
POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Biomedica

Tesi di Laurea

Spiking neural networks from
theory to practice: machine

learning with biological plausible
neuron model.

Relatore

prof. Elisa Ficarra

Correlatori:

Francesco Barchi
Francesco Ponzio, Gianvito Urgese

Luca Zanatta

Marzo 2019



Summary

Recent trends in deep learning have led to a proliferation of studies investigating
deep Artificial Neural Networks (ANNs) in a supervised fashion. The most consoli-
dated approach to train such ANNs relies on the back-propagation method, with the
rigorous requirement of using a differentiable, continuous-valued activation function
for the structuring element of the net, i.e. the neuron. Such function is fairly far
away from the realistic biologically behaviour of the neuron, which relies on spikes
to compute and transmit information. Spiking Neural Networks (SNNs), making
use of spikes to manage information flows, seem thus the most feasible solution to
fully explore how brain works and computes. Moreover SNNs are highly hardware
friendly and more efficient than ANNs in general, opening the way to many appli-
cations, especially for portable devices. Besides this aspects in favor of SNNs, their
implementation and use is still an open issue, due to the paucity of frameworks,
simulators and practical case studies. The aim of the present Master degree thesis
is therefore three- fold: 1)an exhaustive investigation of recent methods to develop
and train SNNs in the field of image classification; 2)the testing of SNNs poten-
tials in an extremely challenging task, i.e. the classification of histological samples,
where the main challenge to be tackled is the extreme intra-class and inter-dataset
variability, due to the architectural and colouring characteristics of the histological
images. More specifically the experiments were focused on the classification of three
categories of interest for Colorectal Cancer (CRC), namely adenocarcinoma, ade-
noma and hyper-plastic polyp; 3)the comparison with the state-of-the-art technique
for image classification: deep Convolutional Neural Networks.

i



Acknowledgements

Vorrei ringraziare innanzitutto la mia relatrice, la professoressa Elisa Ficarra, per
avermi dato l’opportunità di lavorare nel suo laboratorio ed in questo modo di
approfondire gli argomenti di mio interesse sui quali spero di poter continuare a
lavorare. Ringrazio anche Francesco Barchi, Francesco Ponzio e Gianvito Urgese
per avermi seguito in questi mesi, aiutato ad acquisire nuove competenze ed a volte
condiviso anche momenti di svago. Un grande ringraziamento va alla mia famiglia:
dai miei genitori che mi hanno permesso di frequentare l’università qui a Torino
e che ci sono stati sia dal punto di vista economico che morale, ai miei fratelli
Fabio, Mattia e Mauro e a mia sorella Yvonne con cui di certo non sono mancati
bei momenti insieme nonostante la distanza ed i miei nonni. Poter frequentare
il Politecnico di Torino è stata una grande opportunità, a volte con momenti più
difficili di altri, ma è stato anche per la mia famiglia che in questi momenti mi sono
motivato per proseguire con costanza ed impegno i miei studi. In questi anni, il
mio percorso è stato reso speciale anche dalle persone che ho incontrato qui e che
adesso fanno parte della mia vita. Con ognuna di loro le esperienze fatte insieme
sono un altro bel ricordo di questi anni e, ovviamente, spero di averne tanti altri
con loro. Per questo motivo vorrei ringraziare innanzitutto Irene la sicula (chi più
di lei mi ha sopportato?), ma anche: Alessandro, Alsona, Baran, Carlo, Chiara B,
Chiara C, Chiara M, Dascia, Gabriel, Irene, Marco, Matteo, Mili, Michela, Momo,
Nicolò, Pasqui, Postino, Roberto, Stefano, Thom, Yong.

ii



Contents

Summary i

Acknowledgements ii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Brief introduction to machine learning . . . . . . . . . . . . . . . . 1
1.2 Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Software simulators . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Neuromorphic hardware . . . . . . . . . . . . . . . . . . . . 6
1.2.3 PyNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Spiking neural networks 10
2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Hodgking-Huxley model (HH) . . . . . . . . . . . . . . . . . 11
2.1.2 Leaky integrate and fire model (LIF) . . . . . . . . . . . . . 13
2.1.3 Spike response model (SRM) . . . . . . . . . . . . . . . . . . 13
2.1.4 Izhikevich model (IZK) . . . . . . . . . . . . . . . . . . . . . 14
2.1.5 Neurons comparison . . . . . . . . . . . . . . . . . . . . . . 15
2.1.6 Synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Neural Engineering Framework (NEF) . . . . . . . . . . . . . . . . 23
2.4 Network topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Hebbian rule . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.2 Spike-timing dependent plasticity (STDP) . . . . . . . . . . 29
2.5.3 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iii



3 Methods and results 39
3.1 Input encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Datatset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Discussion 52

Bibliography 54



List of Figures

1.1 Neuron anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Neuron model of McCulloch-Pitts . . . . . . . . . . . . . . . . . . . 4
1.3 SpiNNaker multicore System-on-chip . . . . . . . . . . . . . . . . . 7
1.4 BrainScaleS and SpiNNaker systems . . . . . . . . . . . . . . . . . 8
1.5 TrueNorth and SyNAPSE project . . . . . . . . . . . . . . . . . . . 8
1.6 Loihi board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Action potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Some biological spike trains . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Neuron of Hodgking-Huxley . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Electronic circuit of LIF neuron . . . . . . . . . . . . . . . . . . . . 13
2.5 Membrane potential of LIF neuron . . . . . . . . . . . . . . . . . . 14
2.6 Membrane potential of Izhikevich neuron . . . . . . . . . . . . . . . 15
2.7 Some spike trains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Graph of computational cost-biological reliability . . . . . . . . . . 17
2.9 Summary of the neuron behaviour . . . . . . . . . . . . . . . . . . . 17
2.10 Conductance of synapses . . . . . . . . . . . . . . . . . . . . . . . . 18
2.11 Neural gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.12 Time-to-first-spike coding . . . . . . . . . . . . . . . . . . . . . . . 22
2.13 Rank-order coding . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.14 Latency coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.15 NEF with two neurons . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.16 NEF with 30 neurons . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.17 Feedforward network . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.18 Recurrent artificial neural network . . . . . . . . . . . . . . . . . . 27
2.19 Synfire chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.20 Reservoir computing . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.21 Example of CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.22 CNN architecture and neuron . . . . . . . . . . . . . . . . . . . . . 29
2.23 Pooling layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.24 Examples of learning window . . . . . . . . . . . . . . . . . . . . . 31
2.25 Examples of working STDP . . . . . . . . . . . . . . . . . . . . . . 32

v



2.26 LIF vs soft LIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.27 Network of Schmuker . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.28 Network of Diamond . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.29 Network of Diehl . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.30 SCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Plot Poisson distribution . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Firing rate with Poisson distribution . . . . . . . . . . . . . . . . . 40
3.3 Firing rate with gamma distribution . . . . . . . . . . . . . . . . . 41
3.4 Scatterplot of Fisher’s iris dataset . . . . . . . . . . . . . . . . . . . 42
3.5 Examples of Fisher’s iris dataset . . . . . . . . . . . . . . . . . . . . 42
3.6 Example of digit in MINST . . . . . . . . . . . . . . . . . . . . . . 43
3.7 Examples of the three classes of CRC coloured. . . . . . . . . . . . 43
3.8 Examples of the three classes of CRC in grayscale. . . . . . . . . . . 44
3.9 Graph of accuracies of Schmuker’s network. . . . . . . . . . . . . . 44
3.10 First try: training . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.11 First try: test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.12 Second try . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.13 Third try . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.14 Accuracy graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.15 Example of divergence. . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.16 Accuarcy graph of the tries of Diamond’s network. . . . . . . . . . . 48
3.17 Hyperparameters analysis of CNN. . . . . . . . . . . . . . . . . . . 48
3.18 Graph from MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.19 Graph from CRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.20 CRC misclassification . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.21 Hyperparameters analysis of CNN. . . . . . . . . . . . . . . . . . . 50
3.22 Confusion matrix of CNN and SCNN. . . . . . . . . . . . . . . . . . 51



List of Tables

2.1 Table of Hebbian rules . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



Chapter 1

Introduction

This thesis was born from the idea of approaching to the interesting field of machine
learning, using algorithms that mimic the behavior of mammalian brain, in partic-
ular using models of spiking neural networks (SNNs). In the last few years, a lot of
companies (Intel and IBM) and universities have been investing in this new type
of machine learning approach because it is showing a lot of positive sides: they are
environmentally-friendly (in terms of power consumption) and hardware-friendly
(a neuron model can be create with few transistor). In the current project, we are
going to describe the third generation of artificial neural networks, then we will
classify the images of MNIST and colorectal cancer (CRC) datasets and compare
the spiking convolutional neural networks (SCNNs) with the convolutional neural
networks (CNNs).

In this work, the reader can find a brief introduction to machine learning, fol-
lowed by a summary of the state of the art of simulators and of the spiking neural
networks models. The thesis continues with the analysis of four SNNs and in the
end, the performed tests and their results are presented.

1.1 Brief introduction to machine learning

Studies of Machine Learning (ML) appeared in the first decades of the XX century.
Machine learning uses statistical methods for improving the performance of patterns
recognition [19]. The machine learning methods can be divided into two main
categories: the unsupervised methods and the supervised methods. Artificial neural
networks (ANNs) are in the subset of supervised methods.

Artificial neural network create mathematical models during the training phase.
In this phase the classification error between the model response and the desired
response is calculated and this error is used to adjust the model by modifying its
internal parameters called hyperparameters. The training phase is performed by
giving as input one stimulus (data that the network have to analyze as images and

1



1.1. BRIEF INTRODUCTION TO MACHINE LEARNING

signals) at a time: the training stimuli are contained in a training set. After every
stimulus or every set of input, some hyperparameters are updated. This step allows
the algorithm to predict the output of a given input without explicit instructions
[23].

Artificial neural networks are inspired by the animal brains: the main goal of
the ANN is to simulate the brain and solve the tasks with the same or better results
compared to the biological brain [26].

The basic unit of the brain of the animals is the neuron. This type of cell
responds to the electrical and chemical stimuli. Neurons are connected to each
other by synapses, which are characterized by an efficiency (called weight). Inter-
connected neurons create neural pathways and neural circuits. A neural pathway
connects a part of the brain to another one in order to send a message between
two regions of the brain, while a neural circuit carries out a specific function [17].
Multiple neural circuits create large scale brain networks, that interact with each
other allowing to perform complex functions [16].

Figure 1.1: Neuron anatomy. We can see the junction between two neurons (called
synapse), the cell body, the axon, where the signals are sent, and the dendrites,
where the signals are received (from [17]).

The structure of the biological brain is mimicked by artificial neural networks:
the same subunits interact with each other in different and complex ways in order to
achieve a specific result. The fundamental elements of ANNs are the neurons, that
are responsible for the basic operations. They behave in a different way depending
on the neuron model, each model is characterized by an activation function, and
they can be activated or inactivated from the input they receive. Group of neurons
can be organized in a different way: a basic group of neuron can form a layer,
different layers are generally present in a neural network. In general, each layer
corresponds to a specific elaboration step. An elementary neural network is usually

2



1.1. BRIEF INTRODUCTION TO MACHINE LEARNING

composed of three layers:

• Input layer: it is composed of receive an input from the user;

• Hidden layer: it elaborates the data (stimuli) received from the input layer;

• Output layer: it gives the result of the computation.

This elementary structure can be expanded by adding complexity to the layers and
by adding more layers to the structure.

The complexity of the model used to describe the behavior of the neuron allows
us to identify three generations of ANNs [26].

First generation of ANNs

The first generation of ANNs (called also perceptrons or thresholdgates) is based
on the neuron described by McCulloch–Pitts:

y =

{
1, if h =

∑
i xiwi ≥ u

0, otherwise
(1.1)

where y is the output of the neuron, that can be 0 (stands for not activate) and
1 (stands for activate), h is the state of the neuron, wi is a synaptic weight, xi is
an output of the previous neurons and u is the threshold, that at the beginning
was set to 0, and then can be set by the user (introduction of a bias), giving more
flexibility to the network [48].

The first generation of ANNs doesn’t work well with continuous data.
Thanks to the binary nature of this ANN, the theory of Hebb1 is used for

training this type of NN: it claims that if a pre-synaptic neuron (that acts as input)
causes the activation of the post-synaptic neuron (it receives the input stimulus),
the synaptic weight is enhanced [48].

Second generation of ANNs

The second generation of ANN is the evolution of the first one and it is based on a
neuron with a continuous activation function g. The neuron is defined as:

y = g(
∑
i

xiwi − b) (1.2)

1Donald Olding Hebb (July 22, 1904 – August 20, 1985) was a Canadian psychologist that
works in the neurophysiology field. He is popular for the Hebbian rule, which it asserts that if a
pre-synaptic cell helps to fire a post-synaptic cell, the synaptic is strengthened [20].

3



1.1. BRIEF INTRODUCTION TO MACHINE LEARNING

Figure 1.2: Representation of the neuron model of McCulloch–Pitts.

where g is often a sigmoid function and b is a function translation factor called bias
depending on which the function is traslated.

With this type of ANNs the rule of Hebb is not used. New types of algorithms
are employed, such as gradient descendent, that allows to modify the weights in
the last layer using the error between the predicted output and the expected one.
With the gradient descendent algorithm, there is backpropagation (BP) algorithm,
that allows to propagate the error in the hidden layer [48]. This method allows
the training of ANNs containing many hidden layers (deep learning) [48]. The
second generation of ANNs is computationally more powerful: it can simulate all
the boolean functions and some of them can be created with less neurons than the
ones used in the first generation of ANNs [36]. Moreover, it has been demonstrated
that an ANN of second generation can approximate, arbitrarily well, any continuous
function with just one hidden layer [48].

Third generation of ANNs

The third generation neural networks have a new type of neural model called spik-
ing neuron. This type of neurons is modelled with a system of Ordinary Differential
Equation (ODE), which allow simulating the spike dynamics of the biological neu-
ron. The presence of the spikes causes the information to be encoded over time:
the codification is determined by the firing rate or by the period of time between
two consequent spikes [36]. This type of ANN can create any function made from
the first two generations using a single hidden layer and, in some cases, with fewer
neurons [48].

4



1.2. SIMULATORS

This project focuses on the third generation ANNs: some tools (simulators) for
running these ANNs are presented in the next section.

1.2 Simulators

Different simulators were implemented for running spiking neural networks, in par-
ticular, they can be divided into two classes: software simulators and hardware
simulators. The hardware simulators can speed up the mathematical operations of
the spiking neural models, being simple hardware accelerators. The neuromorphic
hardware is an hardware accelerator inspired by human brain, it either implements
the neural models through the hardware or builds a communication system that
allows ”real-time” communication between neurons.

Both software and hardware simulators will be described in detail in the follow-
ing paragraphs.

1.2.1 Software simulators

There are a lot of software simulators, the most common ones are: NEST [30], Brian
[31] and NengoDL [41] simulators. These three tools have a different philosophy.

NEST was developed by Dr. Marc-Oliver Gewaltig and Dr. Markus Diesmann
and it is created for simulating huge spiking neural networks. This simulator in-
cludes many already implemented neuron models and it makes it easy to implement
clusters of neurons and the connections between them. The connections (synapses)
can be static or dynamic and they are characterized by two parameters: weight
and delay. The weight is a value that will be multiplied by the value of the current
corresponding to the input stimulus of the neuron, while the delay is a value that
adds a delay between the output current of the pre-synaptic neuron and the input
current of the post-synaptic neuron. As previously mentioned, there are static and
dynamic synapses: the static synapses have a fixed weight and delay, while the
dynamic ones have a weight or a delay that can change during the simulation.

Brian has a different philosophy from nest: while this is more focused on the
networks, Brian gives more attention to the neurons. In fact, it allows the re-
searcher to implement the neuron model by writing the mathematical equation in
mathematical form, so that more time can be spent on the study of the model and
not on the implementation.

NengoDL links these neuromorphic simulators (Nest and Brian) to the deep
learning tools developed for the second generation ANNs (as TensorFlow [13]).
These include a set of ML models and algorithms that help the researcher to build
new ML architectures. Moreover, NengoDL wants to make the implementation of

5



1.2. SIMULATORS

hybrid neural networks (containing both continuous neurons and spiking neurons)
easier.

1.2.2 Neuromorphic hardware

In the previous section SNN have been introduced. Companies are investing in
these tools because they are hardware-friendly: in the last few years, many compa-
nies and universities have been developing different hardware accelerators (called
neuromorphic hardware). These devices allow for the simulations of the neural
networks to be faster and less power-consuming [46]. In the following section, we
are going to explore some neuromorphic hardware made by different companies and
universities.

The University of Manchester, that is in the Human Brain Project (HBP) which
is a European Union project that links over more than 100 infrastructures, including
universities, research centres and teaching hospitals with the aim of advance in
the fields of neuroscience, medicine and computing, designed a massively-parallel
computer named SpiNNaker. The architecture of this device is inspired to the
human brain which is formed by billions of units that communicate with each other
through unreliable spikes. The first goal of the developers of this neuromorphic
hardware is to create a huge computer capable to simulate massive neural networks
in real time. This is so useful for roboticists, neuroscientists and computer scientists.
The second aid is to create a new supercomputer architecture that is energy-efficient
[9]. SpiNNaker has a hierarchic architecture and the whole structure is composed
by 1,036,800 ARM9 cores and 7TB of RAM distributed in 57,000 nodes. The
nodes communicate with each other through packages of 40 bits. The system has
a communication speed of 5 billions of spikes/s. 48 nodes are zipped in one PCB
in an hexagonal mesh. The whole system requires 1200 board and it can consume,
at most, 90 kW of electrical power [10]. The base unit of SpiNNaker is a System-
on-chip, this is Globally Asynchronous Locally Synchronous (GALS) composed by
18 ARM968 cores. These cores have a low energy consumption, but they have
limited computational power. The SpiNNaker chip (shown in fig. 1.3) is composed
of a router, at the centre, surrounded by 18 cores, of these 17 are used for the
task, while one is used for checking the fault tolerance and manufacturing yield-
enhancement purposes. Spinnaker makes use of an efficient brain-inspired network,
so it uses package-switched network because it allows a high number of connections.
Every chip uses his own clock for communicating, performing an asynchronous
communication and, due to the fact that it is in a hexagonal mesh, every chip is
linked to 6 other chips [11].

BrainScaleS is another neuromorphic hardware and it is formed by an uncut
wafer and can emulate adaptative spiking neurons, that have low computational
cost and no-fixed spike threshold, and dynamic synapses. This wafer is composed of
450 chips called HICANNs (High Input Count Analog Neural Network chips) [44].

6



1.2. SIMULATORS

Figure 1.3: In the figure is represented the SpiNNaker multicore System-on-Chip
(from [11])

From the simulation made on the wafer, it has emerged that this device operates
at accelerated biological time with a factor of 103 ÷ 105 compared to human brain
[43] and it consumes less than a normal simulator, about 5.6W for wafer. Each
wafer has 4 ∗ 107 synapses [43] and 260 ∗ 103 of neurons [44]. More wafer can be
linked together: BrainScaleS is composed of 20 wafers [1].

TrueNorth is a chip developed by IBM and, as SpiNNaker, it is inspired to the
mammalian brain but, while the second one is flexible, the first one is more dense
and low-power [4, 12]. It is composed of 4096 cores and it can simulate 1 million
neurons and 256 millions of synapses, all in just 28nm. This chip has 5.4 billions of
transistors and it consumes less than 100mW . This board is so scalable in fact, in
a DARPA program called SyNAPSE, they want to assemble up to 4096 TrueNorth
chips so they can simulate 4 billions of neurons and 1 trillion synapses consuming
less than 4kW [6].

Loihi is neuromorphic hardware created by Intel and launched in January of
2018 [7]. This chip is so scalable and it can have up to 4,096 cores per chip, while
every core is composed of 128-neuromorphic cores, each of them can simulate up to
1,024 neurons so every core can simulate about 130,000 neurons and 130 millions
of synapses [7, 24]. This architecture can link up to 16,384 chips that communicate

7



1.2. SIMULATORS

Figure 1.4: The figure on the left is the BrainScaleS system, composed by 20 wafer
while, the figure on the right is SpiNNaker system. (from [2]).

Figure 1.5: The left figure (from [5]) represents the TrueNorth chip, while the right
one (from [12]) is a board of SyNAPSE project with 16 TrueNorth chips.

with each other [7].

1.2.3 PyNN

PyNN [25] is a common frontend for a lot of simulators (nest, neuron, brian, SpiN-
Naker, etc...). Every neuromorphic simulator uses its own programming language
and/or syntax, so it is difficult porting the network between two different simula-
tors, this operation can be useful for comparing the implementation difference or
for checking if there are some bugs in the simulators. Moreover, every simulator
has its positive sides and negative ones: often they are a tradeoff between scalabil-
ity, flexibility and efficiency then, depending on what we are going to implement,
important to use one simulator rather than another one. In this far west PyNN
comes in to put some order, in fact his syntax is the same for a lot of neuromorphic
simulators (making easy the porting between different simulator), it is scalable (it
is easy to work with neurons populations and with the single cells) and it let the
researcher implements the code in a hybrid way (it means that we can mix the

8



1.2. SIMULATORS

Figure 1.6: In the figure is represented the Loihi test board. It is composed of 512
neuromorphic cores, it means that it can simulate up to 524,288 neurons (from [7]).

PyNN syntax with native simulator syntax), the price of the last feature is lost of
flexibility.

9



Chapter 2

Spiking neural networks

2.1 Models

The unit of the SNN is the neuron, this one is created to be as the biological
one. It processes the information that arrives from the other neurons (pre-synaptic
neurons) and it sends the spikes trains (sequence of spikes) to the other cells (post-
synaptic neurons) through the axon. The probability that the neuron fires, increase
with increasing the membrane potential: there will be a fire, or more then one, only
if the membrane potential reaches a threshold (called spike threshold) [39].

Figure 2.1: Representation of an action potential (from [18]).

In the figure 2.1 we can see an approximative plot of an action potential that is
the spike of a neuron. The depolarization occurs when the input stimulus is high

10



2.1. MODELS

enough to reach the spike threshold. When it happens the action potential rises
and, until the ending of the repolarization, the neuron is in the absolute refractory
period, in which it cannot fire again. After the repolarization, which ends with
the crossing of the resting potential, the hyperpolarization starts in which is more
difficulte that the neuron fire, but it is possible. This time period is called relative
refractory period. In the end, the cell returns to resting potential.

Figure 2.2: Representation of some biological spike trains, the main behaviour are
from excitatory cell family (RS, IB, CH), inhibitory cell family (FS, LTS) and
thalamocortical cell family (TC) (from [33]).

The first that models the biological neuron were Alan Lloyd Hodgkin and An-
drew Huxley, who won the Nobel prize in 1963 [46]. They create an high accuracy
biological model neuron, using a system of ODE. Due to it complexity, the neuron
model has an high computational cost therefore many neurons models were created:

• Hodgking-Huxley model (HH) (section 2.1.1)

• leaky integrate-and-fire model (LIF) (section 2.1.2)

• spike response model (SRM) (section 2.1.3)

• Izhikevich neuron model (IZK) (section 2.1.4)

2.1.1 Hodgking-Huxley model (HH)

All the neurons models derive from the HH model, which is so complex because it
models all physiological aspects.

11



2.1. MODELS

Figure 2.3: This is an example of the trend of the membrane potential of HH neuron
(top) with a input current (bottom).



a
Ri

∂2v(z,t)
∂z2

= Cm
∂v(z,t)
∂t

+ (v(z, t) + VNa)gNa(v) + (v(z, t)− VK)gK(v) + (v(z, t)− VL)gL

gK = ḡKn(v, t)4

dn(v,t)
dt

= αn[a− n(v, t)]− βnn(v, t)

αn = fαn
v+Vαn

e
v+Vαn
Vαn −1

βn = fβne
v

Vβn

gNa = ¯gNam(v, t)3h(v, t)
dm(v,t)
dt

= αm[1−m(v, t)]− βmm(v, t)
dh(v,t)
dt

= αh[1− h(v, t)]− βhh(v, t)

αm = fαn
v+Vαm1

e

v+Vαm1
Vαm2 −1

βm = fβme
v

Vβm

αh = fαhe
v

Vαh

βh = fβh
v+Vβm1

e

v+Vβm1
Vβm2 −1

(2.1)
Due to his complexity, it is impossible to create a large SNN with this neuron
model.

12



2.1. MODELS

2.1.2 Leaky integrate and fire model (LIF)

The LIF neuron is a semplification of HH neuron [37].

Figure 2.4: Electronic circuit of LIF neuron
Electronic circuit that represents an LIF neuron with a input current.

τm
du

dt
= urest − u(t) +RI(t) (2.2)

where τm = RC is the time constant and it sets the speed of charge and discharge
of membrane potential u(t). The neurons fires when u(t) reaches the threshold (θ),
at time t(f). After firing, the membrane potential is set to urest (often fixed to 0).
The absolutely refractory period is forced to u = uabs for a certain period of time
(dabs). After that, the membrane potential will return to u = urest [37].

2.1.3 Spike response model (SRM)

Spike response model (SRM) is a model of a neuron that doesn’t depend on the
voltage, but just on (t− t̂), where t̂ is the time of the last spike generated from it,
moreover it is not described by a difference equation, but by an integral [38]:

um(t) = η(t− t̂k) +
∑
j

wjk
∑
f

εjk(t− t̂k, s) +

∫ ∞
0

κ(t− t̂k, s)iext(t− s)ds (2.3)

where u(t) is the membrane potential, the εjk(s) describes the trend of post-synaptic
potential: j is the pre-synaptic neuron, while k is the neuron in which we are
calculating the membrane potential. tfj is the spike train incoming from neuron j

(f is the number of spikes) and s = t− tfj . κ(t− t̂k, s) is the response to an inject

current iext(t). η(t − t̂k) represents the trend of the action potential (when the
membrane potential reaches the spike threshold θ) and the hyperpolarization after

13



2.1. MODELS

Figure 2.5: Trend of membrane potential of LIF neuron

the fire. Where no input occurrences, u(t) = Erest [38]. A feature of this model
is that the spike threshold is not fixed, but it depends on time of the last spike:
θ = θ(t− t̂k) [38].

2.1.4 Izhikevich model (IZK)

Izhikevich model is a good tradeoff between biological reliability and computational
cost[37]. This model is a simplified HH model, in fact it uses just two differential
equations:

dv

dt
= 0.04v2 + 5v + 140− u (2.4)

du

dt
= a(bv − u) (2.5)

if v ≥ θ then

{
v ← c

u← u+ d
(2.6)

where the equation 2.6 represents the post-spike behaviour of the neuron. v is
the variable that represents membrane potential, while u is the recovery variable
that describes the activation of K+ ionic currents and the inactivation of Na+ ionic
currents. a, b, c and d are just dimensionless parameters [33] and θ is the spike
threshold.

14



2.1. MODELS

Figure 2.6: Trend of membrane potential of Izhikevich neuron (top) with a input
current (bottom).

2.1.5 Neurons comparison

The HH neuron model is the most biological reliable model, while the LIF model
is one of the easiest model to implement. The problem of the LIF model is that it
is not able to reproduce all the biological spike trains that the first model can do.

In the figure 2.7 there are 20 different spikes trains. All of them can be created
with the HH model, while just three of them can be reproduced by IF model. If
we analyze the computational cost, HH model is the heaviest one, while IF is the
lighter: for simulating 1ms of HH neuron model the CPU uses 1200 FLOPS1, while
for the second model just 5 FLOPS. Variants of LIF model need about ten FLOPS
(see figure 2.8) [37]. In figure 2.9 we can see which kind of spikes trains the neurons
can repeat and if the model has biological meaning. Therefore, depending on what
we are going to do we can choose the appropriate model to simulate: if we are
interested to a biological behaviour of a few neurons, we can use the HH model
while, if we are going to simulate an SNN with many layers and neurons, we should
use LIF model or IZK model.

1FLoating point Operations Per Second (FLOPS): it represents the operation number with
the floating point performed by the CPU in one second.

15



2.1. MODELS

Figure 2.7: Some spike trains used for comparing some types of neurons (from [34]).

2.1.6 Synapse

The synapse is the junction between two neurons or between a neuron and a mus-
cle/glandular cell. The message, when passes through a synapse, opens the ionic
channels creating a postsynaptic current (PSC) and changing the membrane post-
synaptic potential (PSP) [38]. In case of there is an excitatory signal, we have a
depolarization of the membrane potential (EPSP) while, if there is an inhibitory
signal, we have an hyperpolarization of the post-synaptic cell(IPSP) [38].

The PSC (isyn(t)) is often modelling in function of the synapse conductance

16



2.1. MODELS

Figure 2.8: Graph of computational cost vs biological reliability (from [34]).

Figure 2.9: In this figure is shown which kind of behaviour the neurons model can
have and if they have biological meaning. Blank cells mean that the author wasn’t
able to find the right parameters but in theory, they exist (from [34]).

(gsyn(t)) and the PSP (um(t))[38]:

isyn(t) = gsyn(t)(um(t)− Esyn) (2.7)

where Esyn is a synaptic parameter, which is -75V for inhibitory synapses and 0 for
the excitatory one. In this model, g is only in function of the time, but this is not

17



2.1. MODELS

the real behaviour of the biologic conductance because it also depends on the pre-
and post-synaptic behaviour [38]. The simplification model (just in function of the
time) is [38]:

gsyn =
∑
f

w[e
−t+tf
τd − e

−t+tf
τr ]H(t− tf ) (2.8)

where w is the synaptic efficacy, τd is the decay time, τr is the rise time and tf is
the time of arrival of the pre-synaptic action potential. H(t − tf ) = 1 if t > tf , 0
elsewhere. In the excitatory synapses, τr is really small in comparison to τd so we
can rewrite the equation 2.8 as [38]:

gsyn =
∑
f

we
−t+tf
τd H(t− tf ) (2.9)

Figure 2.10: Trend of conductance of synapses.

18



2.2. ENCODING

2.2 Encoding

2.2.1 Input

There are many ways to transform a image in a spikes train, we are going to analize
two of this methods: Poisson distribution and neural gas.

Poisson distribution

In this type of coding, the value of the pixel is seen as the instantaneous firing rate
[29]. The bins are the maximum number of spikes that the neurons can fire in a
single exposition time:

bins =
tsim
dt

(2.10)

where tsim is the exposition time of an individual image and dt is the period of time
where the neuron can spike at most once. The probability that the unit fires in dt
is defined as rdt, where r is the intensity of the pixel. It has been shown that the
probability of having n spikes in a time t, is the Poisson distribution [29].

Data: images to coding
Result: Poisson distribution of spike
bins = tsim

dt
;

x=random uniform distribution of image size;
for all pixel do

if rdt > x then
1 spike

else
nothing

end

end
Algorithm 1: Pseudocode of Poisson distribution of spike train

Neural gas

With this method the firing rate is no more proportional to the intensity of the
pixel, but it depends on the distance between the virtual receptors (VRs), that are
excitable neurons that have to traduce the information from distance VR-stimulus
to time, and the image. With this strategy, the image is a point in a n-dimensional
space (where n is the number of pixels for each image). The coordinates of the VRs
are chosen to cover all the space of the stimulus and neural gas is chosen for this
task.

In the neural gas algorithm, the VRs are initialized in a random way, then
they are attracted by the images (these ones are presented to the VRs one-by-one):
higher is the distance, lower will be the move (see fig: 2.11 and pseudocode: 2).

19



2.2. ENCODING

After train the VRs, the distance between the sensors and the stimulus should be
calculated. This task is reached by using the Manhattan distance (that is calcu-
lated by adding the absolute value of the difference of the coordinates) normalized
between 0 and 1:

rij = 1− dij − dmin
dmax − dmin

(2.11)

where dij is the Manhattan distance between the j-th image and the i-th VR, dmin
and dmax are the minimum and the maximum distance in the whole training set,
respectively. The rate of each transducer will be:

ρij = rij(ρmax − ρmin) + ρmin (2.12)

where ρij is the firing rate of the i-th VR when the j-th image is shown as the input
of the network. ρmax is the maximum frequency and ρmin is the minimum frequency
of the VRs. The gamma distribution is created starting from this frequency.

Data: images: D = { ~x1, ~x2, ~x3, ... ~xn} and VRs: W = { ~w1, ~w2, ~w3, ... ~wp}
Result: The coordinates of VRs
for all ~x ∈ D do

for all ~w ∈ W do

d← |~x− ~w|2
end
sort all distances in ascending order;
assign a rank r to all VRs;
for all ~w do

~wj ← ~wj + αe
rj
λ (~x− ~w)

end

end
Algorithm 2: Pseudocode of neural gas, where α is the learning rate and λ is
the aka connectivity.

20



2.2. ENCODING

Figure 2.11: The red squares are the VRs before showing an image (yellow circle).
When the image is displayed, the neural gas algorithm moves the VRs in a new
position depending on the distance between the image and the VR: blue squares
(modify from [14]).

2.2.2 Processing

At the beginning of the 1920s, the scientists thought that the neurons put the
information in the firing rate. This type of communication was supposed and
then demonstrated by Adrian and Zotterman who saw that the firing rate of the
cutaneous receptors of frogs increases with the increasing of employed pressure [39].
At the beginning of the 2000s, the scientists notice that some parts of the brain
do not zip the information in the firing rate but they put it in the precise timing
of the action potential: the message is in the time, not in the frequency [39]. In
support of this theory, there are two important facts:

• many behaviours are too fast for having a communication in the rate code
(the timing window should be too large);

• the frequency doesn’t hold all the information: the scientists discovered that
in some parts of the primary auditive cortex, the neurons can coordinate the
spike times of the neighbours. The result is that these clusters have some
bursts in the signals, also if the mean frequency doesn’t change[39].

Time to first spike

In this kind of encoding the information is in the delay between the start of the
stimulus and the fire of the neuron. It has been shown that this latency carries
double of the information compared to the shape of the spike and about the same
info of the spike trains [39]. In this type of coding, the neuron can fire just once
during the stimulus, and if it fires more then once, the other spikes are ignored [42].
This coding is so easy to implement: just one neuron with inhibitory feedback [42].

21



2.2. ENCODING

Figure 2.12: Example of time to first spike coding (from [39]).

Rank-order coding (ROC)

Another type of coding is rank-order coding (ROC) in which we check the firing
rank: the stimulus is encoding in the order of the spikes [39]. In this kind of
codify, every cell can fire just ones for every stimulus. ROC was found in the
visual cortex of primates, and it allows the ultra-fast communication [39]. This
encoding can allow N ! fire orders and it means that ROC can transmit log2N ! bits
of information (where N is the number of the neurons) [47].

Figure 2.13: Example of rank-order coding (from [39]).

22



2.3. NEURAL ENGINEERING FRAMEWORK (NEF)

Latency code

In this coding the information is in the time between spikes of different neurons2.
The amount of information that the latency code can transmit depends on the
number of the neurons and on the timing windows: N ∗ log2t [47].

Figure 2.14: Example of latency coding (from [39]).

2.3 Neural Engineering Framework (NEF)

Neural Engineering Framework (NEF) is a platform that helps the researcher to
implement a brain. We are going to briefly analyze it because it is the NengoDL
substrate. First of all, it is important to talk about the tuning function. This
is different from the response function (function that characterizes the neuron)
because, while the second one depends on intrinsic parameters of the cell, the
tuning function depends on intrinsic and extrinsic values as can be the position in
the brain (depending on the position, a neuron can have a different stimulus to the
same input, this happens because different neurons are located in various positions
with different neighbours) [28]. The tuning curves can be represented as a function
that binds input intensity to the firing rate (see fig. 2.15 and 2.16) and they are
used for input encoding.

For reading the results, we have to decode the output. This phase is performed
by a weighted sum of PSC of the neurons, in which the weights research is an
optimization problem (the optimization algorithms decrease the error between the
input and the output): the weights have to represent the input signal. Therefore,
more important will be the neuron (for the representation of the stimulus) greater

2The relative time is so important in the communication between neurons because the ”value”
of the synapses is increased or decreased by the latency between pre- and post-synaptic spikes
[39].

23



2.4. NETWORK TOPOLOGIES

will be the weight and more neurons will be in the population and more precise
will be the output [28].

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Input signal

0

20

40

60

80

100

Fi
rin

g 
ra

te
 (H

z)

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

1

2

Ne
ur

on

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

0

1

Ne
ur

on

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

1.5

1.0

0.5

0.0

0.5

1.0

1.5 Input signal
Decoded esimate

Figure 2.15: In clockwise order: A) Tuning curves of 2 neurons. B) The spikes
trains generated from the input signal. Comparing A and B, we can see the blue
one that increases the firing rate following the trends of its tuning curve. Idem for
orange one. C) It is shown the input signal in blue and the output in orange. The
input is just a line that increases from -1 to 1 in 1 second, while the output is a
signal generated from a weighted sum of figure D. D) It is shown the PSC, this
signal is obtained from applying the α-filter to figure B (modify from [8]).

1.0 0.5 0.0 0.5 1.0
Input signal

0

20

40

60

80

100

Fi
rin

g 
ra

te
 (H

z)

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

5

10

15

20

25

30

Ne
ur

on

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

1.0

0.5

0.0

0.5

1.0 Input signal
Decoded esimate

Figure 2.16: As we can see from this figure, increasing the neurons number, we can
have a better representation of the output (from [8]).

2.4 Network topologies

There are different classes of neural architectures [39]:

24



2.4. NETWORK TOPOLOGIES

1. feedforward networks: in which the connections are from the input layer to
the output one, without feedback connections.;

2. recurrent networks: in this class, the connections are not strictly in one di-
rection;

3. hybrid networks: these networks have some sub-recurrent population of neu-
rons binds to the other with a feedforward connection;

4. convolutional neural networks: these networks are so famous, and they are a
subset of feedforward networks but, due to their popularity, we are going to
talk about them like if they are a different class.

In the biological brain, feedforward networks are in peripheral places. This type
of neural circuits is easy to train [38] (see fig. 2.17). The second class of ANN can
solve tasks more complex than the feedforward networks, but they are also more
difficult to train [39] (see fig. 2.18). In this kind of circuits, lateral inhibition is
important because it decorrelates the input signals [38]. There are different types
of hybrid networks, but the most important are Synfire chain (see fig. 2.19) and
Reservoir computing (see fig. 2.20). In the Synfire chain, the spikes flow from a layer
to the next one in a synchronous way (feedforward connections), but in the layers,
there are subpopulations connect to each other with recurrent connections [39]. The
reservoir computing, called also Liquid State Machine (LST), has a fixed recurrent
structure (reservoir), and a population of output neurons called readouts, usually
connect in a feedforward way. With these types of network, the training of the
recurrent network is bypassed because only the feedforward connections are trained
[38]. The last family of neural networks are the convolutional neural networks
(CNN). The popularity of this kind of networks is due to the high performance that
they can reach and they can express better their potential in the image classification
problems. The structure of the CNN is strictly hierarchical: the input layer is
connected to the first hidden layer, that is connected to the second and so on until
the output layer [3]. The neurons in the layer n are just locally connected to the
layer n-1, the fully-connections are only in the last layers. The links between layers
are managed by the 2D masks that act as a filter doing a 2D convolution. Actually,
a layer is not just a 2D population of cells but is a 3D population: in the slices,
called feature maps, is preserved the spatial organization of the image, while each
feature map extracts a different feature from the input data [3]. Every feature map
is calculated with the same mask, so the weights that should be calculated are less
than the total number of connections [3]. The filter can be moved with different
steps, called strides: the dimension of the slices of the next layer depending on these
steps and, for reshaping them, is used the zero-padding (add zeros) on the edge of
the feature map [3]. Between two convolutional layer, there is often a pooling layer.
This layer reduces the dimension of the slices but not the depth, that means that

25



2.5. LEARNING

it acts only on the feature map, not in the whole volume [3]. This layer has not
weights to set/train, and the most popular operations that it manages are: average
and maximum. The learning of the CNNs is done through backpropagation, this
method binds the use of rectified linear unit (ReLU) activation function for the
neurons [3]. This function is 0 for negative values, while it is the bisector of the
first quadrant of the Cartesian plane for positive values (see fig. 2.26.

Figure 2.17: Example of feedforward network. As we can see, all connections link
layer n with layer n+1 (from [21])

2.5 Learning

The learning is the process that allows the neural networks to learn for increasing
the performances. In the biologic NN, this method is regulated by the synapse
plasticity and it means that the synapses can modify (weights or delays), created
or destroyed [39]. The changes due to the plasticity have a different duration:

• from 10 to 100 ms are called short term potentiation (STP) or depression
(STD) [39];

• days, hours or more are called long term potentiation (LTP) or depression
(LTD) [39].

26



2.5. LEARNING

Figure 2.18: Example of RANN. The connections are not in just one direction, but
they can be in all direction, in this image we can see cyclic connections.

2.5.1 Hebbian rule

Donald Hebb in 1949 was the first to wonder how and when the synapses update
and keep their weight [37], so it theorized: if a pre-synaptic (that acts as input)
neuron causes a post-synaptic neuron (it receives the input stimulus) to fire, the
junction between them (called synapse) is enhanced and in mathematical terms:

∆wij ∝ vivj (2.13)

where ∆w is the weight change in the synapse between the pre-synaptic neuron (i)
and the post-synaptic neuron (j) and vi and vj are the activities of the two neurons.
In this equation, the synaptic efficacy changes only if both of neurons fire together.
In the first theorized model, the junction between the neurons could just have a
potentiation, not a depression, only later the depression was discovered. There are
many rules that derive from the postulate of Hebb (see tab 2.1), but all of these
ones have three common points [38]:

1. Time-dependence: the synaptic weight change depends on the exact fire time
of pre- and post-synaptic neuron;

27



2.5. LEARNING

Figure 2.19: Example of synfire chain. Recurrent neural networks are linked to-
gether with a feedforward connections (from [38]).

Figure 2.20: Example of reservoir computing. There is a huge recurrent neural net-
work linked to readouts neurons. The plasticity is applied in the synapses between
reservoir and output layer (from [38]).

2. Locality: the synaptic efficacy variation derives from some local variables (like
pre- and post-synaptic activity and synaptic weight);

3. Interactivity: the magnitude of the change depends on the activity of the two
cells.

28



2.5. LEARNING

Figure 2.21: This is an example of CNN architecture, the layers can have a different
depth. In the figure, the red one is the input layer and it has a number of neurons
equal to the input image pixels (from [3]).

Figure 2.22: On the left is shown a CNN architecture: 3 depth input layer following
by a 5 depth layer. On the right, the model neuron: the only one change between
generations is the activation function (from [3]).

2.5.2 Spike-timing dependent plasticity (STDP)

In the third generation of ANNs the time is explicit, then the Hebbian rule was
changed, this new rule is called spike-timing dependent plasticity (STDP) or tem-
poral Hebbian rule [37] and it is defined as:

dwij(t)

dt
=a0 + Si(t)

[
apre1 +

∫ ∞
0

apre,post2 (s)Si(t− s)ds
]

+ (2.14)

+ Sj(t)

[
apost1 +

∫ ∞
0

apost,pre2 (s)Sj(t− s)ds
]

(2.15)

where
dwij(t)

dt
is the weight update value, Si(t) and Sj(t) are the pre- and post-

synaptic spike trains respectively, defined as sums of Dirac deltas. a0 is a term of
linear decay, while the two integral terms are a low pass filter. The synaptic efficacy
changes also if just one of the two neurons spikes because of the non-Hebbian terms

29



2.5. LEARNING

Figure 2.23: In the figure is shown how maximum pooling layer act: it reduces the
dimension of the feature maps, but not the number of them (from [3]).

Rule Equation
Standard Hebbian rule ∆wij ∝ vivj
Hebbian rule with decay ∆wij ∝ vivj − c0
Hebb with pre-synaptic gating ∆wij ∝ (vi − vθ)vj
Hebb with post-synaptic gating ∆wij ∝ (vj − vθ)vi
Covariance rule ∆wij ∝ (vi − v̄i)(vj − v̄j)

Table 2.1: Some Hebbian rules. ∆wij is the change of the weight, vi and vj are
the pre- and post-synaptic activities respectively, c0 is the decay constant, vθ is the
gating threshold and v̄i and v̄j are the mean pre- and post-synaptic activities [38].

a1. The integral terms give the mutual contribution beacuse s = tfj−t
f
i . a2 are called

kernels, and they define the learning window. There are many learning windows,
but the most important are shown in the fig. 2.24 [38]. The main differences
between them are the symmetry with respect to the origin of the axis and respect
to y-axis and the continuity in the neighbourhood of t = 0 [37]. The most important
window is the exponent one:

W (s)STDP =

{
apost,pre2 (s) = A+e

− s
τ+ if s ≥ 0,

apre,post2 (−s) = −A−e
s
τ− if s < 0

(2.16)

W (s)aSTDP =

{
apost,pre2 (s) = −A+e

− s
τ+ if s ≥ 0,

apre,post2 (−s) = A−e
s
τ− if s < 0

(2.17)

The eq. 2.16 is the learning window for STDP (normally a0 < 0, apre1 > 0 and
apost1 < 0), while eq. 2.17 is the one for anti-STDP (normally a0 < 0, apre1 < 0
and apost1 > 0). The terms A+, A− > 0 and they represent the magnitude, while
τ+, τ− > 0 and are the time constants of the process [38]. Normally the synaptic
efficacy is updated by an additive rule (w = w + dw

dt
) or by a multiplicative one

(w = w(1 + dw
dt

))[37].
It has been shown that the STDP process has two important proprieties:

30



2.5. LEARNING

Figure 2.24: Some examples of learning window (from [37]).

1. the first spike of the train is the most important one (it holds more informa-
tion);

2. an asymmetric window strengthens the synapses in which the pre-synaptic
neuron has a precise spike time, while depress the connections where the
spike time has a jitter [38].

This learning method still has a problem: there is a maximum and a minimum
weight.

In the SNN the STDP process is the base of almost all the unsupervised learning
methods [37]. Unsupervised methods used an unlabled input, and the network have
to classify them on the base of some features.

2.5.3 Supervised learning

The aim of supervised learning is: given an input spiking train Si(t) and a teaching
signal Sj(t), find the vector of weights that minimize the error between Si(t) and
Sj(t) [38]. For reaching this goal there are a lot of methods, some of them do not
have biological meaning while some others have it.

Methods based on the gradient

For the methods based on the gradient, the use of the derivative is envisaged, but
the output of spiking neurons is not continuous. SpikeProp is a method developed
by Bohte and his team that bypass the problem of continuity. In this technique,
every neuron can fire just ones for every simulation cycle and after it, the membrane
potential is ignored. With this trick, the membrane output becomes continuous [38].
In the beginning, this method was used only for the synaptic efficacy, but later was
implemented for the synaptic delays, for the time constants and for the spiking
thresholds too. All these new features make the SpikeProp converges faster and
they allow to have smaller neural networks for the same task [38]. This technique
was tested for a lot of standard datasets (Iris dataset, Wisconsin breast-cancer
dataset and the Statlog Landsat dataset) and for all of them it had the same
accuracy of sigmoidal neural networks (networks of the second generation in which
the neurons have a sigmoidal activation function). Moreover, this method was used

31



2.5. LEARNING

Figure 2.25: A is an exponential learning window: in the x-axis, there is the delay
between the spike of pre-synaptic neuron and the post-synaptic neuron while in the
y-axis, there is the magnitude of the weight update. B is an example when the
post-synaptic neuron fires out of the learning window, in this case, the synaptic
weight has no change. C represents the case in which the post-synaptic neuron
spikes after pre-synaptic neuron, but in the learning window. D shows how junction
weight change if the post-synaptic cell fires before (but in the learning window) the
pre-synaptic cell. In all cases, the weight is decreasing, this behaviour is due to the
a0 coefficient, which is a linear decay (from [38])

for real-world datasets, and for all of them it converged, while it didn’t always
happen for the ANNs of the second generation [38].

SpikeProp has a few downsides too:

1. the information can be only in the first spike, while some message can only
be decoded in the spikes trains [38];

32



2.5. LEARNING

2. due to the first point, the only method of coding is time to first spike (see
2.2.2);

3. this technique is only for SRM neurons (see 2.1.3) [38];

4. the synaptic weight is updated only if the post-synaptic neuron spikes, so if
this cell never fires the junction weight (also called efficacy) never change [38];

5. due to the fourth point, the accuracy of the networks train with this algorithm
has a strong dependency to initial weights [38].

This technique is the father of some other methods, like QuickProp and Rprop,
which are computational less heavy, and MultiSpikeProp for multilayer SNN [46].

With SpikeProp, it has been bypassed the differential problem just cutting the
signal. This cannot happen if we are training a recurrent spiking neural network
(RSNN) because we need to propagate the error in the previous epoches. In the
recurrent ANNs of the second generation, it is used backpropagation through time
(BPTT) that uses derivates. In the case of RSNN, [15] proposed the use of a
pseudo-derivate:

dzj(t)

dvj(t)
:= γmax{0,1− |vj(t)|} (2.18)

vj(t) =
Vj(t)−Bj(t)

Bj(t)
(2.19)

where zj(t) is the spike train (a sum of Dirac delta function), Bj(t) is the spike
threshold and Vj(t) is the membrane potential, so vj(t) is called normalized mem-
brane potential. This pseudo-derivate is not stable if RSNN is unrolled for a lot of
epoches, so γ < 1 has been introduced usually it is set to 0.3 [15].

For bypassing the problem of non-differential activation function of the SNN,
[32] proposed another method for training the SNN with backpropagation: train a
second generation ANN and then change the neurons with spiking neurons. This
approach can be done with all types of neurons, here we are going to see it with
LIF model that is defined by:

τRC
dv(t)

dt
= −v(t) + J(t) (2.20)

where τRC is the membrane time constant, J(t) is the input current and v(t) is the
membrane potential. If we fix the input current to a value (j), we can solve the
equation for the time:

r(j) =

{
[τref − τRC log(1− Vth

j
)]−1 if j > Vth,

0 otherwise
(2.21)

33



2.5. LEARNING

where r(j) is the firing rate of the LIF neuron, τref is the refractory period and Vth
is the spike threshold that we set to 1. With this firing rate, we cannot calculate the
derivate due to the presence of a non-differential point for j = 1 (see fig. 2.26). So
the challenge becomes to smooth that point and bound the value of it. To perform
it, [32] introduces a new equation:

r(j) =

[
τref + τRC log(1 +

Vth
ρ(j − Vth)

)

]−1
(2.22)

ρ(x) = γ log(1 + e
x
γ ) (2.23)

where gamma is a parameter that controls the smoothing of the firing rate function.
This equation creates the soft LIF neuron model.

Figure 2.26: In the left figure, we can see the firing rate in function of the input
current, while in the right one, we can see the derivate of the firing rate. In j=1
there is an unbounded and non-differential point for the LIF neuron, while there
is a differential and bounded point for soft LIF neuron. The plot is created with
Vth = 1, τref = 0.004, τrc = 0.02 and γ = 0.03 (modify from [32]).

Until here, we saw how to model the neurons, but the messages that the they
send to each other pass through the synapses and these junctions add noise to the
spikes trains. The noise is modelling with a Gaussian distribution with 0-mean and
standard deviation sets to 10 [32]:

r(j) =

[
τref + τRC log(1 +

Vth
ρ(j − Vth)

)

]−1
+ η(j) (2.24)

η(j) =

{
G(0, σ) if j > Vth,

0 otherwise
(2.25)

34



2.6. NETWORKS

The conversion in SNN is performed after training. In this process, the weights,
the delays, the connections and all other hyperparameters are fixed to the values
reach during the train, the only things that will be changed are the neurons (from
soft LIF to LIF), the noise will be removed and the α-filter3 will be added for
modelling the synapses.

Evolutionary strategy

The evolutionary algorithms are good strategies for optimization problems. One
problem with this method is: which kind of mutation strategies is good for us?
Gaussian distribution finds the best solution in local, while the Cauchy distribution
explores a bigger solution space due to a bigger number of mutation [38]. This
algorithm can be used both for the synaptic-weights and for the synaptic-delays.
This type of learning was tested with Iris dataset and with XOR problem and in
both cases, it gave results similar to SpikeProp [38].

2.6 Networks

In this section, we are going to analyze four different spiking neural networks.

Network of Schmuker

This network is created by Schmuker and his team [45] and it is inspired by the
blueprint of the insect olfactory system. For encoding the input in the spike domain,
it has been used the neural gas algorithm (see 2.2.1).

This network was created for running on neuromorphic hardware. It is composed
of: virtual receptors (VRs), a number of subunits called glomerulus same as VRs
and an association layer. The aim of VRs is to convert the images into spike trains.
The glomeruli are made of a layer of receptor neurons (RNs), another layer of
projection neurons (PNs) and a layer of local inhibitory neurons (LNs). The RNs
are just an input for the network: they are used for transducing the exact spike
time, created by VRs, in spikes. The PNs are linked only to LNs of the same
glomerulus, while LNs inhibit the PNs of all glomeruli (but no self inhibition is
performed), this action is called moderate lateral inhibition and it is so important
because it decorrelates the information, without changing them [45]. It is important
that is moderate otherwise the information will be altered. The decision layer is
made of a number of populations equal to the number of classes, every population
in this layer is composed of association neurons (ANs) and inhibitory neurons. All
PNs are projected to all ANs while the ANs of each population are linked to their

3This filter is biological reliable [32] and it is defined as: α(t) = t
τs
e

−t
τs

35



2.6. NETWORKS

inhibitory neurons and these ones are connected to all other populations of ANs.
This inhibitory, that is strong, performs a soft winner take all (sWTA). Learning is
performed by a gradient descendent method and it is applied just in the projections
between PNs and ANs. If the output is right, all the connections between the winner
population and PNs that fire more than a fixed threshold are enhanced of a certain
value while, if the output is wrong, the synapses that help to fire are depressed of
a fixed value.

Figure 2.27: In the figure is represented the network of Schmuker (from [45]).

Network of Diamond

This network is taken by [26] and it was created for SpiNNaker.It is composed of
a VRs layer, which coding the input signal with neural gas technique (see 2.2.1), a
layer of spike source neurons, which coding from time to spikes and a layer of RNs
that sends the spikes to a PNs layer. In this layer, there is the inhibition between
different populations. The last layer is an association layer (the neurons inside
it are called ANs) with a strong lateral inhibition that creates a winner take all
circuit (WTA). The learning is made through STDP (see 2.5.2) in the projections
between PNs and ANs. To the RNs is attached a population of Poisson neurons,
that makes the firing rate more biological and stabilizes the network. The STDP
in this network is used for supervised learning, so we have to use a teaching signal
that is provided by another population of spike source neurons linked to ANs.

36



2.6. NETWORKS

Figure 2.28: In the figure is represented the network of Diamond (from [26]).

Network of Diehl

This network is implemented by Peter U. Diehl and Matthew Cook [27] with Python
and Brian simulator. This network is an unsupervised network that uses the STDP
rule for learning and it is composed of three layers: the input layer that consists
of 28x28 neurons (equal to the dimension of the input image), the excitatory layer
and an inhibitory layer, both of them have, in the training phase, LIF neurons with
adaptative threshold and in the testing phase the normal LIF model. The adap-
tative neurons were used for preventing the ”epileptic neurons” as this adaptative
spike threshold increases the value of the spike threshold as the number of spikes
increases. The first layer is connected to the second one in an all-to-all fashion (in
these links there is the synapse plasticity), the second layer is connected in one-to-
one way to the third one, while the last one is connected in an all-to-all fashion to
the second one, but without self-inhibition (see fig 2.29). The stimulus is presented
for 350 ms and after that, the network has a sleeping time of 150 ms, this time is
used for let all the parameters return to the initial value [27]. The coding of the
inputs is performed by Poisson distribution neurons (see sec 2.2.1). The firing rate
of the input neurons is set to the pixel value quarter; the maximum value of the
pixels can be 255, so the maximum frequency can be 63.75 Hz. If the second layer
fires less then 5 times, the image is shown to the network again, but the frequency
of the input neurons is increased by 32 Hz. After the training, the LIF adaptative
neurons were switched to a normal LIF, with the spike threshold fix to the value
reached during the previous phase and the STDP synapses were changed with the
static ones, with the value calculated during the training phase. The labels are
used only now, all the dataset is shown again, and the excitatory neurons are la-
belled with the label that allows them to fire more. Different tests are made with
this network and the only hyperparameter that change is the number of neurons

37



2.6. NETWORKS

in the second and third layers: 100, 400, 1600, 6400. The times that the dataset
was shown to the network changes with the number of neurons: 1, 3, 7, 15. The
accuracies that the network reaches are 82.9%, 87%, 91.9%, 95%.

Figure 2.29: In the figure is represented the network of Diehl(from [27]).

SCNN

This network is a classic CNN (see 2.4) and it is composed of an input layer that has
the number of neurons equal to the number of input image pixels. The next layer
is a convolutional layer composed of 32 filters, followed by another convulational
layer with 64 filters. The next three layers are, in order, an average pooling layer, a
convulational layer with 128 filters and another average pooling layer. The output
layer is a dense layer with as many neurons as there are classes. All filters have a
dimension of 3x3, and they are 2 strides, it means that every convolutional layer
decreases the dimension of the problem by 2. The polling layers halved the size of
the problem.

Figure 2.30: Sepresentation of SCNN.

38



Chapter 3

Methods and results

3.1 Input encoding

The first essential step a fruitful use of a spiking neural network is the input encod-
ing, which will affect all the subsequent phases. For this reason the first test that I
did, was for encoding the input stimulus in such a way that the networks were able
to process the dataset. Going into further details, as input encoding techniques, I
have implemented neural gas and Poisson methods (both described in section 2.2.1)
with Python 3.6. In the neural gas encoding, the Modular toolkit for Data Process-
ing (MDP) [49] toolkit helped me to position the VRs in the space of images. From
these tests, I expected to see a different firing rate due to the different input of the
VRs (see fig. 3.3 and 3.2) and, in the case of Poisson distribution, I was expected
that I can recreate the input stimulus starting from the firing rate (see fig. 3.1).

3.2 Datatset

In my tests, I used different datasets. My two main goals were to classify the im-
ages of colorectal cancer (CRC) dataset and compare the performances between
the second generation ANNs and the third generation ones. The CRC dataset
[40] is made up of images depicting three categories of human colon tissue, namely
healthy tissues (H), tissues with tubulovillous adenoma (AD) and tissues with ade-
nocarcinoma (AC). Such dataset is extremly challenging for classification due to
the extreme intra-class variability attributable on one hand to the intrinsic com-
plexity in the biological context, on the other hand to imaging techniques, affecting
colors and quality of the images. The images size is 218x218 pixels; the training
set is made up of 10,500 samples while the test set is composed of 3,000 images.
For reducing the dimensionality of the problem, I downsampled from 218x218 to
64x64 and then I converted them into grayscale. Due to complexity, this dataset
was used only with neural networks that have got good performances with MNIST

39



3.2. DATATSET

Figure 3.1: In this figure, we can see the evolution of one image with Poisson
distribution: the first nine images are the mean of the spikes of the first nine
milliseconds of image exposition, while the tenth and the eleventh are the mean
of the spike trains at 200ms and 300ms respectively. The last one is the original
image.

Figure 3.2: On the left, there is the original image, while on the right there are the
spike trains of the first 20 neurons generated with Poisson distribution with time
of exposition of 350ms.

40



3.3. CLASSIFIERS

Figure 3.3: On the left, there is the original image, while on the right there are
train spikes of 25 VRs generated from a gamma distribution with an exposition
time of 1000ms.

dataset [35]. Such dataset is composed of the ten hand-writing digits in grayscale
(i.e. numbers from 0 to 9). Images are 28x28 pixels, that means they are composed
of 764 pixels. The training set is composed of 60,000 samples, while the test set
is composed of 10,000 images. These data were been created enlisting about 250
writers, taking care that the people that wrote for the training set, didn’t write for
test set and vice-versa.

For completeness, I want briefly introduce Fisher’s iris dataset because Schmuker
and his team used it too for testing the accuracy of their network [45]. This dataset
is composed of 150 samples divided into three classes: Iris setosa, Iris virginica and
Iris versicolor. In the space of features, the first type of flower is well separated by
the others, while last two types are overlapped [22].

3.3 Classifiers

Network of Schmuker

I implemented this network (see section 2.6) with python 3.6 and PyNN 0.9.3,
using as simulator nest 2.16. First of all, I tuned the hyperparameters (just the
synapse weights and the parameters of the learning) of the network for gain the
same accuracy that Schmuker and his team reached. This result was obtained using
just 200 samples in training and 200 in test. After this operation I used the same
hyperparamters, but I changed the classes, this time I worked with 4 and 9 because

41



3.3. CLASSIFIERS

Figure 3.4: In the figure is represented the scatter plot of Fisher iris dataset (from
[22])

Figure 3.5: From left to right we have iris setosa, iris versicolor and iris virginica
(from [22]).

I wanted to check if the network can classify two classes that are more overlapped.
The result was that the accuracy has dropped a lot. The next step was to run
the network with all clasess and 30,000 samples in training and 5,000 in test. The
result, as expected, was that the network was not able to classify the dataset, so it

42



3.3. CLASSIFIERS

Figure 3.6: It is represented an example of hand-writing digit from MNIST dataset.

Figure 3.7: CRC dataset. Images are RGB with 218x218 pixels.

was useless to continue the test on the CRC dataset.

Network of Diamond

First of all, I implemented this network for SpiNNaker, using python 2.7 and PyNN
0.7.5. After the same results of Diamond, with his dataset (train and test were the
same and the spikes trains were availble in [26]), I re-implemented the network for
nest 2.16 using python 3.6 and PyNN 0.9.3. This step was necessary because the
SpiNNaker board that we have, can simulate a limited number of synapses and
neurons. Before starting the simulation with the entire MNIST dataset, I have
pursued some preliminary experiments; in particular the network was trained:

i) with the same boudary conditions described in the correspondig paper (see
fig. 3.10 and 3.11)[26];

ii) running the network without Poisson neurons (see fig. 3.12);

iii) running the network without Poisson neurons and RNs (see fig. 3.13).

The rationale behind these experiments was to test if such a deep network, as
described in [26], was indispensable to a sufficient high accuracy, or if same results

43



3.3. CLASSIFIERS

Figure 3.8: CRC dataset. Images are grayscale with 64x64 pixels.

Figure 3.9: In this figure is shown the accuracy of the Schmuker’s network in three
trials: with classes 5 and 7, with classes 4 and 9 and with all classes.

may be reached by shallower (or simpilier) networks just with an investigation
among network hyperparameters, then I expected that the network with these
changes continues to well classify the data of Diamond, with just a change in the
hyperparameters: the maximum value that the connections between PNs and ANs
can reach.

Between test i) and ii), I just removed the Poisson neurons and I increased the
maximum value for the synapse (from 0.3 to 0.9), while between try ii) and iii) I
only removed the RNs: no change was made to the hyperparameters. We can see
from figures 3.11, 3.10, 3.12 and 3.13 that these three networks are equivalent.

After these few tests, I came back to Diamond’s network and, without changing
the hyperparameters of the network, I tuned the number of VRs and the number of
images in the train and in the test, the results are shown in fig. 3.14: the network
cannot classify. As it is possible to see from figure 3.15, the main reason for the
bad accuracy is that the network, during the simulation, diverges.

Starting from the hypotesis that the noise is one of the most probable causes of
divergence, I removed the Poisson layer and I made an exploration table in which
only the number of RNs, PNs and ANs change (they can assume these values: 15,

44



3.3. CLASSIFIERS

Figure 3.10: The figure on the left is what I obtained from the first try during the
training phase, while on the right there is the Diamond’s one, as we can see the
patterns are similar.

Figure 3.11: The figure on the left is what I obtained from the first try during the
test phase, while on the right there is the Diamond’s one, as we can see the patterns
are similar.

30, 60). As dataset I used the entire MNIST (60,000 samples for training and
10,000 for testing). The results are shown in figure 3.16. As it can easily gathered
from this figure, the network has a small increase in accuracy, but it is still not able
to classify.

45



3.3. CLASSIFIERS

Figure 3.12: The figures represent the second test: Diamond’s network without the
Poisson neurons. On the left, there is what I obtained from the training phase,
while on the right there is the test. As we can see, the ANs spike in a similar way
of the previous trial.

Figure 3.13: The figures represent the third test: Diamond’s network without the
Poisson neurons and the RNs. On the left, there is what I obtained from the
training phase, while on the right there is the test. As we can see, the ANs spike
in a similar way of the first trial.

SCNN

For this network, I used NengoDL 2.1.1 and python 3.6. I run it with entire
MNIST, obtaining an accuracy of 98%. Before running such model on the whole
CRC dataset, a hyperparameters exploration was made with the aim of finding
best working condition for the model. The tuning of the hyperparameters has to
be done just with the training set, while the test set is used only for checking the

46



3.3. CLASSIFIERS

Figure 3.14: In these two figures is shown the trend of accuracies for the training
(right) and the testing (left).

Figure 3.15: In this figure is shown the behaviour of the network: it diverges after
few epochs.

performance of a network after the choice of parameters. To perform this task, I
split the training set into two subsets called training set and validation set. The
training set is 90% of the original one, and it is used for training the network, while
the validation set is the 10% of the original one, and it is used for checking the
accuracy of the SCNN after every hyperparameter change. The parameters that I
changed are the learning rate and the optimizer (see fig. 3.17). As we can see from
figure 3.17 the best accuracy was obtained from the couple: leanrning rate 10−4

and RMSProp. After setting these two parameters, I trained the network again
the network with the whole training set and then I run the SCNN the test set,
obtaining an accuracies of 95%.

47



3.3. CLASSIFIERS

Figure 3.16: In this graph is shown the accuracies of the 27 tries made changing
the number of RNs, PNs, ANs. The x-axis represents, in order, the number of RNs,
PNs and ANs.

0.1 0.01 0.00
1

0.00
01 1e-0

5

Starting learning rate

Ad
am

RM
SP
ro
p

SG
D-
M
om

en
tu
m

O
pt

im
iz

er

0.23

0.38

0.35

0.42

0.23

0.35

0.35

0.23

0.33

0.85

0.90

0.35

0.75

0.60

0.42

Hyperparameters analysis for SCNN

Figure 3.17: In this figure is shown the accuracies of each subset of hyperparameters.

In figure 3.20, it is shown two examples of misclassification. Seems reason-
able to attribute such misclassification errors to the absence of the colonic glands,
characterizing the normal, health coloinc tissue.

With CNN (see section 2.4), using the same dataset and the same architecture
2.6. The result of the hyperparameters tuning (as the SCNN, only the optimizer
and the learning rate were changed) is shown in figure 3.21. I took the best couple
of parameters and then the network has been retrained, and the confusion matrix

48



3.3. CLASSIFIERS

Predicted label: 7
True label: 7

0.00 0.01 0.02 0.03
time

7

6

5

4

3

2

1

0

Filtered
0
1
2
3
4
5
6
7
8
9

0.00 0.01 0.02 0.03
time

80

60

40

20

0

20
Not filtered

Figure 3.18: On the left is shown the input figure, on the right the activation of
the output neurons (with and without α-filter).

Predicted label: AD
True label: AD

0.000 0.025 0.050 0.075 0.100
time

40

30

20

10

0

Filtered
AC
AD
H

0.000 0.025 0.050 0.075 0.100
time

200

150

100

50

0

50
Not filtered

Figure 3.19: On the left is shown the input figure, on the right the activation of
the output neurons (with and without α-filter).

in figure 3.22 has been calculated. As we can see, CNN has almost the same
classification for all the classes, while SCNN classifies better the AD class and
worse the H one.

49



3.3. CLASSIFIERS

Predicted label: AC
True label: AD

Predicted label: AC
True label: AD

Figure 3.20: An example of misclassification. In this two images the misclassifica-
tion is due to the fact that no glands are inside, but just noise.

0.1 0.01 0.00
1

0.00
01 1e-0

5

Starting learning rate

Ad
am

RM
SP
ro
p

SG
D-
M
om

en
tu
m

O
pt

im
iz

er

0.94

0.35

0.35

0.85

0.35

0.34

0.35

0.35

0.85

0.35

0.93

0.73

0.40

0.80

0.35

Hyperparameters analysis for CNN

Figure 3.21: In this figure is shown the accuracies of each subset of hyperparameters.

50



3.3. CLASSIFIERS

AC AD H
Predicted label

AC

AD

H

Tr
ue

 la
be

l

0.83 0.06 0.10

0.11 0.85 0.04

0.08 0.05 0.87

AC AD H
Predicted label

AC

AD

H

Tr
ue

 la
be

l

0.85 0.11 0.04

0.05 0.94 0.00

0.12 0.13 0.75

Figure 3.22: On the left is shown CNN confusion matrix, on the right the SCNN
one.

51



Chapter 4

Discussion

The main aim of this master thesis was to fully investigate the state of the art re-
garding SNNs in the field of image processing. SNNs are promising under different
points of view. First, they are highly biological plausible, this means that their
investigation and improvement could produce interesting insights into the brain
behaviour. Secondly, the so-called neuromorifc hardware, which is the natural sub-
strate where to implement SNNs, can open the way to tremendously accelerated
computation for both training and test, core issues when speaking about machine
learning. The other face of the coin of such considerations, is the current paucity
regarding frameworks and benchmarks to implement and test SNNs, with the out-
come of discussing interesting theoretically correct results without any application
to prove the effective use of these techniques. In the light of these speculation, I
faced the study and implementation of three different state-of-the-art SNNs archi-
tecture, namely the network of Schmuker, the network of Diamond and a SCNN,
obtaining the results discussed in the following. The network of Schmuker is bio-
logically inspired and it has a complicated architecture. I reached the same per-
formance as the authors with two-classes MNIST dataset (90% of accuracy with
classes 5 and 7), but when I used two MNIST classes more overlapped (4 and 9)
or the whole ten-classes dataset, the network cannot reach good accuracies as it
was expected: in the first test I reached 65% of accuracy, while in the last test
the accuracy fell to 10%. This network has different problems. First the learning
algorithm: it adds or removes a fixed value to the synapses that help to fire. This
approach is not the best, as it does not consider the value of the error. Second, the
architecture. It is made up of many layers and a high number of neurons, which
makes the model prone to overfit and in general difficult to tailor. The network of
Diamond with its easier architecture and with a biologically inspired learning rule,
is a simplification of the network of Schmuker. The implementation of this network
for SpiNNaker was quite straightforward, while the implementation for nest was
more troublesome, due to the different values that the STDP can have. Despite
having achieved the initial results as described in the reference paper, which means

52



4 – Discussion

100% of accuracy with an extremely reduced training and test sets, I was not able
to reach comparable results with the MNIST classification task. In their work,
the authors reached 60% of accuracy with the whole MNIST dataset while my
network diverged. Probably my low accuracy is partially due to the not-complete
inspection of hyperparameters that I was able to perform, due to time and com-
putational constraints. Anyway, the intrinsic complexity in tailoring this net must
be kept into account, as it will limit any future application or case study. The
entire network is again very complex: the Poisson layer and the RN layer may be
removed, and, with this condition, the network was more stable: it did not diverge,
and it reached a better accuracy: 30% (just without Poisson layer). This finding
is anyway not satisfying yet. An approach to reach better results can be adding
more synapses between PNs and ANs with different delays. Since the synapses in
the learning layer hold the information of the network with this operation, we are
increasing the information storing capacity. Anyway, the results were frustrating
again. The SCNN is the network that reached the highest results: 98% of accuracy
with MNIST dataset and 95% of accuracy with CRC dataset. With this kind of
network, a second-generation ANN is used for training while a proper SNN is used
for inference. Hence, despite no computational improvements were obtained for
the training phase, at least the inference latency may be accelerated with the em-
ployment of neuromorphic hardware. The comparison between CNN and SCNN,
showed us that CNNs are more robust, having almost the same accuracy in all the
classes of CRC dataset, while SCNN can reach only 74% of accuracy in the clas-
sification of healthy tissues. On the other hand, the SNN classified sick tissue as
healthy only in the 4% of the cases, while the CNN classified cancer and adenomas
as healthy in the 14% of the cases. This is a key feature when speaking about
expert systems for medical classification, where the cost of misclassifying healthy
is neglectable compared to misclassify pathological cases.

To summarize, SNNs seem nowadays quite immature to be proficiently used in
ML tasks, due to several implementational problems, mainly related to the training
phase. Nonetheless, the promising aspects in terms of less required computational
time, faster inference, biologically plausible structure and performance that are
comparable to the state-of-the-art techniques, are encouraging a lot many research
teams to pursue SNNs study and improvement.

53



Bibliography

[1] About the brainscales hardware. https://electronicvisions.github.io/

hbp-sp9-guidebook/pm/pm_hardware_configuration.html#f1, 2019. [On-
line; accessed 4-March-2019].

[2] About the brainscales hardware. https://www.humanbrainproject.eu/en/

silicon-brains/neuromorphic-computing-platform/, 2019. [Online; ac-
cessed 7-March-2019].

[3] Convolutional neural networks (cnns / convnets). http://cs231n.github.

io/convolutional-networks/, 2019. [Online; accessed 15-March-2019].

[4] How ibm got brainlike efficiency from the truenorth
chip. https://spectrum.ieee.org/computing/hardware/

how-ibm-got-brainlike-efficiency-from-the-truenorth-chip, 2019.
[Online; accessed 5-March-2019].

[5] Ibm demos event-based gesture recognition using a brain-inspired
chip at cvpr 2017. https://www.ibm.com/blogs/research/2017/07/

brain-inspired-cvpr-2017, 2019. [Online; accessed 5-March-2019].

[6] Introducing a brain-inspired computer. http://www.research.ibm.com/

articles/brain-chip.shtml, 2019. [Online; accessed 5-March-2019].

[7] Loihi - intel. https://en.wikichip.org/wiki/intel/loihi, 2019. [Online;
accessed 13-March-2019].

[8] Nef summary. https://www.nengo.ai/nengo/examples/advanced/nef_

summary.html#Principle-1:-Representation, 2019. [Online; accessed 18-
March-2019].

[9] Spinnaker project. http://apt.cs.manchester.ac.uk/projects/

SpiNNaker/project, 2019. [Online; accessed 4-March-2019].

[10] Spinnaker project - architectural overview. http://apt.cs.manchester.ac.

uk/projects/SpiNNaker/architecture, 2019. [Online; accessed 4-March-
2019].

[11] Spinnaker project - the spinnaker chip. http://apt.cs.manchester.ac.uk/

projects/SpiNNaker/SpiNNchip/, 2019. [Online; accessed 4-March-2019].

[12] Synapse program develops advanced brain-inspired chip. https://www.

darpa.mil/news-events/2014-08-07, 2019. [Online; accessed 5-March-
2019].

54

https://electronicvisions.github.io/hbp-sp9-guidebook/pm/pm_hardware_configuration.html#f1
https://electronicvisions.github.io/hbp-sp9-guidebook/pm/pm_hardware_configuration.html#f1
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
https://www.humanbrainproject.eu/en/silicon-brains/neuromorphic-computing-platform/
http://cs231n.github.io/convolutional-networks/
http://cs231n.github.io/convolutional-networks/
https://spectrum.ieee.org/computing/hardware/how-ibm-got-brainlike-efficiency-from-the-truenorth-chip
https://spectrum.ieee.org/computing/hardware/how-ibm-got-brainlike-efficiency-from-the-truenorth-chip
https://www.ibm.com/blogs/research/2017/07/brain-inspired-cvpr-2017
https://www.ibm.com/blogs/research/2017/07/brain-inspired-cvpr-2017
http://www.research.ibm.com/articles/brain-chip.shtml
http://www.research.ibm.com/articles/brain-chip.shtml
https://en.wikichip.org/wiki/intel/loihi
https://www.nengo.ai/nengo/examples/advanced/nef_summary.html#Principle-1:-Representation
https://www.nengo.ai/nengo/examples/advanced/nef_summary.html#Principle-1:-Representation
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/project
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/project
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/architecture
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/architecture
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/SpiNNchip/
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/SpiNNchip/
https://www.darpa.mil/news-events/2014-08-07
https://www.darpa.mil/news-events/2014-08-07


Bibliography

[13] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-
enberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,
Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[14] Barchi, Peluso, Ponzio, and Rizzo. Neural gas in action, placing virtual recep-
tors for a spiking neural network classifier. 2018.

[15] Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and
Wolfgang Maass. Long short-term memory and learning-to-learn in networks
of spiking neurons. In Advances in Neural Information Processing Systems,
pages 795–805, 2018.

[16] Wikipedia contributors. Neural circuit — wikipedia, the free encyclopedia.
https://en.wikipedia.org/wiki/Neural_circuit, 2018. [Online; accessed
27-December-2018].

[17] Wikipedia contributors. Neuron — wikipedia, the free encyclopedia. https:

//en.wikipedia.org/wiki/Neuron, 2018. [Online; accessed 27-December-
2018].

[18] Wikipedia contributors. Action potential — wikipedia, the free encyclope-
dia. https://en.wikipedia.org/wiki/Action_potential, 2019. [Online;
accessed 28-January-2019].

[19] Wikipedia contributors. Apprendimento automaticico — wikipedia,
the free encyclopedia. https://it.wikipedia.org/wiki/Apprendimento_

automatico, 2019. [Online; accessed 12-March-2019].
[20] Wikipedia contributors. Donald o. hebb — wikipedia, the free encyclopedia.

https://wiki2.org/en/Donald_Hebb, 2019. [Online; accessed 19-March-
2019].

[21] Wikipedia contributors. Feedforward neural network — wikipedia, the
free encyclopedia. https://en.wikipedia.org/wiki/Feedforward_neural_
network, 2019. [Online; accessed 19-February-2019].

[22] Wikipedia contributors. Iris flower data set — wikipedia, the free encyclopedia.
https://wiki2.org/en/Iris_flower_data_set, 2019. [Online; accessed 7-
March-2019].

[23] Wikipedia contributors. Machine learning — wikipedia, the free encyclope-
dia. https://wiki2.org/en/Machine_learning, 2019. [Online; accessed 12-
March-2019].

[24] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta

55

https://en.wikipedia.org/wiki/Neural_circuit
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Action_potential
https://it.wikipedia.org/wiki/Apprendimento_automatico
https://it.wikipedia.org/wiki/Apprendimento_automatico
https://wiki2.org/en/Donald_Hebb
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_network
https://wiki2.org/en/Iris_flower_data_set
https://wiki2.org/en/Machine_learning


Bibliography

Jain, et al. Loihi: a neuromorphic manycore processor with on-chip learning.
IEEE Micro, 38(1):82–99, 2018.

[25] Andrew P Davison, Daniel Brüderle, Jochen M Eppler, Jens Kremkow, Eilif
Muller, Dejan Pecevski, Laurent Perrinet, and Pierre Yger. Pynn: a common
interface for neuronal network simulators. Frontiers in neuroinformatics, 2:11,
2009.

[26] Alan Diamond, Thomas Nowotny, and Michael Schmuker. Comparing neuro-
morphic solutions in action: implementing a bio-inspired solution to a bench-
mark classification task on three parallel-computing platforms. Frontiers in
neuroscience, 9:491, 2016.

[27] Peter U Diehl and Matthew Cook. Unsupervised learning of digit recogni-
tion using spike-timing-dependent plasticity. Frontiers in computational neu-
roscience, 9:99, 2015.

[28] Chris Eliasmith. How to build a brain: A neural architecture for biological
cognition. Oxford University Press, 2013.

[29] Mazdak Fatahi, Mahmood Ahmadi, Mahyar Shahsavari, Arash Ahmadi, and
Philippe Devienne. evt mnist: A spike based version of traditional mnist.
arXiv preprint arXiv:1604.06751, 2016.

[30] Marc-Oliver Gewaltig and Markus Diesmann. Nest (neural simulation tool).
Scholarpedia, 2(4):1430, 2007.

[31] Dan FM Goodman and Romain Brette. The brian simulator. Frontiers in
neuroscience, 3:26, 2009.

[32] Eric Hunsberger and Chris Eliasmith. Spiking deep networks with lif neurons.
arXiv preprint arXiv:1510.08829, 2015.

[33] Eugene M Izhikevich. Simple model of spiking neurons. IEEE Transactions
on neural networks, 14(6):1569–1572, 2003.

[34] Eugene M Izhikevich. Which model to use for cortical spiking neurons? IEEE
transactions on neural networks, 15(5):1063–1070, 2004.

[35] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[36] Boudjelal Meftah, Olivier Lézoray, Soni Chaturvedi, Aleefia A Khurshid, and
Abdelkader Benyettou. Image processing with spiking neuron networks. In
Artificial Intelligence, Evolutionary Computing and Metaheuristics, pages 525–
544. Springer, 2013.

[37] Hélene Paugam-Moisy and Sander Bohte. Computing with spiking neuron
networks. In Handbook of natural computing, pages 335–376. Springer, 2012.

[38] Filip Ponulak. Supervised learning in spiking neural networks with resume
method. Phd, Poznan University of Technology, 46:47, 2006.

[39] Filip Ponulak and Andrzej Kasinski. Introduction to spiking neural networks:
Information processing, learning and applications. Acta neurobiologiae exper-
imentalis, 71(4):409–433, 2011.

56



Bibliography

[40] Francesco Ponzio, Enrico Macii, Elisa Ficarra, and Santa Di Cataldo. Col-
orectal cancer classification using deep convolutional networks-an experimental
study. In BIOIMAGING, pages 58–66, 2018.

[41] Daniel Rasmussen. NengoDL: Combining deep learning and neuromorphic
modelling methods. arXiv, 1805.11144:1–22, 2018.

[42] Hannes P Saal, Sethu Vijayakumar, and Roland S Johansson. Information
about complex fingertip parameters in individual human tactile afferent neu-
rons. Journal of Neuroscience, 29(25):8022–8031, 2009.

[43] Johannes Schemmel, Daniel Briiderle, Andreas Griibl, Matthias Hock, Karl-
heinz Meier, and Sebastian Millner. A wafer-scale neuromorphic hardware
system for large-scale neural modeling. In Proceedings of 2010 IEEE Interna-
tional Symposium on Circuits and Systems, pages 1947–1950. IEEE, 2010.

[44] Johannes Schemmel, Johannes Fieres, and Karlheinz Meier. Wafer-scale in-
tegration of analog neural networks. In 2008 IEEE International Joint Con-
ference on Neural Networks (IEEE World Congress on Computational Intelli-
gence), pages 431–438. IEEE, 2008.

[45] Michael Schmuker, Thomas Pfeil, and Martin Paul Nawrot. A neuromorphic
network for generic multivariate data classification. Proceedings of the National
Academy of Sciences, 111(6):2081–2086, 2014.

[46] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Timothée
Masquelier, and Anthony Maida. Deep learning in spiking neural networks.
Neural Networks, 2018.

[47] Simon Thorpe, Arnaud Delorme, and Rufin Van Rullen. Spike-based strategies
for rapid processing. Neural networks, 14(6-7):715–725, 2001.

[48] Julius von Kügelgen. On artificial spiking neural networks: Principles, limita-
tions and potential.

[49] Tiziano Zito, Niko Wilbert, Laurenz Wiskott, and Pietro Berkes. Modular
toolkit for data processing (mdp): a python data processing framework. Fron-
tiers in neuroinformatics, 2:8, 2009.

57


	Summary
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Brief introduction to machine learning
	Simulators
	Software simulators
	Neuromorphic hardware
	PyNN


	Spiking neural networks
	Models
	Hodgking-Huxley model (HH)
	Leaky integrate and fire model (LIF)
	Spike response model (SRM)
	Izhikevich model (IZK)
	Neurons comparison
	Synapse

	Encoding
	Input
	Processing

	Neural Engineering Framework (NEF)
	Network topologies
	Learning
	Hebbian rule
	Spike-timing dependent plasticity (STDP)
	Supervised learning

	Networks

	Methods and results
	Input encoding
	Datatset
	Classifiers

	Discussion
	Bibliography

