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Introduction 

In this work we present a robust method to segment the Corpus Callosum in Magnetic 

Resonance Images (MRI) based on Convolutional Neural Networks (CNN) and Transfer 

Learning. The thesis was carried out throughout an internship of six months at LTCI 

(Laboratoire Traitement et Communication de l’Information) of  the Ecole Nationale 

Supérieure des Télécommunications (TELECOM ParisTech), and is part of a much larger 

French-Brazilian  joint project, named ANR-FAPESP Project STAP,  in which  main topic 

is  spatio-temporal analysis of pediatric MRI.  

The Corpus Callosum (CC) (Fig. 1) has been intensively studied in adults and it has been 

shown, for instance, that there is a relationship between its morphology and some 

neurological diseases [1] [2]. Fewer morphological studies have been conducted on children 

showing that variations in size and shape might be correlated with Multiple Sclerosis (MS) 

[3] or other inflammatory diseases [4].  

T1-weighted MR scans are usually employed since the CC is entirely visible and 

distinguishable in the Mid-Sagittal Plane (MSP). Such studies require an accurate 

segmentation of the CC. Manual segmentation might be quite tedious, time-consuming and 

prone to inter-user variability. State-of-the-art segmentation algorithms for adults, such as 

CCSeg [5] and ART-yuki [6], are difficult to use with pediatric images due to the low 

contrast-to-noise ratio, short acquisition time (hence low resolution), presence of other parts 

of the body (e.g. neck), and higher anatomical variability related to the child development. 

CCSeg is a semi-automatic method that needs a tissue label map, often difficult to compute 

in pediatric images. The automatic method ART-yuki requires a high resolution to correctly 

extract the MSP which is rare in pediatrics. To overcome these difficulties, we propose an 

automatic method based on Convolutional Neural Networks (CNN), which is able to work 

with multi-scanner and multi-protocol T1-w MR pediatric images (Fig.2): we first train a 

CNN on adult T1-w MR images, then perform Transfer Learning on pediatric images with 

different scanners and protocols to improve generalization power.  

 
Figure 1. On the left a cross-section of brain, on the right the Corpus Callosum can be seen in the center. 

Adapted from [7] 
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Figure 2. Example of the performance of our work 

Pediatric radiologists of the Bicêtre Hospital of Paris (Doctor Catherine Adamsbaum and 

Doctor Gonzalo Barraza), who have collaborated in this work, suppose that the Corpus 

Callosum decreases in size and shape over time in Children who have MS, rather than in 

those affected by other inflammatory diseases, such as ADEM (Acute Disseminated 

Encephalomyelitis), transverse myelitis and optic myelitis. The second step of our research 

work is to verify these assumptions, thanks to the results obtained by our proposed method. 

This dissertation presents in the first chapter the theoretical foundation and the medical 

theories, while the second one shows the problems related to the existing segmentation 

methods and the tools that represent the state-of-the-art, finally illustrating the first examples 

of Artificial Neural Networks for the segmentation of the Corpus Callosum which have 

produced excellent results. The third chapter focuses in detail on Convolutional Neural 

Networks, starting from the first theories on Machine Learning and concluding with the 

highly effective approach of Deep Learning on using a pre-trained network to train a new 

one (Transfer Learning). In the fourth chapter we present our methodology which uses what 

is presented in the previous chapter. The fifth chapter is dedicated to results, evaluation and 

discussions. In the sixth one we deal with our morphological longitudinal analysis on the CC 

in MS patients. In the last one we present our conclusions and we suggest some future steps 

to improve the work. 
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Chapter 1 

Biomedical aspects  
In this Chapter we cover introductory topics related to our project. Firstly, we introduce the 

Corpus Callosum and its relationship with some neurological diseases. Then, we focus on 

MRI, with a brief explanation of the acquisition technique and a discussion on the difference 

between the types of MR images. Finally, we understand specifically the MR data used for 

studies on CC and hence for the segmentation. 

1.1 The Corpus Callosum 
 

 

Figure 3. Subdivision of Witelson of the CC: yellow = rostrum, red = genu, green = midbody, blue = 
isthmus, purple = splenium. Adapted from [8] 

The CC is composed exclusively of nerve fibers that transfer information between the lobes 

of the two hemispheres and thus co-ordinate them. According to the subdivision of Witelson, 

the Corpus Callosum can be divided in 5 parts (Fig. 3), considering the head looking to the 

left: rostrum, genu, midbody, isthmus and splenium [8]. It is hypothesized to play a 

fundamental role in integrating information and mediating complex behaviors. Structural 

changes in the Corpus Callosum may correlate with cognitive and behavioral deficits in 

neurodevelopmental disorders. Volumetric studies have reported reductions in the size of 

the CC in autism [1]; lesions in the children’s CC were noted in patients with established 

epilepsy, in patients with seizures and in patients without seizures but with headaches, 

depression or altered consciousness [2]; Multiple Sclerosis (MS) patients undergoing a 

longitudinal (serial) study showed change in size and shape of the CC [3] [9].  
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The Agenesis (absence) of the Corpus Callosum is also important, it can be total or partial 

(splenius and body): it leads to children with inborn errors of metabolism, inability to couple 

stimuli coming from both hands or eyes, intellectual deficit and generalized seizures [10]. 

Examining Corpus Callosum on children, Magnetic Resonance is preferred because it is not 

harmful and not invasive, but it is difficult to perform because the baby is not standing still, 

the procedure lasts from 15 to 45 minutes and the machine is closed. CC is the largest white 

matter structure of the human brain, hence for this reason, MR (1.5 or 3.0 Tesla) images T1-

weighted are preferred: White Matter presents a good contrast with Grey Matter. In MRI T2-

weighted, homogeneity and contours are lost (because of the cerebro-spinal fluid, which can 

be suppressed by acquiring in FLAIR mode, usually not in standard protocols).  

It must be remembered that until the end of the first year of life, the anatomical structures 

undergo further modifications, there is no sense in defining the “anatomical confirmation” 

obtainable with the MRI immediately after birth. A longitudinal study and over time is more 

indicated, as a precaution it is advisable after the second year of life, when the myelination 

process is completed (as it causes variations of intensity in the images during the period of 

the cerebral development) [11]. 

1.2 Magnetic Resonance Imaging 
Before continuing our dissertation, it is important to remind and clarify briefly the key 

concepts of Magnetic Resonance Imaging. It is a medical image acquisition technique 

without ionizing radiation. The nuclei of certain atoms (for instance hydrogen, used for its 

abundance in tissues) are stimulated by a controlled emission of radio waves inside a strong 

magnetic field. As result, returning to their energy level the nuclei emit a measurable radio 

frequency (megahertz range). This latter is used to reconstruct images of the interior of the 

human body. 

Consider a piece of tissue, inside we find a very large number of protons. The direction in 

the magnetic field space, at rest, is random. Statistically magnetization (M, total magnetic 

charge) is null. If we take the same set and from the outside we apply a static magnetic field 

(zero frequency), indicated with the symbol B0, we can magnetize the matter and establish a 

preferential direction. The higher B0 is (already 1 Tesla is elevated), the more protons try to 

put themselves in the same direction. Actually, the resultant spin of all protons tend to two 

orientations: parallel (same as B0), in the state of minimum energy, and anti-parallel 

(opposite of B0), in the state of maximum energy.  
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Parallel protons are slightly more prevalent than the antiparallel ones. This small prevalence 

produces the resulting magnetization M, parallel to B0 and it is measurable. Furthermore, 

due to the effect of B0, the axis of each proton rotates around the direction of the moment of 

B0 (precession). Precession movements can be compared to the oscillations of a spinning 

top. 

The magnetization vector alone is not sufficient to create an image because it is static and M 

has a slightly intense module. We exploit the interaction with the material to create an image. 

The method used to amplify the tissue response is called Resonance: thanks to an energy 

exchange between the subject and the external source at the right frequency, a system can 

acquire more energy than normal. 

We irradiate the tissue with a radio-frequency electromagnetic field B1 at the system's own 

frequency (determined by the precession, ω0). The protons radiated to their ω0 change their 

quantum state, increasing the overall energy, while others do nothing as it is not their 

resonance frequency. Specifically, all protons possessing a spin are precess around the axis 

of vector B0 with a specific frequency of ω0, given by Larmon’s frequency:  

 𝜔0 = 𝛾 ∙ 𝐵0 (1) 

where γ is a given particle’s gyromagnetic ratio (it depends on the nuclide we are 

considering, for hydrogen atom is 42.58 MHz/T). By alternating B1 at a given particle’s 

Larmor frequency, we obtain resonance, inducing a sinusoidal current at ω0 whose signal M 

we measure. 

When B1 is stopped, the protons rotate back to their original position, spinning around the 

axis of B0. Hence, the measure signal decays because the field no longer alternates. This 

decay is called T1-relaxation: the protons are freed of excess energy giving it to the rest of 

the tissue (surrounding grid). Moreover, the proton’s spins go slowly out of phase, no more 

precessing in-phase. This dephasing process is called T2-relaxation: the protons drift away 

the excess energy from each other, until they lose it. The value of T1 and T2 is that which is 

converted into an image. 

By appropriately selecting the sequence of RF pulses it is possible to impose a specific 

dynamic on the spins system, so as to obtain the information from the MR signal. The 

parameters that influence the image result are Time to Repeat (TR) and Time of Echo (TE) 

times that can be long or short. By combining long or short TR and TE, you will have images 

weighted in T1 or T2. Generally, T1-w images have high values for fat and slow-flowing 

blood, while having lower values for tissues with high water content, the White and Gray 
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Matter have signals of intermediate intensity. In reverse, liquids or, in any case, highly 

hydrated tissues, appear bright white in T2-weighted images.  

There are many types of techniques dependent on applied sequence of radio-frequency 

pulses, the most used are Spin-Echo (SE), Inversion Recovery (IR) and Gradient Echo (GE). 

 
Figure 4. Comparison of T1-w, T2-w and Flair (CSF fluid is attenuated and made dark). Each slice is from 

the same region of the same patient. Reprinted from [12] 

A stronger external magnetic field (for instance 3.0 Tesla) results in an increase of the quality 

of the acquired images but the acquisition area may be overheated (over human body limits) 

by the machine and the equipment required for such a field. 

The 3D final image is composed by distinct slices acquired thanks to the use of a gradient 

magnetic field. As a consequence, MR images have much higher resolution on the capture’s 

plane than on the others, which are reconstructed from the principal slices. 

1.3 Understanding data and problems of segmentation 
As mentioned above, the detection of contours of the Corpus Callosum in MR images is 

generally done in the T1-w images. In MRI, depending on the plane of captures there are 

three different types of images [13]: Axial (transverse images represent slices of the body), 

Sagittal (images taken perpendicular to the axial plane which separate the left and the right 

sides) and Coronal (images taken perpendicular to the sagittal plane which separate the front 

from the back), shown in Fig. 5.  

 

Figure 5. MRI Planes. Reprinted from [13] 
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According to radiologists, the best way to recognize the CC is in the Sagittal T1-w, where 

the object is entirely visible and distinguishable. A 3D study is not simple because lateral 

limits of the CC are not intrinsically defined. Indeed, the Corpus Callosum consists of nerve 

fibers that extend continuously from one hemisphere to another and these do not mark its 

borders. It is reasonable to work with 2D images, choosing the slice where CC has the best 

resolution and contours: the median slice (Mid-Sagittal Slice or Plane).  

Such studies require an accurate segmentation of the CC. Manual segmentation might be 

quite tedious, time-consuming and prone to inter-user variability. 

Foremost problems are related to the accuracy and reproducibility for the longitudinal study, 

as well as the possibility of automating the algorithm, for different reasons: 

• independence of the algorithm with respect to the variation in the size and shape of 

the corpus callosum among the patients (no relevant differences in shape between 

female and male); 

• adaptability to different modes (different T1-w MRI, e.g. Spin-Echo, Blade, Turbo, 

etc.); 

• pixels/voxels of MRI are not homogeneous; 

• robustness to a background that can vary in intensity both in the image itself and in 

its entire database; 

• CC presents gaps in the contour, bottlenecks or bumps; 

• one of the biggest problem is the presence of the fornix (Fig. 6), which is often in 

contact with the CC in the mid-sagittal MRI, which has the same brightness. 

 

Figure 6. Case in which the fornix is in contact to the CC structure. Reprinted from [14] 

In addition, pediatric MR images compared to adults ones present a smaller contrast-noise 

ratio and higher effects of partial volume because of the small dimensions (size) of the 

cerebral structures (overlapped structures) and because of the brief acquisition time (to limit 

more possible movements artifacts). To conclude, the smaller the child is, the more the body 

will be present in the MR image (Fig. 7) bringing further difficulties.  

For everything we have dictated, nowadays, there are few studies and algorithms on 

segmentation of Corpus Callosum in the children’s MRI.  
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Figure 7. Presence of the body in the brain image of a child 
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Chapter 2 

Literature review: existing segmentation methods 
One of the challenges in Computer Vision is subdividing the image into regions that are 

homogeneous with respect to one or more characteristics of the image itself, as is done by 

human visual system of recognition. This task is called Image Segmentation and it tries to 

address this problem by making contours in the objects. The goal is to obtain the best 

possible contours in order to analyze different parts of the image separately. Generally 

speaking there is no optimal algorithm for segmentation: the choice depends on the 

characteristics of the image and the problems it presents. For what concerns our work, the 

aim is the segmentation of the Corpus Callosum, in particular the recognition of this object, 

in its two-dimensional form. 

 

Figure 8. Example of Image Segmentation.  
From left to right: MRI Brain slice, Gray Matter, White Matter, Cerebrospinal Fluid 

Continuing our analysis, in this section we briefly present some of the solutions developed 

during these ages for the segmentation of the CC on adults, which present the problems 

showed in the previous section. Seeing their advantages and disadvantages, it will be easy 

to understand why they are hardly applicable on children. In general the approaches are 

based on active contour models or on models that use anatomical atlas. 

2.1 Methods based on active contours 
Active contours are deformable planar curves under the effect of internal forces due to the 

curve itself and external forces due to experimental data (the image in question). The balance 

between the effects of the two forces determines the adaptation of the model to shapes, 

objects or contours of the image. We distinguish them in parametric (SNAKES) and 

geometric (LEVEL-SET) models. 

In the literature, many image segmentation techniques to properly segment the Corpus 

Callosum in the brain are based on active contours. Generally speaking, level-set is more 
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used than snake, because the latter presents difficulties in initialization due to noise and low 

contrast at the boundaries of the CC. For instance, [15] propose an unsupervised clustering 

using K-means combined with a subsequent level-set: it is a very simple and fast method, 

about 30-40 seconds per image. As indicated in Figure 9, the user clicks on a point in the 

region corresponding to the CC, which makes it possible to extract the associated cluster of 

pixels; various morphological operations are performed on this region in order to keep only 

the connected pixels belonging to the corpus callosum; the resulting volume then serves as 

an initialization for deformation by level-set converging towards the contour surface. 

However, there are multiple disadvantages: the intensity of the pixels in MR images is not 

homogeneous and moreover the intensities of the Corpus Callosum and of the White Matter 

are very close. For these reasons errors may occur upon the choosing of seeds as well as 

similarity criteria and stop criteria of clustering (as a region growing). One can doubt that 

this semi-automatic algorithm is intra-patient reproducible.  

 
Figure 9. Pipeline of [15]. Reprinted from [15] 

In [14], the user instead chooses three well distributed points in the CC; from these three 

points he can then draw two segments (Fig. 10) and then make a contour detection by Canny 

filtering on the image. The algorithm is fast (of the order of one second for an image). The 

main disadvantage lies in the initialization which requires a precise procedure for the 

segmentation to be correct. The contours of the corpus callosum must also be clear enough 

to be detected by Canny's filtering.  
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Figure 10. Initialization for the method in [14]. Reprinted from [14] 

In 2012, at TELECOM ParisTech, a new model was drawn based on [16] and [17]. In the 

first one, the authors prove the existence of a unique and stable formulation of geometric 

active contours. In particular, they show that their model allows a stable detection of the 

contours even when their gradients have very variable values. This detection is based on a 

geodesic approach that consists in finding the points of strong contrasts and smoothing the 

curve that connects them. In [17] they introduce a local regional approach to level-set. The 

clue is to change the curve by specifically using the information of the pixels close to the 

active contour, hence the idea is adapted to the case where the initialization is not too far 

from the final contour (it covers roughly the shape to be segmented). As a result, only the 

information around the active contour is interesting to make it converge properly. Taken 

independently, the two methods presented above, both have their advantages and 

disadvantages. For example, the [16] is based only on the observation of the gradient of the 

image but if the object to be segmented is not uniform then the detection of other gradients 

can interfere; while the second is based on local averages of the intensities and it will produce 

errors when the outside of the contour is very heterogeneous. The method proposed by 

TELECOM ParisTech in 2012, and inspired by the two above, is therefore a union of a global 

method and a local one: the level-set is not calculated in the entire image, but in the area near 

the initialization as a local approach. However, the method has many limitations: it requires 

manually choosing the mid-sagittal slice and executing a manual initialization, and requires 

a choice of set parameters. There is the possibility to correct manually the result of the 

segmentation to recover the non-high performance however this tool is very hard to control. 

For all these reasons, the method has been discarded to search for a more robust and 

automatic one. 

A state-of-the-art segmentation algorithm for MRI of adults based on active contours is 

CCSeg. It is an open-source C++-based application that allows automatic, as well as user-

interactive segmentation of the Corpus Callosum. It is based on [5] and [18] and we can 
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define it as a computation mapping method for improving active shape model segmentation. 

Initialization is done by an atlas-based automatic tissue segmentation via an expectation 

maximization. An atlas is provided for both adult and pediatric images. It employs a 

constrained elastic deformation of Flexible contour model [5] that is an extension of 

Szekely’s Fourier based Active Shape Model [18], as seen by following the pipeline in 

Figure 11. 

 
Figure 11. Pipeline of CCSeg. Adapted from [5] 

The Equations of the Active Shape Model are: 

  (2) 

Where: 

 

(3) 

with 
 

(4) 

and 

 

(5) 

 

CCSeg works efficiently with high quality images by providing an easy way to draw a 

segmentation of the CC. If the initialization of the average CC outline is off, it is not difficult 

to center on the figure (possibility by updating the section or using the repulsive points). 

Starting with the 3D T1-weighted image, the Mid-Sagittal Plane is easily defined by default 

as the average center slice of the image. More precisely, an average image of several center 

slices (plus/minus 2 slices by default) is computed to define such a 2D plane. This averaging 
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step results in a reduced intensity of the fornix and thus enhances the success rate of the 

segmentation procedure. The main problem is that it works only on volumetric images (to 

extract MSP) and it absolutely needs a high quality Tissue label image (not easy to have with 

low quality images as pediatric ones), as shown in Fig.11. In addition, it requires some tests 

on the parameters, especially for images with presence of neck or chest. 

 

 
Figure 12. Graphical User Interface of CCSeg with a computation example 
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2.2   Methods based on anatomical atlas 
The idea is to use a large dataset where important regions of interest in the brain are well 

delineated by expert radiologists. This large dataset gives a good understanding about pixels, 

value intensity, edges, etc. With this information, one can get a new MR image, that is not 

presented in the dataset, and match it with the atlas image and identify the region of interest.  

In [19], the authors proceed by spatially normalizing all the structural images to the same 

stereotaxic space thanks to a T1-w template image, and then following with a segmentation 

of the normalized images into Gray Matter, White Matter and Cerebral Spinal Fluid. In the 

part corresponding to the WM, a region of interest supposed to contain the Corpus Callosum, 

is selected. In this "box", the authors then do a partitioning operation (clustering). The largest 

region corresponds to the CC. By doing an inverse transformation, they obtain the 

segmentation of the Corpus Callosum in the original image. This method is rather simple 

and gives good results according to the article. It does not seem to be that fast and there are 

problems due to fornix. The article is however not very detailed and some stages (the number 

of partitions for example) are somewhat vague.  

 
Figure 13. Some passage of the pipeline of [19]. Reprinted from [19] 

One of the best results was presented in [20] and then improved in [21], where active contour 

methods are also used. Through the “adaptive mean shift clustering technique”, the image is 

first clustered into various homogeneous areas, representing various brain tissues. The CC 

area is then detected based on area analysis, template matching, in conjunction with shape 

and location analysis. The boundary of obtained CC area is extracted and evolved under the 

mechanism of Geometric Active Contour model, for final segmentation of CC structure. This 

method overcomes the problem of user-guide initialization and has very good performance 

in terms of segmentation accuracy, but it needs a large atlas database (hard to get as the 

radiologists should be very involved in the project) in order to perform a good template 

matching to identify the CC area.  
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Figure 14. Pipeline of the method presented in [21]. Adapted from [21] 

The most used open-source application tool based on atlas is ART-yuki [22] [23], 

considered as the state-of-the-art for the automatic segmentation algorithms for CC of adults’ 

MRI. Therefore, it is an automated Corpus Callosum segmentation program under the 

Automatic Registration Toolbox (ART) project [6]. It performs fast, robust and fully 

automatic segmentation on 3D T1-weighted structural MRI scans (Fig. 15a). Initially the 

program does an automatic detection of the AC (anterior commissure) and PC (posterior 

commissure) landmarks: we expect for images representing anatomy that the relative 

position, rotation and size of healthy organs is restricted in a similar way as their elastic 

deformation. In the case of the CC, the AC-PC line is generally accepted as it is a well-

detectable geometric feature of the Mid-Sagittal images, which represents such a standard 

coordinate system [18]. The AC-PC line is illustrated in Figure 15b.  

Entering into detail, ART-yuki performs by the following steps [22]: 

1. automatic MSP detection as the plane with maximum bilateral symmetry; 

2. automatic location of AC-PC line on MSP; 

3. reconstruction of a standard MSP image (512x512 with 0.5x0.5 mm2 pixels) from 

the original MRI volume thanks to tri-linear interpolation; 

4. automatic selection of a subset of 49 atlases from a set of over 600, based on 

correlation between atlas and test image inside a rectangular sub-image containing 

the CC on the reconstructed MSP of step 3; 

5. projection of the 49 CC labels onto the test MSP using ART’s non-linear registration 

approach [24]; 

6. averaging of the projected labels to obtain a fuzzy segmentation of the CC on the test 

MSP; 

7. thresholding to yield the final binary CC segmentation (the threshold level used the 

Fisher’s linear discriminant ratio [25]). 
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ART-yuki provides excellent results with AC-PC aligned high quality Sagittal images like 

those available on the two publicly multi-site and multi-protocol datasets: OASIS [26] and 

ABIDE [27]. These databases also contain images of children. The focal problem of the 

program is related to the high resolution to correctly extracting the MSP, which is rare in 

pediatric images. Besides, without a correct alignment of the MRI (something that often 

happens with old exams) it cannot work properly producing images with all pixels with a 

value of 0 because AC-PC landmarks are incorrectly identified. 

ART-yuki is used in this dissertation as state-of-the-art for the segmentation of the CC to 

evaluate the performances of our proposed method, as will be showed in Chapter 5. 

 
Figure 15. Some operation of Art-yuki  

a. Example of detection of CC landmark on the MSP. Reprinted from [22] 
b. AC-PC line. Reprinted from [28] 

2.3 Artificial Neural Networks for Image Segmentation 
Recently, Artificial Neural Networks, explained in detail in the following chapter, has started 

to be used to overcome the issues of standard approaches in automatic segmentation on 

medical images. Thanks to the work proposed in [29] regarding cell membrane 

segmentation, where the authors classify the centers of image patches directly using a 

Convolutional Neural Networks (CNN), a variety of researches ( [28] [30] [31] [32] [33] ) 

have advanced towards image segmentation through Machine learning and ANN. A Neural 

Networks can learn by itself the main features extractions presented in the input image. This 

eliminates the need for handmade features extractions, experts, atlas for template matching 

or previous studies. Furthermore, this method allows for generalizing, using multi-scanner 

and multi-sites (different protocols) images as well as images in different step-times: this 

enables us to proceed with a longitudinal (serial) study on the Corpus Callosum. Last but not 

least, there are different advantages in computational power and dataset extraction, which 

permit to implement an automatic algorithm.  

To show some examples, [34] adopts a discriminatory learning approach in which the 

researches use a subset of the expert segmentations available from a single data set to train 
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a Convolutional Encoder Network (CEN), which performs the extraction of characteristics 

and the formation of the model parameters in a joint way. Whereas in [33], the authors 

introduce a CNN with anatomical information reaching a Dice index of 95.22% (the closer 

the measurement is to 100%, the better the spatial agreement between two images). 

It is possible to find different codes online for adults, such as U-Net [30], a CNN for 

biomedical image segmentation, faster and more accurate of state-of-the-art methods 

according to [31] and [32].  One of the best performing research based on U-Net is [28], we 

have taken inspiration from its main idea, improving pre- and post-processing step, in 

particular focusing on normalization. Having to segment children’s images we add the 

technique of Transfer learning. This method uses a pre-trained saved network as a generic 

model, transferring features acquired to a new NN, speeding up and improving performance 

(we will analyze this deeper in the next chapter). The combination of these two methods (U-

Net and Transfer learning) was the base for our work on robust segmentation of Corpus 

Callosum in multi-scanner pediatric T1-w MRI. 
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Chapter 3 

Convolutional Neural Networks 
As stated in previous section, new approaches for the segmentation of the Corpus Callosum 

rely on the use of Convolutional Neural Networks. Defining clearly what we are talking 

about, first of all, we should say that a CNN is a computational model for Deep Learning. 

DL transforms raw data (e.g. pixel values) into a feature vector from which the learning 

system can detect and classify patterns from the input data, without any human intervention. 

Stacking Convolutional Layers one by one, each one will be responsible to transform the 

input data (from the previous layer) to a different non-linear representation, easier to be 

understood for the problem in question (e.g. image segmentation). To clarify it better, it is 

necessary to proceed neatly and slowly, starting from what Machine Learning (ML) is, what 

algorithms based on it do and what means speaking of Neural Networks as model for ML. 

3.1 Machine Learning 
“Could a computer go beyond what we know how to order it to perform and learn on its own 

how to perform a specified task?” [35]. This query has moved the way of thinking about 

programming, allowing the birth of Machine Learning, key to Artificial Intelligence (AI).  

If in classical (heuristic) paradigm we give data and rules as inputs, to process information, 

and we have answers as output; in contrast, in ML as inputs we have data and the expected 

answers from these data, and we have returned the rules as output (Figure 16). The algorithm 

generates its own logic based on the data entered. The generated rules can be applied to new 

datasets to bring to answers as well as the original ones. It is important to check how the 

algorithm can evaluate data that it has never seen before. Performance measurements are 

executed using a set of data called Test set. This set of data is usually different from the set 

of characteristics used to train the system (Training set) so that more precise and independent 

evaluations can be made on how effective the training has been. 

 
Figure 16. The two different programming paradigm. Reprinted from [35] 
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ML is essentially a form of applied statistics aimed at using computers to statistically 

estimate a complex function. Prof. T.M. Mitchell in 1997 [36] defined ML as “an algorithm 

that learns from experience E concerning a class of problems T with a measure equal to P, 

if its performance on problems T, measured by P, increases with experience E”. 

It is important to remember that Machine Learning works only if the problem is really 

solvable with the data available and if the Training set is sufficiently large and representative. 

The negative aspect is that it is not possible to have supporting evidence for a certain result, 

in fact, very often ML methods are defined as Black Box.  

Many tasks can be learned through the use of ML techniques. Some of the most important 

are transcription, translation, synthesis, denoising and classification. The latter plays an 

important role for the work of this thesis and will be dealt with in detail when we will cover 

Deep Learning and Convolutional Neural Network.  

Returning to what was said by Mitchell [36], for tasks such as classification, P is evaluated 

by measuring the accuracy of the model, the percentage of examples for which the model 

processes a correct output. Another parameter of reference can be the error rate, defined 

instead as the proportion of examples for which the system processes a wrong output. 

Usually the experience E corresponds to an entire dataset, a collection of examples. An 

example of a dataset can be a collection of images to be analyzed, as our MRI dataset.  

Ordinarily, Machine Learning algorithms are divided in two main categories: Unsupervised 

Learning and Supervised Learning. The difference between these two types of learning 

concerns the information you have on the Training set. 

3.1.1 Unsupervised Learning 
The model aims to find a structure in the input provided, without the inputs being labeled in 

any way or without any answers. It is conceptually a sort of clustering: it subdivides the 

elements into homogeneous subgroups. To clarify, as if in the Figure 16 the “Answers” were 

not there as input in the “Machine Learning” box. This makes the learning process more 

complex and difficult to understand, because we do not know what features the model 

considers.  

3.1.2  Supervised Learning 
In this model we provide examples in the form of possible inputs and the desired outputs 

and the goal is to extract a general rule that associates the input with the correct output. If 

the training set knows, in addition to the values that the variables assume for each element, 
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also the class to which that element belongs, then a Supervised Learning can be used: this 

aims to reproduce the correct classification as faithfully as possible. The real class to which 

the elements belong to is called “desired output”. It is therefore easy to understand how to 

manage learning and it can be done by managing the error that the network makes in 

classifying the elements by reducing it as much as possible. The error is equal to the 

difference between the output obtained from the network and the desired output. 

3.2 Neural Networks 
In the field of Machine Learning, the Artificial Neural Networks, or simply Neural Networks 

(NN), are a family of models inspired by biological neural networks. 

What makes neural networks particularly efficient is that they have a very high distributed 

processing capacity that allows them to quickly process large amounts of data. Neural 

networks resemble the brain for the learning process and for connections, which in the case 

of Artificial Neural Networks become the weights. Weights are the element of the network 

that contains knowledge: the fruit of learning is stored in the form of weight, associated with 

the various arcs that connect neurons. 

The procedure that allows you to carry out the learning process is called Learning Algorithm 

(LA) and works by modifying these weights. Starting from initial weights usually defined in 

a random way, the objective of the LA is to modify them iteratively until the learning process 

does not end, through different stop conditions. 

When we talk about a neural network we actually have three basic elements: 

- Neurons: they are the “processors” within the network, the computational unit; they 

effectively process the information and data and are characterized by an activation 

function dependent on the type of network; the type of neuron changes according to 

how the network is implemented. 

- Architecture: neural networks are based on a structured architecture organized 

differently according to the types of learning and the type of network. 

- Learning Algorithm: it is the element that most characterizes the NN. It is a 

procedure that allows you to carry out the learning process and work by modifying 

the weights. As mentioned above, there are Supervised and Unsupervised Learning. 

In this dissertation we focus on Supervised NN, because image segmentation is nothing else 

than a classification problem.  The simplest Supervised Neural Network is The Perceptron, 

developed in 1958 by Frank Rosenblatt [37]. 
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3.2.1 The Perceptron 
It is a network formed by a single neuron to which various inputs are connected and this 

allows to classify these elements only in two classes. The Artificial Neuron is organized as 

in Figure 17: the model takes the inputs, equal to the value that the variables assume (xi, 

elements of the classifier), and a bias b that controls how easy is to the Perceptron to put 

output as 1; it builds the weighed sum and uses an activation function to find the desired 

output y, depending on the calculated weighing sum. 

 
Figure 17. Artificial Neuron of Perceptron 

Depending on the value that the weights assume, the sum will have a different value and 

consequently the output will change, even with the same inputs. There are several activation 

functions, such as linear, piecewise linear, step, sigmoid, etc. To give some examples: the 

model gives the weighing sum of 2 inputs as input to an activation step function, this last 

will return 0 or 1 according to the threshold set in the space of the combinations; if the inputs 

are 3, we have a surface (plane) that divides the space in 2 parts; more than 3 inputs will 

result in an inter-plane. 

An epoch is a training phase characterized by the fact that all the elements of the training set 

are given as input to the network. Every time that all the elements of the training set have 

been entered as input to the network, an epoch ends. When we move on to the next epoch 

we need to give all the elements of the training set again as inputs and so on. Networks can 

be trained through the use of a few epochs, just as it may take a few hundred epochs to reach 

convergence and the trained network. 

If ŷ is the desired output, the LA will change weights until the difference y- ŷ will become as 

small as possible. The difference that is obtained at epoch p is used as error e to calculate 

weights at epoch p+1, using the following equation: 

 𝑤𝑖(𝑝 + 1) = 𝑤𝑖(𝑝) + 𝛼 ∙ 𝑥𝑖(𝑝) ∙ 𝑒𝑖(𝑝) (6) 
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The Equation 6 is called Back-propagation and it is based on gradient descent. The α is the 

learning rate, it can be in the range from 0 to 1, and the higher is, the faster, but less precise 

the train will be.  

To overcome the problem of classification in only two classes, Perceptron’s concept has 

been extended over years [38]: the architecture is organized with a structure that sees several 

neurons divided into layers in which the neurons of a layer are connected with those of the 

next layer and not with the neurons of the same layer (shown in Figure 18). The layers 

between the input and the output layers are called Hidden layers, and their number depends 

on the complexity of the problem. When we give an input, this passes from the input neurons 

and it is processed until the result of the various elaborations reaches the output neuron 

(layer) that produces the output that will be seen. Every layer can make a decision at a more 

complex and abstract level than the previous layer. Meaning that a Multi-Layer Perceptron 

with a different number of Hidden layers can perform sophisticated decision making [38]. 

 
Figure 18. Multilayer Perceptron. Reprinted from [38] 

3.2.2 Sigmoid Neuron  
Another kind of neuron, used to tackle the problems of Perceptron, is based on a new 

function called sigmoid function:  

 

 

(7) 

where z is:  

 

 

(8) 
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Sigmoid neuron can have any value in the range 0 – 1 as inputs, and small changes in its 

weight causes a small change in its output. In Figure 19, it is possible to understand how the 

function behaves. 

 
Figure 19. Sigmoid function. Reprinted from [39] 

Another difference from Perceptron is the output: it is legitimated if within the range 0 – 1. 

When we want the output to be an integer (therefore 0 or 1, as in image segmentation), we 

use a threshold. For instance, all the outputs smaller than 0.5 indicate a “0”, and the ones 

greater or equal than 0.5 indicate a “1” [38]. 

3.2.3 The Logistic Regression Model 
Logistic regression is a regression model defined as: given an input variable x, the model 

tries to predict the output y as ŷ, using the model parameters (weights w and bias b). To 

measure how close the predicted result ŷ is from the real output y, the loss function L is used. 

The aim is to find the best w and b to minimize L over a set of m training examples, in order 

to have the average error per pattern J (cost function) in Equation 9 as small as possible. 

 

 

(9) 

Hence, we can see the cost J as a function of w and b in which we are looking for the 

minimum (see Figure 20), or rather the global optima of a convex function [40]. 
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Figure 20. The cost function. Reprinted from [36] 

There are different types of loss function that are usually used on NN, such as the quadratic 

loss function (or MSE function, that we will investigate later), the log loss function, the 

cross-entropy loss function and the dice coefficient loss function. The latter, also known as 

F1-Score [31], is the one we decided to use to classify pixel predictions on our work of 

segmentation of Corpus Callosum. It is a measure of how well we are doing the comparison 

between our segmented image and the ground truth, but it is necessary to explain it better. 

As illustrated in [28], we should imagine to have a 3x3 image as in Figure 21, in which the 

white square is the object to be segmented. 

 
Figure 21. A 3x3 example image. Reprinted from [28] 

Now, suppose that our segmentation model predicts the Figure 22 as segmented image. 

 
Figure 22. A 3x3 exmple image segmentation. Reprinted from [28] 
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To understand how far the segmented image is from the true one, we have to classify each 

pixel as True Positive (TP), True Negative (TN), False Positive (FP) and False Negative 

(FN). Taking for granted the knowledge of these concepts, we can build a contingency table 

in Figure 23:  

 
Figure 23. Contigency table 

 

The accuracy (Equation 10) is good, about 77.7%, but the predicted object is completely 

different from the true one. It would be as if all the pixels of a CC are segmented wrong.  

 

 

(10) 

To overcome this problem, we have two other measures, precision and recall, to understand 

if the model took the right decision for the classification of object’s pixel. 

 

 
(11) 

 

 
(12) 

 

For our example, precision and recall are both 0%.  Combining these two measures, we have 

the Dice Coefficient or F1-Score [31], that can be seen as a harmonic average of both: 

 
𝐷𝑖𝑐𝑒 =

2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
=  

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
=  

2 |𝐴 ∩ 𝐺|

|𝐴| + |𝐺|
 (13) 

where A is the segmentation given by the model and G is the ground truth. To use this as 

loss function we have to set the gradient descent to go in the opposite way compared to it: a 

Dice Coefficient of 1 must correspond to a loss of -1 because we are making no mistakes. 
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3.2.4   Subdivision of the dataset 

 
Figure 24. Example of a plot of the average error per pattern. The validation and test error are virtually 
always higher than the training error. Asterisk indicates when the error on the validation set increases. 

When we have a data set, we can divide it into different parts, as said above for example in 

a training set and in a test set, and you can decide to train the network with all the training 

set elements. Most of the time, it is usual to divide the training set in other two parts: a part 

that is really training (training set) used to modify the data set weights, and a part of 

validation set, that is a part of the data set used as validation during learning in order to avoid 

overfitting. We want to avoid that the network is very well trained on the training set, but at 

the moment where there are elements outside the training set, its performance diminishes. 

Observing the validation curve in Figure 24, the best performance is on the training set, but 

up to a certain point the error on the test set decreases as on the validation set. At the point 

indicated by the asterisk, the error on the training set continues to decrease, while the one on 

the validation set increases. This means that we have reached a point where the 

improvements on the training set actually represent a worsening from the point of view of 

the ability to generalize the network. In fact, we want the networks to behave well not only 

on the training set, but above all on the elements that will be provided to be classified later. 

The point identified is therefore the best compromise between the performance of the 

network with the training set and with other elements. 

There is also a third data set (test set), which is used to understand how much the data set 

you are using gives good results. If the elements used for the training are adequate, taking 

test sets of different types, the performances should more or less remain; if instead there is a 

big difference between the validation set and the test set performances, it means that the 

training data set must be changed. 

3.2.5 Performance of a NN 
The performance, or rather the measures that allow the measurement of network 

performance, are linked to three aspects: accuracy, complexity and convergence. 
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Regarding accuracy, the primary objective is the generalization that indicates how the 

network behaves when it must classify elements that are not part of the training set (test set), 

meaning the network's ability to achieve a good performance on the elements that have not 

been a direct part of learning. As previously stated, the Dice Coefficient provides us with 

this measure. 

Two other measures will be used to evaluate our test set. A first measure is the MSE (Mean 

Squared Error), which is nothing but a measure that binds the error that occurs between the 

output of the network, ok,p and the output associated with the training set, which is called the 

target, tk, p. In Equation 14, p indicates the pattern (the element of the training set) and k 

indicates the output neuron.  

 
𝑀𝑆𝐸 =

∑ ∑ (𝑡𝑘,𝑝 − 𝑜𝑘,𝑝)2 𝐾
𝑘=1

𝑃
𝑝=1

𝑃 ∙ 𝐾
 (14) 

 

The second measure is the Structural Similarity (SSIM) index. According to what was said 

in [41]: “the SSIM between an image x and another y is composed by a linear combination 

of a luminance comparison function l(x,y), a contrast comparison function c(x,y) and a 

structural comparison function s(x,y)” as in Equation 15 (α, β and γ are usually set up to 1). 

  
 (15) 

with:  

 

 
(16) 

 

 
(17) 

 

 
(18) 

where µi is the luminance of the image i, σi is the standard deviation of µi, σij is the correlation 

between the two standard deviation and all the three C are added to avoid division by zero. 

MSE is simple to calculate and physically it has a clear meaning, but “it does not indicate 

the structure of the images when the error is being penalized” [41], while the SSIM gives 

higher value to the images that are higher quality. The example in Figure 25 helps to clarify 

the difference between these two measures that we will use to evaluate our results. 



Chapter 3 – Convolutional Neural Networks 

28 

 

 
Figure 25. Comparison of the same original image with image containing different sorts of distortions. All 

the five comparisons have an MSE = 210, while each one presents a different Mean SSIM index.  
(a) Original image. (b) Mean SSIM = 0.9168. (c) Mean SSIM = 0.9900.  

(d) Mean SSIM = 0.6949. (e) Mean SSIM = 0.7052. (f) Mean SSIM = 0.7748. Reprinted from [41] 

3.3 Deep Learning 
Deep Learning (DL) is a sub-area of Machine Learning that uses Deep Neural Networks, 

which are equipped with many layers and new algorithms for the pre-processing of data for 

the regularization of the model. 

The brain learns by trial and activates new neurons by learning from experience, in the same 

way of the architectures involved in Deep Learning: the extraction stages are modified 

according to the information received at the entrance. The development of DL took place in 

the 1980s, consequently and in parallel with the study of AI. In those years, computer 

technology was not advanced enough to allow a real improvement in this direction, so we 

had to wait until our days to see even more significant developments, thanks to the 

availability of data (Big Data) and the power of calculation (GPU). Once experts understood 

how to use 3D graphics cards (which are designed to make matrix multiplication extremely 

fast) instead of normal computer processors, working with Deep Neural Networks suddenly 

became practical and affordable. 
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Convolutional Neural Networks are a development of Deep NN that are specifically 

designed for Image recognition and segmentation, using a particular architecture. 

3.3.1 Architecture of a Convolutional Neural Network 
Each image used in learning is divided into ROI and each one of them will be processed by 

filters to look for particular patterns [42]. Formally, each image is represented as a three-

dimensional array of pixels (width, height, color) and each of its sub-sections is put in 

convolution with the chosen filter. In other words, by filtering each filter along the image, 

the internal product between the filter itself and the input is calculated. This procedure 

produces a set of feature maps (activation maps) for the various filters and this type of layer 

is called Convolutional Layer. In the analysis of an input image that has hundreds or millions 

of pixels, we are interested in identifying significant features or important details that are 

very small compared to the total size of the image, contained for example in about ten pixels.  

Having a two-dimensional image I as input, a two-dimensional kernel W can be used: 

 𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝑊)(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

𝑛𝑚

 (19) 

Given m input and n output, a matrix product would require m∙n parameters and the 

algorithm a T(m∙n) processing time. Restraining the connection number for each output to a 

number k, smaller than m, the matrix product would require only k∙n parameters and a 

processing time of T(k∙n). Gain in efficiency becomes extremely important when k is smaller 

than m by many orders of magnitude. This will make it possible to significantly reduce the 

number of weights to be updated and to speed up network training operations. 

 
Figure 26. On the left: a classic 3-level neural network with a fully-connected stratified architecture.  
On the right: a network consisting of Convolutional Layers arranges its neurons in three dimensions. 

Reprinted from [39] 

In Figure 26 (on the right), we can see an example of Convolutional Layers in which it is 

highlighted that CNN have neurons arranged in 3 dimensions: width, height and depth [39]. 

The depth of an output volume is a parameter that controls the number of neurons in the 

Convolutional Layer that are connected to the same region of the input. The set of these 
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neurons is called the depth column. This is given by the number of filters we use in the 

Convolutional Layer; hence the more filters you choose the larger the number of features 

describing the input that the network can learn at this level. The dimensions of the filters 

must also be defined, and if these are to be translated on the whole image or by performing 

a sub-sampling (stride parameter). 

By overlapping the various feature maps of the same image portion, we obtain an output 

volume.  

An additional main feature of CNN is the use of shared parameters meaning the use of the 

same parameters for more than one function in the model: each slice of the filter volume has 

the same weights and only one bias [28]. In a traditional network, each element of the weight 

matrix is used exactly once during the calculation of an output and it is no longer reused. 

The parameter sharing obviously leads to the sharing of weights: the value of a weight 

applied to an input is linked to the value of a weight applied at another point in the network. 

In a CNN, each kernel member is used in all input positions. If a pattern can appear in a part 

of the image, it can appear anywhere, so the idea of units in different locations that share the 

same weights allows them to detect the same patterns in different parts of the input array. 

Mathematically the operation performed by the feature map is a discrete convolution (it is a 

more affordable operation than the matrix product, also in terms of required memory). 

After the Convolutional Layer we have a sub-sampling layer, which takes care of further 

subdividing the processed image in sub-sections, reducing its dimensionality to proceed in 

detail. This is called Pooling Layer, hence it aggregates information into the input volume, 

generating smaller feature maps, giving an invariance compared to simple input 

transformations while maintaining significant information for the purpose of subscribing the 

patterns contained in the input data analyzed. One of the most popular sub-sampling is that 

of MaxPooling [43]. In particular, this type of sampling partitions the image into a series of 

rectangles that are not overlapped, and returns from each rectangle the pixel corresponding 

to the maximum value point.  
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Figure 27. Example of applying a MaxPooling Layer on a 4x4 matrix. Reprinted from [43] 

These two types of layers will alternate throughout the body of the network. You can find 

other types of layers, interleaved with Convolution and Pooling Layers. The last layer is the 

Output Layer: it has as many neurons as possible labels and for each label it returns the 

probability that the tested sample belongs to that label.  

3.3.2 The Training phase of a CNN 
In Deep Learning, we are dealing with large amounts of data and the gradient descent 

algorithm is time consuming, which elongates the time required to finish just the first epoch 

[28]. The training phase of a CNN starts by dividing the training set in K groups called 

batches, of size B, processing each one at a time, and after obtaining the output, it calculates 

the cost function J for each of them. This is minimized by means of algorithms such as the 

SGD (Stochastic Gradient Descent) method or Mini-batch Gradient Descent, and is also used 

for back propagation. In this way, we only do K updates for w and b per epoch.  

SGD consists of sending as input only one sample per batch (B = 1 and K = m = number of 

training examples). We refer to stochastic gradient because this one is approximated at each 

iteration with the gradient calculated on a single addend of the cost function (corresponding 

to a dataset element). As the algorithm runs through the training set, it performs the update 

for each training example. Multiple steps can be done on the training set until the algorithm 

converges. It is much more difficult to converge proceeding one sample at a time.  

In Mini-batch gradient descent, it is possible to choose any value for B, so K = m/B. It is 

advisable to use a batch size of 2n (n = 1, 2, 3, 4, …) because it helps allocation in CPU/GPU 

memory [28]. At the moment it is the users' favorite choice [35]: it makes the training phase 

faster and with a better convergence than SGD. 
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3.3.3 Batch Normalization 
When training a CNN, each feature can have different scales and this can directly affect the 

gradient descent. The ideal would be to center all the features with zero mean and unit 

variance, Batch Normalization tries to solve this [28]. If we have Z[l](i) as the output neuron 

of the l-th layer, we can normalize in this way:  

 

 
(20) 

 

 
(21) 

 

 
(22) 

 

Note that ϵ is to avoid division by zero. To have fixed mean and variance for any change 

occurring in weights and bias during the whole training, we must do another step introducing 

two new parameters, σ and β. So to train our NN reasonably fast and avoiding to operate 

brutally we have to use Mini-batch gradient descent and Batch Normalization in forward 

propagation as in the following Equation for each hidden layer: 

 

 

(23) 

 

 

 

 

3.3.4 Rectified Linear Units (ReLU) activation function 
ReLu is a widely used activation function [44] for Convolutional Layers because, for 

example, unlike the hyperbolic tangent or the sigmoid, it does not present saturation regions 

in its dynamics, preventing the network from stagnating in a situation where the variation of 

the inputs acts very little on the variation of the outputs and in which the network learns 

extremely slowly (the gradient stagnates). ReLU is easy to calacute, the Equation is:  

 𝑓(𝑥) = max {0; 𝑥} (24) 
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and it is shown in Figure 28. Basically, this layer changes all negative activations to 0. 

 
Figure 28. ReLU activation function 

Apart from the advantage of avoiding the saturation regions, with the ReLU we introduce 

sparsity into the matrix containing the activations of the neurons, which begins to present 

several zeros within it. This facilitates and speeds up the error back-propagation mechanism 

as only those paths in which one neuron contributed to the downstream error formation will 

be analyzed, whereas a neuron that gives 0 as output it is as if it were turned off or 

deactivated.  

A potential disadvantage of the ReLU is that when the neuron is not active, it always has 

zero gradient. This could cause neurons that are not active initially to never become active 

as gradient-based optimizers will never update their weights [45]. For this reason there are 

also variations of the ReLU function which avoid giving completely null outputs. 

3.3.5 Hyper-parameters 
There are some parameters which affect the search for the minimum more than others. We 

will call these Hyper-parameters of the model, and we will choose them opportunely in order 

to speed up the descent of the gradient to the final solution of the problem. As it will be 

evident during the elaboration, there are different hyper-parameters to select; among them, 

the learning rate is undoubtedly of great importance, as is the type of optimizer chosen.  

In addition to the already seen Hyper-parameters such as Depth and Stride, we also have to 

choose the Padding. When we apply filters to an input volume, the spatial dimensions of the 

output would be smaller. We want to preserve information about the original input so that 

we can extract low level features. To make sure that the output volume remains the same 

spatial dimension of the input one, we can apply a zero padding: this pads the input volume 

with zeros around the border, until they allow us to have the output of the same size as the 

original input volume. 
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As we had exposed, the validation set helps us to select the best model, and therefore also 

the best hyper-parameters. To understand how close the results of the model are to the 

expected ones, we must pay attention to two important measurements: bias and variance. 

Bias is “how well your model fit the training data” [28] and variance is “how well your 

model can generalize in the validation set” [28]. Setting a baseline error, a good model is 

that in which both bias and variance are under this threshold. 

There are other ways used to prevent NN from overfitting, for instance adding more data 

through Data Augmentation: it generates more training data from existing samples by 

augmenting them via random transformations that yield believable-looking images [35]. 

Some examples are translations, rotations, flips, crops and scaling. By applying just a couple 

of these transformations to your training data, you can easily and significantly increase the 

number of training samples.  

To avoid overfitting there are also regularization techniques. One very functional technique 

is Dropout [46] that consists in selecting randomly in each layer some neurons to set to zero. 

This allows to have a simpler network, with less parameters, and the remaining neurons 

become more specialized in the assignment. With the addition of this technique on a Layer, 

we have a new hyper-parameter to be set: the probability of neurons to drop out from the 

process (Dropout rate). Another regularization technique that allows to speed up the training 

is Early Stopping. When the training and validation curves start diverging, the train is 

stopped and the model is saved. 

Now that we know what a Convolutional Neural Network is, how it is composed and that 

depends on a huge number of parameters (number of layers, learning rate, activation 

functions, etc.), we can analyze an application example of this: U-Net. 

3.4 U-Net  
One of the most used CNN is U-Net [30], a Convolutional Neural Network to biomedical 

image segmentation, already used to segment the Corpus Callosum as previously explained. 

The purpose of U-Net is to separate the Convolutional Layers in two symmetric groups, or 

two paths: Contraction path (downsampling) and Expansion path (upsampling). 
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Figure 29. U-Net architecture. Reprinted from [30] 

The contraction path applies convolutional filters and reduces the spatial size of the image 

through pooling layers. The upsampling group will get the reduced images and increase the 

spatial size of the image output until it has the same size of the input. This is done by an 

unpooling operation called MaxUnpooling. Thanks to the symmetry of the U-Net, we can 

keep in every downsampling operation the pixel position that was taken as the maximum in 

the receptive field and, when we will apply the unpooling operation in the respective 

upsampling layer, we will use that position acquired. Figure 30 clears up the operation of 

the MaxUnpoolling Layer. 

 
Figure 30. MaxUnpooling operation. Reprinted from [39] 
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This improves our training by reducing the size of the image in the downsampling layer 

instead of working with the original size in every layer as before, extending it to work with 

very few images and more precision segmentations. In order to localize, high resolution 

features from the contracting path are combined with the upsampled output thanks to the 

Concatenation Layer. This allows to copy the entire features map. A successive Convolution 

Layer can then learn to assemble a more precise output based on this information. One 

important modification introduced by U-Net is that in the upsampling part there is also a 

large number of feature channels, which allow the network to propagate context information 

to higher resolution layers. As a consequence, the expansive path is more or less symmetric 

to the contracting path, and yields a u-shaped architecture [30] (see Figure 29).  

3.5 Using a pretrained CNN: Transfer Learning 
Transfer Learning is a process that has helped to lessen the data demands to work with DL. 

The idea is taking a new network and learning on a set of correlated problems but applied to 

new tasks or new images which have insufficient training samples to learn a full deep NN. 

Taking a model in which weights and parameters are already trained (pre-trained model) on 

a large dataset, it is possible to transfer information to our smaller dataset. The more the 

dataset is similar to the pre-trained network, the more likely the TL's performance is good. 

This technique reduces the computational cost allowing us to do several tests without long 

training times. Lastly, it does not require hyper-parameters optimization.  

There are two main technique for Transfer Learning using a pre-trained network: Feature 

Extraction and Fine-Tuning [35]. We will analyze the latter that was chosen for our research 

work. Rather than training the whole network through a random initialization of weights, we 

can use the weights of the pre-trained model (and freeze them) and focus on the more 

important layers (the ones that are higher up) for training. For instance, regarding U-Net an 

idea could be to unfreeze from the last layer of the Contraction path to the Output Layer, 

hence all the upsampling part (expansion path). This operation is called Fine-Tuning because 

“it slightly adjusts the more abstract representations of the model being reused, in order to 

make them more relevant for the problem at hand” [35]. 

To understand why we unfreeze only the last layers, we must remember that the first layers 

encode more generic features, it is more useful to fine-tune the last ones, which encode more 

specialized features. Moreover, this helps speed up the training. Finally, the more parameters 

we train in our small dataset, the higher the risk of overfitting. 



Chapter 3 – Convolutional Neural Networks 

37 

 

 

Figure 31. Example of Fine-Tuning. Reprinted from [35]
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Chapter 4 

Proposed method: Modified U-Net using Transfer 

Learning 
In this chapter the methodology we use in this work is described. We will describe the 

datasets used, in particular the database gathered at Bicetre Hospital of Paris. Afterwards, 

we describe the CNN on adults: pre-processing steps applied, the data augmentation and the 

network architecture. Finally, we show the fine-tuning TL technique on pediatric images. 

4.1 Database Project STAP  
The project’s database was gathered at Bicetre Hospital from its PACS archive in DICOM 

format. The collected archive contains: 

 300 healthy controls (the results of the examination was negative, in the report we 

find “normal MRI”, “MRI without particularities” or “No anomalies”, we have no 

volunteers in this case study); 

 41 patients, of which 33 with progressive Multiple Sclerosis and 8 with ADEM 

(Acute Disseminated Encephalomyelitis), undergoing treatment at the hospital.  

All the acquired subjects are in the pediatric range (0 – 16 years old), images come from 

different French hospitals (multi-sites) with different scanner-models and acquisition 

protocols. All images have been anonymized. Unlike controls, which have only a singular 

time-step, patients present different time-step (six-month step by protocol, varying because 

it depends on the needs of the subject and the physician).  

Concerning what we said, in the first step of our work we wrote a MATLAB program in 

order to automatically organize the database, and by taking inspiration by the well-known 

BIDS archive [47] and collaborating with medical experts, we achieved a functional 

hierarchical structure of the data. The result is shown in the following Figure 32. All images 

were converted in NIfTI format (Neuroimaging Informatics Technology Initiative): DICOM 

collection of slices are compressed in a single volumetric image, which contains header 

information followed by data [48], which is easier to use with CNN. Every file was 

nominated (in collaboration with radiologists) to facilitate the search and the understanding 

of the data for future references, according to the example: 
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“PS24M009Y_T1CORSE_15P.nii”, in which the three separated alphanumeric strings 

mean:  

1) STAP ID, patient sex (M = Male, F = Female), patient age  e.g. PS24M009Y 

2) MRI series (sequence, plane, technique)  e.g. T1CORSE 

3) TESLA (15 = 1.5 T, 30= 3.0 T, NF=Not Found), manufacturer of the MRI SCANNER 

(S=Samsung, P=Philips, G=GE Medical Systems, F=Fujifilm Medical Systems)  e.g. 15P 

 

Figure 32. Organization of the archive of the Project STAP 

The Standard MRI protocol at Bicetre Hospital is: 

 AAHeadScout (Localization image) 

 Axial T1 

 Sagittal T1 

 Axial T2 

 Coronal T2 

 Axial T2 FLAIR 

 Coronal T2 FLAIR 

 Diffusion-weighted MRI ADC 

 Diffusion-weighted MRI TRACEW 

It is possible to have other series, depending on what the radiologists are looking for or 

would like to see. On the contrary, we can gather less images depending on the quantity of 

movement artifacts that may have forced to interrupt the examination. We can see that 

Sagittal T1 is supposed to be available for all the patients (Normally they have these 
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dimensions: 256 x 256 x 30 or 192 x 192 x 21). Data acquired from various sources, as well 

as from the same source but at different time points, generally do not have similar intensity 

range. Moreover, presence of the pathologies can impact the tissue intensity behaviors.  

All this exposed takes up what has been said in Chapter 1, including the choice of plan and 

the type of MR images to be used (see Section 1.3) and as well supports the idea of 

proceeding with Convolutional Neural Networks (according to Chapter 2 in Section 2.3).  

However, the number of images is insufficient, also because not all subjects have a T1-w 

Sagittal MR image. It is advisable to train the network with the support of available online 

datasets, training the networks on adults and using Transfer Learning on children images.  

The training set for the CNN on adults is composed of 1995 MSP of T1-w adults MRI with 

the corresponding CC segmentation, from two publicly available multi-site and multi-

protocol datasets: OASIS [26] and ABIDE [27] (248 controls and 213 autism patients from 

ABIDE I, 426 controls and 393 autism patients from ABIDE II, 316 controls and 100 

Alzheimer patients from OASIS 1, 234 controls and 65 Alzheimer patients from OASIS 3).  

All CC reference segmentations are obtained using ART-yuki and, if necessary, manually 

corrected (the tool selects automatically also the Mid-Sagittal Plane).  

Examining these two different datasets: 

 ABIDE (Autism Brain Imaging Data Exchange): this initiative has aggregated 

functional and structural brain imaging data, and now includes two large-scale 

collections called ABIDE I and ABIDE II. These are aggregations of datasets 

independently collected across more than 24 international brain imaging laboratories in 

order to be multi-sites, multi-scanners and with different acquisition protocols. The 

original dataset has all images in NIfTI format. As for MRI series present in the database 

ABIDE, for every patient we have a Resting State fMRI and a T1-w MPRAGE 3D. The 

latter is used in our work, because very similar to T1-w Spin-Echo in Bicetre’s protocol. 

 OASIS (Open Access Series of Imaging Studies): this is a project aimed at making 

neuroimaging data sets formed by Cross-sectional MRI NIfTI data in young, middle-

aged, non-demented and demented older adults with Alzheimer’s disease. The OASIS 

initiative is formed by OASIS 1, 2 and 3. Data were collected across several ongoing 

projects over the course of 30 years, trying to be as much as possible multi-sites, multi-

scanners and with different acquisition protocols. The dataset contains over 2000 MR 

sessions which include T2-w, FLAIR, ASL, SWI, Resting State BOLD, DTI and 

obviously T1-w, that we used on ART-yuki. 
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We use 519 (resp. 120) children images from ABIDE I and 50 (resp. 50) manually segmented 

pediatric images (40 (resp. 40) controls and 10 (resp. 10) affected by MS) from STAP 

archive (6 different protocols and 4 French hospitals) for Transfer Learning and test, 

respectively. Manual segmentations were validated one by one by Bicetre’s radiologists.  

4.2 Automatize the choice of Mid-Sagittal slice 
For Bicetre’s collection images, the MSP slice is selected as the slice maximizing the 

similarity between the resulting two hemispheres, similarly to what is stated in [49]. As 

initialization the algorithm chooses the slice closest to the center of mass (the mean value 

across each dimension, where the image is not black, i ≠ 0, see Figure 33), remembering that 

we work on gray scale MR images. Due to the poor depth of the non-volumetric images T1-

w available to us (around 30 slides) with a slice thickness of 4 or 5 mm (low resolution), we 

have chosen not to interpolate to avoid losing information.  

 

 
Figure 33. On the left: initialization of the algorithm. On the right: understanding the center of mass 

The slice chose by the algorithm becomes our symmetrical plane. The image f is flipped 

respect to the symmetrical plane to obtain its reflection eu,d(f). Consequently, we use the 

following symmetry measure derived by the norm L2: 

 

 
(25) 

The following step consists on an optimization: each one of the 3 slices before and 3 slices 

after (in order to analyze a total of 3 cm) is treated as before. Finally, the one with the highest 

symmetry L2 is chosen as the MSP slice (Results shown in Figure 34 and 35). 
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Figure 34. Result of the algorithm to automatize the choice of mid-sagittal slice. Reprinted from [49] 

 
Figure 35. Differences among slice chosen, one slice before and one slice after. The Corpus Callosum is 

better defined in the one chosen automatically by our program. 

4.3 CNN on adult T1-w MR images  
We first train a CNN on adult images, based on the U-Net architecture [30], using mini-

batch gradient descent with Adam optimizer, Dice loss and 10-fold cross-validation. 

Adam (Adaptive moment estimation) [50] is an extension of the Root Mean Square 

Propagation, so it is a method with adaptive learning rate, which takes into account the 

moving average of the first and second moments of the gradient. We have not entered into 

the details of this study, because it is present in the standard architecture of the U-Net. 

Conversely, in the original paper of U-Net [30] as loss function the Weighted cross-entropy 

is used, but we change it with Dice loss (widely described in section 3.2.3) because this has 

better results according to [51].  

Cross-validation is used as a more sophisticated alternative to the validation set to estimate 

the optimal value of the parameters with which to execute a given learning algorithm. In this 

case we address internal cross-validation as we only act on the training set of 1995 T1-w 

MR images. This is divided into N blocks (10 for us) of equal size and the algorithm is 

executed N times with a fixed value of the parameters using each block in turn as a validation 
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set and the remaining N-1 blocks as a training set. By mediating the validation error on the 

N blocks we obtain the cross-validation error. 

In each training epoch we shuffle the data to ensure that bias in the presentation order does 

not affect the final result. 

The test set is formed by a total of 170 children’s images, as we described in the previous 

section. 

We use the Deep Learning framework TensorFlow-GPU [52] and the high-level API Keras 

[53] to implement the training, obtain the model and evaluate it on test set. 

TensorFlow is an open source software library for Machine Learning, which provides tested 

and optimized modules useful in the implementation of algorithms for different types of 

perceptual tasks and language comprehension; while Keras is a simple, highly modular 

Neural Networks library, written in Python and capable of running on top of TensorFlow. It 

was developed with a focus on enabling fast experimentation, it supports CNN and runs 

seamlessly on CPU and GPU.  

4.3.1 Data Pre-processing 
Although the dataset is ready to be used, the following steps are done as data preparation to 

allow the use of the images on the neural network. After a conversion to a gray scale in 

which 0 is black and 255 is white (uint8) and a format tiff, the training images are first resized 

to 128x128 to make the training computationally less expensive and faster. Finally, images 

are normalized (Fig.37) with the two-stage histogram matching method [54] (the template 

histogram is also used for Transfer Learning and test). This is the most common approach 

for normalization, involving the matching of histograms. This process consists of two stages: 

the first one creates a template histogram, with landmarks of interest usually through 

averaging histograms in a reference population (training images); as for the second stage, 

for each subject in the study, the histograms of each subject are mapped “via a piecewise 

linear transformation to the template defined using quantiles as knots”. Figure 36 shows what 

this technique consists of in a clearer way. This process is computationally fast and has 

proven helpful for lesion segmentation as shown in [54]. 
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Figure 36. Two-stage histogram matching. Adapted from [54] 

 
Figure 37. First row: examples of original images.  

Second row: examples of normalized images. 

4.3.2 Data Augmentation 
To assure that the system will be robust enough with only 1995 training images, we then use 

data augmentation. In particular we use flipping, translations, rotations and scaling, as shown 

in Figure 38. To do translations and rotations, we use affine transformations in order to 

preserve points and lines, not changing the image structure. A horizontal flip is done because 

it is still possible to find old MRI acquisitions that do not comply with the AC-PC 

convention. The Scaling is used in this part of the work to facilitate Transfer Learning to 

children, having these subjects a head size lower than adults. In conclusion, in addition to 

the original image we have a flip left-right, 2 rotations, 4 translations and 2 scaling. In this 

way, we are augmenting the total training set (both the adult T1-w MRI and the 

corresponding CC segmentation) by a factor of 10, for a total dataset of size 19950. 
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Figure 38. Data Augmentation table 

 

Figure 39. Examples of Data Augmentation of a T1-w MRI with overlap the  
corresponding CC segmentation. (a) Original image. (b) Flip left-right. (c) Rotate 30°. (d) Scaling 0.5 

(e) Translation (0, -20). (f) Translation (20, 0) 
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4.3.3 Proposed CNN Architecture 

 
Figure 40. Our trained CNN model architecture 

At this stage, with the dataset ready to be used, we can focus on our Convolutional Neural 

Network with an architecture based on U-Net (Figure 40). The proposed training model 

alternates between the Input Layer and the Output Layer:  

 Convolutional Layer (for bidimensional images) with a ReLU activation function, 

 Batch Normalization Layer (in downsampling path),  

 MaxPooling (for bidimensional images in downsampling path), 

 Concatenation Layer (in upsampling path), 

 Dropout Layer (with a Dropout Rate of 0.5 in upsampling path), 

 MaxUnpooling (for bidimensional images in upsampling path). 

We choose the Sigmoid Neuron for the Output layer and we train the NN using a size of 

mini batch of 32, an initial amount of filter to start the training of 32 with a kernel size of 

3x3. The number of epochs for training is 100. The trained model presents a total of 

87,157,889 parameters, where 87,153,921 are trainable and 3,968 are non-trainable. 

Most certainly, we present the model with the last configuration, considered by us the best 

among those tested and with good enough results, which we will analyze in Chapter 5.  
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Figure 41 shows the complete pipeline for the training of our proposed modified U-Net on 

OASIS and ABIDE (adults) database.  

 
Figure 41. Framework of training on adults’ database.  

(a) Raw input images are normalized using two-stage histogram matching.  
(b) Normalized images and ground truth are augmented through data augmentation.  

(c) Model of modified U-Net for training (table shows hyper-parameters, training and inference times). 

4.4 Transfer learning on pediatric images 
Transfer learning is performed on the same proposed model architecture shown in Section 

4.3.3 by only retraining the decoder weights (last layers, as explained in Section 3.5), using 

saved weights of pre-trained network in the encoder path, as in Figure 42. 

 
Figure 42. Fine-Tuning TL on the proposed model architecture 
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The 569 Children images are then normalized using the template histogram of the training 

phase on adults (Figure 43) according to [54] and what exposed in section 4.3.1.  

 
Figure 43. Two-stage histogram matching using template of pre-trained network 

After a new data augmentation (as in Figure 38 in Section 4.3.2), the Transfer Learning with 

Fine-Tuning technique is performed on pediatric database formed by a total of 5690 images. 

In this way the trainable parameters become only 7,848,065, while all the others remain 

unchanged (non-trainable).  

A simple post-processing due to the low resolution of some images (in particular the images 

gathered at Bicetre Hospital of Paris, in which Mid-Sagittal Slice was extracted by us) 

consists in selecting the largest connected component and applying a final morphological 

closing (a disk-shaped structuring element with a radius of 3 mm) on the output images from 

the network.  

Figure 44 (next page) shows the complete framework of training of Transfer Learning on 

our pediatric database.  
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Figure 44. Pipeline of transfer learning on pediatric database. 
(d) Extraction of mid-sagittal slice. 

(e) Normalization of MSP using template histogram of pre-trained network on adults. 
(f) After a new data augmentation (b), the transfer learning with fine-tuning technique is performed on 

pediatric database (table shows hyper-parameters, training and inference times). 
(g) For some images, a simple post-processing consists in selecting the largest connected component, and 

applying a small closing morphological operator. 
(h) Segmented image. 

Framework executable for whatever new NIfTI images, using the saved weights. 
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Chapter 5 

Results and Discussions 
In this chapter we will describe our results on 170 children’s images of the test set. We will 

show the qualitative results, focusing on the robustness of our proposed method, and the 

quantitative results, by comparing different CNN aproaches as well as ART-yuki results 

through indexes of measure (previously presented in Section 3.2.3 and 3.2.5). Later, we will 

point out area, perimeter and thickness profile of CC of Multiple Sclerosis patients, to 

discuss what is supposed by Bicetre’s pediatric radiologists.  

5.1 Qualitative results  
Initially, we proceed by analyzing our results in a qualitative way. Comparing the reference 

images, considered by us the Ground Truth, with the predicted image from our CNN, we can 

immediately appreciate the good performance of the network (Fig. 45 in the next page). 

From Figure 46 we can deduce that the goal to make our network able to segment the Corpus 

Callosum in children has been reached. We can see good segmentation of MRI with the 

presence of the neck or part of the body, and additionally babies with rotated head, which 

could be partially missing. 

Figure 47 also illustrates the robustness of the proposed approach with respect to different 

protocols, making our work very applicable to real situations. 

 

 

 

 

 



Chapter 5 – Results and Discussions 

51 

 

 

 

 

 

Figure 45. Examples of results from four ABIDE children images of test set. 
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Figure 46. Some excellent results on particular Bicetre controls images:  

T1w SAG BLADE 1.5 TESLA SIEMENS 
 

 

 

 
Figure 47. Ability of our network in segmenting correctly images from various kinds of MR scanners with 

different T1w techniques. (Left = Original Image; Right = Segmented Image) 
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5.2 Quantitative results  
The table in Figure 48 illustrates the principal hyper-parameters of the pre-trained network 

on Adults. Remembering the total number of parameters and the number of the images after 

data augmentation, a training time of 5 hours in a NVIDIA GeForce GTX580 CUDA-

enabled GPU is really satisfying. This network serves us only as a basis for Transfer 

Learning, as explained in the related chapter. Moreover, if we will want to use this CNN on 

other adults’ images, the inference time takes only 0.2 seconds per image in a regular 

Intel®CoreTM i7-7500U CPU.  Figure 49 shows the loss (opposite of Dice index, -1 means 

we are making no mistakes) obtained during the training of our network on Adults images. 

Focusing on the validation loss curve, we can see that the model is a little bit unstable, but 

this instability does not cause an overfitting, the validation loss curve is close to the training 

one. Anyway, this is a preliminary step for our purpose: obtain significant results with the 

Transfer Learning on pre-trained network. 

 

Figure 48. Table of the train on Adults images shows hyper-parameters, training and inference times 

 

Figure 49. Loss of the train on Adults images (EarlyStopping 60 epochs) 

We immediately see the results of the final CNN based on U-Net architecture applying TL. 

Figure 50 illustrates the principal hyper-parameters of the Transfer Learning network on the 

pediatric database. We know that in this case the total number of trainable parameters is 
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significantly lower as well as the number of the images after data augmentation, thanks to 

the use of the pre-trained weights. The table shows a reasonable training time of 1 hour (in 

a same GPU as before). Furthermore, the inference time takes only 0.18 second per image 

(in a same CPU as before), making the system feasible to be used in a real application as we 

will see in Chapter 6.  Figure 51 shows the loss (as in Fig. 49) obtained during the training 

of the CNN trained with TL technique. Focusing on the validation loss curve, the model is 

very stable, without overfitting: it fluctuates in a range of 0.01. Still, there is reason to 

question why the training loss is higher than the validation loss. Firstly, Dropout is turned 

off at testing time. Besides, what we see is the average training loss over each batch of 

training data. The loss generally decreases from the first batches of an epoch to the last ones 

[35] whereas the validation loss for an epoch is computed using the model at the end of the 

epoch, resulting in a lower loss (anyway, we talk about a range less than 0.04). 

 

 

Figure 50. Table of the TL on Children images shows hyper-parameters, training and inference times 

 

Figure 51. Loss of the TL on Children images (100 epochs) 
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In Figure 52 we evaluate, using what was addressed in Chapter 3 (Section 3.2.3 and 3.2.5), 

the proposed method on the test set composed of 170 pediatric images using Dice index 

(0.93±0.05), Mean Square Error (0.002±0.001 mm) and Structure Similarity index 

(0.99±0.01). Detailed results per image in Figure 53, 54 and 55, in which it is possible to 

notice that the first 120 from ABIDE database have better performance than Bicetre images, 

due to the higher resolution. These results are more than acceptable and are better than with 

a network trained only on children or using ART-yuki. This is probably due to the low 

resolution of some test images, as ART-yuki was not always able to correctly extract the 

MSP, as mentioned before in section 2.2. 

Note that learning with both adults and children together, without Transfer Learning, leads 

to a Dice index of 0.87±0.04.  

 
Figure 52. Quantitative comparison using Dice index, mean square error and structure similarity, done on a 

test set of 170 pediatric images to evaluate the two best networks and ART-yuki; Best, Average and  
Worst Image are sample images with respectively maximun, average and minimum Dice index.  

(Blue = Reference segmentation; Red = Predicted segmentation). 
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Figure 53. Dice loss index per image 

 

Figure 54. MSE per image 

 

Figure 55. SSIM index per image 
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5.3 Errors and Particularities 
There are particular cases in which our proposed method makes obvious mistakes. The first 

being contours do not fit in different part, and the second one brain parts that are not the 

Corpus Callosum are incorrectly segmented.  

For instance, MR images with contrast agent such as Gadolinium: it improves the visibility 

of blood vessels, being mixed up with the CC (Fig. 56). Anyway, these MR acquisitions are 

not part of a standard protocol.  

 

Figure 56. Example of an image with Gadolinium injection.  
From left to right: original image, normalized image, segmented CC, segmented image 

 

Another example concerns children MRI for those babies who have not yet completed the 

process of myelination. Before and after normalization, the Corpus Callosum is non-visible 

and non-detectable (Fig. 57) in the MSP.  

 

 

Figure 57. Example of an image with non-visible Corpus Cassolum. 
From left to right: original image, normalized image, segmented CC, segmented image 

 
To our advantage, we can say that there is a clear difficulty also in the manual segmentation. 

The same holds for the case of images with very high motion artifacts (Fig. 58, next page). 

Even if after normalization we improve the visibility of the CC, the program shows 

difficulties to find the right contours. However, to recognize where this is and to approximate 

its shape is already a good result. 

A particularity of our method is bring out the Corpus Callosum thanks to the normalization 

technique applied, that allows a good segmentation of the CC even when its brightness is 

equal to that of other structures of the brain, such as White Matter (Fig. 59, next page). 
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Figure 58. Example of an image with high motion artifacts. 
From left to right: original image, normalized image, segmented CC, segmented image 

 

 

Figure 59. Example of an image with brightness of CC equal to White Matter. 
From left to right: original image, normalized image, segmented CC, segmented image 

 

Our program is not able to segment T2-w MR images, but we first hypothesized that it would 

perform well with FLAIR T2-w MRI. Figure 60 shows that this is not true, probably because 

of the different histograms leading to the disappearance of the CC (darker than in a T1-w 

MRI) with the Two-Stage histogram matching technique that we use. 

Future work may involve further shape constraints or adaptations to different types of 

weighted sequences to help similar problems. 

 

 

Figure 60. Bad segmentation with FLAIR T2-w MRI 
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Chapter 6 

Morphometric study of the Corpus Callosum in the 

case of Multiple Sclerosis 
The morphological study of the Corpus Callosum intercedes in the follow-up of many 

cognitive diseases like Multiple Sclerosis. The observation of the thinning of the Corpus 

Callosum can be an important information in the study of the evolution of a pathology. 

However, it is not always easy to identify deformations and even less to quantify them with 

the naked eye. We propose in this part a useful method on this subject. 

The morphological study of the Corpus Callosum can have two different ends: 

 we may want to relate the particular form of the corpus callosum to a pathology (Multiple 

Sclerosis [9] or Autism [14] [1] ); 

 one may also want to follow the progress of a disease by measuring a change in the shape 

of the Corpus Callosum (Multiple Sclerosis for example [9]). 

In the second case we must highlight deformations with respect to a previously determined 

form of the CC. This is what Bicetre’s radiologists hypothesize: the Corpus Callosum 

decreases in size and shape over time in Children who have MS, rather than in controls or 

those affected by other inflammatory diseases, such as ADEM. 

6.1 Geometric measurements and index for the morphological 
analysis of CC 
A simple way to characterize a change in morphology is first to calculate the perimeter and 

area of the Corpus Callosum in the MSP (as was done in [55]). 

Another index used [56] is called "Corpus Callosum Index" (ICC) that compares the 

thickness of the genu, midbody and splenium with the length of the CC (see Figure 61). 

Normally this index is calculated manually, for this reason it is unused. 

 
Figure 61. Corpus Callosum Index 
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As presented in the Chapter 1, it is possible to subdivide the CC in 5 parts according to the 

subdivision of Witelson (see Figure 3), this allows to define and to independently study the 

zones [8].  

One more index is the Median profile, that combines the study of the shape of the Corpus 

Callosum with its subdivision [57]. The main idea is to extract the skeleton from the structure 

of the CC, which means to find the line that connects the two extremities and that passes 

equidistant from each side of the Corpus Callosum. Then, we can select a certain number of 

points on this median line and calculate the thickness of the corpus callosum in these places, 

having all the Thickness Profile. 

Entering into the details, the algorithms of the selected geometric measurements for the study 

are: 

 Area: we sum all the pixels of the binary segmentation mask and we multiply them by 

the voxel size. 

 Perimeter: we take each pair of consecutive pixels of the contour and we calculate the 

distance between them. The sum of all these distances is multiplied by the voxel size of 

the image to have the real length. 

 Thickness Profile: From the binary mask of the segmentation of CC, we will first extract 

the binary skeleton by morphological operations. The skeleton often consists of several 

branches. It will therefore be necessary to eliminate some of them to extract the median 

profile: the line that goes from one end to the other of the CC (in the posterior-anterior 

direction) and which passes in the middle of this one. It is the method of "skeletal 

pruning" by morphological transformations of hit-or-miss, which is presented in [57]. 

The way in which this method works is as follows. Once the binary skeleton is extracted, 

all the branches are detected by searching for the end points. The 24 terminations shown 

in Figure 62 are used and translated into each pixel of the image. If the element is exactly 

identical to the patch of the image to which it is compared, then the corresponding central 

pixel is set to 1. At the end of these operations we obtain a binary image with pixels at 1 

which correspond to the endings of the branches of the skeleton. The pixels 

corresponding to the detected terminations are deleted. We repeat these operations until 

only two endings remain, meaning that there is only one branch left. Having kept all the 

eliminated pixels in memory, we then restore the eliminated pixels associated with the 

two remaining branches, resulting in our Median profile. 
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Figure 62. The 24 structuring elements for the detection of terminations. Reprinted from [57] 

Afterwards, N equidistant points are selected on the median profile. From these points 

we then look for the closest points of contour, above and below the median axis. The 

distances between these points and their counterparts on the median axis are calculated. 

In this way we have two series of distances, the sum of the upper and lower thicknesses 

at each point makes it possible to obtain the total thickness profile. Figure 63 shows the 

complete framework for the calculation of the thickness profile. 

 
Figure 63. Pipeline of the total thickness profile calculation 
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6.2 Patients dataset 
We have 33 MS patients with different time-steps. Unfortunately, the greatest part of them 

presents the T1-w Sagittal MRI focused on the spine, due to the particular inflammatory 

disease. In this case the head is usually cut off, without the presence of the Corpus Callosum, 

as shown in Figure 64. 

 
Figure 64. Examples of Spine T1-w Sagittal MRI 

We can find some T1-w Sagittal focused on the head but for the reasons stated above they 

are not many. In addition, those one focused on the head are often with Gadolinium 

(problems with our program as said above). 

A solution is to use the AAHead Scout Sagittal MRI. This is one of the three-panel localizer 

scans to register the anatomy to the coordinate system of the scanner, so the images have 

low resolution (160x160) and a large field-of-view. These images are not ideal but our 

program performs good segmentation on them. 

The limitations stated above highlight the problems that arise when working with a real 

dataset.  

Accordingly, we chose 14 patients in the STAP database affected by MS and 1 with Acute 

Disseminated Encephalomyelitis (ADEM), trying to select those with high quality T1-w 

Sagittal.  

Measurements were made on both manually segmented and automatically segmented data. 

In particular we made 4 manual segmentations (validated by experts) and we considered the 

average values for area and perimeter. We estimate the greatest difference, among the 

differences between the average and each image, as the maximum error that can be induced 

by the lack of precision of the images. 
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The automatic segmentation was made by our program. If the values of area and perimeter 

are in the range of the values of the 4 manual ones, we can consider these values as reliable; 

otherwise there is a segmentation error (it will be discussed in detail after). Furthermore, this 

allows to analyze the consistency of morphometric measurements with the medical 

diagnosis. 

Concerning the lack of precision of the image, there are other two factors that have an effect 

on the results: the orientation and position of the slice can change a little from one exam to 

another (for the same patient), and the segmentation is done with a resolution of one pixel 

(approximately). 

It is interesting to add that atrophy is not detectable a priori between examinations spaced 

less than 6 months. 

6.3 Results of the morphological analysis 
We used one of our ADEM patients to verify further the correct functioning of our program, 

and also to make sure that used indexes give us all the information, and finally that the idea 

of Bicetre’s experts is confirmed. Figure 65 shows no atrophy of the Corpus Callosum. Area 

and Perimeter values increase with brain development, as expected. Even if the values 

between manual and automatic segmentation are slightly different, they follow the same 

trend (difference due to the lack of precision of the images). 

 

 

Figure 65. Area and Perimeter values (from automatic and manual segmentation) for the same subject  
at 3 years and 4 months and at 12 years. 
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Thanks to the thickness profile (Figure 66) we can evaluate which parts increase more than 

others, referring to the subdivision of Witelson that we reproduce in the Figure 67. 

 

Figure 66. Thickness profile from automatic segmentation of an ADEM patient 

 

Figure 67. Choosing a N=18 in thickness profile algorithm, we can imagine pairing each cutting number 
with a part of the CC according to the subdivision of Witelson 

We proceed in the same way with all the MS patients (results per patient in Appendix A). 

The table in Figure 68 shows the evolution of the area and perimeter for each patient with 

MS calculated in manual segmentations. The time interval between the first and the last 

exam that resulted in these tests is also mentioned. The differences below the maximum error 

are not interpreted significantly. Instead, the table in Figure 69 shows the results of the 

analysis on the segmented CC with our automatic segmentation.  

Comparing the two segmentation we can affirm that: 

 7 patients (counting ADEM too) present the same trend, with difference in values in 

the range due to the lack of precision of the images. 

 5 patients present a comparable trend, some have different percentages because of a 

very low resolution images and because of the presence of Gadolinium that results 

in over-segmentation.  

 Only 3 patients have an automatic segmentation completely out of the range, in 

which there is an evident segmentation error (visible over-segmentation).  
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These data confirm the good performance of our proposed automatic program despite the 

images present in our dataset, which are not the best for a delicate project of this kind. 

 

 

 

 

Figure 68. Morphological analysis of the segmented Corpus Callosum with MANUAL segmentation.  
Green = Significant decrease. Red = Significant increase. Yellow = No significant change. 

 

 

 

 

Figure 69. Morphological analysis of the segmented Corpus Callosum with AUTOMATIC segmentation.  
Green = Significant decrease. Red = Significant increase. Yellow = No significant change. 
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As a conclusion of our morphological analysis of the segmented Corpus Callosum for 

Multiple Sclerosis patients, we analyze the results in detail: 

 Perimeter: it does not change significantly in every image of MS patients. It seems 

that in a part the CC decreases and in another part it increases. Physiologically, 

according to Bicetre’s experts, it should decrease in the midbody and increase in genu 

and splenium. Instead, concerning ADEM patients, the perimeter increases 

significantly. 

 Area and Thickness profile:  

- in 5 patients the CC decreases: in Patient 4 and 18 uniformly, in Patient 8 mostly the 

genu, while in Patient 9 and 22 the isthmus and splenium mostly increase 

respectively (the number of the Patients, Patient #, is related to Figures in Appendix 

A and also to STAP ID of MS patients in Database of Project STAP).  

- In 3 patients the CC increases: in Patient 26 uniformly, in Patient 28 the midbody 

mostly increases, while in Patient 19 both midbody and isthmus increase more than 

other parts.  

- The other 6 patients show an unchanged CC area between the first and last exams, 

even though time-step of only one year in adolescent age (such as for Patients 3, 16 

and 23) is likely not very informative. 

 

The results do not seem to confirm the radiologists’ hypothesis but it is worth remembering 

that there are too many variables that could have an effect on the results of this study (quality 

of the images, slice cutting, inclination of the head, etc.), as mentioned above. 
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Chapter 7 

Conclusions and Future steps 
During this thesis work we have developed an automatic and robust segmentation method 

for the Corpus Callosum. 

The developed Convolution Neural Network allowed to obtain very good performance with 

MR images, in line with those present in the literature for adults, verified with the use of 

Dice index, Mean Square Error and Structural Similarity index.  

It has been understood that the study of the Corpus Callosum is a great issue in the study of 

neurological diseases, and in particular of Multiple Sclerosis. The development of tools 

assisting physicians in the longitudinal study appears necessary and indispensable for the 

progress of the knowledge and treatment of these pathologies. This dissertation also provided 

an overview of past and current research on the segmentation for the morphological study of 

the Corpus Callosum.  

Our proposed method permits accuracy and reproducibility for longitudinal studies, to be 

independent with respect to the variation in the size and shape of the CC among the patients. 

In addition, it is robust in respect to the background of MR images, to the gaps in the contour 

and to the presence of the fornix. 

Furthermore, the use of Transfer Learning was perfectly suited to the project, guaranteeing 

excellent results also with children’s images. The difficulties of a smaller contrast-noise 

ratio, brief acquisition time and presence of the body in the image are overcome. The 

possibility of using our tool with children also allows medical studies, like those on 

progressive diseases that are developed from an early age, to be done with less difficulty. 

All this is done automatically, without handmade features extraction, atlas of experts for 

template matching or use of previous studies, thanks to the use of Deep Learning. 

Moreover, the program works efficiently with all types of MRI scanners, either with different 

manufacturers, or with different protocols, showing a high adaptability to different MRI 

modes.  

All of this is an absolute novelty: the results obtained give us hope for the reliability of a 

whole system to the particular case study of the Corpus Callosum, analyzing the different 

relationships between its morphology and other neurological diseases, beyond that Multiple 

Sclerosis.  
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Figure 70. Performance of our proposed method using TL for robust segmentation of the Corpus Callosum 
tested with T1-w Sagittal Spin-Echo image of a 3 year subject acquired by a 3.0 Tesla Siemens of Bicetre.  

a. Original image. b. Normalized image. c. Segmented CC as output of the CNN.  
d. Segmented CC after the choice of the largest connected component and the application of closing operator. 

e. Contour of the segmented CC above the original image 
 

We presented three measures allowing the longitudinal comparison of the Corpus Callosum.  

Even though the perimeter does not give any relevant information, the measurement of the 

area makes it possible to assess the global evolution of the CC while the calculation of the 

thickness profile makes it possible to locate the deformations generated by the disease.  

The obtained results do not validate the hypothesis of Bicetre’s radiologists: they suppose 

that the Corpus Callosum decreases in size and shape over time in Children who have MS, 

rather than controls or in those affected by other inflammatory diseases, such as ADEM. 

However, there are several problems with the images used as shown in Chapter 6, hence it 

would also be interesting to note that the implementation of a particular protocol for this case 

study for the acquisition of MRI images is necessary to create consistent results on Corpus 

Callosum and thus significantly improving performance (reducing the lack of precision). 

Finally, the prospects for research and deepening are multiple. A planned change to be made 

to the system will consist of extensions to other acquisition protocols such as T2-w MRI. 

Teaching the program how to understand what kind of image it is and in the case of a T2-w 

convert it to T1-w, there are different algorithms and studies available. 
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As a further future development of research, it is proposed to do a Statistical Shape Analysis 

followed by a Principal Component Analysis, because it seems that the CC evolves 

differently depending on the form that it has. So the goal would be to understand how a 

healthy subject evolves with that specific form, and if a subject with the same shape does 

not follow a normal evolution consequently it is a symptom of anomaly. 

Lastly, the final goal would be the development of a single system capable of telling us right 

away if a subject presents anomalies (smaller CC area or part of the CC that is more 

developed than normal) just by giving the program a Sagittal MRI. 

Progress in this area seems feasible in the short term. Although new studies to further 

improve the Convolutional Neural Network could be done, perhaps inserting a particular 

layers dedicated to shape recognition. However, close collaboration with pediatric 

radiologists is essential. Exchanges between them and image processing researchers must be 

made to perfect the methods by helping the technological advancement of the sector and 

especially for maximizing the benefits for patients. 
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Appendix A 
Morphological Analysis of the Segmented Corpus Callosum: 
Results per Patient 
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