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Sommario

I segnali provenienti dal cervello possono essere impiegati per creare un ca-
nale d’informazioni diretto tra cervello umano e computer. Riconoscere l’an-
damento di questi segnali può rappresentare un metodo per esprimere le
intenzioni di persone che altrimenti non sarebbero in grado di comunicare.
Rilevare la posizione dello sguardo dell’utente sullo schermo del computer
è un altro metodo hands-free che consente l’interazione uomo-macchina. In
questa tesi entrambe le suddette tecnologie sono combinate al fine di svilup-
pare un sistema ibrido di scrittura per persone affette da gravi disabilità.

Il sistema di Brain Computer Interface sfrutta i potenziali evocati uditivi
per selezionare lettere al fine di comporre parole. Il sistema aggiuntivo di
Eye Tracking consente all’utente di cancellare una lettera errata o salvare
una parola. All’utente di questo sistema sarà richiesto solamente di ascoltare
stimoli uditivi ed effettuare semplici movimenti oculari. Non è necessario
nessun altro tipo di movimento.

Gli esperimenti sono stati condotti su 10 soggetti sani, risultando in una
sensitività dell’81% per la Brain Computer Interface e in un’accuratezza del
99% per il sistema di Eye Tracking.

Il progetto combina l’acquisizione, l’elaborazione e la classificazione del
segnale elettroencefalografico con il rilevamento della posizione dello sguardo
dell’utente, con cui il sistema interagisce tramite una interfaccia grafica.
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Abstract

Electrical signals from the brain can be employed to create a direct infor-
mation channel between the human brain and the computer. Recognizing
patterns of these signals can let people’s intentions be expressed with no
need of movements. Tracking the user’s gaze on a computer screen is an-
other a hand-free method for human-machine interaction. In this thesis,
both the technologies are combined to develop a hybrid spelling system for
people affected by severe disabilities.

The Brain Computer Interface system exploits auditory evoked potentials
to select letters in order to write words. The Eye Tracking is combined with
this system to let the user delete an unwanted letter or to save a word. A
user of this system would only listen to auditory stimuli and make simple
eyes movements. No other movements are needed.

Experiments have been conducted on 10 healthy subjects, resulting in a
81% sensitivity for the Brain Computer Interface system and a 99% accuracy
for the Eye Tracking system.

The project combines electroencephalographic signal acquisition, process-
ing and classification with gaze detection, and makes the interaction with
the user possible through a graphic user interface.
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Chapter 1

Introduction

1.1 Motivation
More than a billion people are estimated to live with some form of disability,
(based on 2010 global population estimates) [1] and nearly 5.4 million people
are affected by paralysis [2]. The leading cause of paralysis is stroke, affect-
ing 33.7% of people with paralysis, followed by spinal cord injury (27.3%),
multiple sclerosis (18.6%), and cerebral palsy (8.3%) [2]. These diseases can
lead to Locked-in Syndrome (LIS): a condition in which a patient is aware
but cannot move or communicate due to complete paralysis of nearly all vol-
untary muscles in the body except for eye movements that are maintained.
According to [3], one of the highest costs for a 10-year LIS disease duration
are for in-home caregivers ($669,150), meaning that the need for technology
to improve the patient’s self-sufficiency is increasing.

Assistive Technologies (AT) promote a form of independence for people
with disabilities, letting them accomplish simple every-day tasks without
the presence of a caregiver [4]. In particular, Augmentative and Alternative
Communication (AAC) technologies can help patients to share their ideas
and feelings without talking.

1.2 Goals of the project
Brain Computer Interface (BCI) and Eye Tracking (ET) are two examples
of already existing assistive technologies. BCIs give the possibility to inter-
act with an external device by using control signals generated by electroen-
cephalographic activity. ET systems are able to translate eye movements into
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1 – Introduction

effective communication [5], by controlling the gaze direction. Such technolo-
gies would improve the quality of patients’ life, reducing, at the same time,
the cost of intensive care [6].

The goal is to put technology at the service of the patient, by combining
BCI and ET to create a hybrid BCI-ET: this system would decipher thoughts
and intentions by means both of brain activity and gaze direction, and control
an external device through a simple Graphical User Interface (GUI). The
overall system must be fast and intuitive to use and let the patient be more
independent.

1.3 Hypothesis
Nowadays our interaction with technological devices is a every-day habit.
For this reason, research in the field of Human Computer Interaction (HCI)
goes towards improving many aspects of the interaction methods [7]. This
work aims to follow the purpose of improvement, starting from the following
hypothesis:

• A BCI system is able to identify an intention.

• An ET system is able to identify where the user is looking at by tracking
the gaze direction. Many ET systems are based on Dwell time, i.r. the
user has to fix the target for a pre-defined period of time in order to select
it. If the period of time is too short, selection will occur unintentionally.
If the time is too long, users will get annoyed. It is impossible to define
an optimal Dwell time.

• An hybrid BCI-ET system is a combination of the above mentioned
technologies that aims at putting together the tasks of each technology
to reach an improvement in the overall system.

• Adding a BCI to an ET system could solve the Dwell time problem by
providing an additional and independent communication channel. The
hybrid system combines the high speed of ET and the high classification
accuracy of BCI.

• Patients affected by LIS are not able to move, except for eyes, but
they have sufficient cognitive functionalities. These features can be ex-
ploited by the hybrid BCI-ET system to partially restore the patient’s
self-sufficiency, with an hand-free system.
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1.4 – Contribution

• Patients need to interface with an efficient technology, meaning that the
interaction has to be as quick as possible. Furthermore, they should feel
comfortable when interfacing with this system, resulting in the user-
friendliness aspect to be stressed.

• Technology has to improve patients’ lives, not to make them more diffi-
cult. In order to avoid to incur the patient’s fatigue, physical and mental
efforts must be reduced.

1.4 Contribution
The current project aims at combining BCI and ET technologies with a GUI
to build a hybrid hand-free spelling system for people in the late LIS stage.
The GUI presents the letters and the user selects them - one by one - in order
to write words through a BCI. The ET adds two functionalities: deleting an
unwanted letter and saving the current word in a .txt file.

1.5 Outline of the thesis
The thesis is outlined as follows. Explanations of each system, such as BCI,
ET, and hybrid BCI-ET are discussed in Chapter 2. In this chapter the
state of the art of different methods using such systems are also investigated.
In Chapter 3, an introduction of the physiological systems involved in this
project is presented. Chapter 4 provides an overview of the equipment used
for implementing this project and describes how data are acquired and pro-
cessed. In Chapter 5, experimental results used to verify the performances of
the proposed methods are reported. Discussion about experimental results
and future work are presented in Chapter 6. The final conclusions about this
work are reported in Chapter 7.
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Chapter 2

State of the art

This chapter provides an overview on the different types of Brain Computer
Interface (BCI) and Eye Tracking (ET) systems, as well as their evolution in
the last few years. The chapter is outlined as follows: explanation of types
and applications of BCI, ET, and hybrid BCI-ET systems. The description
of each system is provided with reference to past to recent related works.

2.1 Brain Computer Interface
BCIs use brain signals to retrieve information on user intentions. There are
many different classification methods for BCI systems. Table 2.1 shows the
main features of each neuroimaging method for BCI. First of all, BCI systems
can be split into invasive and non-invasive.

Neuroimaging Method Activity Type Portability

Invasive Electrocorticography (ECoG) Electrical Direct Portable
Intracortical neuron activity Electrical Direct Portable

Non-Invasive

functional Magnetic Resonance Imaging (fMRI) Metabolic Indirect Non-Portable
Near Infrared Spectroscopy (NIRS) Metabolic Indirect Portable
Magnetoencephalography (MEG) Magnetic Direct Non-Portable
Electroencephalography (EEG) Electrical Direct Portable

Table 2.1: Summary of neuroimaging methods for BCI. Adapted from [6].

2.1.1 Invasive BCI
Invasive BCIs record the signal directly from the the brain, needing the
electrodes to be placed inside the scalp by surgery. The advantage of invasive
methods is that they can record the signal with higher spacial and temporal
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2 – State of the art

resolution, as the electrodes are closer to the source of the signal, so that the
attenuation due to interposed tissues and the artefacts due to eye blinking
and movement are lower. Invasive techniques include:

• ECoG: this technique measures electrical activity in the cerebral cortex.
It requires a craniotomy to implant an electrode grid, representing a sig-
nificant risk for the subject. First studies on ECoG have been conducted
on animals, evaluating a long term stability of the subdural and epidural
signal over several months [8][9][10][11][12]. Experiments with monkeys
have developed a less invasive protocols for electrodes implantation [13]
as well as showing good performances of the acquisition [9]. ECoG has
also been recorded from canines for the study of epilepsy with no results
regarding long-term signal quality [14][15].
In humans, ECoG has been used to investigate motor movements, au-
ditory and visual ability, language function. [16][17] demonstrated that
it is possible to decode the direction of hand movements using signals
from ECoG. [18] demonstrated that it is possible to infer vowels and
consonant in both real and imagined speech. Other studies showed that
ECoG signals in gamma range are related to auditory [19][20][21] and
language ability [22][23].
With regard to the use of ECoG in BCI, it has been demonstrated to be
a potential tool due to signal quality, resistance to artifacts, spatial and
temporal resolution [24][25]. Recent studies showed promising results
in motor BCIs [26][27] using sensorimotor ECoG prosthetic arm [28].
It has also been demonstrated that an ECoG BCI system can record
motor related gamma signals over years, even if with high inter-subject
variability [29].

• Intracortical neuron activity: this technique measures the electrical ac-
tivity in the grey matter of the brain. It needs the electrodes to be im-
planted inside the cortex to record signals directly from neurons. Even
if spatial and temporal resolution of this signal is high [30], signal qual-
ity could be effected by the reaction of the tissues to the implanted
electrodes [31]. First studies on intracortical neuron activity have been
performed on monkeys and rats during learned movements: they showed
that this signal can indicate the nature and the direction of the move-
ments [32][33][34]. The same results have been gained by experiments
performed on animals making real movements [35].
More recently, intracortical recordings have been used as part of BCIs
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to control external prosthetics [36][37][38] able to restore independence
of long-term paralysed patients [39][40][41]. Nevertheless a long-term
application of this technology could result in the formation of astroglial
tissue from the tissue reaction to the presence of the electrode grids
[42][43].

2.1.2 Non-invasive BCI
Non-invasive BCIs record the signal from the head, with no need of any
surgical implant. These technologies are non-invasive and can extract infor-
mation from either indirect or direct methods. Indirect methods measure
the hemodynamic response, identifying active neurons by the change in ratio
of oxyhaemoglobin to deoxyhaemoglobin, not directly from neuron activity.
Indirect techniques include:

• fMRI: this technique has been used by a large number of studies since
1900 because of its availability (it can be performed on a clinical mag-
netic resonance scanner), non-invasiveness and good spatial resolution.
It has been used for multiple purposes: disease biomarker [44], therapy
monitoring [45], pharmacological studies [46]. fMRI was demonstrated
first in rats [47][48] and then in humans [49][50].
fMRI detects localized brain activity using the Blood Oxygen Level De-
pendent (BOLD) signal. When neuronal activity increases, the demand
for oxygen increases as well and leads to the local blood flow to increase.
Blood contains haemoglobin, that is diamagnetic when oxygenated and
paramagnetic when deoxygenated. This difference in magnetic proper-
ties leads to differences in the magnetic resonance (MR) signal that are
used by fMRI. Indeed BOLD signal increases proportionally to neural
activity and reaches a plateau if the stimulus is maintained for sufficient
time.
fMRI has been used for BCI because researches [51] reported that a sub-
ject can learn to increase or decrease the BOLD response as feedback.
Recently, the possibility of using real-time fMRI lead to multiple appli-
cation in BCI. An fMRI-based BCI has been developed to let a subject
select letters from a keyboard, by activating hands and toes [52]. fMRI
has been also used for the development of neurofeedback training for
rehabilitation [53][54][55][56].

• NIRS: it is a spectroscopy method that employs infrared light to detect
cerebral metabolism during neural activity, limited to the outer cortical
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layer because of the superficial penetration of the light in the brain.
NIRS identifies alteration in oxyhaemoglobin and deoxyhaemoglobin
concentration by measuring the light attenuation. NIRS can be used
for BCI employing the neurovascular coupling phenomenon, so that the
subject can induce a vascular response when performing a cognitive task.

NIRS-BCI systems use motor imagery [57][58] and cognitive tasks (men-
tal arithmetic [59][60], mental singing [59][60], n-back task [61], as well
as many mental tasks in the same trial [62]).

Direct techniques include:

• MEG: it employs magnetic induction to record the magnetic activity of
the brain. In particular, MEG measures the magnetic field produced by
the intracellular current flow [63].

The first online MEG-based BCI has been presented in 2005 [64], fol-
lowed by other studies [65][66][67]. Although [68] concludes that MEG-
based BCIs are a powerful tool to explore brain functions, they remain
still early stage because of costs and lack of practicality.

• EEG: it uses electrodes placed on the scalp to register the electrical
activity of the brain. EEG is the expression of the synaptic processes
- mainly post-synaptic electric potentials - that flow perpendicularly
with respect to the scalp. The electrical activity of the brain includes
brainwaves that can be classified according to their frequency range.
Delta waves (0.1-3 Hz) are related to deep sleeping state. Theta waves
(4-7 Hz) are related to REM phase. Alpha waves (8-12 Hz) are typical of
waking state with eyes closed and of the pre-sleeping phase. Mu waves
(7-13 Hz) are synchronized patterns of electrical activity that involve
many neurons in the motor cortex. Beta waves (13-30 Hz) are registered
in the waking state and during an intense mental activity. Gamma waves
(> 30 Hz) are related to high tension states.

EEG-based BCIs are the most diffused technique, because of the widespread
availability, the non-invasiveness and the good performances. This tech-
nique has been used since 1973 [69] and has many different applications.

An important issue in non-invasive BCI research is to make the EEG ac-
quisition more comfortable and suitable for every-day use, by minimizing
the number of electrodes to reduce hassle and setup time.
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2.1.3 Control signals for BCI
BCIs use signals - called control signals - recorded from the brain to decipher
the user’s intentions. Control signals can be classified into two categories:
exogenous signals and endogenous signals, as shown in Table 2.2.

Signal Physiological phenomena Training

Evoked

Visual Evoked Potentials (VEP) Brain signal modulation in the No
visual cortex

P300 Evoked Potentials Positive peaks due to an No
infrequent stimulus

Spontaneous

Slow Cortical Potentials (SCP) Slow voltage shifts in the Yes
brain signals

Sensory Motor Rhythms (SMR) Modulation in sensorimotor Yes
rhythms due to motor activities

Table 2.2: Control signals for BCI. Adapted from [6].

Esogenous signals are due to the response of the brain to an external input,
that is receipted by the sensory system. They include:

• VEP: brain signals modulations that occur in the visual cortex after a
visual stimulus. There are two main types of VEP, depending on the
frequency of the stimulus: a less frequent stimulus (< 6 Hz) provokes
Transient Visual Evoked Potentials (TVEP) that disappear before the
next stimulation. A more frequent stimulus (> 6 Hz) induces Steady-
State Visual Evoke Potentials (SSVEP) [70]: in this case the responses
are overlapped. SSVEP are largely more used as control signals for
BCI because their frequency and phase are more stable than TVEP
throughout the whole experiment duration, and they are less exposed to
artifacts and noise [71].

• P300 Evoked Potentials: positive peaks in the EEG that occur approxi-
mately 300 ms after an infrequent external stimulus (Figure 2.1). P300
is related to the "oddball paradigm", a technique based on event-related
potential (ERP)s generated in response to unpredictable but recogniz-
able events that are presented to the subject. The reaction can be due to
either visual, sensual or auditory stimuli consisting on target and non-
target stimuli. The subject has to focus attention on the target event, in
order to evoke the neural reaction. The amplitude of P300 is related to
the relevance of the stimulus and to its probability: [73] demonstrated
that the most probable the stimulus, the smallest the amplitude of the
evoked signal. The variability of the signal due to the neural reaction is
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Figure 2.1: Waveforms (A,B) and topographic maps (C,D) of P300 ampli-
tudes. Reprinted from [72]

also related to age and subject health [74]. P300 is generally observed
in the parietal lobe and it attenuates in amplitude when increasing dis-
tance. Although the neural mechanism of P300 are still unclear, this
control signal is common in BCI applications.

Endogenous signals are independent from any external stimulation: they
can be operated at free will, after a training period. They include:

• SCP: current shifts in the cortical activity that can last from hundreds of
milliseconds to seconds. Negative SCP are caused by synchronous slow
excitatory postsynaptic potentials and are related to neuron excitation,
whereas positive SCP indicate an inhibition with a reduction in cortical
activity. It is possible to train people to modulate SCP in order to
generate voluntary changes in the signal. SCP can be used for self-
regulation training in pathological conditions [75] is such a way that the
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user can express a neurofeedback. In this case BCI is referred to as a
Thought Translation Device (TTD).

The first study on EEG-based BCIs using SCP was performed 20 years
ago [76] with two patients in LIS. Later on, many TTD devices have
been developed [77][78][79], to let paralyzed people select letters, words
or pictures, or move a cursor on a computer screen. A huge drawback
of the SCP technique is that it requires a long-term preparation and
extensive training to gain the control of the signal [80].

• SMR: oscillations registered over the sensorimotor cortex in the mu,
beta and gamma frequency bands [81]. SMR can undergo two types
of modulation, i.e. event-related desynchronization (ERD) and event-
related synchronization (ERS). ERD is a reduction in the oscillatory
activity related to a sensorimotor event [82]. An increase in the oscil-
latory activity leads to ERS, that can be related to a dis-inhibition of
cortical network [83]. Low frequency ERD (8-10 Hz) in the mu band are
related to motor behaviour and can be recorded over the sensorimotor
cortex. Instead, high frequency ERD (10-13 Hz) are related to a specific
task and their recording is restricted. ERD in the beta band occurs after
a movement, even if only imagined.

Many studies have been conducted about SMR-based BCIs for motor
imagery (MI) applications: in this case the subject’s motor intention is
translated into a control signal, without any external stimulus. The most
common mental task investigated for MI-based BCI are limb movements.
A common application for this technique are MI-based spellers. This in-
terfaces give the user the possibility to select a single letter or character,
a group of letters, or a command, on a screen. [84][85][86][87]. Another
application for MI-based BCIs is the control of external devices, e.g.
exoskeleton [88][89][90][90], robotic limbs [91], wheelchairs [92][93][94].
Even if SMR-based BCIs require both an intensive training to let the
user learn to modulate the signal, and multiple EEG channels for good
recording performances, they are a suitable technique for control appli-
cations because they are completely independent from external stimuli
(they let the user operate at free will) and from the movement ability
(they can be used by LIS patients).
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2.2 Eye Tracking
ET systems exploits the communicative power of the eyes for human-computer
interaction. Real-time gaze-based interfaces are a powerful mean of commu-
nication and control for people with physical disabilities. ET systems fulfill
a quick and easy interaction, without requiring neither training nor effort to
the user.

2.2.1 Types of ET
There are four different types of eye-trackers [95]:

• Sensor: a safe way to apply sensors to the eye is using contact lenses.
They can track the gaze either by a mirror that reflects light or a coil of
wire orientation in a magnetic field. The advantage of such a technique
is high accuracy and temporal resolution. The drawback is that it is an
invasive method, as it requires the lenses to be put in the eyes.

• Electro-oculography (EOG): in this case, sensors are attached to the
skin around the eyes in order to measure the electric field produced by
the eyes rotation. This technique is not suited for everyday use because
it requires the electrodes to be carefully placed. The advantage is that
with this method it is possible to detect movements even if the eyes are
closed, e.g. while sleeping. This technique has been used for emotion
recognition and classification [96]

• Photo-oculography (POG): it measures the intensity of reflected infrared
light that illuminates the eye. The eye position changes are detected by
measuring the difference between the incident and the reflected light. It
is an invasive technology because the light source and the sensors have
to be put onto glasses. Infrared oculography in less noisy with respect
to EOG but it is more sensitive to external light changes.

• Video-oculography (VOG): it is the most common technique for ET.
Video-based ET systems can be either stationary or mobile and they
can use either visible light or infrared light. In stationary ET systems,
the eye tracker is positioned near the object to be tracked (usually a
screen) and the user is placed in a stationary position in front of the
screen. In mobile ET system, the user is able to move around because
the eye movements are tracked by ET glasses. This setup is also called
head-mounted.
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2.3 Hybrid BCI-ET systems
BCI and ET are technologies that give the user the possibility to interact
with an external interface. They can be combined together to construct a
hybrid BCI-ET system, that takes advantages from both.

ET has been combined with a MI-based BCI to improve a word selector
[97]. In this study the Dwell time-based selection (when the gaze fixes the
target for a certain time) is substituted by the detection of both gaze fixation
and MI in order to increase the resting time for the eyes. The same technique
is useful to increase the accuracy in a 3D selection environment [98], if the
imaginary movement selects the third axis.

Another study used two different mental states detected by EEG together
with ET to control a telepresence robot [99]. In this case, the user can explore
the environment with spontaneous gaze and trigger the motion with MI.

In [100], a hybrid interface has been developed by combining eye move-
ments and brain mental activity to allow real-time control of a quadcopter in
a 3D physical space, achieving compatible performances to standard keyboard-
based systems.

ET and SSVEP have been combined to improve both speed and accuracy
of a speller. The goal is to prevent errors with a double-check system: the
letter is selected if information from ET and SSVEP-based BCI match. The
same technique has been used for a system that utilizes eye tracking for
initial rough selection and the SSVEP technology for fine target activation,
resulting in a speedy and user-friendly interface [101].

The control of home appliances is obtained by combining a SSVEP-based
BCI, a SMR-based BCI and ET, for selecting the device and the commands
related to it [102]. As the different modalities can be activated independently,
the hybrid system minimizes the number of involuntary selections.

BCI and ET systems are developed to work with signals recorded respec-
tively from brain and eyes. For that reason it is important to understand
the structure and the physiological functions of nervous and visual systems,
that will be explained in the next chapter.
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Chapter 3

Physiological background

The design of a hybrid BCI-ET system involves choices concerning the anatomy
and the physiology of the related systems in the human body. This chapter
provides an overview of nervous and visual systems organization and func-
tions.

3.1 Nervous system
The nervous system can be divided into the central nervous system (CNS)
and the periferal nervous system (PNS) (Figure 3.1). The CNS consists of the
brain and the spinal cord. The PNS consists of afferent (or sensitive) neurons
and efferent neurons. The efferent neurons are divided into the somatic ner-
vous system (neurons connected to skeletal muscles, skin, and sense organs)
and the autonomic nervous system (neurons that control smooth muscles and
visceral functions) [103].

3.1.1 Neurons
The neuron is the functional unit of the nervous system. It is a specific cell
able to receive, integrate and transmit nervous spikes. A neuron consists of
a body, called soma, connected to tree-like structures with branches, called
dendrites, and a single long branch, called axon [103]. The soma contains the
nucleus of the cell and all the cellular organelles. Dendrites receive signals
from afferent neurons and propagate them toward the centre of the neuron.
The axon conducts the signal from the neuron to the other cells. Many axons
are covered by myelin sheaths, leaving exposed sections (nodes of Ranvier)
between segments of myelin. Myelin is a lipid-rich substance that insulate
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Figure 3.1: Structure of the nervous system. Reprinted from [104].

them to increase the speed of the spike over long distances [105]. Once infor-
mation reaches the terminal end of the neuron, it is transferred to another
cell. The site of communication between a neuron and its target cell is called
synapse (Figure 3.2).

3.1.2 Action potential generation and transmission
Communication between neurons depends on the action potential propaga-
tion. The nervous tissue is an excitable tissue, so it can generate and conduct
spikes. The steady state of the cell is a dynamic process that is balanced by
ion leakage and ion pumping. The resting membrane potential does not
change (-70 mV) without an external influence. To get an electrical signal
started, the membrane potential needs to change [104]. A cell is excited
when a stimulus makes Na+ channels open so that sodium ions can enter the
cell driven by the concentration gradient. This process increases the value
of the membrane potential (depolarization). If the depolarization is strong
enough to make the membrane potential reach a certain threshold (-55 mV),
voltage-gated sodium channels open in the membrane. This results in more
Na+ ions entering the cell, making the membrane potential reach a peak of
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+30 mV (Figure 3.3). As the membrane potential reaches the peak, voltage-
gated potassium channels open in the membrane while voltage-gated sodium
channels close. K+ ions start to leave the cell and the membrane potential
begins to move back toward its resting voltage (repolarization).

Figure 3.2: Anatomy of the neuron. Reprinted from [104].

Figure 3.3: Stages of an action potential. Reprinted from [104].

The action potential propagates toward the axon terminal, resulting in
continuous conduction for unmyelinated axons (where voltage-gate channels
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are present throughout the membrane) and saltatory conduction for myeli-
nated ones (where voltage-gate channels are only found at the nodes of Ran-
vier). Saltatory conduction is faster than continuous conduction. When the
action potential reaches the end of the axon, it is transmitted to the near
neuron through synapses. Synapses are the contacts between neurons, and
can be either electrical or chemical. Chemical synapses are the most com-
mon (Figure 3.4): they work with a neurotransmitter that is released from
the presynaptic element, diffuse across the synaptic cleft, binds to a receptor
protein and causes a change in the postsynaptic membrane [104].

Figure 3.4: Synapse. Reprinted from [104].

3.1.3 The brain

The brain and the spinal cord represent the main organs of the nervous
system. The spinal cord is a single structure, while the brain is composed by
four major regions (Figure 3.5): the cerebrum, the diencephalon, the brain
stem, and the cerebellum [104].
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Figure 3.5: Parts of the brain. Reprinted from [106].

The cerebrum represents the biggest part of the brain and it is covered
by a continuous layer of gray matter, the cerebral cortex. The longitudinal
fissure separates the cerebrum in two distinct sides, a right and left cere-
bral hemisphere. Each cerebral hemisphere includes four lobes (Figure 3.5):
frontal, parietal, temporal and occipital.

The frontal lobe is located in the front of the brain. It is responsible
for reasoning, movement, cognition and expressive language. The parietal
lobe is located in the middle part of the brain. It is responsible for tactile
sensory information, proprioception and language processing. It contains the
somatosensory cortex. The temporal lobe is located in the bottom part of the
brain. It is responsible for sound interpretation, language comprehension
and memory. It contains the hippocampus and the primary auditory cortex.
The occipital lobe is located in the back part of the brain. it is responsible
for visual stimuli interpretation. it contains the primary visual cortex [104].

3.2 Visual system
The visual system includes three main parts: eyes, optical nerve and visual
cortex. It is based on the transduction of a light stimulus received through
the eyes [104].
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3.2.1 The eye
The eye is the external organ of the visual system. It takes information from
the external environment through light (Figure 3.6). The light enters the eye
through the pupil, and its intensity is regulated by the iris, that constricts
the pupil in response to bright light, and dilatates it in response of dim
light. A system of lenses is able to focus the light and make it converge on
the retina. When interacting with a photon, the retina undergoes chemical
changes provoked by a process called photoisomerization. This shape change
initiates visual transduction in the retina. The incident light is converted into
electrical impulses by photoreceptors (rod and cons) placed on the surface
of the retina. The optical nerve sends these impulses to the brain. Colour
vision is provided by different types of opsin, a protein that is sensitive to
different wavelengths of light [104].

Figure 3.6: Eye anatomy. Reprinted from [107].

3.2.2 Vision
The photoreceptors are concentrated in a small portion of the retina, called
fovea. As a consequence, a clear vision is possible only in this area. This
is the reason why eyes need to move to a position that projects the target
directly on the fovea. The control of eye movements involves six muscles and
three nerves (Figure 3.7), to move the eyes in coordination. There are two
types of movement:

• Compensation movement: it is a stabilization movement that occurs
either when the head moves but the gaze is kept on a target or when
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watching a moving object.

• Saccade: it is the quick movement (700°/s) that the eyes do when passing
from a target to another. It is the most common eye movement and it
is intercepted with resting periods (0-1000 ms) called fixation [7].

Figure 3.7: Position of extraocular muscles. Reprinted from [106].

39



40



Chapter 4

Materials and Methods

This chapter provides an overview of the equipment used for implementing
the project and describes how data are acquired and processed.

The overall system includes a BCI part and a ET part, that have been
developed and tested separately, and combined with the final interface on
a Surface Pro 4 (Microsoft Corporation) with Microsoft Windows 10 Pro
operating system.

4.1 BCI system
The spelling system is based on a non-invasive BCI that retrieves Auditory
Evoked Potentials (AEP) to establish a communication between user and
computer.

4.1.1 Participants
Ten healthy subjects (7 males, 3 females, age 26.61±3.03 years) participated
in the experiments. All subjects were volunteering students or researchers.
No one had previous experiences with auditory BCI.

4.1.2 Equipment
The BCI system includes an EEG acquisition system connected to the com-
puter as shown in Figure 4.1.
The EEG acquisition system (g.tec medical engineering GmbH, Austria) in-
cludes the following components [108] (Figure 4.2):
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Figure 4.1: Structure of the BCI system.

• g®.USBamp: high-performance and high-accuracy biosignal amplifier.
It is USB enabled and comes with 16 simultaneously sampled biosig-
nal channels with 24 bits. A total of 4 independent grounds guarantee
no interference between the recorded signals. A synchronization cable
guarantees that all devices are sampled with exactly the same frequency.

• g®.GAMMAbox : power supply and driver box for 16 active electrodes
with connectors for g®.USBamp.

• g®.GAMMAcap: cap for electrodes placements with 74 labelled standard
positions (based on the extended 10-20 system / 10-10 system) and 86
additional intermediate positions. g®.GAMMAcap was available in three
sizes (small: head circumference 50 - 54 cm, medium: 54 - 58 cm, large:
58 - 62 cm), and chosen according to the subject.

• g®.LADYbird: 16 active ring electrodes, placed on the g®.GAMMAcap,
sintered Ag/AgCl crown, red.

• g®.LADYbirdGND: passive ground ring electrode, placed g®.GAMMAcap
(EEG), sintered Ag/AgCl crown, yellow.

• g®.GAMMAearclip: active earclip Ag/AgCl electrode (reference), sin-
tered Ag/AgCl crown, blue.

• SIGNAGEL®: highly conductive electrode gel (Parker Laboratories, Inc.).
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(a) (b)

(c) (d)

(e) (f) (g)

Figure 4.2: EEG acquisition system (g.tec medical engineering GmbH,
Austria). (a) g®.USBamp. (b)(c) g®.GAMMAbox and connec-
tors. (d) g®.GAMMAcap (e) g®.LADYbird (f) g®.LADYbirdGND (g).
g®.GAMMAearclip. Reprinted from [108].
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4.1.3 Experimental procedure

The BCI system aims at understanding the user’s intentions through an
unexpected auditory stimulus, that evokes a P300 in the EEG signal. The
goal is to select a specific stimulus among seven different sounds, retrieving
the oddball paradigm (see Section 2.1.3).

The overall procedure includes seven trials, one for each stimulus. During
each trial, the user has to concentrate on a specific sound, shown on the screen
before starting the trial. At the beginning, the user can hear a sequence of
stimuli, in order to get used to them. Each trial starts with a interface that
shows the target sound and plays it five times, to let the user memorize it. At
this point, the user is asked to close his/her eyes, concentrate on the target
sound, trying to count how many time he/she can hear it. A sequence of
seven sounds is played, with each sound repeated twenty times, in random
order. At the end of the sequence, the following trial starts, with another
target sound. In Figure 4.3 there are examples of the interfaces shown during
the experiment.

The stimuli are represented by seven environmental sounds. This type of
sounds are preferred over simple tones, because the user can distinguish them
more easily. The sounds employed in this experiment are shown in Table 4.1.

Stimulus Sound
1 Gun shot
2 Church bell
3 Truck horn
4 Doorbell
5 Whistle
6 Phone
7 Moving water

Table 4.1: Sounds employed in the experiment.
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(a) Interface 1: beginning of the experiment.

(b) Interface 2: end of the introduction.

(c) Interface 3: beginning of the trial.

Figure 4.3: Example of interfaces shown during the experiment.
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The duration of each sound is 200 ms and the inter-stimuli pause is 200
ms. Each sequence of stimuli includes 140 sounds - 20 targets and 120 non-
targets - with an overall duration of 56 seconds (28 seconds for sounds and
28 seconds for pause). The experiment, composed by seven trials, includes
392 seconds for the sequences with the addition of the introduction phases
(about 35 seconds) and the time needed by the user to read the instructions
and get ready to start. The average time to perform the experiment is 8
minutes.

4.1.4 Data acquisition
EEG is recorded using a set of 16 electrodes (Fz, FC3, FCz, FC4, T7, C3,
Cz, C4, T8, TP7, CP3, CPz, CP4, CP8, PO3, PO4) placed according to Inter-
national 10-20 system, referenced to the ear and with Nz as ground (Figure
4.4).

Figure 4.4: Electrodes displacement.

The stimulus presentation, the online BCI system and the offline analy-
ses are implemented in Matlab2018b (MathWorks), making use of the Lab
Streaming Layer (LSL) library for signal acquisition and Psychophysics Tool-
box Version 3 for the interfaces.
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4.1.5 Data processing
The process starts with playing the sequence of sounds, that is previously
determined by randomly ordering the stimuli. While each sound is played,
samples of the recorded signal are acquired, as well as their timestamps,
and stored in a matrix, that is updated every time a new sound in played, by
concatenations of samples. The signals are sampled at 256 Hz. A Notch filter
with band 48 - 52 Hz and a bandpass 5th order Butterworth filter between
0.5 and 40 Hz are applied.

Each stimulus corresponds to a vector of 102 samples ((sound + pause) ×
samplingfrequency) with the addition of 77 samples (300 ms) in order to
consider the period that follows the end of the stimulus, that is when the P300
occurs (see Figure 4.5). All the data corresponding to the same stimulus are
aligned and averaged, in order to obtain one mean vector of samples for each
stimulus. Before doing that, the first repetition of each stimulus is discarded.
During the first repetition the user is still not really familiar with the sounds,
affecting the signal with this kind of confusion. A block diagram of the whole
process is shown in Figure 4.6.

Figure 4.5: Example of averaged signal related to Stimulus 1 (Subject 1).

Features extraction is performed in order to reduce the dimensionality
of the dataset and to enhance signal characteristics. Features have been
extracted both from the signal itself and from its power spectral density
(PSD), that is computed applying Welch’s PSD estimator. Given a signal
x[n], assumed to be wide sense stationary (WSS), the PSD is defined as the
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Fourier transform of its auto-correlation sequence:

Px,x(f) = T
+∞Ø

m=−∞
rx,x[m]e−j2πfmT (4.1)

Matlab function pwelch returns PSD estimate (pxx) of an input signal and the
related frequencies f, using Welch’s overlapped segment averaging estimator:

[pxx, f ] = pwelch(x, window, noverlap, nfft, fs) (4.2)

where x is the input signal, window is the dimension of the segments to
consider for the estimation, noverlap is the number of overlapped samples
between adjacent segments, nfft is the number of points for the Discrete
Fourier Transform (DFT) and fs is the sampling frequency. The following
features have been extracted:

1. Maximum: maximum value of the signal.

2. Minimum: minimum value of the signal.

3. Mean: mean value of the signal.

4. Skewness: a measure of symmetry, or more precisely, the lack of sym-
metry. A distribution, or data set, is symmetric if it looks the same to
the left and right of the centre point.

5. Kurtosis: a measure of whether the data are peaked or flat relative to a
normal distribution.

6. Mobility: represents the mean frequency or the proportion of standard
deviation of the power spectrum.

7. Complexity: gives an estimate of the bandwidth of the signal, which
indicates the similarity of the shape of the signal to a pure sine wave.

8. Shannon entropy: the measure of information entropy associated with
each possible data value.

9. Sample entropy: a measure of the complexity of physiological time-series
signals.

10. Higher peak in P300 range: maximum value of the signal in the interval
200 - 500 ms after the end of the stimulus.
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11. Time of higher peak in P300 range: time of occurrence of Feature 10.

12. Maximum of PSD: maximum value of pxx.

13. Frequency of maximum of PSD: frequency of occurrence of Feature 12.

14. Energy: estimation of the energy of the signal as the integral of pxx.

15. Hurst exponent: a measure of long-term memory of time series. It relates
to the autocorrelations of the signal.

16. Maximum of cross-correlation with a target signal: measure of similarity
between the signal and a target signal (Figure 4.5).

17. Position of maximum of cross-correlation with a target signal: position
of 16.

Table 4.2 shows the features divided in categories.

Statistical Probabilistic Time Domain Frequency Domain Geometrical
Maximum Shannon entropy Higher peak Maximum of PSD Hurst exponent
Minimum Sample entropy in P300 range Frequency of Maximum of
Mean Time of higher maximum of PSD cross-correlation
Skewness peak in P300 range Energy with a target signal
Kurtosis Position of maximum
Mobility of cross-correlation
Complexity with a target signal

Table 4.2: Features extracted from the signal.
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Figure 4.6: Block diagram of data processing.

4.1.6 Signal classification

The classification of the signal is performed by a NN, implemented in Matlab
with the Deep Learning Toolbox. The NN is trained on features extracted
from the signal and classifies them using the Softmax function as activation
function. Softmax function normalizes its input into a probability distribu-
tion, such that every element xi in the output is in the interval [0,1] and
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Ø
i

xi = 1. The goal is to obtain a binary classification: 1 for the target

stimulus, 0 for the non-target ones. The classification is unbalanced because,
as mentioned before, in a sequence of stimuli the ratio between target and
non-targets is 1:6. For taking into account classes imbalance, the NN must
perform a weighted classification: 86% and 14% for target and non-target
respectively.

Figure 4.7: Structure of the training set.

The NN is composed by the following layers:
• Input layer.
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• Fully connected layers with dimensions 15, 10 and 2.

• Softmax layer.

• Weighted classification layer.

The training of the NN has been performed on a dataset of signals from
the participants to the experiment. The training set is a M × N matrix,
where M = 16 channels × 7 stimuli × 7 trials × number of sessions, and
N = number of features. Each row of the matrix represents the input for
the Neural Network (Figure 4.7).

The classification carries out the following steps:

• Threshold step: class target is assigned if the probability of that class
resulting from the softmax function is higher than the threshold, class
non-target is selected otherwise.

• Score step: a score is assigned to each stimulus, by counting for how
many channels the signal was in class target. Select as target the stimulus
with the higher score.

• Comparison step: this step is applied in case of a tie (i.e. where there is
more than one winner from the previous steps). In this case, class target
is assigned if the probability of that class resulting from the softmax
function is higher than the probability of class non-target, that is selected
otherwise.

The flow chart of the classification process is shown in Figure 4.8.
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Figure 4.8: Flowchart of the classification process.
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4.2 ET system
The ET system adds control features to the spelling system described above.
It lets the user delete an unwanted letter or save a word and starting a new
one.

4.2.1 Participants

Ten healthy subjects (5 males, 5 females, age 26.01±3.20 years) participated
in the experiments. All subjects were volunteering students or researchers.
No one had previous experiences with ET systems.

4.2.2 Equipment

The ET system includes an eye tracker connected to the computer. The main
components of the eye tracker (Eye Tribe) are a camera and a high-resolution
infrared LED (Table 4.3).

Sampling rate 30 Hz and 60 Hz mode
Accuracy 0.5° (average)
Spatial resolution 0.1° (RMS)
Latency < 20 ms at 60 Hz
Calibration 5, 9, 12 points
Operating range 45 – 75 cm
Tracking area 40 × 30 cm at 65 cm distance
Screen sizes Up to 24 inches
API/SDK C++, C# and Java
Data output Binocular gaze data
Dimensions (W/H/D) 20 × 1.9 × 1.9 cm (7.9 × 0.75 × 0.75 inches)
Weight 70 g
Connection USB 3.0 Superspeed

Table 4.3: Data sheet of the Eye Tribe tracker. Adapted from [109].

The Eye Tribe’s device uses the camera to track the user’s eye movement.
The camera tracks even the most minuscule of movements of the users’ pupils,
by taking the images and running them through computer-vision algorithms
(Figure 4.9).

54



4.2 – ET system

Figure 4.9: The Eye Tribe tracker. Reprinted from [109].

4.2.3 Experimental procedure

The ET system locates the user’s gaze position on the screen. It represents
the control part of the overall system, because it lets the user delete an
unwanted letter or save the current word and start a new one. This is possible
by detecting two positions of the user’s gaze - up and down - and assigning
all the other positions to center.

The procedure starts with the calibration. This step is useful to set the
screen coordinates and display the regions referred to each position. During
calibration process two white rectangles are shown on a black screen, first up
then down, and the user has to look in that regions for two seconds each. The
regions included by the rectangles are 250 pixel high and screen-like wide.

In Figure 4.10 there are examples of the interfaces shown during the cali-
bration step.
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(a) Interface 1: beginning of calibra-
tion.

(b) Interface 2: position up.

(c) Interface 3: position down. (d) Interface 4: calibration in progress.

Figure 4.10: Example of interfaces shown during the calibration step.

The procedure includes 30 trials: in each trial a rectangle is shown (up,
down or center) in random order. The regions included by the up and down
rectangles are 250 pixel high and screen-like wide, while the center rectangle
is 1000 pixel high. The user has to look at the shown region for 1 second.
Then the interface shows the detected position as feedback (Figure 4.11).

The rectangles must be considered as the lowest and the highest bound-
aries for the up and down regions respectively. This means that the up region
includes all the space from the bottom side of the up rectangle upward, and
the down region includes all the space from the top side of the down rectangle
downward. For this reason, looking at the computer screen when selecting
up or down is not mandatory.
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(a) Position up. (b) Feedback.

(c) Position down. (d) Feedback.

(e) Position center. (f) Feedback.

Figure 4.11: Example of interfaces shown during the experimental procedure.

4.2.4 Region classification
Region classification - up, down or center - is performed with a threshold
method. The calibration process returns the maximum and minimum y co-
ordinate of the gaze - maxy and miny respectively - so that it is possible to
establish a threshold for regions discrimination. The classification process
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takes into account the last y coordinate of the gaze in each trial. It returns
the following:

• UP: y < (miny + 250) pixel.

• DOWN: y > (maxy − 250) pixel.

• CENTER: (maxy − 250 pixel) < y < (miny + 250) pixel.

The x coordinate is not taken into account.

4.3 Hybrid system
The hybrid spelling system employs the BCI to let the user select a letter
from a GUI and the ET as control system to delete and unwanted letter and
save a word. The system is completely hand-free and the user is asked to
face the computer screen where a GUI is presented.

The first interface shows 7 boxes containing letters and symbols (Figure
4.12a). Each box is related to a sound, in the same order described in 4.1.3.
At the beginning, the boxes are highlighted in red sequentially while the
related sound is played: in this way the user knows and remembers which
sound he has to concentrate on in order to select that box (Figure 4.12b).
This happens every time a new interface is presented.

(a) Interface 1: Main window. (b) Interface 2: Main window when as-
sociating boxes and sounds.

Figure 4.12: Initial interface of the spelling system.

The procedure is as set out in Section 4.1.3: a sequence of 7 sounds re-
peated 20 times in random order is played. The user has to concentrate on
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the sound associated to the box he wants to select in order to access it. The
following interface is related to the chosen box as shown in Figure 4.13.

(a) Interface 3: Window related to the
first box.

(b) Interface 4: Window related to the
second box.

(c) Interface 5: Window related to the
third box.

(d) Interface 6: Window related to the
fourth box.

(e) Interface 7: Window related to the
fifth box.

(f) Interface 8: Window related to the
sixth box.

Figure 4.13: Interfaces presented after choosing a box from the initial inter-
face.
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When Interfaces 3 to 7 (Figure 4.13a - to 4.13e) are presented, the proce-
dure is as above. If a current word is present, it appears on the right side of
the interface (Figure 4.14a). When selecting a new letter (boxes 1 to 6) it
appears next to the current word (Figure 4.14b), before coming back to the
initial interface (Figure 4.12a). If ’back’ is selected (box 7), the system comes
back to the initial interface without adding letters to the current word.

(a) Interface 9: Window related to let-
ter selection with current word.

(b) Interface 10: Window related to let-
ter addition to current word.

Figure 4.14: Letter selection and addition to current word.

If ’Symbols’ (box 6) from the initial interface is selected, there is an extra
step before selecting the target symbol (Figure 4.15).

After selecting a letter or a symbol, the system always comes back to the
initial interface (Figure 4.12a). Before repeating the same procedure to select
another character, there is a pause of 1 second. During this period the ET
takes action: if the user looks up the last letter is deleted, if he looks down
the current word is saved on a .txt file and a new word stars, if he looks on
the central region of the screen the procedure goes on as before. The ET
works only during this period and only when the main window is presented.
It is not possible to delete a letter or to save a word when another interface
is presented or when the sounds are played.
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(a) Interface 8: Window related to
’Symbol’ box.

(b) Interface 11: Window related to the
first box of Interface 8.

(c) Interface 12: Window related to the
second box of Interface 8.

(d) Interface 13: Window related to the
third box of Interface 8.

(e) Interface 14: Window related to the
fourth box of Interface 8.

(f) Interface 15: Window related to the
fifth box of Interface 8.

Figure 4.15: Interfaces presented after choosing the ’Symbols’ box from the
initial interface.

61



4 – Materials and Methods

(g) Interface 16: Window related to the
sixth box of Interface 8.

(h) Interface 17: Window related to the
seventh box of Interface 8.

Figure 4.15: Interfaces presented after choosing the ’Symbols’ box from the
initial interface.
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Chapter 5

Results

This chapter reports experimental results used to verify the performances of
the methods described in the previous chapter.

5.1 BCI system

The performances of the BCI system are related to the results of the classifi-
cation process. It includes the Neural Network and a further step that takes
into account the channels of the signal acquisition.

5.1.1 Neural Network results

The classification has been performed using a training set that includes 210
trials from all the subjects of the test set. The performances of the NN can
be evaluated from the confusion matrix - shown in Figure 5.1 - where class
1 correspond to the target stimulus and class 0 to the non-target ones.
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Figure 5.1: Confusion matrix of the NN classification.

Sensitivity (True Positive Rate) = TP

TP + FN
= 36% (5.1)

Accuracy = TP + TN

TP + TN + FP + FN
= 84% (5.2)

Specificity (True Negative Rate) = TN

TN + FP
= 92% (5.3)

Even if the accuracy is high, the sensitivity is quite low with respect to the
specificity, meaning that the NN classifies better the non-target stimuli with
respect to the target. This is due to the unbalance of the classes.

5.1.2 Classification results
The most important index for the classification performances of this experi-
ment is the sensitivity, since the final goal is to identify the target stimulus,
represented by the True class.

The NN step is followed by other steps in order to improve the sensitivity,
as described in Section 4.1.6. The output of the NN is represented by a
probability of belonging to the classes. It is possible to define a threshold for
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selecting the right class, considering the probability distribution of the two
classes (Figure 5.2).

Figure 5.2: Probability distribution of the classes.

Even if the probability curves are not completely separated, Class 1 pre-
vails over Class 0 after the intersection point (~0.7). This represents the best
choice for the threshold.

Once the threshold has been established, the classification process assigns
Class 1 to the signals whose probability is higher than the threshold itself and
chooses as target the signal that has more ones over the 16 channels. This
is useful to increase the sensitivity as it introduces a further step that takes
the channels into account. The results of the whole classification process are
shown in Figures 5.3 and 5.4.
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Figure 5.3: Sensitivity of each subject with respect to different probability
thresholds.

Figure 5.4: Mean sensitivity with respect to different probability thresholds.
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Considering 0.7 as the best threshold, the classification reaches a final
sensitivity of 81%.

5.2 ET system

The performances of the ET system have been evaluated both for single
region classification and for the overall classification. The single-region per-
formances are useful to understand which is the best classified region, while
the average performances are related to the whole system.

Accuracy is used as a statistical measure of how well the classification test
correctly identifies the target region. It is the proportion of true results (both
true positives and true negatives) among the total number of cases examined.

Accuracy = TP + TN

TP + TN + FP + FN
(5.4)

5.2.1 Single-region accuracy

The experiment includes three regions that the user can select: up, down
or center. The regions are presented 30 times - 10 times each - in random
order. The accuracy of the classification of each region is calculated as the
true results of the region among the total number of trials when that region
is presented (10).

AccuracyUP = (TP + TN)up
10 (5.5)

AccuracyDOWN = (TP + TN)down
10 (5.6)

AccuracyCENTER = (TP + TN)center
10 (5.7)

The results are shown in Table 5.1.
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Subject Accuracy Accuracy Accuracy
(UP) (DOWN) (CENTER)

1 100% 90% 100%
2 100% 90% 100%
3 100% 100% 100%
4 100% 100% 100%
5 100% 100% 100%
6 100% 100% 100%
7 100% 100% 100%
8 90% 100% 100%
9 100% 100% 100%
10 100% 100% 100%

Average 99% 98% 100%

Table 5.1: Single-region accuracy for each subject.

All the regions have been well classified at least 9 times out of 10 for every
subject. The best classified region is center (100%), while up and down have
a similar accuracy (99% and 98% respectively).

Figure 5.5: Bar diagrams of single-region accuracy for each subject.
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Figure 5.6: Bar diagrams of mean accuracy for each subject.

5.2.2 Mean accuracy

The mean accuracy represents the performance of the overall experiment. It
is calculated for each subject:

Accuracyn = (TP + TN)n
30 (5.8)

Table 5.2 shows that the lowest accuracy is 97% (Subjects 1 - 2 - 8) and
the highest is 100% (all the other Subjects).
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Subject Accuracy
1 97%
2 97%
3 100%
4 100%
5 100%
6 100%
7 100%
8 97%
9 100%
10 100%

Average 99%

Table 5.2: Mean accuracy for each subject.

Figure 5.7: Bar diagrams of mean accuracy.

The mean accuracy of the whole experiment is calculated as:
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Accuracy =

10Ø
n=1

(TP + TN)n
30

10 (5.9)

The ET system has an accuracy of 99%.
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Chapter 6

Discussion

This chapter starts from commenting the results obtained from the current
model, and continues with describing the possible methods that have been
applied to the model in order to try to improve the results. Furthermore,
some ideas for future works on this project are presented.

6.1 Comments on the current results

The analysis of the performances of the current system shows good results.
Considering the sensitivity as the most important indicator for the BCI ex-
periment, it goes from 36% after the first classification step to 81% at the
end of the whole classification process. This result can be considered good
enough but it can also be improved.

An important issue for this experiments concerns the time needed to select
each character. In order to evaluate the time, it necessary to consider a
sequence of 7 sounds, lasting 400 ms (200 ms for the sound and 200 ms for
the pause), each repeated 20 times, for a single selection. This means that
the whole process should be repeated twice in order to select a letter, since
the first selection is related to the group of letters (see Section 4.3).

Time = (0.2 + 0.2) × 7 × 20 × 2 = 112 seconds (6.1)

Equation 6.1 shows that the time needed for each character selection is 112
seconds. This results must be improved for a real use of the system.
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6.2 Possible improvements

In this section, three methods for trying to improve the current results are
presented. New results will be showed after applying these methods to the
initial model.

6.2.1 Balanced dataset

Classes imbalance in the current dataset may have influence on the classifica-
tion performances - mostly on sensitivity - that represents the most relevant
index for the BCI experiment. Dealing with this condition is possible through
an "adaptive synthetic (ADASYN) sampling approach". The essential idea
of ADASYN is to use a weighted distribution for different minority class
examples according to their level of difficulty in learning, where more syn-
thetic data is generated for minority class examples that are harder to learn
compared to those minority examples that are easier to learn [110].

The goal is to increase the initial sensitivity of the NN in order to improve
the final performance. After applying the ADASYN method, the dataset
becomes balanced and nearly doubled, as shown in Table 6.1.

Before ADASYN After ADASYN
Class 0 86% 50%
Class 1 14% 50%
Dataset 23520 40328

Table 6.1: Dataset before and after the application of ADASYN.

Analyzing the performances of the NN classification, it is possible to eval-
uate that the accuracy is the same as before. About the sensitivity - that
is, as repeatedly mentioned, a key parameter in this context - it is slightly
higher with respect to the initial model (Figure 6.1 and Table 6.2).
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Figure 6.1: Confusion matrix of the NN classification after the application
of ADASYN.

Before ADASYN After ADASYN
Sensitivity 36% 43%
Accuracy 84% 84%
Specificity 92% 90%

Table 6.2: Classification performances of the NN before and after the appli-
cation of ADASYN.

According to the results shown in Figures 6.2 and 6.3, the overall sensi-
tivity of the classification is 78%, approximately equal to the sensitivity of
the initial model. The lowest sensitivity is 55% (Subject 6) and the highest
is 100% (Subjects 5 and 7).
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Figure 6.2: Sensitivity of each subject after the application of ADASYN.

Figure 6.3: Mean sensitivity with respect to different probability thresholds
after the application of ADASYN.
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Comparing the performances of the classification before and after the ap-
plication of the ADASYN method, it is not possible to state that a balanced
dataset with this method leads to tangible improvements in the model. The
performances are comparable.

6.2.2 Feature selection
Feature selection aims at creating an accurate predictive model by choosing
features that give as good or better accuracy whilst requiring less data. It is
useful to identify and remove unneeded, irrelevant and redundant attributes
from data that do not contribute to the accuracy of the model or may in fact
decrease the accuracy of the model. It also aids to reduce the complexity of
the model and the time for the classification.

Feature selection has been performed by starting from the first feature
and sequentially adding the others one by one. In this way 17 models have
been obtained - each including from 1 to 17 features respectively.

Figure 6.4: Sensitivity of the model with respect to the number of features.

According to Figure 6.4, the highest sensitivity is obtained with 17 fea-
tures, which represent the initial model. Using less features would reduce
the sensitivity of the classification. Extracting more features will probability
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increase the performance, but such method has not been implemented in the
current project.

6.2.3 Time reduction

Time reduction represents an important issue for this system. According to
Equation 6.1, each character selection takes 112 seconds. This result depends
on the following factors:

• number of stimuli

• number of repetitions

• length of each stimulus (sounds + pause).

Each factor needs to be reduced in order to reduce the selection time. Using
less stimuli will mean to simplify the system by including only letters in
the interface. A lower number of repetitions would be possible for a trained
user, that is able to concentrate on the target stimulus also if he can hear it
less times. The length of each stimulus can also be considered a matter of
training or ability of the user to distinguish different sounds even if they are
played for a short time.

Experiments have been performed on 3 subjects, using a model that in-
cludes 5 stimuli, each one lasting 150 ms with 150 ms of pause, and 10
repetitions. In this way the time for selecting one character is reduced from
112 seconds to:

Time = (0.15 + 0.15) × 5 × 10 × 2 = 30 seconds (6.2)

This would represents a significant improvement for the system, since the
needed time is less one third of the initial time.
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Figure 6.5: Classification performances of the system with time reduction.

Figure 6.5 shows the sensitivity of the classification process applied to the
new model. The highest value (40%) is achieved by all the subjects with a
probability threshold of 0.6. The result is not successful as it was for the
initial system (81%), but it has been obtained using the same NN employed
for the initial model. This network is trained on data related to the initial
model, meaning that the result cannot be really accurate. The classification
performances may be improved by using a NN that is trained with data
related to this model.

6.3 Future work
This section will provide an overview of some ideas for improving the perfor-
mances of the model in a future work.

6.3.1 Dataset
The dataset plays a key role in the classification performances. The current
training set includes 210 trials from all the subjects that took part in the
experiments. It is possible to understand the influence of the dataset com-
paring the classification performances obtained using different training sets.
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Since it is not possible to obtain a bigger dataset in the current experiment,
the comparison has been performed using smaller datasets. The properties
of each dataset are shown in Table 6.3.

Training set Number of subjects Number of trials
1 1 56
2 5 105
3 10 210

Table 6.3: Properties of the training sets used for the comparison.

In the first model, the training set includes 56 trials from only one subject.
It includes 105 trials from half of the subjects in the second model. The third
model is the one used for the whole experiment.

Figure 6.6: Comparison of the classification sensitivity obtained using 3 dif-
ferent datasets.

The sensitivity of the classification (Figure 6.6) increases as the size of
the dataset increases. It is 76% for model 1, 79% for model 2 and 81% for
model 3. Even though it is not a big difference, it may result in a significant
improvement if the dataset was much bigger or if it included many more
subjects at least for the training of the NN.
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6.3.2 Parameters tuning

The BCI experiment is build by combining a signal acquisition and processing
phase with a classification phase. Both processes are parameter-dependent,
since they involve the choice of many features that can be tuned, maybe
resulting in different results.

The signal acquisition phase includes parameters as sound duration, pause
duration, number of repetitions, type of sounds, electrodes displacement. These
parameters have been tuned on one subject, trying to find a combination that
leads to better results. Many combinations of these parameters may be tested
on different subjects, or on the same subject if he/she would be the actual
user of the system.

The multilayer perceptron NN involves parameters as number of layers,
number of neurons, number of epochs, bach size, optimizer, activation func-
tion. The choice of Softmax as activation function is reported in Section
4.1.6. All the other parameters have been tuned in order to find a com-
bination between good performances and low time consumption. Also in
this case, many methods can be applied for tuning the parameters, to find,
perhaps, a better combination.

6.3.3 System improvements

The system employed in this experiments includes a laptop computer that
plays the sounds, and 16 electrodes that record the EEG signal.

The direction of the sounds plays an important role in the stimuli discrim-
ination from the user. It adds a new feature - the orientation - that helps
the user to concentrate on the target sound since he knows which direction
the stimulus comes from. Many experiments have been conducted, placing
speakers in different direction, with the same distance from the user. In [111]
[112] [113] [114] they used respectively 8, 5, 3 and 10 sound directions, one
for each stimulus, obtaining better results with respect to the single-direction
experiments.
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Figure 6.7: Sound orientation in the BCI experiment. Adapted from [115].

Another limit of the equipment employed in this project is the number of
electrodes. As the results presented in Section 5.1.2 show, the performance of
the classification are highly improved when considering the results obtained
by each of the 16 electrodes. For this reason, using more electrodes - as in
[116] [117] (more than 32) and [115] [118] (more than 56) - may represent a
gain for the system performances.

6.3.4 System application
The final goal of this system is to be employed by people affected by LIS as
an assitive technology. Future works may improve the performances in order
to build a spelling system that can actually help these people.
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Conclusion

The goal of this project was to build an assistive technology that combines
two methods for human-machine interaction: a Brain Computer Interface
and an Eye Tracking system. The final result is a completely hand-free
hybrid spelling system for people affected by severe disabilities.

Good performances have been reached, represented by a 81% sensitivity
for the BCI and a 99% accuracy for the ET system.

Many methods have been applied to try to improve the classification per-
formances for the BCI - that represents the main part of the system - but
none of them was able to increase the sensitivity, which is a crucial parameter
in this case.

The most critical issue was the time needed for the selection of each char-
acter - 112 seconds - that is not sustainable for a real application of this
system. A future work is certainly needed to improve this parameter, as well
as to improve the classification performances by using a bigger dataset for
the training of the Neural Network.
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