section 3.5 of
the appendix.
FE has been performed by means of C++ in-house software and ITK open source libraries
[48].

First order statistics GLCM GLRLM
Mean Contrast HGRE
SD Correlation LGRE
Skewness Energy GLNU
Kurtosis Entropy RLNU
10th percentile Cluster prominence
25th percentile Cluster shade
50th percentile Haralick correlation
75th percentile Homogeneity

Variance
Sum average
Sum entropy
Sum variance
Difference variance
Difference entropy
Information correlation 1
Information correlation 2
Dissimilarity
Max GLCM

Table 3.2: List of extracted features (SD: standard deviation, GLCM: Gray Level Co-occurrence Matrix,
GLRLM: Gray Level Run Length Matrix, HGRE: High Gray-Level Run Emphasis, LGRE: Low Gray-Level

Run Emphasis, GLNU: Gray-Level Non-uniformity, RLNU: Run Length Non-uniformity )

Each feature is computed considering non-overlapping regions of interest composed by
5 × 5 pixels, in which every slice is divided taking into account only the prostate mask re-
sulting from the algorithm in section 2.3.

Many research groups [55–58] proved the efficacy of ADC map and T2-w signal intensi-
ties to distinguish healthy from unhealthy tissue. To preserve and exploit this knowledge,
first order statistics are included in the extracted variables. It is important to underline that
this type of analysis is not concerned with the positioning of grey levels in the image and
their relationships, as it considers the single grey tone by itself.
Texture analysis was first introduced by Haralick [59], who intended to acquire information
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3.2. Feature Extraction

about the spatial distribution of grey intensities, creating a set of features able to describe an
image patch by associating it to a visual perception (i.e. rippled, coarse, irregular, smoothed).
His idea was to transform into mathematical expressions what the human eye can perceive
and naturally describe.

In general, a gray-level co-occurrence matrix can be pictured as a bi-dimensional histogram
of the intensities present in an image.
Referring to an image of N grey levels, a gray level co-occurrence matrix is a N × N matrix
Tv, where v is the displacement vector indicating the difference in spatial locations of n pix-
els. Each entry of the matrix Tv of coordinates (x, y) represents the number of times the pixel
pair with grey levels x and y at distance equal to v occurs.
Posteriorly to normalisation with respect to total number of occurrences, the GLCM contains
the probability of occurrence of each pixel pair characterised by intensities x and y, which
are distant v [60, 61].
Figure 3.3 shows a simplified example to understand GLCM computation.

Figure 3.3: Simplified example about GLCM calculation. 1) An image of 4 × 4 grey tones is taken into
account and transformed into a numeric grid. 2) Considering a pixel with intensity 1 and its immediate

neighbour to the right (i.e. 3), there are two occurrences in the image, thus the entry (1, 3) of the GLCM matrix
if filled with 2. Following the same criterion, the entire GLCM is filled. 3) The gray-level co-occurrence
matrix is thus normalised so that each entry holds the probability of every pixel pair. Adapted from [62]

A gray level run length can be defined as a contiguous set of pixels presenting the same
intensity [63].
Gray level run length matrix is a texture representation which counts the presence of runs
of pixels of each grey tone present in an image. As reported in [64], the entry (x, y) of the
GLRLM matrix identifies the occurrence of pixels of grey level x with run length y.

While GLCMs are square matrices because the quantity of bins must match and the co-
occurrence couples must be symmetric, GLRLMs may have an unequal number of rows and
columns. In fact, it is crucial to preserve the information about the symmetrical couples for
GLCM, whereas in the case of the GLRLM this would only be cause of redundancy.
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3.3. Classifier Construction

Figure 3.4: Representation of the four directions along with texture features are computed. The red cross
designates the center of the 5 × 5 ROI

Regarding the calculation of GLCM derived features performed in this study, two con-
tiguous neighbouring pixels are considered as displacement vector in four possible directions
(0°, 45°, 90°, 135°). The same directions are evaluated for GLRLM (see figure 3.4).
The number of gray levels for GLCM and GLRLM matrices is set to 64 bins.

Every ROI has been assigned malignant class (denoted by 1) only if the pixels belonging
to the ROI are fully contained in the tumour mask, otherwise the ROI is attributed benign
class (denoted by 0).
Prior to further elaborations, the entire set of features was scaled according to min-max scal-
ing in equation 3.1, where fi represents the i-th value of the current feature, while max( f )
and min( f ) are respectively its maximum and minimum value.

fi =
fi − min( f )

max( f ) − min( f )
(3.1)

From now on, the terms sample, element and ROI denote indiscriminately the same entity,
i.e. the vector of features corresponding to each ROI. The malignant class will be also
denominated positive class, while the benign class corresponds to the negative class.

3.3 Classifier Construction

The classification problem is part of the computational intelligence field and it can be
conceded as a critical issue in biomedical engineering, especially concerning the diagnostic
process [65].
Throughout this study, supervised classification will be exploited in order to detect malig-
nant lesions belonging to the prostate gland. Generally speaking, a supervised classifier can
be viewed as a machine which is responsible for finding the relationships between the class
label and the structure of the data. To do so, a training set composed of samples with their
corresponding class must be given as input to such a machine.
The construction of the training set plays a vital role, as it influences the ability of the clas-
sifier to correctly recognise unexplored data. Depending on the level of knowledge enclosed
in the training samples, the classification performance will be affected as more possible sce-
narios are comprised in the training samples.
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3.3. Classifier Construction

Concerning the medical domain, it is particularly challenging to collect a vast and exhaustive
quantity of data because of [66]:

1. huge amount of time needed for image acquisitions;

2. difficulty in gathering data in the case of low prevalence diseases (e.g. cancer);

3. variability related to the same disease.

The here proposed study is as well characterised by an imbalanced data set made of benign
and malignant samples, therefore facing all the correlated issues (e.g. finite sample size, large
data dimensionality). The main concern is then to create a training set which encounters for
the heterogeneity of available data, regardless of the prevalence of one class compared to the
other.

3.3.1 Decision tree based training set
The first method applied to create the training set is the decision tree, a supervised clas-

sifier that recursively partitions the instance space. Useful as an exploratory technique, a DT
is composed by:

• a root node, first existing node with no incoming branches;

• test nodes, with outgoing branches;

• leaf nodes, terminal nodes holding the class label.

In the most common and plain case, each internal node divides the instance space according
to the values of a single attribute [67]. In order to determine the best splitting attribute, it is
necessary to choose a heuristic able to divide the labelled data set into single classes.
One of the most used attribute selection measures is the Gini index, which establishes the
impurity of the data partition by means of the probability that an arbitrary sample belongs to
each class.

In the creation of training and test sets, only those slices embedding cancerous lesions are
considered. Table 3.3 shows the number of available samples separated per class and image
type.

Image type Malignant ROIs Benign ROIs
ADC map 1136 58413
T2-w 1090 60235

Table 3.3: Total number of ROIs separated per class and image type
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3.3. Classifier Construction

The approach conceived to build the training set starting from decision trees is constituted
by two phases, summarised in figure 3.5.

Figure 3.5: Phases of decision tree based approach for training set construction

In the first phase of figure 3.5, the decision tree algorithm is applied to each patient
separately, randomly extracting elements belonging to the nodes as follows:

1. find all nodes containing at least one malignant sample;

2. extract a number of samples (ne) equal to half of the elements held by the node;

3. check whether the node contains samples of the benign class and in the positive case
extract benign elements (n) according to equation 3.2:

n = min
(
nm,

nb

2

)
(3.2)

where nm indicates the number of malignant elements in the considered node, and nb

is the number of benign elements contained in the same node.

Equation 3.2 has been adopted in order to include those elements which are more resembling
to malignant samples, thus ensuring a good representation of data diversity without compro-
mising the total number of benign elements.
It is worth underlining that every decision tree presented a considerable inhomogeneity tak-
ing into account malignant ROIs, which led to have nodes containing few malignant elements
together with a limited amount of benign elements in the majority of cases. Those peculiar
nodes are here denominated impure nodes, due to the simultaneous presence of both classes,
and the benign elements extracted from them are called impure elements. The possibility of
having few malignant samples in a node assigned benign label, characterised by a consistent
number of benign elements, can also occur. Nevertheless, this is taken care of during the
process of picking impure elements.
The more malignant ROIs are present, the more branches are created in the trees, as seen in
figure 3.6, therefore suggesting the unexpected inhomogeneity proper of cancerous lesions.
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3.3. Classifier Construction

(a) DT of a patient with few malignant ROIs

(b) DT of a patient with many malignant ROIs

Figure 3.6: Emblematic examples of decision trees for patients with different number of malignant samples
and a comparable number of benign samples (superior to 2500). Red boxes highlight leaf nodes assigned

malignant label

Once the total number of malignant ROIs (M) and impure elements (I) is known, the
second phase in figure 3.5 can begin with the computation of each patient’s DT, followed by
next steps:

1. find all nodes containing at least one benign sample (regardless of the presence of
malignant elements);
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3.3. Classifier Construction

2. consider only the nodes containing a number of elements at least equal to 5% of the
total amount of benign ROIs present in the subject’s data set (ntot);

3. extract elements randomly (nB) in accordance with equation 3.3:

nB = nb ×
max (n1, |M − I|)

ntot
(3.3)

where nb is the number of benign elements belonging to the node, and n1 corresponds
to 1% of ntot.

The limit imposed at 5% of the total amount of benign ROIs of each patient derives from
the fact that there exists a restricted number of nodes containing nearly all benign elements.
This value enables to include the most represented benign ROIs in the training set.
Indeed, equation 3.3 allows to pick a reasonable number of benign samples, in view of the
selected malignant and impure elements.

As noticeable from table 3.4, the number of positive and negative samples comprised in
the training set slightly differs. However, being the difference so small, this should not affect
the classifier performance and the two classes can be retained balanced.

Image type Malignant ROIs Benign ROIs
ADC map 780 886
T2-w 768 925

Table 3.4: Number of ROIs separated per class and per image type constituting decision tree based training set

Decision trees are also featured with the benefit of establishing the most relevant at-
tributes useful to discriminate the classes. The two image modalities present frequently
selected variables and others rarely appearing, hence enforcing the great variability proper
of the involved set of data.
Figure 3.7 exhibits bar diagrams representing the frequency of each feature for all decision
trees: it is evident that no variable is selected considering the entire study population.
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(a) T2-weighted

(b) ADC map

Figure 3.7: Occurrence of selected attributes across all decision trees
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3.3.2 Feature Selection with Genetic Algorithms
The purpose of feature selection is to identify a subset of variables able to [68]:

• preserve relevant informative content;

• decrease dimensionality;

• eliminate superfluous and redundant data;

• ameliorate classification performance;

• enhance result understandability.

Two principal strategies can be adopted for FS: filter methods, characterised by recogni-
tion of the most relevant features without considering the learning task (regardless of subsets
comprising high discriminative variables), and wrapper methods, which select features along
with evaluating the goodness of the learning algorithm [69]. Although wrapper methods may
present a heavy computational burden, they contribute to superior classification performance
and parameters optimisation for classifier or learning algorithm.
When implementing a classifier, it is pivotal to tune its parameters as well as try to find a
subset of features which may reach the best classification outcome [70]. Among the various
methods such as grid or random search, a heuristic search can be utilised to simultaneously
perform FS and tuning classifier parameters.
In this study, a genetic algorithm is applied, which has been already used to solve optimisa-
tion problems [71] or find tuning parameters [70]. Up to now, few applications are recovered
concerning these two aspects at the same time (one of them can be found in [72]).

Belonging to the field of evolutionary computing, GAs are optimisation methods inspired
by evolutionary processes (e.g. natural selection, reproduction) to create computer-based
problem solving methods. They can be used to prune the set of involved variables, by dis-
covering those which reduce generalisation errors [65].
Three main operators can be encountered:

• selection, to represent the survival of the fittest individuals;

• crossover, to model reproduction;

• mutation, to introduce diversification through the generations.

Every solution of a genetic algorithm is codified as a binary vector of fixed dimension, called
chromosome, whereas each bit is referred as a gene.
GAs perform a stochastic population-based research, thus the first step is to produce an initial
population of candidate solutions, by assigning a random value from the permitted domain
to each gene. They may need to satisfy an admissibility condition.
Moreover, it is cardinal to determine population dimension and number of iterations, for
they influence the exploration capacity of the algorithm. The goodness of each individual is
established by means of an objective function, called fitness function.
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Figure 3.8: Schematic representation of an evolutionary algorithm

Once the best solutions are identified, mutation and crossover operators are applied to
generate the offspring, respectively by combining parts of existing solutions and randomly
changing the genes. Afterwards, the selection operator is in charge of preserving the fittest
individuals of each generation, thus yielding the population for the next generation. This
operator is particularly important to assure the survival of good solutions and avoid stopping
in a local optimum.
A genetic algorithm ceases when a limit is reached in terms of executed number of genera-
tions or fitness function evaluations or when a convergence criterion is met.

3.3.3 Classifier
A suitable classifier to be used in combination with a genetic algorithm is the support

vector machine [65]. It is a binary supervised learning classifier, which maps the non-linear
input vectors into a high dimensional feature space in which they become linearly separa-
ble [73]. Training a SVM consists in finding the hyperplane, able to best split the two classes,
characterised by furthest distance from the nearest training samples (so called support vec-
tors).
In order to build a SVM, the following must be set:

• kernel function, non linear function which projects samples from the input space to the
output space;

• parameter C, numerical value to establish the number of misclassified samples: a strict
margin results from a high value of C, even if the points are linearly separated, whereas
a small C leads to a large margin with misclassification errors.

The learning task expressed as an optimisation problem with linear constraints aims at bal-
ancing the maximisation of the margin with the error penalty.
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Figure 3.9: Soft-margin support vector machine in a 2-D example [65]

Parameters setting

The fitness function implemented in the GA is reported in equation 3.4 [72]. It solves a
minimisation problem, thus the smaller its value (ideally 0) the better the solution is.

f itnessi = 1 −
spec + sens

2
+ 0.3 × (|spec − sens|) (3.4)

In equation 3.4, sens and spec refers respectively to sensitivity and specificity of the classi-
fier with parameters and selected variables chosen by i-th solution, considering classification
performance on the test set (in table 3.3).
Sensitivity and specificity (respectively in equations 3.6 and 3.7) are computed from the con-
fusion matrix in table 3.7.
This fitness function attempts to compensate for the imbalanced classes present in the test
set, by using the so called averaged accuracy (i.e. the second term in equation 3.4) in order
to evenly weigh the two metrics.

Experimental trials conducted in this study found that the genetic algorithm did not evolve
finding in the initial population of random individuals the solution with the best fitness. The
setting used in these trials is here detailed:

• number of individuals: 200;

• number of iterations: 5000;

• number of parents: 0.8 × number o f individuals;

• number of repetitions: 1;

• number of genes: 36, codified as:

– first 30 bits corresponding to the features;

– next 2 bits for SVM kernel function (polynomial of order 2, polynomial of order
3, linear, radial basis function);
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– last 4 bits for parameter C of SVM according to equation 3.5, where Cbin repre-
sents the decimal value of the bits;

C = 0.5, i f Cbin = 0
C = 1, i f Cbin = 1
C = 10 × (Cbin − 1), i f Cbin > 1

(3.5)

Figure 3.10: Schematic representation of GA solution encoding with SVM parameters. Each square
represents a single bit

• crossover probability: 1;

• crossover cutting points: 2;

• mutation probability: 0.2, decreased to 0.15 after 200 iterations and 0.1 after 400
iterations.

With regard to the bits representing the features, they are codified according to the Yes/No
variables encoding, i.e. the bit equals 1 if the variable is selected, 0 otherwise.
A solution is considered admissible if at least 2 features are equal to 1.

Due to the premature identification of the best solution, the genetic algorithm in figure 3.11
is implemented (the encoding for each solution remains unchanged): generating a random
population of 1000 individuals, the fitness function is evaluated for each of them and the
one with the smallest value is elected as best. By doing so, the GA serves to determine the
classifier parameters and examine the behaviour of the classifier according to the selected
features.
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Figure 3.11: Implementation of the genetic algorithm to set classifier parameters and selected features

Results

Parameters established by the genetic algorithm along with number of selected variables
and fitness value of the best solutions are reported in table 3.5.

Table 3.5: SVM. Parameters selected by the genetic algorithm and best fitness values

Details about the selected features can be found in figure 3.6, with a binary representation
indicating presence of the variable (cell in white) and absence of the variable (cell in black).
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Table 3.6: SVM. Binary representation of FS performed by the genetic algorithms. White cells correspond to
selected variables, black ones indicate those features that are not considered

The performances emerged from this first approach are presented in form of normalised
confusion matrices in table 3.7.

Table 3.7: SVM. Classification performances considering training and test sets per image modality. The
reference confusion matrix is reported on the right (1: malignant label, 0: benign label)
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Evaluation metrics derived from the confusion matrices (reference in figure 3.7) are de-
tailed below:

• sensitivity indicates the number of ROIs classified as tumours, actually belonging to
the malignant class;

S ens =
T P

T P + FN
(3.6)

• specificity estimates the amount of ROIs classified as healthy, actually belonging to
the negative class.

S pec =
T N

T N + FP
(3.7)

Whereas the classifier seems to recognise malignant samples in an acceptable amount
(both in training and test sets), the benign class is characterised by a lower identification,
especially taking into account the much greater presence of negative samples.

Sensitivity and specificity obtained for each patient are represented in figure 3.12.
It can be noticed that the metrics concerning T2-w are less variable among patients with
respect to ADC map. However, while the specificity stays around 0.6 or above in the two
image sets, sensitivity reveals to have a value below 0.5 for more than one patient.
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(a) T2-weighted

(b) ADC map

Figure 3.12: SVM. Sensitivity and specificity across patients
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In figure 3.13, the resulting outcome of SVM tumour detection is displayed for two
patients, showing the difference between a large and a small tumour.
False positives (i.e. benign samples classified as malignant) are particularly present in the
T2-w mask, even though the cancerous lesion is recognised at least partially.

Figure 3.13: SVM. Examples of tumour detection. Red dots indicate the centre of each ROI classified as
malignant, while blank squares correspond to cancerous tissue
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3.4 Classification Optimisation

Due to the relatively low recognition of the benign class characterising the former ap-
proach, next attempt proposes to improve the representation of healthy tissue by means of
enlarging the training set with more than a single negative class.

3.4.1 Dendrogram based Training Set
The dendrogram based approach arises from the necessity to increase the representation

of the benign class. As a matter of fact, the latter is affected by a huge diversification inter
and intra-patients. To solve this issue, benign elements are grouped through dendrogram
clustering, a technique which merges samples on the basis of a similarity measure.
Keeping unaltered the malignant ROIs extracted with the decision tree based training set (see
section 3.3.1), benign ROIs are gathered as follows starting from DT of each patient:

1. find all nodes containing at least one benign sample (regardless of the presence of
malignant elements);

2. sort these nodes in descending order given number of elements held by each node;

3. consider the first three nodes (i.e. the ones with the largest number of elements).

At this point, dendrogram clustering is applied on all benign samples enclosed by the afore-
mentioned nodes. The classes are obtained by cutting each dendrogram (one per image
modality) and extracting randomly from every cluster a number of samples equal to:M i f nd ≥ M

nd otherwise
(3.8)

where M is the total number of malignant elements present in the DT based training set and
nd corresponds to the number of elements present in the current cluster.
The cutting level has been chosen to create groups separated by a certain distance and rather
homogeneous in terms of inner variability and number of elements.
Figure 3.14 shows the clusters obtained from the dendrograms.

In table 3.8, the number of elements belonging to each class is reported per image modality.

Benign ROIs
Image type Malignant ROIs Class A Class B Class C Class D
ADC map 780 780 780 780 780
T2-w 768 768 768 768 607

Table 3.8: Number of ROIs reported per class and per image type constituting dendrogram based training set
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(a) T2-weighted

(b) ADC map

Figure 3.14: Dendrograms with overlapping red boxes representing clusters
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3.4.2 Classifiers

Multiclass SVM

When more than two classes are present, it is possible to exploit a multiclass version of
the SVM, which can work with different strategies [74]. For further details on the implemen-
tation of the two-class support vector machine, the reader is referred to section 3.3.3.
In the context of this study, the one-versus-one coding design is adopted, consisting in train-
ing L(L − 1)/2 binary classifiers, where a class is considered positive and the other negative,
and L is the total number of classes.
Even with the dendrogram based training set, the genetic algorithm mentioned in section
3.3.3 showed no developments from the initial population, so the approach in figure 3.11 is
implemented in this case as well.
The fitness function in equation 3.4 will consider sensitivity and specificity relative to multi-
class SVM performance.
Table 3.5 reports classifier parameters set by the genetic algorithm along with number of
selected variables and fitness value of the best solutions.

Table 3.9: Multiclass SVM. Parameters selected by the genetic algorithm and best fitness values

Details about the selected features can be found in figure 3.10, with a binary represen-
tation indicating presence of the variable (cell in white) and absence of the variable (cell in
black).
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Table 3.10: Multiclass SVM. Binary representation of FS performed by the genetic algorithms. White cells
correspond to selected variables, black ones indicate those features that are not considered

Final performances obtained with this classifier are shown in form of normalised confu-
sion matrices in table 3.11. The superior recognition of benign samples found in the training
set is not retrieved in the test set, characterised by pretty balanced sensitivity and specificity
(approximately equal to 0.7).

Table 3.11: Multiclass SVM. Classification performances considering training and test sets per image
modality. The reference confusion matrix is reported on the right (1: malignant label, 0: benign label)

Concerning the ADC map, the results in figure 3.15 show an overall improvement in
terms of specificity comparing SVM with multiclass SVM for the study population.
Regarding sensitivity values instead, more than one half of the subjects presents their malig-
nant samples better recognised by the SVM.

49



3.4. Classification Optimisation

(a) Specificity

(b) Sensitivity

Figure 3.15: SVM vs Multiclass SVM. Classification performances across patients on ADC map

A similar trend can be observed for T2-w considering specificity, whereas less than half
of the subjects shows higher sensitivity with SVM classifier.
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(a) Specificity

(b) Sensitivity

Figure 3.16: SVM vs Multiclass SVM. Classification performances across patients on T2-weighted modality

A comparison concerning a subject with many misclassified elements is provided in fig-
ure 3.17, in which no considerable improvement is found for T2-w, whilst the outcome of
ADC map for multiclass SVM shows less false positives.
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Figure 3.17: SVM vs Multiclass SVM. Examples of tumour detection for a patient with several false positives.
Red dots indicate the centre of each ROI classified as malignant, while blank squares correspond to cancerous

tissue

Dendrogram based training set demonstrates its greater efficacy in detecting benign ele-
ments, although a slight reduction in tumour recognition can be inferred.
Next attempt is to assess the performance of another classifier to seek general improvements
and examine the differences which will arise.

k-Nearest Neighbours

k-Nearest Neighbours performs classification based on the nearest distance unlabelled
examples present with respect to the training set.
Considering a number k of neighbours, the distance of the analysed element is computed
with each sample of the training data, according to a precise metric. These distances are
sorted in descending order and the tested element is assigned to the most represented class
among the neighbours. This is designated as majority voting procedure [75].

As preliminary trial with k-NN classifier, a genetic algorithm with the undermentioned pa-
rameters is implemented:

• number of individuals: 50;

• number of iterations: 20;

• number of parents: 0.8 × number o f individuals;
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• number of repetitions: 1;

• number of genes: 36, codified as:

– first 30 bits corresponding to the features;

– next 2 bits for distance metric (euclidean, chebychev, minkowsky, cityblock);

– last 4 bits for parameter K (i.e. number of neighbours) according to equation 3.9,
where Kbin represents the decimal value of the bits;

K = 16 + Kbin (3.9)

Figure 3.18: Schematic representation of GA solution encoding with k-NN parameters. Each square
represents a single bit

• crossover probability: 1;

• crossover cutting points: 4;

• mutation probability: 0.2.

In contrast to the version with SVM classifiers (see sections 3.3.3 and 3.4.2), the here
performed GA evolved from the initial population in its research for the best solution.

The outcome of this genetic algorithm is exhibited in table 3.12, while the selected fea-
tures can be viewed in figure 3.13.

Table 3.12: Multiclass k-NN. Parameters selected by the genetic algorithm and best fitness values
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Table 3.13: Multiclass k-NN. Binary representation of FS performed by the genetic algorithm. White cells
correspond to selected variables, black ones indicate those features that are not considered

Final performances reached by this classifier are shown in form of normalised confusion
matrices in table 3.11.

Table 3.14: Multiclass k-NN. Classification performances considering training and test sets per image
modality. The reference confusion matrix is reported on the right (1: malignant label, 0: benign label)

As clear in figure 3.19, multiclass SVM outperforms k-NN in terms of specificity on
ADC map. Sensitivity across patients differs in the two classifiers, but k-NN reveals better
performance on malignant samples in more than half subjects. Comparable performances
are obtained on the test set for T2-weighted modality, related to those proper of multiclass
SVM (in table 3.11).
Both classifiers present a high recognition of benign samples on the training set, which how-
ever cannot be retrieved on the test set.
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(a) Specificity

(b) Sensitivity

Figure 3.19: Multiclass SVM vs Multiclass k-NN. Classification performances across patients on ADC map

55



3.4. Classification Optimisation

Referring to the outcome regarding T2-w, a pretty similar trend arises for the specificity,
whereas the sensitivity is higher for the majority of patients in the case of multiclass SVM.

(a) Specificity

(b) Sensitivity

Figure 3.20: Multiclass SVM vs Multiclass k-NN. Classification performances across patients on T2-weighted
modality

Observing figures 3.21 and 3.22, multiclass SVM performance is slightly superior in
terms of specificity, concerning both image modalities, with respect to multiclass k-NN.
Sensitivity is comparable between the two classifiers.
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Figure 3.21: SVM vs Multiclass SVM. Examples of tumour detection referred to T2-w. Red dots indicate the
centre of each ROI classified as malignant, while blank squares correspond to cancerous areas

Figure 3.22: SVM vs Multiclass SVM. Examples of tumour detection referred to ADC map. Red dots indicate
the centre of each ROI classified as malignant, while blank squares correspond to cancerous areas
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Since the recognition of benign elements is still not satisfying, a completely diverse ap-
proach will be tested to investigate how this aspect can be improved without jeopardising
tumour detection.
It is worth pointing out that decision trees involved in the construction of the training sets did
not exclude any available feature (see figure 3.7). For this reason, the complete ensemble of
variables will be taken into account in the next phase.

Feedforward Neural Networks

Artificial neural networks are information-processing models, which mimic the function-
ing of the biological nervous system [65].
The main actor is the neuron, i.e. the fundamental core of a neural network responsible for
the learning process achievable with massive inter-synaptic connections.
As a biological neuron is made up by a nucleus, enclosed in the cell body receiving incoming
signals, and a bunch of dendrites which encounter the information from neighbouring neu-
rons (i.e. the data fed as input to the system), the artificial neuron is characterised by [65]:

• summation and activation function, part of the processing centre to decode and de-
vise the input responses. Mathematically, it embeds an activation function f, which
elaborates the inputs gathered at the summation node;

• input xi is modelled by a scalar weight wi multiplied with itself. It can be associated
with the electrical input to the biological neuron:

yi = f
(∑

wkxk

)
(3.10)

There may be multiple inputs;

• output yi, which signifies the strength of the electrical pulse moving along the axon;

• feedback, it can be provided in certain types of NNs and gives the capability to become
adaptive by feeding the output back to the input.

A schematic representation of an artificial neuron, also called perceptron, is displayed in
figure 3.23.

Figure 3.23: Representation of an artificial neuron [65]
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The learning process requires the modification of neuron weights, in order to make the
network output match the true label, based on the error between the desired and computed
output. Training is usually performed with general optimisation algorithms, to be effortlessly
implemented on a computer.
Connecting more than one perceptron into a network leads to the construction of a multi-
layer perceptron featured with the backpropagation algorithm (see figure 3.24). The latter is
constituted by two steps:

1. computation of the derivatives belonging to the network training error with respect to
the weights;

2. adjustment of the weights through a gradient descent method, exploiting the error
derivatives to reduce the output errors.

Obviously, the backpropagation algorithm supposes the neurons to possess differentiable
activation functions.

Figure 3.24: Example of a two-layer MLP [65]

Particularly when dealing with non-linear dependencies among the variables, the pres-
ence of hidden layers is advisable to increase the connections in the network, thus enhancing
its learning ability.

Neural networks have been already exploited to reduce false positives in the case of a
computer-aided diagnosis system based on mp-MRI [76]. Seeking the same goal, different
architectures for neural networks and training sets are tested to understand the consequent
impact on performances.
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Experimental trials With the aim of discovering the behaviour of feedforward neural net-
works in the context of this study, the first attempt has been made using decision tree based
training set (see section 3.3.1).

The established setting is the following:

• number of input neurons: 30;

• number of output neurons: 1;

• hidden layers architecture: the structures listed in table 3.15 are tested to explore vari-
ous scenarios, ranging from 1 to maximum 3 hidden layers;

Table 3.15: List of tested hidden layers (number of neurons in each layer is provided)

• input neurons activation function: log-sigmoid in figure 3.25;
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Figure 3.25: Input neurons log-sigmoid activation function

• output neurons encoding function: linear;

• backpropagation algorithm: Levenberg-Marquardt optimization [77];

• number of repetitions: 10.

The resulting performance of each NN is evaluated in terms of specificity and sensitivity
on training and test sets per image type.

Two criteria are applied to determine the best structures:

1. median sensitivity on test set across all repetitions (here denominated MaxMedian);

2. smallest difference between maximum and minimum value of sensitivity on test set
across all repetitions (here denominated MinDiff ).

For both image modalities, median sensitivity and specificity stays above 0.6 for training and
test sets, as retrievable from figure 3.28.
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(a) T2-weighted

(b) ADC map

Figure 3.26: DT based training set - MaxMedian criterion. Performance proper of each NN structure in terms
of specificity and sensitivity evaluated on training and test sets. Dashed boxes indicate the structure elected as

best

More than a single repetition is performed for each structure: this is justified by the
fact that the output can change every time, thus it is important to identify the most reliable
configuration. Those NNs satisfying MinDiff criterion should fulfil this demand (see figure
3.27).
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(a) T2-weighted

(b) ADC map

Figure 3.27: DT based training set - MinDiff criterion. Performance proper of each NN structure in terms of
specificity and sensitivity evaluated on training and test sets. Dashed boxes indicate the structure elected as

best

In order to give a closer look at subject-wise performance, the outcome of the repetition
presenting the greatest sensitivity is examined for both structures, whose results are displayed
in figure 3.28.
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(a) T2-weighted

(b) ADC map

Figure 3.28: DT based training set. Sensitivity and specificity across patients considering the best elected
structures

While the ability to recognise benign elements seems more stable across patients and
greater in the case of the MinDiff criterion, malignant samples are detected in a smaller
amount in some subjects more than others, considering both selected structures.
From the normalised confusion matrices in table 3.16, the MaxMedian structure presents
higher sensitivity, which is instead pretty balanced with specificity for MinDiff structure,
concerning the two image modalities.
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Table 3.16: DT based training set. Classification performances obtained considering training and test sets per
image modality and best elected NN structures. The reference confusion matrix is reported on the right (1:

malignant label, 0: benign label)

Figure 3.29 shows the MinDiff criterion to be lightly more effective in limiting the num-
ber of false positives for T2-w compared to MaxMedian, whereas for ADC map in figure
3.30 there is no apparent difference between performances of NN structures.
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Figure 3.29: DT based training set - T2-w. Examples of tumour detection according to best elected NN
structures. Red dots indicate the centre of each ROI classified as malignant, while blank squares correspond to

cancerous tissue

Figure 3.30: DT based training set - ADC map. Examples of tumour detection according to best elected NN
structures. Red dots indicate the centre of each ROI classified as malignant, while blank squares correspond to

cancerous tissue

Without any modification to the parameters described earlier in this section, the same
structures have been tested using dendrogram based training set (see section 3.4.1), to analyse
how the NNs work when fed with a more diversified data set.
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(a) T2-weighted

(b) ADC map

Figure 3.31: Dendrogram based training set - MaxMedian criterion. Performance proper of each NN
structure in terms of specificity and sensitivity evaluated on training and test sets. Dashed boxes indicate the

structure elected as best
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Figure 3.31 highlights a considerable decrease in the median sensitivity per structure,
involving both image modalities.

(a) T2-weighted

(b) ADC map

Figure 3.32: Dendrogram based training set - MinDiff criterion. Performance proper of each NN structure in
terms of specificity and sensitivity evaluated on training and test sets. Dashed boxes indicate the structure

elected as best

Considering patient-wise performances in figure 3.33, recognition of benign samples is
actually ameliorated (it was in fact the desired outcome). Nevertheless, tumour detection
appears to be worsened, being very diverse across subjects.

68



3.4. Classification Optimisation

(a) T2-weighted

(b) ADC map

Figure 3.33: Dendrogram based training set. Sensitivity and specificity across patients considering the best
elected structures

Observing performance on training and test sets given in table 3.17 specific for the elected
structures, specificity remains high for both criteria, while sensitivity is considerably lower
for MinDiff.
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Table 3.17: Dendrogram based training set. Classification performances considering training and test sets per
image modality and best elected NN structures. The reference confusion matrix is reported on the right (1:

malignant label, 0: benign label)

Specificity is considerably increased using dendrogram based training set relative to fig-
ures 3.34 and 3.35. However, a loss in tumour detection is found compared to performance
of DT based training set (see figures 3.29 and 3.30).
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Figure 3.34: Dendrogram based training set - T2-w. Examples of tumour detection according to best elected
NN structures. Red dots indicate the centre of each ROI classified as malignant, while blank squares

correspond to cancerous tissue

Figure 3.35: Dendrogram based training set - ADC map. Examples of tumour detection according to best
elected NN structures. Red dots indicate the centre of each ROI classified as malignant, while blank squares

correspond to cancerous tissue
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To summarise the results obtained with these last elaborations, table 3.18 provides the
maximum or minimum values for specificity and sensitivity considering all structures along
with an evaluation of the performance variability among the study population.

Table 3.18: NNs performance comparison between the two employed training sets, given per image modality.
*The reported number is the upper or lower bound of existing values (regarding sensitivity and specificity)

What emerges from table 3.18 is that using dendrogram based training set causes a sig-
nificant worsening in the recognition of the positive class, although healthy tissue is better
identified.
The ideal situation would be to reach such good performances also when detecting malignant
lesions without being deprived of the recognition characterising the benign class.
Next approach is thought to achieve this purpose, even to find out if there exist benign classes
which are better identified than others.

Cascade of Feedforward Neural Networks

A cascade of neural networks is implemented to exploit the ability of an ensemble of
NNs to recognise each class one by one.
This is performed by subsequently removing the benign class with highest recognition and
lowest number of misclassified elements as malignant.
As a consequence, reducing at each step the classes involved in the training set lowers
the variability and simplifies the learning process, hopefully leading to an improved per-
formance.
A multiclass data set is then required, in fact dendrogram based training set is exploited,
enabling greater representation of healthy tissue.
The elements correctly classified as benign by each neural network in the cascade will fall
in the true negatives, while those wrongly identified as malignant will be considered false
positives. Both of them will contribute in the performance of the last neural network in the
cascade, presented in form of normalised confusion matrices.

The parameters set for all the networks are the same listed in section 3.4.2, except for the
hidden layers structure, which is fixed at 1 hidden layer of 30 neurons, as preliminary trial.
In the following tables, label 1 denotes malignant class, while labels from 2 to 5 are associ-
ated with the classes of benign tissue created from the clusters in figure 3.14.
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Table 3.19: ADC map - 1st NNs Cascade. Normalised confusion matrices belonging to each neural network.
Rows enclosed in the bold boxes highlight the class which is not included in the training set of the successive

neural network (1: malignant label, benign labels from 2 to 5)

Final performance on test set is reported in table 3.20.
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Table 3.20: ADC map - 1st NNs Cascade. Normalised confusion matrix belonging to test set (1: malignant
class, 0: benign class)

It is evident from table 3.20 there has been no improvement in detecting benign samples
considering final performance of the NNs cascade.
Starting from remaining test set used in the last neural network of the cascade (i.e. NN4)
while keeping classified elements from previous structures, dendrogram clustering is applied
only on benign samples to constitute a new training set, trying to provide a greater repre-
sentation of the negative class. Malignant samples are the same considered in dendrogram
based training set.

Figure 3.36 shows the resulting dendrogram on benign ROIs along with clusters.

Figure 3.36: ADC map. Dendrogram clustering on benign samples of NN4 test set. Dashed red boxes enclose
clusters

A second cascade is implemented exploiting the classes formed from each cluster in fig-
ure 3.36. The new training set for benign samples is built as in equation 3.8, by randomly
extracting elements from every cluster.
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Table 3.21 specifies performance on training set and highlights the class, excluded from the
succeeding training set, based on lowest number of benign elements classified as malignant.

Table 3.21: ADC map - 2nd NNs Cascade. Normalised confusion matrices belonging to each neural network
training set. Rows enclosed in the bold boxes highlight the class which is not included in training set of the

successive neural network (1: malignant label, benign labels from 2 to 6)

The confusion matrix regarding training set of the last neural network in the second
cascade exhibits a considerable decrease in the recognition of benign samples.
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Table 3.22: ADC map - 1st and 2nd NNs Cascades. Normalised confusion matrix considering complete test set
(1: malignant class, 0: benign class)

Performances presented in table 3.22 are obtained considering the outcome of NN9 and
those elements already classified by the previous NNs.
A slight amelioration concerning specificity is found, but it is not sufficient to reach an ac-
ceptable outcome.
Given the worsening of the final network in the second cascade, another attempt is made by
clustering benign samples of the remaining test set from NN8.

Dendrograms belonging to classes 2 and 3 (involved in NN8) are cut in order to extend
the presence of these classes in the training set, creating a class from each of the newly
formed clusters (see figures 3.37 and 3.38). Samples are randomly extracted from each class
according to equation 3.8.

Figure 3.37: ADC map. Dendrogram on class 2 from remaining test set of NN4. Dashed red boxes enclose
clusters
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Figure 3.38: ADC map. Dendrogram on class 3 from remaining test set of NN4. Dashed red boxes enclose
clusters

Table 3.23 reports the confusion matrices of each neural network in the 3rd cascade re-
garding training, whereas table 3.24 shows final performances on entire test set considering
all three cascades.
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Table 3.23: ADC map - 3rd NNs Cascade. Normalised confusion matrices belonging to each neural network.
Rows enclosed in the bold boxes highlight the class which is removed in the training set of the successive

neural network (1: malignant label, benign labels from 2 to 6)
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Table 3.24: ADC map - 1st, 2nd and 3rd NNs Cascade. Normalised confusion matrix considering complete test
set (1: malignant class, 0: benign class)

Although the representation of benign samples has been incremented, the expected im-
provement about their detection is still not accomplished.

Given these results, a further trial is performed changing the method to extract elements
for training set construction.
Starting with test set proper of NN4 in table 3.19 and considering its dendrogram in figure
3.36, the same clusters are taken into account. Each of them (called reference cluster) is
divided in 10 subclusters, and a number n of elements is picked randomly from each using
equation 3.11, in which:

• nc is number of elements in the current subcluster;

• M is number of malignant samples in dendrogram based training set (see table 3.8);

• nre f is total number of elements in the reference cluster.

n =
nc × M

nre f
(3.11)

Malignant data for training set are not changed (i.e. equal to the samples from dendro-
gram based training set) and joined with the new benign classes.
The aforesaid procedure to build the training set will be denominated proportional sampling.

A schematic representation of the approach employed in each successive cascade is pre-
sented in figure 3.39.
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Figure 3.39: ADC map - NNs cascade with proportional sampling. Schematic representation of the procedure
adopted to implement cascade of NNs

In particular, the first step is to identify the network presenting a low misclassification
error regarding benign samples mistaken as malignant. When this error starts to increase
with respect to the previous NNs in the cascade, the approach proceeds as follows:

1. benign samples from test set of the elected network undergo dendrogram clustering;

2. cutting level is established;

3. proportional sampling is used to construct training set;

4. NN is fed with this training set and the test set from which it derives.

As a matter of fact, the aim is to limit the presence of false positives, sampling the test set
featured with a considerable misidentification.
Accounting for training set performance of each network in the cascade, the class charac-
terised by lowest number of benign elements predicted as malignant is not included in the
next NN training set.
Samples classified as benign truly belonging to the benign class will be considered true neg-
atives, whilst those with actual malignant class will be denoted as false positives. All of them
will contribute in the performance of the last network of the cascade.
Dendrograms and their clusters proper of this phase are reported in the appendix (section
3.5).
Performances resulting from training set of each neural network can be found in section 3.5
of the appendix.
In order to evaluate misclassification errors, table 3.25 is constructed on test set of every
single network giving the normalised number of malignant and benign samples recognised
according to NN prediction.
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Table 3.25: Template providing normalised number of malignant and benign elements per NN prediction.
Class 1 denotes malignant samples, while benign classes are denoted from 2 to n

Figure 3.40: ADC map - NNs cascade with proportional sampling. Each row comprises a NNs cascade. The
bars represent the normalised number of malignant and benign samples according to NN prediction on test set.

Dashed boxes highlight the test set whose samples will be used in the creation of the training set for the
following cascade (1: malignant label, benign labels from 2 to 7)

As discernible from table 3.26, there is a significant enhancement in the correct identifi-
cation of the negative class thanks to the implementation of 8 NNs cascades. Nevertheless,
the sensitivity is consistently diminished, resulting around 0.5.
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Table 3.26: ADC map - NNs cascade with proportional sampling. Normalised confusion matrix considering
complete test set (1: malignant class, 0: benign class)

To closely observe the outcome of this approach in a patient-wise fashion, figure 3.41
provides sensitivity and specificity per subject.

Figure 3.41: ADC map - NNs Cascade with Proportional Sampling. Patient-wise sensitivity (Sens) and
specificity (Spec)

Specificity stays above 0.7 for the entire study population, whereas sensitivity varies
across patients in a much broader range (roughly from 0.3 to 0.8).

Some examples of tumour detection realised by NNs cascade with proportional sampling
are exhibited in figure 3.42.
Several falsely recognised benign samples undermine the correct identification of cancerous
zones, as visible in the upper left corner of figure 3.42.
Since the tumour in the upper right corner of figure 3.42 is small, it could be more probably
disregarded as a malignant area.
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Figure 3.42: ADC map - NNs cascade with proportional sampling. Examples of tumour detection. Red dots
indicate the centre of each ROI classified as malignant, while blank squares correspond to cancerous areas
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3.5 Overall Comparison

Throughout this study, several supervised machines have been tested with the aim of
achieving a good performance in detecting malignant areas, as well as in limiting the amount
of benign samples misidentified as cancerous.
Performances accomplished by each classifier are reported in figure 3.43 for ADC map and
in figure 3.44 for T2-weighted, in terms of false positives, sensitivity and specificity.

Figure 3.43: ADC map. Comparison in terms of number of false positives, sensitivity and specificity
considering all classifiers. (DT: Decision tree based training set, Dend: Dendrogram based training set, Prop:

Proportional sampling training set)

Neural networks enable to recognise more correctly benign samples employing dendro-
gram based training set and in the case of NNs cascade with proportional sampling with
ADC map.
On the other hand, multiclass SVM shows higher specificity, which competes with NNs re-
sults.
Referring to T2-weighted, all classifiers but dendrogram based training set NNs present a
balanced performance between sensitivity and specificity, approximately around 0.7. The
best outcome regarding specificity is accomplished by NNs with dendrogram based training
set, even though sensitivity is much decreased.
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Figure 3.44: T2-weighted. Comparison in terms of number of false positives, sensitivity and specificity
considering all classifiers. (DT: Decision tree based training set, Dend: Dendrogram based training set)

False positives are in general more significant with SVM, multiclass SVM and multiclass
k-NN and NNs using decision tree based training set for both image modalities. This could
be explained mainly by two reasons:

• dendrogram based training set embodies a more complete representation of healthy
regions, improving their differentiation;

• neural networks outperform the other classifiers due to their structure and learning
process which allow to discover inner relationships among the samples and exploiting
them to recognise the true label.

Some representative outcomes of tumour detection per classifier and image type are pro-
vided in figure 3.45 and 3.46, analysing subjects with decreasing tumour size.
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Figure 3.45: ADC map. Examples of tumour detection performed by all classifiers, referring to large, medium
and small cancerous areas. Red dots indicate the centre of each ROI classified as malignant, while blank

squares correspond to cancerous tissue

Regarding ADC map, misclassified ROIs result restricted especially in the case of the
medium-sized lesion, although detecting the small tumour becomes more and more difficult.
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Figure 3.46: T2-weighted. Examples of tumour detection performed by all classifiers, referring to large,
medium and small cancerous areas. Red dots indicate the centre of each ROI classified as malignant, while

blank squares correspond to cancerous tissue

In the case of T2-weighted, false positives considerably worsen image appearance as they
are present in a great amount except in the case of dendrogram based training set NNs, where
also sensitivity is much lessened.

These are just few examples to visually provide an idea of the performances: it is essen-
tial to remember every subject is unique and cannot be interpreted as a generalisable result.
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All the trials performed in this study outline the complexity found in constructing a su-
pervised classifier able to identify cancerous lesions.
This complexity can be attributed to:

• imbalanced malignant and benign classes;

• huge heterogeneity inherent benign samples and their similarity with cancerous areas;

• intra and inner subjects variability, including even malignant samples.

To overcome these aspects, the adopted approaches comprised changes in the training set
together with the classifiers in the attempt to retrieve a good combination.

The most decisive step has revealed the creation of the training set, as performances of the
classifiers radically modified. Of course, feeding each machine with a diverse information
content causes the generation of a different model which may turn out to be more or less
efficient in classifying than the previous ones.
Certainly, those training sets featured with multiple benign classes (i.e. dendrogram based
and proportional sampling) encounter both for data diversity and difference in sample size
providing the classifiers with an acceptable knowledge in terms of heterogeneity needed for
the detection.

Final results demonstrate there exists still an improvement margin to keep identifying un-
healthy regions along with healthy ones, as one cannot be as effective without the other.
Nevertheless, this study can be considered as a starting point to be further analysed and ame-
liorated with the goal of finding a satisfying set up for prostate cancer detection based on
bi-parametric MRI.
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Conclusions and future work
This thesis project represents one of the first attempts to identify prostate cancer using

only the non-invasive sequences proper of bp-MR protocol.
Conceived as a completely automatic system, it comprises prostate segmentation and tumour
detection in view of the creation of a software tool which could act as support for radiologists
in PCa screening.

The algorithm designed to segment the prostate is ensuring with regard to sensitivity, con-
firmed by robust and satisfying performances across the study population. However, it suffers
from over segmenting tissue outside the prostate (e.g. rectum or bladder) due to the adoption
of the fixed bounding box dimension in the entire volume.
In order to improve its performance, an adaptive bounding box could be used to follow the
actual extension of the prostate in each slice. Another useful advancement could be to inde-
pendently determine presence or absence of the prostate in each image to select the useful
ones. Edge detection may instead be utilised to precisely delineate prostate contour.

As common in the medical domain, the huge difference in sample size between healthy
and unhealthy regions characterised this work and led to several trials, with the aim of over-
coming this aspect along with the significant data variability which comes with it.
The first approach implemented to detect PCa comprehended simultaneous feature selection
and classification using a genetic algorithm in conjunction with support vector machine, ex-
ploiting the training set constituted beginning from decision trees proper of each patient.
Although a sensitivity around 70% was acceptable as initial result, it soon emerged the ne-
cessity to reach a much higher specificity to make tumour detection valid.
Bearing this concept in mind, all succeeding trials tried to enrich benign samples represen-
tation changing the training set. Dendrogram clustering was involved to create more classes
concerning healthy areas, then fed to a multiclass version of the SVM and to k-nearest neigh-
bours classifiers. While some ameliorations were brought by the support vector machine, the
same did not occur for k-NN.
To discover whether a totally different classification strategy could enhance healthy tissue
identification without losing in sensitivity, feedforward neural networks played a crucial role,
showing similar performances to previous classifiers when using the two-class training set,
but superior recognition in the case of more benign classes.
Given these results, a cascade of neural networks was performed to exploit the ability of each
NN to correctly identify a benign class with a negligible error concerning false positives.
Since the desired outcome was still not accomplished, the conclusive attempt included con-
secutive NNs, working with a training set built by proportionally sampling clusters resulting
from dendrogram on test set of the network presenting increasing misclassification error.
At the end, this method achieved a great performance in classifying benign samples with the
downside of a worsened tumour detection.
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In conclusion, this work demonstrated the difficulty in conceiving a system suitable for
prostate cancer detection assuring a good tumour recognition along with an acceptable be-
nign tissue identification. This is pivotal if such a system should be employed as a screening
tool for PCa, although always supervised by expert radiologists.
A fundamental encountered issue is the substantial intra and inter subject variability which
causes an enormous data heterogeneity concerning both malignant and benign areas.
Being the tumours outnumbered with respect to non cancerous regions and given their size
which could be also considerably small, all the supervised classifiers found very difficult to
distinguish between the two.
As evident from these preliminary trials, training set construction has proven to be essential
in establishing the goodness of the classifiers.
In addition, even though all these elaborations were performed in parallel for the two image
modalities, together they may compensate for reciprocal errors and enrich the final perfor-
mance.
Future advancements may come up with a strategy to increase the informative content en-
closed in the data set with the creation of multiple classes for healthy and cancerous tissue
as well.
Bi-parametric MRI protocol certainly embeds valuable knowledge to detect prostate cancer:
further researches are required to find a robust and reliable strategy to exploit this informa-
tion.



Appendix
GLCM Texture Features

GLCM texture features mentioned in chapter 3.2 are described in the current section
[59, 78]. Parameters notation is detailed in table 3.27.

Notation Meaning
G grey level
P(i,j) entry of the GLCM
Px marginal probability from the GLCM (sum of the rows)
Py marginal probability from the GLCM (sum of the columns)
µ mean value of P
σ standard deviation of P

Table 3.27: Parameters notation adopted in the computation of GLCM texture features

In particular, P(i, j) represents the co-occurrence of a couple of grey levels at a specified
distance in terms of pixels.

GLCM feature Abbreviation
Contrast Contrast
Correlation Correlation
Energy Energy
Entropy Entropy
Cluster prominence ClusterProm
Cluster shade ClusterS hade
Haralick correlation HaralickCorr
Homogeneity Homogeneity
Variance Variance
Sum average S umAverage
Sum entropy S umEntropy
Sum variance S umVariance
Difference variance Di f f Variance
Difference entropy Di f f Entropy
Information correlation 1 In fCorr1
Information correlation 2 In fCorr2
Dissimilarity Dissimilarity
Max GLCM MaxGLCM

Table 3.28: Abbreviations for GLCM texture features

In the following equations, n = |i − j|.
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Contrast quantifies local variations of intensities appearing in an image, favouring the
couples (i, j) apart from the diagonal (i.e. when i , j). Its value could be particularly
affected by the highest and the lowest value of the considered set of pixels, mostly in the
case of displacement vector made of only two pixels. Significant variability of grey tones in
the image leads to high values of contrast.

Contrast =

G−1∑
n=0

n2
( G−1∑

i=0

G−1∑
j=0

P(i, j)
)

(3.12)

Correlation estimates the linear dependency among grey levels of neighbouring pixels. Re-
gions with similar grey scale intensities will present high values of correlation.

Correlation =

G−1∑
i=0

G−1∑
j=0

(i − µx)( j − µy)P(i, j)
σxσy

(3.13)

Energy (also called angular second moment) measures the homogeneity of the image: the
higher its value, the more homogeneous the image will be, because of the elevated occur-
rences of the couples (i, j).

Energy =

G−1∑
i=0

G−1∑
j=0

P(i, j)2 (3.14)

Inertia =

G−1∑
i=0

G−1∑
j=0

(i − j)2P(i, j) (3.15)

Entropy evaluates the randomness of the intensity distribution. More diverse probabilities
result in a high value of Entropy, while it decreases for unequal probabilities.

Entropy =

G−1∑
i=0

G−1∑
j=0

P(i, j) ln(P(i, j)) (3.16)

ClusterShade and ClusterProm can be considered as 2-D versions respectively of skewness
and kurtosis.

ClusterS hade =

G−1∑
i=0

G−1∑
j=0

(i + j − µx − µy)3P(i, j) (3.17)

ClusterProm =

G−1∑
i=0

G−1∑
j=0

(i + j − µx − µy)4P(i, j) (3.18)

HaralickCorr =

G−1∑
i=0

G−1∑
j=0

(i, j)P(i, j) − µx × µy

σxσy
(3.19)
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Homogeneity, also known as inverse difference moment, gives information about local
homogeneity. The term (1 + (i − j)2) in the denominator of equation 3.19 decreases the
contribution of more diversified areas.

Homogeneity =

G−1∑
i=0

G−1∑
j=0

1
1 + (i − j)2 P(i, j)2 (3.20)

Variance emphasizes the elements which are more distant from the mean value of P(i, j).
It can be interpreted as a measure of heterogeneity and it is not correlated to any spatial
frequency, unlike Contrast.

Variance =

G−1∑
i=0

G−1∑
j=0

(i − µx)2P(i, j) +

G−1∑
i=0

G−1∑
j=0

( j − µy)2P(i, j) (3.21)

In order to define the remaining features, next parameters must be set:

Px+y =

G−1∑
i=0

G−1∑
j=0

P(i, j) (3.22)

where n = 2, 3, ..., 2G and i + j = n, while

Px−y =

G−1∑
i=0

G−1∑
j=0

P(i, j) (3.23)

where n = 0, 1, ...,G − 1 and |i − j| = n,

S umAverage =

2G∑
n=2

nPx+y(n) (3.24)

S umVariance =

2G∑
n=2

(n − S umAverage)2Px+y(n) (3.25)

Di f f Variance =

G−1∑
n=0

(n − µx−y)2 Px−y(n) (3.26)

In particular, µx−y corresponds to the average value of Px−y(n).

S umEntropy = −

2G∑
i=2

Px+y(i) ln(Px+y(i)) (3.27)

Di f f Entropy = −

G−1∑
i=2

Px−y(i) ln(Px−y(i)) (3.28)

In fCorr1 =
Entropy − HXY1

max(HX,HY)
(3.29)
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HX and HY represent respectively the entropy of Px, indicating sum of GLCM rows, and
Py, indicating sum of GLCM columns.

HXY1 = −
∑

i

∑
j

P(i, j) ln
(
Px(i)Py( j)

)
(3.30)

HXY2 = −
∑

i

∑
j

Px(i)Py( j) ln
(
Px(i)Py( j)

)
(3.31)

In fCorr2 = 1 − e−2(HXY2−Entropy) (3.32)

MaxGLCM = max(GLCM) (3.33)

Dissimilarity = −
∑

i

∑
j

|(i + 1) − ( j + 1)|Px+y(i, j) (3.34)
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GLRLM Texture Features

GLRLM texture features mentioned in chapter 3.2 are listed in the current section [64,
79]. Notation adopted for the calculation of GLRLM is provided in table 3.29.

Notation Meaning
G grey level (rows of the GLRLM)
p(i, j|θ) entry of the GLCM
R greatest sequence
n number of pixels in the image
µ mean value of P
j length of the sequence (columns of the GLRLM)

Table 3.29: Parameters notation adopted in the computation of GLRLM texture features

GLRLM feature Abbreviation
Gray Level Non-uniformity GLNU
Run Length Non-uniformity RLNU
High Gray-Level Run Emphasis HGRE
Low Gray-Level Run Emphasis LGRE

Table 3.30: Abbreviations for GLRLM texture features

GLNU weighs more runs of greater lengths and equals smaller values when the analysed
sequence has uniformly distributed grey levels.

GLNU =

∑G
i=1

(∑R
j=1 p(i, j|θ)

)2∑G
i=1

∑R
j=1 p(i, j|θ)

(3.35)

Instead, RLNU focuses on the length of the distribution, thus it assumes low values if the
sequence is evenly distributed for each run length.

RLNU =

∑R
j=1

(∑G
i=1 p(i, j|θ)

)2∑G
i=1

∑R
j=1 p(i, j|θ)

(3.36)

HGRE and LGRE estimates the presence of grey levels in each run lengths.

HGRE =

∑G
i=1

∑R
j=1 i2 p(i, j|θ)∑G

i=1
∑R

j=1 p(i, j|θ)
(3.37)

LGRE =

∑G
i=1

∑R
j=1

p(i, j|θ)
i2∑G

i=1
∑R

j=1 p(i, j|θ)
(3.38)
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Decision Trees

Decision trees computed considering features extracted from ROIs belonging to ADC
map used for training sets construction are reported in the following.

(a) Patient #13

(b) Patient #19
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(c) Patient #24

(d) Patient #34
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(e) Patient #37

(f) Patient #52
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(g) Patient #57

(h) Patient #71
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(i) Patient #72

(j) Patient #79
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(k) Patient #91

(l) Patient #100
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(m) Patient #107

(n) Patient #111
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(o) Patient #122

(p) Patient #128
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(q) Patient #135

(r) Patient #155
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(s) Patient #163

(t) Patient #169
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(u) Patient #171

(v) Patient #172
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(w) Patient #173

(x) Patient #174
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(y) Patient #182
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Decision trees computed considering features extracted from ROIs belonging to T2-w
used for training sets construction are reported in the following.

(a) Patient #13

(b) Patient #19
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(c) Patient #24

(d) Patient #34
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(e) Patient #37

(f) Patient #52
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(g) Patient #57

(h) Patient #71
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(i) Patient #72

(j) Patient #79
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(k) Patient #91

(l) Patient #100
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(m) Patient #107

(n) Patient #111
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(o) Patient #122

(p) Patient #128
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(q) Patient #135

(r) Patient #155
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(s) Patient #163

(t) Patient #169
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(u) Patient #171

(v) Patient #172
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(w) Patient #173

(x) Patient #174
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(y) Patient #182
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Performance on training sets of NNs Cascade

Performances obtained with training sets constituted with proportional sampling are pro-
vided in form of normalised confusion matrices. The class not included in the next neural
network training set corresponds to the row enclosed by bold box in each table, while dashed
boxes indicate the NN whose test set undergoes dendrogram clustering.

Figure 3.47: ADC map - NNs cascade with proportional sampling. Normalised confusion matrices regarding
training sets from NN p

5 to NN p
14. Rows enclosed in the bold boxes highlight the class which is not included in

the training set of the successive neural network. Dashed boxes indicate the NN whose test set undergoes
dendrogram clustering (1: malignant label, benign labels from 2 to 6)
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Figure 3.48: ADC map - NNs cascade with proportional sampling. Normalised confusion matrices regarding
training sets from NN p

15 to NN p
24. Rows enclosed in the bold boxes highlight the class which is not included in

the training set of the successive neural network. Dashed boxes indicate the NN whose test set undergoes
dendrogram clustering (1: malignant label, benign labels from 2 to 6)
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Figure 3.49: ADC map - NNs cascade with proportional sampling. Normalised confusion matrices regarding
training sets from NN p

25 to NN p
35. Rows enclosed in the bold boxes highlight the class which is not included in

the training set of the successive neural network. Dashed boxes indicate the NN whose test set undergoes
dendrogram clustering (1: malignant label, benign labels from 2 to 7)
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Figure 3.50: ADC map - NNs cascade with proportional sampling. Normalised confusion matrices regarding
training sets from NN p

36 to NN p
41. Rows enclosed in the bold boxes highlight the class which is not included in

the training set of the successive neural network (1: malignant label, benign labels from 2 to 7)
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Dendrograms of NNs Cascade

Dendrograms and their clusters belonging to test sets of NNs cascade with proportional
sampling are reported in this section.

Figure 3.51: ADC map - NNs cascade with proportional sampling. Dendrogram and clusters belonging to test
set of NN p

8 . Dashed red boxes enclose clusters

Figure 3.52: ADC map - NNs cascade with proportional sampling. Dendrogram and clusters belonging to test
set of NN p

13. Dashed red boxes enclose clusters
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Figure 3.53: ADC map - NNs cascade with proportional sampling. Dendrogram and clusters belonging to test
set of NN p

19. Dashed red boxes enclose clusters

Figure 3.54: ADC map - NNs cascade with proportional sampling. Dendrogram and clusters belonging to test
set of NN p

23. Dashed red boxes enclose clusters
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Figure 3.55: ADC map - NNs cascade with proportional sampling. Dendrogram and clusters belonging to test
set of NN p

28. Dashed red boxes enclose clusters

Figure 3.56: ADC map - NNs cascade with proportional sampling. Dendrogram and clusters belonging to test
set of NN p

33. Dashed red boxes enclose clusters
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Abbreviation Definition
ADC Apparent Diffusion Coefficient
AM Acquisition Matrix
AS Anterior fibromuscular Stroma
BB Bounding Box
bp-MR bi-parametric Magnetic Resonance
CAD Computer Aided Diagnosis
CZ Central Zone
Dend Dendrogram based training set
DRE Digital Rectal Examination
DT Decision Tree
DW Diffusion Weighted
ERC Endorectal coil
FE Feature Extraction
FN False Negative
FOV Field of view
FP False Positive
FS Feature Selection
GA Genetic Algorithm
GLCM Gray Level Co-occurrence Matrix
GLNU Gray Level Non-uniformity
GLRLM Gray Level Run Length Matrix
GS Gleason Score
HGRE High Gray-Level Run Emphasis
ITK Insight Segmentation and Registration Toolkit
k-NN k-Nearest Neighbours
LGRE Low Gray-Level Run Emphasis
LOE Largest Object Extraction
MaxMedian Maximum median sensitivity criterion
MinDiff Minimum difference criterion
MLP Multilayer Perceptron
mp-MR multi-parametric Magnetic Resonance
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
MRSI Magnetic Resonance Spectroscopy Imaging
NEX Number of excitations
NN Neural Network
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List of Abbreviations

Abbreviation Definition
P Label for tissue belonging to Prostate
PAC Pelvic phased Array Coil
PCa Prostate Cancer
PI-RADS Prostate Imaging Reporting And Data System
Prop Proportional sampling training set
PSA Prostate Specific Antigen
PZ Peripheral Zone
RLNU Run Length Non-uniformity
RM Reconstruction Matrix
ROI Region of Interest
SD Standard Deviation
Sens Sensitivity
Spec Specificity
ST Slice Thickness
SV Seminal Vesicles
SVM Support Vector Machine
T Label for Tissue other than prostate
T2-w T2-weighted
TRUS Transrectal Ultrasound
TN True Negative
TP True Positive
TZ Transition Zones
US Urethral Sphincter
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