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Abstract

Magnetic 3D tracking of human body motion is an important technology in many biomed-
ical applications such as human motion analysis, human-guided surgical instrumentation
and human training simulator systems. Most of these tracking technologies are low cost,
low power and small sized, features that make these devices wearable and so allow to
monitor the patient’s activities outside the clinical environs. This thesis presents a novel
algorithm for monitoring the movement of a human body part in a space by comput-
ing the position and orientation using magnetic 3D tracking technology. The algorithm
takes as input a set of real-time data collected by a magnetic angular rate and gravity
(MARG) sensor which is part of a wireless and low-cost embedded six degrees of freedom
(6DOF) tracking system. Generation and sensing of a magnetic-dipole field at a known
frequency provides enough information to determine the position of the sensor relatively
to the source, while Earth’s magnetic field, gravitational field and angular rate sensing
provides the orientation estimation of the sensor. In this work, several orientation al-
gorithms are investigated and compared such as TRIAD and QUEST algorithms which
use only accelerometer and magnetometer measurements, and Madgwick and the Kalman
Filter which use also the gyroscope measurement. All the presented algorithms use the
quaternion representation which avoids the problem of singularities associated with orien-
tation estimation. Performances in terms of accuracy and computational time have been
evaluated to determine the best algorithm to perform human body motion tracking.
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Chapter 1

Introduction

Accurate measurement of position and orientation of an object in the space is a key
technology in many fields such as aerospace [5], robotics [1], [4] and navigation [11]. In
the last years this type of problem became interesting in many biomedical applications
based on the human motion tracking. Minimally invasive surgery is realized with the use of
medical robotic systems in [3], hand motion analyses is performed with an electromagnetic
tracking system in [2]. In rehabilitation, motion tracking is a enabling technologies,
specially to monitor the patient’s activities outside the clinical environs and then correct
him. To this purpose is needed a wearable system able to record and store data for a long
period of time (days or an entire week). The technology used for the motion tracking
varies in according with the performance requested for the specific application. Optical
and magnetic tracking offer the better solution in terms of accuracy. Optical tracking
system can determine the position reaching sub-millimiter accuracy as the VICON [12]
and NDI optical systems [8]. The limitation of optical systems is the dependence to
the line-of-sight (LOS) between an unobstructed marker and a stereo camera, which is a
crucial aspect in image-guided surgical instrumentation and applications where visually-
impaired people could obstruct the device to be tracked, such as TAMO3 systems [7]. All
Polhemus tracking systems [9] are commercial devices and use electromagnetic technology
to track motion of different part of the body as head, hand and fingers. There also many
studies on the human motion tracking using inertial sensors, as the ambulatory monitoring
system developed in [10] for the estimation of walking parameters and the measurement
system of inclination of body segments and activity of daily living (ADL) developed by [6].
An IMU (Inertial Measurement Unit) is made of gyroscope and accelerometer allowing
the tracking of rotational and translational movements. A drawback of IMU sensor is
that they aren’t able to measure the rotation around the gravity axis, so the attitude
estimation is incomplete. A MARG (Magnetic, Angular Rate, and Gravity) sensor is
a IMU which incorporates a tri-axis magnetometer and is able to provide a complete
measurement of orientation relative to the direction of gravity and the earth’s magnetic
field.

1.1 Tracking 3D

1.2 Application fields

1.3 State of the art
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Chapter 2

Attitude determination

2.1 Mathematical representation of the orientation

To describe the orientation of a body two different coordinate systems are used: one
is attached to the body itself and it’s referenced to the second, which is fixed. If the
coordinate system is the Cartesian, we use the frame that is a set of three orthonormal
vectors. In this work we consider the body frame, which moves, and the Earth fixed frame
with three axes x, y, z. There are multiple ways to represent the rotation of an object in
the space, the commonly used are rotation matrics, euler angles and quaternions.

2.2 Quaternion representation of the orientation

A rotation in the space can be completely characterized by quaternion. A quaternion is
a 4 dimensional vector, it belongs to the <4 space. Their form is:

q = ( q1 , q2 , q3 , q4 ) (2.1)

where q1 is the scalar part and (q2, q3, q4) is the vectorial part. It is possible use the
notation q = (q1, w) where w = (q2, q3, q4).

The most intuitive quaternion representation is:

q =

[
cos

(
θ

2

)
, ê sin

(
θ

2

)]
(2.2)

where ê = (ex, ez, ez) is the axis vector and θ ∈ [0, 2π] is the the angle of rotation
around ê.

2.3 Magnetic field and gravitational field

The Earth’s magnetic field is like the one produced by a magnet bar-field dipole. The
geographical North pole is not coincident with the north pole of the magnet because the
magnet axis is tilted 11,5 degrees from the Earth axis . By convention invisible magnetic
field lines generated by the Earth are directed from south to north pole of the magnet.
The Earth’s magnetic field is approximately stationary, because it’s caused by the flow
of liquid iron in Earth’s core, which creates electric currents that produces at finally the
magnetic field. The unit of magnetic field is the Gauss (G) or Tesla (T) which is the
SI unit. The conversion is 1G = 100 µT. The Earth’s field intensity is in the interval
between 0.25 G and 0.65 G (25-65 µT).
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Figure 2.1: quaternion representation

Figure 2.2: The Earth’s magnetic field
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Figure 2.3: The Earth’s gravitational field

The Earth’s mass exercises attraction on the other bodies. The gravitational field can
be seen as multiple vectors directed to the Earth core and whose amplitude decreasing
by leaving the Earth. The acceleration due to Earth’s gravity varies depending on the
distance from the Earth core. At poles where the distance is minimal (the terrestrial ray
at Poles is about 6356,988 km) the gravity measures g=9,823 m/s2, while at Equator
that measure the maximum distance (The terrestrial ray at Equator is about 6378,388
km) gravity is g=9,789 m/s2. So over Earth’s surface the gravity is mainly constant and
can be computed as a mean of this two values, approximately of g 9.81 ms2. To measure
it the sensor needs to be stationary, otherwise it will sense linear acceleration due to the
body motion. To avoid this, it’s possible to implement a low-pass filter, to register only
the gravitational bias.
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2.4 Algorithms which use accelerometer and magnetometer

2.4.1 AQUA

2.4.2 QUEST

2.4.3 TRIAD

The starting point of this algorithm are the two nonparallel reference unit vectors V1andV2andtheircorrespondingobservationunitvectorsW1andW2.W1andW2areobtainedbythenormalizationofaccelerationandmagneticfluxvector :

W1 =
a√

a2x + a2y + a2z

(2.3)

W2 =
m√

m2
x +m2

y +m2
z

(2.4)

The orthogonal matrix A we want to find satisfy the following equations:{
AV1 = W1

AV2 = W2
(2.5)

By these equations, A is overdetermined, so it’s possible to construct two triads of
orthonormal reference and observation vectors:

r = (r1, r2, r3) (2.6)

s = (s1, s2, s3) (2.7)

Now the relation is:
Ari = si , i = 1, 2, 3 (2.8)

A is unique and determined by these two equivalent expressions, which define the TRIAD
solution:

A =
3∑

i=1

si r
T
i (2.9)

By solving equations (2.5) the attitude matrix also has to satisfy a necessary and sufficient
condition expressed by:

V1 · V2 = W1 ·W2 (2.10)

Once obtained the direct cosine matrix, we transform this with the following equation to
compute the corresponding quaternion:

q1 =
1

2

√
1 +A11 +A22 +A33 (2.11)

q2 =
1

4q1
(A23 −A32) (2.12)

q3 =
1

4q1
(A31 −A13) (2.13)

q4 =
1

4q1
(A12 −A21) (2.14)

The final quaternion, the one used to rotate the frame, is the conjugate:

q = (q1, − q2 , − q3 , − q4 ) (2.15)
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2.5 Algorithms which use accelerometer, magnetometer and
gyroscope

2.5.1 Madgwick algorithm

The Madgwick algorithm uses three set of three vectors measurement. The assumption
of the algorithm is that accelerometer measures only gravity and magnetometer measures
only the earth’s magnetic field. So data needs to be preprocessed with a low pass filtering,
to remove linear acceleration and the magnetic interference from the magnetometer data.
Initial condition: the reference frame is considered the first measurement of the sensor,
so the initial data recorded by the sensor will represent the orientation of the reference
frame. The algorithm will calculate variation from this first measurement. Madjwick
use as reference frame known vectors of gravity and magnetic field and start to align the
sensor to these referenced vector. This is less practiced, we prefer choose the reference di-
rection as first measurement of the sensor with respect to a predefined reference direction.
DESCRIZIONE E RAGIONAMENTO PER IL LOW PASS FILTER Campionamento da
1 a 515 Hz: da 10 Hz in poi sul paper va. Errore statico ¡2°, dinamico ¡7° campionando a
10 Hz. Un livello di accuratezza adatto a human motion.

Orientation from angular rate

The gyroscope measurements in rad/s are collected in a vector called sw and from this
the quaternion is obtained as:

Sω = [0 ω1 ω2 ω3] (2.16)

The quaternion derivative calculated from the gyroscope measurements as in eq. 2.17
and represents the rate of change of the earth frame relative to the sensor frame.

S
Eq̇ =

1

2
S
Eq̂ ⊗ Sω (2.17)

So it is possible to obtain the orientation of the earth frame relative to the sensor frame
at istant t (iteration k), S

Eqω,t can be computed by numerically integrating the quaternion
derivative, if the initial conditions are known: eq. 2.18 and 2.19, where ∆t is the sampling
period (1/fs),

Sωt is the angular rate measured at time t and S
Eq̂est,t−1 is the orientation

estimation at the previous instant.

S
Eq̇ω,t =

1

2
S
Eq̂est,t−1 ⊗ Sωt (2.18)

S
Eqω,t = S

Eq̂est,t−1 + S
Eq̇ω,t∆t (2.19)

Orientation from observation vectors

The quaternion that rotates the earth reference system to the sensor reference system is
found as the minimum of an error function. It is a typical optimization problem 2.20
where the objective function or error function is defined as in 2.21.

min
S
E q̂∈<4

f
(
S
Eq̂,

Ed̂, S ŝ
)

(2.20)
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f
(
S
Eq̂,

Ed̂, S ŝ
)

= S
Eq̂
∗ ⊗E d̂⊗S

E q̂−S ŝ =

=

 2dx
(
1
2 − q23 − q24

)
+ 2dy (q1q4 + q2q3) + 2dz (q2q4 − q1q3) − sx

2dx (q2q3 − q1q4) + 2dy
(
1
2 − q22 − q24

)
+ 2dz (q1q2 + q3q4) − sy

2dx (q1q3 + q2q4) + 2dy (q3q4 − q1q2) + 2dy
(
1
2 − q22 − q33

)
− sz


(2.21)

In 2.21 Ed̂ is the quaternion representing the earth frame field, S ŝ is the quaternion
representing the sensor measurement frame of magnetic or gravitational frame and S

Eq̂ is
the quaternion computed from the optimization problem.

So the minimum of this function corresponds to the minimal distance between the
reference direction of the field in the earth frame Ed̂ and the measured field in the sensor
frame S ŝ.

The simplest solution used by Madgwick is the gradient descent algorithm, an iterative
solution which finds the orientation estimation is 2.22.

S
Eqk+1 =S

E q̂k − µ
∇ f

(
S
Eq̂k,

Ed̂, S ŝ
)

‖ ∇ f
(
S
Eq̂k,

Ed̂, S ŝ
)
‖

k = 0, 1, 2...n (2.22)

Where µ is a variable step size and the iteration for k=0 is S
Eq̂0 is the ”initial guess”

orientation and the error direction of the solution is computed by the objective function
f and its jacobian J as 2.23.

∇ f
(
S
Eq̂k,

Ed̂, S ŝ
)

= JT
(
S
Eq̂k,

Ed̂
)
f
(
S
Eq̂k,

Ed̂, S ŝ
)

(2.23)

The Jacobian matrix is obtained by orderfully differentiating the components of the
objective function for the quaternion components reaching 9

JT
(
S
Eq̂k,

Ed̂
)

=

 a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

 (2.24)

Where:

a11 = 2dyq4 − 2dzq3

a12 = 2dyq3 + 2dzq4

a13 = −4dxq3 + 2dyq2 − 2dzq1

a14 = −4dxq4 + 2dyq1 + 2dzq2

a21 = −2dxq4 + 2dzq2

a22 = 2dxq3 − 4dyq2 + 2dzq1

a23 = 2dxq2 + 2dzq4

a24 = −2dxq1 − 4dyq4 + 2dzq3

a31 = 2dxq3 − 2dyq2

a32 = 2dxq4 − 2dyq1 − 4dzq2

a33 = 2dxq1 + 2dyq4 − 4dzq3

a34 = 2dxq2 + 2dyq3
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These are the general formulations of the algorithm applied to a field predefined in any
direction. The Madgwick solution simplifies these equations because gravitational earth
field has only z component g = (0, 0, 1) (normalized vector) and magnetic field has null
y component B = (bx, 0, bz). So substituting Ed̂ with the quaternion deriving from g
and B it is possible to obtain 2.25 and 2.26. The correspondent measurement quaternion
vectors S ŝ in the sensor frame of gravitational and magnetic fields are 2.27 and 2.28.

E ĝ = [0 0 0 1] (2.25)

Eb̂ = [0 bx 0 bz] (2.26)

S â = [0 ax ay az] (2.27)

Sm̂ = [0 mx my mz] (2.28)

Jacobian and objective function are simplified for the magnetic measurements:

fb

(
S
Eq̂,

Eb̂, Sm̂
)

=

 2bx
(
0.5− q23 − q24

)
+ 2bz (q2q4 − q1q3) − mx

2bx (q2q3 − q1q4) + 2bz (q1q2 + q3q4) − my

2bx (q1q3 + q2q4) + 2bz
(
0.5− q22 − q23

)
− mz

 (2.29)

Jb

(
S
Eq̂,

Eb̂
)

=

 −2bzq3 2bzq4 −4bxq3 − 2bzq1 −4bxq4 + 2bzq2
−2bxq4 + 2bzq2 2bxq3 + 2bzq1 2bxq2 + 2bzq4 −2bxq1 + 2bzq3

2bxq3 2bxq4 − 4bzq2 2bxq1 − 4bzq3 2bxq2


(2.30)

And for the gravitational field as:

fg
(
S
Eq̂,

S â
)

=

2 (q2q4 − q1q3) − ax
2 (q1q2 + q3q4) − ay
2
(
1
2 − q

2
2 − q23

)
− az

 (2.31)

Jg

(
S
Eq̂
)

=

−2q3 2q4 −2q1 2q2
2q2 2q1 2q4 2q3
0 −4q2 −4q3 0

 (2.32)

Equations ((??????) and (??????) have a global minimum defined by a line, while
the objective function are defined as eq. 2.33 and 2.34 and have a single point solution,
representing a unique orientation of the sensor.

fg,b

(
S
Eq̂,

S â, Eb̂, Sm̂
)

=

[
fg
(
S
Eq̂,

S â
)

fb

(
S
Eq̂,

Eb̂, Sm̂
)] (2.33)

Jg,b

(
S
Eq̂,

Eb̂
)

=

[
JT
g

(
S
Eq̂
)

JT
b

(
S
Eq̂,

Eb̂
)] (2.34)

Standard approach of optimization requires more iterations of equation 2.22 to find
the optimal quaternion, but Madgwick’s algorithm computes one iteration per sample
time t. It’s possible rewrite equation 2.22 in this way:
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S
Eq∇,t = S

Eq̂est,t−1 − µt
∇f
‖ ∇f ‖

(2.35)

∇f =

{
JT
g

(
S
Eq̂est,t−1

)
fg
(
S
Eq̂est,t−1,

S ât
)

JT
g,b

(
S
Eq̂est,t−1,

E b̂
)
fg,b

(
S
Eq̂est,t−1,

S ât,
E b̂,S m̂t

) (2.36)

S
Eq̂∇,t = S

Eq̂est,t−1 − µ
∇
(
S
Eq̂est,t−1,

E ĝ, S â, Eb̂, Sm̂
)

‖ ∇
(
S
Eq̂est,t−1,

E ĝ, S â, Eb̂, Sm̂
)
‖

(2.37)

µt is a step-size which represents the convergence rate of the estimated orientation and
it is equal or grater than the rate of change of the sensor orientation. Avoiding multiple
iteration to compute the quaternion (k¿1) the result is a real-time output with a greater
speed. However this remains an approximation so second order errors are introduced with
this simplified formulation. Errors irrelevant in case of quasi-static movement, while for
a dynamic sensor behavior the gradient the algorithm will give not at all reliable output.
The value of µt is recomputed for each time sample to avoid overshooting as eq. 2.38.

µt = α ‖SE q̂ω,t ‖ ∆t, a > 1 (2.38)

S
Eq̇ω,t is calculated with equation 2.18 and α is an augmentation coefficient to take

into account noise in the accelerometer and magnetometer measurements.
Fusion process The two estimated quaternions S

Eqω,t and S
Eq∇,t have to be fused to

obtain the optimal quaternion that represents the orientation of sensor. Gyroscope mea-
surements are affected from noise and if accelerometer is not stationary or magnetometer
is exposed to interference, measurements from them are incorrect. The goal of the fu-
sion algorithm is to filter out high frequency errors so introduces weights applied to each
orientation calculation:

S
Eqest,t = γt

S
Eq∇,t + (1− γt)SE qω,t, 0 ≤ γt ≤ 1 (2.39)

Two extremes cases are:

- γ = 0 the sensor orientation is determined only by magnetometer and accelerometer
measurements, so sensor is stationary cause no angular acceleration are detected
from gyroscope.

- γ = 1 the sensor attitude is determined only by gyroscope measurements.

Gamma is chosen as the value

2.5.2 Integrazione Filtro Kalman + (AQUA,QUEST,TRIAD)



Chapter 3

Position estimation

3.1 Generation of a magnetic-dipole field

The 3D space target, in which the object we want to track moves, is permeated by a
magnetic field generated by a solenoid. The expression for dipole model to describe the
field generated by a bobbin is the following:

3.2 Magnetic field tracking

13
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Chapter 4

The algorithm

4.1 Flowchart

4.2 Steps
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Chapter 5

Test

5.1 Instrumentation and setting

A MPU 92/65 and a microcontroller are used to collect data at a given frequency of 100
Hz, than transmitted to the computer where are processed in Matlab.

5.2 Data set acquisition

All algorithms are tested with actual measurement data collected from a MARG sensor.
During the period when data are collected, the sensor was rotated 90 degrees, followed
by a -180 degrees and then other 90 degrees about each axis. Two test with the same
rotation were performed: a static test with an angular rate of 110 DPS and a dynamic
test at 190 DPS. These angular velocity are chosen in the range of human motion.

5.3 Static and dynamic test

17
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Chapter 6

Results
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Chapter 7

Conclusions
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