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Abstract 

 

 
A recent expansion of passenger cars’ automated functions has led to increasingly 

challenging design problems for the engineers. Among this the development of 

Automated Valet Parking is the latest addition. The system represents the next 

evolution of automated system giving the vehicle greater autonomy: the efforts of 

most automotive OEMs go towards achieving market deployment of such automated 

function. To this end the focus of each OEM is on taking part to this competitive 

endeavor and succeed by developing a proprietary solution with the support of 

hardware and software suppliers. Within this framework the present work aims at 

developing an effective control strategy for the considered scenarios. 

In order to reach this goal a Model Predictive Control approach is employed taking 

advantage of previous works within the automotive OEM in the automated driving 

field. The control algorithm is developed in a Simulink® simulation according to the 

requirements of the application and tested; results show the control strategy 

successfully drives the vehicle on the predefined path. 
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1 Introduction 

 

The demand for ever increasing automation in the vehicle has been a strong catalyst 

for automotive innovation in recent years and the trend is constantly on the rise. As 

sensor technology continues to evolve providing the market with highly capable 

detection systems, at profitable prices, and software algorithms are taking advantage 

of increasingly efficient hardware architectures, as the one in the figure below, the 

automakers find themselves competing to develop more and more advanced ADAS 

systems while striving to be the first to the market. On the other hand, customer 

expectations generate more pressure on system engineers to design sophisticated 

functionalities for drivers and passengers’ comfort and safety. Within this market 

scenario it is clear to understand the potential of a system that is capable of fully 

automating the driving task: automated valet parking or AVP. 

 

 
Figure 1.1: NVIDIA DRIVE Pegasus offers a deep learning and neural networks architecture for self 

driving applications [1]. 

 

The system is engaged by either an on-board driver or from outside the vehicle, from 

a dedicated area such as a drop off area, from where the car departs and engages in 

the parking task autonomously. During all phases of the parking mission the vehicle 

should provide informative feedback to the driver, especially in case the task was not 

achieved, and the car was unable to park itself as a consequence. This may happen 

due to different reasons. primarily impeding obstruction to the vehicle motion or 

unavailable parking space in the surrounding environment. 
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1.1 AVP System outline 

 

The objective of an AVP system is that of accomplishing the task of automatically 

parking and driving back the vehicle in a given environment while maneuvering in a 

safe and predictable way. This identifies the AVP system as an on-board Automated 

Driving System (ADS) that allows the vehicle to perform all driving tasks and monitor 

the driving environment, essentially doing all the “driving” in given circumstances. 

Although the human does not need to pay attention and may not even be present at 

all during the automated maneuvering of the vehicle, the system in case of fallback 

would still try to involve the driver (e.g. by means of prompt messages on a 

smartphone) and if he or she is not available the system performs the so-called 

minimal risk maneuver. This involves slowing down and moving to the right possibly 

past any crossroads. 

 

 

AVP systems can be implemented according to two different approaches. 

The first approach is that of an “intelligent vehicle” in which the whole system is 

deployed entirely on the vehicle: sensors, processing units and control algorithms are 

present only on the car. A second approach is known as “intelligent infrastructure” 

where the system perception and planning function are centrally managed by the 

infrastructure, which communicates with the vehicle thru a V2I protocol. The control 

is still present on the vehicle, which also receives information about any obstacle or 

traffic.  

 

The two approaches have different requirements concerning the system performance 

and robustness. While in vehicle applications the focus is on the on-board systems 

complexity and more importantly on the built-in robustness; on the other hand, 

infrastructure implementations need large investments, and in some solutions also 

accurate and up-to-date HD maps need to be generated. As it is presented later in this 

work, both of these schemes have been explored in recent years, yielding very 

successful solutions, even if limited to the horizon of application. 
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In order to achieve its goal, the AVP system must be comprising of different 

functionalities, which dynamically interact with each other to perform the requested 

task. These can be broken down into three main sub-systems. The first is a perception 

module, which allows the vehicle to sense the environment around it and collect as 

much usable information as possible. All this information needs to be processed and 

made available to the next sub-system in the pipeline while minimizing the delays. The 

perception module may also include a data fusion stage in which information from 

different sources is processed together to infer new information or compensate for 

the lack of it. This will be further analyzed in detail in the next chapter. 

 

 

 
Figure 1.2: Example of currently available detection technologies [2] 

 

 

The second module in the system is the path generation algorithm: arguably, it 

represents the core of the system logic and the main contributor to its performance. 

It is clear how the ability of the vehicle to plan a drivable, obstacle free path will 

determine whether the automated parking task will be accomplished.  

Usually the path planner can be included within a multi level motion planner, which 

schedules different trajectory algorithms depending on the stage of the parking 

process. An example can be splitting the motion between an initial “scouting” driving 

mode, during which the car drives around a parking area while looking for free parking 

spot. When one of these is detected a secondary parking maneuver planner is 

activated which plans the final path to the goal destination. 

 

The third module includes the control strategy which task is to autonomously drive 

the vehicle along the planned path while ensuring safety and performance 

requirements, in terms of accuracy and robustness of the control action, are fully met. 
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An essential task that the vehicle needs to perform at all stages is localization. 

Traditionally this has been accomplished by the use of GPS or the more accurate DGPS 

[3], which provides location accuracies of around 10 cm; yet in autonomous driving 

application, the need for higher accuracies and the capability of locating the vehicle in 

GPS denied environments, such as underground or multilevel parking, growing the 

need for perception-based localization techniques. Among these, odometry is widely 

used, which consists in obtaining information from onboard vehicle sensors (e.g. 

vehicle speed, steering angle, wheels angular speed etc.) to reconstruct the vehicle 

position over time from the initial position. This method can suffer from low 

accuracies, which are compensated with instrument calibration and refined 

estimation algorithms. Arguably, the most successful technique is simultaneous 

localization and mapping or SLAM. The algorithms developed within this second 

solution allow the vehicle to sense the environment around with the aim of creating a 

virtual map and to locate itself in it. 

 

 

 

 
Figure 1.3: 2D SLAM generated map in a parking setting [4] 
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1.2 Thesis objectives and related project 

 

The ultimate goal of this work is to develop a complete automatic vehicle control 

strategy for AVP application: the main phases of which are discussed in the following. 

The first aspect to consider is the definition of the system architecture, which 

integrates the vehicle models, the perception module and the control strategy. 

 

 
Figure 1.4: Functional System Architecture 

 

The above will be a reference during all stages of the system development. Initially a 

parking scenario needs to be defined in a software environment from which all 

following steps of AVP development will follow. 

 

The scenario consists of an area such as a large open space parking lot, a road side 

parking or a home garage. It is important to properly define the scenario, or a 

multitude of scenarios, as to best represent real parking scenarios where the system 

would be engaged: the geometries of the road, traffic rules and parking lot layouts all 

need to be carefully defined. 

The following project phase involves the definition of a sensor set to be used in the 

simulations and later on, during the validation, on the vehicle itself. The idea is to 
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compare the performance of a “low-cost” minimal set of sensors to that of a full-set 

of sensors. The latter would include surround view and front cameras, ultrasonic 

sensors, front radar and LIDAR sensors: the aim is to study the robustness and 

capability of a low-cost but ready to market set of sensors as compared to a defined 

“best performance” benchmark. 

After the sensor set is defined, a path planning algorithm needs to be defined within 

the software environment. Once a trajectory is available the aim will be to design a 

control strategy for lateral and longitudinal dynamics at low speed driving, this being 

the main objective of the present work. 

At a later stage the complete functional system will be validated in a real AVP scenario 

using a series production car. 
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1.3 Methodology 

 

The design of the control system is developed starting from a reference control layout. 

A lateral and longitudinal dynamics models are provided from CRF (Centro Ricerche 

Fiat) S.C.p.A modeling the full dynamics passenger car as MATLAB® S-Functions.  

 

These models were identified from test runs data and are provided as ready to use 

black-box models: a compatible version of MATLAB (2015 32-bit) was necessary as the 

functions were compiled in such software release. 

 

A simplified overview of the control strategy is presented in the following. 

 

 
Figure 1.5: Simplified control strategy model 

 

 

The main inputs to the system are the speed reference, which can be arbitrarily 

chosen or derived from the path geometry. A PID controller allows following the 

chosen speed by minimizing the tracking error. 

 



 
 

8 
 

A linear EPS model, obtained from previous works within the OEM’s with the use of 

system identification, receives the control torque input from the MPC controller and 

generates the steering wheel angle. This, together with the longitudinal speed is fed 

to the lateral dynamics block, which then yields the key lateral variables of the vehicle: 

yaw rate, lateral speed and lateral acceleration.  

 

The system also uses a Lane Recognition Camera like system to estimate the vehicle 

center position relative to the trajectory: this represents the chosen input to the 

controller along with the road curvature as it is better explained later on. 

 

Finally, the actual trajectory driven by the vehicle is reconstructed by the trajectory 

estimator starting from the vehicle states, the planned trajectory and the vehicle 

center of gravity offset to the latter (𝑞). 
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2 Literature review – State of the Art 

 

Automatic Valet Parking system represents the very next technological step towards 

fully autonomous vehicles by completely automating the parking task, which still 

appears to be one of the most demanding driving maneuvers. This system can relieve 

drivers not only from the task of parking the vehicle yet also from the time-consuming 

task of finding an empty parking space. Moreover, a great potential benefit of wide 

use of AVP systems is the possibility of high-density parking (HDP [37]), where 

autonomously parking vehicles can be rearranged in layouts that optimize parking 

space utilization while taking advantage of smaller parking slots as vehicle accessibility 

is not needed. As such, AVP systems are expected to appear in the car market very 

soon owing to their potentially great customer value. 

The vehicle, once the driver engages the system, would be capable of low speed 

cruising while sensing the surrounding environment for available parking slots and 

nearby obstacles. Once a free parking slot is detected, the autonomous vehicle will 

plan a parking path according to the available space and kinematic limitations to drive 

itself to the selected parking space.  

With this definition, AVP qualifies as a level or category 4 driving automation standard 

according to J3016 SAE [5], meaning that the vehicle is in charge of the whole task 

once the system is engaged by the driver with the latter not expected to intervene in 

any situation. 

 
Table 2.1: SAE International’s standard J3016-High driving automation levels definition [5] 
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Table 2.2: SAE International’s standard J3016-High driving automation definition [5] 

ODD: Operative Design Domain DDT: Dynamic Driving Task 

 
Level 4 - High Driving Automation  
Driver/dispatcher (while the ADS is not 
engaged):  
• Verifies operational readiness of the ADS-
equipped vehicle  
• Determines whether to engage the ADS  
• Becomes a passenger when the ADS is 
engaged only if physically present in the vehicle  
 
Passenger/dispatcher (while the ADS is 
engaged):  
• Need not perform the DDT or DDT fallback  
• Need not determine whether and how to 
achieve a minimal risk condition  
• May perform the DDT fallback following a 
request to intervene  
• May request that the ADS disengage and may 
achieve a minimal risk condition after it is 
disengaged  
• May become the driver after a requested 
disengagement  
 
 

ADS (while not engaged):  
• Permits engagement only within its ODD  
 
ADS (while engaged):  
• Performs the entire DDT  
• May issue a timely request to intervene  
• Performs DDT fallback and transitions 
automatically to a minimal risk condition when:  
• A DDT performance-relevant system failure 
occurs or  
• A user does not respond to a request  
• A user requests that it achieve a minimal risk 
condition  
• Disengages, if appropriate, only after:  
• It achieves a minimal risk condition or  
• A driver is performing the DDT  
• May delay user-requested disengagement  
 

This also includes scenarios in which during the parking maneuver or even low-speed 

cruising, a pedestrian or vehicle is detected as an obstacle on the vehicle’s path: the 

system would be able to re-plan a new route avoiding the obstacle or to abort the 

parking maneuver altogether if no drivable path was found. 

For convenience, the literature review will be subdivided in three separate topics that 

reflect the AVP system architecture layout: perception, path planning and vehicle 

longitudinal and lateral control. 

A comprehensive review of the state of the art technology in AVP applications is 

present in [16] with some of the publications mentioned further analyzed in the next 

sections of this chapter. 

 

 

 

 

 

 

 



 
 

11 
 

2.1 Perception and Data Fusion 

 

 

The first consideration to make when developing an AVP system is the definition of 

the sensor set: this will have great effect on both the performance and cost 

effectiveness of the system as an available option for final series production vehicles. 

As such much of the state of the art research in the AVP system focuses in refining the 

implementation of sensor sets which include: cameras, ultrasonic, LiDAR and less 

often RADAR. The chosen set must provide high reliability and high detection accuracy 

of obstacles and road topology, for any given environmental condition or noise (i.e. 

glare, fog, dust, dirt, night etc.). 

 

Each typology of sensor has it own advantages and limitation as listed in the following 

table: 

 

Table 2.3: Features that can be traced by different sensors and their drawback [6] 

 
 

Camera sensors are usually used to infer appearance of objects either by feature-

based techniques or by processing the images using stereo motion algorithms to 

extrapolate location and possible relative speed; LiDAR can improve the accuracy of 

shape and dimension sensing while RADAR is effective in estimating relative speed to 

a detected object. 



 
 

12 
 

Compared to other sensors, LiDARs are more expensive, yet they provide more 

accurate depth estimations; cameras, on the other hand, provide the highest 

resolution and range among all sensors [37]. 

Owing to their limited range (<10m) ultrasonic sensors are employed in many parking 

assist applications for close object detection: they tend to be cheap and weather 

resistant (snow, fog, rain, glare or darkness). 

The sensor set performance is enhanced by implementing data fusion techniques: this 

allows obtaining more complete and accurate information. Three main typologies of 

sensor fusion are: 

-competitive, in which each sensor provides independent measurements of the same 

element to increase robustness of the measurement 

-cooperative, where information from different sensors is used to infer new 

information 

-complementary, within which the same kind of information is combined to complete 

existing information. 

Sensor information fusion can be made at either feature level, which means using raw 

data from the sensors or at object level from the obtained object hypothesis: 

 

 

Figure 2.1: levels for sensor data fusion. OHY: Object hypothesis [7] 
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In [33] the fusion between a set of 12 ultrasonic sensors and a front camera can be 

found: researchers were seeking to develop a system architecture with the aim of 

using market ready sensors only in order to reduce cost. 

 

The fusion algorithm allowed enhanced robustness and reliability of the system in real 

conditions: changing weather, changing lighting conditions and dynamic obstacles 

avoidance.  

Valet parking implementations also include the use of infrastructure or more 

specifically map based solutions [9] [13] [20] [22] [35] [36] in which the parking area 

is mapped in separate runs and accurate maps are provided to the vehicle through a 

V2I communication protocol, along with free parking spot information [26]. This 

approach is particularly effective in indoor parking areas with limited GPS information, 

but relies on the availability of updated and accurate maps. 

Within these kind of implementations [10] [25] the use of external sensors is also 

being explored: an infrastructure-based camera system will provide position 

information to the vehicle. The parking spot will be automatically assigned to the 

vehicle upon entrance to the parking area where the driver leaves the vehicle in a 

designated hand-over area. The system also informs the vehicle about detected 

pedestrian and moving vehicles for collision avoidance. 

Vehicle only implementation of AVP systems have been also widely researched with 

some of these using camera-based applications for parking space detection, as [11] 

[12] [13] [31] [40], while in others front facing LiDAR [8] [20] [22] [23] [24] [30] [36] 

sensors were employed, along with ultrasonic sensors for close obstacle detection. In 

many of the aforementioned applications, as in [20], kinematic-model based 

odometry was included in the localization task to improve accuracy. 

 

In [12] stereo motion was utilized to provide both a Parking Slot Detection along with 

Augmented Parking functionality that uses image-based rendering to compute a 

virtual bird’s eye view; this study compared camera-based methods with feature 

based approaches and ultrasound-based solution and found that the latter had a 

limited performance in detecting cross parking slots. The study also showed that top 

mounted lateral cameras provided greater error of measurements. 
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Figure 2.2: Parking slot depth measurement error results in  [12] 

 

 

A Similar vision-based approach was adopted in [11] [31], where through dense stereo 

motion applied on inverse perspective images, the generation of height maps was 

conducted; parking space detection is done by using a line extractor on low-obstacles 

edges, after which space recognition is validated by a probabilistic approach. 

 

 

 
Figure 2.3: Input images (above) and recognition results overlapped by Height Map for 4 different 

parking scenarios and environmental conditions [11] 

 

 

This method is robust against adverse environmental conditions but was limited by 

lack of road sign recognition to detect disabled parking space. 

Vision-based solutions in AVP systems are the best equipped to integrate road sign 

and marking recognition to avoid the ego-vehicle parking itself in tow-away zones, 

driveway entrances or reserved parking spaces. 
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Funded by the European Commission the V-Charge project [14] aimed at developing 

an AVP system for an electric vehicle using series production only sensors: the idea 

was to include this function on series electric vehicles to guide the vehicles into charge 

ready parking slots. The vehicle used a set of 12 ultrasonic sensors, a front stereo 

camera with a 3D measurement range of 50 meters and 4 fish-eye cameras with 185° 

FOV and 1.3Mpx resolution. Ultrasonic sensors had a 60° horizontal angle and a 30° 

vertical angle with a maximum range of 4.5m. 

 

With this sensor set, using in particular images generated from the fish-eye cameras, 

the team of researchers was able to develop algorithms capable of detection and 

tracking of vehicles, passengers and parking slots reaching state of the art accuracy 

and reliability [38]. 

 

 

 

 
Figure 2.4: Sensor set used in V-Charge project with highlighted FOV: green for ultrasonic, blue for 

fish-eye cameras and red for stereo camera. [14] and [38] 
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Within the V-Charge project application three different types of maps were generated: 

sparse maps containing sparse 3D points used for localization, dense maps used for 

height definition of surroundings needed for path planning task and finally road graphs 

containing information regarding features like lanes, parking spots etc. 

 

These are detected by obtaining an overhead image of the environment from the 

dense map and then running a template matcher to detect predefined parking spots. 

 

 

 

Figure 2.5: Parking spot detection result using the template matching technique [14] 

 

 

Researchers in [40] used a camera only sensing vehicle guided by external LEDs 

waypoints to perform valet parking in a indoor environment: the front facing camera 

provided localization while the rear view one provided parking spot detection. 
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2.2 Path Planning 

 

The second step in the AVP process is to define a drivable path from the initial position 

of the vehicle, when the system is engaged by the driver, to the detected free parking 

spot. Algorithms have been developed already for Park Assist systems which deal with 

the final parking maneuver, yet the AVP scenario includes also a low speed cruising 

mode, during which the vehicle is sensing the environment to detect available parking 

spots while avoiding possible obstacles on its path. 

Different constraints apply to the AVP path planning algorithm, which needs to 

consider: non-holonomic vehicle kinematics, static and dynamic obstacles avoidance, 

final parking maneuver definition and traffic flow direction. 

In order to deal with these requirements, algorithms based on A* [18] [23] [36] and 

Dijsktra’s [17] [21] [35] can be defined including cost functions which aim to optimize 

the path also from a control point of view. An application of rapidly-exploring random 

tree (RRT) was found in [8]. 

The geometry of the path is assembled using straight lines and particular curves such 

as Dubin’s Curves [16] [19], Bézier curves [25] [26] and Reeds-Shepp curves [24] [30], 

the latter obtained from Dubin’s curves but considering also backward maneuvers. B-

spline paths have also been tested even if more optimization would be needed as the 

drivability of this curves may not be guaranteed [20]. A Dijsktra based algorithm in 

[17] is capable of path planning while considering several safety constraints. 
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Owing to their simple geometry, circular arches connected by common tangent, 

Dubin’s curves are employed to generate obstacle avoiding paths with a good real-

time performance. In [16] a Tentacle Algorithm generates a set of backup paths 

around the obstacle; a cost function is added considering the distance to obstacle, 

offset from the ending point to the origin point and a motion cost related to the 

difficulty of changing the vehicle trajectory. 

 

 

Figure 2.6: Backup target positions and paths in Tentacle Algorithm [16] 

 

If no feasible path is being found the vehicle would be stopped. The algorithm was 

tested against static and moving obstacles achieving good handling performance while 

avoiding the obstacle. 

A Dubin’s curve approach was implemented as well for a parking maneuver in 

perpendicular and parallel parking [19]: 3 sub paths are calculated which define an 

initial turning radius. The turning radius circle is then dynamically updated depending 

on the relative position and heading angle of the vehicle. 

 

 

Figure 2.7: Three step parking maneuver for backward perpendicular parking [19] 
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Bézier’s curves where implemented in [15] using a three-step algorithm based on the 

Turning Standard Line: the path is obtained from unit paths starting with an initial 

known path to a final unit path in the parking spot. 

The length of each unit path is limited by the collision-free space; three steps are 

present with initially a base candidate generation calculated from the start position. 

Secondly, a completion check is carried out which generates a path to the goal position 

from the previous step result: if this is not possible, a “rubbing path” step generates 

further paths to change the vehicle heading. This last step combines forward and 

backward unit paths. 

The number of repetitions to find a feasible path is limited by a threshold value: finally, 

the path is optimized by minimizing total length and max derivative of curvature. This 

solution proved to be effective in narrow parking scenarios. 

 

 
Figure 2.8: Parking path and final vehicle trajectory [15] 
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Map based approaches to the path planning problem have also been successfully 

implemented. 

In [14] a map is created by the vehicle on which an A* search algorithm runs in three 

stages: the first result is a series of edges the vehicle needs to cross during navigation, 

then a path smoothing is performed using a fourth order polar-polynomial function. A 

check of curvature is then performed and, if necessary, a further second step of 

smoothing is done. 

 

Within this work a reactive path planning scheme was implemented to tackle any 

detected obstacles: this was needed as the electric vehicle has to park at a charging 

station with minimum offset and orientation errors. 

 

 

Figure 2.9: Set of obstacle avoiding trajectories (dark green) in a reactive path planner. [14] 

  

A second map-based approach was studied in [23], achieving state of the art 

performance by giving the vehicle information about the parking area. 

The first step is to obtain a semantic layer from available geographical maps: this 

defines the drivable areas, center lane and the parking lot geometry. This information 

will be used as a reference in the path planning. The latter is a Hybrid A* algorithm 

which already takes into account Ackerman steering geometry specific to the vehicle 

and as such is capable of generating a continuous curvature path with no further 

optimization needed. This algorithm is then run on a metric layer made from a 

location-based grid map. 
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Figure 2.10: Three different parking paths planned by Hybrid A* [23] 

The results show that a minimum steering angle was used while closely following the 

reference path (light green in the picture). More interestingly, all three paths ended 

with a different final parking maneuver, showing great flexibility.  

A modified Reeds-Shepp curve algorithm was developed in [24]. This path planner 

generated the shortest path while minimizing turning radius: the vehicle used DGPS 

and LiDAR to gather information on current position and parking lot geometry before 

executing the path planner. 

 

 

 
Figure 2.11: Backward perpendicular parking using Reeds-Shepp curves [24] 

 

In a peculiar application [32] a time optimized path planning algorithm is adopted for 

real-time trajectory generation: each constraint is provided analytically and then a 

dynamic optimization problem is solved. Being a direct method the resulting path was 

sensible to the constraints, which did not include null final heading angle to simplify 

the problem. 
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2.3 Vehicle Control 

 

The last task in a AVP system is to automatically drive the vehicle along the desired 

path by providing lateral, forward and backward longitudinal control. This is achieved 

by equipping the car with electric actuators for steering, braking and throttle. The 

control is to be designed in order to have the vehicle track the planned path while 

minimizing tracking errors and input magnitudes. 

The control would be designed based on the model adopted and will be constrained 

by characteristics of the driven vehicle such as steering kinematics and dynamics as 

well as brake pressure and vehicle acceleration. Robustness against disturbances like 

road slope or sensor measurement uncertainties must be ensured. 

Owing to the low speeds of AVP and limited slip angles, the models can be simplified 

and kinematic models are widely used as in the following studies. 

 

A bicycle model was used in [26] and compared to a more complete hatchback car 

model on CarSim®: a maximum deviation of 5° in the heading angle was found. A 

further validation against real data from an SUV car showed that a simple kinematic 

model is accurate enough in modeling low speed behaviour of a vehicle. In the same 

work, a nonlinear control technique, Dynamic Surface Control, was applied to design 

a lateral controller providing inherited robustness with respect to noise and time delay 

in position measurement [34] while considering the constraint on steering angle and 

steering angle rate. For a forward vehicle speed of 8km/h the lateral controller proved 

to be stable and simulation carried on real SUV car implementing an AVP system 

showed a max lateral error of about 0.23m for forward driving and 0.32m in backward 

perpendicular driving. 

 

 
Figure 2.12: Tracking performance from field tests with an SUV car in [26] 
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A closed loop fuzzy controller was implemented in [27] using as tracking strategy a 

distance-angle bias preview. Within this strategy the traverse distance and heading 

angle error and their derivative are provided as an input. The controller showed good 

tracking performance and robustness in initial MATLAB® simulations of backward 

parallel parking. Further validations were completed in PreScan® virtual scenarios with 

ultrasonic sensors equipped cars. 

 
Figure 2.13: Tracking results of Fuzzy controller from [27] 

 

A control strategy for an electric vehicle was designed in [28] within a park assist 

architecture. Two different controllers were developed; a PI speed controller for the 

electric motor was included in a trajectory tracking controller controlling also the EPS 

module. Moreover, a simple kinematic model was employed, and the controller 

asymptotic stability, around the origin, was demonstrated with Lyapunov Function 

Method.Therefore, the controller was able to keep the vehicle on the reference 

trajectory with the presence of uncertainties and disturbances during both forward 

and backward driving. Performance was nonetheless limited by the simplification in 

deriving the tracking controller from the kinematic model. 

 

 
Figure 2.14: Simulation results of tracking control for the control strategy proposed in [28] 
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An application focused primarily on optimizing the end of maneuver longitudinal 

control is found in the work [29]. The aim is to bring the vehicle to a stop with high 

accuracy while minimizing inputs from the actuators: road grade and engine idling 

behavior were both accounted for as disturbances through a disturbance estimator. 

The controller is also able to track precisely backward low speed references and to 

bring the vehicle to a stop if obstacles are detected. These functionalities are made 

possible by using a hybrid controller, which included a wheel count distance estimator, 

an ultrasonic target generator for static obstacle tracking and a distance-velocity error 

estimator for the feedback control. The resulting controller would provide three 

modes of longitudinal control: speed limiting (low speed cruising), distance tracking 

(parking maneuver) and stand still (end of maneuver). The system was tested in 

different slope configurations and with unexpected obstacles, showing satisfying 

performance. 

 

 

 
Figure 2.15: Experimental test results with transition from flat to sloped ground [29] 
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LQR was employed in [30] to provide optimal feedback control; this was defined from 

the estimated lateral and yaw angle errors. Time varying parameters (loop gains and 

delays) were used to account for powertrain and external disturbances alike. The 

controller was implemented in a LiDAR equipped vehicle which performed an 

automatic valet parking maneuver with an overall path tracking error of less than 

30cm; yet an overshoot of around 1m occurred when switching to reverse, due to 

reference path changing. 

 

A peculiar policy-based control solution is presented in [39] where local feedback 

policies are defined in logical terms to guide an automated vehicle in accomplishing 

the high level command “drive around until you find and empty parking space, then 

park”.  
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3 MPC theory and application 

 

In the following chapter a brief theoretical introduction about model predictive 

control and its application is given. 

 

Model predictive control is an optimization-based control strategy in which a model 

of the controlled system is used to predict its future states. From this prediction, an 

optimal control input that satisfies all system constraints is then calculated. 

  

It is a widely used control strategy in industry, especially in process control 

applications. Due to its effectiveness and flexibility, MPC has found large application 

in automotive controls as well, as in [41] [42] [43].  

 

The advantage of MPC is the ability of handling non-linear MIMO systems in which 

different parameters and variables interact between each other in complex and 

unpredictable ways. The information about the controlled system is embedded in the 

controller it self: this includes also the physical and variable constraints, which allows 

the solution of an optimal control.  

 

One key aspect that largely affects the performance is the availability of a model of 

the controlled plant: this model has to be as accurate as possible in order to produce 

accurate states’ predictions. These accurate models can be obtained through system 

identification [44] or by simple linearization of the system around a working point. It 

will be then of paramount importance to properly define this operating point as the 

optimality of the control will be strongly affected by it. 

 

An overly complex predictor model, on the other hand can yield a complex 

optimization problem that may hinder real-time performance of the controller. 

However, recently the increase of processing power of microprocessors has allowed 

the adoption of MPC also in those applications where a time-sensitive control strategy 

is needed, such as aerospace, robotics and automotive applications. 

 

A common application of MPC is when the system is needed to track a given reference: 

in the AVP case, the reference is the planned trajectory. Due to its predictive nature, 

the controller in this case considers not only the current reference tracking error, as 

in a usual feedback control, but also a future estimate after a given number of time 
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steps in the future. This prediction window is what is defined as the prediction horizon 

of MPC. It represents the number of control intervals that the MPC controller 

estimates by prediction when optimizing the control. 

 

Deciding on a proper prediction horizon length is key to the success of the control; this 

is usually a function of the process sample time and the particular application. The 

sample time sets the rate at which the optimization is run in the control algorithm: a 

small sample time allows faster reaction to disturbances at the expense of larger 

computation load. 

 

The recommendation is usually to choose a sample time between  
𝑇𝑟

10
 and 

𝑇𝑟

20
 with Tr 

being the rise time of the open loop system response. In the present work the sample 

time was chosen to be 0.01s as this is the fixed sample time required by the vehicle 

dynamics’ S-Functions.  

 

The prediction horizon 𝑝 is usually chosen in the early phase of control design and it 

is gradually increased until internal stability of the closed-loop system is reached or if 

no further improvement in the controller performance is obtained: when the 

prediction horizon is increased beyond this the control problem poses a 

computational challenge. A trade-off is then needed. The recommendation here is to 

set a prediction horizon of 10 to 20 sample time steps within the open loop response 

time but now defined as setting time, that is the time needed to obtain an output with 

a given error range from the reference. 

 

The product between the sample time Ts and the prediction horizon p defines the 

response interval of the system that characterizes the closed-loop dynamics of the 

system, that is how fast the controlled output tracks the desired reference. 

When a dynamic trajectory is employed, the prediction horizon may be constrained 

by the information range: the tracking error can be estimated to the furthest available 

trajectory waypoint. For proximity sensors, this can be limited to 8 meters. 

A simple calculation yields that the prediction horizon upper limit would be higher 

than 300 when considering a sample time of 0.01s and parking speeds. 
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Another parameter used in MPC setting is the control horizon: this indicates the time 

steps for which the optimized control input is enacted by the controller.  

All other optimized control inputs are discarded at every iteration of the control and 

new ones are calculated instead: the literature refers to this as the “receding control 

horizon”. Usually a control horizon of few time steps is sufficient as only the initial few 

control inputs have the bigger effect on the controlled output. Again, the control 

horizon may be set from 0.1𝑝 to 0.2𝑝. 

In MPC, the control horizon is usually less than the prediction horizon, which is 

intuitive to understand: one cannot calculate an optimal control on states that have 

not been estimated yet. Properly tuning the control horizon is not a straightforward 

task: a too large control horizon improves the control performance on one side, while 

increasing the computational complexity on the other. Moreover, a small control 

horizon may improve the controller stability yet provides a less than optimal control.  
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3.1 Traditional MPC 

 

In the present work, MPC is applied to the lateral control of a vehicle driven on a 

predefined trajectory. This trajectory is the reference that the controlled system 

needs to track in order to meet the performance requirement. 

In the following, the working principle of this MPC approach is explained. 

 

 
Figure 3.1: MPC control structure example [49] 

 

 

The car model is used to simulate the lateral position of the car in the next p time 

steps as a function of estimated control input that is the incremental steering wheel 

angles. The estimated control input is obtained through an online optimization where 

the objective is to minimize the predicted error while not exceeding a control input 

magnitude. This can be constrained for different reasons: physical limitations of the 

electric steering actuator or comfort requirements in terms of lateral vehicle 

acceleration. 

 
 

Figure 3.2: Representation of MPC application in trajectory tracking [49] 
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In the literature, the optimization is commonly achieved by minimizing a cost function: 

 

𝐽 = ∑ 𝑤𝑒𝑒𝑘+1
2

𝑝

𝑖=1

+ ∑ 𝑤𝛥𝑢𝛥𝑢𝑘+1
2

𝑝−1

𝑖=0

      (1) 

 

The problem at hand is optimized when both the predicted input, defined as a sum of 

incremental inputs 𝛥𝑢, and the prediction error 𝑒 are minimized over the prediction 

horizon 𝑝. In the equation above the cost function to be minimized is defined as a sum 

of two quadratic terms in which the prediction error and input are multiplied by 

relative weights: these can be tuned during the design stage to obtain the best trade-

off between minimizing the steering input and the trajectory tracking error. For the 

present application we require a tracking error, that is the vehicle center lateral 

position error relative to the trajectory to be less then 0.1m. 

 

 

 
Figure 3.3: Tracking error by time steps within the prediction horizon [49] 
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3.1.1 Constraints & Weights in MPC 

 

First let us introduce some nomenclature: the control variable, that is the quantity 

that is used to enact the control (e.g. steering torque) is usually called the manipulated 

variable while the output variable (e.g. vehicle center offset from trajectory or q) is 

usually called measured output. 

In MPC design, several important parameters need to be set in order to properly tune 

the controller to the plant’s requirements. One of these are the already mentioned 

constraints, which can be applied to both the control variable and the output variable. 

Constraints can be set on the variables and their rates as well; one can define hard 

constraints and soft constraints. Hard constraints cannot be violated and usually stem 

from physical limitation of the system (e.g. throttle input), while soft constraints may 

be temporally violated. 

 

 
Figure 3.4: Constraints definition in MPC variables [49] 

 

 

When during the design several constraints are being inserted, difficulties may arise: 

the constraints introduced in some cases generate conflicts which may lead to 

unfeasible control optimization. Especially when using hard constraints, one should 

avoid introducing them for manipulated variables or their rate of variation. 
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Another important parameter that are commonly used are weights. These are 

introduced to better tune the controller behavior and to mitigate the impact of the 

constraint. In the aforementioned cost function, weights are chosen with the aim to 

balance the controller between having a more or less aggressive control action or 

reaching a more or less precise reference tracking. Weights tuning is key to obtain the 

desired controlled system dynamics, particularly in MIMO systems 
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3.2 Advanced Model Predictive Control 

 

Complex systems and high control performance requirement may pose a challenging 

problem to solve from an MPC application perspective; to this end several evolutions 

of MPC controllers have been developed to meet the needs of control design. 

 The optimization problem that is defined from an MPC controller is usually solvable 

whenever the following conditions are present: 

- Linear system 

- Linear constraint    Linear Time Invariant MPC 

- Quadratic cost function 

 

With these conditions met, the optimization problem becomes a convex one that is 

for which a local minimum of the cost function to be me minimized is guaranteed to 

be a global one, thus yielding an optimum solution. 

However, the above ideal hypothesis may not be satisfied and a different approach to 

MPC applications is then needed: in the following, some of these approaches are 

briefly presented. 

When the system to be controlled is a nonlinear system, MPC can adopt linearization 

to simplify the problem.  
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3.2.1 Adaptive MPC 

 

In this implementation of MPC, the nonlinearity of the controlled plant is dealt with 

using a step by step linearization approach. As the dynamics of the system may be 

changing significantly from one instant to the other, the model that the controller 

employs to predict the states is updated accordingly for every set time step. 

 

Adaptive MPC is particularly suited for applications where the system has great 

dynamic variety within the control space of interest and using a single identified model 

or a linearized model would yield poor control performance or robustness. 

 

In this declination of MPC, the number of states and constraints are fixed: for those 

applications in which flexible constraints are needed, then a Gain-scheduled MPC is 

adopted. Several models are obtained offline at different operating points and each 

one is embedded in a different controller: a switching algorithm will then choose the 

right MPC controller depending of the operating condition. These models can be of 

different number of states and the relative controllers can use different constraints 

and cost functions. 
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3.2.2 Explicit MPC 

 

As already stated the MPC controller task is to solve an online optimization problem; 

the complexity of this problem grows considerably with increasing number of states, 

constraints, prediction and control horizon sizes. For those applications in which fast 

sampling is present along with demanding dynamics, the need for real time control 

performance creates a great hurdle on the on-board hardware. 

 

Therefore, a different MPC approach can be employed: explicit MPC.  

When the state space of the controlled plant can be mapped one can precompute 

optimized solutions for properly chosen regions of the state space.  

These regions are determined by ranges on the states which define functions that are 

linear and piecewise continuous. In the figure a single space example is proposed, 

where the 𝑥 axis domain is divided in different intervals and 𝑓𝑖 + 𝑔𝑖 representing the 

local linear functions: the overall explicit solution 𝑢(𝑥) is then obtained by combining 

the local ones. The optimization problem becomes then an evaluation of offline 

precomputed solutions, which greatly improves the runtime efficiency of the control 

algorithm.  

 

 

 
Figure 3.5: Definition of solution regions in a single space system 
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4 Model components 

 

In the present chapter a description of the models used in the simulation and their 

definition is provided. The simulation software employed, in particular the Simulink 

MPC toolbox, is also presented. 

 

 

4.1 Simulation software 

 

For the present work the main software of reference was MATLAB® 2012-32bit and in 

particular Simulink was used to set up the simulation in its graphical programming 

environment. This seemed convenient, as many of the simulation model components 

were already made available from the OEM as Simulink blocks. 

 

Within this release of Simulink® the Model Predictive Control Designer Toolbox® was 

especially useful in setting and properly tuning the MPC controller to the design 

requirements. For the sake of clarity, the toolbox will be further discussed when 

dealing with simulation setting in the next chapter; now a close look to the key 

components of the simulation is given. 
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4.2 Electric Power Steering 

 

Given that an automated vehicle is steered by controlling an electric actuator acting 

on the steering column, integral with the EPS module, it dictates that a model of the 

EPS system needs to be included in the simulations. Again, the system was obtained 

thru advanced system identification and it is used as provided.  

 

While the EPS function is to assist the driver inputs by providing torque adjustments, 

for comfort or safety reasons, here the EPS is modelled as a “black-box” transfer 

functions that translate the two listed controlled inputs into a corresponding output: 

-steering torque [Nm] 

-vehicle speed [km/h] 

 

Internally the system is defined as Linear Time Invariant (LTI) system and when 

analyzing its output, its behavior can be considered as a small delay low-pass filter 

with regard to the steering torque to angle response, as the graphs below 

demonstrate. 

 
Figure 4.1: EPS Steering Angle [deg] response for a 7 [Nm] Steering Torque step input at 5s at a vehicle 

speed of 8km/h 

 

From the plot above we notice a slight overshoot in the steering angle step response 

which can be explained by the damping (0.58) provided by two negative real part 

conjugate complex poles defining the dynamics of the system. 
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Figure 4.2: EPS system Bode plot 

 

The first Bode plot (on the left) shows how the system manages to filter the high 

frequency torque signals, as the ones generated by the road profile, while providing a 

stable and predictable gain for the usable frequency range of the steering. In the 

second Bode plot, the transfer function gain between the longitudinal velocity and the 

angle is shown: as already noticed when evaluating the system response, the effect of 

vehicle speed on system behavior is fairly limited. In general, speed variations are 

limited due to intrinsically small decelerations present in parking environment as such 

the system will not be affected by its second input. 
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4.3 Vehicle Dynamics 

 

In order to simulate the vehicle control, a proper representation of the vehicle 

behavior needs to be provided. To this end, two S-functions for both the vehicle 

longitudinal and lateral dynamics were used. These functions have been defined 

starting from experimental data gathered from the field drive tests. 

The definition of the functions themselves are not accessible, as such they are dealt 

with as “black-box” models having only regard towards the selection of proper inputs 

and outputs. 

 

Owing to the limited speeds in parking scenarios in many applications presented in 

the literature review a series of simplified or low-fidelity models are used as at low 

speeds the lateral behaviour of the vehicle approaches that of the kinematic model. 

The reason behind this is the limited side-slip at the tyre level [45] which allows the 

hypothesis that only negligible nonlinearities are introduced during the vehicle 

maneuvering: indeed, the true advantage would be the great computational 

simplification of the problem. A good trade off could be ideally to identify a vehicle 

model, both lateral and longitudinal, from a real vehicle driving in a parking space. 

This vehicle model has to account for several disturbances in which effects are usually 

amplified at low speeds, namely the road slope and its variations and powertrain 

induced disturbances (e.g. engine idling, driveline vibrations). 
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4.3.1 Lateral Dynamics  

 

The lateral dynamics Simulink block models the lateral behavior of the vehicle. Taking 

as inputs the steering angle [rad] from the EPS model and the longitudinal speed Vx 

[m/s] from the longitudinal one, the lateral dynamics block produces then as outputs: 

- 𝛹̇  [rad/s] Yaw Rate  

- 𝑉𝑦  [m/s] Lateral Vehicle Velocity  

- 𝑎𝑦  [m/s2] Lateral Acceleration  

 

 
Figure 4.3: Lateral Vehicle Dynamics model in Simulink with I/O definition 

 

These outputs are then used to define the LRC block dynamics and the coordinate 

transformations that allows reconstruction of the vehicle position relative to the 

desired path.  

 

When designing the control strategy, it was found that the lateral dynamics block was 

highly sensitive to the longitudinal speeds value. This can be provided as a constant 

low speed reference, but it was noted how large instabilities were triggered when this 

speed approached a null value. Indeed, this mimics the output of a “bicycle-model” 

like block, where the longitudinal speed is present at the denominator, as it can be 

seen in the state space model definition in the next page. 
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 (2) 

 
Figure 4.4: State-Space Lateral Vehicle Dynamics model in Simulink with I/O definition [45] 

 

The state space definition of the lateral dynamic model uses the lateral vehicle 

position 𝑦, lateral speed 𝑦̇, yaw angle 𝛹 and yaw rate 𝛹̇ as state variables; other 

parameters used include tire cornering stiffnesses 𝐶, center of gravity to axles 

distances 𝑙, vehicle longitudinal speed 𝑉𝑥, vehicle mass 𝑚 and vehicle inertia around 

the vertical axis 𝐼𝑧. The front wheels steering angle 𝛿 is present as an input  

 

In the simulation setting, this instability was dealt with primarily by two means: first a 

non-null initial vehicle speed is defined (𝑉𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙  > 1 m/s) and then a saturation block 

is included in the longitudinal speed output as to avoid feeding close to zero 

longitudinal vehicle speeds to the lateral dynamics block. 
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4.3.2 Longitudinal Dynamics 

 

The second S-Function employed is defining the longitudinal dynamics of the 

controlled vehicle having two physical quantities that need to be specified in the block: 

one is the already discussed initial vehicle speed, which is chosen to be 1.5 m/s, while 

the other one is the engine friction torque that was not specified. 

 

Regarding the definition of the inputs, there is a total of five that can be provided: 

- Initial Gear Inserted 

- Gas Pedal [%] 

- Master Cylinder Pressure [%] 

- Wind speed [m/s] 

- Road slope [rad] 

 

The last two of these inputs are discarded as they were not relevant for the application 

or, as in the case of road slope, they were not specified. Indeed, road slope is an 

important element of disturbance that a robust control system design should take into 

account: in this application its effect is greatly amplified by the low speeds. 

 

 

 
Figure 4.5: Longitudinal Vehicle Dynamics model in Simulink with I/O definition 

 

Of the four outputs generated only the longitudinal speed being used for both the 

lateral dynamics and the feedback PID vehicle speed controller, after proper unit 

conversions. 
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4.4 Lane Recognition Camera 

 

The dynamics models described in the previous sections allow to develop a model for 

an LRC sensor that provides the information needed to control the vehicle. 

The scheme is widely discussed in the literature [46] and easily applicable; four inputs 

are needed to define the system which are the following: 

-𝑉𝑥 [
𝑚

𝑠
]   Longitudinal speed 

- 𝑉𝑦 [
𝑚

𝑠
]  Lateral speed 

-𝜓̇ [
𝑟𝑎𝑑

𝑠
]  Yaw rate 

-𝐾𝑙 [
1

𝑚
]   Road curvature 

 

With the quantities above the LRC model provides information about the position of 

the vehicle centre of gravity relative to the road centerline approximation a distance 

𝑞 along the 𝑦 axis, and the angle between the vehicle longitudinal axis direction and 

the road centerline approximation (𝑚[𝑟𝑎𝑑]). Both these quantities are assumed to be 

zero initially. 

 

In the present application the centerline information is actually the planned trajectory 

that is translated in terms of path curvature. 

 
Figure 4.6: Lane Recognition Camera model representation 
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The equations of the system are the following: 

 

𝑞̇ = 𝑉𝑥𝑚 − 𝑉𝑦 − 𝐿𝑉𝑥𝐾𝑙       (3)     

𝑚̇ = 𝑉𝑥𝐾𝑙 − 𝜓̇        (4)   

 

Here an important parameter is introduced: 𝐿[𝑚] that is defined as the “look-ahead 

distance”. The use of this parameter allows to evaluate the offset of the vehicle center 

of gravity at a distance ahead on the road: with this information we can more 

effectively control the vehicle as this approach mimics that of a human driver when 

he or she is steering a vehicle. [47]   

Using this parameter, we evaluate 𝑦𝑓𝑏  =  𝑚𝐿 +  𝑞 which predicts the position of the 

vehicle at the distance 𝐿 ahead: properly tuning this parameter is key to the 

performance of the control. In traditional applications of Lane Recognition Systems, 

as in a Lane Keeping System, when a too large L parameter is adopted the vehicle has 

a tendency to cut thru corners and be more reluctant to direction changes. On the 

other hand, a too short L distance induces a more erratic motion of the vehicle. 

Needless to say, these effects are magnified at higher speeds.  

When considering a feedback control of the vehicle it would be more intuitive to 

consider the look-ahead vehicle 𝑦𝑓𝑏 position as the quantity of choice; however, this 

is not the case as the prediction capability of MPC allows the use of 𝑞 as feedback 

quantity. This is understandable as the system evaluates the error prediction for 

future values of 𝑞, which is controlled by the prediction horizon. In other words, the 

parameter 𝐿 is indeed present in MPC but as a product of three other parameters: 

-prediction horizon 𝑝 

-sample time 𝑇𝑠  

-vehicle longitudinal speed 𝑉𝑥  

Considering that the vehicle speed is limited in this application, from to 2 to 3 m/s in 

most scenarios, and the sample time Ts as already discussed is fixed, this leaves the 

prediction horizon as the only tunable parameter: as it will be shown in the next 

chapter this greatly impacts the controller effectiveness. 
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5 Simulation Setting 

 

In this chapter, a description of all the phases involved in the controller design will be 

described, with particular focus on the use of MPC Designer Toolbox in MATLAB®. 

The building blocks already described were assembled together in a single Simulink 

simulation: the next step was to generate the path information.  

 

 

 

5.1 Scenario and trajectory definition 

 
Initially a scenario design toolbox was used to define the parking environment. 

This included a limited drivable area (grey), a series of parked vehicles and barriers: 

the goal would have been to feed this scenario to the path planner but this capability 

being non-available a custom waypoint trajectory was instead generated. 

 

 

 
Figure 5.1: Parking scenario in Driving Scenario Designer® 
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Figure 5.2: Bird’s Eye view of the designed scenario: in blue Vision sensor range, in orange radar 

detection field 

 

The trajectory is then defined as a series of waypoints which are used to generate a 

full set of x and y points thru spline interpolation in MATLAB®. This command also 

allows the definition of initial and final slopes of the path, which were set to zero. 

 

Once the path is defined in x and y coordinates, the velocity profile and curvature can 

be  defined thorough simple derivations: as it is convenient, a time discretization of 

the length of the sample time was used for the derivations.  

The following equations are used to define velocity and curvature: 

 

𝑉𝑥 =  √𝑋2̇ +  𝑌̇2          (5) 

𝐾𝑙 =  
𝑌̈𝑋̇  −  𝑌̇𝑋̈

(𝑋2̇ +  𝑌̇2)
3/2

   (6) 
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5.2 Longitudinal Controller 

 

Once the road curvature and velocity profile are defined these can be provided to the 

controllers. For the longitudinal controller, the goal is to track a low speed reference 

by actuating the accelerator or the brake accordingly: to this end a simple PID 

controller is used. The controller gains were tuned by trial and error until a satisfactory 

speed tracking was achieved. 

 

 
Figure 5.3: Longitudinal Dynamics PID Controller (Cruise Control) 

 

In this application only a PI controller was sufficient as the vehicle accelerations are 

limited, as such no derivative term is needed: when examining the gains, it can be seen 

that a high proportional gain alone allows precise tracking of a reference speed 

ranging between 12 and 15 km/h, representative of vehicle speeds in parking 

scenarios. 
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5.3 Lateral MPC Controller 

 

The design of the lateral controller was the next step to as a reliable and robust 

longitudinal speed tracking is now available. After a presentation of the MPC Designer 

app a step by step description of the controller design is given in the following 

paragraphs. 

 

5.3.1 MPC Designer Toolbox 

 

This toolbox presents it self as an effective and easy to use tool that guides the control 

engineer in properly designing his controller: not only is it possible to simulate the 

controller for custom scenarios but it is also possible to study the stability of the 

controller and of the closed-loop system with a in built design report. 

 

 
Figure 5.4: MPC Designer Toolbox® environment 

 

Initially the MPC structure has to be defined in terms of system linearization and I/O 

setting; second a tuning phase follows, in which horizons, weights and constraints are 

evaluated. Within this tab also the Review Design function can be used to study of the 

system before running the various simulations. 
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5.3.2 Model I/O Definition 

 

As already mentioned the definition of input-output structure greatly impacts the 

performance of the controller. The lateral controller task is that of providing a 

feedback control through the steering torque 𝑇𝑑𝑟 [𝑁𝑚] to allow the vehicle to track 

the trajectory: this will naturally the be choice of the manipulated variable. On the 

input side more evaluation is needed before deciding the inputs of the controller. 

 

 

The MPC controller function is that of tracking a given reference while in presence of 

a certain disturbance deviating the vehicle from its path. When the state chosen for 

the feedback is the 𝑞 position of the center of mass of the vehicle, instead of future 

position 𝑦𝑓𝑏, it becomes clear that providing a trajectory reference (𝑞 =  0) to track 

will greatly simplify the problem. The controller will then calculate the optimal torque 

to steer the vehicle in order to obtain a close to zero 𝑞 value. 

 

 
Figure 5.5: MPC Controller I/O definition in MPC Designer Toolbox® 
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Along with 𝑞, the controller receives as input also the road curvature: this is because 

an MPC block with measured disturbance was used. Using this approach, a more 

robust control is obtained as compared to a system in which the road curvature is only 

present within the lateral dynamics of the system. While the linearized model, 

described in the next paragraph, still includes the road curvature as input to the 

system, the controller greatly benefits from having the road curvature as a separate 

input. When considering the AVP architecture as a whole, it is understandable how 

this information may well be available in real time to the controller: even in 

applications where advanced path planning is used such as dynamic planners for 

obstacle avoidance this information can be still made available for the MPC controller. 

 

 
Figure 5.6: MPC Controller I/O definition in Simulink 
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5.3.3 Model linearization 

 

Once the inputs and outputs of the system model have been defined, the linearization 

can proceed to obtain the embedded linear predictor model. In order to linearize, an 

operating point of the open loop system must be chosen: this has a great effect of the 

remaining design of the controller. 

 

The operating point was chosen at 15s in the simulation of the uncontrolled system as 

to avoid initial disturbances observed in the states, especially due to the EPS model.  

 

 

 
Figure 5.7: MPC model linearization in MPC Designer Toolbox® 
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5.3.4 Horizons definition 

 

With a model predictor identified and integrated with the controller structure, the 

next step is the tuning of the MPC. The first parameter to be tuned is the prediction 

horizon as is usually the recommended practice. Within the toolbox the interface of 

the tuning tab helps to properly define the value of the prediction horizon through 

trials and evaluations. As a standard scenario, the interface shows the unconstrained 

system output to a step response and visualizes the relative input: not only can the 

response of the system be studied but also the optimized input generated. 

 

 
Figure 5.8: Tuning tab in MPC Designer Toolbox® 

 

The aim was to obtain a response with a fast transient but most importantly, given the 

application, a null overshoot: the vehicle is driven to the new reference trajectory (in 

this case a new reference value of 𝑞) in less than 2 seconds. 

A control horizon of 2 units was sufficient to produce an optimal control action: as 

explained in previous sections this is a benefit of the receding horizon control whereby 

a larger value is only detrimental to the optimization task. 
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5.3.5 Constraints and weights optimization 

 

Eventually the controller effectiveness and performance can be further improved by 

properly choosing constraints and weights. 

The main constraint considered was the maximum torque exerted by the EPS actuator: 

for a passenger car this value ranges between 2 to 10 Nm depending on the car 

segment [48]. Given that these were just reference values, as more specific 

information was not available, a value of 7 was chosen. Other constraints available 

were the rate of steering torque, which again was left on default values for lack of 

references, and the manipulated output constraints. 

While imposing limits on the vehicle center of mass position error  

(e.g. |𝑞| < 1) may seem an intuitive choice in reality this overcomplicates the online 

optimization problem: the target is to obtain such good trajectory tracking 

performance without needing to impose any hard constraint on the solver itself. 

Lastly, weights can be defined to better tune the system: in this case it was not 

necessary to change the default values except for the input rate weight for which a 

0.1 value was beneficiary.  

 

 
Figure 5.9: Constrains definition in MPC Designer Toolbox® 
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6 Results and Discussion 

 

Here we finally analyze the performance of the controllers designed, with particular 

focus on the lateral MPC controller being this the unique contribution of the present 

research work. The present predictive controller can be integral with a MPC based 

path planner: in this scenario the path planning algorithm would include the 

constraints and requirement of the control problem thus generating an already 

optimized path which would in turn benefit the MPC controller as well. 

The controller designed within this work resulted to be stable for what concerns 

internal controller stability and closed-loop stability. The MPC Designer Toolbox allows 

to evaluate the stability of the system controller: in particular the eigenvalues of the 

discrete space-time realization of the closed-loop are evaluated to this scope. 

 

6.1 Longitudinal Control 

 

For this controller the target was simply that of tracking the vehicle speed exploiting 

a PI controller only. As it can be seen in the graphs optimizing the controller gains 

allowed to minimize the speed tracking error, which does not exceed 0.2 km/h for the 

whole duration of the simulation. 

 
Figure 6.1: Speed Error resulting from the PI controller 
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Figure 6.2: Comparison between reference speed and actual vehicle speed 

 

In the figure above the variating slow speed profiles of the reference and actual 

vehicle speeds are overlapping owing to the great tracking performance of the 

controller. 
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6.2 Lateral control 

 

The stated objective of the present work was that of developing a full vehicle control 

strategy for AVP application: it is clear how the lateral control is what really matters 

in this application. 

In order to create a demanding control problem moderate curvature trajectory was 

generated for the vehicle: this would allow to test the control strategy against realistic 

requirements.  

 

 
Figure 6.3: Trajectory employed for the lateral controller design 

 

 

 
Figure 6.4: Curvature of the generated trajectory 
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A smooth and simple trajectory allows to individuate limits of the controller when the 

generated control inputs are analyzed. We see how both the steering angle and torque 

produced by the controller are stable with smooth transitions even if some limited 

boundary oscillations. In particular the initial torque input appears to steer the vehicle 

in the opposite direction before transitioning quickly to the correct one.  

This phenomenon, limited to small angles was seen in other simulation, and could due 

to the sensitivity of the EPS model. 

 

 

 

 
Figure 6.5: Steering Torque and Angle obtained from the MPC controller 

 

 



 
 

58 
 

When analyzing the accuracy of lateral position tracking we found the relative position 

of the vehicle compared to the trajectory, or the local approximation of it, never 

exceeds 0.3m.  Clearly in parking applications this may not be sufficient as more 

precise position control of the vehicle is needed due to presence of nearby vehicles 

and obstacles. Nevertheless, this is useful starting point for developing even more 

effective lateral control of the vehicle. 

 

 
Figure 6.6: Vehicle center of gravity q as a function of time 

 

From the comparison of the driven trajectory with the reference trajectory the patter 

that emerges from 𝑞 plot is confirmed: the initial uncertainty of the steering input 

deviated the vehicle from its path which is eventually regained and closed tracked for 

the remaining part. In the trajectory comparison we see how this uncertainty is 

actually limited to the very first meters of the driven path. In the last plot it is clear 

that the MPC based lateral control proves to be generally effective in driving the 

vehicle on the predefined path. 

The instabilities present in the two extremities of the trajectory may also be a 

consequence of high curvature variations present in this part of the path: the 

curvature initially has a null value from the assumption of initial null slope and then it 

is quickly changing to a non-null value. Therefore, a proper re-definition of the 

curvature profile at the path extremities needs to be considered. 

Eventually we need to evaluate the real-time performance of the controller: on 

average the simulation of 500s of length took a minute more than the simulated time 

to run. Clearly this does not satisfy real-time performance requirements. 
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Figure 6.7: Comparisons between driven (red) and planned trajectories (green) with detailed view of 

initial trajectories.  
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7 Conclusions and Future work 

 

In this final chapter some conclusions are drawn and recommendations for future 

work are given. 

 

From the final considerations in the last chapter and from some of the results it 

appears that using a truth model for this kind of application may be overcomplicating 

the problem: this emerges also from the need of using a sample time of 0.01s for the 

online optimization problem which greatly hinders real-time performance. 

 

A longer sample time coupled with a simpler predictor model are then necessary to 

further improve the control performance.  

 

For what concerns the accuracy of the system it seems that initial transients need to 

be deeply evaluated at each block to isolate the initial instability: as pointed out in the 

previous chapter a more accurate EPS model could be useful for this scope. One could 

obtain said model this from real data collected from vehicles running in parking 

scenarios: not only would this model be more accurate but also account for 

nonlinearities that could emerge at low speed and high steering angles. 

 

Consolidated procedure in the industry would certainly include a detailed evaluation 

of the controller’s robustness that was not performed here: before any validation in 

real scenario can be carried the virtual system need to prove robustness to slope and 

other disturbances. This is particularly important if upstream information flow in the 

system’s pipeline does not deal effectively with external perturbation: when these 

reach the control problem they become even more laborious to manage.  

 

 

 

 

 

 

 



 
 

61 
 

From this consideration it appears that a successful control strategy can only be 

developed in close synergy with other modules in the AVP architecture: each stage’s 

performance is closely affected by the other with an increasingly degrading effect on 

overall performance as inaccuracies are propagated downstream. This would indicate 

to fully integrate the path planning algorithm with the MPC controller to further 

enhance the performance of the whole system. 

 

Finally, when validating the control system some comfort requirements that were not 

explicitly considered in this work could be included as well, such as limiting lateral 

accelerations and longitudinal jerk.  
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